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Abstract 
Climate change influences rocky intertidal environments from regional to global scales, with 

predictions of dramatic habitat loss resulting from sea level rise (SLR). The temporal and spatial 

limitations of traditional laboratory and field-based research methods may render them 

insufficient for studying SLR effects on rocky intertidal zones. Unoccupied Aerial Systems 

(UAS), LiDAR, small camera sensors, and Structure from Motion (SfM) photogrammetry offer 

new options that allow ecologists and geographers to study this ecosystem type from a novel 

perspective and scale. However, work remains in identifying and matching information needs 

with available remote sensing technologies and tools, as well as to conduct head-to-head 

comparisons of different methods to determine the best approach to mapping and monitoring 

rocky intertidal habitats. This research uses a stream bed in Villach, Austria as a proxy for the 

rocky intertidal environment and compares three-dimensional (3-D) topographical data 

products from UAS LiDAR and UAS SfM to quantify how well each captures surface detail, 

using rugosity as a metric. Results indicate that rugosity measurements derived from LiDAR 

and SfM data strongly agree with each other, likely with less noise than field measurements. 

DSMs generally agree with each other after correction of an unknown systematic vertical 

difference in the LiDAR datasets. Future work remains in exploring applicability of UAS 

remote sensing for mapping and monitoring of different habitats and in improving workflows 

for processing and analyzing 3-D point clouds.  
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Introduction 
Understanding how species are organized into spatially structured communities is a key theme 

in ecology that overlaps with geography. Organization of species across environments is 

influenced by factors such as climate, body size, natural history, fecundity, and dispersal 

capability (Böhning‐Gaese et al. 2006). Organization within environments depend on biotic and 

abiotic factors like competition, predation, temperature, substrate heterogeneity and habitat 

complexity (Connell, 1961; Camus et al. 1999; Carlson et al. 2006; Walker et al. 2009). The 

geography of the physical environment influences its ecological community structure.   

Species richness and biodiversity increase with habitat complexity due to niche diversification 

(Dustan et al. 2013). Habitat complexity holds significant influence over the community 

structure of many environments. For example, habitat complexity influences size and 

abundance of organisms (Meager et al., 2011). Furthermore, substrate heterogeneity in the 

intertidal increases biodiversity (Camus et al., 1999). For example, the common periwinkle 

(Littorina littorea) is an herbaceous snail found in the rocky intertidal. Herbivores link upper 

and lower trophic levels, so their abundance and distribution has ramifications on producers 

and consumers in their ecosystem. Like most plants and animals, its distribution and abundance 

in the environment is not uniform. It has been found that while periwinkle distribution is 

variable across intertidal sites, density was positively correlated with rugosity (surface 

complexity) and the amount of exposed rocky substrate (Carlson et al. 2006). 

Coral reefs are the classic example where benthic diversity is strongly influenced by reef 

rugosity and sea surface temperature (Mazzuco et al. 2020). Reef fish abundance and species 

richness increase with topographic complexity (Walker et al. 2009). Remote sensing has been 

used in benthic environments to estimate reef rugosity, but it does require specialized green 

wavelength bathymetric LiDAR (Brock et al. 2004) Measurements were performed along with 

in situ diver rugosity surveys, and LiDAR measurements from this study were found to reflect 

important benthic parameters, which is promising for the development of less intensive and 

invasive survey methods (Brock et al. 2004). 

This pattern of habitat complexity and biodiversity cuts across benthic, intertidal, and terrestrial 

habitats. In the Pacific atoll of Tokelau, eight species of epigenic (non-burrowing) ant species 

coexist due to different utilization of habitat niches in accordance with their body size (Sarty et 

al. 2006). Rugosity can also affect partitioning of habitat among species adapted to move across 

different substrates (Collins et al. 2013). MacArthur & MacArthur (1961) demonstrated that 

bird diversity increases with environmental complexity  

Much of ecology relies on field surveys. Rugosity is most often measured using the “chain and 

tape method”, in which a chain is gently draped over a profile of the substrate or feature of 

interest, and the and a ratio of the linear length of the profile and the surface length of the profile 

are taken, described further in Wallbridge et al. 2018. Other methods exist for estimating 

surface roughness, but  the chain and tape method has been used since the 1970s to measure 

surface complexity of reefs (as well as other habitats) and is the most widely used method for 

doing so. Pais et al. (2013) analyzed the strengths and weaknesses of this method, noting that it 

cannot “distinguish among substrata with very different profiles, especially between a single 

large corrugation and a series of small corrugations.” Frost et al. (2005) compared complexity 

estimates between the chain and tape method, the use of profile gauges, and stereophotography 

in the rocky intertidal. They found that the results from the profile gauges and chain and tape 

method were similar, but stereophotography overestimated the complexity of smoother 

surfaces. Dustan et al. (2013) acknowledged that the chain and tape method lacks quantitative 

precision, and the chain can be invasive and potentially damaging to coral reefs. However, coral 

reefs are very environmentally sensitive. For other applications, it is useful for ground-based 
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estimatation of habitat complexity, because it requires no specialized equipment, is 

straightforward enough to be done with minimal experience, it is not computationally intensive, 

and does not involve significant post-processing. 

The difficulty with field-based surface roughness surveys is these efforts are environmentally 

invasive, labor- and time-intensive, and often have additional constraints, such as the tidal cycle 

in coastal environments, which limits the temporal- and spatial scales at which these surface 

roughness can be estimated (Garza, 2019). Coupled with rapid changes associated with climate 

change, these methods are insufficient; researchers need efficient means of data collection at 

more frequent and expansive scales (Garza, 2019). Remote sensing provides efficient, synoptic 

data collection that shows promise in ecology, particularly unoccupied aerial systems (UASs) 

for their low flying, high resolution capabilities. They offer quick mobilization, 

maneuverability, and inexpensive data collection relative to aircraft based remote sensing. 

