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Abstract

It has been shown that a particle settling through a vertically oscillating flow settles more slowly
than through a quiescent fluid. The phenomenon is referred to as retardation and has found fruitful
application in a multitude of industrial separation processes, such as in baffled tubes and jigs.
While published experimental works partly document the influence of material properties (particle
to fluid density ratio ρs = ρp

ρf
, fluid kinematic viscosity ν) and flow characteristics (oscillation

frequency f , ratio of amplitude to particle diameter A
Dp

) on retardation, the mechanism behind
slowed settling remains unclear. Furthermore, a universal law describing the retarded settling
velocity remains unknown. To this end, a parametric study across the aforementioned material
and flow properties is conducted by means of grain-resolved Direct Numerical Simulations (DNS).
The fully resolved flow data around the oscillated particle obtained by this study allowed precise
measurement and detailed description of the pressure and skin drag force. A strong link between
retardation magnitude and the contribution of the pressure force Fdp to the net-lift was found.
Differences in flow-structures during the particle’s upward and downward-movement are brought
forward, we suggest they are linked to an asymmetry in the pressure force Fdp increasing along
retardation. Additionally, the influence of a horizontally confined domain on particle retardation
was found to be significant. A novel dimensionless parameter is proposed for which a wide range of
prior experimental data and simulation data obtained from this study collapse. Finally, levitation
(infinitely suspended particle) as an extreme case of retardation was observed. However, the
observation of this behaviour might be an artefact of geometric limitations.
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CHAPTER 1
Prior work

1.1 Early contributions
Houghton [17, 18, 19] was one of the first to develop theory describing decreased particle settling
velocity in a vertically oscillating fluid field. They investigated both non-uniform “sawtooth”
oscillations, where upward flow accelerations are greater than the downward flow accelerations,
and symmetric sinusoidal oscillations of the flow. While the former have experimentally been
shown capable of even transporting particles against gravity [9, 11, 4], the limit of the retarding
effect on a single particle subjected to a uniformly sinusoidal velocity field remains unclear. The
particle momentum balance Houghton modelled for the drag on the sphere did not include a
Basset term (which allows for deviations of the flow pattern from that at steady state) and was
therefore not affected by particle acceleration. Under the assumption of quasi-steady flow, where
the drag coefficient is obtained from the instantaneous particle Reynolds number Rep = Dpup

ν , he
arrived at a Mathieu equation, the solution of which suggested that combinations of amplitude
and frequency existed for which levitation (suspension of the particle against gravitational force
for an infinite amount of time) is attainable. Bailey [4] concluded that (with driving frequency
f → ∞ and amplitude A → ∞) the retardation effect due to symmetrical oscillation can be made
strong enough to sustain levitation. They derived this from a model Bailey initially proposed for
particle behaviour in piece-wise constant, asymmetrical flow. It is very close to a quasi-steady
model by approximating the time integral over the Basset term as a constant.

1.2 Levitation in multi-particle systems
Inspired by a preceding experiment by Houghton, who successfully levitated an ensemble of
glass beads in water, his student, Feinman [12] experimentally explored levitation in systems of
many particles. Houghton did not report on his observation, but Feinman mentioned it in the
introduction of his own work. Experiments range over Re = ADpω

ν = 60-2000 and are based on a
wide range of parameters (f = 20-75Hz with ω = 2πf , β = 2-100) and are conducted in either
bromoform or water. He found that the volume fraction of the particle phase has a profound
influence on particle retardation. He observed that in systems with large particle population,
single particles can be witnessed separating from the bunch and remain in levitation, however, it
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1.3. Physics of retardation

proved impossible to reproduce levitation for single particle systems or even systems that count
only a few particles. He concluded that levitation of individual particles from the suspended bed
depends on "some kind of favorable initial conditions that result in a trajectory that can lead
to stable levitation". For the specific oscillation column used in the study, they where able to
demonstrate that for systems of more than 50 particles levitation effects became independent on
the number of particles.

The only other work that puts forward levitation as an extreme form of particle retardation caused
by symmetric flow oscillation is by Deng [11]. They did not report on particle velocities which is
why we cannot establish a particle Reynolds number Rep. However, levitation was observed in a
water-glycerol mixture (ν ≈ 1e−5) at f = 15-30Hz and β = 20 yielding Re = ADpω

ν ≈ 200. It is
important to note that their experimental setup was also based on a multi-particle system and
the authors failed to disclose information about the volume fraction. Lapple, who investigated the
falling behaviour of single- and multi-particle systems [23], found that increased drag on a settling
sphere can arise through interference by other particles nearby. It is reasonable that oscillatory
multi-particle systems are affected by similar effects. The notion of particle levitation and related
concepts, such as levitation frequency (where for frequencies f > flev particle levitation will
occur for a fixed particle-fluid pair) made by Deng and critical levitation velocity by Feinman
and Krantz [22] should therefore not be used with respect to uniformly sinusoidal oscillated
single-particle systems. In such systems particle levitation has no grounds in literature and the
aforementioned concepts originate from research in multi-particle research. (For clarification:
particle levitation in oscillating flow of the non-uniform sinusoidal- and ’sawtooth’-kind is well
recorded [17, 9, 4])

1.3 Physics of retardation
Back to single particle investigations: Baird [6] makes the interesting notion of minimum values of
retardation (that is: there is an oscillatory intensity (he uses fA

1
3 ) at which maximum retardation

is reached and beyond which the retardation effect will start to cease again). To explain his
suggestion on retardation physics, we need to introduce vortex shedding: The wake that forms
around a settling particle in a fluid at rest consists of a permanent vortex ring that oscillates
and finally separates (sheds) periodically [29] (that is in a regime that is characterized by a
certain threshold particle Reynolds number Rep). The natural vortex shedding frequency fnvs
describes the periodicity of shedding of the vortex and follows an empirical equation of the form
Srn = fnvsDp

U0
= f(Rep), where U0 is the settling velocity in a quiescent fluid and Srn is the

natural Strouhal number [13].

Baird suggests that oscillations imposed on the fluid can change a sphere’s vortex shedding
frequency fnvs to the frequency of the oscillation f . Essentially, every change in direction made
by the sphere (once per oscillation period T ) causes shedding of the wake that has been built up
during the oscillation cycle. These wakes are larger than the small vortex a particle would shed
settling through a quiescent fluid. Following Baird’s suggestion that the additional drag force
induced by the shedding mechanism is proportional to the product W × f (where W (f, A) is
the wake volume) sufficiently high frequencies will lead to lower volume wakes or no wake at
all (if there is too little time for one to form) and retardation is weakened. Similarly, certain
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1.3. Physics of retardation

frequency-amplitude combinations are hypothesized to yield maximum retardation as they lead
to a maximum in W × f metric [6]. By introducing a forced Strouhal number Srf = Dpf

U0
and

incorporating the influence of the flow-oscillation amplitude, captured by the ratio β = A
Dp

, Baird
correlates the magnitude of retardation to a dimensionless parameter of the form Srf βα (with
α = 1

3 serving as a fitting parameter to his experimental data for configurations in which vortex
shedding occurs). Finally, Baird appeals for future work to include more detailed observations
about flow patterns around particles immersed in oscillating fluids and direct measurement of
the drag acting on them. The study at hand holds attempts to both.

Schöneborn [29] adds to Baird’s considerations of wake effects and supports the claim that the
vortex shedding frequency of a falling sphere fnvs can be synchronized with the frequency of
the flow field f . The retarded sphere performs alternating, lateral fluctuations relative to it’s
falling line. If the oscillation frequency f is near the natural vortex shedding frequency fnvs,
resonance occurs. Schöneborn argues that drag is increased and the fall velocity decreased,
because supplementary energy from the driving oscillation is transformed into wake generation.
With respect to how vortex shedding influences retardation, Schöneborn argues that "as a conse-
quence of the shedding, asymmetries with respect to the upstream-downstream axis of the sphere
appear in the wake. The wake reacting on the sphere [=shedding?] causes a fluctuation in the
motion of a freely movable sphere [and in drag]. As the configuration of the wake is asymmetric,
there are deflecting forces acting on the sphere, which cause a lateral motion of a freely movable
sphere. The formation of a vortex is connected with an energy loss in the translational motion,
consequently the actual velocity of a freely movable sphere is reduced".

Schöneborn’s study shows that vortex shedding is suppressed for increased frequencies and the
lateral fluctuations stop. Increased stability of the wake during particle acceleration makes the
particle depart from the solution at low Stokes number at a higher instantaneous Reynolds
number than steady state results suggest [15]. Subsequently, retardation prediction based on a
quasi-steady equation (suggested by [17, 4, 14] ) underestimates the mean settling velocity. This
is because the proposition that drag behaves proportionally to the velocity difference of particle
and fluid (up − uf), breaks when vortex shedding is suppressed and even modification of the
Basset term as put forward by Ho [16] does not compensate for this.

Schöneborn concludes that there are 3 regimes of particle retardation: 1) very low Srn, where
undistorted vortex shedding allows for accurate system description by means of quasi-steady drag
equation, 2) resonance: if (f − fnvs) is very small, regular lateral fluctuations around the particle
falling line and increased retardation, 3) suppressed vortex shedding (equivalent to Rep too low
for vortex shedding): retardation lower than in resonance regime, but higher than in quiescent
fluid. Schöneborn does not give an explanation as to what causes retardation to be higher than
in a quiescent fluid or an intuition of what it’s limit would be in this regime. He also does not put
Baird’s intuition that retardation correlates with W × f into perspective. He does, however point
out that oscillation frequencies applied in experiments by Baird [6] and Ho [16] do stay below
the natural vortex shedding frequency fnvs(and are therefore mostly covering regime 1). Be it
due to the higher viscosity or the range of f, β tested in the work at hand, none of our simula-
tions show any significant lateral particle motion and we cannot make a link to Schöneborn’s work.

