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Kurzfassung

Die Vorhersage der Struktur von Antikörper-Antigen-Komplexen bleibt eine schwierige Auf-
gabe, da die komplementäritätsbestimmenden Regionen (engl. complementarity determining
regions - CDR), die die Interaktion des Antikörpers bestimmen, einzigartig und unstrukturiert
sind. Außerdem sind wenig koevolutionären Informationen über die Antikörper vorhanden, was
die Strukturvorhersage zu einem schwierigen Problem macht. Eine zusätzliche Herausforderung
in dieser Hinsicht stellt der Mangel an Strukturen von Antikörpern in der Proteindatenbank
(PDB) dar. Die Fülle an experimentellen Daten zu Antikörpern, die nicht die Struktur betref-
fen, bietet jedoch eine vielversprechende Ressource für die Erforschung, indem diese Daten in
die Strukturvorhersage integriert werden können. Eine Art von Daten sind experimentelle Bin-
dungsdaten, die eine zusätzliche Dimension zur Integration und schließlich zur Unterstützung
der Strukturvorhersage bieten.
Die Hypothese für dieses Projekt bestand darin, diese Art von Daten in ein neuronales Netzwerk
zur Strukturvorhersage einzubeziehen und zu untersuchen, ob die korrekte Vorhersage einer spe-
zifischen Antigen-Antikörper-Interaktion auch die Gesamtstrukturvorhersage verbessern kann;
ein Problem von enormem pharmakologischen Interesse. Konkret haben wir eine Bibliothek von
Antikörpern verwendet, von denen bekannt ist, dass sie das Spike-Protein von SARS-CoV-2
binden, einschließlich Informationen darüber, ob der Antikörper an die mutierte Rezeptorbin-
dungsdomäne (RBD) des Proteins bindet. Dieser Ansatz der Zusammenführung von Sequenz-
daten und Bindungsdaten wurde unseres Wissens bisher noch nicht angewandt. Wir haben uns
überlegt, dass die Erkenntnis, ob ein Antikörper an eine bestimmte RBD-Mutante bindet oder
nicht, dem Modell ein besseres strukturelles Verständnis von Antigen-Antikörper-Komplexen
abverlangt und damit die Strukturvorhersage innerhalb eines Netzwerks verbessern könnte. Ziel
dieser Arbeit ist es, die mit den Daten verbundenen Herausforderungen und Verzerrungen zu
beschreiben und zu ermitteln, wie man mit diesen Daten trainieren kann.
Das Endergebnis des Projekts war, dass sich die Ableitung dieser Informationen über die Bin-
dungsschnittstelle als kritisch erwies, die aus Daten des Deep Mutational Scanning (DMS) abge-
leitet wurden. Die Ergebnisse deuten darauf hin, dass die Vorhersage von Antikörperstrukturen
und Antikörper-Antigen-Bindungsschnittstellen wenig bis gar nicht verbessert werden konnte
und eine anspruchsvolle Aufgabe bleibt. Zukünftige Ansätze können eine bessere Verfeinerung
der Datensätze und eine verbesserte Ableitung der Informationen über die Bindungsschnittstelle
umfassen. Darüber hinaus ist es wichtig zu betonen, dass die Diversifizierung von Trainingsda-
tensätzen und die Einbeziehung von Antikörpersequenzdaten von mehreren Zielproteinen einige
der in dieser Arbeit entdeckten Probleme entschärfen kann.





Abstract

Antibody-antigen complex structure prediction remains a challenging task due to the unique
unstructured nature inherent to the complementarity-determining regions (CDR) which deter-
mine the interaction of the antibody. Furthermore, co-evolutionary information on antibodies
is sparse which makes it a challenging problem for structure prediction. An additional challenge
on that aspect is posed by the lack of solved structures containing antibodies in the Protein
Database (PDB). However, the abundance of non-structural experimental data on antibodies
offers a promising resource for exploration by potentially integrating this data into structure
prediction. One kind of data is experimental binding data which offers an additional dimension
to integrate and eventually aid the structure prediction.
The hypothesis for this project was to incorporate this type of data into a structure-prediction
neural network and investigate whether correctly predicting a specific target-antibody interaction
can also improve overall structure prediction; a problem of enormous pharmacological interest.
Specifically, we incorporated a library of antibodies known to bind the spike protein of SARS-
CoV-2, including information on whether the antibody is binding to the mutated receptor binding
domain (RBD) of the protein. This approach of amalgamation of sequence data and binding
data has not, to our knowledge, been done previously. We reasoned that to learn whether or
not an antibody would bind to a particular RBD mutant would require the model to learn a
stronger structural understanding of antigen-antibody complexes, and thereby could improve
structure prediction within a network. This thesis aims to describe and identify the challenges
and biases associated with the data and how to train on it.
The final outcome of the project was that generating privileged information about the binding
interface proved to be critical, which was derived from deep mutational scanning (DMS) data.
The findings suggest that little to no improvement in the prediction of antibody structures and
antibody antigen binding interfaces could be achieved and it remains a challenging task. Future
work includes better data set refinement and improved derivation for the privileged information.
Moreover, it is important to emphasize that diversifying training data sets and incorporating
antibody sequence data from multiple targets can mitigate some of the issues discovered in this
thesis.
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1 Introduction

The following chapters are intended to give an overview of the field of protein structure predic-
tion in a historic context and the impact of the advent of deep learning. Especially the aspect
of incorporating sequence-only data will be highlighted. Additionally, this chapter aims to give
a small introduction into protein design and further, antibody design, as structure prediction is
of clear relevance and importance to protein design. Furthermore, the text will delve into the
clinical significance of antibodies and their potential as targeting drugs.

1.1 Protein Structure Prediction

In 1972 Christian Anfinsen postulated Anfinsen’s Dogma, for which he was awarded the Nobel
prize. This dogma lays the conceptual foundation for understanding protein structure and
folding principles. This fundamental principle postulates that the native three-dimensional
structure of a protein is inherently determined by its amino acid sequence. In other words, a
protein’s primary structure, represented by its sequence of amino acids, governs its unique and
intricate three-dimensional fold which according to the hypothesis also represents the lowest
energy state. Anfinsen’s Dogma underscores the inherent relationship between a protein’s
sequence and its final folded structure on an energy landscape, establishing a guiding principle
crucial to the field of protein structure prediction [1].

One of the first programs used for computational protein structure prediction was Rosetta which
has been developed over the past two decades. The development of Rosetta began in the late
1990s, when David Baker and his colleagues at the University of Washington began working
on a computational method for predicting protein structures. The initial version of Rosetta
was released in the 2000s, and since then, the software has undergone many updates and
improvements [2]. The protein structure prediction part of the software suite can be assigned
to the physics-based structure prediction programs since the optimization of the structure is
based on the minimization of an energy function which consists of various terms which aim to
reflect the physics of protein folding [3].

