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Abstract

Centered on marine weather forecasting, this thesis proposes a specialized
toolkit for generating datasets and executing forecasting trials, additionally
encompassing a study on physics-informed regularization in forecasting.

Deep learning has become the dominating approach in many forecasting
domains. Within the realm of weather prediction, it confronts traditional
numerical methods, but has not emerged as a full alternative. While the
majority of weather forecasting emphasizes land, marine weather prediction
is the central theme of this thesis. Advancements in this field are crucial
for systems that protect mariners from extreme weather events and also
for systems offering timely warnings for potential meteorological disasters
along the coastlines. Moreover, enhancements in marine weather prediction
can be used to improve ship routing, leading to cost savings and reduced
emissions.

Although marine weather forecasting draws from various data sources,
this work centers on forecasting ocean buoy observations, specifically those
provided by the National Data Buoy Center (NDBC). Prediction of these
observations can be achieved through numerical weather prediction, a
theory-driven approach, or by leveraging a data-driven method, notably
deep learning. Also, combining methods from both approaches is possi-
ble. Therefore, the dominant technique used is physics-informed neural
networks. While this approach necessitates in-depth knowledge of meteoro-
logical correlations and tailored solutions for each weather parameter, this
thesis introduces an alternative.

Weather models, such as the fifth generation of reanalysis for the global
climate and weather (ERA5) provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF), are rooted in theory-driven calculations.
This thesis aims to determine whether leveraging available physics-informed
data can enhance the forecasting of real-world observations.

Consequently, two dataset representations are introduced to combine
the spatial-temporal data from both NDBC and ERA5 sources. In addition,
this work investigates four deep learning models, each tailored with a loss
function that controls the impact of physics-informed data in the training
process. This method of integrating physics into the dataset, rather than
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directly into the neural network, is termed physics-informed regularization
(PIR).

To thoroughly examine both dataset representations and PIR, a toolkit for
dataset creation and forecasting experiments was developed. While tailored
for this project, the toolkit is crafted to be adaptable and expandable for
subsequent related research endeavors. Utilizing the toolkit, a study was
carried out to evaluate the behavior of various PIR levels through four deep
learning models: LSTM, GRU, CNN, and TCN.

The findings reveal that PIR has the potential to boost accuracy. Though
not universally valid, it illuminates the effectiveness of the adopted strategy
and lays the groundwork for prospective research.
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Kurzfassung

In dieser Arbeit, die sich auf die Vorhersage des Seewetters konzentriert,
wird ein spezielles Toolkit für die Erstellung von Datensätzen und die
Durchführung von Vorhersage-Experimenten vorgeschlagen. Außerdem
wird eine Studie über die Anwendung von physikalisch informierter Regu-
larisierung bei der Vorhersage von Messwerten präsentiert.

Deep Learning hat sich in vielen Bereichen der Vorhersage zum do-
minierenden Ansatz entwickelt. Im Bereich der Wettervorhersage konkur-
riert es mit den traditionellen numerischen Methoden, hat sich aber noch
nicht als vollständige Alternative erwiesen. Während sich die meisten
Wettervorhersagen auf das Festland konzentrieren, ist die Wettervorher-
sage auf See das zentrale Thema dieser Arbeit. Fortschritte in diesem
Bereich sind entscheidend für Systeme, die Schiffsmannschaften vor ex-
tremen Wetterereignissen schützen und auch für Systeme, die rechtzeitig
vor möglichen Naturkatastrophen an den Küsten warnen. Darüber hinaus
können Verbesserungen bei der Vorhersage des Seewetters genutzt werden,
um die Routenplanung von Schiffen zu verbessern, was zu Kosteneinsparun-
gen und geringeren Emissionen führt.

Obwohl die Vorhersage des Seewetters aus verschiedenen Datenquellen
gespeist wird, konzentriert sich diese Arbeit auf die Vorhersage von Mess-
werten gesammelt durch Bojen. Konkret werden Messwerte die vom Na-
tional Data Buoy Center (NDBC) zur Verfügung gestellt werden, berück-
sichtigt. Die Vorhersage dieser Beobachtungen kann durch numerische
Wettervorhersage, einen theoriegesteuerten Ansatz, oder durch die Nutzung
einer datengesteuerten Methode, insbesondere Deep Learning, erreicht wer-
den. Auch die Kombination von Methoden aus beiden Ansätzen ist möglich.
Dafür sind physikalisch informierte neuronale Netze der dominierende
Ansatz. Während dieser ein tiefgreifendes Wissen über meteorologische
Zusammenhänge und maßgeschneiderte Lösungen für jeden Wetterparame-
ter erfordert, stellt diese Arbeit eine Alternative vor.

Wettermodelle, wie die fünfte Generation der Reanalyse für das globale
Klima und Wetter (ERA5) des Europäischen Zentrums für mittelfristige
Wettervorhersage (ECMWF), basieren auf theoriegestützten Berechnungen.
In dieser Arbeit wird untersucht, ob die Nutzung verfügbarer physikalisch

xii



informierter Daten die Vorhersage tatsächlichen Messwerten verbessern
kann.

Dafür werden zwei Datensatzdarstellungen eingeführt, um die räumlich-
zeitlichen Daten aus den NDBC- und ERA5-Quellen zu kombinieren. Darüber
hinaus werden in dieser Arbeit vier Deep-Learning-Modelle untersucht, die
jeweils mit einer Verlustfunktion ausgestattet sind, die den Einfluss der
physikalischen Daten auf den Trainingsprozess kontrolliert. Diese Meth-
ode der Integration von physikalischen Daten in den Datensatz und nicht
direkt in das neuronale Netzwerk wird als physikalisch informierte Regu-
larisierung (PIR) bezeichnet.

Um sowohl die Repräsentationen der Datensätze als auch PIR gründlich
zu untersuchen, wurde ein Toolkit für die Erstellung von Datensätzen und
Vorhersageexperimente entwickelt. Das Toolkit ist zwar auf dieses Projekt
zugeschnitten, aber es ist so konzipiert, dass es für spätere verwandte
Forschungsvorhaben angepasst und erweitert werden kann. Mit Hilfe des
Toolkits wurde eine Studie durchgeführt, um das Verhalten verschiedener
PIR-Stufen mit Hilfe von vier Deep Learning-Modellen zu bewerten: LSTM,
GRU, CNN und TCN.

Die Ergebnisse zeigen, dass PIR das Potenzial hat, die Vorhersagege-
nauigkeit zu erhöhen. Obwohl die Ergebnisse nicht allgemeingültig sind,
verdeutlichen sie die Effektivität der gewählten Strategie und bilden die
Grundlage für künftige Forschungen.
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1 Introduction

According to Greek mythology, the gods sent the weather directly from
their seat of power, Mount Olympus, to the Earth. Already the Greek poly-
math Aristotle opposed this view and around 340 B.C., in his work about
”Meteorologica”, he described atmospheric phenomena (Frisinger, 1972).
Consequently, humans have always been driven to understand and forecast
the weather. Even though it is common understanding today that weather is
a physical phenomenon governed by natural laws, the precise prediction of
weather remains a challenge.

This challenge is primarily addressed by meteorology, a science that fo-
cuses on the physical and chemical processes in the atmosphere. However,
due to the complexity of this science, without advances in computer science,
it would not be possible to calculate future weather before it occurs (Lynch,
2007). As in many other areas of application, artificial intelligence is attract-
ing increasing interest in the field of weather forecasting. However, based
on the current state of technology, it is not capable of completely replacing
numerical weather prediction. (Schultz et al., 2021)

Marine weather forecasting is a subfield that has been researched in
New Orleans since the US Army Signal Corps made the first attempt at
such a forecast in the US in 1859 (May et al., 2014). Fast forward to today,
the Canizaro Livingston Gulf States Center for Environmental Informatics
(GulfSCEI) at the University of New Orleans continues contributing to this
field. In collaboration with GulfSCEI, this thesis delves into synergizing
the potential of artificial intelligence with established numerical weather
prediction methods to enhance the prediction of ocean buoy measurements.

1.1 Aim and Objective

The primary goal of this work is to advance the field of marine weather
forecasting. Progress in this area can have implications across various fields.
The emphasis lies in safeguarding mariners from extreme weather events and
also protecting coastal residents by providing timely warnings for potential
meteorological calamities. Additionally, enhanced accuracy in ocean weather
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forecasting can streamline shipping routes, yielding both economic benefits
and decreased emissions.

Marine weather forecasts utilize data gathered from diverse sources such
as satellites, aircraft, ships, land-based observation stations, and ocean buoys.
(Heaslip, 2023) The primary focus of this thesis is the prediction of data
stemming from ocean buoys. This can either be based on theory-driven meth-
ods that take into account the underlying physics or on machine learning
techniques. When it comes to integrating both approaches, physics-informed
neural networks play a crucial role. Given that this approach requires in-
depth domain knowledge in meteorology and individual solutions for each
measurement, an alternative path is explored.

European Centre for Medium-Range Weather Forecasts (ECMWF) offers
various datasets of meteorologic data, which are generated using physics-
based numerical weather prediction methods. This thesis seeks to determine
whether integrating this physics-informed data can enhance the accuracy of
deep learning-based ocean buoy observation predictions.

In common physics-informed neural networks, physical laws are inte-
grated directly in the training process. However, the approach explored
in this research embeds this knowledge into the dataset itself. As a result,
appropriate dataset representations are developed along with a specialized
loss function for the neural networks. This function introduces a parameter
that governs the impact of physics-informed features on the adjustment of
weights and biases during the training process. Since the physics informa-
tion is not implemented in the neural network but is incorporated through
the dataset, this approach is termed physics-informed regularization (PIR).
Multiple degrees of PIR are assessed using four distinct deep learning mod-
els. While the investigation of PIR is exemplified on ocean buoy prediction,
this approach can also be interesting for any physics based problem solved
with machine learning where additional physics based data is available.

1.2 Methodology and Contribution

To investigate physics-informed regularization in detail, first a toolkit for
dataset creation and test execution was developed. This toolkit covers the
whole pipeline from data sourcing to report creation. By specifying certain
ocean buoys and years of interest, the integrated dataset builder generates
individual datasets. To appropriately represent the available data, two ap-
proaches are adopted. Multi-Location Modelling (MLM) portrays an entire
area, not just a single location within one instance while Station-Specific
Unified Modelling (SSUM) joins data from various stations, yielding a more
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comprehensive dataset. The generated datasets, following either approach,
can further be used in the test environment. This environment includes four
distinct models, customized for investigating PIR. Second, the developed
toolkit is employed in an extensive experimental study. Four neural network
architectures, namely LSTM, GRU, CNN and TCN, all implemented with a
custom loss function for regulating the influence of physics-informed data,
were considered. Taking into account varying degrees of physics-informed
influence, in total 88 forecasting experiments were executed.

The toolkit is developed not specifically for the executed study but for
general usage. Based on certain parameters, individual datasets can be
created. Moreover, the test environment can be expanded to accommodate
any machine learning method, not just those focused on PIR, offering
flexibility in test design. Therefore, this project contributes by providing
a solid base for further empirical studies in the domain of ocean buoy
forecasting. Moreover, the presented study contributes by shedding light on
the influence of data representation, highlighting the potential of PIR in this
domain, and suggesting avenues for promising future research.

1.3 Structure

In the initial segment of this thesis, Chapter 2, ”Background and Related
Work,” lays the groundwork by exploring Numerical Weather Prediction,
its history, and current trends. The discussion then shifts to Deep Learning,
diving into various architectures, notably Recurrent and Convolutional
Neural Networks. The chapter also introduces the concept of Deep Learning
Weather Prediction, highlighting the synergy and contrasts between NWP
and DLWP, and concludes by examining the primary data sources pivotal to
this research.

Moving on, Chapter 3 sets the stage by defining the motivation behind
the research and articulating a clear problem statement. The delineation of
both functional and non-functional requirements is presented, leading to
a comprehensive overview of the conceptual architecture of the proposed
solution.

Chapter 4 delves deeply into the intricacies of data representation methods
and the design intricacies of the neural networks employed. The broader
toolkit architecture is fleshed out, covering aspects from data sourcing and
dataset building to the testing environment and report creation processes.

The empirical core of the research is encapsulated in Chapter 5. Here, the
study setup is outlined, followed by a meticulous presentation of results
and findings, segmented by different models and architectures. This chapter
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offers a deep dive into the implications of these results within the wider
context of the domain.

In Chapter 6, a reflective lens is cast on the research process, chronicling
the insights, experiences, and lessons learned. This chapter provides an in-
trospective look into the challenges encountered and the knowledge derived
from them.

The final chapter, Chapter 7, draws the thesis to a close by synthesizing the
entire research journey. Major takeaways are summarized, and the discussion
looks ahead, suggesting potential paths for future exploration in the field.
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This chapter provides an in-depth overview of the foundational concepts
underlying this thesis, starting with the evolution of numerical weather
prediction and a brief on deep learning techniques. The application of
deep learning in weather prediction is also addressed, alongside a analysis
of notable data sources. This chapter serves to contextualize the research
contributions presented in later chapters.

2.1 Numerical Weather Prediction

Numerical weather prediction (NWP) constitutes a weather forecasting
methodology that leverages a set of equations governing fluid flow. By
converting these equations into computationally executable code, NWP
incorporates numerical methods and parameterizations of various physical
processes. The subsequent simulations encompass an array of initial and
boundary conditions and are conducted over a specific geographic area.
(Steffen, n.d.)

The models use current weather observations along with historical data to
calculate likely future weather patterns. NWP is used by meteorologists and
weather forecasters around the world to provide accurate weather forecasts
for short and long-term periods. It is also used in fields such as aviation
(Mazzarella et al., 2022), agriculture (CALANCA et al., 2011), and energy
production (Nor et al., 2014), as well as for emergency management and
disaster response planning (Sene, 2008). NWP is based on the very first
attempts of operative weather prediction. Since than this approach was
further improved but the core idea of using physical laws remained the
same. According to Lynch (2007), the effective timeframe of deterministic
forecasting extends by approximately one day every ten years. This chap-
ter provides a concise overview of the historical development and present
state of numerical weather prediction. Its purpose is to enhance compre-
hension regarding the continual improvement and enduring relevance of
this approach. Furthermore, it aims to shed light on the potential benefits of
extracting the physics-informed component of NWP and combining it with
a data-driven approach.
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2.1.1 History of Numerical Weather Prediction

Richardson (1922) conducted the first numerical approach to predict the
weather in the 1920s. He was inspired by Bjerknes (1904) two-step plan
for rational forecasting involving a quantitative analysis of the state of the
atmosphere through charts valid at an initial time, followed by a system-
atic graphical processing method to deduce how this state would evolve
over time. Although Bjerknes did not develop a numerical approach for
his algorithm, Richardson proposed a method to represent the physical
principles that regulate the atmosphere’s behavior as a system of mathemat-
ical equations, and to use his finite difference method to solve this system
(Lynch, 2007). To demonstrate his model, Richardson aimed to showcase its
functionality using an example. It took him six weeks to calculate the change
in weather for two locations within the next six hours. The resulting error
was so significant that the outcome was virtually unusable. Nonetheless,
this marked the first attempt at a numerical weather forecast. Richardson
(1922) concluded by presenting a vision in which an organization of 64, 000
”computers” - at the time, this term still referred to people - could be used to
calculate global weather so quickly that weather forecasting would indeed
become possible. Only with the invention of the computer as a machine did
Richardson’s vision become practical.

In 1950, Jule Charney, an American meteorologist, led a team that achieved
the first successful numerical weather prediction using a digital computer,
namely the ENIAC (Electronic Numerical Integrator and Computer). This
team utilized a simplified version of atmospheric dynamics that reduced the
computation time and memory required for the computations (Cox, 2002).

Although the computation time to generate the first weather forecasts
using ENIAC was comparable to the length of the forecast horizon itself,
the authors estimate that it would only need a renewed systematic effort
and routinization of operations to calculate a 24-hour prediction within 12
hours (Charney et al., 1950).

This breakthrough paved the way for further advancements in computer-
based weather forecasting technology. The use of operational weather fore-
casts, which refers to routine predictions for practical purposes, started
in 1954 when a team in Stockholm led by Carl-Gustav Rossby produced
a forecast based on barotropic equations (Harper et al., 2007). On July 1,
1954, the U.S. Weather Bureau, U.S. Air Force, and U.S. Navy came together
to establish the Joint Numerical Weather Prediction Unit (JNWPU), which
was tasked with the responsibility of applying advanced computer tech-
nology to the production of weather forecasts for operational use (Morone
& Carmeyia Gillis, 2007). In 1959, the Japan Meteorological Agency (JMA)
carried out their first operational NWP based forecast using a Northern

6



2 Background and Related Work

Hemisphere Balance Barotropic model (Nitta & Saito, 2004). 10 years later,
the Australian Bureau of Meteorology conducted its first real-time forecasts
(Leslie & Dietachmayer, 1992).

During the late 1960s, the Geophysical Fluid Dynamics Laboratory of the
National Oceanic and Atmospheric Administration (NOAA) created an orig-
inal climate model of general circulation that integrated both atmospheric
and oceanic processes, enabling researchers to enhance their understanding
of the interplay between these two systems (NOAA, 2021).

2.1.2 Current State and Trends in Numerical Weather
Prediction

As a fluid medium, the atmosphere is subject to the principles of fluid dy-
namics and thermodynamics. In light of this, numerical weather prediction
endeavors to gather information on the atmospheric conditions at a specific
point in time and utilize these principles to forecast future atmospheric
states. Modern weather prediction is heavily reliant on extensive numerical
simulation systems, which are commonly administered by national weather
agencies worldwide. These systems follow a complex process chain that is
comprised of interdependent steps, each closely interacting with one another.
(Schultz et al., 2021)

The present chapter presents a succinct exposition of the state-of-the-art
NWP process, offering a broad perspective on the topic. The concluding
paragraph emphasizes the currently achieved performance of operative
weather prediction. However, for a more comprehensive treatment of the
subject with a deeper analysis of the finer details, readers are encouraged to
refer to the papers that are cited within.

Data Collection

The collection of a wide range of meteorological observations from various
sources worldwide is essential for obtaining the initial state of the earth
system, which encompasses the atmosphere, soil, and ocean. Such obser-
vations comprise data from weather and radiosonde stations, aircraft and
ship measurements, and various types of remote sensing observations from
sources such as radar and satellites. Despite the vast quantities of both direct
and indirect measurements gathered each day, the resulting observations are
often inadequate to fully characterize the complex state of the atmosphere.
(Schultz et al., 2021)
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Data Assimilation

The central task of the data assimilation (DA) is to create a complete picture
of the current state of the atmosphere using the heterogeneous and incom-
plete measurements. The resulting output is typically a gridded system
at kilometer-scale resolution, encompassing the entire Earth which repre-
sents an optimized estimation of the actual weather conditions. Modern
data assimilation systems predominantly employ three- or four-dimensional
variational techniques (3D-Var and 4D-Var) and ensemble methods (often
utilizing the Kalman filter) (Bannister, 2017). Kanamitsu (1989) discribes the
National Meteorological Center’s (NMC) Global Assimilation and Forecast
System. A detailed description of data assimilation in ocean models can be
found in Anderson et al. (1996).

Numerical Simulation and the Use of Partial Differential Equations

By utilizing the NWP model and inputting the appropriate initial conditions,
it is possible to simulate the atmospheric processes. The changes in the at-
mosphere related to momentum, mass, and enthalpy (amount of heat energy
that is absorbed or released by the atmosphere) can be represented by a set
of linked partial differential equations, known as the primitive equations
(Bjerknes, 1904). These are initialized by observed data and their recent
rates of change. The prediction of the atmosphere’s future state is based on
derivatives that are determined by the model. These rates of change are then
applied to the current atmospheric state to determine the state at a future
time. This process is repeated in a series of time steps until the desired fore-
cast time is reached. The size of the time step used in the model is related
to the distance between points on the computational grid and is chosen to
maintain numerical stability (Pielke, 2002, p. 285–287). As mentioned, the
calculation behind this simulation is based on the primitive equations. Exact
solutions to these equations cannot be derived using analytical methods,
with only a few idealized cases being the exception (Pielke, 2002; Strikw-
erda, 2004, p.65). To be more precise, the Navier-Stokes-Equations, which
form a subset of the primitive equations, form one of the seven Millennium
Prize problems (Constantin, 2006). The existence of a smooth and unique
solution for the general three-dimensional case is currently unknown, as
there is no proof or counterexample to support either conclusion (Fefferman,
2000). Thus, numerical methods are utilized to obtain solutions that are only
approximations. Over the last decade, finite-difference or finite-volume dis-
cretizations on platonic solids projected on the sphere, such as icosahedral
(Tomita & Satoh, 2004) or cubed-sphere grids (Ullrich & Jablonowski, 2012),
have been developed as alternative numerical methods to global spectral
transform models. This is because classical global spectral transform models
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are not well-suited for performing approximations on a kilometer-scale
within an acceptable time frame, which requires highly parallelizable algo-
rithms for the dynamic core (Satoh et al., 2014). Fortunately, advancements
in the development of discretization approaches have allowed for the grid-
scale dynamics to follow energy, entropy, and mass conservation laws, while
at the same time minimizing the need for numerical filters that suppress
artificial numerical models. Supporting these claims, Ringler et al. (2010) and
Wood et al. (2014) provide evidence of these advancements, and Gassmann
(2018) provides further information on minimizing the need for numerical
filters. For an in-depth examination of modern dynamical core architectures,
Ullrich and Jablonowski (2012) provide a comprehensive overview.

Post Processing

To generate more accurate forecast products for end-users at a finer scale,
a post-processing step is integrated into the numerical weather prediction
(NWP) workflow. Common post-processing techniques include converting
the vertical axis from sigma-coordinates to pressure levels or geometric
height, applying bias corrections, and utilizing statistical methods to remove
systematic biases from the NWP output and incorporate local scale adjust-
ments (Schultz et al., 2021). These techniques enhance the accuracy and
usefulness of the NWP output for end-users.