LiDAR (light detection and ranging) and structure from motion (SfM) photogrammetry are two 

options that would likely be the most useful, as they can be used to create high resolution visual 

models of rocky intertidal sites, and capture the topography and three dimensional structure of 

the environment. Aircraft and satellite-based remote sensing yields data that are too coarse for 

this application, and are suited to environmental monitoring at coarser scales, such as for 

mapping forestry, agriculture, land use and land cover, or monitoring kelp forests (Nex and 

Remondino, 2013). 

LiDAR and SfM photogrammetry are two remote sensing technologies commonly used with 

UAS for generating 3-D point clouds of surfaces. LiDAR works by emitting laser pulses that 

bounce off of the terrain below it, the backscatter is then collected by the sensor. The system 

has an onboard real-time kinematic (RTK) GPS that tracks its position with a high degree of 

precision. The elevation of these points are measured by how long it takes for the laser pulses 

to hit the terrain and bounce back to the sensor, producing a collection, or cloud of (x,y,z) 

points. SfM photogrammetry also produces a point cloud but does so by capturing images over 

the extent of the study area with substantial (e.g., 80%) forward and sideward overlap. Like 

LiDAR, UAS imaging systems used to capture images for SfM have an onboard global 

navigation satellite system (GNSS) for navigation and ideally, for triggering a camera (Loerch 

et al. (2022). Agisoft Metashape is an SfM photogrammetry software that uses artificial 

intelligence to identify match points in the image to estimate differential parallax and the 

interior and exterior orientation parameters of a set of overlapping aerial images. The (x,y,z) 

coordinates of the points are then triangulated using the relative displacement of the match 

points between images and the known location of the sensor.  Studies of UAS-based LiDAR 

systems for surface roughness estimation are rare, because of the high cost of purchasing such 

systems. However, the cost of these systems is becoming more affordable from recent progress 

in the development of autonomous vehicles, pushing the development of LiDAR systems small 

enough to be compatible with drone systems (Lin et al., 2019).  

Scientists are currently investigating whether aerial systems can yield images with an 

appropriate level of spatial detail to complement or replace traditional methods in the intertidal 

zone (Garza, 2019; Shaw et al 2019). Researchers have found that it can be difficult to achieve 

the same level of taxonomic resolution of organisms between in situ data and UAS SfM, but at 

a coarser level, the community composition in the two datasets was similar (Konar & Iken, 

2017). Work remains to be done on the more immediate technical questions of identifying 

information needs as far as accurately mapping topography, substrate, and organisms at a fine 

level of detail. Furthermore, a thorough assessment of resolution, precision, and accuracy of 

UAS SfM as compared to UAS LiDAR is needed. 
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Purpose 

The purpose of this research is to evaluate how accurately UAS-based LiDAR and Structure 

from Motion photogrammetry can estimate rocky surface texture in comparison to the 

established chain and tape field method. Secondarily, the research provides a pilot study  which 

informs my thesis research for the MSc in Geographic Information Science program at San 

Diego State University, an evaluation of the utility of UAS-based LiDAR and SfM in mapping 

and monitoring rocky intertidal habitats (RIH). I have the privilege to undertake this research 

in Villach, Austria at the Carinthia University of Applied Sciences (CUAS) as part of a summer 

exchange funded by the Marshall Plan Scholarship. Due to geographic constraints with the 

proximity of CUAS to RIH sites, my local supervisor at CUAS identified a nearby rocky stream 

bed which served as an analogous rocky land-water environment. Note that the original project 

title was kept for formal reasons, but this work may be more accurately described as a 

comparative assessment of UAS-LiDAR and -SfM in their capability to resolve detailed surface 

roughness 

Research Questions 

Given the context presented above, in this pilot study I addressed two research questions: 

1. How do spatial resolutions, horizontal and vertical accuracies, and densities of point 

clouds generated with UAS LiDAR and SfM photogrammetry compare? 

2. To what extent do UAS LiDAR and SfM point cloud, DSMs, and orthoimage products 

accurately reflect ground truth/field-based measurements of rugosity (surface 

complexity or roughness) obtained using the traditional chain and tape method?  

Literature Review  

The rocky intertidal zone is the coastal area between the fully marine environment just below 

low tide levels and the fully terrestrial splash zone above high tide (Underwood, 2000). This 

dynamic environmental gradient occurs over a few meters vertically, allowing for relative ease 

of observation (at limited spatial scales) (Underwood, 2000). Modern ecology owes much of 

its current understandings to the classical studies conducted in these environments (Connell, 

1961; Paine 1966; Dayton 1971). Some have gone as far as saying the rocky intertidal is to 

ecology what fruit flies are to genetics (Garza, 2019). The physically intense environment, the 

steep environmental gradient, strong natural selection pressures create a fascinating 

environment to study; Tomanek & Helmuth poignantly refer to the rocky intertidal as a “natural 

laboratory” (2002). 

Despite the immense research interest in this ecosystem, the rocky intertidal is understudied in 

the context of climate change and associated sea level rise. The rocky intertidal zone is subject 

to both terrestrial and oceanic climate changes phenomena and responds to climate change 

extraordinarily quickly compared to terrestrial environments. (Helmuth et al., 2006). In addition 

to sea level rise, other climate change effects, like increased temperature, and changes to 

upwelling regimes will also impact the community structure of rocky intertidal habitats as well 

as the biogeographic ranges of the organisms that live there (Helmuth et al. 2006). Thus, finding 

a way to efficiently map and monitor these rapidly changing environments is essential. 