When AlphaFold (AF1) conceived by DeepMind, made its debut and was showcased at the
13th Critical Assessment of Structure Prediction (CASP13) conference [4] [5], it exhibited
noteworthy advancements compared to other structure prediction methods [6]. AF uses a
deep learning network to predict protein structures, and has introduced numerous novelties
like processing inter-residue geometries, and feeding the resultant coordinates alongside the
evolutionary information conserved in homologous sequences into the network. After that, a
subsequent energy minimization was conducted using gradient descent. In the case of the later
published trRosetta, an acronym for transform-restrained Rosetta [7] - Rosetta was employed.
Evolutionary information in the form of multiple sequence alignments (MSAs) have been used
in models which were template-based since the first CASP conference in 1994, based on the
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1 Introduction

assumption that sequence based information is evolutionarily conserved and reflects into the
structure [6] [8].

The most significant breakthrough occurred with the unveiling of a reengineered version of
AlphaFold, termed AlphaFold2 (AF2) [9], at the 14th CASP conference in 2020. AlphaFold2
not only retained the established utilization of evolutionary information and data from templates
— fragments derived from analogous proteins — but also incorporated these elements into a
novel, transformer-based architecture. Among its innovations, AlphaFold2 stands out as an
SE(3)-equivariant neural network, a feature which generally speaking increases performance
and decreases training time.

To give a very broad overview, SE(3)-equivariance means that the 3D representation of the
coordinates for the model remains consistent even when subjected to spatial transformations
involving rotations and translations. This property decreases a network’s necessary parameters,
making it more efficient during training and runtime [10]. The success of this methodol-
ogy prompted the subsequent development of RoseTTAfold, which adopted a similar strategy.
Notably, RoseTTAfold introduced three distinct tracks for representing the evolutionary infor-
mation in the first and the other two for the coordinates derived from evolutionary information
called templates, as detailed in section 2.1. Furthermore, it also exploited the principles of
SE(3)-equivariance.

In the subsequent years, there has been a transformative shift in the field of structural biol-
ogy. DeepMind’s continuous refinement of AlphaFold2 and the collaborative efforts of various
research groups have led to enhancements in the network’s performance tailored for specific
tasks [11][12][13][14]. This evolution has positioned AlphaFold2 as an indispensable tool for
experimental structural biologists seeking to unravel more complex structures. Notably, the
AlphaFold Database, housing over 214 million predicted protein structures as of 16.11.23, has
become a valuable resource, fostering research across diverse domains [15].

Subsequent releases this year, namely RoseTTAfold-NucleicAcid (RFNA) and RoseTTAfold All-
Atom (RFAA) [16], have expanded the scope of structure prediction to encompass biological
assemblies, incorporating proteins, nucleic acids, small molecules, metals, and covalent mod-
ifications. Furthermore, DeepMind and Isomorphic Labs released some vague results about
the latest version of AlphaFold, called AlphaFold-latest [17]. This model, while capable of the
same all-atom awareness as the methods mentioned earlier, distinguishes itself with significantly
improved accuracy in antibody structure prediction. Notably, addressing the challenges in this
area is a focus of ongoing work (manuscript in preparation) and improved by the approach
pursued in this thesis.

1.2 Antibody Structure Prediction using fine-tuned
RoseTTAfold2

As already mentioned general protein structure prediction [18] [9] shows high accuracy and
reliability in predicting the structure of a single domain protein based on its respective amino
acid sequence. Moreover, AlphaFold-Multimer was also published and extends the capabilities of
AlphaFold2 to predict the structure of a protein complex, and together with RF2 it is considered
the de facto gold standard in protein structure prediction.
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1.3 Clinical Relevance of Antibodies

IgFold [19], EquiFold [20] and ImmuneBuilder [21] are models which are specifically designed
to predict the structure of antibodies. These models have shown improvement compared to
AF2’s predictions by giving these models more details about the specificity of antibodies in a
fine-tuning step. However, the improvements observed with these models are relatively modest
when compared to AF-Multimer. For instance, ABodyBuilder2, one of the models within
the ImmuneBuilder suite, demonstrates only a 0.09 Å enhancement in the root mean square
deviation (RMSD) of a binding-specific region of an antibody compared to AF-Multimer. This
overall indicates that the mentioned models are not yet suitable for the task at hand thus
making it an unsolved challenge. Given this marginal difference in performance and considering
the challenges encountered, the task of standalone antibody structure prediction appears to be
constrained by limited data availability.
As discussed in section 1.3, antibodies present a unique challenge due to their highly loop-rich
nature and the lack of a specific secondary structure associated with the CDRs. Moreover, there
exists a lack of homologous sequences for antibodies thereby limiting the amount of evolution-
ary information available for training. Consequently, this makes it very hard for the current
state-of-the-art structure prediction methods to correctly predict the structure of an antibody.
The authors of (manuscript in preparation) set out to solve this task by coming up with a model
specialized for predicting antibodies or antibody-antigen complexes which they call RFantibody.
The origin of this model is the fine-tuned RF2 network on a data set which specifically consists
of antibody structures with annotated CDRs originating from a data set called The Structural
Antibody Database (SAbDab) [22][23]. Furthermore, RFantibody was fine-tuned using a cu-
rated data set of peptide-major histocompatibility complex (MHC) complexes bound to T-cell
receptors (TCRs) which was manually curated [24].

1.3 Clinical Relevance of Antibodies

Broadly speaking antibodies represent proteins generated by the immune system capable of
recognizing and binding to specific targets, such as viruses, bacteria, and cancer cells. Anti-
bodies have become an important class of drugs in recent years due to their high specificity
and low adverse effects [25]. As of June 2022 there were 163 approved antibody drugs for
the treatment of different human diseases, encompassing cancer, autoimmune disorders, and
chronic inflammatory diseases [26]. Additionally, to date, the global market size for monoclonal
antibodies (mAbs) alone was estimated at approximately $210 bn. in 2022 [27][25].
Figure 1.1 depicts the different ways antibodies or antibodies as drugs can interact with human
cells or the human immune system. They are an attractive target as therapeutics for a wide
range of reasons:

• High specificity and affinity: Antibodies have been selected for their ability to bind with
high specificity and affinity to a wide variety of molecules. This allows them to target
specific disease-causing agents, while minimizing off-target effects [28].

• Low toxicity: In therapy, antibodies are favored due to their low toxicity, which makes
them beneficial for the treatment of cancer and autoimmune diseases. Their mechanism
of action, which often involves blocking or modulating specific interactions, can be tuned
to achieve the desired therapeutic effect with minimal side effects [28].
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1 Introduction

Figure 1.1: This figure by [28] gives a comprehensive overview of the different ways antibodies
can be used as therapeutics. a antibodies which are used as TCR-mimics; b Im-
munoglobulin antibodies and different antibody fragments which are used as thera-
peutics; c antibody-drug conjugates (ADCs) and how they should trigger apoptosis;
d antibodies which target a malignant cell and then recruit immunogenic cells (T
cells, macrophages, etc.) - multifunctional or bispecific antibodies.
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1.4 Improving Structure Prediction with a sequence-only Data Set

• Long half-life: Antibodies have a longer half-life and thus a better bioavailability in the
body compared to small molecules, allowing for less frequent dosing and improved patient
convenience [29][30].

• Diverse applications: Antibodies have been used as therapeutic drugs for the treatment
of various human diseases, including cancer, asthma, arthritis, psoriasis, Crohn’s disease,
transplant rejection, migraine headaches, and infectious diseases. They can be engineered
to enhance their safety and efficacy, and new antibody-based drugs are continually being
developed [25][31].