State-of-the-Art Performance in Operative NWP

In recent decades, significant progress has been made in improving the
predictive capabilities of NWP models for atmospheric states. Present-day
global NWP models can forecast synoptic-scale weather patterns for mul-
tiple days with remarkable accuracy. As an example, the European Centre
for Medium-Range Weather Forecasts Integrated Forecast System yields
deterministic forecasts with an 80% anomaly correlation coefficient for the
500 hPa geopotential height for around 7 days, while the root-mean-square
error for 2 m temperature predictions for 72-hour forecasts is close to 2 K
(Haiden et al., 2018).

Moreover, it has been reported by J.-H. Chen et al. (2019) that high-impact
weather phenomena, for instance, the tracks of hurricanes, can be forecast
with an accuracy of 150 km for up to four days in the future. It should also
be pointed out that models differ not only in their accuracy, but also in
their maximum prediction time. The Met Office’s Unified Model predicts
the weather six days ahead (Chan & Kepert, 2010), while the European
Centre for Medium-Range Weather Forecasts model can forecast up to 10
days ahead (Holton, 2004). The Global Forecast System model run by the
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Environmental Modeling Center is able to forecast weather up to 16 days in
advance (Brown, 2008).

2.2 Deep Learning

At present, major operational weather centers rely on NWP and continue
improving it (Bauer et al., 2015). Nonetheless, deep learning offers an promis-
ing data-driven alternative that is generating substantial interest. While the
application of deep learning in this specific domain is discussed in sec-
tion 2.3, this chapter provides an general overview. The term deep learning
is categorized and generally described. Key architectures are highlighted,
followed by a detailed explanation of their underlying concepts.

As visualized in Figure 2.1, deep learning, encompasses a subset of
machine learning that resides within the broader domain of Artificial Intelli-
gence. In the context of the wide spectrum of deep learning architectures,
the Recurrent Neural Network (RNN) and Convolutional Neural Network
(CNN) have been identified as highly promising models. (Goodfellow et al.,
2016) Consequently, this chapter begins by providing an overview of the
overall concepts, subsequently transitioning into a deeper analysis of the
subject matter and concluding with a detailed examination of the considered
deep learning architectures.

Figure 2.1: Hierarchical classification of deep learning architectures; Inspired by (Goodfel-
low et al., 2016)
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Artificial Intelligence

Artificial Intelligence, as a broad field, encompasses all methodologies aimed
at achieving machine intelligence comparable to that of the human brain,
while computer scientists define it specifically as the study of ”intelligent
agents”. Those refer to devices that possess the ability to perceive their
surroundings and execute actions aimed at maximizing the probability of
accomplishing their objectives. Intuitively, the term ”artificial intelligence”
is employed when a machine possesses the capacity to carry out tasks that
humans typically associate with human cognition, such as learning and
problem-solving. (Shinde & Shah, 2018)

Machine Learning

Machine learning, classified as a subfield of artificial intelligence, includes
all computer programs that learn new knowledge without relying on explicit
implementations. Formally, this can be described as:

A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P if its

performance at tasks in T, as measured by P, improves with
experience E. (Mitchell, 1997)

In a multitude of computing applications, machine learning serves as a
valuable tool when confronted with the complexity or impracticability of
designing and coding explicit algorithms that deliver desirable performance.
(Shinde & Shah, 2018)

In those cases, algorithms need to be constructed that can learn from and
make predictions on data. These algorithms surpass the constraints of fixed
program instructions by employing data-centric predictions or decisions,
accomplished through the construction of a model based on available data.
(Ongsulee, 2017)

Depending on the usage of labeled data, machine learning approaches
are divided into supervised (about 70%) and unsupervised (10 to 20%)
algorithms. Semi-supervised learning and reinforcement learning are two
additional technologies that are occasionally utilized in certain contexts.
Supervised learning algorithms are trained through the utilization of la-
beled examples, where inputs with known desired outputs are provided.
By applying approaches such as classification, regression, prediction, and
gradient boosting, supervised learning leverages patterns to anticipate the
label values of unlabeled data points. Supervised learning is frequently em-
ployed in applications where historical data is utilized to forecast probable
future events. Commonly employed supervised learning algorithms include
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support vector machines, linear regression, naive Bayes, and artificial neural
networks (supervised in the majority of use cases). When labeling is not
a viable option or comes with significant expenses, unsupervised learning
is the preferred approach since it can handle datasets composed solely of
unlabeled data. Unsupervised learning techniques offer the capability to
detect segments exhibiting comparable attributes, suggest similar items, and
identify anomalies within data. Notable methodologies for these purposes
encompass nearest-neighbor mapping, k-means clustering, self-organizing
maps, and singular value decomposition. (Ongsulee, 2017)

Deep Learning

Deep learning, which has yielded remarkable advancements in various
domains, is predominantly driven by the utilization of artificial neural
networks (ANN). The design of ANNs takes inspiration from the work of
the neurophysiologists David H. Hubel and Torsten Wiesel in 1959 (Hubel &
Wiesel, 1959). Through their groundbreaking investigations of the primary
visual cortex, they made a pivotal breakthrough by identifying two distinct
cell types: simple cells and complex cells. Artificial neural networks can be
conceptualized as sequential models composed of cells, drawing inspiration
from the biological observations mentioned. (Ongsulee, 2017)

According to our best knowledge, Aizenberg et al. (2000) firstly used
the term “deep learning” in the context of ANNs. Deep learning is a part
of machine learning methods that are rooted in learning different repre-
sentations of data. In the realm of artificial neural networks and machine
learning algorithms, the presence of multiple (more than one) hidden layers
distinguishes a network as being deep. In general, these neural networks
employ a series of interconnected layers consisting of nonlinear processing
units to extract and transform features. Each subsequent layer takes the
output of the preceding layer as input. Deep networks are designed to
learn multiple levels of features or representations from the data, forming
a hierarchical representation where higher-level features are derived from
lower-level features. (Ongsulee, 2017)

Particularly in the past decade, deep learning approaches have exhib-
ited superior performance compared to traditional models across diverse
domains of machine learning. Notable exemplifications include computer
vision (Hinton & Salakhutdinov, 2006), speech recognition (Snyder et al.,
2018), and natural language processing (Bengio, 2012), as well as scientific
disciplines such as physics (Baldi et al., 2014; Bhimji et al., 2018), chemistry
(Schütt et al., 2017) and bioinformatics (Z. Chen et al., 2020).

In this project, the focus lies in predicting ocean buoy measurements.
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Consequently, an extensive exploration will be undertaken into utilization of
deep neural networks in the realm of time series forecasting (TSF), another
problem domain where those networks became the dominating approach in
recent time. (Schmidhuber, 2015)

Deep neural networks offer a notable advantage over classical statistical
models by enabling the modeling of complex non-linear feature interactions,
which exceeds the capabilities of linear relationship modeling typically
found in traditional approaches. (Reyes & Ventura, 2019)

Additionally, DNNs possess the advantageous capability to adjust directly
to the data without making any prior assumptions. This attribute confers
significant benefits, especially when confronted with sparse information re-
garding the time series. (Lara-Benıétez, Carranza-Garcıéa, Garcıéa-Gutiérrez,
et al., 2020)

Besides that, the continuous expansion of available data contributed to
the advancement of deep learning architectures, leading to notable improve-
ments in forecast accuracy. (Gamboa, 2017)

Lara-Benıétez et al. (2021) conducted a study that commenced with a liter-
ature survey to identify the most promising deep learning (DL) architectures
for time series forecasting (TSF), which are detailed in Table 2.1. Subse-
quently, the authors extensively compared these architectures by training a
substantial number of models (over 38, 000) on 12 distinct forecasting prob-
lems (excluding weather-related scenarios). The results of this experiment
highlight the accurate predictive performance of all architectures, with the
exception of Multilayer Perceptron (MLP). Moreover, the study additionally
demonstrated that the Elman Recurrent Neural Network (ERNN) exhibits
inferior performance compared to LSTM and GRU models overall. Echo
State Networks (ESN) excel in terms of time efficiency compared to other
recurrent neural networks, constituting their primary advantage. Nonethe-
less, when considering performance, LSTM and GRU models surpass ESNs
as well. Consequently, the focus shifts solely to recurrent and convolutional
neural networks, which are described in detail in subsequent chapters.

2.2.1 Recurrent Neural Network

As discussed in the general introduction of deep learning in subsubsec-
tion 2.2, neural networks draw inspiration from biological observations of
the brain. Human cognition maintains continuity, leveraging prior under-
standing to grasp subsequent information without resetting the thinking
process. Human thoughts have persistence, a property basic neural networks
do not have, which represents a significant limitation. Recurrent neural net-
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Type Architecture Advantage Disadvantage

ANN Multi-layer
perceptron (MLP)

Widely used, good
generalization capability

Sensitive to noisy
data, may overfit

RNN
Elman Recurrent
Neural Networks

(ERNN)

Simple architecture,
captures sequential

dependencies

Limited long-term
memory, prone to
vanishing gradient

RNN Long short-term
memory (LSTM)

Effective in capturing
long-term dependencies

Computationally
expensive, complex

architecture

RNN Echo State
Network (ESN)

Fast training, efficient
in time series forecasting

Performance may vary
based on reservoir

initialization

RNN Gated recurrent
unit (GRU)

Balances performance
and complexity

May struggle with very
long-term dependencies

CNN Basic convolutional
neural network (CNN)

Effective in capturing
spatial patterns

May overlook temporal
dependencies

CNN
Temporal

convolutional
network (TCN)

Captures long-range
dependencies, parallel

processing

Sensitive to input
sequence length

Table 2.1: DL Architectures comparison

works offer a solution to this matter by incorporating loops that enable the
enduring retention of information. (Olah, 2015)

By connecting each time step to its previous counterparts, recurrent
neural networks adeptly capture the temporal dependency exhibited by
the data. The network processes observations sequentially, assimilating
knowledge about preceding observations and their relevance to forecasting.
This enables the network to learn patterns not only between input and output
but also internal patterns among the observations within the sequence. (Lara-
Benıétez et al., 2021)

Figure 2.2: Standard recurrent neural network: A repeating module

The left side of Figure 2.2 illustrates a segment of the neural network,
labeled A, which processes an input xt and produces an output value ht. By
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incorporating a loop mechanism, information can be passed from one step of
the network to the subsequent step. The right side of Figure 2.2 demonstrates
that a recurrent neural network can be conceptualized as multiple replicas of
the identical network, with each copy conveying a message to its succeeding
counterpart. The chain-like structure of recurrent neural networks unveils
their close association with sequences and lists, making them the natural
choice of architecture for processing such data. (Olah, 2015)

Nevertheless, traditional RNNs can be challenging to train as they suffer
from the problem of gradient vanishing and exploding, particularly when
attempting to model long-term dependencies (Bengio et al., 1994; Hochreiter,
1991). In order to overcome these limitations, advanced RNN architectures,
such as Long Short-Term Memory (LSTM) (Gers & Schmidhuber, 2000;
Hochreiter & Schmidhuber, 1997) and Gated Recurrent Units (GRU) (Chung
et al., 2014) have been proposed. These architectures incorporate gating
mechanisms to selectively retain or forget information from previous time
steps, making them more effective at modeling long-term dependencies in
time series data.

Long Short Term Memory

In an attempt to mitigate the issues of vanishing and exploding gradients,
Hochreiter and Schmidhuber (1997) introduced the Long Short-Term Mem-
ory (LSTM) model. By leveraging LSTM’s unique architecture, temporal
dependencies can be modeled over extended periods without disregarding
short-term patterns. This capacity empowers LSTMs to effectively capture
and represent complex sequential information.

Similar to conventional RNNs, LSTM networks also exhibit a sequential
structure. However, their fundamental building block differs from a standard
RNN as modern LSTMs comprises four distinct internal components instead
of one. In its original formulation by Hochreiter and Schmidhuber (1997),
the LSTM architecture comprised a memory cell, input gate, and output
gate. However, an enhanced version of LSTM was introduced by Gers et al.
(2000), which introduced a forget gate that enables an LSTM cell to learn to
reset itself at appropriate times.

In Figure 2.3, the repeating module, consisting of four interconnected
layers, is visually represented. The subsequent textual description provides
a detailed account of the interactions and relationships among these compo-
nents.

Central to the functioning of LSTMs is the cell state, represented by a
horizontal line across the top of the diagram. The crucial aspect lies in the
precise control exerted by the three gates, enabling the selective addition or
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Figure 2.3: Long Short Term Memory cell and its operation

removal of information from the cell state. These gates are constructed using
a sigmoid neural network layer, generating a weighting parameter within
the range of 0 to 1, which is then combined with a pointwise multiplication
operation.

To initiate the LSTM procedure, the initial focus lies in identifying the
information that should be omitted from the cell state. This pivotal decision
is entrusted to the forget gate layer. Through the examination of the previous
hidden state ht−1 and the current input xt, the forget gate layer produces a
distinct weighting parameter ft for each component of the cell state ct−1. In
the next step, the information that is added to the cell state is determined.
Therefore, a sigmoid layer called the input gate layer selects the values to be
updated. Next, a tanh layer creates a vector of new candidate values, c̃t, that
could be added to the cell state. Then, the outputs of these network layers
are combined by multiplication.

The subsequent phase revolves around the decision-making process con-
cerning the inclusion of fresh information within the cell state. This proce-
dure entails two primary elements. Firstly, the input gate layer, characterized
by a sigmoid layer, assesses and determines the specific values necessitating
updates. Secondly, a tanh layer produces a vector of potential new candidate
values, designated as c̃t, that have the potential to supplement the state.
In the subsequent step, these two elements are seamlessly combined to
generate an updated state. The progression now proceeds to update the
previous cell state, ct−1, to the current cell state, ct. This update involves
two essential operations. Firstly, the old state is multiplied by the forget gate

16



2 Background and Related Work

value, ft, enabling the elimination of the previously identified irrelevant
information. Subsequently, the product of the input gate value, it, and the
vector of new candidate values, c̃t, is added to the multiplication outcome.
This addition encompasses the scaled incorporation of the new candidate
values based on the determined update magnitude for each state value.

Finally, the decision regarding the output selection becomes crucial. The
generated output is a refined representation derived from the cell state.
Initially, a sigmoid layer referred to as the output gate layer is employed
on ht−1 to determine the specific components of the cell state that will
contribute to the output. Furthermore, the cell state ct is subjected to a
hyperbolic tangent (tanh) activation function, which restricts the values
to a range between −1 and 1. Subsequently, the transformed cell state
is multiplied by the output of the sigmoid gate, effectively filtering and
selectively outputting only the chosen components. (Lara-Benıétez et al.,
2021; Olah, 2015; Zargar, 2021)

Reference Year Technique Outperforms Domain
Ma et al.,

2015a
2015 LSTM MLP, NARX, SVM Traffic speed

Y. Tian and
Pan, 2015

2015 LSTM MLP,
Autoencoders

Traffic flow

Fischer and
Krauss, 2018

2018 LSTM Logistic regression,
MLP, RF

S&P 500 index

Bouktif
et al., 2018

2018 LSTM Linear regression,
kNN, RF, MLP

Electric load

Sagheer and
Kotb, 2019

2019 LSTM ARIMA, ERNN,
GRU

Petroleum
production

Pan et al.,
2019

2019 LSTM +
Attention

LSTM, MLP Solar
generation

Smyl, 2020 2020 Hybrid
ETS-

LSTM

Competition
winner

M4 competition

Bandara
et al., 2020

2020 Clustering
+ LSTM

LSTM, ARIMA,
ETS

CIF2016 and
NN5

competitions

Table 2.2: Relevant studies on TSF using LSTM

The latest developments in deep learning for time series forecasting (TSF)
are extensively reviewed by Lara-Benıétez et al. (2021). A detailed account
of the outcomes associated with Long Short-Term Memory is provided in
Table 2.2, while the findings of three randomly selected studies will be
further discussed.
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In the study conducted by Ma et al. (2015b), the application of LSTM
was explored within the context of short-term traffic prediction. The find-
ings demonstrated that LSTM effectively addressed the challenge of back-
propagated error decay through the utilization of memory blocks, thereby
exhibiting remarkable capabilities for predicting time series data with ex-
tensive temporal dependencies. Moreover, LSTM models demonstrated the
inherent ability to automatically determine optimal time lags. A compara-
tive analysis involving parametric and non-parametric algorithms revealed
that LSTM models achieved the highest level of prediction performance in
terms of accuracy and stability. In addition, LSTM networks were employed
by Fischer and Krauss (2018) to forecast out-of-sample movements for the
individual stocks comprising the S&P 500. The study revealed that LSTM
networks surpassed memory-free classification methods, traditional neural
networks, and logistic regression in terms of predictive performance. Fur-
thermore, also Sagheer and Kotb (2019) undertook a comprehensive analysis
of the performance of LSTM networks in the context of time series forecast-
ing. The evaluation was carried out through the implementation of two case
studies involving production data from real oilfields. In order to ensure a
rigorous assessment, the proposed deep LSTM model was compared against
multiple standard methods, encompassing statistical and soft computing
techniques. The empirical results, obtained through the utilization of various
measurement criteria, clearly indicated that the LSTM model outperformed
other standard approaches.

Gated Recurrent Unit

Gated Recurrent Units (GRU) were proposed by Cho et al. (2014) as an
alternative approach for addressing the challenges posed by the exploding
gradient and vanishing gradient phenomena. GRU units can be viewed as a
simplification of LSTM units, characterized by two key simplifications:

1. Merging of the cell state and hidden state
2. Combination of the input and forget gates into one unified gate known

as the update gate.

By virtue of these modifications, the number of trainable parameters in
GRU networks is reduced, resulting in improved computational efficiency
without sacrificing performance, as demonstrated in Ravanelli et al. (2018).
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Figure 2.4: Gated Recurrent Unit cell and its operation

As demonstrated in Figure 2.4, the GRU cell incorporates an update
gate and a reset gate. The update gate is responsible for determining the
proportion of past information that should be carried forward to future
steps. On the other hand, the reset gate governs the extent to which past
information should be disregarded or forgotten. (Lara-Benıétez et al., 2021;
Zargar, 2021)

As part of their research on electricity price forecasting, Ugurlu et al.
(2018) employed multi-layer GRU models as an effective technique in their
analysis. Multiple algorithms have been trained on the data of the Turkish
day-ahead marked. Remarkably, their three-layered GRU model emerged
as the top performer, surpassing all alternative neural network structures
and cutting-edge statistical techniques in a statistically significant manner.
Table 2.3 provides an overview of additional studies that demonstrate the
strong performance of GRU in the domain of Time Series Forecasting (TSF).
(Lara-Benıétez et al., 2021)
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Reference Year Technique Outperforms Domain
Chung et al.,

2014

2014 GRU ERNN Music and speech
signal modeling

Kuan et al.,
2017

2017 GRU LSTM, GRU Electricity load

Wang et al.,
2018

2018 GRU LSTM, SVM,
ARIMA

Photovoltaic
power

Ugurlu et al.,
2018

2018 GRU MLP, CNN,
LSTM

Electricity price

Table 2.3: Relevant studies on TSF using GRU

2.2.2 Convolutional Neural Network

During the 1980s, Kunihiko Fukushima introduced the convolution pro-
cess to the field of convolutional neural networks (CNN) with his creation
called the neocognitron (Fukushima, 1988). This innovative concept drew
inspiration from Hubel and Wiesel (1959). Furthermore, Yann Lecun signif-
icantly contributed to the advancement of CNNs by developing LeNet-5,
a seven-level convolutional network. LeNet-5 employed backpropagation
and adaptive weights for parameter optimization (Lecun et al., 1998; LeCun
et al., 1989). Present-day major CNN architectures are derived from those
principles (Ajit et al., 2020).

CNNs have recently gained a lot of interest and have shown impressive
performance in domains such as computer vision (Bhatt et al., 2021), natural
language processing (Jozefowicz et al., 2016) and autonomous vehicles
(Dreossi et al., 2017; Farag & Saleh, 2018). The effectiveness of convolutional
neural networks (CNNs) extends to all tasks involving data with high local
correlation, as they excel at capturing the presence of the same pattern across
diverse regions. Moreover, CNNs demonstrate effectiveness in handling
high-dimensional data, leveraging their shared-weights architecture and
translation invariance characteristics. (C. Tian et al., 2018)

The utilization of CNNs in the analysis of time series data is driven
by the prospect of acquiring filters that encode repeated patterns within
the series, treating sequence data as a one-dimensional image to extract
features through the convolutional operation. These filters enable the CNNs
to make forecasts regarding future values. Furthermore, CNNs possess
the capability to autonomously learn and extract features from the raw
data, eliminating the need for prior knowledge or feature engineering. This
attribute enhances their efficacy in effectively handling noisy time series by
iteratively discarding noise at each layer. The resulting hierarchical structure
facilitates the extraction of meaningful features exclusively. (Borovykh et al.,
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2017)

Basic CNN Architecture

The typical architecture of convolutional neural networks (CNNs) commonly
involves a sequential arrangement of convolutional and pooling layers,
which is subsequently followed by fully connected layers. The convolutional
layers play a pivotal role and employ two essential techniques, namely local
connectivity and weight sharing. Local connectivity refers to the specific
arrangement where each convolutional node establishes connections with
a small subset of inputs. This subset, referred to as the receptive field,
represents a localized region within the input data. In contrast to standard
feedforward neural networks, where all inputs are connected to every node,
local connectivity allows CNNs to focus on extracting features from specific
regions of the input. Furthermore, convolutions serve as a substitute for
the weighted sums in standard neural networks. To be specific, in each
convolutional layer, the input undergoes convolution with a weight matrix
of predetermined dimensions, referred to as a filter or sliding window. This
process results in the computation of a feature map by sliding the weight
matrix over the input and calculating the scalar product between the input
and weight matrix. Within one convolutional layer, the neurons exhibit
weight sharing, meaning that they possess identical weights which allows
them to collectively identify the same pattern, albeit in distinct regions of
the input. The utilization of weight sharing, and local connectivity leads
to a decrease in the overall number of weights that are required to be
learned and stored. Consequently, this reduction facilitates faster training.
The implementation of the convolutional and weight sharing mechanisms is
accomplished by utilizing a filter with a specific kernel size. The number of
nodes that share the same weights is determined by the chosen kernel size.
Following a convolutional layer, a subsequent max-pooling layer calculates
the maximum value among a group of neighboring neurons selected from
the preceding convolutional layer. The incorporation of those two layers
guarantees that the output from the max-pooling layer remains unaffected by
shifts in the input data, which is an advantageous characteristic for handling
real-world data. In order to compute the final result, a fully-connected layer
is utilized, which consolidates the local features and converts them into
global features. (Koprinska et al., 2018)

To facilitate a better understanding of this architecture, Figure 2.5 visually
represents the LeNet-5 architecture mentioned at the beginning of this
section. It comprises an input layer, two sets of convolution and pooling
layers, and concludes with two fully connected layers and an output layer.