Competitive pressure organizes intertidal species into distinct zonation bands (Connell, 1961; 

Dayton, 1971). These zonation bands are visible to some extent (Ellis, 2003). So, it is possible 

that remote sensing could be used to study changes to community structure over time at a 

relatively coarse species assemblage level. Using a combination of UAS-RGB and UAS-

multispectral imagery, researchers have identified intertidal macroalgae species with 90% 

accuracy (Tait et al. 2019). 
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While climate change studies on salt marshes (Crosby et al., 2016) and mangroves (Cavanaugh 

et al., 2019) indicate that they are endangered by inundation, rocky intertidal habitats remain 

somewhat overlooked. Findings from extant literature consistently project dramatic changes, 

with over 50% of habitat lost in many cases (Jackson & McIlvenny 2011; Thorner et al. 2014; 

Kaplanis et al. 2020). Notably, rocky shores comprise about 80% of global coastlines (Jackson 

& McIlvenny, 2011). Much like mangroves and wetlands, rocky shorelines are typically also 

backed by urban development (or cliff faces) that would impede inland retreat of these 

environments with sea level rise, thus also subjecting them to the ‘coastal squeeze’, referring to 

the loss or deterioration of these coastal habitats as they are inundated under continued sea level 

rise.  Research in Australia shows that spatial variability in the extent of lost habitat depends 

on local topography (Thorner et al., 2014). This is concerning as global mean sea level rise by 

2100 is projected between 0.29 m and 1.10 m, dependent on carbon emission scenarios 

(Oppenheimer et al. 2019). This estimate may be too conservative, and an expected 1.8 m sea 

level rise by 2100 is also an estimate that is frequently used (Kaplanis et al. 2020). We may 

well exceed these (grim) expectations, as extreme scenarios predict as much as 2.5 m of sea 

level rise (Sweet et al. 2017). Given that sea level rise is not expected to be globally uniform 

(Thorner et al. 2014), the need for ecosystem- and region-specific research is vital. 

Coastal environments are rapidly experiencing climate change impacts. The rocky intertidal 

zone is subject to both terrestrial and oceanic climate changes phenomena and responds to 

climate change extraordinarily quickly, displaying geographic range shifts as extreme as 50 

km/decade (Helmuth et al., 2006).  It is particularly difficult to study rocky intertidal habitats. 

Quadrat sampling is the most established method in ecology for studying these environments, 

but it is labor intensive, and limited in spatial and temporal extent at which it can be used (Garza, 

2019). Discussion in the literature is limited, but the effects of spatial scale in marine habitats 

have not been sufficiently examined (Lecours et al., 2015). Following from this, quadrat 

sampling relies on an inherent assumption of geographic representation. Recent advancements 

in remote sensing technology make UAS-based intertidal research promising (Garza, 2019). 

Through this review of the literature, I will address the following questions: 

1. How do rocky intertidal ecosystems function and what is already known about how 

they respond to climate change? 

2. What are the challenges and benefits with different approaches to studying these 

systems? 

3. How has remote sensing been used to study these environments? What is the 

potential utility of UAS based remote sensing, particularly aerial imaging with 

structure from motion photogrammetry and aerial LiDAR? 

 

1. Spatial Structuring of the Rocky Intertidal 

Some of the early ecological research focused on rocky intertidal environments; the mechanics 

of these ecosystems, such as competition, tolerance, disturbance, predation, and biodiversity 

are well understood. Intertidal communities are intensely spatially organized, and characterized 

by distinct zonation bands. Generally, temperate intertidal habitats have a distinct upper mussel 

and barnacle zone, and a lower, more aquatic algal zone (Dayton, 1971). This is illustrated by 

Figure 1 (Davey, 2000). 
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Figure 1 – Diagram of generalized intertidal zonation patterns, sourced from Davey, 2000. 

Space is a limiting resource in the intertidal environment (Dayton 1971). Upper zonation limits 

are set by physiological tolerance, as there are limits to how much heat and desiccation the 

aquatic denizens of the rocky intertidal can withstand (Connell, 1961). Lower limits are set by 

biological interactions, such as predation and competition (Connell, 1961; Paine, 1966). 

Interspecific competition for space in rocky intertidal environments creates recognizable 

dominance patterns in which barnacles overgrow algae, and mussels overgrow both barnacles 

and algae (Dayton 1971). As Harley & Helmuth note, zonation patterns are heavily driven by 

the amount of time the rocky substrate is submerged by the tide, which is determined by the 

topography of the site (2003). 

The intensity of spatial competition in this ecosystem raises the question: How is biodiversity 

maintained in an ecosystem where a foundational member can easily overtake other members? 

The answer lies in disturbance and predation. Drawing on a body of literature concerning 

biodiversity in various ecosystems, Connell (1961) proposed the Intermediate Disturbance 

Hypothesis (IDH) which posits that disturbances of intermediate frequency and severity 

maintain biodiversity by preventing the system from reaching equilibrium, thus preventing 

competitive exclusion or elimination of other species. The IDH is supported by both mixed 

terrestrial forests (often disturbed, but highly diverse) and staghorn corals (as of 1961, seldom 

disturbed and largely homogenous) (Connell, 1961). This explanation is so elegant and 

satisfying that it is still used by ecologists today; however, the seemingly implied assumption 

is that under the IDH, all competing species in an area are proportionately disturbed by these 

intermediate events, or they have inverse frequency dependent reproduction, such that a 

numerically common species cannot immediately overgrow its competitors following a 

disturbance. 