Herringe [15] conducted experiments in order to gain insight into phase lag, oscillation amplitude
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and retarded settling velocity of single particles exposed to an oscillatory flow. This is interesting,
because the overall influence of Basset forces in the inertial regime could empirically be equivalent
to a phase lag in fluid acceleration [25]. His attempt to model the drag for a wide range of
configurations failed and suggested that further flow pattern analysis is required before the
motion of spheres in oscillating fluids can be fully understood. An interesting idea he instantiates,
but does not explore, is that β could be the determining factor on whether there is sufficient
time for vorticies to develop and, that if this was so, then β also is the determining factor for the
occurrence of vortex shedding for high frequency configurations.

Deng [11], who studied multi-particle systems in oscillatory flow as mentioned above, suggests
that high particle density promotes retardation in fluids with greater viscosity and that the
contribution of pressure drag, Fdp to the total drag, Fh increases with retardation, but does
not base this assumption on measurements of the pressure fields. The former might have some
dependence on the packing fraction of the multi-particle system that was studied and cannot
necessarily be translated to single particle systems.

1.4 Applications
Finally, in terms of applications Mackley [2] studied particle-concentration profiles along a
vertically oriented column with regularly spaced orifice baffles. This contribution opens a range
of industrial separation applications, as well as enhanced mixing procedures, presented in Ni’s
review-paper [24]. Oki [27, 26] chose radii (Dp1, Dp2) for spheres of different density (ρp1, ρp2)
such that they would have equal settling velocities (U01

U02
= 1) and found that the settling ratio

U1
U2

(where U is the mean settling velocity of a particle in an oscillating fluid) is reduced by
water oscillation. These observation makes separation by oscillation in a jig a possibly potent
alternative for ’equal-settling-particles’ (which are inherently equally effected by virtual gravity
increase in a centrifugal separator). Pita [28] investigated application of oscillatory flows in a
jig-apparatus to separate plastic waste. We also want to point out Spagnolie’s [30] work which
introduces a shape-changing body that adapts the surface-area exposed to a pulsating flow based
on the phase of oscillation it finds itself in and demonstrates how some marine animals may be
able to utilize such flows to move.
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CHAPTER 2
Motivation

Understanding transport and deposition of particles in oceanic environments is critical for
predicting the dispersion of materials such as nutrients, micro-plastics and hazardous waste
throughout the worlds oceans. Suspended material in the ocean is often subject to oscillatory
flow causing altered settling behavior. While initial research into such multi-particle systems has
been conducted, the focus of this study takes a step back and focuses on the mechanism that
enables single-particle retardation. Equipped with modern high resolution simulations, we find
ourselves in a much better spot to find the root of this phenomenon. This is with respect to
analysis of forces acting on the sphere as well as analysis of flow- and pressure-field around it.
This study addresses the following questions:

1. What is the physical mechanism causing particle retardation and can asymmetries with
respect to forces on and flow-structures around the particle be identified throughout a
particle-oscillation?

2. What is the effect of a horizontally confined domain on particle retardation?

3. Can levitation as an extreme form of retardation be achieved in a single-particle system?
If so, how does it relate to levitation in multi-particle systems?

4. Is there a dimensionless number dependent solely on material properties (ν, ρs) and
parameters of the imposed oscillation (β, f) that captures the retardation magnitudes
obtained from a wide range of parameters? If so, how does it compare to those proposed
by prior contributions?
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CHAPTER 3
Computational model

We use Particle Resolved Direct Numerical Simulations (PR-DNS) to investigate the retardation
of a sphere in a vertically oscillating box. The Immersed Boundary Method (IBM) as proposed
by Uhlmann [32] and improved by Kempe and Fröhlich [21] is used to model the fluid-particle
interaction. The present solver has been developed and tested for accuracy by Biegert and
Vowickel [8, 34]. It is well equipped for grain-resolving simulations of flows over dense, granular
sediment beds and lubrication modelling in this context.
The governing equations, including the modifications made to it in order to accommodate the
imposed oscillations of this study, are presented in the following chapter.

3.1 Governing equations
First, we introduce the Navier-Stokes equations and the continuity equation for an incompressible
Newtonian fluid for an inertial frame (resting coordinate system outside of the box for which
the top- and bottom- boundary of the box move with the box oscillation = uf = −Aω sin(ωt)):

∂u′

∂t
+ ∇ · (u′u′) = − 1

ρf
∇p′ + ν∇2u′ + fIBM + fo (3.1a)

∇ · u′ = 0 (3.1b)

p′ = p − ρf g, ∇p = ∇p′

fo = duf

dt
= Aω2 sin(ωt), ω = 2π

where u′ = (u′, v′, w′)T is the fluid velocity-vector in Cartesian components in the inertial frame,
p′ the gravity-corrected pressure term, fIBM the volume force as result of the IBM and fo the
acceleration due to oscillation. Oscillation amplitude A and frequency f characterise the pulsation
intensity. fIBM couples the motion of the fluid to the solid phase by acting in the vicinity of the
fluid-particle interface to enforce a no-slip and no-penetration conditions on the particle surface.
The Navier-Stokes and continuity equations (3.1) are integrated using a third-order low-storage

6



3.1. Governing equations

Runge-Kutta scheme in time and a second order finite difference method in space. A Fast Fourier
Transform (FFT) is applied to calculate the pressure correction for continuity by means of a
pressure projection method.

Subsequently, particle motion in the inertial frame is governed by the Newton-Euler equations as
presented below. The hydrodynamic term Fh couples the particle to the fluid and comprises
mp · (fIBM + frigid) (where frigid captures the transient particle motions [7]). Here Ip = πρpD5

p/60
is the moment of inertia for a solid sphere and ωp = (ωp,x, ωp,y, ωp,z)T as the angular velocity
vector for the particle.

mp

du′
p

dt
= Fg + Fc + Fh (3.2a)

Ip
dωp

dt
= Mc + Mh (3.2b)

We wish to write the Navier-Stokes equations and the continuity equation for an in-compressible
Newtonian fluid in a non-inertial frame (moving with the oscillatory box), because a time-
depended force is much easier to implement than moving boundaies. Therefore, we need to
transform the particle velocity. The non-inertial reference frame moves with uf = (0, uf , 0)T

relative to the inertial frame presented above. We can therefore write non-inertial particle
velocity as up = u′

p − uf , where u′
p = (u′

p, v′
p, w′

p)T presents the translational velocity vector of
the particle in an inertial frame. Taking the derivative of this transformation

du′
p

dt
= dup

dt
+ duf

dt

and applying it to the inertial Newton equation (equation for particle motion) will yield it’s
non-inertial frame version.

mp
dup

dt
= Fg + Fc + Fh + (mp − mf )fo (3.3a)

Ip
dωp

dt
= Mc + Mh (3.3b)

Here, mp and mf are particle mass and fluid mass (corresponding to the particle’s volume). Since
there are no free surfaces or density variations in the fluid, the effect of the frame acceleration is
accounted for in the particle motion. As an important consequence arising from the change of
the observational frame, the background acceleration of the non-inertial frame is characterized
by the motion of the particle mass minus the displaced fluid mass and, hence, represents the
effect of particle inertia.
The Euler-equation, however, remains unchanged, since the transformation is purely translational.
The oscillatory change in the static pressure field is represented in the particle momentum equation
as Fo, rather than forced on the particle from the fluid via Fh. It follows that the Lagrangian
phase gets to feel the oscillation impact only by the fIBM contribution in the Navier-Stokes
equations:
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3.2. Nondimensionalisation of the problem

∂u
∂t

+ ∇ · (uu) = − 1
ρf

∇p′ + ν∇2u + fIBM (3.4a)

∇ · u = 0 (3.4b)

where u = (u, v, w)T is the fluid velocity vector in Cartesian components in the non-inertial
frame.