The benefits of antibody-based therapies have revolutionized the treatment of many diseases,
and their use as drugs continues to grow, with significant potential for future advancements.
Being able to specifically engineer antibodies with a desired function is therefore of great interest
and will be able to combine the benefits of de novo protein design with the clinical relevance
and potential of antibodies as therapeutics.

The authors of [32] could show that protein binder design is working successfully for a lot of pre-
viously unsolved challenges. However, in order to successfully validate the designed antibodies -
analogous to the binder design as shown in [33] - general antibody structure prediction will need
to be improved. As already mentioned, there are several aspects to antibodies which make this
a hard problem. Antibodies exhibit a significantly high level of structural and sequence-based
similarity and only a small part of the antibody is involved in the interface where the antigen is
bound. This part of the antibody - also called the complementarity-determining regions (CDRs)
or hypervariable region, lacks a distinct secondary structure, making it exceedingly challenging
to model using current state-of-the-art structure prediction methodologies such as AF2 or RF2
[21]. For a better visual representation an entire structure of an antibody with the CDRS
highlighted can be observed in Figure 1.2.

1.4 Improving Structure Prediction with a sequence-only Data
Set

Assuming that the architecture of either RF2 or AF2 is ideal for antibody structure prediction,
the underlying issue could be primarily attributed to a lack of data. Consequently, leveraging
the vast sequence space to enhance antibody structure prediction represents a promising avenue
for exploration. Notably, the Observed Antibody Space (OAS) data set contains over two billion
antibody heavy chain sequences and is continually expanding[35]. This extensive data set holds
the potential to significantly augment the data available for improving the accuracy of antibody
structure predictions.
The motivation behind this approach is rooted in AlphaFold2’s self-distillation technique, as
detailed in [9]. An integral component of this improvement lies in the capacity of AlphaFold2
to provide a per-residue metric for each prediction, known as the per-residue local distance
difference test (pLDDT).
For the self-distillation technique, AF2 predicts structures for a subset of the Uniclust30 database
[36] which is a database of clustered protein sequences and consists of around 6 million se-
quences. This particular subset encompasses around 350,000 sequences. Subsequently, after
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1 Introduction

Figure 1.2: Figure taken and modified from [34]

predicting the structures of these sequences and filtering them based on a pLDDT-like metric,
this subset was utilized for retraining AF2 in conjunction with PDB-structures. This approach
was able to improve the overall structure prediction accuracy of AF2 by a significant margin.
Figure 1.3 shows a schematic of the described self-distillation technique.
Furthermore, it is essential to note that not only AlphaFold2 but also RF2 underwent training
using a distillation approach, leading to a clear improvement in the overall structure prediction
accuracy of RF2, as outlined in [18].

1.5 Aim of this Thesis

The aim of this thesis was to achieve two objectives: the first was to demonstrate that fine-
tuning RFantibody on a sequence-only data set could improve the prediction of binding prob-
abilities for antibody-antigen complexes demonstrating that the model can reason using the
newly gained understanding of structures, whereas the second was to showcase that this fine-
tuning process could enhance the overall accuracy of antibody structure prediction. It has to
be pointed out that the prediction of binding probabilities represented the more straightforward
of the two tasks, and is a prerequisite for the second task. Consequently, the first objective was
pursued first, being the first hallmark of successfully incorporating sequence-only data.
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1.5 Aim of this Thesis

Figure 1.3: The pipeline of how AF2’s self-distillation approach works. AF2 is trained on a
subset of the Uniclust30 database and then the predicted structures are filtered
based on a pLDDT-like metric. The filtered structures are then used to further
train AF2.
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2 Methods

2.1 RoseTTAfold2’s Architecture

This section is by no means a complete explanation of the architecture of RF2 but rather a
brief overview of the most important parts of the architecture. For a more detailed explanation
refer to the original paper [18].

The input to RF2 consists of three different types, each fed into the three separate tracks of
the architecture as outlined in Figure 2.1. The 1D track incorporates the MSA of the sequence
of interest.

The 2D track or pair-wise representation takes a 2D representation of the 3D structure de-
rived from the templates (when available). Templates represent homologous structures to the
sequence of interest and are generated using the hhsuite software suite [37].

The 3D track encompasses the 3D coordinates, which are subsequently channeled into a SE(3)-
equivariant transformer, as depicted in the schematic in Figure 2.1. A particular type of self-
attention is used to fulfill the criteria of SE(3)-equivariance.

The 1D track feeds the 2D track, where a pairwise representation of the prediction devel-
ops. This representation feeds back to the 1D track, such that attention aids processing the
MSA. Both tracks feed the 3D track, where a 3D structure is developing. This 3D structure
representation also feeds back to the other tracks refining the other representations.

The integration of these three tracks enables synchronization, ensuring that the sequence,
pair-wise representation, and 3D structure remain in correspondence throughout the one pass-
through through the network. One of the features which greatly improved structure prediction
was recycling the predicted structure and the embeddings for the pairwise representation and for
the MSA as an input for the next iteration - therefore giving each track its own recycling input.
The refinement block as depicted in Figure 2.1 is intended to refine the predicted structure
which is why it is only computing attention from each residue to its 64 nearest neighbors.

In addition to producing the final structure, the network also generates the metric pAE (pre-
dicted aligned error), which serves as a pairwise metric estimating the error of the predicted
structure. Furthermore, it yields pLDDT as previously described, and pBind - a probability that
two chains are binding computed from pAE logits. The model is capable of doing so, because
during training it has to reason whether or not two provided proteins will form a complex or
not using its structural understanding. However, the training data set also contains negative
examples in the form of generated complexes with a pBind of 0.0 assigned to them.

The network is trained on a data set consisting of 280k structures from the PDB along with an
AF2 generated distillation set which alone consists of 3.6M sequence/structure pairs. The loss
function incorporates terms like distogram loss, masked amino acid prediction loss, structure
loss, pAE and pLDDT prediction losses, bond geometry loss, clash loss, and predicted binding
loss. The training occurs in two distinct phases, with specific parameter settings, such as
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2 Methods

Figure 2.1: A schematic showing the architecture of RoseTTAfold2 where each track and its
respective inputs are shown: 1D track - consisting of the MSA of the sequence
of interest; 2D track - consisting of the contact map of the templates; 3D track
- consisting of the 3D coordinates of the templates. These parallel tracks update
the different representations and are then fed into a refinement block which then
generates the final structure which is then recycled as an input for the next iteration.
Moreover, this architecture yields additional features such as predicted aligned error
(pAE), per-residue local distance difference test (pLDDT), and pBind. Of particular
significance for this thesis is the pBind feature. (Figure taken and modified from
[18])

loss weights, crop size, and learning rate, tailored for each phase. Moreover, the approach
incorporates cropping techniques for large proteins to optimize the training process.