The utilization of convolutional neural network (CNN) models in the
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Figure 2.5: LeNet-5 architecture as an example of a standard CNN (Cong & Zhou, 2023)

realm of time series forecasting (TSF) literature has been relatively limited
compared to the predominant focus on recurrent neural networks (RNNs).
Nonetheless, a number of studies have put forth the adoption of CNNs
either as standalone feature extractors or in tandem with recurrent blocks to
facilitate accurate predictions. As indicated by Lara-Benıétez et al. (2021), the
studies of utmost significance regarding these propositions are documented
in Table 2.4.

Reference Year Technique Outperforms Domain
Tsantekidis
et al., 2017

2017 CNN SVM, MLP Stock price

Kuo and
Huang, 2018

2018 CNN LSTM, MLP Energy load

Koprinska
et al., 2018

2018 CNN LSTM Solar power
and electricity

C. Tian et al.,
2018

2018 Hybrid
CNN-LSTM

RNN and LSTM
individually

Electricity

Liu et al.,
2018

2018 Ensemble
CNN-LSTM

ARIMA, ERNN,
RBF

Wind speed

Cai et al.,
2019

2019 CNN RNN, ARIMAX Building load

Shen et al.,
2020

2019 Hybrid
CNN-LSTM

LSTM, CNN Financial data

Table 2.4: Relevant studies on TSF using CNN

Temporal Convolutional Network

Despite the exhibited potential of CNNs, recurrent architectures are com-
monly perceived as the default initial approach for tasks involving sequence
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modeling. The work by Bai et al. (2018) challenges this assertion and presents
an examination of Temporal Convolutional Networks (TCN), a distinct archi-
tecture family within CNNs, positing it as a more advantageous substitute.
Their study reveals that TCNs demonstrate superior performance when
compared to LSTM and GRU architectures, even in tasks that are widely
accepted as standard benchmarks for evaluating RNNs. Given these promis-
ing findings, there is strong motivation to incorporate TCNs as an additional
architectural variant in this study.

The TCN architecture draws insights from contemporary convolutional
architectures tailored for sequential data, yet it sets itself apart from all
existing models. Its design is rooted in fundamental principles, aiming to
seamlessly integrate simplicity, autoregressive prediction, and the capacity
for extensive memory retention.

The first defining characteristic of TCNs is their capacity to accept input
sequences of any length and generate output sequences of equal length, ex-
hibiting a behavior similar to that of Recurrent Neural Networks (RNNs). In
order to accomplish this, the TCN utilizes a 1D fully-convolutional network
(FCN) architecture as described in (Long et al., 2015). There the size of each
hidden layer is identical to that of the input layer. Moreover, the inclusion
of zero padding, with a designated length, ensures consistency in layer
lengths across successive stages. The second critical characteristic entails
the preservation of temporal causality, thereby avoiding the transmission
of future information to past instances. This objective is accomplished by
employing causal convolutions, where the convolution operation for each
output at time t only considers elements from time t and earlier in the
preceding layer, maintaining a strict temporal dependency. To establish the
capability for the networks to glean insights from a significantly distant past
when making predictions, a combination of very deeply stacked networks
and dilated convolutions is employed. Incorporating dilated convolutions,
as introduced by Oord et al. (2016), facilitates an extension of the network’s
receptive field. This mechanism allows the convolved neurons to cover a
larger region of the input, eliminating the need for pooling operations. As
a result, the network maintains its resolution, ensuring the retention of
high-level details and avoiding any potential loss of resolution. In addition,
TCNs incorporates residual connections to enable the expansion of network
depth, thus enhancing its ability to handle a substantial history size more
effectively. By employing residual connections, TCN establishes direct paths
that facilitate the flow of information through the network, enabling efficient
utilization of the network’s capacity and ensuring its capability to effectively
capture long-term dependencies.

Temporal Convolutional Networks (TCNs) have demonstrated several
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advantages over conventional Recurrent Neural Networks (RNNs) such
as Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU).
These advantages include reduced memory requirements during training,
attributed to the utilization of shared convolutional filters. Unlike RNNs that
process input sequences sequentially, TCNs employ parallel convolutions,
enabling efficient processing of long input sequences. Additionally, TCNs
exhibit a more stable training scheme, effectively mitigating the occurrence
of vanishing gradient problems commonly observed in RNNs. (Bai et al.,
2018)

Table 2.5 provides a compilation of studies that highlight the successful
application of TCNs in the context of time series forecasting. This compila-
tion of empirical evidence further underscores the growing recognition and
acceptance of TCNs as a favorable approach for analyzing and predicting
temporal data patterns.

Reference Year Technique Outperforms Domain
Sun et al., 2022 2019 TCN LSTM Financial

data
Y. Chen et al.,

2020

2019 Encoder-
decoder TCN

RNN Retail sales

Wan et al., 2019 2019 TCN LSTM,
ConvLSTM

Meteorology

Lara-Benıétez,
Carranza-Garcıéa,

Luna-Romera,
et al., 2020

2020 TCN LSTM Energy
demand

Table 2.5: Relevant studies on TSF using TCN

2.3 Deep Learning Weather Prediction

Having comprehended the preeminence of Numerical Weather Prediction
(NWP) as an advanced technology for weather forecasting, as well as the
immense promise of deep learning, this section focuses on elucidating the
present-day utilization of deep learning techniques within the domain of
weather prediction.

Deep Learning Weather Prediction (DLWP) is a data-driven approach
that uses weather observations as inputs for deep neural network (DNN)
models to predict future weather conditions. Based on the characteristics of
meteorological data, various neural network architectures are appropriate
for the DLWP approach. (Schultz et al., 2021)
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Meteorological data is commonly available in multi-dimensional real-
type formats, where a single weather parameter can be represented by a
four-dimensional array (latitude, longitude, level, and time). Autoencoders
are typically used to decrease data dimensionality and are well-suited to
handling real-type data (Baldi, 2012; Kamyshanska & Memisevic, 2015). As a
result, autoencoders and their variations offer a distinctive advantage when
processing meteorological data collections.

As discussed in subsection 2.2.2, convolutional neural network is a type
of deep neural network that operates on the basis of feature representation
and is specifically designed for image processing. As such, this architecture
is widely utilized for identifying spatial relationships in satellite images
(X. X. Zhu et al., 2017).

Meteorological data, such as buoy measurements, often comprise ex-
tensive amounts of long-term sequential data spanning multiple years or
decades with temporal relationships between data elements. In accordance
with the comprehensive discussion presented in subsubsection 2.2, various
deep learning architectures have been identified as suitable for this task.
Nevertheless, the most promising results can be achieved by either hybrid
architectures composed of the basic DL models to capture more complex
temporal and spatial features or coupling architectures of DL and NWP
models as detailed in the following two subsections.

2.3.1 Completely Data-Driven Hybrid Architectures

Shi et al. (2015) introduce ConvLSTM networks for precipitation nowcasting,
which incorporate a convolutional structure within the LSTM cell. In contrast
to fully connected LSTMs, the encoding component of a ConvLSTM captures
the spatio-temporal relationships of meteorological data and results in
enhanced forecast accuracy. Nevertheless, ConvLSTM is not able to model
spatially varying relationships.

In Shi et al. (2017), a trajectory gated recurrent unit (TrajGRU) model was
introduced to enable the active learning of location-variant structures in
natural motion and transformation. TrajGRU generates a local neighborhood
set for each spatial-temporal stamp by taking into account both the present
input and prior states.

Google Research recently introduced DLWP models for high-resolution
precipitation nowcasting to forecast precipitation rates. In Agrawal et al.
(2019), an image-to-image translation approach is employed using a ubiqui-
tous U-NetCNN. An improved neural weather model (NWM) called MetNet
is subsequently presented in Sønderby et al. (2020), which utilizes axial
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self-attention mechanisms. The convolutional LSTM block from Shi et al.
(2015) is employed to handle the downsampled time slices in the temporal
direction. MetNet represents the first DLWP model that surpasses NWP
in terms of accuracy and prediction quality at a particular spatiotemporal
scale.

2.3.2 Theory-guided Coupling Architectures

Despite their effectiveness, fully data-driven DNN models are not capa-
ble of causal discovery from observational data (Runge et al., 2015) and
model the entire complex weather system without incorporating scientific
prior knowledge. Physics-Informed Neural Networks (PINNs) combine the
data-driven and the theory-driven approach. They use supervised neural
networks to learn the model but also incorporate physics equations to en-
courage consistency and interpretability with the known physics of the
system.

For example, this was firstly done by Frnda et al. (2019) when proposing
an end-to-end DL model for weather forecasting that integrates historical
data and prior knowledge from NWP using an effective information fu-
sion mechanism based on LSTM Autoencoder (Srivastava et al., 2015). The
approach enables the prediction of multiple meteorological variables and
incorporates a novel negative log-likelihood error loss function that allows
for both single-value forecasting and uncertainty quantification.

In an attempt to account for the spatio-temporal dependencies among
meteorological attributes, Grover et al. (2015) have proposed a hybrid ar-
chitecture that includes a set of individual bottom-up predictors for each
attribute trained on historical data, physical constraints ensuring spatial
smoothness of the output, and a deep belief network comprising stacked Re-
stricted Boltzmann Machines modeling joint statistical relations. The benefit
of this approach is that it enforces long-term spatial dependencies, which
allows for optimization of the predictive model to align with large-scale
phenomena.

Incorporating physical laws can also be realized by using customized loss
functions, also known as physics-based regularization. The loss function is
usually a mean-square error or root-mean-square error loss that compares
the predictions of the model to the ground truth during training to optimize
the model. Physics-based terms are added to the loss function and act as
regularization. These terms can be adjusted by hyper-parameters to control
their relative importance compared to the standard MSE loss. Those physics-
informed loss functions can be utilized to avoid over-fitting and tackle
ill-posed problems. (Kashinath et al., 2021)
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Raissi, Perdikaris, and Karniadakis (2019) have introduced PINNs to solve
nonlinear partial differential equations (PDE) in fluid dynamics, quantum
mechanics, reaction-diffusion systems, and nonlinear wave dynamics. Fur-
thermore, Raissi, Perdikaris, and Karniadakis (2019) point out that PINNs
can be trained using small data sets but still result in a robust model. This is
an important key property when it comes to use cases where data acquisi-
tion may be prohibitive but also when, like in the use case of this project,
the available data is noisy, sparse, and incomplete.

Moreover, Y. Zhu et al. (2019) is working on surrogate modeling of tran-
sient PDEs in turbulent flows, Beucler et al. (2019) use physics-based reg-
ularization to penalize the violation of conservation laws and Daw et al.
(2017) are using customized loss functions for modeling lake temperatures.

Those interested in further approaches that integrate both physics- and
data-driven methods can find a comprehensive overview in the Case Study
by Kashinath et al. (2021).

2.3.3 NWP and DLWP: Advantages and Limitations

DLWP models outpace NWP models in terms of speed at the same resolution
(Reichstein et al., 2019), as evidenced by MetNet’s ability to provide sub-
second latency (Sønderby et al., 2020). By contrast, NWP models require
much longer processing times, taking anywhere from ten minutes to several
hours for the same tasks.

Additionally, the resolution of data-driven DLWP models does not impact
their performance, whereas NWP models require eight times more com-
putation to double the resolution (Bauer et al., 2015). This explains why
high-performance computing and parallel computing technology are essen-
tial for NWP models (Fu et al., 2017; Ren et al., 2019; Xue et al., 2014), while
DLWP models can rely on standard GPUs, TPUs (Jouppi et al., 2017), or
specialized AI hardware (Pei et al., 2019) for most neural network training.

Ren et al. (2021) point out that DLWP results in higher forecast accuracy
and timeliness compared to NWP for short-term and small-scale domains.
Due to large number of tunable hyper parameters, training a DNN for
long-range or global forecasting would entail significant levels of complexity
similar or even greater than that of NWP. The performance of NWP and
DLWP dependent on spatial and temporal scales is illustrated in Figure 2.6
by (Ren et al., 2021).

NWP models offer the potential for extrapolation beyond observed condi-
tions as they predict future atmospheric behavior based on the current state
and physics principles (Frnda et al., 2019; Reichstein et al., 2019). In contrast,
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Figure 2.6: Performance comparison between DLWP and NWP at different temporal and
spatial scales. In the area covered by each approach, the darker the color, the
better the performance (Ren et al., 2021).

interpretability has been identified as a possible weakness of DL, which is
caused by the presence of hidden parameters (Montavon et al., 2018).

2.4 Data Sources

The aim of this project is to improve accuracy of ocean buoy measurement
forecasts through physical-informed regularization. The primary data source
utilized in this study is the Standard Meteorological Data provided by the
National Data Buoy Center (NDBC), a division of the National Oceanic and
Atmospheric Administration (NOAA). The inclusion of physically informed
data is expected to enhance the accuracy of the forecasts. In pursuit of this,
the latest reanalysis dataset from the European Centre for Medium-Range
Weather Forecasts (ECMWF) is employed. This dataset combines observa-
tional data and numerical weather prediction (NWP) models, creating a
coherent and extensive physical-informed dataset.
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2.4.1 National Data Buoy Center

For scientific purposes, the National Data Buoy Center (NDBC) operates
a server that acts as a repository for comprehensive meteorological and
hydrological datasets. This server encompasses a collection of historical
records and written materials generated by the National Weather Service
(NWS) and received from other authoritative entities. In total, 1311 stations
are deployed; out of those 243 are owned and maintained by NDBC. (NDBC,
n.d.-c)

The data of other stations is provided by their partners, such as universities
and other governmental agencies. While the data collected by NDBC are the
most accurate to date, as they have been subject to manual quality control by
the Mission Control Center (MCC) data analysts, NDBC does not perform
quality control on this partner data. (Hall & Jensen, 2021)

Historical Standard Meteorological Data

NDBC provides a repository1 of all provided datasets on their website.
Within the framework of this project’s experiments, the utilization of stan-
dard meteorological historical data (STDMET) is employed. Post-processing
analysis has been performed on these files. Furthermore, the format of those
files is similar to the real-time data files except for how missing data is
represented. While those are represented by variable numbers of 9’s (like
999.0, 99.0) in the historical data, missed values are marked by “MM” in the
real-time data files. This allows an easy adoption of scripts and models to
be used for real-time data. The STDMET dataset is composed of multiple
.txt files, with each file representing the data pertaining to a specific sta-
tion and year. Each file can be accessed by the five-digit station identifier,
assigned by the World Meteorological Organization (WMO). For instance,
the data from station 41117 for the year 2020 is denoted by the filename
41117h2020.txt.gz and can be retrieved when appended to the STDMET
base URL2. Since 1970, the NDBC has undertaken extensive data collection
initiatives. However, it is imperative to recognize that the availability of data
for all years is not consistent across all buoys within their network. In each
available file, the first two rows can be considered headers, whereas the first
line represents the column header, and the second line represents the used
(generally metric) unit. All lines that are not data lines begin with the char-
acter ”#” and may be considered to be comments. For each record, the first
five columns represent the timestamp of the measurement in coordinated
universal time (UTC). (NDBC, n.d.-b)

1https://www.ndbc.noaa.gov/data/
2https://www.ndbc.noaa.gov/data/historical/stdmet/41117h2020.txt.gz
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#YY MM DD hh mm WDIR WSPD GST WVHT DPD APD MWD PRES ATMP WTMP DEWP VIS TIDE
#yr mo dy hr mn degT m/s m/s m sec sec degT hPa degC degC degC mi ft
2009 7 1 0 0 130 7.0 99.0 99.00 99.00 99.00 999 1019.0 19.2 21.0 13.5 99.0 99.00

2009 7 1 1 0 131 6.7 99.0 99.00 99.00 99.00 999 1020.0 19.2 21.0 13.5 99.0 99.00

Table 2.6: Data header of: Standard Meteorological Data (NDBC, n.d.-b)

Table 2.6 provides an illustration of the header content found in the
STDMET data files. For an in-depth exploration of each feature, a detailed
discussion can be found in subsection 2.4.3.

NDBC Metadata

Historical STDMET files do only provide observed measurements over time
for the corresponding station and year but no metadata. However, NDBC
is providing a metadata file3 which also includes the station movement
over time. Without a detailed analysis, this movement is expected to be
negligible. Furthermore, this file does only provide the location of 433
stations. Alternatively, NDBC provides a “station page” for each station on
their website which includes the most recent location as well as additional
metadata.

In-depth information regarding the gathering of metadata including file
availability and station coordinates, operator and types can be found in
subsubsection 4.4.1. An analysis of the generated metadata file shows that
among the 1311 stations that were deployed, a total of 1247 stations con-
tribute 14724 datafiles. The chart in Figure 2.7a demonstrates the progression
of the number of provided files over time, clearly indicating an upward trend
in the collection of data throughout the years. Furthermore, Figure 2.7b and
Figure 2.7c offer graphical representations that depict the distribution of
station ownership and station types, respectively.

Beyond the previously mentioned issue of stations not providing files
for specific years, it is equally critical to highlight that the available files
themselves may contain missing values. This is caused by the inherent com-
plexities of NDBC data, stemming from real-world origin. Data gaps within
NDBC files might result from numerous causes, such as data corruption,
recording failures at the stations, or technical disruptions. Recognizing and
addressing these discrepancies is crucial when handling datasets of this
nature.

3https://www.ndbc.noaa.gov/metadata/stationmetadata.xml
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a) Number of available files by years

b) Distribution of station operator

c) Distribution of station types

Figure 2.7: Insights from NDBC metadata
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2.4.2 Fifth ECMWF Reanalysis

ERA5, generated by the European Centre for Medium-Range Weather Fore-
casts (ECMWF), represents the latest advancement in a series of global
atmospheric reanalysis datasets. In this context, reanalysis entails the assimi-
lation of observational data and model simulations, leveraging the principles
of data assimilation rooted in physical laws, to generate a coherent and
extensive dataset. (C3S CDS, 2023)

In the field of atmospheric sciences, reanalyses have gained significant
traction, particularly in operational weather centers. They are used to assess
advancements in modeling and assimilation techniques, evaluate the influ-
ence of changes in observing systems, and obtain up-to-date climatological
data for evaluating forecast errors. ECMWF has made significant contri-
butions in the field of reanalysis, with the ongoing evolution of ECMWF
forecast models consistently benefiting the reanalysis process. Over time,
successive atmospheric reanalyses have consistently demonstrated improve-
ments, such as higher horizontal resolution and more advanced data assimi-
lation schemes. ERA5 includes a land component, ocean surface wave and
atmospheric ozone products. (Hersbach et al., 2020)

ECMWF offers a global ocean reanalysis known as ORAS5 (Ocean Reanal-
ysis System 5). Despite the specific interest in weather data pertaining to the
oceans, reliance continues on ERA5 due to ORAS5’s limitation in providing
only monthly temporal resolution. (C3S CDS, 2021)

ERA5 Configuration

ERA5 is built upon the Integrated Forecast System Cycle 41r2, which served
as the operational medium-range forecasting system at ECMWF from 8
March to 21 November 2016. Notably, compared to the Cy31r2 framework
that underlies ECMWFs previous reanalysis, ERA5 incorporates an addi-
tional decade of research and development efforts encompassing all its com-
ponents. Moreover, significant improvements have been made to the data as-
similation methodology, adopting the hybrid incremental Four-Dimensional
Variational Data Assimilation system (4D-Var) developed by Bonavita et al.
(2016). The set of four dimensions comprises three dimensions related to
space and one dimension related to time. The goal of 4D-Var is to find the
optimal set of initial conditions that minimizes the difference between the
model’s predicted state and the observed state over the assimilation window.
It involves solving an optimization problem, where the cost function quanti-
fies the mismatch between model and observations, along with additional
constraints and error statistics. Those initial conditions are used to generate
an ensemble of simulations through the High-Resolution Ensemble System
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(HRES). The HRES assimilation system utilizes 12-hourly windows to incor-
porate observations from specific time ranges. Analysis windows, following
the temporal evolution within each window, are saved hourly. Within each
analysis window, the gathered information is propagated via a concise fore-
cast that commences from the analysis fields 9 hours into the window. This
forecast serves as the initial state for the subsequent assimilation. The HRES
assimilation system combines incremental 4D-Var, based on the method-
ology presented by Courtier et al. (1994), for the atmosphere and ozone,
with land data assimilation (LDAS). This configuration exemplifies a case
of weak coupling, as discussed by Penny et al. (2017) This type of coupling
entails the incorporation of land surface influence and other observations
in subsequent analyses solely through the combined short forecast derived
from the resulting sub-analyses. The incremental formulation of the HRES
assimilation system employs stepwise minimization of a linearized quadratic
4D-Var cost function at reduced resolution in inner loops. The outer loops
incorporate nonlinear updates at full resolution and involve the integration
of the coupled model over the duration of the assimilation window. In ERA5
HRES, three inner loops are utilized, while its ensemble component employs
two inner loops. In the HRES assimilation system, the ensemble component
relies on ECMWF’s Ensemble of Data Assimilation (EDA) system to estimate
uncertainty in analysis and short-range forecasts. A detailed description of
EDA can be found in Isaksen et al. (2010). The ocean wave analysis, carried
out through optimal interpolation (OI), is integrated into the final model
evolution of 4D-Var. To align with ERA5’s hourly output, the OI procedure
has transitioned from a 6-hourly frequency, as observed in ERA-Interim, to
an hourly interval. Data pertaining to sea surface temperature (SST) and
sea ice concentration (SIC) is obtained from external sources which offer
comprehensive gridded datasets. The integration process involves a slight
interpolation step, where the data is regridded onto the ERA5 model grid,
taking into account the model’s land-sea mask and cross-validation between
the two variables. A comprehensive overview of the ERA5 configuration and
a detailed examination of its various components can be found in Hersbach
et al. (2020).