Predation and mortality also play a role in preventing the ecosystem from reaching equilibrium, 

subsequently preventing the exclusion or elimination of species. So called “keystone predators” 

(notably sea stars) prevent the overgrowth of mussels (Paine, 1966). Physical variables such as 

heat, desiccation, wave exposure, and battering by drift logs also have important effects on 

abundances and distribution of sessile intertidal organisms and are a source of disturbance or 

mortality that provide space for colonization (Dayton, 1971). High mortality is a key 

characteristic of rocky intertidal habitats, with early post-settlement mortality in juvenile 

barnacles as high as 50% within the first 24 hours of settlement (Gosselin & Qian, 1996). 

2. Difficulties Studying Intertidal Climate Change 

Rocky intertidal community structure has been profoundly altered by climate change in 

comparison to historical data from the 1930s (Barry et al., 1995). How the rocky intertidal will 

respond to continued climate change is an area of active inquiry, with many interacting 

processes, and no small amount of uncertainty of future scenarios, largely hinging on actions 

by policy makers. However, given the community dynamics of the intertidal zone, and that the 
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organisms there have been evolutionarily optimized to colonize and compete for space, the 

expectation is that they will keep pace with sea level rise and shoreline retreat until they reach 

unsuitable substrate or further retreat is inhibited by a sea cliff or human structure (Harley et 

al., 2006). At that point, as the zonation “layer cake” is put under the coastal squeeze; many 

species will be outcompeted or unable to escape predation as the lower bounds move upward. 

Both laboratory-based and in situ studies of the rocky intertidal pose unique challenges. 

2.1 Laboratory Approaches 

Laboratory approaches to studying the rocky intertidal offer more controlled simulations of 

phenomenon of interest, as well as ease and frequency of observation, but are limited in 

relatability to the actual environment. Anticipated impacts of climate change in the intertidal 

include: increased temperature, increased sea surface temperature, decreased pH, increased 

stratification, a deeper thermocline, changes to upwelling, mismatches of reproduction, 

development, and resource availability due to phenological changes, decreased survivorship of 

calcifiers, secondary displacement of organisms that inhabit mussel beds, widespread 

biogeographic range shifts, as well as changes to habitat availability & zonation (Harley et al., 

2006). Lab-based approaches can only focus on one or two key factors at a time (Findlay et al., 

2009; Nasrolahi et al., 2016). Therefore, they lack a capacity to observe interactions between 

climate change effects. From an experimental design standpoint, it would be severely 

impractical, if not impossible to control and study interactions between that many variables. 

Several scholars have recognized this limitation and are calling for more holistic, integrated 

research on climate change (Harley et al., 2006; Helmuth et al., 2006; Mieszkowska et al., 2019; 

Kunze et al., 2021).  

2.2 In Situ Approaches 

In situ approaches avoid many of the shortcomings of laboratory approaches, but also face 

unique challenges. Traditionally, and still today, intertidal ecology relies on in situ surveys, 

transects, and quadrat sampling (Garza, 2019). These efforts are labor- and time-intensive, and 

need to be conducted at low-tide, limiting the temporal- and spatial scales at which researchers 

can study the intertidal (Garza, 2019). Coupled with rapid changes associated with climate 

change, these methods are insufficient; researchers need efficient means of data collection at 

more frequent and expansive scales (Garza, 2019). 

Some intertidal literature used periodic temperature anomalies such as El Niño conditions, 

Pacific Decadal Oscillations, or warm ‘blob’ events as in situ proxies for climate change 

(Menge et al., 2008; Goddard et al., 2016). While these approaches creatively use unusual 

phenomena and are better contextualized to the real environment than lab studies, much like 

lab studies, they place particular emphasis on a single factor (temperature). Furthermore, 

relying on unusual conditions to study climate change could potentially introduce unintended 

confounding effects.  Studies using El Niño conditions or other anomaly events as an 

approximation of anticipated climate change conditions may not accurately predict potential 

outcomes of climate change in coastal marine systems, as predictions of cold water species 

displacement by warm water species are rooted in broad correlations between seawater 

temperature and species abundance, and are not supported by longer studies on temperature 

increase from power plant outfall; it seems possible that some of these observations could be a 

product of anomalous conditions (Schiel et al., 2004).  

The limited capacity of conducting field studies beyond small spatial extents carries the inherent 

major assumption that random quadrats are representative. Theoretically, a sufficiently large 

number of quadrats placed in a random, stratified manner to account for zonation should be 

statistically representative. However, the entire terrestrial to marine gradient occurs over a short 

distance vertically. (Underwood, 2000) and exhibits small-scale variability (Konar & Iken, 
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2017). Additionally, habitat complexity influences size and abundance of intertidal organisms 

(Meager et al., 2011). Furthermore, substrate heterogeneity in the intertidal increases 

biodiversity (Camus et al., 1999). Following from this, it seems that quadrat sampling is subject 

to the Modifiable Area Unit Problem (MAUP). The MAUP addresses the flawed assumption 

that relationships observed at one scale hold true at another, arising from the imposition of 

artificial spatial units on continuous geographic phenomenon, or combining data across 

different scales or levels of aggregation, thus generating artificial spatial relationships (Lecours 

et al., 2015). Thematic scales in ecology are sensitive to the MAUP, but the role of spatial scale 

in marine habitats lacks assessment necessary to determine what scale is fine enough (Lecours 

et al., 2015).  