3.2 Nondimensionalisation of the problem
We introduce characteristic scales to non-dimensionalize the governing equations where ℓ and u
are the relevant length and velocity scales. The former is chosen as particle diameter Dp and the
latter as maximal plate velocity Aω. This choice yields a Reynolds number that depends both
on a particle and an oscillation length scale:

Re = ADpω

ν

After transforming the dimensional set of variables S = {ℓ, u, t, ρ, p, m, V, F, f, M, I, g, f}, we can
write the following relations to the dimensionless counterparts S̃ where the tilde symbol indicates
the dimensionless variable:

ℓ = Dpℓ̃, u = Aωũ, t = Dp

A

1
ω

t̃

ρ = ρf ρ̃, p = ρf A2ω2p̃, m = mf m̃ = ρf V m̃, V = D3
p Ṽ

F = mf A2ω2

Dp
F̃ , f = A2ω2

Dp
f̃, M = mf A2ω2M̃

I = mf D2
p Ĩ , g = A2

Dp
ω2g̃, f = A

Dp
ωf̃

Finally, we obtain the dimensionless set of governing equations (Navier-Stokes, Continuity and
Newton-Euler):

∂ũ
∂t̃

+ ∇̃ · (ũũ) = −∇̃p̃′ + 1
Re

∇̃2ũ + f̃IBM (3.4ca)

∇̃ · ũ = 0 (3.4cb)

m̃p
dũp

dt̃
= F̃g + F̃c + F̃h + Ṽp(ρ̃p − ρ̃f ) · f̃o (3.4cc)

Ĩp
dω̃p

dt̃
= M̃c + M̃h (3.4cd)

We additionally define the Stokes number St based on fluid and particle timescales τf , τp:

τp =
D2

p

18ν
( ρp

ρf
− 1), τf = 1

ω
, St = τp

τf
=

D2
pω

18ν
( ρp

ρf
− 1)

8



3.3. Dimensional analysis

3.3 Dimensional analysis
As laid out in the introductory section prior studies suggests that retardation is governed by the
following quantities representing particle and fluid material properties as well as the oscillation
of the system:

ω

[1
s

]
, A [m] , Dp [m], ρf

[
kg

m3

]
, ρp

[
kg

m3

]
, ν

[
m2

s

]
, g

[
m

s2

]

We hereby assume that the geometry of a sufficiently large experimental domain, as well as
particle roughness and wall properties have a negligible influence on retardation. As a well
established tool in dimensional analysis the Buckingham-Π theorem [10] commands that a
problem governed by x quantities in y dimensions can be expressed by x − y dimensionless
quantities. The retardation problem counts 7 quantities comprising three dimensions (SI units)
listed above. We are, therefore, in search of 4 dimensionless parameters composed of the governing
physical quantities. Inspired by dimensionless terms attributed relevance to by the literature, as
well as investigation of our computational data, we propose the following dimensionless set of
parameters:

β = A

Dp
, ρs = ρp

ρf
, Reω = A2ω

ν
, Γ =

gD3
p

ν2

The β parameter is essential to describe oscillation geometry as it relates the two governing length
scales, driving amplitude and particle diameter to another. The ratio ρs relates the densities of
particle and fluid to another. Reω is a Reynolds number based on the oscillation length scale, it
relates inertial to viscous forces. Γ is taken as the ratio of gravitational to viscous forces and
gives information about the fluid’s resistance against the particle’s settling in a quiescent fluid.
While the first two parameters (ρs, β) are frequently mentioned in literature, a multitude of
parameters descriptive of oscillation intensity and fluid viscosity have been employed. Herringe
[15] proposes as a third parameter based on the Stokes number St, 1

f(St) =
√

ν
D2ω

(which only
differs from Reω in that the length scale applied corresponds to the particle diameter instead of
the oscillation amplitude) and a fourth parameter based on the maximum fluid acceleration and
gravity Aω2

g . He found the latter to bear the least significant correlation with retardation [15].
However, based on our flow-field analysis (section 4.5), we believe it is important to introduce
a measure for how strongly gravity-induced settling is hindered by particle drag (Γ). The
U0-component (settling velocity in quiescent fluid) component in the Strouhal number proposed
by Baird [6] (Srf = Dpf

U0
) can be interpreted in a similar fashion. We attempt to describe

retardation magnitude U
U0

, where U is the mean settling velocity of a particle settling through
oscillating fluid (figure 3.2) as a function of the particle-fluid configuration and the oscillatory
intensity:

U

U0
= f(π1, π2, π3) s.t. π1, π2, π3 ∈ {β, ρs, Reω, Γ}

In section 4.7 we present such a relation for retardation.
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3.4. Computational set-up

Figure 3.1: Two dimensional projection of the front view of the rectangular domain (box)
spanning Lx × Ly × Lz. The non-intertial reference frame (indicated in the sketch) moves with
uf compared to a stationary inertial reference frame outside the box. Gravity acts along negative
y-direction g = (0, −9.81, 0). A single particle of diameter Dp is released in the center of the
x, z-plane near the upper wall.

3.4 Computational set-up

3.4.1 Inspiration from experimental set-ups in literature

Experimentalists have struggled with designing a test apparatus that eliminates imperfections with
respect to oscillatory motion, the particle release mechanism as well as the flow profile throughout
the x, z-plane (with y being the vertical direction). Ho [16] explains that his experimental setup,
consisting of a fluid-filled, oscillating cylinder of height Lz = 45cm and diameter d = 9cm,
induced measurable imperfections on the sinusoidal vertical movement, as gravity caused the
cylinder to lag behind the sinus during the upwards movement. From investigations into particle
movement in non-uniformly oscillated fluid columns by Houghton [17], Boyadzhiev [9] and Deng
[11] we know that such asymmetries can impact retardation.

Al-Taweel and Carley [3] came up with a different experimental setup: Instead of measuring
the settling velocity of the particle, they tuned and measured an upwards moving flow (through
the oscillating test column) until it matched the particle mean settling velocity and the particle
would hover at a constant height. The authors, however, had to conclude that mean settling
velocities were of limited reliability because the imposed upwards moving flow led the particle
to stay close to the walls. Baird [6] had used a similar apparatus (in that the column walls
were stationary and only the fluid was pulsated). However, no superimposed upwards flow was
applied and the test column maintained a larger diameter (Lz = 305cm, d = 121cm), such that
wall effects were not identified as an issue.
The point to make is that there is a myriad of details that have had great influence on experimental
studies into retardation. On top of day-to-day temperature fluctuations of the fluid, inaccuracies
induced by photography-based velocity measurements, horizontal movement or rotation of the
particle and alike influences might be responsible for deviations between experimental data from
different groups.
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3.5. Retardation measurement

3.4.2 Set-up for computational study

Moving forward, a good computational setup suffers from less imperfections, such as initial
velocities and rotations upon particle release as well as asymmetries in the sinus-oscillation.
Challenges arise from restraints in resolution and domain size imposed by computational limits.
Herringe [15] used an oscillating test column with dimensions Lz = 11.5cm × d = 8.5cm, where
a single particle of diameter Dp ≤ d

40 was released from the top of the cylinder. Tunstall
and Houghton [31] used a similar setup with a narrower, but longer column with dimensions
Lz = 150cm × d = 3.2cm, where particle diameters where chosen such that Dp ≤ d

10 . We
seek to define a setup capable of reproducing their experimental data (see section 4.2). Due
to limitations imposed by the IBM, we cannot use a cylindrical geometry, and instead use
rectangular prisms. The computational domain employed in this study spans Lx × L

(I,II)
y × Lz =

10Dp×{40D
(I)
p , 70D

(II)
p }×10Dp, where the horizontal dimensions Lx = Lz arise from a convergence

study laid out in section 4.1. The first domain height, L
(I)
y is taken from a prior study on the

settling of sediment using the same code [33] and in this study is employed for simulation
configurations with low quiescent settling velocities U0 or low oscillation amplitudes A. In cases
with large oscillation amplitudes (Amax ≥ 30Dp), a taller domain, L

(II)
y , is required to avoid

collisions between the suspended particle and the bottom boundary. We define the domains
Θ10, Θ6:

Θ10 = 10Dp × {40D(I)
p , 70D(II)

p } × 10Dp

Θ6 = 6Dp × {40D(I)
p , 70D(II)

p } × 6Dp

where Θ6 is tested in order to the influence a horizontally confined domain.
We assume the vertical span Ly has no influence on retardation magnitude U

U0
, therefore it is not

declared if L
(I)
y or L

(II)
y has been used in a specific simulation. No-slip conditions are imposed

on the vertical and horizontal walls in order to best match the experimental setup. Finally, in
accordance with a convergence study (section 4.1) a cubic mesh of grid spacing h = Dp

20 is used
to discretize the domain.

3.5 Retardation measurement
Retardation magnitude U

U0
is measured by relating the mean settling velocity of a particle settling

through oscillating fluid U to the settling velocity U0 of the same particle through quiescent
fluid. In order to define these velocity quantities two simulations O, Q where O corresponds to
the oscillatory situation and Q to the quiescent situation are conducted. O and Q are similar
with respect to material properties (ρs, ν), but differ in terms of oscillatory motion (ω, β) such
that βQ = ωQ = 0 (thereby ReωQ = 0).

Figure 3.2 illustrates typical trajectories for simulation O and Q. The trajectory for the oscillatory
data has to be filtered by the oscillation frequency fO in order to obtain the particle’s mean
settling trajectory corresponding to U . This can be done by employing an FFT or simpler: by
extracting one data-point at the same relative position in time from each oscillation. In this
manner one obtains a set of data points X = {y0, yT , y2∗T , .., yi∗T } which are separated by one
period T = f−1 in time. Both Schöneborn [29] and Al-Taweel [3] record that the period of the
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3.5. Retardation measurement

Figure 3.2: Retardation U
U0

illustrated in visual terms. Particle trajectory in quiescent fluid
(orange) with settling velocity U0 and mean particle trajectory in oscillatory case (green) with
mean settling velocity U in quasi-steady state yield an angle indirectly proportionate to retardation
magnitude.

induced oscillation in the particle matches that of the fluid, therefore mean settling trajectories
are comparable throughout an oscillation-parameter (f, beta)-sweep.
U is the gradient of the set X with respect to time, when only the partition of X for which
the terminal velocity (terminal mean velocity in simulation O) has been reached is considered.
In prior experiment procedures disregard of non-terminal velocity data was ensured by not
considering the particle trajectory for the first vertical 25cm from the release point [31].
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CHAPTER 4
Numerical investigation

4.1 Convergence study
The computational set-up for the study at hand is described in section 3.4. Here we lay out the
justification for choosing domain Θ10 and a cubic mesh of grid spacing h = Dp

20 . The primary
objectives of this convergence sutdy are to 1) determine Lx = Lz such that wall effects induce
only a small error on settling velocity measurements and 2) determine the resolution h such that
small flow details are captured to a sufficient degree.