ERA5 hourly data on single levels

Within this project, the ERA5 dataset, specifically identified as ”ERA5 hourly
data on single levels from 1940 to present” (Hersbach et al., 2023), is utilized.
It offers hourly estimates for a diverse set of atmospheric and ocean wave
variables. This dataset consists of a regridded subset extracted from the full
ERA5 dataset while preserving its native resolution. It is stored online on
spinning disk, ensuring fast and convenient accessibility. (C3S CDS, 2023)
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Table 2.7 presents a detailed overview of the important parameters related
to this dataset. A frequently updated overview of all ERA5 datasets can be
found in Berrisford et al. (2020).

Data Type Gridded
Projection Regular latitude-longitude grid
Horizontal Coverage Global
Horizontal Resolution 0.25° x 0.25° (atmosphere),

0.5° x 0.5° (ocean waves)
Temporal Coverage 1940 to present
Temporal Resolution Hourly
File Format GRIB
Update Frequency Daily

Table 2.7: Description of dataset: ERA5 hourly data on single levels (C3S CDS, 2023)

In this project, buoy station measurements and variables provided by
ERA5 at corresponding locations are combined. Disregarding the precision
of NDBC buoy coordinates, the resolution constraint of 0.25° allows for
an exact location match only within a tolerance of 0.125°, which can be
converted to approximately 13.875 km in terms of spatial difference.

2.4.3 Comparative Analysis of Dataset Features: NDBC and
ERA5

NDBC standard meteorological dataset provides 14 measurements (NDBC,
n.d.-b) while ERA5 provides 262 variables (C3S CDS, 2023). Five NDBC mea-
surements lack a corresponding variable in ERA5, and therefore, they are
excluded from further consideration in this study. To ensure completeness,
Table 2.8 provides a description of these measurements. A detailed examina-
tion of the wind, wave, pressure, and temperature parameters, considered
in this study, will be presented in this section. Moreover, Table 2.9 offers
a succinct comparison between the features provided by NDBC and their
ERA5 counterparts.

Wind

While wind is described with direction and speed in NDBC dataset, ERA5
provides u (east) and v (north) components. To unify the description of the
wind, the ERA5 components are converted to angle and magnitude using
Pythagoras’ theorem and circular functions. A further variation exists in the
elevation at which wind data is provided. ERA5 data encompasses altitudes
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Feature Description
GST Peak 5 or 8 second gust speed (m/s) measured during

the eight-minute or two-minute period. The 5 or 8
second period can be determined by payload.

DPD Dominant wave period (seconds) is the period with
the maximum wave energy.

VIS Station visibility (nautical miles). Note that buoy sta-
tions are limited to reports from 0 to 1.6 nautical miles.

PTDY Pressure Tendency is the direction (plus or minus)
and the amount of pressure change (hPa) for a three-
hour period ending at the time of observation. (not in
Historical files)

TIDE The water level in feet above or below Mean Lower
Low Water (MLLW).

Table 2.8: Excluded NDBC features (NDBC, n.d.-b)

of 10 or 100 meters above the surface, whereas the sensor height at individual
stations varies. A substantial number of stations do not disclose the sensor
height in their metadata, but among those that do, it is predominantly below
10 meters, barring a few exceptional cases. Hence, the decision was made to
utilize the ERA5 10-meter wind components. (C3S CDS, 2023; NDBC, n.d.-b,
n.d.-d) Furthermore, it is important to note, that the ECMWF explicitly
mentions, that the assimilated data can’t be directly compared to actual
measurements:

“Care should be taken when comparing this parameter with
observations, because wind observations vary on small space

and time scales and are affected by the local terrain, vegetation
and buildings that are represented only on average in the

ECMWF Integrated Forecasting System (IFS).” (C3S CDS, 2023,
see 10m-u-component of wind, 10m-v-component of wind)

Wave

Wave measurements reported by the NDBC are not acquired directly through
sensors installed on the buoys. Instead, the buoys utilize accelerometers or
inclinometers to measure the heave acceleration or vertical displacement
of the buoy hull. In addition, the measurement of hull azimuth, pitch, and
roll is essential for capturing directional waves, but these measurements
are only reported for specific stations. On the buoy, the data undergoes
transformation from the time domain to the frequency domain through the
utilization of a Fast Fourier Transform (FFT) performed by the onboard
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processor. Only the transformed data, but not the raw measurements is
transmitted to the shore-side. The transformed data is then used to obtain
features like significant wave height, average wave period and the direction
from which the wave comes. (NDBC, n.d.-a)

Equivalent variables are available in ERA5, therefore no further adoption
of the wave data is required. Additional insights and comprehensive infor-
mation about NDBC’s wave measuring system can be found in reference
(Steele & Mettlach, 1993).

Pressure

Both datasets provide data of the atmospheric pressure at sea level, which
refers to the air pressure exerted by the Earth’s atmosphere at a specific
location. NDBC reports pressure values in hectopascals (hPa), whereas ERA5
expresses them in pascals (Pa). To ensure consistency, a unit conversion is
essential. (C3S CDS, 2023; NDBC, n.d.-b)

Temperature

NDBC furnishes measurements of air and sea surface temperature, along
with the direct assessment of dewpoint temperature. ERA5 provides assimi-
lated counterparts of these variables. The sea surface temperature measured
by NDBC directly accounts for diurnal variations resulting from the daily
cycle of the sun, whereas ERA5 provides a reference sea surface temperature
(SST) that has diurnal fluctuations eliminated. Air temperature sensors and
the dewpoint hygrometers are positioned at the same elevation, although
this elevation differs across various stations. As for ERA5, values at a height
of 2 meters are utilized. Since ERA5 presents temperature values in Kelvin
(K), whereas NDBC reports data in degrees Celsius (°C), all values of ERA5
require a subtraction of 273.15 to ensure matching units. (C3S CDS, 2023;
NDBC, n.d.-b)
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NDBC DATA ERA5 Equivalent
Feature
Name Unit Description Feature

Name Unit Description

WSPD m/s

Wind speed averaged over
an eight-minute period for

buoys and a two-minute
period for land stations.

10m v-
component

of wind
m/s

Northward component of the
10m wind. It is the horizontal

speed of air moving towards the
north, at a height of ten metres
above the surface of the Earth.

WDIR degree

Direction the wind is coming
from in degrees clockwise

from true North during the
same period used for WSPD.

10m u-
component

of wind
m/s

Eastward component of the 10m
wind. It is the horizontal speed of
air moving towards the east, at a

height of ten metres above the
surface of the Earth.

WVHT m

Significant wave height is
calculated as the average of
the highest one-third of all

wave heights during the 20-
minute sampling period.

Significant
height of

total swell
m

Significant height of total swell
represents the average height of

the highest third of surface
ocean/sea waves associated with

swell. It represents the vertical
distance between the wave crest

and the wave trough.

APD s
Average wave period of all

waves during the
20-minute period.

Mean wave
period s

Mean wave period is the average
time it takes for two consecutive
wave crests, on the surface of the

ocean/sea, to pass through a fixed
point.

MWD degree

Mean direction from which
the waves at the dominant

period (DPD) are coming in
degrees clockwise from true

North.

Mean wave
direction degree

Mean wave direction is the mean
direction ocean surface waves are

comming from in degrees
clockwise from true North.

PRES hPa Sea level pressure (hPa)
Mean sea

level
pressure

Pa

Mean sea level pressure is the
pressure (force per unit area) of
the atmosphere at the surface of
the Earth, adjusted to the height

of mean sea level.

ATMP °C
Air temperature (Celsius).
Sensor hight depends on

station.

2m
temperature K

Temperature of air at 2m above
the surface which is calculated by
interpolating between the lowest

model level and the Earth’s
surface, taking account of the

atmospheric conditions.

WTMP °C

Sea surface temperature
(Celsius). For buoys the depth

is referenced to the hull’s
waterline. For fixed platforms

it varies with tide, but is
referenced to, or near Mean
Lower Low Water (MLLW).

Sea surface
temperature K

Sea surface temperature is the
temperature of sea water near

the surface. In ERA5, this
parameter is a foundation SST,

which means there are no
variations due to the daily cycle of

the sun (diurnal variations).

DEWP °C
Dewpoint temperature taken
at the same height as the air
temperature measurement.

2m
dewpoint

temperature
K

2m dewpoint temperature is the
temperature to which the air, at 2

meters above the surface of the
Earth, would have to be cooled
for saturation to occur. It is a

measure of the humidity of the air.

Table 2.9: Relevant NDBC measurements and their ERA5 counterparts (C3S CDS, 2023;
NDBC, n.d.-b)
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2.5 Summary

In this chapter, the background and related work relevant to research on
weather prediction using deep learning techniques are explored.

The chapter starts by examining Numerical Weather Prediction (NWP)
and its historical development, highlighting the continuous advancements
leading to the state-of-the-art methods used today.

NWP relies on approximating partial differential equations to predict
weather patterns, emphasizing the non-trivial nature of this task and the sig-
nificant computational resources required. The challenges faced in weather
prediction and the ongoing trends in NWP were discussed.

The concept of deep learning was explored, providing a general classifi-
cation of this domain. Various deep learning architectures for time series
forecasting were explored, with a focus on two promising approaches: Recur-
rent Neural Networks (RNN) and Convolutional Neural Networks (CNN).
The internal functions and intuitions behind these architectures were eluci-
dated, highlighting their capabilities for handling spatial (CNN) or temporal
(RNN) data.

Moving on to deep learning weather prediction, the general usage in
contemporary weather analysis was examined. The concept of completely
data-driven hybrid architectures, which combine different deep learning
approaches for improved weather prediction, was explored. Additionally,
theory-guided coupling architectures were discussed, showcasing the bene-
fits of combining theory-driven and data-driven methods.

To compare NWP and Deep Learning Weather Prediction (DLWP), their
advantages and limitations were assessed. Factors such as computational
resources, accuracy, resolution, and the ability to forecast short or long term,
as well as small-scale or global weather patterns, were considered. Especially,
it was pointed out that DLWP excels in local short-term forecasting, while
NWP retains its superiority in global long-term forecasting.

Subsequently, the data sources used in the research were examined. The
National Data Buoy Center (NDBC) and its Historical Standard Meteorologi-
cal Data were discussed, explaining how this valuable dataset was collected.
Additionally, the Fifth ECMWF Reanalysis dataset was discussed, sharing a
similar intuition with NWP in its creation process. The reasoning behind
the consideration of ERA5 hourly data on single levels was also provided.

Finally, a comparative analysis of the dataset features obtained from both
NDBC and ERA5 was conducted. Differences in individual features were
emphasized, and the necessary adjustments to create a consistent dataset
that incorporates the attributes of both sources were highlighted.
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In conclusion, this chapter provided a comprehensive overview of the
background and related work rof this research project on enhancing ocean
buoy predictions using with physics-informed regularization through ocean
models. The exploration encompassed the historical evolution and con-
temporary trends in Numerical Weather Prediction, a deep dive into the
fundamentals of deep learning, and a comprehensive investigation into
its application in weather prediction. Moreover, a comparison was drawn
between the advantages and limitations of NWP and DLWP. Additionally,
the data sources utilized in this project were discussed.
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This pivotal chapter serves as the bridge between the reviewed literature and
the practical application of the research objectives. First, the motivation of the
research is presented, followed by the considered approach for integrating
domain-specific knowledge into the forecasting process. Subsequently, the
specified requirements are listed and the resulting conceptual architecture
is described by outlining abstract design decisions for each component.

3.1 Motivation

The objective of this thesis is to examine the influence of incorporating
physics-guided regularization using modeled data in the realm of ocean
buoy prediction. Contributing to improvement in this field is motivated by
the fact that it influences a wide range of areas. First of all, it is relevant for
predicting extreme weather events, such as hurricanes, tsunamis, and storm
surges. Furthermore, it is relevant for energy planning, particularly as the
proportion of renewable energy sources such as solar, wind, wave and tidal
resources continues to grow (Widén et al., 2015). Additionally, improvements
in weather prediction enable advancements in ship weather routing, which
involves optimizing ship routes and speeds based on anticipated weather
conditions (Zis et al., 2020). Given the economies of scale, even slight per-
centage adjustments can lead to significant changes in fuel consumption,
operational costs, and emissions of pollutants. Should improvements in
ocean buoy weather prediction facilitate advancements in weather routing,
resulting in a modest 1% reduction in fuel consumption, the consequential
worldwide decrease would amount to around 7 million metric tons of CO2
emissions per year (Crippa et al., 2022).

3.2 Problem Statement

As mentioned in subsection 2.1.2, numerical weather prediction remains
the predominant method for practical weather forecasting. However, as
discussed in subsection 2.3.3, deep learning has shown promising results,
particularly in localized short-term prediction, despite being in its early
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stages. Given the track record of deep learning displacing existing techno-
logical approaches in several domains, attention is focused on this promising
technology. However, the advantages of the theory-driven numerical weather
prediction will not be ignored.

As discussed in subsection 2.3.2, the approach of physical informed
neural networks is to incorporate physical information as regularization in
neural network training involves integrating complex physical equations.
However, this method has drawbacks, including the need for specialized
domain knowledge and the requirement for individualized solutions for
each feature.

The idea behind this project is derived from the fact that data models
like the European reanalysis are based on physical laws. This research
project aims to leverage this theory-driven dataset to enhance ocean buoy
observation forecasting. In other words, the research’s objective is to explore
a neural network that is indirectly influenced by physical principles. In order
to investigate this idea, the subsequent requirements were established.

3.3 Requirements

In the requirements engineering phase, the distinctions outlined by Som-
merville (2011) were utilized to categorize the system’s requirements into
functional and non-functional types. Functional requirements depict the
services the system is expected to deliver, specifying its core tasks. Con-
versely, non-functional requirements define properties and limitations on
these tasks, generally relating to the system as a whole rather than isolated
features.

3.3.1 Functional Requirements

Data Representation

In order to investigate physics-regulation, a dataset consisting of real-world
data and theory driven data is necessary. An appropriate data representation
must be formulated, incorporating data from both source types. This repre-
sentation needs to aptly capture the intricate relationships within oceanic
weather. The created dataset must provide comprehensive, pertinent data
records available in large numbers. Furthermore, features from both sources
must be coincident in both chronological and geographical aspects.

41



3 Requirements and Concept

Preprocessing

The system shall include proper preprocessing. Given the inherent nature
of real-world observations, it must effectively address the issue of missing
values. The dataset shall also be structured for time series forecasting which
includes transforming it to a stationary supervised problem divided into
test and train sets.

Tests

The system must be capable to run forecasting trials. The result of the tests
must represent the performance of the particular network used in a way
that allows comparison and conclusions to other tests.

Models

The machine learning models considered for testing shall be constructed
in a manner that allows for the modulation of theory-driven impact. The
system must be able to run several experiments testing the same model but
with different levels of physics-informed regularization.

3.3.2 Non-functional Requirements

Reusability

Given the Gulf States Center of Environmental Informatics’ strong interest
in advancing research in this field, it is important to ensure the development
of a reusable implementation. Consequently, the dataset generation process
should possess the ability not only to construct a singular, particular dataset
but also to exhibit the necessary adaptability for generating a diverse array of
datasets by employing various combinations of NDBC buoys and timeframes.
Moreover, the testing environment should have the capacity to conduct
experiments beyond the scope of this project. Consequently, the provided
implementation must be inherently extensible and easily adaptable to a
wide range of application scenarios.

Neural Network Architectures

The system itself must not be limited to certain neural network architectures.
However, it is crucial to identify the most promising architectures for the
study of this thesis. It must be pointed out that this project does not primarily
seek to identify the most optimal architecture or hyperparameters, but
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rather aims to emphasize the impact of physics-informed regulation on each
individual network.

Performance

Given the enormous available data in both data sources, the downloading
process must be intelligently organized to minimize execution time. Further-
more, the system must be capable to handle large amount of data within a
feasible execution time.

3.4 Conceptual Architecture

In this section, the conceptual architecture derived from the requirements is
presented. Descriptions of the conceptual design decisions for the compo-
nents depicted in Figure 3.1 are provided here, while further explanations
can be found in chapter 4.

Figure 3.1: Conceptual architecture of the toolkit for dataset creation and test execution
divided into 7 components.

Data Sources

The description of the architecture begins by specifying the considered data
sources. The basis of this project rests upon real-buoy observations. There-
fore, the historical standard meteorological data from NDBC is considered.
A thorough description of this dataset can be found in subsubsection 2.4.1.
To regulate the prediction of those observations, a physics informed dataset
is needed. Therefore, the ERA5 hourly data on single levels from 1940 to
present as described in subsubsection 2.4.2, is incorporated. For the sake
of readability, these two specific datasets will henceforth be referred to just
as NDBC and ERA5 data. As a third data source, NDBC provides a station
page for each available station including relevant metadata.
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Data Sourcing

For both datasets a procedure to download the relevant data must be imple-
mented. These procedures prevent unnecessary downloads and ensure that
once data is fetched, it can be directly read from the disk. Due to the absence
of station location information in the NDBC dataset, it becomes necessary
to acquire longitude and latitude data for ocean buoys through scraping the
station pages. This is essential to establish geographical alignment. Within
this step, it is very little effort to scrape additional metadata. This metadata
can be incredibly valuable for station selection and can serve as a valuable
foundation for analyses in related research endeavors.

Dataset Builder

The next component in the systems pipeline is the dataset builder. It is re-
sponsible for merging NDBC and ERA5 data while fulfilling the mentioned
requirements. ERA5 exclusively furnishes data at full-hour timestamps.
The sole viable approach to meet the requirement of chronological align-
ment is to selectively filter NDBC data and exclude all records obtained
at timestamps other than full hours. In terms of geographical alignment,
ERA5 values corresponding to the coordinates of NDBC buoys have to be
employed. Oceans are complex interconnected systems. It is hypothesized,
that representing a whole area instead of a single location in one data entry
could help the neural network to detect patterns which leads to an increased
forecast accuracy. However, adopting this approach poses challenges in
terms of accommodating a substantial volume of records and complicates
the management of missing values. Therefore, the decision to develop two
data representations and compare them was made. The first one should
represent several NDBC stations and their ERA5 counterparts within one in-
stance. Since removing instances within this approach could lead to relevant
data gaps, the data imputation technique suiting the given data best must
be identified. The second approach represents only data gathered from one
station within one record. Merging data records from several stations within
one dataset allows removing all instances containing missing values but still
meeting the requirement of providing a large number of data records. Both
data representation techniques are detailed in section 4.1.

Preprocessing

Preprocessing plays a pivotal role in preparing the raw data for effective
time series forecasting. The unprocessed time series exhibits non-stationarity,
necessitating the differencing preprocessing step, where consecutive obser-
vations are subtracted to eliminate trend and seasonality. Furthermore, it
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is essential to frame the data in a manner that allows machine learning
models to learn from past observations to predict future values. Therefore,
the subsequent preprocessing step transforms the data into a supervised
problem, where input data is paired with corresponding target outputs.
Subsequently, the prepared dataset is split into training and testing subsets.
This division ensures that the machine learning model is trained on one
set of data and its performance is subsequently evaluated on a separate set,
which it hasn’t previously encountered.

Machine Learning Models

As highlighted in the literature review, recurrent neural networks (RNNs)
(Subsection 2.2.1) and convolutional neural networks (CNNs) (Subsection
2.2.2) emerge as the most promising architectures for time series forecasting.
Due to the issue of vanishing and exploding gradients as described, no
basic RNN architecture will be employed. Instead the focus will be on
the two enhanced versions LSTM and GRU. In the context of CNNs, the
consideration extends beyond the fundamental version to encompass TCN,
a CNN architecture specifically designed for sequential data.

Within a neural network’s loss function, the measure of the distance be-
tween the predicted value and the actual ground truth is evaluated. Through
the process of training, the network iteratively adjusts its internal param-
eters, including weights and biases, with the objective of minimizing this
divergence. By minimizing the loss, the neural network gains an under-
standing of the underlying patterns within the data and enhances its ability
to make accurate predictions on new, unseen inputs. In order to maintain
control over the impact of the two considered data sourced, a specialized
loss function is devised. This function integrates a parameter that governs
the effect of features from each data source on the adjustment of weights
and biases.

In conclusion, four distinct neural networks are constructed, each of which
is equipped with a custom loss function.

Similar to the case of physical informed neural networks, the training
process is impacted by the presence of physical laws, thereby exerting an
influence on the overall training dynamics. However, a key characteristic
that defines PINNs is the incorporation of partial differential equations
(PDEs) within the neural network architecture, as previously emphasized in
scientific literature. (Cuomo et al., 2022; Raissi, Perdikaris, & Karniadakis,
2019) Hence, while the described neural network itself may not be inherently
physics-informed, the data employed to govern the weight adjustment
process exhibits physics-informed characteristics. Therefore, this approach
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is termed as physics-informed regularization through modeled data.

Test Environment

The test environment serves as the operational core of this system. Building
upon the preprocessed data crafted by the dataset builder, it collaborates
with the chosen neural network model component to ensure a thorough
training and testing process. The outcome of this component encompasses
the predicted values as well as the factual observed values from the test set.
It is capable to run experiments for exploring the change of different levels
of physical informed regulation. However, it also can be used to test any
neural network potentially added as a machine learning module and works
with any dataset created by the dataset builder.

Report Creation

To simplify the evaluation of the experiments results, the raw output of
the test environment serves as input for the report creation component. At
this point, a comprehensive report is created, presenting an array of charts
showcasing the predictions of features and metrics pertaining to the error
rate.

3.5 Summary

This chapter forms an intersection of the literature review and the practical
part of the thesis. It begins by underlining the motivation that steers this
research – a pursuit to comprehend the effects of merging physics-guided
regularization with modeled data for ocean buoy forecasting.

The importance of this research area lies in its widespread implications,
ranging from predicting extreme weather conditions to its role in energy
planning and its potential in optimizing ship routing.