The MAUP is part of geographic theory, but it is known in ecology, albeit by a different name: 

the ecological fallacy. The idea of the ecological fallacy can be simply paraphrased as the 

erroneous idea that conclusions about individuals can be deduced from aggregate data of a 

larger group. Previously, ecologists gleaned information from spatially limited data as a result 

of constraints imposed by the environment. The role of spatial scale in intertidal ecology, and 

marine ecology in general is critically understudied, because scientists have lacked tools to 

study it. Given this issue, the ability to collect high spatial resolution, synoptic data, such as 

with remote sensing, could present a reliable solution.   

3. Remote Sensing as a Potential Solution for Difficulties Associated with In Situ 

Approaches 

Remote sensing is the process of collecting data about the physical environment without direct 

contact with the phenomena or areas of interest. Platforms for remote sensing range from 

satellites to drones and have been used to study inaccessible or dangerous areas, such as 

volcanoes (Kolzenburg et al., 2016) as well as sensitive environments, including mangroves, 

wetlands, kelp forests, and coral reefs, where minimal disturbance is preferable (Burns et al., 

2015; Wang et al., 2019; Zhu et al., 2019; Doughty et al., 2021). Garza (2019) championed 

remote sensing as an option for intertidal field work, particularly with the advent of widely 

available, consumer-grade digital cameras and aerial drones. 

LiDAR and structure from motion (SfM) photogrammetry are two remote sensing technologies 

for generating 3-D point clouds of surfaces. Point clouds can be processed to produce 

representations of 3-D surfaces. Digital cameras enable capturing detailed images of surfaces. 

When these sensors are on UAS, they enable high spatial resolution rendering of topography 

and surface features. UQS are mobile and enable some degree of spatial coverage of imagery 

to be captured. Digital cameras on low-flying piloted aircraft enable production of point clouds, 

DSMs, 3-D visualizations and orthoimage mosaics for more extensive areas at a lower spatial 

resolution. LiDAR can also be flown on these autonomous aircraft, but this approach is more 

expensive and requires more sophisticated technology and fairly extensive training. 

4. Possible Challenges of Remote Sensing in the Rocky Intertidal Environment 

Working with remote sensing involves matching available technology to information 

requirements. In the inherent nature of observations from a distance, remote sensing has an 

embedded tradeoff between coverage and resolution. Aircraft LiDAR in particular, is known to 

have up to 60 cm of vertical uncertainty, which may be limiting in the context of SLR, where 

cm differences in surface roughness may be significant (Enwright et al., 2018). However, UAS 

LiDAR or SfM allows data acquisition at a much closer distance to target than aircraft LiDAR.  

SfM photogrammetry uses overlapping images and open-source software (e.g., Agisoft 

Metashape) to create 3-D point clouds and orthoimagery (Burns et al., 2015). While it is less 

expensive than LiDAR, and it features a largely automated workflow (Burns et al., 2015); 
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further work is necessary to assess the accuracy and precision of SfM- and LiDAR-derived 

point clouds, digital surface models (DSM) and orthomosaics. Kolzenburg et al. (2016) 

conducted such a comparison by integrating ground based SfM data with an existing aircraft 

LiDAR DEM and found that they could not effectively compare LiDAR & SfM in this case, 

because the spatial resolution of the SfM DEM was higher than the intrinsic error for the LiDAR 

dataset. However, one should consider the difference in scale between ground-based and 

aircraft datasets.  
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Methods  

Study Areas and Associated Data Sets 

 

Figure 2 – A map showing the location of Rosenbach Creek outside of Villach, Austria, with 

the red square highlighting the study area. The smaller inset shows the orthoimage constructed 

from the site, and the distribution of GNSS points throughout the site. 



Bushnell 13 
 

An initial test was performed at Rosenbach Creek to demonstrate proof of concept that remote 

sensing can be used to complement field methods in ecology. Rosenbach Creek is located to 

the southeast of Villach, in south central Austria, near the border with Slovenia and Italy (Figure 

2). The site is a highly urbanized riparian area, comprised mostly of flat, stony area. Larger 

rocky platforms as well as a road, vegetation and houses lie along the banks. UAS SfM 

photogrammetric and LiDAR datasets were collected, covering an area of 0.15 km2. Ground 

reference data were also generated along 12 transects within a 5 m x 5 m subplot. The research 

area includes the creek, the surrounding banks and some areas with boulders. The subplot was 

in a mostly flat area, strewn with small rocks giving it subtle texture, which we used to see if 

the UAS systems could detect a fine level of detail. Figure 3 displays the locations of the 

transects, and a general schematic of the research design. Figure 4 shows the UAS flight plan 

for collecting the LiDAR data. Figure 5 is a ground photo at the study site, showing the area 

where measurements for the rugosity transects were recorded. 
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Figure 3 – Map of subplot transects, diagram of transect research design, survey grade GCPs 

(points 1 -7), and transect start and endpoints (points 8 – 27). 

Data Collection 

Data was collected from Rosenbach Creek on July 11, 2022 using UAS SfM, UAS LiDAR, and 

the previously mentioned field-based chain and tape method. Photogrammetric data was 

collected using a Phantom four RTK drone with a 20-megapixel FC6310R camera (focal length 

of 8.8 mm) at an altitude of 50 m, . The positioning accuracy (RMS) for the Phantom four RTK 

is 1.5 cm + 1 ppm (vertical) and 1 cm + 1 ppm (horizontal). The drone collected 528 photos. 