4.1.1 Domain width

Convergence with regards to the horizontal domain span is checked for two combinations of
material and oscillation parameters. The specific characteristics were taken from Herringe’s ex-
perimental documentation [15] and correspond to configuration ID=1,3 with Re1 = 47, Re3 = 283
and ρs1 = ρs3 = 2.96 (table 5.2). Simulations grid spacing h = 20 for 6 different horizontal
domain sizes were conducted in quiescent and oscillating fluid. The relative error in mean
settling velocity U based on the mean settling velocity of the largest domain-size tested computed
accordingly (see figure 4.1).

The domain’s horizontal span influences the (mean) settling velocity, more so in oscillatory
(U) than in quiescent fluid (U0). Velocities in a confined space tend to underestimate those
observed in a system characterized by Lx = Lz = ∞. Lapple [23] suggests that the proximity of
a rigid cylindrical wall can noticeably increase the drag on a sphere falling in water when the
particle diameter is ten times smaller compared to that of the test-tube (Lx,z

Dp
< 10) and more

specifically that a diameter-domain-ratio of ( Lx
Dp

= 7) can lead to an error of 1%. Our data for
the lower-viscosity-situation (ID = 3, ν3 = 1e−6 kgm2

s ) suggests a comparable relative error errrel

of 2% in the quiescent and 5% in the oscillated situation for domain Θ6 (Lx,z

Dp
= 6). However, in

the more viscous situation (ID = 1, ν1 = 2e−5 kgm2

s ) errrel is 12% in in the quiescent settling
case and 19% in the oscillated case for Θ6. We believe the increased wall influence in a set-up
with a more viscous fluid is due to more ’rigid’ coupling between particle and wall compared to a
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4.1. Convergence study

Figure 4.1: Particle trajectories in
quiescent (top) and oscillating fluid
(bottom) for material configurations
ID=1,3 over time for domain spans
Lx=Lz={4Dp, 6Dp, 8Dp, 10Dp, 12Dp, 14Dp}.
(insets) Relative error errrel based on the mean
settling velocity U014 measured for the largest
horizontal span Lx = Lz = 14Dp tested.

Figure 4.2: Particle trajectories in oscillating
fluid for retardation configurations ID=1,3,15
over time for resolutions h = {10, 20, 25}. (in-
set) Relative error errrel based on the mean
settling velocity U25 measured for the most re-
solved simulation h = 25.

fluid characterized by less inner friction.

The relative error errrel converges for growing horizontal spans. It is < 3% and < 4% for
the quiescent and oscillatory case, respectively, in the Θ10 domain (for ν1 = 2e−5 kgm2

s ). Since
both, the mean settling velocity from the quiescent U0 and oscillatory flow situation U0 in a
confined horizontal space underestimate their theoretical counterparts for Lx = Lz = ∞, the
ratio counterbalances some of the error in the retardation U

U0
.

4.1.2 Resolution

Simulations for configurations ID = 1, 3 are conducted for different resolutions h = 10, 20, 25
with domain Θ6. The relative resolution error remains low for configurations ID = 1, 3. An
investigation into the most inertia-dominated configuration documented by Herringe (ID=15,
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4.2. Validation of numerical results

U
U0 exp [-] ρs [-] ν [kgm2

s ] β [-] f [Hz]
0.71-1.0 2.96-11.4 2.5e−7 − 4.0e−5 1.3-6.0 20-160
0.00*-0.88 2.96,11.4 2.6e−5, 2.2e−5 10-30 30-125

Table 4.1: parameter span original Herringe Data-Set (top, table 5.2, 5.3 upper part) and Herringe
Data-Set extension (bottom, 5.2, 5.3 lower part)

Re15 > 5e3, ν15 = 2.5e−7 kgm2

s ) shows a drastically increased error metric. As a precaution all
simulations conducted (section 4.3) will be designed such that Rep < 1e3 by relying on viscosity
in proximity of ν1. As previously used and recommended by Biegert [7] and Vonwickel [34]
resolution of h = Dp

20 is employed.

4.2 Validation of numerical results
Herringe’s work [15] records 29 parameter configurations, 20 of which were reproduced numerically
in this study. This is to ensure the computational model described in section 3.4 and used
for all further investigation is a valid approximation to the physical situation. (The remaining
configurations are characterized by combinations of very low viscosity ν and high density ratio
ρs, such that the limited vertical dimension of our simulation domain (Ly = 70Dp) causes the
particle to collide with the lower boundary before reaching a terminal state.) Experimentally
observed retardation magnitudes U

U0
span 0.72-1.00, the system according configurations span a

wide range of parameters (table 4.1). The median, average, minimum and maximum relative

errors obtained by simulation compared to the experimental results errnum =
| U

U0 exp
− U

U0 num
|

U
U0 exp

are

2.5%, 3.5%, 0.6% and 9.1%. Full information on all validation runs and their experimental
counterparts is declared in table 5.2.

4.3 Data-set extension
Based on the material configurations investigated by Herringe (table 5.2) we extend the pa-
rameter space with regards to oscillation intensity (β, f). That is by adopting the material
configurations ID=0,26 (which proved low in error between experiment and simulation). Both
are characterized by viscosity high enough to maintain Re well below 1e3, as well as to allow
the particle to reach quasi-steady settling before collision with the lower boundary. Viscosities
ν0 = 2.2e−5, ν26 = 2.6e−5 are in close proximity to ν3 for which convergence was tested in section
4.1. Particle densities resemble sediment and metal in water ρs0 = 2.96, ρs26 = 11.4. β values of
up to 30 and f values of up to 125Hz were tested, respectively.
Particle Reynolds numbers Rep tend to be much lower for ρs0 than ρs26 configurations (< 150,
< 500 respectively). This is, because high density ratios translate large oscillation amplitude-
ratios β into large particle-amplitudes (non-inertial frame) much more effectively than low
density-ratios. Observed retardation magnitudes span 0.00-0.88, where levitation U

U0
= 0.00

levitation was observed for ID=83. However, this is the culmination of a sweep of configurations
for which particle trajectories do not satisfy quasi-steady settling conditions. They are discussed
in detail in section 4.6, but ignored here. Configuration details and dimensionless numbers on all
tested configurations can be found in tables 5.3, 5.2.
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4.3. Data-set extension

4.3.1 Unconfined domain Θ10

Stronger retarding effects than reported by prior studies were observed ( U
U0

= 0.07 for ID=77
being the minimum). To put this into perspective, the lower bound observed in prior experi-
mental data (obtained from a similar one-particle system set-up) was 0.48 by Ho (metal sphere
in water-glycerol mixture and large β = 40 at much lower f = 7Hz)). ID=77 is characterized
by comparable β = 30, but much higher f = 65Hz, fluid viscosity larger by two magnitudes
and a density ratio double that of Ho’s experiment. However, with the ratio of plate to particle
oscillation amplitude to vertical domain span being 15

70 = 0.21 (meaning the particle transitions
through almost half of the vertical domain configuration ID=77 (and all other configurations
with β = 30) are potentially not free of influence from the limited vertical domain span. Taking
the β = 25, 30 configurations out of configuration, the strongest retardation effect was for ID=65
with U

U0
= 0.4.

Retardation generally increases with the amplitude-ratio β (equivalent to A as all simulations
are parameterized such that the particle diameter Dp = 1mm). The same does not necessarily
hold true for oscillation frequency f . While it is obvious that the initial introduction of an
oscillation in the flow (going from f = 0 to f > 0) does benefit retardation (as in: it enables
the phenomenon in the first place), frequency increments further up along the spectrum do
not necessarily cause an increase in retardation. f -sweeps I,II (table 4.2) demonstrate that
retardation hits a limit for ceteris-paribus frequency increments and even passes a minimum
(f -sweep I). Experimental data supports the observation of a retardation-minimum [31], [6]. An
explanation attempt for the occurrence of this minimum was made by Baird [6] and discussed in
section 1.3 at length. Tunstall [31] mentions that the minimum becomes less prominent as Dp is
decreased. A ceteris-paribus diameter decrease in experiment is equal to a ceteri-paribus increase
in β in our simulation setup (if the ratio of particle size to domain size is ignored). f -sweep II
and III are a ceteris paribus β increase, the increased oscillation amplitude A in sweep III seems
to enable further retardation, which makes the sweep unsuitable to assess Tunstall’s claim. No
other with a smaller toggle of β is available.