In delving into the problem statement, while numerical weather predic-
tions currently dominate the landscape, the emergence of deep learning
offers fresh perspectives, especially for short-term local predictions. This
research leans towards the potential of deep learning while still recognizing
the benefits of conventional numerical weather forecasting. By integrating
the physical principles embedded in datasets such as the European reanaly-
sis with neural network capabilities, this approach does not directly infuse
the network with physical laws. Instead, it steers the neural network using
physics informed data.
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The requirements of the system have been delineated and categorized
into functional and non-functional types. On the functional front, the need
for a rich dataset incorporating real-world and theory-driven data, ensuring
proper preprocessing and a comprehensive test environment for modifiable
machine learning models are emphasized. Non-functional requirements
touch upon facets like reusability, extensibility, and system performance.

The conceptual architecture, built upon those requirements, lays down a
structured roadmap for the system implementation. Beginning with the data
sources that emphasize NDBC real-buoy observations, associated metadata,
and the ERA5 data model, the specification moves to the data sourcing
segment. It is described that data from both sources must be fetched, ensur-
ing that redundancy is avoided and geographical alignment is maintained.
The architecture further encompasses the dataset builder, which combines
NDBC and ERA5 data, followed by the preprocessing segment which primes
the data for machine learning application. The machine learning models
component is pivotal, emphasizing recurrent and convolutional neural net-
works, while underscoring the importance of custom loss functions. This is
the point at which physics-informed regularization through modeled data
becomes operational. The test environment employs the preprocessed data
and the chosen neural model to produce experimental results. Lastly, the
report creation component processes the outcomes, delivering visualizations
and metrics about error rates.

In essence, this chapter offers a comprehensive overview of the approach,
system requirements, and conceptual design that underpin the research’s
quest to refine ocean buoy forecasting through an fusion of physics-informed
data and deep learning techniques.
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This chapter extends from the conceptual architecture, aiming to provide a
comprehensive understanding of the final design decisions and the conclu-
sive implementation. Initially, it introduces the definitive design decisions
concerning data representations. Within this context, a thorough examina-
tion of diverse data imputation methods is also incorporated. Subsequently,
the specific neural network models employed in the study of this project
are outlined, encompassing a detailed exposition of the formulated loss
function. Expanding on this groundwork, this chapter proceeds to describe
the final architecture of the implemented toolkit. Consequently, it concludes
with an exhaustive description of the implementation in the final section.

4.1 Data Representation

To capture the spatial-temporal data from both data sources within a unified
dataset, two distinct methodologies are examined. Both are expected to be
conducive to the application of physics-informed regulation within time
series forecasting. Figure 4.1 illustrates the two data representation methods
described in subsequent subsections.

4.1.1 Multi-Location Modelling

The first approach is called Multi-Location Modelling (MLM) since the
focus lies on observing a specific area instead of a single point. In this
approach, each instance encapsulates multiple features spanning different
locations at a particular timestamp. The oceans are complex and elaborate
systems with numerous interconnections. Therefore, it is hypothesized
that this approach will empower the neural network to recognize intricate
relationships between buoys relying on ocean currents or any other multi-
location interconnection. The MLM approach ensures the availability of
values for every timestamp and every feature in the created dataset. To
address the problem of missed values in NDBC data, features undergo an
initial filtering based on a threshold that specifies the permissible rate of
missing values. Remaining missed values need to be imputed. Numerous
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Figure 4.1: Concept comparison of MLM and SSUM

techniques exist for this purpose and the choice of method heavily relies
on the characteristics of the specific data. In preparation for this study, it
was opted to evaluate the performance of three straightforward yet effective
methods, along with two machine learning approaches:

Forward and Backward Fill: Missing values are imputed by replacing them
with the most recent known value (forward fill) or the next known value
(backward fill) in the dataset.

Mean and Median Imputation: Missing data is imputed by replacing it
with either the mean or median value calculated from all known values
associated with a specific feature.

K-NN Imputation: k-Nearest Neighbors is a well-known clustering algo-
rithm. The parameter k defines the number of clusters. All data records are
clustered into k groups where the Euclidian distance is used as distance
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metric. The algorithm minimizes the distance to records of the same cluster
and maximizes the distance to records of other clusters. To use this algo-
rithm for data imputation, the missed values are replaced with the average
of the same feature of all other records in the same cluster.

MICE Imputation: The Multiple Imputations by Chained Equations (MICE)
method involves the imputation of missing values in a dataset through mul-
tiple iterations. It is an iterative algorithm that utilizes chained equations,
where each variable is imputed using its own imputation model while
considering the other variables as estimators. (Little & Rubin, 2019)

To assess the performance of the imputation techniques on the NDBC
data, a dataset without any missing values was necessary to serve as ground
truth for evaluation purposes. To select a suitable dataset, the annual data
files of all stations in the Gulf of Mexico spanning from 2010 to 2022 were
compared. The dataset with the lowest number of missing values was
identified, which happened to be the buoy 42001 dataset from the year
2016, with only 0.23% of the values missing. To ensure data consistency, the
instances corresponding to these missing values were removed by dropping
them from the dataset. During each test, a specific rate of values within the
selected dataset is randomly chosen and removed. The missing values are
subsequently imputed, and those values are then compared to the ground
truth dataset. To evaluate the performance of the imputation techniques,
the mean square error (MSE) is utilized as the evaluation metric. Tests were
carried out across all NaN rates, varying from 0% to 100%, in increments
of 5%. The performance of all five mentioned imputation techniques was
evaluated, including variations in the value of k from 2 to 256 for the k-
Nearest Neighbors (k-NN) algorithm. The result, as illustrated in Figure 4.2,
demonstrate that forward filling outperforms all other techniques in terms
of both accuracy and execution time.

The implementation of a script to automatically create a dataset following
the MLM approach can be found in subsubsection 4.4.2. The parameters
chosen to create the dataset considered in the study can be found in subsub-
section 5.1.

4.1.2 Station-Specific Unified Modelling

In the secondary methodology, called Station Specific Unified Modelling,
emphasis is on producing a substantial number of records without the need
of data imputation. Each instance encompasses measurement values and
ERA5 counterparts exclusively from a specific location at a given timestamp.
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a) Accuracy b) Computation time

Figure 4.2: Comparison of different data imputation techniques on NDBC data

This approach offers a notable advantage by effectively removing instances
with missing values, while simultaneously providing a larger quantity of
instances. Additionally, it is well-suited for real-world applications as it
enables the combination of training data from various locations and allows
for operational utilization at any station.

Subsection 4.4.2 elaborates on the script implemented for automatic
dataset creation under the SSUM paradigm and the choice of parameters
for the dataset discussed in the sutdy is outlined in subsubsection 5.1.

4.2 Neural Network Design

Once created, the data representation that have been formulated is utilized
as input for the neural networks. As mentioned in the requirements, the
main objective of this thesis does not revolve around discovering the ideal
hyperparameters. Instead, the aim is to explore how accuracy varies with
different levels of physics-informed regulation. Therefore, the networks are
intentionally designed to possess a more straightforward structure. A spe-
cialized network has been designed for each of the architecture types under
consideration, as outlined in subsubsection 3.4. The layers and parameters
chosen for the those neural networks are initially detailed, followed by an
explanation of the custom loss function used in all of them.

4.2.1 Neural Network Architecture

Ahmed et al. (2022) offers a comprehensive study of deep sequential models,
including sequential LSTM and TCN modelsin the field of weather pre-
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diction. The distinction of a deep sequential model, as illuminated in this
paper, is its ability to uncover hidden temporal patterns and recall data from
preceding time points, unlike conventional statistical models. Additionally,
the study notes that Python and Keras are the primary tools used for these
models. Based on those findings, all model architectures are based on the
Keras sequential model. In this framework, layers are sequentially added,
ensuring that the output of one becomes the input for the following layer.

For each model, the initial layer is designed to accept an input shape
defined by both the sequence length of individual data records and the count
of features. Based on the chosen dataset, both parameters are dynamically
assigned.

The output layer in every model is designed to yield predictions consistent
with the target data’s expected dimensions. This is realized using a Keras
Dense layer (fully connected layer) with unit numbers corresponding to the
desired output shape.

Each of the two RNNs incorporates four RNN layers with diminishing
unit counts, a decision driven by the desire to maintain a deep network
while still limiting its complexity. As it is common practice in RNN design,
dropout layers are added after each RNN layer. Taking a cue from the Keras
documentation (Keras, 2023), which exemplifies a 0.2 dropout rate, this
value is applied. Consequently, each dropout layer zeroes out 20% of the
input units, aiding in the prevention of overfitting. As illustrated in Table 4.1,
the architecture of LSTM and GRU is the same, with the sole distinction
lying in the specific LSTM and GRU layers utilized.

Layer Type LSTM GRU
Input LSTM Layer LSTM (Units: 128) GRU (Units: 128)
1st Dropout Layer Dropout of 0.2 Dropout of 0.2
2nd LSTM Layer LSTM (Units: 64) GRU (Units: 64)
2nd Dropout Layer Dropout of 0.2 Dropout of 0.2
3rd LSTM Layer LSTM (Units: 32) GRU (Units: 32)
3rd Dropout Layer Dropout of 0.2 Dropout of 0.2
4th LSTM Layer LSTM (Units: 16) GRU (Units: 16)
Output Layer Dense (Units:

number of Features)
Dense (Units:

number of Features)

Table 4.1: Layer-wise comparison between LSTM and GRU architectures

The implemented CNN model draws inspiration from the LeNet-5 archi-
tecture as outlined in subsection 2.2.2. As illustrated in Table 4.2 it consists
of one-dimensional convolutional layers followed by a MaxPooling layer for
down sampling and reducing dimensionality. Additionally, it incorporates a
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Flatten layer to transform the output into a one-dimensional vector.

Layer CNN
Input Conv1D Layer Conv1D (Filters: 128)
1st MaxPooling Layer MaxPooling1D (Pool Size: 1)
2nd Conv1D Layer Conv1D (Filters: 64)
2nd MaxPooling Layer MaxPooling1D (Pool Size: 1)
1st Flatten Layer Flatten
1st Dense Layer Dense (Units: 50)
Output Layer Dense (Units: number of Features)

Table 4.2: CNN Architecture

The TCN was realized using the Keras-TCN package. The principles of
this package are rooted in the paper by Bai et al. (2018), also referenced in
subsubsection 2.2.2. As depicted in Table 4.3, three TCN layers are employed
to strike a balance between ensuring a deep network structure and managing
its complexity. Remy (2020) serves as the primary guide for selecting pa-
rameters. It is advised to employ a list of multiple of two for the Dilations

parameter, which determines the depth of the TCN layer. To maintain a
simpler network structure, [1,2,4,8] is chosen over the provided example
of [1,2,4,8,16,32].

Layer TCN
Input TCN Layer TCN (Filters: 64, kernel size: 3, dilations: [1,2,4,8])
2nd TCN Layer TCN (Filters: 64, kernel size: 3, dilations: [1,2,4,8])
3rd TCN Layer TCN (Filters: 64, kernel size: 3, dilations: [1,2,4,8])
Output Layer Dense (Units: number of Features)

Table 4.3: TCN Architecture

The Adam optimizer, prevalent in Keras documentation examples, has
been implemented across all four network designs. This decision is also
supported by Kingma and Ba (2014), describing the Adam optimizer as
computationally efficient and well suited for problems that are large in
terms of data or parameters. Training is conducted for 100 epochs, with a
batch size of 64 and a validation data split of 10%. The choices made herein
align with widely accepted values. A deep dive into the optimization of
the parameters enumerated in this section, was beyond the purview of this
project, yet it stands as a potential topic for future exploration.
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4.2.2 Custom Loss Function

In order to maintain control over the features influencing the training process,
a dedicated loss function that remains uniform across all architecture types
is introduced.

The compile function of a Keras Model (TensorFlow, 2023) requires the
specification of a loss function, which can be any callable that follows the
signature:

loss = fn(ytrue, ypred)

Here, ytrue represents the ground truth values, and ypred represents the
predictions generated by the model. The expected return value is a float
tensor. In the custom loss function, the first step involves splitting the ytrue
and ypred tensors into separate parts corresponding to NDBC and ERA5. To
quantify the disparity between the predictions and the ground truth values,
the mean square error (MSE) is employed.

This metric allows to assess the average squared difference between the
predicted and actual values. The MSE is separately calculated for the NDBC
and ERA5 data components according to Equation 4.1. Subsequently, these
two results are combined with their respective weight which can be set as a
parameter α ∈ [0, 1] as illustrated in Equation 4.2. The final operational loss
function, as depicted in Equation 4.3, integrates the NDBC and ERA5 terms’
MSEs, which are weighted by the factor α.

MSE =
1
n

n

∑
i=1

(
y(i)true − y(i)pred

)2
(4.1)

Where:

n : is the number of samples or observations.
y(i)true : represents the true values of the target variable

for the i-th sample.
y(i)pred : represents the predicted values of the target vari-

able for the i-th sample.
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loss = α × MSENDBC + (1 − α)× MSEERA5 (4.2)

Where:

loss : is the combined weighted loss.
α : is the weight parameter that determines the

balance between NDBC and ERA5 contri-
butions.

MSENDBC : is the Mean Squared Error for the NDBC
data.

MSEERA5 : is the Mean Squared Error for the ERA5
data.

loss = α × 1
n

n

∑
i=1

(
y(i)true, NDBC − y(i)pred, NDBC

)2

+ (1 − α)× 1
n

n

∑
i=1

(
y(i)true, ERA5 − y(i)pred, ERA5

)2
(4.3)

Setting α to 1 results in assigning full importance to the observations from
NDBC, while completely disregarding the influence of the simulated ERA5
data during the loss computation. Conversely, setting α to 0 reverses this ef-
fect, prioritizing the simulated ERA5 data and disregarding the observations
from NDBC in the loss calculation.

By manipulating this parameter, the impact of the simulated data on the
weight adjustments performed within the neural network can be controlled.

In essence, this parameter governs the degree of influence that the physics-
informed data has on the forecast generated for the ocean buoy.

4.3 Toolkit Architecture

This section provides an introduction into the implementation of the in-
tegrated platform for dataset creation and forecast experiments. It is con-
structed using Python (Version 3.81), primarily chosen for its diverse range
of data analysis libraries and OS independence.

1https://www.python.org/downloads/release/python-380/
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The overarching architecture is illustrated in Figure 4.3. Six orange boxes
depict Jupyter notebooks2 which represent the core of the toolkit. Due to
their interactive and collaborative characteristics, smooth execution and
documentation can be unified within single files. The script utils.py file,
highlighted in purple, contains both commonly employed functions and
more complex procedures, promoting greater code reusability. Across all
files, several open-source libraries and packages were incorporated and the
most relevant ones are listed in Table 4.4.

Library Usage
IPyWidgets1 Basic user interface within Jupyter Notebook
Pandas2 Structured data handling
NumPy3 Management of arrays and handling of missing val-

ues
TensorFlow4 Training and testing of neural networks
Keras5 Definition of deep learning model architecture
Matplotlib6 Visualization
1 https://ipywidgets.readthedocs.io/en/stable/
2 https://pandas.pydata.org/
3 https://numpy.org/
4 https://www.tensorflow.org/
5 https://keras.io/
6 https://matplotlib.org/

Table 4.4: Libraries and their usages

Subsequently, an overview of the toolkit architecture is given by out-
lining each component while a more comprehensive explanation of the
implementation details is available in the subsequent section.

Data Sourcing

The script utils.py file contains two primary functions tasked with re-
trieving NDBC observations and modeled data from ERA5. They retrieve
data for a particular station respectively a particular location and subse-
quently save the data for a specific year onto the disk. This ensures efficiency
in terms of both disk space and network usage.

The purpose of the script build buoy metadata.ipynb is to scrape meta-
data from NBDC station pages. Once executed, the metadata is stored in
a CSV file. Given the frequent updates to NDBC’s data, it is important to

2https://jupyter.org/
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note that if this toolkit is contemplated for future research, there might be a
requirement to re-execute this script to accommodate the latest metadata.

Dataset Builder

The dataset builder component is divided into two separate scripts. Each
of them implements one of the two methodologies for dataset creation as
described in section 4.1. The essential parameters for constructing a new
dataset can be configured through the user interface within the Jupyter
notebooks. Both scripts utilize the coordinates obtained from the NDBC
metadata to ensure geographical alignment between the two considered
data sources. The required NDBC and ERA5 data is read from disk and the
mentioned downloader functions are called on demand. As elucidated ex-
tensively in subsubsection 4.4.2, the integration of transforming the problem
into a supervised format, along with the execution of train-test splitting, be-
came imperative within the dataset building process of the SSUM approach.
Once created, the dataset is saved to disk for future utilization.

Test Environment

Those files can subsequently be selected in the corresponding experiment
scripts. The machine learning models as described in section 4.2 are pre-
defined within the script utils.py file. Including other models for future
research endeavors requires minimal effort. Users have the option to choose
one of predefined models and their corresponding Alpha values through
the integrated user interface within the Jupyter notebooks of the test en-
vironment. Initially, the test scripts execute remaining preprocessing steps
to ensure the dataset is structured in a stationary supervised format, par-
titioned into distinct train and test segments. Then, the script trains the
chosen neural network using the designated dataset and then proceeds to
test the network’s forecasting capability. As a test outcome, the prediction
as well as the ground truth values are saved to disk.

Report Creation

Finally, the report generating script reads the raw test results and creates
a PDF report containing charts that depict each feature of the dataset.
Furthermore, mean absolute error as well as mean square error metrics are
written to disk as CSV files. These files provide a convenient means for
conducting comparisons across different tests.
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4.4 Development Details

The objective of this section is to provide an in-depth insight into the
implementation. It describes the procedures employed within each script,
outlines the expected input for each script, and describes how results are
saved to the disc. By the end, the reader should grasp the full scope of the
toolkit’s data flow and user interactions.

4.4.1 Data Sourcing

This subsection begins by detailing the metadata file and its corresponding
implementation. Furthermore, it details two procedures designed to retrieve
NDBC and ERA5 data for a specific location. These procedures, implemented
in script utils.py, are called on demand by the two scripts dedicated to
build datasets.

Metadata

The created metadata file gives an overview about which data is actually
available. It provides an exhaustive inventory of the years for which a partic-
ular station supplies a data file as well as insights about the official operator
and type of each station. Furthermore, the file contains the longitude and
latitude coordinates of each station, which are required to obtain ERA5
data from the same location. Additional to the metadata file, a Python
script named build buoy metadata.ipynb is provided. It was initially used
to create the metadata file and can further be used to update it without
requiring modifications, provided that NDBC maintain their current data
and information delivery methods. Subsequently, attention will be directed
to the methodical implementation of this script.

NDBC provides a directory3 showcasing all the files contained in the stan-
dard meteorological historical data (STDMET). The HTML file is fetched and
the body is parsed into a string. Using Regular Expressions (RegEx), a list
of all file names is generated. NDBC uses the {StationID}h{Year}.txt.gz
naming convention for those files, as exemplified by the filename
0y2w3h2012.txt.gz. Thus, a RegEx is used again to extract the correspond-
ing 5-character station-id and year. To enhance accessibility, the information
is stored in a Pandas dataframe. The station-id serves as the index, and the
years are represented by the columns. Each cell of the dataframe contains a
binary value that indicates the presence or absence of the corresponding file.
Given the interest in the ERA5 data at the same location, only stations with

3https://www.ndbc.noaa.gov/data/historical/stdmet/
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known coordinates can be considered. NDBC provides those coordinates for
each station on its dedicated station page. By substituting StationID with the
specific ID of a station in a given URL pattern4, one can access this page. In
addition to the station coordinates the operator of the station as well as the
station type are considered. Figure 4.4 displays a screenshot of an example
station page, highlighting the specific data of interest for scraping.

Figure 4.4: Screenshot of station page (yellow: station owner, green: station type, blue:
coordinates)

To extract this information, two functions are created. The first fetches
the html code and extracts the relevant strings and the second converts the
string containing the coordinate into float values for longitude and longitude.
In compliance with the WGS84 standard (Defense-Mapping-Agency, 1991)
south and west coordinates are represented with negative values. Finally,
the script stores the extracted metadata as a CSV file on the disk.

NDBC Single Location

When building a dataset, several STDMET datafiles are considered. Based
on the five-digit station identifier and the corresponding year, a download

4URL format: https://www.ndbc.noaa.gov/station page.php?station={StationID}
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URL5 is generated, enabling the retrieval of the required text file which is
then read into a Pandas Dataframe. Subsequently, the acquired raw data file
is persistently cached on the disk, thereby minimizing network traffic and
execution time. In subsequent executions, the scripts check the disk for the
existence of the required file, obtaining it from the NDBC website only if it
is not already stored on the disk.

Prior to continuing, a brief review of three significant details covered in
subsection 2.4.1 is warranted. Firstly, rows marked with ’#’ at the beginning
serve as comments within the dataset. Secondly, the first five entries of
each record encode the observation time. Lastly, missing data is indicated
by the presence of varying numbers of 9’s. The process of data cleaning
encompasses the systematic removal of comments and the handling of
missing values, whereby they are replaced with the NumPy-NaN value to
signify their undefined nature. Additionally, the five time-related features
are consolidated into a single column called timestamp, which now serves
as a unique identifier for each instance.

An additional challenge encountered is the discrepancy in measuring
intervals among different NDBC stations. Unlike the ERA5 dataset, which
provides values solely at full hour timestamps, the NDBC data exhibits
substantial variation in this regard. To construct a dataset where each record
aligns data from both datasets at similar times, all NDBC records that corre-
spond to timestamps other than full hours need to be excluded. Furthermore,
for full-hour timestamps not covered by the considered data file, a record
containing NumPy-NaN as value for each feature is added. Moreover, the
features that were identified in subsection 2.4.3 as lacking corresponding
variables in the ERA5 dataset are removed.

At this stage, a cleaned dataset has been successfully obtained that encom-
passes annual data from a specific station. The dataset has been meticulously
prepared to ensure that, for each observation within it, an equivalent value
can be obtained from the ERA5 dataset.