2.2 Hotspots for RFantibody

Unlike RF2 which aims to solve general structure prediction because this alone is a complicated
task, RFantibody is specifically tailored to predict the structure of antibodies as finding and
correctly predicting the antibody-antigen dock is particularly hard. To achieve this objective,
the authors of (manuscript in preparation) discovered that providing privileged information -
here termed hotspots - about the binding interface of an antibody to RFantibody significantly
enhances the overall structure prediction accuracy as depicted in Figure 2.2.
These hotspots are defined as residues on the target structure with an average Cβ distance from
10 Å to any residues on CDR loop on the antibody. These identified hotspots are subsequently
incorporated as an additional input layer within the 1D track of the network therefore being
assigned as a per-residue feature. One of the primary challenges addressed in this thesis revolved
around attempting to replicate this privileged information within this specific sequence-only data
set.
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2.3 Data Set Preparation

Figure 2.2: This graph shows the improvement in structure prediction accuracy when giving
RFantibody either no hotspots or 10 % hotspots. The y-axis shows the RMSD in Å
to the native structure and the x-axis shows the number of structures within that
RMSD bin.

2.3 Data Set Preparation

The data set utilized in this study was sourced from Cao et al. [38], forming the cornerstone
of this thesis. The entire workflow was written with Python 3.10 [39]. Data processing and
manipulation was done using the pandas library [40], an especially useful datatype was the
pandas dataframe for its fast access. The clustering process was done using the subprocess
library from Python to call MMseqs2. Other useful libraries were numpy [41] for processing and
matplotlib [42] and seaborn [43] were used for data visualization. The PyTorch library was used
to generate the necessary data structures for training [44].

2.4 Benchmarking

We set up a benchmarking test to measure performance on the held-out set, with a primary
focus on evaluating the predictive performance of the pBind metric. Alongside that, the pLDDT
and pAE metrics were also closely monitored during the evaluation process. Furthermore, the
RMSD to the native structure was also calculated which was only possible for those antibodies
within the data set that had an associated structure, a criterion that was met by a mere 76
out of the 3051 antibodies. Initially, the held-out set was selected using the t-SNE epitope
clustering method, but subsequently, the sequence similarities of the concatenated CDRH3 and
CDRL3 were used to have a different metric of clustering to compare to the already established
clustering.

For the analysis - as shown in subsubsection 3.2.3 the metrics pBind and pAE were plotted.
Each metric was accompanied by a density plot illustrating the distribution of positive and
negative samples. Moreover, the reciever operating charateristic (ROC) area under the curve
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(AUC) was calculated for only a specific subset of the held-out set, i.e. only for predictions
where the pAE was smaller than 10 or 5.

2.5 Training

As already mentioned in section 2.1 RFantibody is fine-tuned off of the published weights of
RF2. This process involved an initial training phase on antibody-specific structures, followed
by a subsequent sequence-only fine-tuning step. However, the ratio of sequence-only samples
was never more than 50% of the total training samples to avoid overfitting on that respective
data set and to avoid the model collapsing in on the task of general structure prediction. This
also implies that the total number of samples the model sees from the structure based training
set increases during the trainings conducted for this thesis. This notably can have side-effects
such as overtraining or a general improvement in overall structure prediction not attributed to
the sequence-only data set.

Training procedures were executed using 8 NVIDIA L40 GPUs, with a batch size of 64 and
the AdamW optimizer [45]. If no improvement of the validation loss for the pBind metric was
observed within a 2-week period, the training process was halted. In hindsight, it is clear that
the extensive training period was far beyond what was necessary for the models that were not
effectively learning, reflecting a now better understanding of neural networks. These training
operations were conducted on a local high-performance cluster (HPC), while monitoring was
facilitated using the Weights and Biases framework [46].

2.6 Loss Functions

In the context of RFantibody, taking over the exact same loss terms like RF2 [47], the simi-
larity between the loss terms used in structure prediction training, involving known structures,
is highlighted. However, a notable challenge arises during the training scenario focused on
sequence-only data, where the absence of explicit structures limits the applicability of several
loss functions. Each loss also has a weight term associated which determines the magnitude
of how much it will be considered and is determined during a hyperparameter search. The
following loss terms are usually applied during training with structures:

• Distogram loss - Cross-entropy between the predicted pair-wise representation and the
native.

• Structure loss - Consisting of the frame-aligned point error FAPE term, a specific
chirality-aware representation, where each residue is represented as a triangular frame
(spanning over Cα-Cβ-N)

• Loss on the networks’ pAE prediction - Cross-entropy between predicted and true
pAE.

• Loss on the networks’ pLDDT prediction - Cross-entropy between predicted and true
pLDDT.

12



2.6 Loss Functions

• Loss on bond geometry - Sum of losses on peptide bond deviation from ideal, with
normalized length and angle terms.

• Clash loss - Uses Rosetta’s Lennard-Jones potential, normalized by the number of
residues, providing weak attraction and strong repulsion between atoms.

For the sequence-only approach pursued in this thesis, the following loss functions can be
applied:

• Masked amino acid prediction loss - Cross-entropy between actual and predicted se-
quences over randomly masked positions.

• Predicted binding loss - Binary cross-entropy between the pBind head given that a pair
of chains forms a complex.

Loss terms, like Distogram loss, Structure loss (comprising frame-aligned point error FAPE,
chirality representation), pAE and pLDDT prediction losses, bond geometry loss, and clash
loss, are conventionally applied when structural information is available. In contrast, for the
sequence-only approach pursued in this study, specific loss functions come into play, including
Masked Amino Acid Prediction loss and Predicted Binding loss. The inherent challenge lies
in the model’s diminished ability to learn when confronted with a reduced set of applicable
loss functions, emphasizing the importance of specific strategies for training in the absence of
explicit structural information. By adding structural examples the model should be incentivized
to always reason using the structural representation.
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3 Results and Discussion

The subsequent chapter focuses on presenting the challenges which arose during the data set
preparation and the extractions of the privileged information leading to a selected number of
training runs and associated benchmarking results. It is important to note that many other
training runs produced similar outcomes and this only reflects a small subset. The training
runs which are presented here are the ones which show the highest diversity in response to the
different training settings.

3.1 Curation of a sequence-only data set for RFantibody

The data set used for fine-tuning RFantibody on a sequence-only data set had to fulfill certain
criteria. Notably, it had to be a large enough data set and it had to be associated with a specific
target. For this purpose, the SARS-CoV-2 spike protein was selected as the target due to its
extensive research focus, resulting in a substantial availability of associated antibody sequences.
Additionally, there needed to be some additional information in order to generate hotspots (as
explained in section 2.2) on the target, which were proven to be essential - especially since there
were no structures associated.
The data set [48] used, encompassed 3051 monoclonal antibodies (mAbs) accompanied by
binding affinity data linked to every single point mutation on the target protein. This data was
obtained using deep mutational scanning (DMS) - on the target, a 194 residue-long receptor
binding domain (RBD) of the SARS-CoV-2 spike protein as depicted in the schematic Figure 3.1.
Therefore the total number of data points was around 10M, making it a very promising data set.
The resulting binding values were normalized and then subsequently utilized to compute escape
scores ranging between 0 and 1 using an internally developed equation [38]. These scores were
subsequently correlated with the pBind metric of RFantibody. This information was used for
generating the hotspots on the RBD as elaborated in section 2.2.