4.3.2 Confined domain Θ6

Comparison between the results from the Θ10 and Θ6 domain (table 4.2) confirms that a particle
in the confined space is generally retarded more strongly. The difference in retardation magnitude
is in accordance with the error estimate presented in section 4.1 (convergence study). At the
same time, particle velocities up (represented by Rep) are barely affected by confinement. Ceteri-
paribus f - and β-sweeps in the confined domain show consistent convergence of retardation and
no local minima. Picking up on Schöneborn’s [29] resonance-theory (described in section 1.3)
we assume that wake-generation around the particle in a system with altered domain-size is
qualitatively changed. Section 4.5 gives a description of these changes.
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4.3. Data-set extension

Θ10 Θ6

ID β [-] f [Hz] Re [-] U
U0

[-] Rep [-] U
U0

[-] Rep [-]
β sweep I, ρs = 11.4

26 2.6 65.9 41 0.79 34 0.72 34
64 15.0 65.0 235 0.59 161 0.40 160
65 20.0 65.0 313 0.40 208 0.26 206
76 25.0 65.0 392 0.28 267 0.24 266
77 30.0 65.0 470 0.07 316 0.04 314

β sweep II, ρs = 2.96
33 10.0 60.0 172 0.88 53 0.59 86
41 20.0 60.0 343 0.83 93 0.48 92
68 25.0 60.0 361 0.71 87 0.38 87
69 30.0 60.0 434 0.63 99 0.39 99

f sweep I, ρs = 2.96
39 20.0 20.0 114 0.75 22 0.73 22
40 20.0 40.0 229 0.72 55 0.50 55
41 20.0 60.0 343 0.83 92 0.48 92
70 / / / 0.00 / 0.42 98
71 20.0 85.0 410 0.79 114 0.42 114

f sweep II, ρs = 11.4
63 10.0 30.0 72 0.59 49 0.52 49
100 10.0 45.0 108 0.59 77 0.46 77
96 10.0 60.0 145 0.65 104 0.45 103
61 10.0 105.0 253 0.60 184 0.44 183

f sweep III, ρs = 11.4
97 20.0 30.0 144 0.59 87 0.38 86
101 20.0 45.0 216 0.59 139 0.34 138
98 20.0 60.0 289 0.45 190 0.33 190
65 20.0 65.0 313 0.40 208 0.26 206

Table 4.2: Retardation over ceteris paribus β- and f -sweep for domains Θ10, Θ6 (full information
in table 5.2 and table 5.3 lower part)
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4.4. Investigation into particle drag

4.4 Investigation into particle drag

4.4.1 Metrics for drag contribution

Consider the particle force balance over one oscillation period T in a state in which the terminal
mean particle velocity has been reached (quasi-steady settling) and no collision occurs. In this
terminal state an equilibrium of imposed forces (F̃g, F̃e) and the hydro-static force F̃h is required
in order to fulfill the zero-’mean’-acceleration.

m̃p

∫
T

dũp

dt̃
dt︸ ︷︷ ︸

0

=
∫

T
F̃g − F̃h + Ṽp(ρ̃p − ρ̃f ) · f̃o︸ ︷︷ ︸

F̃e

dt (3.4a)

Considering that the oscillation induced external force F̃e is a perfectly harmonic function
without asymmetry over time, it’s integral over the period T is zero and we obtain the following
relation between work done by gravity and hydro-static effects over an oscillation period:∫

T
F̃g dt =

∫
T

F̃h dt −
∫

T
F̃e dt︸ ︷︷ ︸
0

(3.4b)

In order for
∫

T F̃h dt > 0 (net lift) to hold the hydro-static force has to be asymmetric over the
course of a period, that is: it’s magnitude has to be larger throughout the particles downwards
movement. In order to compare different parameter configurations and draw conclusions with
respect to the magnitude of retardation, we need to dissect the hydro-static force term (since the
period-integral over the entire term has to match gravity regardless of retardation magnitude).
We propose to split the hydro-static term F̃h into a component F̃dp that is due to the difference
in pressure between the particle’s tail and tip (vertically axis) and a component F̃dv comprising
viscous drag effects. Applying the partition to equation (4.4.1) yields:∫

T
F̃g dt =

∫
T

F̃dp dt +
∫

T
F̃dv dt (3.4c)

F̃dp is extracted from simulation data on F̃h by interpolation and consequent integration of the
pressure field apparent on the sphere surface. The viscous contribution F̃dv can be determined
by subtraction. The integral

∫
T F̃dp dt can be interpreted as the reduction in particle velocity

caused by the pressure contribution over one quasi-steady period.

We are interested in the contributions to the drag asymmetry Cdp, Cdv and the phase shifts
ϕh, ϕy between the reactionary force F̃h and the particle location yp to the external oscillation
force F̃e extorting particle motion.

Cdp =
∫

T

F̃dp

F̃g
Cdv =

∫
T

F̃dv

F̃g
= 1 − Cdp

ϕh = ϕ(F̃h, F̃e) ϕy = ϕ(yp, F̃e)

As illustrated in fig 4.3 there is a ’delay’ between Fdp and Fdv for more retarded particle settling
trajectories. It becomes visibly shortly before the particle changes it’s direction (up = 0), to be
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4.4. Investigation into particle drag

precise, when the reactionary hydro-static force Fh = 0. We define the ’quasi-phase-shift’ as
quantification for this ’delay’:

ϕvp = ∆(tA=0.75)
T

· 360◦

where T is the oscillation period length and ∆(tA=0.75) is the delay of F̃dp compared to F̃dv
hitting 75% of their maximum respective amplitude. This parameter essentially represents the
delay of pressure force versus viscous drag.

4.4.2 Analysis of drag contribution

Retardation configurations characterized by material configuration ρs26 = 11.4, ν26 = 2.6e−5

(only ID=103 has ρs0 = 2.96) have been investigated with regards to drag contributions. These
configurations yield a wide range of retardation magnitudes (0.45-0.84 for the Θ10 domain) in
quasi-steady particle settling. Therefore, a single period NT from the quasi-steady-state part of
the particle settling trajectory can be observed representative of the whole trajectory. In the
hope to extract the physical reason for the retardation increase in confined domains, the study
is conducted for the two domain-configurations introduced in earlier sections (domains Θ6 and
Θ10). Table 4.3 holds all configuration details and resulting quantities.

Figure 4.3 illustrates the particles reaction to the flow oscillation for a number of configurations
that diverge greatly in terms of retardation (and other than ID=103 only differ by (β)). The
plots illustrate a few key observations that we will try to quantify numerically (table 4.3):

1. The strength of the reactionary force Fh and it’s contributions due to pressure difference and
viscous drag (Fdp, Fdv) vary with β and the contribution of the former compared to the latter
increases with the retardation effect.

2. The shift between the peak of the contributions due to pressure difference and viscous drag
(Fdp, Fdv) increases with oscillatory intensity and the ’delay’ ϕvp in the pressure contribution
Fdp becomes more eminent.

3. The phase-lag between reactionary force Fh and oscillation force Fe increases with oscillatory
intensity, not necessarily with retardation.

4. The phase-lag between reactionary force Fh and particle trajectory yp is barely affected by
changes in the oscillation amplitude β and frequency f .

These initial observations suggest that the pressure contribution to the net-lift Cdp, as well
as the pseudo-phase-shift ϕvp as quantitative measure for the ’delay’ of Fdp hold the most
information. The former is in line with Deng’s analysis [11] that suggests the pressure gradient
contributes stronger to retardation than the effect of viscous drag. We can also confirm Carsten’s
hot-wire anemometer-study [1] indicating that the velocity-difference in front of and behind the
oscillating sphere becomes more pronounced with increased β. This must cause greater pressure
differences, hence the pressure contribution becomes more and more important as oscillatory inten-
sity increases. We are interested in linking these physical phenomena to retardation magnitude U

U0
.
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4.4. Investigation into particle drag

Figure 4.4 visualizes the data held in table 4.3 and plots retardation magnitude over the
parameters ϕvp and Cdp. Normalization by both oscillation parameters (Cdp

βf ,
ϕvp

βf ) leads to the
correlation with similar slopes. Both the ’delay’ in the pressure force (ϕvp) and the pressure
contribution to the net-lift (Cdp) become more and more prominent for configurations with high
retardation. The upper left plot in figure 4.4 demonstrates that in order to achieve a similar
retardation effect in a larger domain (at constant f), the pressure force needs to contribute more
to the net-lifting force. Larger amplitudes A are necessary. The correlation between the pressure
force contribution Cdp and the severity of the pressure force-’delay’ (ϕvp) indicates that the latter
boosts the asymmetry in pressure force (in upwards- versus downwards movement).

ID ρs[-] NT
U
U0

[-] β [-] f [Hz] ϕvp[°] Cdp[-] ϕh[°] ϕy[°]
Θ10

99 11.4 6 0.84 2.6 30.0 7.49 0.39 129 208
102 11.4 9 0.80 2.6 45.0 9.77 0.42 126 201
26 11.4 14 0.79 2.6 65.9 12.15 0.47 126 197
63 11.4 6 0.59 10.0 30.0 14.63 0.50 129 208
100 11.4 9 0.59 10.0 45.0 21.64 0.63 129 205
96 11.4 9 0.65 10.0 60.0 28.7 0.75 129 201
97 11.4 6 0.46 20.0 30.0 18.29 0.59 136 212
101 11.4 9 0.47 20.0 45.0 27.11 0.76 133 208
98 11.4 9 0.45 20.0 60.0 36.05 0.92 129 205
103 2.9 9 0.78 20.0 60.0 22.27 0.48 158 215

Θ6
99 11.4 6 0.81 2.6 30.0 7.42 0.39 129 208
102 11.4 9 0.71 2.6 45.0 9.56 0.42 125 201
26 11.4 14 0.72 2.6 65.9 12.11 0.47 126 197
63 11.4 6 0.51 10.0 30.0 13.87 0.50 129 208
100 11.4 9 0.46 10.0 45.0 21.2 0.58 129 205
96 11.4 9 0.44 10.0 60.0 28.55 0.69 126 201
97 11.4 6 0.38 20.0 30.0 18.14 0.60 136 212
101 11.4 9 0.35 20.0 45.0 26.8 0.70 133 208
98 11.4 9 0.33 20.0 60.0 35.86 0.72 129 205
103 2.9 9 0.44 20.0 60.0 22.33 0.62 158 215