ERA5 Single Point

The process of collecting ERA5 data corresponding to a specific location of
an NDBC station will now be elucidated. ECMWF provides the necessary
data through the Climate Data Store (CDS). Accessing this data requires the
utilization of the provided CDS API, for which a free CDS account and the
corresponding CDS API credentials are required.(ECMWF, 2023)

5URL format: https://www.ndbc.noaa.gov/data/historical/stdmet/{STATION-ID
}h{YEAR}.txt.gz

61



4 Design and Development

Every API request necessitates the inclusion of three parameters: the
dataset name, which, in the particular case, is ’reanalysis-era5-single-levels’;
a dictionary encompassing sub-selection parameters and the target file name.
Within this dictionary, the request is further refined using parameters like
product-type and format. Additionally, it serves as a filter by specifying
variables, timestamps, and the geographical area. This filtering capability
allows narrowing down the request to the specific data of interest. Listing 4.1
shows the structure of a request as utilized in the implementation. While
most parameters remain static, the year and coordinates vary for each
individual request.

1 c.retrieve(

2 ’reanalysis -era5 -single -levels ’,

3 {

4 ’product_type ’: ’reanalysis ’,

5 ’variable ’: [

6 ’10 m_u_component_of_wind ’,

7 ’10 m_v_component_of_wind ’,

8 ’2m_dewpoint_temperature ’,

9 ’2m_temperature ’,

10 ’mean_sea_level_pressure ’,

11 ’mean_wave_direction ’,

12 ’mean_wave_period ’,

13 ’sea_surface_temperature ’,

14 ’significant_height_of_total_swell ’,

15 ],

16 ’year’: year , # E.g.: ’2022’

17 ’month’: [

18 ’01’, ’02’, ’03’, ’04’, ’05’, ’06’,

19 ’07’, ’08’, ’09’, ’10’, ’11’, ’12’,

20 ],

21 ’day’: [

22 ’01’, ’02’, ’03’, ’04’, ’05’, ’06’, ’07’, ’08’,

23 ’09’, ’10’, ’11’, ’12’, ’13’, ’14’, ’15’, ’16’,

24 ’17’, ’18’, ’19’, ’20’, ’21’, ’22’, ’23’, ’24’,

25 ’25’, ’26’, ’27’, ’28’, ’29’, ’30’, ’31’,

26 ],

27 ’time’: [

28 ’00:00’, ’01:00’, ’02:00’, ’03:00’, ’04:00’,

29 ’05:00’, ’06:00’, ’07:00’, ’08:00’, ’09:00’,

30 ’10:00’, ’11:00’, ’12:00’, ’13:00’, ’14:00’,

31 ’15:00’, ’16:00’, ’17:00’, ’18:00’, ’19:00’,

32 ’20:00’, ’21:00’, ’22:00’, ’23:00’,

33 ],

34 ’area’: coords , # E.g.: [45.0, 85.0, 45.0, 85.0]

35 ’format ’: ’netcdf ’,

36 },

37 path

38 )

Listing 4.1: Structure of CDS API request
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Although it is technically feasible to download data for multiple years and
an entire area using a single request, the decision was made to download
and save annual files containing data for a single location. When defining the
area in the sub-selection dictionary, identical values are utilized for the north
and south boundaries, as well as for the west and east boundaries, effectively
restricting the selection to a single point. This approach guarantees that there
is a precise correspondence between each NDBC file and its corresponding
ERA5 file which results in optimal storage usage.

The CDS API delivers data in the form of netCDF, a data format specifi-
cally designed for storing and retrieving scientific multidimensional data
(Rew & Davis, 1990). Prior to merging the ERA5 data with the NDBC data,
a conversion process is required to transform the data into a dataframe
format. This conversion process also involves making adjustments to vari-
ous features to ensure their conformity with the NDBC data representation
as discussed in subsection 2.4.3. Initially, a conversion of the provided u-
and v-components of wind into wind direction is performed, expressed
in degrees north, similar to NDBC conventions. This conversion entails
using the arctangent function on the quotient of u and v. Subsequently, the
resulting angle is adjusted based on the signum (positive or negative) of the
u- and v-components. This adjustment ensures that the angle is measured
from the right axis, consistent with NDBC standards. Next, Pythagoras’
theorem is employed to compute the speed at which the wind blows in the
resulting direction. Moreover, the temperature and pressure values undergo
unit conversion to align with the units used by NDBC. With this adjustment,
the ERA5 data format precisely corresponds to the format employed by
NDBC. As a result, the merging of these two datasets becomes feasible,
employing either the MLM or SSUM approach.

4.4.2 Dataset Builder

Section 4.1 introduced the Multi-Location Model and the Station-Specific
Unified Model as two approaches considered for building a dataset using
NDBC and ERA5 data. In the next subsections, the focus is shifted to two
scripts from the developed toolkit that enable the implementation of these
models for dataset construction.

Build Multi-Location Model

The script mlm build dataset.ipynb is designed to construct a dataset fol-
lowing the multi-location model as introduced in subsection 4.1.1. The
parameters required for dataset construction are described in Table 4.5.
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These parameters can be set directly in the code or defined using the GUI
elements within the Jupyter notebook, as illustrated in Figure 4.5.

Parameter Datatype Description

STATIONS List of strings 5-digit station identifier
YEARS List of strings Subset of years since 1970

NAN THRESHOLD Float 0 ≤ NAN THRESHOLD ≤ 1
FEATURES List of strings Subset of: WDIR, WSPD, WVHT,

APD, MWD, PRES, ATMP,
WTMP, DEWP

ADD ERA5 Boolean Default: True
FILENAME String Name of the output file without

file extension

Table 4.5: mlm build dataset.ipynb parameters

Figure 4.5: Screenshot: mlm build dataset.ipynb GUI

The script commences by reading NDBC files for all stations and years,
adhering to the procedure outlined in subsubsection 4.4.1. Firstly, files
pertaining to the same year are horizontally concatenated to form a unified
dataframe. Subsequently, the data from all years is vertically concatenated,
resulting in a comprehensive NDBC dataframe. The outcome is a dataframe
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of NDBC data containing a singular instance for every full hour within the
designated years, leaving no gaps in the temporal coverage. The column
headers adhere to the naming convention of ’F S,’ where ’F’ denotes the
feature name and ’S’ signifies the 5-digit station identifier associated with
the respective station.

In accordance with subsection 2.4.3, the feature name ’F’ is limited to
a predetermined set of nine values: WDIR, WSPD, WVHT, APD, MWD, PRES,

ATMP, WTMP, DEWP. To illustrate comprehension, Figure 4.6 presents a vi-
sual representation of an example header. It is important to note that the
presented example, consisting of four columns, is derived from a dataset
with only two features and two stations. However, it is crucial to recognize
that the number of columns is significantly higher in most scenarios since it
results by the number of considered stations times the available features.

Figure 4.6: Example of NDBC data header

Handling missing values: The real-world aspect of NDBC data results in
missing values. This challenge is magnified when trying to align with the set
criterion of only considering values measured at exact hourly intervals. Two
primary approaches exist to address this issue. The first involves removing
rows or columns with missing values, which improves model robustness but
at the expense of losing information. Alternatively, data imputation can be
employed to estimate the missing values within the dataset. The provided
script effectively combines both strategies.

Once the NDBC datafiles are merged, the script calculates the missing
value rate for each feature. Subsequently, features with a calculated rate
surpassing the specified threshold, passed as a parameter, are removed
from the dataset. Additionally, if the features parameter is employed, the
dataframe’s columns are filtered according to the provided list. As ensuring
the availability of values for every timestamp is a fundamental objective of
the Multi-Location Model, instances with remaining missing values cannot
be simply removed from the dataset. Instead, these missing values need to
be estimated or imputed in order to maintain the integrity of the dataset.

As discussed in subsection 4.1.1, forward filling is the strategie that
showed the best performance on NDBC data. Given this finding, the im-
plementation of the option to choose an imputation technique has been
omitted, and forward filling has been exclusively implemented.
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If the boolean parameter ADD ERA5 is set to false, the script omits the in-
clusion of ERA5 data and directly outputs the NDBC dataset. This flexibility
allows users to leverage the toolkit for experiments exclusively involving
observation data. However, if the parameter is set to true, the script follows
the procedure outlined in subsubsection 4.4.1 to retrieve the required ERA5
data files.

Subsequently, these files are merged into a unified dataframe using the
same methodology as previously described for the NDBC files. The columns
equivalent to those removed during the feature selection process of the
NDBC dataset are eliminated from the ERA5 dataset as well. The ERA5
data header follows the same naming convention as the NDBC data header,
but with the addition of the postfix ’ ERA5’. An example of the ERA5 data
header, corresponding to the one depicted in Figure 4.6, is illustrated in
Figure 4.7.

Figure 4.7: Example of ERA5 data header

With instances at precisely the same timestamps and equivalent features
across the NDBC and ERA5 datasets, a column-wise concatenation of the
datasets becomes viable. Extending from the initial data-header example, a
final data header as illustrated in Figure 4.8 can be derived.

Figure 4.8: Example of final MLM data header

The generated dataset, along with the corresponding input parameters, is
stored in a Python dictionary and subsequently saved to disk as a serialized
.pickle file. This allows for convenient storage and future utilization of the
dataset.

Build Station-Specific Unified Model

The script ssum build dataset.ipynb is designed for dataset construction
following the Station-Specific Unified Model (SSUM) approach as intro-
duced in subsection 4.1.2. This script incorporates additional parameters,
as depicted in Table 4.6 and Figure 4.9. The inclusion of these additional
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parameters stems from the nature of the SSUM approach, which allows fore-
casting of observations for any given station. Consequently, specifications
for the test set are necessary to ensure accurate model evaluation.

Parameter Datatype Description

STATIONS List of strings 5-digit station identifier
YEARS List of strings Subset of years since 1970
NAN THRESHOLD Float 0 ≤ NAN THRESHOLD ≤ 1
FEATURES List of strings Subset of: WDIR, WSPD, WVHT,

APD, MWD, PRES, ATMP,
WTMP, DEWP

ADD ERA5 Boolean Default: True

TEST STATION String 5-digit station identifier
TEST YEAR String
NUM TEST HOURS Integer

FILENAME String Name of the output file without
file extension

Table 4.6: SSUM Build Dataset.ipynb parameters

Figure 4.9: Screenshot: SSUM Build Dataset.ipynb GUI

The script initiates the construction of the training set, which can also
be interpreted as the SSUM dataset, by iterating through the designated
files determined by the STATIONS and YEARS parameters. The script then
proceeds to utilize the methodology outlined in subsubsection 4.4.1 to extract
a cleaned dataframe of NDBC data. Subsequently, the obtained NDBC data
is filtered based on the custom feature list specified in the FEATURES
parameter. Unlike the MLM script, the SSUM script handles ERA5 data
separately for each location, provided that the ADD ERA5 parameter is set
to true. This entails retrieving the ERA5 data for the current file using the
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procedure described in subsubsection 4.4.1. The next stage involves merging
the columns that correspond to the preserved features in the NDBC data
with the NDBC columns, resulting in the creation of a merged dataframe.
After performing this process for each file, all the resulting dataframes
are concatenated vertically, forming a single merged dataframe. In the
subsequent step, the script performs feature selection using the specified
NaN threshold. The resulting dataframe contains a maximum of 18 features,
representing each measurement and its corresponding ERA5 equivalent.
The data header follows the same naming convention as MLM, excluding
the station identifier. An illustrative example of the data header at this stage
is depicted in Figure 4.10.

Figure 4.10: Example of SSUM data header before transforming to supervised problem

Supervised Problem: In contrast to the MLM script, which addressed the
remaining NaN values through imputation, the SSUM approach aims to
remove all NaN values. However, before proceeding with their removal, ad-
ditional preprocessing steps are required. In order to train a neural network,
the dataset needs to be transformed into a supervised problem, consisting
of input and output values. In the context of time series forecasting, the
neural network should learn a function that maps a sequence of past obser-
vations as input to either the subsequent observation or even a sequence
of future observations. In the merged dataset, each instance corresponds
to the weather conditions at a specific timestamp, which is encoded in the
index of the dataframe. To transform this data into a supervised problem,
a certain number of previous instances are considered as the input data,
while the current instance and potentially subsequent instances are treated
as the output data. During the execution of the data transformation into a
supervised problem, it is crucial to ensure that instances be properly ordered
and free from any gaps or interruptions. As the script proceeds to remove
instances containing missing values in the subsequent step, it is essential to
perform the conversion to a supervised problem within this script itself.

The parameters nin and nout govern the choice of instances to be employed
as input and output in the supervised problem. As the data undergoes the
conversion process, the number of instances decreases by (nin + nout–1) due
to the absence of valid instances preceding or succeeding the initial and
final instances. Conversely, the number of features expands by the factor
(nin + nout). To maintain a record of the corresponding timestamp for each
feature, the relative timeshift is incorporated into the data header. Figure 4.11
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depicts the data header of the continuous example after the conversion of
the data into a supervised problem.

Figure 4.11: Example SSUM final data header with nin = 3 and nout = 2

Following this step, the script eliminates all rows in the supervised prob-
lem that include missing values, culminating in the creation of the final
training set. In order to maintain comparability and avoid a reduction in
the size of the test set due to missing values, the MLM approach is adopted
when constructing the test dataset. However, in this case, the focus remains
solely on one specific station, resulting in the coverage of only one location.
Nonetheless, the implemented NaN imputation technique can still be lever-
aged. The parameters TEST STATION, TEST YEAR, and NUM TEST HOURS define
the source and size of the test set, which is subsequently converted into a
supervised problem. Lastly, akin to the MLM script, a dictionary is created,
encompassing the utilized parameters along with the training and test sets.
This dictionary is then serialized and saved as a .pickle file.

4.4.3 Test Environment

The primary objective of this project is to examine the influence of physics-
informed regularization on the forecasting of ocean buoy data. Consequently,
it is necessary to conduct tests with various levels of physics-informed
regulation. To streamline this process, test scripts have been developed,
which accept pertinent parameters as input, train a pre-defined neural
network, perform forecasting on the test data, and save the results to a
report file. To account for the disparities in the construction of MLM and
SSUM datasets, the toolkit includes separate test scripts for each approach
which are described in this subsection.

MLM Test Script

To assess the performance of a specific neural network architecture on a given
MLM dataset, users are required to specify the parameters summarized
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in Table 4.7. These parameters can be defined either by assigning specific
values to the variables within the code or by utilizing the graphical user
interface provided within the Jupyter-Notebook script, as depicted in Figure
Figure 4.12.

Parameters Datatype Note

DATAFILE String Choose file in data/dataset-
s/MLM

n in Integer To create supervised problem
n out Integer To create supervised problem
STATIONARY SHIFT Integer For data-differencing
N TEST HOURS Integer Defines size of test set
Model Integer Choose from predefined mod-

els
Alpha Float 0 ≤ α ≤ 1

Table 4.7: mlm experiment.ipynb parameters

Figure 4.12: Screenshot: mlm experiments.ipynb GUI

The script initiates by deserializing the data stored in the chosen pickle
file. It then proceeds with preprocessing, starting with the conversion of
the data into a stationary form. This step eliminates the influence of trends
and seasonality, guaranteeing that the prediction of weather changes for
future timestamps is based solely on the weather changes observed between
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previous timestamps. To achieve this, the script replaces the actual values
at each timestamp with the difference between the current value and the
value recorded STATION SHIFT timestamps earlier. Following this, the data
is transformed into a supervised problem, adhering to the user-defined
parameters nin and nout. The procedure mirrors the methodology described
in paragraph 4.4.2.

Furthermore, the resulting supervised problem is divided into four dis-
tinct groups: a training and a test set, both of them further separated into
input (X) and output (y) components. The number of records allocated to
the test set is specified by the N TEST HOURS parameter, with the test set
encompassing the most recent records in the dataset. The division between
input and output components is based on the relative timestamp appended
to the column header during the transformation process. Past timestamps
are assigned to the input segment, while the output segment comprises the
current and future timestamps.

Upon completion of the preprocessing steps, the data is now prepared
for utilization by the neural network. The neural network architectures are
defined within the Models class in the script utils.py file, which consists
of multiple methods. Each method within this class requires the input (X)
and output (y) components of the training data, along with the Alpha value,
to be provided as parameters. Within each method, a specific neural network
architecture is defined, and a trained model is returned as the output. Within
the test scripts, users can choose from a set of predefined models using
the graphical user interface. Although the current predefined models align
with the architectures detailed in section 4.2, the selection is designed to
be extensible. It can be expanded to accommodate any neural network
architecture, not limited to those with a custom loss function. This versatility
ensures the script’s adaptability for various potential future applications.
Utilizing the trained model, the test script proceeds to generate predictions
for the output corresponding to each input in the test set. The quantity
of input and output timestamps is established during the creation of the
supervised problem. Hence, it is crucial to note that the prediction horizon is
determined by the parameter nout. Before conducting a comparison between
the predictions and the ground truth values, the script undertakes the task of
converting the stationary data back to its absolute values. This process entails
particular attention to be given to wind direction. While the stationary value
and the previous observation can be directly added to yield the predicted
absolute value, a modulo 360 operation is employed for wind speed to
address potential overflow issues.

The major output of the script is a dataframe encompassing the ground
truth value and the corresponding predictions for the complete test set.
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Together with the chosen parameters and an optional textual description,
the output is stored in a Python dictionary and saved to disc.

SSUM Test Script

The Jupyter notebook ssum build dataset.ipynb serves as a test environ-
ment for datasets created according to the SSUM approach. Notably, this
script operates with a reduced parameter set, as indicated in Table 4.8 and
illustrated in Figure 4.13.

Parameters Datatype Note

DATAFILE String Choose file in data/dataset-
s/MLM

STATIONARY SHIFT Integer For data-differencing
N TEST HOURS Integer Defines size of test set
Model Integer Choose from predefined mod-

els
Alpha Float 0 ≤ α ≤ 1

Table 4.8: SSUM Experiment.ipynb parameters

Figure 4.13: Screenshot: ssum experiments.ipynb GUI

In contrast with the script for MLM datasets, the SSUM script utilizes
data that is already organized as a supervised problem, featuring distinct
train and test sets. Hence, there is no need for data transformation into
a supervised problem or train and test sets; instead, the provided data is
simply divided into input (X) and output (y) sections. These discrepancies
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constitute the primary differences between the two scripts, while the remain-
der of the procedure remains unchanged, thereby ensuring an meaningful
comparison of the results yielded by tests conducted using both scripts.

4.4.4 Report Creation

The decision to create reports in a separate file was motivated by the aim
to enhance the flexibility and reusability of the toolkit. By doing so, the
test scripts are able to store the raw results in a pickle file, which can
subsequently be utilized for evaluation purposes, irrespective of the specific
evaluation method employed. In the provided report generator.ipynb

script, users can select the desired files using the integrated selection widget,
which presents a comprehensive list of all reports stored in the designated
data/reports directory. Once the files are selected, the script proceeds to
read the raw data and generates the report files mentioned in Table 4.9.

File Filetype Naming Convention Created for

Report PDF filename charts.pdf All
MAE CSV filename MAE.csv MLM only
MSE CSV filename MSE.csv MLM only
Error CSV filename Error.csv SSUM only

Table 4.9: Overview of evaluation files created by report generator.ipynb

The initial page of the generated report file provides a comprehensive
overview of the metadata extracted from the read .pickle file. This includes
essential information related to the dataset. Also, this page features a sum-
mary of the employed neural network architecture, offering insights into
its configuration and key parameters. Subsequent pages within the report
consist of charts showcasing the ground truth values of each feature plot-
ted against the corresponding predictions over time. These visualizations
enable a comparative analysis of the model’s performance. Additionally, the
report provides the Mean Absolute Error (MAE) and Mean Squared Error
(MSE) values for each feature, offering quantitative measures of the model’s
accuracy and performance. Furthermore, these error metrics are saved as
separate CSV files, allowing for detailed analysis. In the case of the Multi-
Location Model (MLM), which has a variable number of features based on
the considered stations, the error metrics are stored in individual files. Both,
the MAE and the MSE file consist of a table with the measurements on the
x-axis and the station ID on the y-axis. Conversely, for the Station-Specific
Unified Model (SSUM), where the number of features is limited to 18, the
MAE and MSE values can be represented in two columns of one table, with
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the features listed on the y-axis. This approach enables both error metrics to
be saved within a single file, simplifying the organization and interpretation
of the results.

4.5 Summary

This chapter covered a detailed description regarding final design decisions
and implementation details of the integrated toolkit for dataset creation and
test execution.

First, two methodologies for integrating NDBC and ERA5 data were in-
troduced: Multi-Location Modelling (MLM) and Station-Specific Unified
Modelling (SSUM). MLM focuses on observing a specific area, encompassing
features from various locations at a single timestamp. Several data impu-
tation techniques were evaluated, and forward filling was found to be the
most effective for the given data. In contrast, SSUM emphasizes generat-
ing a vast number of records without data imputation by collecting data
from individual locations over time. This method handles missing values by
eliminating such instances.

Second, the design of neural networks for the subsequently described
study was discussed. Both the LSTM and GRU recurrent neural networks
possess a comparable layout, consisting of four RNN layers paired with
associated dropout layers. The LeNet-5 design informs the selected CNN
architecture, and the TCN is anchored in the Keras-TCN package, a reflection
of the insights from the paper by Bai et al. (2018). All these architectures
utilize a custom loss function that permits the regulation of the influence of
the physics-informed dataset based on a parameter called Alpha.

Following those specifications, the chapter delves into an overview of
the systems architecture. The implemented toolkit encapsulates the full
spectrum of tasks from data sourcing to report creation. It comprises one
Python file with reusable functions and six main scripts, realized as Jupyter
notebooks. Those scripts are designed for:

1. Retrieving updated metadata for the NDBC dataset, offering insights
into data availability as well as station operator, type and location.

2. Automating dataset creation adhering to the MLM and SSUM method-
ologies.

3. Executing tests on varied neural network architectures and diverse
Alpha values.

4. Automatically evaluating and visualizing results.

The final section of this chapter covers all development details, offering a
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comprehensive understanding of data flow and user interaction.

First, the NDBC metadata collection process is described. Data about file
availability, coordinates, operator, and type of each station is collected by
scraping NDBC web pages. In addition to the resulting CSV file, a script for
updating the metadata is also provided.