3.1.1 Clustering

The authors of [48] applied t-distributed stochastic neighbor embedding (t-SNE) [49] to cluster
the 3051 antibodies along with their DMS profiles into 12 different clusters (or epitope groups)
as demonstrated in Figure 3.2. The t-SNE algorithm serves as a non-linear dimensionality reduc-
tion technique, facilitating the visualization of high-dimensional data within a low-dimensional
space.
Initially, these clusters were used for the train/validation split but in order to see if binding
and then structure prediction can be improved when the clustering is performed in sequence
space, the easy-linclust method from the software suite MMseqs2 was utilized [50]. Notably,
this approach solely utilized the concatenated sequences of the complementarity-determining
region of the heavy chain (CDRH3) and the complementarity-determining region of the light
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3 Results and Discussion

Figure 3.1: A schematic showcasing the data set used. 3051 antibodies in 12 different cluster
modes associated with 10M mutations of the RBD - a subunit of the spike protein
of the SARS-CoV-2. Binding data is derived from a site saturation mutagenesis
(SSM)-experiment [48]. Figure taken and modified from [34].

Figure 3.2: The resulting epitope clusters after performing t-SNE on the DMS profiles of 3051
antibodies performed by [48].
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3.1 Curation of a sequence-only data set for RFantibody

chain (CDRL3), as illustrated in Figure 1.2. The utilization of this concatenated sequence data
yielded the generation of the fewest clusters, a feature highlighted in Figure 3.3. As a result of
this outcome, the combined CDRL3 and CDH3 were used to perform the subsequent clustering
in sequence space and thus the train/validation split to compare it with the other clustering
approach.

Figure 3.3: After using the easy-linclust method from the software suite MMseqs2 [50] on the
data set of 3051 antibodies the least amount of clusters was achieved when using
only the concatenated sequences of CDRH3 and CDRL3 as the green points suggest.
The clustering was performed in 0.25 similarity increments.

3.1.2 Hotspot Selection

Here, each antibody in conjunction with each mutation on one of the 194 residues on the RBD,
has an escape score mapped between 0 and 1 associated with it. To establish the definition
of a hotspot, an arbitrary threshold was selected. Depending on the score and the threshold a
residue on the RBD is either declared as hotspot or not. One additional criterium was that the
residue had to be on the surface of the RBD, determined through the utilization of the Rosetta
software suite [51], using the same structure for the RBD as the curators of the data set [48]
with the PDB identifier 6M0J [52]. This information was compiled as a boolean mask with
the length of the RBD serving as additional data associated with each antibody, as depicted in
Figure 3.4.

3.1.3 Positive Negative Split

The data set had a bias, with a significantly skewed ratio between positives (i.e., antibody-RBD
interactions which are binding) and negatives (i.e., antibody-RBD interactions which are non-
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3 Results and Discussion

Figure 3.4: A heatmap showing the hotspots on the RBD of SARS-CoV-2. The x-axis shows
the 194 residues of the RBD and the y-axis shows the 3051 antibodies. The color
red indicates that a residue is a hotspot and the color blue the opposite.
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3.1 Curation of a sequence-only data set for RFantibody

binding). The inbalance was due to a stark over-representation of binding interactions. This
can be observed in the violin plot in Figure 3.5. Ideally, the ratio of positive to negative samples
should be maintained at a close balance of 1:1. In most cases, failure to achieve this balance
often results in the model consistently predicting either only binding or only non-binding events,
depending on the predominance of one class over the other in the training data set.

To address the issue of imbalance, an arbitrary cut-off (see green line in Figure 3.5) was
established above which a sample was considered a negative or non-binding event. Subsequently,
an equal amount of positive or binding samples was then chosen from the highest value of the
positive binding events. This imbalance correction presented a significant challenge as it led to
a drastic reduction in the overall number of samples available for training.

Figure 3.5: A violin plot depicting the imbalance of positive and negative binding events. The
y-axis shows the evasion score meaning that 1 correlates with non-binding and a
negative example whereas 0 correlates with a positive binding event. The green
line shows an arbitrary cut-off above which a sample is considered a negative or
non-binding event. For that specific value of 0.3 the data set is reduced to in total
around 44k samples.

3.1.4 Bias Elimination

In the course of training of the model and the analysis of the benchmark results it became
evident that there was another bias in the data set. This introduced bias was primarily a result
of an initial lack of thorough investigation into the data set on my part. The bias was caused
by the fact that most non-binding or evasion events occurred predominantly through mutations
at specific residue positions.
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3 Results and Discussion

This can be observed in Figure 3.6 where the x-axis shows the 194 residues of the RBD and
the y-axis shows the frequency of occurrence of a residue in the data set. For instance as
depicted the residue on position 52 very often results in a negative binding event (i.e. evasion),
whereas the residue on position 51 rarely resulted in such events. A similar pattern is observed
in the data set containing positive binding events (i.e., successful antibody-virus inhibition),
however it is not as pronounced as for the negative binding events. Consequently, the model
could learn this position-specific pattern rather than reasoning over the structure of the binding
interface. We want the model to be learning whether a specific mutation would affect binding to
a specific antibody, but this bias means that the model can simply learn that specific residues
positions (irrespective of antibody sequence) are associated with binding/non-binding. This
issue was further exacerbated when one of these critical residue positions was present in both
the training and validation sets, ultimately resulting in the model learning this information. This
can be observed in the reciever-operating-characteristic (ROC) Figure 3.10 which shows clear
indications of the model having found this shortcut.

Figure 3.6: A bar plot showing the frequency of occurrence of a residue in the data set. The
x-axis shows the 194 residues of the RBD and the y-axis shows the frequency of
occurrence of a residue in the data set. The color orange is used for the non-binding
events and the color blue for the binding events.
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3.2 Evaluation of individual Models

3.2 Evaluation of individual Models

The following chapter contains the different iterations of preprocessing (e.g. clustering) and
subsequent training approaches employing different hypotheses which were tested if they could
improve the binding prediction as a first step towards structure prediction.

3.2.1 Model without any fine-tuning

These benchmarking results aim to provide a baseline comparison since this model was not fine-
tuned with any sequence-only data set but instead the exact same benchmarks were performed
on the weights from RFantibody which were used to fine-tune the other models from below.
As depicted in Figure 3.7 and Figure 3.8 the not fine-tuned version of RFantibody exhibits an
acceptable behavior for the distinction between binding and non-binding events. However, the
ROC AUC of 0.63 for pBind and 0.67 for pAE - though being very impressive - can certainly
be improved. However, for this thesis it can be regarded as the gold standard in comparison to
the following training runs. The density plots demonstrate a comparable pattern.

3.2.2 Model with suspected Data Leak

For this case neither the different clustering approach (as explained in Figure 3.3) nor the
bias elimination (as explained in Figure 3.6 and Figure 3.5) were employed since the issues
elaborated in subsection 3.1.4 and subsection 3.1.3 were not yet considered. Here, the loss
curves for the pBind metric show indications of strange behavior (potentially indicating issues
with the training set) as depicted in Figure 3.9. This became more evident during the analysis
of the benchmarking results as discussed in the following sections.