Table 4.3: Cdp and ϕh, ϕy, ϕvp as well as the main system parameters for the force-contribution-
analysis configurations. The configurations test the β-f -parameter grid defined by β =
{2.6, 10, 20} × f = {30, 45, 60}
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4.4. Investigation into particle drag

Θ10

Θ6

Figure 4.3: tops: The contribution of forces acting on the particle over an oscillation period,
where Fh (= Fdp, Fdv) are reactionary to Fe + Fg (the latter is constant negative and not
illustrated in the figure). bottoms: The same force contributions and the particle trajectory yp

normalized by their respective amplitude maxima.
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4.4. Investigation into particle drag

Figure 4.4: Retardation U
U0

over Cdp (left) and ϕvp (right) for different normalizations based on
table 4.3 where dotted lines indicate data from domain Θ10 and full lines from domain Θ6
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4.5. Flow field analysis

4.5 Flow field analysis
The following is a qualitative description of differences in flow patterns caused by changes in
β, f, ρs and the domain-size Lx = Lz. It is also an attempt to link the pressure force-’delay’ ϕvp

described in the prior section to characteristics of the flow-field. For this purpose flow patterns
of the configurations ID=26,96,98 (const. f) and ID=63,96 (const. A) were analyzed over a
half-period of the particle oscillation (illustrated in figures 4.5-4.12). Additionally, changes caused
by an alteration in domain-size (Θ10 (Lx=Lz=10Dp) to Θ6 (Lx=Lz=6Dp)) occurring in the
flow-field were analyzed for configurations ID=26,98,96,103.

4.5.1 Influence of amplitude

Figures 4.5,4.7 and 4.8 illustrate snapshots of both velocity- and pressure field over a half-period
of the particle oscillation in quasi-steady state in the configurations ID=26,96,98 with constant
f = 60, but over different amplitude-ratios β = 2.6, 10, 20 for the Θ6 domain.

Focusing on the most retarded configuration 98 (β = 20, U
U0

= 0.33) first, the flow-profile during
the particle’s upwards-movement shows a separated flow structure ahead of the particle (’heading
vortex’). The particle’s trailing vortex absorbs the heading vortex when the system transitions
from the regime in which the particle is driving the fluid, to being driven (much like a ship will
be affected from it’s trailing flow if the propeller-direction is inverted when in cruise - ’inverted
propeller transition’). The upwards streaming fluid causes increased pressure on the particle’s
tail, the reactionary force goes to zero Fh = 0 (following figure 4.4), while the particle is still in
upwards-movement. The flow field will now be dominated by a single, vertically far stretching
(’global’) vortex until the particle’s change of direction generates a wake that causes separation of
the global vortex. During the ’single-vortex’-phase the pressure difference between head and tail re-
mains low. The flow field a half-period after the initial frame t5 = t5 +T/2 is qualitatively similar.

The situation described for the least retarded configuration 26 (β = 2.6, U
U0

= 0.72) differs greatly.
The particle’s upwards-moving phase is characterized by separated vertices which (in contrast to
the ID=98 situation) sustain throughout ’inverted propeller transition’. During the downwards-
movement of the particle the flow-field simplifies and is eventually reduced to a single global
vortex. This vortex remains intact until the particle transitions into upwards-movement again.
Throughout the vast part of the downwards-movement the flow-field is very different compared
to upwards-movement equivalent. This is in such fashion that the particle meets more resistance
(by a heading vortex) during the upwards-movement compared to the downwards-movement.

The flow-field of the configuration 96 (β = 10, U
U0

= 0.44) differs from ID=98 through the smaller
expansion of the global vortex. This difference causes the heading vortex (of the downwards-
movement) to carry less energy and dissipate much earlier (it remains intact much longer than
in ID=26, respectively).

We hypothesize that the flow field asymmetry occurs if gravity is dominant compared to the
oscillation-induced effects. As a result of ’global vortex’-phase during the downwards movement
and the lower-pressure difference induced by it the particle is facing qualitatively lower resistance
compared to the upwards movement (dominated by separated vertices). It appears that higher β
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4.5. Flow field analysis

breaks gravity-dominance and imposes flow-field-symmetry for longer stretches of the downwards-
compared to upwards movement.

4.5.2 Influence of frequency

Figures 4.11,4.12 illustrate snapshots of both velocity- and pressure field over a half-period of the
particle oscillation in the configurations ID=63,96 with constant β = 10, but different frequencies
f = 30, 60 (we base this analysis on the Θ10 results). The 96 (f = 60, U

U0
= 0.65)-configuration

was described in the section above, it remains to compare it qualitatively to 63 (f = 30, U
U0

= 0.59).

The clue to the difference of the ID=63 flow-field compared to the ID=96-situation is lower-energy
in the system (as the oscillation causes much lower acceleration forces - see figure 4.3). Other
than a less pronounced pressure field, this causes the heading vortex to dissipate much earlier in
the upwards movement than in ID=96 (the vortex is long gone when the first frame is taken).
The same is even more true for the downwards-movement (frame t0) and the particle is subject
to suspended downwards-movement (with an intact heading vortex) much shorter.

4.5.3 Influence of confined space

Figures 4.9,4.12, 4.13 and 4.10 illustrate snapshots of both velocity- and pressure field over a
half-period of the particle oscillation in the configurations ID=26,96,98,103 for the Θ10 domain.
The differences in retardation compared to the Θ6 simulations U

U0 6 − U
U0 10 = {0.07, 0.21, 0.12, 0.25}

are large. Figure 4.3 and figure 4.4 illustrate that the parameters ϕvp and Cdp (measuring delay
of pressure force versus viscous drag and the former’s contribution to the net-lift) are slightly
shifted. At the same time, this shift of particles-force-magnitude eminent over a period is merely
detectable visually (figure 4.3).

The comparison of configuration pairs ID=26,103,96,98 demonstrates greater asymmetry be-
tween up- and downwards-moving phase in the larger domain Θ10. The heading-vortex the
particle settles against in the downwards-phase collapses earlier in the Θ10-domain and leaves
the downwards-movement with a longer time-span during which it differs from the upwards-
movement (a half-period T

2 ahead). Confined domain imposes more symmetry on up- versus
downwards-movement.
An additional qualitative flow-field difference in the configuration-pair 98 ( U

U0 6 = 0.33, U
U0 10 = 0.45)

is that where the small-domain flow comprises only a single global vortex during the ’inverted
propeller transition’ the large domain holds a more complex situation. This unbroken vortex
separation potentially increases resistance on the particle during the upwards-movement-phase of
the ’inverted propeller transition’. The broader horizontal span causes a less stretched heading-
vortex that is dissolved easier.

It appears that decreased domain-width leads to reduction of the asymmetry found between the
particle’s up- and downwards-movement. The effect can be quantified by timing the dissipation of
the heading vortex during the downwards- and the upwards-movement (since only a global vortex
remains after this event). We obtain an asymmetry-metric aud (table 4.4) that indicates for
which partition of the downwards-movement the flow-field is simplified (global vortex) compared
to the upwards movement.
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4.5. Flow field analysis

Overall the flow-field analysis suggests that higher energy (and especially higher β) configurations
cause vertically further stretched vortex structures which upon separation (as the particle changes
direction) sustain longer and cause longer periods where the particle works ’against’ a heading
vortex in the downwards-movement. The same mechanism can be witnessed in confined domains
when compared to their counterparts. The period-partition (aud) during which the particle works
’against’ a heading vortex in the upwards-movement, but does not in the downwards-movement
decreases with smaller domains and retardation increases. The metric also decreases throughout
increases of amplitude A. The asymmetry-metric aud does, however, not collapse across material
configurations (table 4.4 ID=103 vs. ID=98). Generally speaking, the occurrence and dissipation
of the flow-structures mentioned can hardly be linked to visible changes in the forces eminent on
the particle (figure 4.3).

Θ6 Θ10

ID ρs[-] β [-] f [Hz] U
U0

Cdp aud[%] U
U0

Cdp aud[%]
26 11.4 2.6 65.9 0.72 0.47 74 0.79 0.47 100
96 11.4 10.0 60.0 0.44 0.75 17 0.65 0.69 22
98 11.4 20.0 60.0 0.33 0.92 12 0.45 0.72 14
103 2.9 20.0 60.0 0.44 0.62 -2 0.78 0.48 10

Table 4.4: Cdp[-] and asymmetry-factor aud[%] for the flow-field-analyzed configurations both
in confined and unconfined domain. E.g. ID=96, unconfined domain: During 22% of the time
of the particle-downwards-movement, the flow-field is characterized by a global vortex, hence
unsymmetrical compared to the upwards-movement which is still characterized by a separated
heading vortex. In the confined domain the dissipation of the heading vortex in the downwards
movement occurs later and the partition of time spent in asymmetry is 6%.
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4.5.4 Visualizations for the Θ6 domain

Figure 4.5: ID=26: Flow- (left) and pressure field (right) half-period.