Furthermore, procedures for efficient data retrieval were described. By
storing data from individual NDBC stations and their associated ERA5 coun-
terparts locally, both network traffic and local storage usage are minimized.
Within those procedures, inconsistencies between NDBC’s data intervals
and the regular hourly intervals of the ERA5 dataset are managed, ensuring
data compatibility. Moreover, ERA5 data is harmonized with the NDBC data
representation through unit conversion.

Subsequently, two scripts for dataset creation are described. These scripts
access the stored data files, so the data sourcing procedures only need to be
invoked as needed. Using the specified MLM or SSUM methodology, the
scripts assemble a dataset determined by the input parameters available in
a simple GUI in the Jupyter notebook. The inherent design of the SSUM
approach mandated that certain preprocessing steps be conducted as part
of the dataset creation.

Created datasets can subsequently be used for test execution in the two
provided test environments. While the script developed specifically for MLM
datasets involves more preprocessing operations, such steps are already un-
dertaken during the creation of the SSUM dataset, marking the key contrast
between them. In each of the two scripts, users have the capability to pick
a dataset, opt for one of the pre-established machine learning models, and
determine the Alpha value. Initially, the test scripts carry out the remaining
preprocessing steps to ensure the dataset is formatted in a stationary super-
vised manner, divided into separate train and test segments. Then training
and testing is executed and the raw results are saved.

Finally, users can use the implemented report generator to produce a PDF
report and CSV files that display MAE and MSE outcomes.

In summary, this chapter reveals the extensive capabilities of the toolkit.
While it was developed specifically for the study described in chapter 5, it
furthermore promises to be a valuable resource for upcoming research.
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5 Empirical Analysis of
Physics-Informed Regularization

In order to showcase the utility of the newly created toolkit and examine
the impact of physics-informed regularization (PIR), a study as detailed
below was carried out. Theoretically, the toolkit has the capacity to construct
a dataset by incorporating all accessible NDBC datafiles alongside their
corresponding ERA5 counterparts. Beyond the sheer quantity of data, the
selection process should prioritize data that carries substantive meaning and
relevance. Consequently, a meticulous approach was taken in handpicking
particular NDBC datafiles, a process explained in the initial subsection of
this chapter. Moreover, within this subsection, the essential tests that need
to be conducted to understand how accuracy varies with the application of
varying levels of PIR are explored. The test results provide clarity on whether
physics-informed regularization genuinely enhances forecast accuracy and
pinpoint the most optimal PIR level. The second subsection of this chapter
delineates a systematic analysis of the results, and the closing subsection is
dedicated to a discussion of these discoveries.

5.1 Study Setup

Data Selection

The selection of an optimal subset of available datafiles for experiments is
crucial to ensure both feasibility and efficient management of computational
resources. The principles guiding the selection of particular stations is
outlined subsequently.

Firstly, the analysis is limited to the geographical area of the Gulf of
Mexico. Despite the availability of other regions with high-resolution NDBC
stations as viable options, this choice was made based on the proximity to
the GulfSCEI office in New Orleans. In pursuit of this objective, the region is
limited by focusing on stations located within the latitude range of 21° N to
32° N and the longitude range of 82° W to 102° W. This delineated area, as
depicted in Figure 5.1 encompasses a total of 206 stations, with the ultimate
selection highlighted in red.
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Figure 5.1: Map of considered area in Gulf of Mexico: Blue pins represent available stations,
while red pins indicate the stations that have been chosen for the experiments.

Next, an analysis of the station operator organizations within this geo-
graphic area was conducted. Figure 5.2 demonstrates that the majority of
stations within this area, comprising 27.2% of the total, are operated directly
by NDBC. In order to maintain consistency in measurement methodologies
across all stations, exlclusively those are utilized. Furthermore, as detailed
in subsection 2.4.1, it is worth noting that data obtained directly from NDBC
sources tends to exhibit greater accuracy compared to third-party data.

Figure 5.2: Distribution of station owners in the considered area
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Following this, all stations that are not ocean buoys, such as weather
stations located on shoresides or oil platforms, were excluded. Upon com-
pletion of this filtration, 28 ocean buoys operated by NDBC within the Gulf
of Mexico area were identified and retained.

As depicted in Figure 5.3, a noticeable trend emerges showing a decrease
in the number of stations providing data when moving further back in time.
Notably, there is no year in which NDBC provides more than 13 files.

Figure 5.3: Number of available NDBC data files in area of interest by year

To minimize the occurrence of missing files, the analysis was limited
to data from the past two decades. After excluding stations with no data
available for the specified 20-year period, a subset of 14 stations meeting
the data availability criteria was obtained. Figure 5.4 presents a heat map
showcasing the distribution of the 235 available files from the selected
stations across the considered years.
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Figure 5.4: File availability distribution (Files available in black)

Test Scenarios

As elaborated in subsubsection 3.4 and further detailed in section 4.2, the
toolkit already contains four predefined machine learning models specially
designed for this study. All of these models possess the capability to control
the influence of the ERA5 features depending on a parameter referred to
as Alpha. To get insights about the behavior of those models on different
levels of PIR, the Alpha value was systematically varied from 0 to 1 with
increments of 0.1. This resulted in 44 different machine learning models and
each of them needed to be tested with both built datasets resulting in 88
experiments as also shown in Figure 5.5.
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Figure 5.5: Tree diagram of test scenarios

Toolkit Utilization

Building upon the selection of NDBC datafiles, two datasets were generated
adhering to the MLM and SSUM data representation methodologies. There-
fore, the Jupyter notebooks mlm build dataset.ipynb and
ssum build dataset.ipynb were executed. Subsequently, the two created
datasets are utilized as input for the Jupyter notebooks
mlm experiment.ipynb and ssum experiment.ipynb. The selection of the
necessary parameters is depicted in Table 5.1 and Table 5.2 and expounded
upon in this subsection.

Despite the station selection being motivated by the objective of mini-
mizing missing values, it is important to note that a significant number
of missing values persist within these files. This circumstance can unde-
niably be identified as a challenge or limitation within this project. The
implemented NaN-rate based feature selection eliminates features with a
NaN-rate exceeding the specified threshold. However, setting this value to
0.5 resulted in the absence of any available features in the SSUM approach.
Therefore, a NaN-threshold of 0.66 was chosen, implying that all features
with less than 66% missing values are considered. This resulted in a MLM
dataset consisting of 6 and a SSUM dataset comprising 3 features. Within
the SSUM script, the latest 24 records of a specific datafile from the most
recent year were designated to serve as test data. As delineated in para-
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Parameter mlm build dataset.ipynb ssum build dataset.ipynb
Stations 42001, 42002, 42003,

42007, 42012, 42019,
42020, 42035, 42036,
42038, 42039, 42040,
42041, 42055

42001, 42002, 42003,
42007, 42012, 42019,
42020, 42035, 42036,
42038, 42039, 42040,
42041, 42055

Time Range 2002 - 2022 2002 - 2022
NaN-Threshold 0.66 0.66

Features WDIR, WSPD, WVHT,
APD, MWD, PRES, ATMP,
WTMP, DEWP

WDIR, WSPD, WVHT,
APD, MWD, PRES, ATMP,
WTMP , DEWP

Add ERA5 data TRUE TRUE
Test Station - 42001

Year - 2022
Num test hours - 24

n in - 3
n out - 1

Filename dataset GOM 1 A dataset GOM 1 B

Table 5.1: Selected parameters for dataset builder

Parameter mlm experiment.ipynb ssum experiment.ipynb
datafile dataset GOM 1 A.pickle dataset GOM 1 B.pickle
Model LSTM, GRU, CNN, TCN LSTM, GRU, CNN, TCN

n in 3 -
n out 1 -

Station Shift 1 1
Test Hours 24 -

Alpha [0, 0.1, ..., 0.9, 1] [0, 0.1, ..., 0.9, 1]

Table 5.2: Selected parameters for test environment
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graph 4.4.2, the parameters related to the transformation into a supervised
problem are required to be specified within the dataset creation script for
the SSUM data representation, whereas these values are defined within
the experiment script for MLM. Three records were chosen as input and
one as output, employing these values consistently across all scenarios. To
compute the data differences, they were calculated relative to the preceding
record, a configuration specified by setting the parameter station shift to
one. Moreover, the number of test records in the MLM experiment script
was aligned to 24, consistent with the configuration established during the
SSUM dataset creation.

Subsequent to executing all 88 tests, their output was used as input for
the report generator script. The generated error metrics were then subjected
to further analysis in a spreadsheet, as detailed below.

Report Data Processing

In the process of creating the MLM dataset, several features were eliminated
through the NaN-rate based feature selection process. Out of the initial 9
considered features and 14 stations, only 6 features and 9 stations remained
after the selection process. Additionally, the feature DEWP from station 42039
and the feature WTMP from station 42036 have been excluded. The report
generator script produces two CSV files as output: one for the MAE result
and another for the MSE result of the associated experiment. As an example,
Figure 5.6 presents the unprocessed MAE results of a LSTM experiment.

Figure 5.6: Unprocessed MAE Results of MLM experiment with LSTM architecture and
Alpha=0

In contrast, the SSUM approach considers features across all stations when
executing the NaN-based feature selection. Only three features passed the
filtering with the considered threshold of 66%. In the case of SSUM, the
report generator creates only one CSV file that contains both error metrics
as exemplified in Figure 5.7.
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Figure 5.7: Unprocessed error rates of SSUM experiment
with LSTM architecture and Alpha=0

For evaluating the collected data, MLM and SSUM were investigated
separately for each considered architecture in separate spreadsheets. First,
two tables representing the MAE and MSE of each feature across all Alpha
values were created. Given this project’s exclusive focus on forecasting
NDBC observations, ERA5 features were omitted from the evaluation. In the
context of MLM, the average values of similar features across various stations
were incorporated. This streamlined the assessment of the predictability of
a specific feature and enabled a comparison with SSUM results.

Additionally, the absolute improvement of each value compared to the
equivalent experiment with the Alpha value of 0 were created. Experiments
with this particular Alpha value serve as baselines, representing the absence
of any physics-informed regulation. The poorest outcome is typically ob-
served when Alpha is set to 0, and this is quite evident since this experiment
completely excludes the use of actual observations. As mentioned in subsec-
tion 2.4.3, care should be taken when making comparisons between ERA5
wind measurements and actual observations. The validity of this statement
is evident from the initial observations of the WDIR forecasts as this feature
is the only one showing most worst result with other Alpha values than
1. Furthermore, it includes many outliers. However, this is not the case
for WSPD. To prevent potential misinterpretations due to the influence of
experiments based solely on ERA5 data or the WDIR feature, this data was
excluded during model improvement evaluation.

As these improvements represent absolute values within the context of
the specific feature’s scale, it becomes challenging to interpret the overall
enhancement of a particular Alpha value. Hence, also the relative improve-
ment across all features in percentage based on the baseline models was
calculated for each considered Alpha value.

The performance evaluation of the models across all Alpha values is
grounded in the MAE, MSE, absolute improvement of each feature, and the
relative improvement across all features. Tables and visuals detailing these
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can be found in subsequent section, segmented by dataset and model.

5.2 Results and Findings

This section delves into the results of the conducted experiments by analyz-
ing tables that display feature-wise outcomes and charts that illustrate both
the absolute improvement of each feature and the overall relative enhance-
ment, as described in subsubsection 5.1. Improvements are benchmarked
against the baseline experiment, which is characterized by an Alpha value
of 1, signifying an experiment without PIR. Results are separately discussed
for each dataset-model pair. The presented findings form the foundation
for addressing the question of whether physics-informed regularization can
indeed enhance the forecasting accuracy of real-world observations and
identifying the level of regularization that offers the most promising results.

5.2.1 MLM-LSTM

Figure 5.8: Average MAE and MSE of LSTM architecture over all Alpha values using MLM
dataset: Values of a certain feature represent the average result across all stations.
The best (green) and worst (red) result of each feature are highlighted.

In Figure 5.8, the Alpha value of 0, representing the experiment solely
considering ERA5 data, yields the least favorable outcome. Furthermore,
this figure shows that the MSE of ATMP reaches its finest performance in
the absence of Physics-Informed Regularization (Alpha=1). In contrast, the
superior outcomes for other features are reached using Alpha values that
vary between 0.2 and 0.9.
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a) MAE b) MSE

Figure 5.9: MLM-LSTM: Absolute improvement in relation to baseline experiment
(Alpha=1)

Figure 5.9 displays the absolute MAE and MSE improvement of each
feature compared to the experiment that only considered NDBC data. The
feature PRES consistently shows improvement across all Alpha values. How-
ever, it is worth noting that 13 out of 45 data points exhibit a deterioration
in MAE and 19 in MSE. The MSE for ATMP worsens for all Alpha values
except when set to 0.9, where it experiences a slight improvement. Further-
more, it is important to emphasize that the alterations in accuracy, whether
improvement or deterioration, are generally minor. The most significant
enhancement in a single feature’s performance is evident when Alpha is
set to 0.3, leading to a decrease of 0.128 in MSE for PRES. In contrast, all
other outcomes exhibit variations of less than one-hundredth. The Alpha
value of 0.7 stands out as it results in an improvement in every feature,
except for ATMP. Furthermore, it is noticeable that the feature WTMP exhibits
minor variations in terms of MAE. However, the MSE appears to be almost
unaffected by changes in the Alpha value.
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Figure 5.10: MLM-LSTM: Average relative MAE and MSE improvement in percent across
all features compared to baseline

The overall improvements achieved with each alpha value compared to
the experiment solely relying on NDBC data are illustrated in Figure 5.10.
As illustrated, every level of physics-informed regularization results in an
overall MAE improvement. However, the relative enhancement remains
below 1% for each Alpha value. Alpha values of 0.1, 0.2, and 0.6 lead to an
average MSE distortion across all features. Furthermore, all variations in the
average MSE remain within a 1% range. Concerning MAE, Alpha value of
0.2 exhibits the best average improvement, which is 0.837%. In the context
of MSE, Alpha=0.7 displays the most substantial average improvement,
standing at 0.593%. Additionally, this specific Alpha value illustrates a
satisfactory average MAE improvement of 0.428%.
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5.2.2 MLM-GRU

Figure 5.11: Average MAE and MSE of GRU architecture over all Alpha values using
MLM dataset: Values of a certain feature represent the average result across all
stations. The best (green) and worst (red) result of each feature are highlighted.

In Figure 5.11, it is evident that when Alpha is set to 0, the performance of
each feature is at its lowest because the actual observations are disregarded.
Furthermore, the Alpha value of 1 which solely relies on NDBC data never
attains the best result. It is noticeable, that Alpha values within the range of
0.2-0.6 and 0.9 yield identical MSE results for WTMP, which also represents
the superior outcome. Nevertheless, the Alpha value of 0.3 stands out as the
one showcasing the best MAE result. For WSPD, the optimal MAE is achieved
with an Alpha value of 0.1. However, for the other features, the best MAE
and the optimal MSE are observed at the lowest PIR levels.

a) MAE b) MSE

Figure 5.12: MLM-GRU: Absolute improvement in relation to baseline experiment (Al-
pha=1)

Improvement and deterioration of all features at various Alpha values,
compared to the GRU experiment that solely considers NDBC data, is shown
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in Figure 5.12. The feature PRES demonstrates enhancements in both, MAE
and MSE across every Alpha value. Conversely, ATMP displays a decline with
intense PIR levels for both MAE and MSE metrics. With Alpha values of
0.7 or lower, DEWP faces a decrease in MSE, though a decrease in MAE is
only evident at Alpha values of 0.5 and 0.6. It is significant to mention that
for Alpha values of 0.8 and 0.9, there is an improvement for all features in
terms of both metrics. Overall, the discernible variations in performance,
whether advantageous or detrimental, remain marginal.

Figure 5.13: MLM-GRU: Average relative MAE and MSE improvement in percent across all
features compared to baseline

Figure 5.13 indicates that the overall accuracy improves with any level
of PIR compared to the baseline experiment that did not incorporate any
physics-informed data. However, Alpha of 0.1 is the sole value that results
in an improvement exceeding 1% in terms of MAE. The best MSE result is
observed with an Alpha value of 0.5. It is also important to highlight that the
Alpha value of 0.8, which yields improvements in each individual feature,
achieves the second-best average MAE and ranks fourth in terms of MSE,
with a minimal deviation of approximately 0.1% from the top-performing
result.
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5.2.3 MLM-CNN

Figure 5.14: Average MAE and MSE of CNN architecture over all Alpha values using
MLM dataset: Values of a certain feature represent the average result across all
stations. The best (green) and worst (red) result of each feature are highlighted.

In Figure 5.14, the mean error rates across all Alpha values within the CNN
architecture are compared to those of the CNN baseline experiment that
only considers NDBC data. Mirroring observations from the previously
discussed recurrent neural networks, each feature’s least favorable outcome
occurs with an Alpha value of 0. The best values for each feature are evident
in only two different experiments. Specifically, for the features ATMP, DEWP,
and WTMP, an Alpha value of 0.1 yields the most superior results. Conversely,
for PRES and WSPD, the lowest error rates are observed at an Alpha value of
0.8. Furthermore, it should be highlighted that within the CNN architecture,
the Alpha value associated with the best MAE consistently also produces
the best MSE.

a) MAE b) MSE

Figure 5.15: MLM-CNN: Absolute improvement in relation to baseline experiment
(Alpha=1)

As illustrated in Figure 5.15, within the CNN framework, the patterns of
MAE and MSE are strikingly similar with MSE exhibiting greater variation.
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When contrasted with the experimented recurrent neural networks, the in-
fluence of PIR on both MAE and MSE is more pronounced, with differences
reaching up to 0.3 for MAE and 0.9 for MSE. No single feature consistently
improves or deteriorates across the entire range of Alpha values. Notably,
an Alpha value of 0.2 leads to a decline in accuracy for all features, whereas
Alpha values of 0.1 and 0.8 enhances accuracy across the board.

Figure 5.16: MLM-CNN: Average relative MAE and MSE improvement in percent across
all features compared to baseline

Figure 5.16 displays the cross-feature improvement of MLM-CNN ex-
periments in comparison to the MLM-CNN experiment solely based on
observation data. It is particularly noticeable that the range is defined by
a potential increase of up to 35.73% and a reduction exceeding 80%. It is
important to keep in mind that an improvement represents an decrease of
the error which means cutting the error in half corresponds to a relative
improvement of 50%, while doubling the error leads to a relative deteriora-
tion of 100%. Across both metrics, the average error consistently moves in
the same direction, either improving or declining. Furthermore, it’s worth
noting that any Alpha value above 0.5 exhibits an enhancement in the mean
error across all features, indicating that minimal PIR levels result in stable
enhancement.
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5.2.4 MLM-TCN

Figure 5.17: Average MAE and MSE of TCN architecture over all Alpha values using MLM
dataset: Values of a certain feature represent the average result across all
stations. The best (green) and worst (red) result of each feature are highlighted.

In line with previously discussed test results, Figure 5.17 shows that the
TCN model also exhibits the poorest performance in terms of MAE and
MSE across all features when based solely on ERA5 data. Contrary to other
models, the TCN achieves top performance for three out of the five features
in terms of MAE and for one feature in terms of MSE when utilizing the base
model devoid of PIR. Conversely, three peak MSE outcomes are attained
with the most pronounced level of PIR, set at an Alpha value of 0.1.

a) MAE b) MSE

Figure 5.18: MLM-TCN: Absolute improvement in relation to baseline experiment
(Alpha=1)

Figure 5.18 shows the absolute deviation of each feature at each Alpha
value compared to the MLM-TCN experiment that only considers NDBC
data. It can be noticed that almost all PIR levels across all features lead to a
reduction in accuracy. Solely four values in MAE and five in MSE show a
positive outcome.
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Figure 5.19: MLM-TCN: Average relative MAE and MSE improvement in percent across all
features compared to baseline

The relative cross-feature improvement of MLM-TCN experiments, com-
pared to the MLM-TCN baseline that does not consider any level of PIR,
is illustrated in Figure 5.19. It demonstrates that with every Alpha value,
the average error across all features sees an accuracy decrease, in many
instances significantly.

5.2.5 SSUM-LSTM

Figure 5.20: MAE and MSE of LSTM architecture over all Alpha values using SSUM dataset:
The best (green) and worst (red) result of each feature are highlighted.

As shown in Figure 5.20, the least favorable outcomes consistently occur
with an Alpha value of 0. The MAE of PRES as well as both metrics of the
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feature WSPD reach the best result with an Alpha value of 0.5 while the top
result of PRES in terms of MSE is reached with an Alpha value of 0.9.

a) MAE b) MSE

Figure 5.21: SSUM-LSTM: Absolute improvement in relation to baseline experiment
(Alpha=1)

Figure 5.21 illustrates the feature-wise improvement of SSUM-LSTM
experiments for each Alpha value, compared to the experiment with an
Alpha value of one, which results in no physics-informed regulation. It
shows that the majority of PIR experiments lead to a decrease in accuracy.
For MAE, the only notable enhancement comes with an Alpha value of 0.5,
affecting both features. The MSE only improves for WSPD at an Alpha of 0.5
and for PRES at an Alpha of 0.9. All remaining results are negative.

Figure 5.22: SSUM-LSTM: Average relative MAE and MSE improvement in percent across
all features compared to baseline

Figure 5.22 confirms that most PIR experiments lead to a deterioration. It
illustrates the cross-feature deviation compared to the baseline experiment,
which does not incorporate any level of PIR. Both MAE and MSE see one
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marginal improvement of less than 1%, with the former at an Alpha of 0.5
and the latter at 0.9.

5.2.6 SSUM-GRU

Figure 5.23: MAE and MSE of GRU architecture over all Alpha values using SSUM dataset:
The best (green) and worst (red) result of each feature are highlighted.