UAS LiDAR data collection was done using a DGI M300 RTK drone at 70 m altitude equipped 
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with Zenmuse L1 Lidar sensor, with a ranging accuracy of 3 cm at 100 m (RMS 1σ)2. The 

onboard RTK system has an accuracy of  one cm +1 ppm (horizontal) and 1.5 cm + 1 ppm 

(vertical).  LiDAR data were collected with 40% overlap. Figure 4 shows the details of the 

LiDAR flight plan. There is no figure available for the SfM flight plan, but both missions 

covered the same area. All equipment specification information was taken from the DGI 

website. 

Research collaborators collected ground reference data at Rosenbach Creek. They marked a 5 

m by 5 m subplot, and six north-south and six east-west transects spaced 1 m apart. They marked 

the corners with square checkered plates, and the start and end points of the transects with 

orange spray paint. These points were also recorded using DGPS (Figure 3). Researchers then 

gently laid a chain along the substrate in a straight line and recorded the length of chain required 

to drape the surface profile. For a visual explanation of the chain and tape method, please refer 

to Figure 3 of Wallbridge et al. 2018. Researchers also recorded x,y,z coordinates around the 

perimeter of the subplot in 1 m increments, and seven survey-grade ground control points 

distributed around the research site (27 points total). 

 

Figure 4 - The flight plan used to collect LiDAR imagery of Rosenbach Creek, covering an 

area of 0.15 km2. 

 

 

Figure 5 Ground photo of the study subplot where the rugosity transects were measured. 
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Data Processing: Structure from Motion 

Digital frame images from the SfM-based mission were loaded into Agisoft Metashape and 

used to produce a dense (x, y, z) point cloud, orthoimage, and digital surface model (DSM). 

The point cloud had an average density of 0.15 points per cm2. The resulting DSM and 

orthoimage had a resolution of 2.58 cm/pixel. The processing report is available in the 

appendix. 

The DSM and orthoimage were then exported to ArcMap 10.6. The subplot was manually 

digitized, and Euclidean distances for the transects were measured digitally by snapping line 

segments between the recorded GNSS points at the start and end of each transect. The surface 

distances were measured from the DSM with the 3-D Analyst toolbox using the functional 

surface tool. Rugosity was calculated by dividing the surface measurement by the Euclidean 

measurement. the 3-D analyst tool was also used to investigate whether plot size impacted 2-D 

measurements of rugosity (surface area: planar area) within the visually homogeneous subplot.  

Data Processing: LiDAR 

The point cloud from the LiDAR mission was processed using TerraSolid. First, the XY 

coordinate system was changed from EPSG 31258 to EPSG 31255 to match the coordinate 

systems of the SfM dataset and the GCPs and then imported to Cloud Compare. After repeated 

attempts to rasterize the LiDAR dataset in Cloud Compare, I ultimately imported the LiDAR 

dataset into Agisoft Metashape and built a DSM using Agisoft Metashape’s recommended cell 

size and extent settings (Figure 6).  The DSM was then used in ArcMap with the 3D analyst 

tool to measure surface distance and calculate rugosity  

Analysis Methods: DSM Comparison 

To compare the two DSMs, the SfM DSM was re-exported from Agisoft Metashape to match 

the cell size and extent of the LiDAR DSM. Both DSMs were brought into Arc GIS Pro, and 

the SfM DSM was subtracted from the LiDAR DSM. At this point, there was an apparent 

upward shift of approximately four to five m in the LiDAR data, suggesting that the datasets 

were likely in different coordinate systems, but the vertical coordinate system was unknown. 

The SfM data was consistent with the GCPs, so it is assumed that there is an unknown source 

of error in the z dimension in the LiDAR dataset. 

 

 

Figure 6– The Agisoft Metashape settings used to rasterize LiDAR data into a DSM. 
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After trying various likely candidates, no suitable vertical coordinate system was found, and 

ultimately it was determined that the best course of action was to come up with an average 

difference and apply a vertical bias correction to the LiDAR DSM. To do this, the distance 

between the LiDAR point cloud and each of the seven survey grade GCPs was measured and 

averaged, the result was then used to shift the LiDAR DSM down (Table 2). 

Table 2 – The average distance between LiDAR point cloud and survey grade GCPs, used to 

apply a systemic correction to the LiDAR DSM. 

GCP X Y Z Raster Value Distance (m) 

1 56742.28 156668.3 468.56 473.34 4.78 

2 56706.45 156634.6 469.01 473.83 4.81 

3 56649.28 156546.1 470.06 474.63 4.57 

4 56642.06 156574.3 470.23 474.68 4.45 

5 56673.69 156618.1 469.80 474.51 4.70 

6 56694.64 156659.8 468.93 473.73 4.81 

7 56753.97 156750.6 467.43 472.22 4.79 

AVG         4.70 

STDEV         0.138 

 

Analysis Methods: Point Cloud Comparison 

Creating DSMs from a 3-D point cloud requires spatial interpolation. It is worthwhile to 

compare 3-D data at the point cloud level as that is the primitive data stemming from LiDAR 

and SfM approaches. Given that the context of this research is to map and monitor rocky 

intertidal habitats, which are structured by tidal zonation and thus characterized heavily by 

elevation and geomorphic profiles, a comparison of how well the point clouds from the two 

approaches agree along the z axis is of interest. Further, recent work shows that the z axis for 

these types of datasets tends to have the most noise (Shaw et al. 2019; Elkrachy 2021). 