Figure 4.6: ID=103: Flow- (left) and pressure field (right) over a half-period
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Figure 4.7: ID=96: Flow- (left) and pressure field (right) over a half-period

Figure 4.8: ID=98: Flow- (left) and pressure field (right) over half-period (The far right
frame has been altered downwards in order to capture all flow structures)
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4.5.5 Visualizations for the Θ10 domain

Figure 4.9: ID=26: Flow- (left) and pressure field (right) over a half-period

Figure 4.10: ID=103: Flow- (left) and pressure field (right) over a half-period
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Figure 4.11: ID=63: Flow- (left) and pressure field (right) over a half-period

Figure 4.12: ID=96: Flow- (left) and pressure field (right) over a half-period
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Figure 4.13: ID=98: Flow- (left) and pressure field (right) over a half-period
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4.6. "Levitation"

4.6 "Levitation"

Figure 4.14: Mean particle trajectories over time for retardation configurations
ID={101, 65, 67, 90, 82, 83} (constant oscillation amplitude A = 20Dp, increasing oscillation
frequency f [Hz] = {45, 65, 85, 94, 100, 125} from top to bottom) for the Θ6 domain. Trajectories
for the Θ10 domain are qualitatively similar.

In section 4.3 oscillation-configurations that do not result in quasi-steady particle settling were
mentioned. They are highlighted (*) in tables 5.3, 5.2. Despite occurrence of very strong retarding
effects, their unsteadiness forbids to compute a numeric measure for retardation magnitude U

U0
as proposed in section 3.5. We remain with a qualitative description. Figure 4.14 illustrates how
increased frequency f causes more pronounced deviations from quasi-steady settling for a fixed
material configuration. While for the configuration ID=101 (f = 45Hz) the quasi-steady model
is well intact (linear mean trajectory), secondary effects become apparent for higher frequency
settings. An outstanding feature is the ’wobble’ the particle follows (most prominent throughout
ID=67-82): When close to the center of the vertical span of the domain, the particle seems to be
re-suspended, almost causing secondary oscillations along the trajectory. The initial ’wobble’
(right after the particle is dropped) builds out with increasing f , at the same time the period
length of the secondary oscillation (between ’wobbles’) is decreased and the particle’s loss of
elevation in-between them with it. This leads to an additional delay of the collision with the
bottom plate, in the extreme (ID=82,83) the particle remains suspended (’levitates’) and is
subject of chaotic deviations around the center of the vertical domain.

While this qualitative description was given based on a ceteris-paribus f it is important to note that
similar effects have been observed for different amplitude A (same material configuration). E.g.
configuration ID=66 (A = 15Dp, f = 85Hz) resembles the trajectory of ID=67 (A = 20Dp, f =
65Hz) very well (slight deviation from quasi-steady settling). On the other hand-side, not all
configurations characterized by similar or greater oscillatory intensity show ’wobbly’-behaviour
(ID=77 (A = 30Dp, f = 65Hz)). High-frequency simulations devour more computational
resources and our data on configurations in this realm is therefore weak, we do however hypothesize
that such unsteady configurations exists for most material configurations (especially those with
large ρs, as they enable large particle oscillation amplitudes).
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4.7. Dimensionless correlations

4.7 Dimensionless correlations
Following prior contributions we want to make a new attempt on relating the results obtained to
a dimensionless parameter. Figure 4.4 demonstrated that retardation scales well with parameters
based on the pressure contribution to the net-lift (e.g. Cdp). Parameters proposed by Baird
[6], Wang [20] and Schöneborn [29] are based on a Strouhal number (that demands knowledge
about the terminal settling velocity U0 and/or the frequency for which natural vortex shedding
occurs fnvs). This information can in parts be gathered from prior experiments on the material
configuration in question, but it makes use of these parameters unhandy. Only Herringe’s [15]
dimensionless parameter β

√
v

D2
pω

is based solely on material and oscillation parameters.

Correlations presented in figure 4.15 hold data from our simulations, as well as the experimental
Herringe data-set. Additionally, results reported by Tunstall and Houghton [31], as well as Ho
[16] (whose experimental set-ups are in line with the one employed numerically and are described
in section 3.4) were extracted. Due to the low-viscosity fluids employed in the corresponding
experiments (table 5.1) both sets are rich in configurations characterized by very high Reynolds
numbers (Re > 1e3), setting them apart from the numerical results gathered during this study.

The correlation parameter proposed by Herringe has a strong correlation with the oscillation
Reynolds number Reω. Both collapse retardation magnitude U

U0
well, as long as all data stems

from a similar material configuration. Data obtained from low viscosity fluid setups (high Re)
and data with much higher viscosity set-ups are not brought together well. Even though it
shares most input parameters (ω, ν) the Stokes number St presents itself as a considerably worse
choice to describe the system, when compared to Reω. While Reω relies on the amplitude A
as length-scale, St is based on the particle-diameter Dp, we conclude that the former is the
dominant length-scale in the problem. This is in line with Baird’s study on pulsed flow past a
cylinder in which he states that, if oscillations are intended to increase drag, it is generally more
effective to use a high amplitude and low frequency than to use a low amplitude and a high
frequency [5]. The peculiar Strouhal number

Sr = Aω

ufall

we define relies on an estimate for the settling velocity ufall =
√

Dpg(1 − 1
ρs

) ≈ U0 in a quiescent
fluid, by modelling the particle’s buoyancy-corrected velocity after free-fall-length Dp (Modelling
via Stokes-velocity leads causes lesser collapse). Sr also relies on the approximation that all
configurations are inertial enough to force fnvs = f (per mechanism described in section 1.3). It
leads to much better collapse than the parameters aforementioned.

The parameter χ = ρa
sReb

ωΓc = ρ2
sRe1

ωΓ 1
2 we put forward is based on the parameters from the

dimensional analysis in section 3.3 and fitted to the data. It shares the ability to pool low-β
configurations to the upper left corner of the plot much more consistently with the Sr parameter.
Because the parameter-grid in this study was not designed to deliver extensive ceteris-paribus
sweeps of the three parameters ρs, Reω and Γ (which generally is hard since the latter two both
depend on viscosity) we gained too little data for a parametric study on those parameters. The
weights a, b, c that enable the best fit, attribute similar importance to the density ratio rhos as
to the oscillation amplitude A (squared in the Reω parameter). While our simulations cover only
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4.7. Dimensionless correlations

two density-ratios, the experimental data (which also collapses over χ) hold many more. The
configuration pairs fulfilling ceteris-paribus ρs- alteration (e.g. ID={33, 96}, {41, 98}) support the
strong influence of the parameter. Increasing ρs causes stronger retardation (∆ U

U0 10 = 20-40%
for the Θ10- and ∆ U

U0 6 = 15% for the Θ6 domain for threefold increase of ρs)

The collapse for data obtained from the Θ10- and the Θ6 domain in figure 4.15 illustrate that low
ρs-configurations are affected most by a confined domain (note that the experimental data points
are similar in plots corresponding to both domains and are one from unconfined domain, this
observation is therefore based on the simulation results for the ρs0 = 2.96 configurations). While
the ρs26 = 11.4 configurations experience a general shift towards lower retardation (numerically
illustrated in table 4.4) upon domain-span-expansion, the ρs0 configurations loose their collapsed
formation in addition to a drastic decrease of retardation (visible in Sr, χ-plots).

Θ10

Θ6

Figure 4.15: Dimensionless correlation of retardation magnitude over a combination of parameters
obtained by dimensional analysis (section 3.3). Marker-form indicates ρs and marker-color
indicates β. Filled markers represent numerical results, while empty ones represent experimental
data. Vertical lines (between filled an unfilled markers) show the error between numerical
simulation and the original experiment.
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CHAPTER 5
Conclusion

1. We investigated the physical mechanism causing particle retardation. We found a strong
link between retardation magnitude U/U0 and the contribution of the pressure force to
the net-lift (Cdp) (figure 4.4). This contribution is caused by an increasing asymmetry in
the pressure force Fdp and scales with the ’delay’ of Fdp relative to the viscous drag Fdv

(ϕvp). We also discovered a pattern indicating differences in flow-structures during particle-
upwards movement compared to the downwards movement over an oscillation half-period as
discussed in section 4.5. (The partition of a half-period (aud) throughout which the particle
is not moving against a separated vortex during the downwards- movement, compared to
the partition throughout which the particle is moving against such a vortex during the
upwards-movement, scales indirectly with retardation (within a material configuration)).
We suspect this flow field asymmetry to occur stronger in configurations where gravity is
dominant compared to the oscillation-induced effects. We were not able to link significant
changes of the flow field to the magnitude of the hydro-static force Fh on the particle or the
’delay’ between its components Fdp and the viscous drag Fdv. However, since the absolute
magnitude of the hydro-static force Fh is by orders larger than the asymmetry in upwards-
compared to downwards-movement (≈ Fhmax − Fhmin), even a slight increase in pressure
force during the particle-upwards movement compared to the down-wards movement can
compound over oscillations and have a significant effect on net-lift.

2. The influence of a confined horizontal domain on particle retardation was explored. It was
found that a confined test domain generally leads to greater retardation. The confinement
effects are fond to become more prominent if the viscosity is increased. Additionally,
configurations with low density-ratio ρs were found to be especially sensitive to confinement.
Confining the system from a horizontal cross section of 10Dp × 10Dp (Θ10) to a 6Dp × 6Dp

(Θ6) was found to result in an increase in retardation by as much as 20%. Interestingly,
the magnitude of reactionary forces Fdp, Fdv eminent on a particle (figure 4.3) is almost
unaffected by this confinement. At the same time the flow-field is visibly affected and the
asymmetry factor aud decreases with decreased horizontal domain span. Hence, symmetrical
flow-field-conditions (with respect to the particle’s up- and downwards movement) are
sustained throughout a longer period of the half-period.