Training

The model was trained on the t-SNE epitope clusters and only after the model had seen around
100k samples did the loss for the pBind metric begin to decline. This progression is illustrated
in Figure 3.9, where the x-axis represents the number of steps and the y-axis denotes the loss
for the pBind metric.
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3 Results and Discussion

The baseline model; no sequence-only training

Figure 3.7: Distograms for two metrics: pBind and pAE

(a) The ROC curve for the pAE metric. (b) The ROC curve for the pBind metric.

Figure 3.8: RFantibody without any fine-tuning was evaluated to have a baseline model to
compare the models against with AUCs for pBind and pAE being 0.63 and 0.67
respectively.
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3.2 Evaluation of individual Models

Figure 3.9: The orange line represents the validation loss and the blue line represents the training
loss. Here depicted is the binding loss for the pBind metric for the model with
suspected data leak and unexpected behavior. The x-axis shows the number of steps
and the y-axis shows the binding loss for the pBind metric. Since the validation
loss (orange line) gets smaller than the training loss (blue line) the model is not
just overfitting on the training data but also learning something from the training
data to predict the validation data beyond the losses applied - a data leak could be
hypothesized. The overall trend of the losses also exhibits unusual behavior.
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In Figure 3.9 the orange validation loss stagnates, while the training loss very slowly decreases,
which is a sign of potential underfitting - a phenomenon which occurs when the complexity of
the problem is too high for the model to extrapolate from the training set to the validation set.
However, at approximately 22k steps the validation loss begins to decrease and after around 30k
steps the validation loss is lower than the training loss. The fact that the validation loss starts
to decline abruptly can be an indicator of issues with the training set. Taking both loss curves
into consideration this training run indicates a lot of erroneous conduct and close attention was
paid to further analysis of the data set.

Benchmarks

The hypothesis of a data leak comes when looking at the results of the benchmarking. The
benchmarking was conducted on the held-out set selected using the t-SNE epitope clusters.
The benchmarking results depicted in Figure 3.10 show the ROC-curve. The data leak becomes
apparent when the graph indicates that at a true positive rate of 80% the false positive rate
is 0%. This scenario implies that 80% of the binding events are correctly identified as such,
and all non-binding events are correctly identified as negative, indicating a perfect performance.
Furthermore, the AUC metric shows a value of 0.96 which is very close to the ideal value of
1.0 - this is a significantly better performance than expected. Taking the loss curves from
Figure 3.9 into consideration the potential of a data leak is substantiated. The subsequent
investigations revealed the biases which yielded a potential explanation for the loss curves and
the benchmarking result - those biases were eliminated as explained in Figure 3.6.

3.2.3 Model without Bias

Working with the data set, that was normalized with respect to the residue position. The
normalization of the data set however greatly decreased the size of the data set. Additionally,
the hypothesis was that clustering in sequence space would improve the model. To test this, a
new clustering was performed using the easy-linclust method from the software suite MMseqs2
[50]. Subsequently, the model was retrained on the modified data set. The results of that
training and benchmarking can be observed in the following sections.

Training

The loss curves for the pBind metric can be observed in Figure 3.11. It should however be noted
that over the whole training process, the validation loss only exhibited a very small downward
trend, suggesting that the model struggled to learn from the training set. Considering the
reduced size of the data set due to normalization, the model was limited to observing 25k
training samples before the training was terminated.

24



3.2 Evaluation of individual Models

Figure 3.10: The ROC graph for the benchmarking results of the data set with suspected data
leak. The x-axis shows the false positive rate and the y-axis shows the true positive
rate.
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3 Results and Discussion

Figure 3.11: The binding loss for the pBind metric. The x-axis shows the number of steps and
the y-axis shows the binding loss for the pBind metric. Note here that the models
in subsection 3.2.4,subsection 3.2.5, and subsection 3.2.6 show an almost identical
behavior for their individual loss functions which is why they are not shown here.

Benchmarks

Additionally, to the bias elimination and the new clustering approach the benchmarking was also
conducted more extensively, encompassing the pBind and pAE metrics with the latter being
also used to distinguish between binding and non-binding events.
The metric pBind is computed using the 64 binned pAE. However as depicted in Figure 3.12,
pAE is more suitable for distinguishing binding events. Notably, both metrics do not perform
well, considering that an ROC AUC of 0.62 does not hold great discriminative power. The
density plot for pBind very clearly shows that the model is not able to learn the task since
the distribution of the positive and negative binding events is almost identical. This indicates
that it was not able to generalize for negative binding events and instead predicts them as
positive instead. The ROC curve in Figure 3.13 clearly reflects the same trend, where a slightly
better than random discrimination is achieved. If anything, it can be stated that the overall
performance in comparison to the model without any fine-tuning is slightly worse.

3.2.4 Model with different Hotspot Threshold

This model was trained on the same data set as the model in subsubsection 3.2.3 but with a
different threshold for the hotspots. The leading hypothesis for choosing a different threshold
for the hotspot was that a lower threshold would incorporate a higher amount of residues on
the target resulting in a higher diversity and giving the model more options for predicting the
dock correctly. The threshold was set to 0.5 instead of 0.3 above which a value was considered
a mutation causing evasion. The results of the training and benchmarking can be observed in
Figure 3.15 and Figure 3.14. However, upon comparison to the baseline model, no significant
difference was observed, which is why this model was not further investigated.
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Clustering performed using MMseqs2 and normalisation

Figure 3.12: Distograms for two metrics: pBind and pAE

(a) The ROC curve for the pAE metric. (b) The ROC curve for the pBind metric.

Figure 3.13: RFantibody was evaluated on two metrics; pBind and pAE. Changing clustering
from epitope-based to sequence-based and eliminating the residue-specific bias
during training only led to a marginal decline in the distribution of metrics between
the binding and non-binding set, with AUCs for pBind and pAE being 0.62 and
0.65 respectively.
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Benchmarks

Different threshold for hotspots generation

Figure 3.14: Distograms for two metrics: pBind and pAE

(a) The ROC curve for the pAE metric. (b) The ROC curve for the pBind metric.

Figure 3.15: RFantibody was evaluated on two metrics; pBind and pAE. Changing the threshold
for generating the hotspot during preprocessing of the training set led to a clear
shift in the distribution of metrics between the binding and non-binding set, with
AUCs for pBind and pAE being 0.60 and 0.63 respectively.

In comparison to the baseline model, a very similar trend can observed. However, this model
which has a less strict margin for when a residue is considered a hotspot shows a slightly worse
performance as the density plot in Figure 3.14 for the pAE suggests that the model has more
false positives and false negatives. This is also reflected in the ROC curve in ?? where the AUC
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is slightly lower than for the baseline model also showing that this approach did not yield a
successful outcome.

3.2.5 Model with CDR Duplicate Removal

Here, the leading hypothesis was that maybe an additional bias was contained within the data
set stemming from the sequence clustering which is based on sequence similarity. However,
for antibodies this metric can be heavily skewed considering their high sequence similarity.
Therefore the duplicates within the data set were removed using the CDR3 sequences alone,
thus making the data set more strict and giving the model an easier task in distinguishing
different binding events. The results of the training and benchmarking can be observed in
Figure 3.16 and Figure 3.17.