As shown in Figure 5.23, the GRU model does not register the poorest
performance for the WSPD feature at an Alpha value of 0. The worst MAE
is observed at 0.7, while the most suboptimal MSE is at 0.4. The optimal
performance for this feature, for both metrics, occurs at an Alpha value of
0.5. For the PRES feature, the peak accuracy is achieved at an Alpha value of
0.1, while the least favorable result is observed at an Alpha value of 0.

a) MAE b) MSE

Figure 5.24: SSUM-GRU: Absolute improvement in relation to baseline experiment (Al-
pha=1)
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Figure 5.24 depicts the absolute improvement of the considered Alpha
values in relation to the SSUM-GRU experiment that excludes physics-
informed data. It shows that the Alpha value of 0.1 stands out as the sole
value where both features exhibit improvement. Additionally, it is the only
Alpha setting where MAE and MSE enhance simultaneously for any single
feature. The value 0.5 stands out as it corresponds to the best result for
WSPD, while simultaneously representing the least favorable outcome for
PRES. Furthermore, it is observed that the variations in improvement and
deterioration are limited to the range of tenths and thousandths.

Figure 5.25: SSUM-GRU: Average relative MAE and MSE improvement in percent across
all features compared to baseline

In Figure 5.25 the relative error across both features of each SSUM-GRU
experiment is compared to the baseline experiment, which is solely based
on NDBC data. An Alpha value of 0.1 emerges as the only configuration
yielding enhancements in both error metrics. Additionally, there is a dis-
cernible improvement in MAE at the Alpha value of 0.9. The remaining
settings show a clear decline in accuracy.
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5.2.7 SSUM-CNN

Figure 5.26: MAE and MSE of CNN architecture over all Alpha values using SSUM dataset:
The best (green) and worst (red) result of each feature are highlighted.

As delineated in Figure 5.26, the least favorable outcomes are observed at an
Alpha value of 0.6. For the PRES feature, the MAE is optimized at an Alpha
value of 0.6. The MAE of WSPD and the MSE for both features yield their best
outcomes at an Alpha value of 0.2.

a) MAE b) MSE

Figure 5.27: SSUM-CNN: Absolute improvement in relation to baseline experiment
(Alpha=1)

The absolute improvement exhibited by the CNN architecture and bench-
marked against the CNN baseline experiment which excludes any physics-
informed data is illustrated in Figure 5.27. The minimal level of PIR yields
the least favorable outcomes for both MAE and MSE. A significant disparity
in the scales between MAE and MSE is evident. To illustrate, while the
largest drop in MAE amounts to a decline of 11.44, the most substantial
deterioration in MSE is 1757.1 units below the baseline. Notably, Alpha
values of 0.6 and 0.7 demonstrate the ability to enhance forecast accuracy in
both metrics.
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Figure 5.28: SSUM-CNN: Average relative MAE and MSE improvement in percent across
all features compared to baseline

The disparity in scale between MAE and MSE is similarly evident in
Figure 5.28. This figure illustrates the relative cross-feature deviation of
error rates for all Alpha values in comparison to the experiment completely
excluding ERA5 data. For Alpha values of 0.3, 0.5, and 0.9, a decline sur-
passing 100% is observed in terms of MSE, but this substantial drop only
pertains to one MAE value. In contrast, the most pronounced improvements
are seen at 67.65% for MAE and 95.6% for MSE, both achieved with an Alpha
value of 0.2. Notably, while some Alpha values markedly degrade results,
it’s significant that half of the evaluated Alpha values lead to improvements.

5.2.8 SSUM-TCN

Figure 5.29: MAE and MSE of TCN architecture over all Alpha values using SSUM dataset:
The best (green) and worst (red) result of each feature are highlighted.

In Figure 5.29, it can be observed that also the TCN architecture yields its
poorest result when the model relies solely on ERA5 data. In both metrics,
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the feature WSPD attains its optimal performance at an Alpha value of 0.5.
For the PRES feature, the best MAE is observed at an Alpha value of 0.9,
whereas the best MSE value is achieved with an Alpha value of 0.2.

a) MAE b) MSE

Figure 5.30: SSUM-TCN: Absolute improvement in relation to baseline experiment (Al-
pha=1)

Figure 5.30 depicts the absolute improvement of PIR-based experiments
using the TCN architecture on the SSUM dataset. The baseline is defined
by the SSUM-TCN experiment executed with an Alpha value of one, as
this setting signifies the absence of physics-informed influence. A strong
correlation is evident between the two metrics under consideration. Only
Alpha values of 0.5, and 0.9 lead to improvements in both MAE and MSE
across the features. Additionally, there’s a tenfold difference in the scale
between MAE and MSE.

Figure 5.31: SSUM-TCN: Average relative MAE and MSE improvement in percent across
all features compared to baseline

The relative cross-feature improvement of all SSUM-TCN experiments
in comparison to the result from the SSUM-TCN experiment based solely
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on NDBC data is illustrated in Figure 5.31. It indicates that only the Al-
pha values 0.2, 0.5 and 0.9 are capable to result in an improved accuracy.
While remaining values result in a deterioration, those show an significant
improvement in both error metrics. Notably, some Alpha values signifi-
cantly degrade the results, with MSE being particularly impacted. The most
adverse outcome occurs with an Alpha value of 0.4, leading to an MSE
deterioration of 316.8%.

5.3 Discussion

This section begins by discussing most important findings from the previous
section. Furthermore, it addresses the research question and points out the
contribution of this thesis.

Scope and Limitations

The empirical research is limited to a selection of 14 stations situated within
the Gulf of Mexico. Due to feature selection processes, primarily influenced
by missing values and the exclusion of wind speed data, the MLM dataset
encompasses five features, while the SSUM dataset is restricted to two. The
study further confines its exploration to four specific neural network models.
Additionally, there was no optimization of hyperparameters, and the Alpha
values were adjusted in discrete increments of 0.1.

Main Discoveries

As demonstrated in the preceding section, the outcomes vary significantly
depending on the chosen dataset representation and the selected architecture.
Subsection 5.2.6 outlines that the SSUM-GRU experiment stands out as the
Alpha value of 0 does not produce the least favorable results for every
feature. Specifically, within this experiment, WSPD registers its least favorable
outcomes at Alpha values of 0.7 for MAE and 0.4 for MSE. The difference
across all Alpha values for this feature is notably limited to less than one-
tenth for MAE and two-tenths for MSE. The system, when set with an Alpha
value of 0, exclusively utilizes the modelled ERA5 data, bypassing the NDBC
observations during weight adjustments in the loss function as detailed in
section 4.2. The predominance of negative results with this value indicates
that relying only on modelled data to predict ocean buoy observations is
not recommended.

While most tests indicated enhancements across all features with various
Alpha values, the LSTM analysis with the MLM dataset observed a consistent
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drop in MSE for the feature ATMP, irrespective of the Alpha setting. Moreover,
the MAE of ATMP, DEWP and PRES as well as the MSE of DEWP consistently
decline across all Alpha values smaller than one when considering the
TCN network and the MLM dataset. In contrast, in those experiments, all
other features and indeed all features in other tests reached their peak
performance with a certain degree of PIR. Based on this, one can infer that
PIR offers advantages for time series forecasting. However, the optimal
Alpha value depends on the chosen mode and dataset as well as on the
feature of interest.

A noteworthy difference in the significance of improvement and deterio-
ration is noticed. The recurrent neural networks mostly displayed results
with variations under 5%, in contrast to the more notable fluctuations, both
upward and downward, seen in CNN and TCN architectures.

Considering the MLM approach for dataset creation, the stable improve-
ment within the CNN architecture at low level PIR must be emphasized. For
all Alpha values greater than 0.6, there is a consistent relative improvement
across all features. A marked increase in accuracy, reaching up to 19.54%
for MAE and 38.42% for MSE is observed. Additionally, every single feature
registers a boost in MAE for Alpha values greater than 0.7 and the MSE
improvement for all features at an Alpha of 0.8.

Recurrent neural networks also appear to have the potential for improve-
ments when the discussed PIR method is implemented. Nevertheless, the
executed experiments rarely indicate an enhancement beyond 1% for in-
dividual features. Furthermore, identifying a solid Alpha value can be
challenging as it depends on the feature of interest and whether it is more
important to improve the MAE or the MSE in the specific problem. On the
one hand, if the primary concern is to minimize the impact of outliers and
provide a more robust model, the focus should be on MAE. On the other
hand, if the goal is to heavily penalize large errors and ensure that the model
is sensitive to such deviations, then optimizing for MSE is more appropriate.

Test results suggest that the integration of PIR fails to yield improvements
for a TCN that has been trained using the MLM dataset.

Similar to the MLM approach, the recurrent neural networks using the
SSUM dataset strategy yield only slight variations in results. However, only
specific Alpha values are capable of improving the accuracy of individual
features. The fact that the SSUM-GRU experiment yielded the best result for
the feature PRES by giving just a 10% weight to the actual observation data
is difficult to explain. Without diving deeper, this is assumed to be unique
to the given dataset. Hence, the MLM approach takes precedence over the
SSUM method when it comes to using GRU or LSTM architectures. Another
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similarity between both dataset creation strategies is that the CNN displays
the most significant overall improvement. Disregarding outcomes where
Alpha is set to 0, the least favorable result from the CNN using the MLM
dataset still outperforms the best from the same feature and metric with
the SSUM dataset. Consequently, the MLM strategy appears to be the more
optimal choice for CNN as well.

Using the SSUM dataset with a TCN model and an Alpha value of 0.5
or 0.9 results in a solid and significant improvement while most remaining
Alpha values result in a significant decrease. Drawing conclusions purely
from the considered experimental data, the SSUM-based TCN model seems
to benefit from PIR, in contrast to the MLM-based model.

It is crucial to emphasize that, to the best of our knowledge, this is the first
study applying PIR for refining ocean buoy forecasts based on modeled data.
From the comprehensive review conducted, one particular paper by Daw
et al. (2017) emerged, adopting a comparable methodology. This research
focuses on incorporating physical equations into the loss function to enhance
lake temperature forecasts. However, similar to the approach presented in
this thesis, physics-informed data is incorporated into a machine learning
model that serves as a baseline. In contrast to this work, only one physics-
based feature is considered and its influence in the training process is not
weighted. In alignment with the presented experiments, the paper points
out that considering physics-based data increases accuracy. Consequently,
the remaining insights and conclusions drawn are purely derived from the
conducted tests and a deeper analysis is required before general statements
can be made.

Key Finding and Guidance

It was the aim of this study to address the question whether the idea of
physics-informed regularization by incorporating modelled data leads to
an improvement of accuracy in ocean-buoy observation prediction. Based
on the presented experiments, this question can be answered with ’yes’.
However, even though the experiments proved that it is possible, it must
be highlighted, that this is definitely not a universal exploration. While one
setting resulted in an improvement of almost 40%, also many other settings
showed enormous loss of accuracy. Using the MLM dataset, LSTM and
GRU models showed minor improvements and TCN was not even capable
to improve a single feature at any Alpha value. In contrast, CNN showed
great results using the MLM dataset, especially when using low levels of
physics-informed regularization. CNN also showed promising results with
the SSUM dataset as well. However, for LSTM, GRU and CNN, choosing
MLM over SSUM is highly suggested. Table 5.3 provides an overview
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Model MLM SSUM
LSTM Minor improvement Not suggested
GRU Minor improvement Not suggested
CNN Significant Improvement,

especially with low PIR level
Significant Improvement

TCN Not suggested Not suggested

Table 5.3: Comparison and suggestion of investigated settings

showing suggestions and expected results. Those are solely based on results
presented in section 5.2. While this table represents a general impression,
the selection of a specific architecture, dataset representation, and PIR level
should be made depending on the feature of interest and based on insights
from the charts in section 5.2.

Contribution

Besides the implementation of a toolkit for general utilization for a wide
range of related research endeavors, this thesis contributes to the fields of
marine weather prediction and physics-incorporated machine learning by
providing a study investigating physics-informed regularization.

Overall, the study, limited to 14 stations in the Gulf of Mexico and four
specific models, demonstrates that the considered methodologies can lead
to accuracy improvement in specific scenarios. It is hoped that the findings
presented contribute to research on ocean-buoy forecasting by drawing
attention to this alternative approach for physics-informed neural networks
and motivating further research in this direction.

5.4 Summary

Chapter 5 showcased the use of the developed toolkit in conducting an exper-
imental study on physics-informed regularization. This not only highlighted
the toolkit’s capabilities but also offered insights into PIR’s performance and
addressed the research question.

Initially, this chapter outlined the meticulous process of station selection.
The primary objective was striking a balance between data quantity and
quality. Out of 206 stations in the Gulf of Mexico, 14 were chosen based
on criteria such as station ownership, type, and data availability. The final
dataset comprises 235 NDBC data files and their corresponding ERA5
counterparts.
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The chapter then elaborated on the test scenarios. Four unique deep learn-
ing models were utilized, with each permitting the adjustment of the ERA5
features’ impact through the Alpha parameter. With one dataset using the
MLM approach and another the SSUM approach, combined with 11 levels
of physics-informed regularization, the total number of experiments reached
88. The process of dataset creation, test execution, and report generation
was carried out using the toolkit highlighted in chapter 4.

All the error metrics produced were compiled into spreadsheets. Within
these, MLM features from various stations were averaged, and charts were
constructed to depict both the individual and overall improvements of
features. Experiments with an Alpha value set to one acted as the benchmark
as they displayed outcomes without the integration of physics-informed
ERA5 data. Detailed discussions were carried out for each dataset-model
pairing, drawing from the constructed tables and charts.

Delving deeper into the discussion, it emerged that the choice of dataset
representation and architecture significantly influenced the results. Across
all experiments, relying solely on modeled data to predict ocean buoy obser-
vations proved less than ideal. While TCN does not show any improvement
when based on the MLM dataset, this approach should be favored for all
other models. Significant enhancements were most evident in the CNN
model.

The research question of whether physics-informed regularization can
enhance marine weather prediction is affirmatively answered. However,
although some experiments demonstrated significant improvements, others
observed a decline in accuracy. The outcome of the study offers an initial
insight and underscores the importance of continued research in this area.

Overall, this chapter underscored the toolkit’s role while drawing attention
to the significant potential of physics-informed regularization.
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In this chapter, significant takeaways and insights gained throughout the
research journey of this master’s thesis are presented. Through the lens
of reflection, both the hurdles surmounted, and the victories achieved in
the literature research, development phase and during study execution are
explored. Additional, personal insights and developments are shared.

6.1 Literature Research

In the initial research phase, a profound understanding of the techniques
employed in weather forecasting emerged, along with insights into its his-
torical development. The extensive dependence of various fields on accurate
weather predictions also became evident. It is now apparent that weather
forecasting is another example of an achievement that shapes our daily lives
and owes its feasibility to developments in computer science.

While CNNs were predominantly known as architectures for image pro-
cessing, the literature research revealed that they are also suitable and
frequently employed for time series forecasting. The major challenge in
this phase was finding work related to the implemented physics-informed
regularization approach. This involved sifting through numerous papers
that ultimately proved unsuitable. Only through significant time and effort,
coupled with the assistance of colleagues from GulfSCEI, was this issue
addressed to a certain extent. The takeaway is that not every concept is
well-documented in the literature, presenting a valuable opportunity for
contribution.

6.2 Development

At the beginning of the development phase, a critical decision was required:
to tailor the implementation strictly for this study’s objectives or to configure
it for a more general applicability. The decision was inclined towards the
latter approach. Whether it paid off will be determined by the subsequent
utilization and adaptation of the software, an outcome that is anticipated
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with considerable interest. While developing the toolkit, experience and
knowledge in data science could be expanded. This particularly encom-
passed managing real-world data with missing values, crafting custom loss
functions, and forecasting spatial-temporal time series.

6.3 Study

While designing the study, the challenge of appropriate data selection was
faced and addressed by handpicking relevant data. An unexpected revela-
tion during evaluation was the pronounced variability in the behavior of
different architectures; a consistent trend based on the Alpha value, initially
anticipated across all experiments, proved elusive. Moreover, analyzing
the results led to the understanding that even the results from 88 experi-
ments may not be suitable for broad generalization. Overall, conducting the
study offered a deeper understanding of the behavior of neural network
architectures and the impact of physics-informed regularization.

6.4 Personal

The journey of this master’s thesis included the unique opportunity to
spend five months in the United States. Within that time, professional
growth occurred alongside personal development. By delving into an un-
familiar environment, forging connections with a myriad of people, and
experiencing the vibrant culture of New Orleans, the understanding for
global perspectives was deepened and skills in intercultural communication
and adaptability were sharpened. Working on this master’s thesis not only
expanded the horizons of cross-cultural scientific collaboration but also ig-
nited a newfound passion for research, a realm previously unconsidered for
a career path. Furthermore, this journey provided a holistic understanding
of the intricacies involved in high-quality scientific endeavors. Recognizing
the significance of adhering to the established research process became
evident: in future endeavors, there will be a greater emphasis on concluding
the research phase before delving into development, meticulous phrasing of
requirements, and ensuring a robust conceptual architecture. Such refine-
ments, as gleaned from this experience, are anticipated to streamline and
expedite subsequent research undertakings.
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This chapter concludes the key elements and characteristics of this project.
Beyond this reflection on what has been accomplished, it also provides a
forward-looking perspective, outlining potential avenues and directions for
subsequent research and developments in the future.

7.1 Conclusion

On land as well as on the sea, current operative weather forecasts mainly
conduct numerical weather prediction. However, a wide range of papers
highlight the potential of deep learning in this domain.

The National Data Buoy Center (NDBC) provides a collection of historical
records of ocean buoy measurements. This data is mainly collected with
ocean buoys from NDBC but also third parties.

The aim of this thesis was to forecast those measurements. In the broader
perspective, achievements in this domain further result in an improved
marine weather prediction. A more accurate prediction of the weather on
the sea can safeguide marines from extreme weather events and also protect
coastal residents by providing timely warnings for meteorological calamities.
Furthermore, this allows ship route optimization yielding both economic
benefits and decreased emissions.

A common path to improve the forecast would have been to develop a
physics-informed neural network and incorporate physical laws, mostly
represented as partial differential equations into the loss function.

The European Center for Medium-Range Weather Forecasts (ECMWF)
offers coherent worldwide historical weather data created through NWP
model simulations and data assimilation. This dataset, called European
Reanalysis 5 (ERA5) is the fifth and latest version and is based on the opera-
tive forecasting system used in 2016. As this data is generated following a
theory-driven approach it is coherent with meteorological physical laws.

Therefore, the decision was made to investigate whether it is beneficial
in terms of accuracy to incorporate this physics-informed data provided
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by ECMWF into a deep learning model for forecasting NDBC ocean buoys
measurements.

To answer this research question, first a toolkit for dataset creation and
test execution was developed and further utilized for an extensive study.
This toolkit is not tailored to a single use case, but is designed to be flexible,
so that the toolkit can be used for a variety of similar studies.

The toolkit automatically sources the required data directly from NDBC
and ERA5 and manages data storage in a smart way to keep data traffic and
disk usage low.

It provides two scripts for dataset creation following two developed data
representation strategies. First, Multi-Location Modelling (MLM) is based on
assumption that representing a whole area instead of just a single position
allows neural networks to detect additional patterns and lead to an increased
forecast capability. Second, Station-Specific Unified Modelling aims to create
a high number of instances by combining data from several stations in one
dataset.

Furthermore, the toolkit is equipped with a test environment with the
capability to train and test neural networks for time series forecasting using
any dataset created with one of the described approaches. It is equipped
with four predefined deep learning models but designed to be extensible
to any neural network. Those predefined models are rather simple imple-
mentations of Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), Convolutional Neural Network (CNN), and Temporal Convolutional
Network (TCN) architectures. All of these are equipped with a custom loss
function that allows regulating the impact of the physics-informed ERA5
data on the training process by changing a parameter called Alpha.

The experiment output can further be used as input for the report gen-
erator to create a detailed report as well as MAE and MSE performance
metrics.

Following the toolkit development, it was utilized to explore the perfor-
mance of the predefined deep learning models depending on the Alpha
parameter. Considering both dataset creation approaches, four models and
11 Alpha levels, in total 88 experiments were executed.

The result allowed to answer the research question with ’yes’, this ap-
proach is capable of improving the forecasting accuracy. However, while
CNN showed significant improvement, especially when trained on the MLM
dataset with low level of physics-informed regularization, many other ex-
periments resulted in an accuracy decrease. It emerged that the choice of
dataset representation and architecture significantly influenced the results.
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Therefore, dataset representation, architecture but also the Alpha value
should be selected based on the specific use case and the feature of interest.

Clearly, it can be said that there is a lot of potential in this approach,
but it also requires further investigation. The developed toolkit can serve
as a relevant tool for this while the presented study provides a general
impression as the first investigation of utilizing ERA5 data for physics-
informed regularization on NDBC ocean buoy forecasts.

7.2 Future Work

Providing a general overview of the capability of the presented approach, the
conducted study sets the stage for in-depth future research stemming from
its foundational insights. In various potential future projects, the presented
toolkit can be utilized or further developed. Therefore, the source code
is publicly available on GitHub1. While this section suggests a number of
possible research paths, it is by no means an exhaustive list of all possibilities.

The study at hand does not provide grounds for broad generalizations.
The absence of a clear pattern attributed solely to the Alpha value suggests
further refinement is needed. A subsequent study, focusing on models that
are fine-tuned in both architecture and hyperparameters and which incor-
porates a more elaborate preprocessing pipeline, might help in minimizing
these variations.

Additionally, by broadening the scope and undertaking a detailed study
spanning multiple geographic areas, the findings from this investigation can
either be validated or challenged.

Working alongside meteorological experts can provide domain-specific
interpretations and yield further insights. Additionally, this collaboration
could facilitate a closer look into how the results align with established
physical laws.

Lastly, the strategy of integrating real-world data with modelled counter-
parts combined with the presented regularization approach could also be
applied in other domains. Potential applications of this approach include
energy grid management, price forecasting, and traffic optimization.

When sticking to the domain of marine weather prediction, reaching out
to the GulfSCEI lab in New Orleans may be beneficial. At this lab, Austin
Schmidt, who co-supervised this thesis, is currently exploring a method that

1https://github.com/elsandner/Master Project/
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allows the Alpha value to self-adjust during training. To this end, he utilizes
the Hybrid Coordinate Ocean Model (HYCOM, n.d.).
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J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons,
A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 hourly data on
single levels from 1940 to present [Accessed data between February
and July 2023]. https://doi.org/10.24381/cds.adbb2d47. (Cit. on
p. 33)

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-
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