I am currently developing a computer program to align two point clouds and subtract them with 

a nearest neighbor approach in Cloud Compare.  To achieve this, and in an attempt to create an 

easier, more automated process for my thesis, which would involve doing this for multiple study 

sites, I am in the process of coding a python script that would read in two CSV files with (x, y, 

z) points, iterate through the smaller list, and find the nearest neighbor in the other list, 

implementing a KD tree data structure for spatial partitioning. The program will then generate 

a list of 2-D points comprised of the Z coordinates of the neighbor pairs such that (x, y) = (zSfM, 

zLiDAR). It will plot these points, perform a linear regression, visualize and output the results as 

a .png file. I expect to have the script done before mid-December, as I am attempting this as 

one of my class projects for the Fall 2022 semester at SDSU. 

The linear regression approach described above will quantify the agreement between the two 

datasets and provide indications of systemic and random errors. The best-fit line will represent 

systemic bias, while the R2 value would indicate random error.  One potential source of random 

error is wind noise. Shaw et al. (2019) identified and accounted for random error in their 

research by plotting their data against a Weibull distribution. This approach could be taken if 

the R2 value indicates a significant amount of random error in the datasets. Nafidi et al. (2019) 

examined Weibull distributions in depth and notes that they are “considered a useful model for 

survival populations, reliability studies, and life-testing experiments” but they are also often 

used to model wind speeds. While the reasoning behind the choice was not explained or justified 

in Shaw et al, this is most likely why the Weibull curve was used.  
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Results 
SfM DSM Datasets 

After the UAS images were aligned and optimized, the SfM point cloud had 316,838,818 points. 

During processing, the seven survey grade GCPs were used as control points and the four 

corners of the subplot were used as check points (Figure 7 & 8). The XY RMSE for the control 

points was 0.605 cm and the Z RMSE was 0.626 cm for a total of 0.871 cm. The total pixel 

error was 0.691 pix. The XY RMSE for the check points was 1.217 cm and the Z RMSE was 

2.059 cm for a total of 2.392 cm. The total pixel error was 0.966 pix (Agisoft Metashape 

Processing Report). 



Bushnell 19 
 

 

 

 

Figure 7 – The LiDAR and SFM DSMs shown side by side. Disagreement occurred mostly in 

vegetated areas due to differences in the two technologies and was expected. 
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Figure 8 – The SfM orthoimage with control points and check points shown. 

 

 

 

 

 

The LiDAR point cloud contains 127,636,247 points, approximately one-third of the number 

of points in the SfM dataset. The pixel size of the LiDAR DSM is 4.7 cm (Figure 6). 

Interestingly, the vegetation (red areas toward the bottom right edge) registers at a higher 

elevation than the large bridge and roadway structures at either end. However, there are 

hillslopes and rocky platforms along either side of the creek at the edges of the DSM, so it does 

not seem inaccurate.  

Visually, the SfM dataset is higher resolution than the LiDAR dataset, consistent with it’s 

higher point density (Figure 9). The SfM dataset provides a degree of detail visually similar to 

the orthoimage and landscape features are more visible in shaded areas as compared . to the 

orthoimage. The LiDAR dataset is a bit coarser with a patchy appearance. 
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Figure 9 – A visual comparison of up close views of the orthoimage and hillshades produced 

using the LiDAR & SfM DSMs. The top row shows the study subplot. GNSS points were 

included in green to make the location clearer in the hillshades. The middle row is the top of a 

tree and the bottom row depicts an area in the creek with larger rocks, which would be 

somewhat analogus to the rocky intertidal. 
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Figure six – SfM DSM 

 

Figure 11 & 12- A scatterplot showing two-dimensional rugosity measurements (surface area: planar area) 

for various plot sizes within the 5 m x 5 m subplot, accompanied by an illustration of the different sized 

plots. 

 

Rugosity Comparison 

 

Figure 10- A comparison of rugosity measured in the field against the digitally derived rugosity 

measurements from the DSM. Rugosity is unitless. 

The overall range of rugosity values from SfM, LiDAR, and the chain and tape method is 0.16. 

The small range shows that the subplot is relatively smooth and homogenous, and that all three 

methods generally agree. The SfM- and LiDAR-derived rugosity values closely agree whereas 

the chain and tape method shows more scattered values, an indication of more “noise” in the 

data (Figure 10). Like Figure 10, Figure 11 shows a small range of rugosity values, and with an 

R2 value of 0.17, there is no apparent trend between plot size and rugosity, further supporting 

that the area is homogenous with subtle texture.  
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DSM Comparison

 

 

 

Figure 13 – An elevation raster created by subtracting the SfM DSM from the LiDAR DSM, 

before and after shifting the LiDAR DSM to account for the systemic error. The scatterplot 

shown is for the transect subplot area. 

The DSMs had vertical height differences of 4 to 5 m in unvegetated areas, which was reduced 

following correction, as shown by the scatterplots (Figure 13). The patterns in the difference 

raster and the shape of the data distribution in the scatterplots are unchanged. The features in 

the difference DSM such as the bridge, roadway, hillslopes, rocks, and vegetation are still 

crisply visible, showing that the two DSMs co-register well, and that the disagreement is 

generally along the vertical axis. If the DSMs aligned poorly, these features would be distorted 

or indistinguishable. 
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Discussion & Conclusion 
The source of vertical error in the LiDAR dataset is unknown. It could have been introduced 

during the LiDAR data processing, but most likely stems from a difference in the unknown 

vertical coordinate system. Additionally, the data was delivered in different x-y coordinate 

systems. The ground control points and the SfM data were delivered in EPSG 31255, and the 

LiDAR data were delivered in EPSG 31258. The LiDAR data were reprojected into EPSG 

31255 to match the horizontal coordinate system of the other data. This reprojection 

complicates identifying the original vertical datum, likely rendering the task impossible. 