Benchmarks

It was expected that this model would show a slightly better performance than the baseline
model. However, most metrics displayed in Figure 3.16 and Figure 3.17 show no improvement
in comparison to the baseline model and the model without fine-tuning on sequence-only data.
For that reason, the hypothesis of another bias in the data set was not upheld.

3.2.6 Model without any Hotspots

To investigate the hypothesis, if the model is in fact utilizing information provided by the
hotspots, the following approach was investigated. In order to compare to the other trials, the
same sequence-based clustering was used. This model was trained on the same data set as the
model in subsubsection 3.2.3, but without any hotspots provided. The results of the training
and benchmarking can be observed in Figure 3.18 and Figure 3.19.

Benchmarks

When investigating the results of the benchmarking in Figure 3.18 and Figure 3.19 it becomes
apparent that the model without any hotspots performs slightly worse than the baseline model
with no fine-tuning. This is especially evident in the ROC curve in Figure 3.19 where the
AUC for the pBind metric is significantly lower than for the other models. This suggests that
the hotspots are indeed a necessary part of the model and removing them results in a worse
performance - even though these hotspots were derived from the SSM data and not from the
structure itself. Furthermore, pAE does not seem to worsen in comparison suggesting that the
model is able to reason over the internal representation of the structure better than with the
hotspots. For future investigations, the hotspot generation should be improved and varied to
enhance the model’s performance.
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Duplicates-removal only with CDR3s

Figure 3.16: Distograms for two metrics: pBind and pAE

(a) The ROC curve for the pAE metric. (b) The ROC curve for the pBind metric.

Figure 3.17: RFantibody was evaluated on two metrics; pBind and pAE. Removing duplicates
using only the CDR3s before training led to a not very distinct difference in the
distribution of metrics between the binding and non-binding set, with AUCs for
pBind and pAE being 0.62 and 0.66 respectively.
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No hotspots provided during structure- and sequence-based training

Figure 3.18: Distograms for two metrics: pBind and pAE

(a) The ROC curve for the pAE metric. (b) The ROC curve for the pBind metric.

Figure 3.19: RFantibody was evaluated on two metrics; pBind and pAE. Not providing any
hotspots at all during the training led to a distinct worsening in the distribution of
metrics between the binding and non-binding set, with AUCs for pBind and pAE
being 0.48 and 0.62 respectively.
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4 Conclusion

We set out to improve antibody structure prediction given a sequence-only data set. In order
to achieve that the model should first learn binding prediction. After identifying and correcting
for a then discovered bias in the data set, a different clustering approach was employed and
together with other experiments, the effects on performance were measured. However, changing
the threshold for hotspot generation, or performing a more rigorous duplicate sequence removal
for the preprocessing did not lead to improvements but degraded the model’s performance on
all tasks. This led us to test, if the model was able to correctly learn the information about the
dock provided through the hotspots which we tested by omitting them. This showed that the
model does indeed use the information contained within the hotspots since that specific model
showed worse performance altogether. Sadly, we did not manage to show progress on the given
task, despite attempting a less strict hotspot generation threshold, clustering in sequence space,
being stricter with removing duplicates in the data set, and measuring the effect of omitting
hotspots.

The general objective of this thesis was to investigate the feasibility of training RFantibody on
a sequence-only data set. Much of the data presented here pertains to whether the model was
learning to improve binding prediction I was training it on, which it did not, but the primary
objective of whether training on sequence-only data can improve structure prediction remains
to be seen. However, the work on this thesis has provided valuable insights into the challenges
of generating a data set for training RFantibody on a sequence-only data set. The following
section will highlight the key findings of this thesis and provide an outlook on the future of the
project.

Improving the data set is indeed a critical step toward enhancing the model’s performance.
One of the more challenging issues was the bias introduced by the erroneous preprocessing
and the imbalance of positive and negative binding events per residue position. Trying another
sequence clustering approach, such as the specialized antibody similarity search method called
Known Antibody Search (KA-Search) [53], could potentially provide a better clustering approach
for the sequence based clustering than MMseqs2 in order to obtain better data for training
and validation. This can potentially mitigate biases and yield a more representative data set.
However, the clustering performed by [38] better reflects the requirements for reasoning over
structure potentially providing a better clustering approach overall.

Addressing the challenges related to hotspot derivation from the SSM data is important for
accurate binding interface predictions. That information proved to be crucial for the correct
prediction of the binding interface the training of RFantibody and correctly deriving the hotspots
from the SSM data still remains challenging and different methods can be explored further.

As already explained in section 1.2 AF2 showed great improvement when trained with a self-
distillation data set. Thus, a self-distillation data set for RFantibody, similar to the approach
from AF2 or RF2 could enhance the model’s robustness and generalization. By training RFan-
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4 Conclusion

tibody on a diverse data set of antibodies, it may be possible to improve its performance and
predictive capabilities significantly.
Moreover, incorporating another sequence-only data set of antibodies targeting a different anti-
gen could be considered future steps. Varying the number of available structures and the
proportion of different sequence-only antibody samples in this data set may prevent overfitting
and offer more flexibility.
Lastly, integrating experimentally gathered data, such as from a large-scale high-throughput
screening experiment focused on a diverse set of different targets, could provide the model with
a diverse set of antibody interfaces to analyze and reason over. This could potentially enhance
the model’s predictive capabilities and generalization.
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[29] Maŕıa Sof́ıa Castelli, Paul McGonigle, and Pamela J. Hornby. “The pharmacology and
therapeutic applications of monoclonal antibodies”. en. In: Pharmacology Research & Per-
spectives 7.6 (2019). eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/prp2.535,
e00535. issn: 2052-1707. doi: 10.1002/prp2.535. url: https://onlinelibrary.
wiley.com/doi/abs/10.1002/prp2.535 (visited on 10/18/2023).

[30] Meric Ovacik and Kedan Lin. “Tutorial on Monoclonal Antibody Pharmacokinetics and
Its Considerations in Early Development”. In: Clinical and Translational Science 11.6
(Nov. 2018), pp. 540–552. issn: 1752-8054. doi: 10.1111/cts.12567. url: https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC6226118/ (visited on 10/19/2023).

[31] Bradley Brobst and Judith Borger. “Benefits and Risks of Administering Monoclonal
Antibody Therapy for Coronavirus (COVID-19)”. eng. In: StatPearls. Treasure Island
(FL): StatPearls Publishing, 2023. url: http://www.ncbi.nlm.nih.gov/books/
NBK574507/ (visited on 10/18/2023).

[32] Joseph L. Watson et al. “De novo design of protein structure and function with RFdiffu-
sion”. en. In: Nature 620.7976 (Aug. 2023), pp. 1089–1100. issn: 0028-0836, 1476-4687.
doi: 10.1038/s41586-023-06415-8. url: https://www.nature.com/articles/
s41586-023-06415-8 (visited on 10/17/2023).

[33] Nathaniel R. Bennett et al. “Improving de novo protein binder design with deep learning”.
en. In: Nature Communications 14.1 (May 2023). Number: 1 Publisher: Nature Publishing
Group, p. 2625. issn: 2041-1723. doi: 10.1038/s41467-023-38328-5. url: https:
//www.nature.com/articles/s41467-023-38328-5 (visited on 10/18/2023).