Furthermore, the systemic correction was based on an average value, and while it improved 

agreement between the two DSMs, it does not totally account for error, so it is difficult to 

determine how much of the difference between DSMs was due to this unknown error as 

opposed to differences between LiDAR and SfM, or signal to noise ratio. 

However, most of the disagreement was concentrated in vegetated areas, which is entirely 

expected. SfM photogrammetry only captures the surfaces of objects, whereas LiDAR sensors 

can get as many as five returns per pulse. The multiple returns capture the structure of the 

vegetation beneath, inherently introducing disagreement. Additionally, because SfM relies on 

differential parallax, it is more sensitive to foliage movement. The disagreement was also 

strongest in the areas around the edges, which is likely due to insufficient overlap. 

Given the strong agreement between SfM- and LiDAR-derived rugosity values, it is suspected 

that much of the disagreement between the two datasets at the DSM level in non-vegetated 

areas is due to random noise or remainders of the systemic error as opposed to differences in 

how well each system resolves surface detail.  

Rugosity is most extensively measured at reefs, which are highly variable in their texture and 

complexity, but typical rugosity values for reefs range from about 1.2 to 4.0 (Holmes, 2008). 

By comparison, the rugosity subplot here is almost smooth. Values from all three methods 

generally reflect this, but there is more spread in the chain and tape values, suggesting that UAS 

remote sensing methods are a better method for quantifying rugosity than the chain and tape 

field method. There was almost no difference in rugosity values between SfM and LiDAR. This 

makes sense, as there’s some level of human judgement involved in draping the chain along the 

transect. However, both the chain and tape method and the DSM approach described here are 

subject to the limitations identified by Frost et al. (2005) in that it is an average value over a 

transect, which cannot distinguish the size, number, or shape of corrugations. At this time, it is 

not possible to draw conclusions on the point cloud comparison, but the difficulties were almost 

certainly due to the size of the datasets. 

An alternative explanation for the agreement of the rugosity values is that the surface has subtle 

variations, and they were within the noise with each method. However, this seems unlikely as 

both UAS remote sensing approaches have a vertical accuracy of around 1.5 cm and are more 

consistent with each other and between transects than they are with the established field method. 

If the UAS systems were not able to resolve the texture, it would show as a smooth surface 

(plotting along the red line) or perhaps exhibit more variation, similar to the chain and tape data 

points.  

In evaluating the strengths and weaknesses of each method, SfM really shines. The SfM point 

cloud was much denser, and it was easier to identify the ground control point targets in the SfM 

point cloud and orthoimage than the colorized LiDAR. Workflows for Agisoft Metashape are 

largely automated and easy to learn. Additionally, LiDAR has only recently become small 

enough to work with UAS systems and is prohibitively expensive compared to SfM 

photogrammetry, which is possible in some cases with consumer-grade digital cameras (Garza 
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2019). LiDAR has an advantage in heavily shadowed areas or areas with low contrast as it does 

not rely on imagery to capture 3-D structure.   

In conclusion, results from this pilot study suggest that both UAS SfM and LiDAR produce 

similar DSMs as well as rugosity measurements that are at least as accurate and precise than 

the most established field method. This is consistent with Shaw et al. ( 2019), where researchers 

compared UAS imagery to UAS LiDAR and found that both techniques were suitable for beach 

monitoring though LiDAR was more accurate and consistent with ground control points. 

Interestingly, they compared two UAS SfM systems with UAS LiDAR and found that both 

SfM datasets had positive vertical bias of four to nine cm in comparison to the LiDAR data. 

Future Work 
LiDAR sensors have only become light enough to use with UAV platforms in the past few 

years, largely due to advancements with autonomous vehicles. As this technology becomes 

more available, work remains in improving workflows (particularly for LiDAR datasets and 

point cloud comparisons). Additionally, this technology shows great promise for reducing costs 

and improving efficiency in habitat mapping and monitoring efforts. High resolution UAS 

imagery and DSMs are of particular interest for monitoring changes to intertidal habitat 

availability and zonation due to sea level rise. 

With this project, future work remains in further developing a workflow to compare the datasets 

at a point cloud level, and in applying these methods to actual rocky intertidal sites. As I 

continue to progress toward completing my thesis, I will collect and process UAS SfM and 

LiDAR data at my proposed research sites in California. As rocky intertidal sites generally have 

more pronounced geological features than those seen in the ground truth subplot used here, it 

will be interesting to see how well the two systems compare in their ability to resolve detail, 

surface roughness, and species richness/abundance. Pilot studies in San Diego indicate that 

sessile species can easily be seen with SfM photogrammetry at low altitudes, but that motile 

taxa are not seen. Likely because they are cryptic, especially during low tide, when the drone 

missions are performed. Motile taxa are also small, approaching the lower threshold of what is 

identifiable at the resolution of some preliminary imagery taken in La Jolla, California as part 

of a test study. Sessile organisms are small individually, but occur in patches with reasonable 

color and texture contrast from the rocky substrate. 

I will defend my thesis proposal early Spring 2023 semester, collect UAS LiDAR and SfM data 

in January 2023 and begin analysis shortly after that. My thesis will involve refining and 

implementing the methods described here at three rocky intertidal habitats in Laguna Beach, 

California. Additionally, I would like to use these datasets to delineate intertidal zonation, 

classify substrate types (possibly with object-based image analysis) and compare any visible 

organisms to reference biological survey data from the Multi-Agency Rocky Intertidal Network 

(MARINe). 
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