[34] Visualizing an invisible virus – The Pipettepen. en. Mar. 2021. url: https://www.
thepipettepen.com/visualizing-an-invisible-virus/ (visited on 10/25/2023).

[35] Tobias H. Olsen, Fergus Boyles, and Charlotte M. Deane. “Observed Antibody Space:
A diverse database of cleaned, annotated, and translated unpaired and paired antibody
sequences”. en. In: Protein Science 31.1 (Jan. 2022), pp. 141–146. issn: 0961-8368,
1469-896X. doi: 10.1002/pro.4205. url: https://onlinelibrary.wiley.com/
doi/10.1002/pro.4205 (visited on 10/23/2023).

[36] Milot Mirdita et al. “Uniclust databases of clustered and deeply annotated protein se-
quences and alignments”. en. In: Nucleic Acids Research 45.D1 (Jan. 2017), pp. D170–
D176. issn: 0305-1048, 1362-4962. doi: 10.1093/nar/gkw1081. url: https://
academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1081 (visited on
10/23/2023).

[37] Martin Steinegger et al. “HH-suite3 for fast remote homology detection and deep protein
annotation”. en. In: BMC Bioinformatics 20.1 (Dec. 2019). Number: 1 Publisher: BioMed
Central, pp. 1–15. issn: 1471-2105. doi: 10.1186/s12859-019-3019-7. url: https:
//bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859- 019-

3019-7 (visited on 10/21/2023).

38

https://doi.org/10.1002/prp2.535
https://onlinelibrary.wiley.com/doi/abs/10.1002/prp2.535
https://onlinelibrary.wiley.com/doi/abs/10.1002/prp2.535
https://doi.org/10.1111/cts.12567
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226118/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6226118/
http://www.ncbi.nlm.nih.gov/books/NBK574507/
http://www.ncbi.nlm.nih.gov/books/NBK574507/
https://doi.org/10.1038/s41586-023-06415-8
https://www.nature.com/articles/s41586-023-06415-8
https://www.nature.com/articles/s41586-023-06415-8
https://doi.org/10.1038/s41467-023-38328-5
https://www.nature.com/articles/s41467-023-38328-5
https://www.nature.com/articles/s41467-023-38328-5
https://www.thepipettepen.com/visualizing-an-invisible-virus/
https://www.thepipettepen.com/visualizing-an-invisible-virus/
https://doi.org/10.1002/pro.4205
https://onlinelibrary.wiley.com/doi/10.1002/pro.4205
https://onlinelibrary.wiley.com/doi/10.1002/pro.4205
https://doi.org/10.1093/nar/gkw1081
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1081
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkw1081
https://doi.org/10.1186/s12859-019-3019-7
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3019-7
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3019-7
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-019-3019-7


Bibliography

[38] Yunlong Cao et al. “Imprinted SARS-CoV-2 humoral immunity induces convergent Omi-
cron RBD evolution”. en. In: Nature 614.7948 (Feb. 2023). Number: 7948 Publisher:
Nature Publishing Group, pp. 521–529. issn: 1476-4687. doi: 10.1038/s41586-022-
05644-7. url: https://www.nature.com/articles/s41586-022-05644-7 (visited
on 10/21/2023).

[39] Welcome to Python.org. en. Nov. 2023. url: https://www.python.org/ (visited on
11/10/2023).

[40] The pandas development team. pandas-dev/pandas: Pandas. Nov. 2023. doi: 10.5281/
ZENODO.3509134. url: https://zenodo.org/doi/10.5281/zenodo.3509134
(visited on 11/11/2023).

[41] Charles R. Harris et al. “Array programming with NumPy”. en. In: Nature 585.7825
(Sept. 2020), pp. 357–362. issn: 0028-0836, 1476-4687. doi: 10.1038/s41586-020-
2649-2. url: https://www.nature.com/articles/s41586-020-2649-2 (visited on
11/10/2023).

[42] John D. Hunter. “Matplotlib: A 2D Graphics Environment”. In: Computing in Science
& Engineering 9.3 (2007), pp. 90–95. issn: 1521-9615. doi: 10.1109/MCSE.2007.55.
url: http://ieeexplore.ieee.org/document/4160265/ (visited on 11/10/2023).

[43] Michael Waskom. “seaborn: statistical data visualization”. In: Journal of Open Source
Software 6.60 (Apr. 2021), p. 3021. issn: 2475-9066. doi: 10.21105/joss.03021. url:
https://joss.theoj.org/papers/10.21105/joss.03021 (visited on 11/12/2023).

[44] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: (2019). Publisher: arXiv Version Number: 1. doi: 10.48550/ARXIV.1912.
01703. url: https://arxiv.org/abs/1912.01703 (visited on 10/28/2023).

[45] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization”. In: (2017).
Publisher: arXiv Version Number: 3. doi: 10.48550/ARXIV.1711.05101. url: https:
//arxiv.org/abs/1711.05101 (visited on 10/28/2023).

[46] Weights & Biases. en. url: https://wandb.ai/site (visited on 10/30/2023).

[47] Minkyung Baek et al. Accurate prediction of nucleic acid and protein-nucleic acid com-
plexes using RoseTTAFoldNA. en. preprint. Bioinformatics, Sept. 2022. doi: 10.1101/
2022.09.09.507333. url: http://biorxiv.org/lookup/doi/10.1101/2022.09.
09.507333 (visited on 10/23/2023).

[48] Yunlong Cao et al. “Imprinted SARS-CoV-2 humoral immunity induces convergent Omi-
cron RBD evolution”. en. In: Nature (Dec. 2022). issn: 0028-0836, 1476-4687. doi:
10.1038/s41586- 022- 05644- 7. url: https://www.nature.com/articles/
s41586-022-05644-7 (visited on 10/23/2023).

[49] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In: Journal
of Machine Learning Research 9.86 (2008), pp. 2579–2605. url: http://jmlr.org/
papers/v9/vandermaaten08a.html.

39

https://doi.org/10.1038/s41586-022-05644-7
https://doi.org/10.1038/s41586-022-05644-7
https://www.nature.com/articles/s41586-022-05644-7
https://www.python.org/
https://doi.org/10.5281/ZENODO.3509134
https://doi.org/10.5281/ZENODO.3509134
https://zenodo.org/doi/10.5281/zenodo.3509134
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://doi.org/10.1109/MCSE.2007.55
http://ieeexplore.ieee.org/document/4160265/
https://doi.org/10.21105/joss.03021
https://joss.theoj.org/papers/10.21105/joss.03021
https://doi.org/10.48550/ARXIV.1912.01703
https://doi.org/10.48550/ARXIV.1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.48550/ARXIV.1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://wandb.ai/site
https://doi.org/10.1101/2022.09.09.507333
https://doi.org/10.1101/2022.09.09.507333
http://biorxiv.org/lookup/doi/10.1101/2022.09.09.507333
http://biorxiv.org/lookup/doi/10.1101/2022.09.09.507333
https://doi.org/10.1038/s41586-022-05644-7
https://www.nature.com/articles/s41586-022-05644-7
https://www.nature.com/articles/s41586-022-05644-7
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html


Bibliography
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