3. We found a configurations (ID=83) for which particle levitation, as an extreme case of
retardation in a single-particle system, was observed. The particle settling behaviour
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observed does not suffice the quasi-steady criterion (the particle velocity oscillates around
a terminal mean settling velocity U). Instead the particle engages in chaotic deviations
around the middle of the vertical domain span (figure 4.14). This geometrical aspect
suggests that the effect might be caused by the limited vertical domain span employed in
the simulations. However, the wobbly particle trajectory is reminiscent of the descriptions
Feinman [12] gave about chaotic particle-levitation he witnessed in multi-particle systems.
The differences between multi-particle and single-particle system remain unclear.

4. An approximated Strouhal number Sr = Dpf
ufall

was found to yield good collapse for exper-
imental and numerical retardation data across a wide range of material and oscillation
parameters. Through comparison of collapses obtained from Stokes number St, which
depends on the particle diameter Dp as length-scale, and oscillation Reynolds number
Reω, which depends on the oscillation amplitude A, the amplitude A was found to be the
predominant length-scale. A more complex dimensionless parameter χ, constructed from
parameters obtained by dimensional analysis, was fitted to achieve much better collapse
than prior suggestions. It is composed with a previously unconsidered parameter Γ = gD3

p

ν2

which relates gravitational to viscous forces.



Nomenclature

Forces

Frigid force on particle due to transient motion

Fc collision force

Fe buoyancy-corrected oscillation force

Fg gravity force

Fh hydrostatic force

Fo oscillation force

Fdp pressure contribution to Fdp

Fdv viscous drag contribution to Fh

FIBM force on particle as computed by IBM

Dimensionless entities

β = A
Dp

amplitude ratio

χ = ρ2
sReωΓ 1

2 combined correlation parameter
U
U0

retardation magnitude

Γ = gD3
p

ν2 gravitational to viscous forces

ϕy phase-shift between Fe and yp

ϕh phase-shift between Fe and Fh

ϕvp delay between pressure and viscous compo-
nent of Fh

a = 1 − ( tvcu−tvcd
T
2

) asymmetry-metric for flow-field
in upwards versus downwards movement,
where tvcu/d mark the point in time when
the heading vortex dissipates during particle-
upwards/downwards-movement

Cdp =
∫

T
Fdp
Fg

retardation magnitude

Re = ADpω
ν Reynolds number (as obtained from
non-dimensionalisation)

Rep = Dpumax
ν particle Reynolds number (based on

maximum particle velocity)

Reω = A2ω
ν oscillation Reynolds number

Sr = Dpf
ufall

approximated Strouhal number

Srf = Dpf
U0

forced Strouhal number

Srn = Dpfnvs
U0

natural Strouhal number

St = (ρs − 1) D2
pω

18ν Stokes number

Dimensional entities

ν kinematic viscosity

ρf fluid density

ρp particle density

Θ6,10 simulation domains with Lx=Lz={6,10}Dp

A box oscillation amplitude

Dp particle diameter

f box oscillation frequency

h grid spacing

Lx,y,z domain span in direction x, y, z

w = 2πf box angular velocity

yp particle elevation

Physics constants

g gravitational constant

Velocities

U mean settling velocity

u fluid velocity

U0 settling velocity in quiescent fluid

ufall =
√

Dpg(1 − 1
ρs) approximation to U0

upmax maximum velocity measured throughout a
particle oscillation

uf = Aωsin(ωt) box velocity

up particle velocity
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Tables
Tunstall/Houghton Data-Set

ID U
U0 exp

[-] U
U0 num

[-] errnum
[-]

ρs [-] ν [ kgm2

s
] D

[mm]
β [-] f [Hz] Re [-] Rep [-] origin

/ 0.58 / / 3.98 9.55E-07 0.79 76.2 10.0 3158 / page 1075
/ 0.53 / / 3.98 9.55E-07 0.79 50.8 15.0 3158 / page 1075
/ 0.80 / / 4.42 9.55E-07 1.58 6.3 15.0 1559 / const. f study
/ 0.78 / / 4.42 9.55E-07 1.58 10.8 15.0 2650 / const. f study
/ 0.75 / / 4.42 9.55E-07 1.58 13.9 15.0 3429 / const. f study
/ 0.70 / / 4.42 9.55E-07 1.58 17.7 15.0 4364 / const. f study
/ 0.65 / / 4.42 9.55E-07 1.58 20.3 15.0 4988 / const. f study
/ 0.55 / / 4.42 9.55E-07 1.58 24.1 15.0 5923 / const. f study
/ 0.52 / / 4.42 9.55E-07 1.58 27.2 15.0 6702 / const. f study
/ 0.60 / / 4.42 9.55E-07 1.58 38.8 10.0 6370 / const. Aω2 study
/ 0.65 / / 4.42 9.55E-07 1.58 17.2 15.0 4246 / const. Aω2 study
/ 0.70 / / 4.42 9.55E-07 1.58 9.7 20.0 3185 / const. Aω2 study
/ 0.72 / / 4.42 9.55E-07 1.58 6.2 25.0 2548 / const. Aω2 study
/ 0.77 / / 4.42 9.55E-07 1.58 4.3 30.0 2123 / const. Aω2 study
/ 0.80 / / 4.42 9.55E-07 1.58 2.4 40.0 1592 / const. Aω2 study
/ 0.81 / / 4.42 9.55E-07 1.58 1.6 50.0 1274 / const. Aω2 study

Ho Data-Set
/ 0.96 / / 7.72 9.55E-07 1.00 10.4 21.7 1486 / page 63
/ 0.90 / / 7.72 9.55E-07 1.00 22.9 3.5 520 / page 63
/ 0.80 / / 7.72 9.55E-07 1.00 37.5 3.5 851 / page 63
/ 0.68 / / 7.72 9.55E-07 1.00 47.9 3.5 1088 / page 63
/ 0.95 / / 7.72 9.55E-07 1.00 11.6 5.1 387 / page 63
/ 0.68 / / 7.72 9.55E-07 1.00 25.1 5.1 838 / page 63
/ 0.55 / / 7.72 9.55E-07 1.00 38.7 5.1 1290 / page 63
/ 0.48 / / 7.72 9.55E-07 1.00 51.3 5.1 1709 / page 63
/ 0.79 / / 7.72 9.55E-07 1.00 12.5 6.6 544 / page 63
/ 0.48 / / 7.72 9.55E-07 1.00 39.8 6.6 1730 / page 63
/ 0.95 / / 7.76 9.55E-07 3.17 3.3 3.4 753 / page 61
/ 0.90 / / 7.76 9.55E-07 3.17 7.3 3.4 1657 / page 61
/ 0.82 / / 7.76 9.55E-07 3.17 11.9 3.4 2711 / page 61
/ 0.72 / / 7.76 9.55E-07 3.17 15.2 3.4 3465 / page 61
/ 0.95 / / 7.76 9.55E-07 3.17 3.7 5.0 1232 / page 61
/ 0.77 / / 7.76 9.55E-07 3.17 8.0 5.0 2670 / page 61
/ 0.60 / / 7.76 9.55E-07 3.17 12.3 5.0 4108 / page 61
/ 0.50 / / 7.76 9.55E-07 3.17 16.3 5.0 5443 / page 61
/ 0.70 / / 7.76 9.55E-07 3.17 8.1 6.6 3543 / page 61
/ 0.60 / / 7.76 9.55E-07 3.17 12.7 6.6 5512 / page 61

Table 5.1: experimental data from Tunstall/Houghton [31] and Ho [16]
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Herringe Data-Set (Θ10)
ID U

U0 exp
[-] U

U0 num
[-] errnum [-] ρs [-] ν [ kgm2

s
] D

[mm]
β [-] f [Hz] Re [-] Rep [-] St [-] Sr [-]

0 0.89 0.88 0.01 2.96 2.2E-05 1.00 5.9 19.9 33 9 0.62 7.82
1 0.85 0.82 0.03 2.96 2.6E-06 1.00 6.3 19.0 284 152 4.90 7.44
2 0.89 0.90 0.01 2.96 2.6E-06 1.00 2.4 68.0 391 218 17.90 26.68
3 0.91 0.92 0.01 2.96 2.0E-05 1.00 2.2 68.5 47 19 2.38 26.88
4 0.92 0.89 0.04 7.8 3.8E-06 1.00 2.0 86.8 289 259 54.84 29.70
5 0.94 0.97 0.03 7.8 4.1E-06 1.00 2.0 34.0 104 128 19.84 11.62
6 0.94 0.94 0.01 2.96 3.9E-05 1.00 1.7 95.3 26 9 1.66 37.38
7 0.95 0.93 0.03 2.96 3.4E-06 1.00 1.9 36.2 129 85 7.32 14.19
8 0.91 0.93 0.02 2.96 3.7E-06 1.00 1.9 35.5 111 73 6.54 13.93
9 0.89 0.91 0.03 2.96 3.3E-06 1.00 1.8 92.3 322 175 19.36 36.23
10 0.94 0.87 0.07 2.96 2.4E-06 1.00 2.1 50.0 277 170 14.39 19.61
11 0.95 0.96 0.01 2.96 2.3E-06 1.00 2.1 19.2 112 99 5.80 7.53
12 0.89 0.90 0.02 2.96 1.9E-05 1.00 2.0 51.1 33 13 1.86 20.05
13 0.89 0.95 0.07 2.96 2.6E-05 1.00 2.1 20.2 10 3 0.53 7.93
14 0.86 0.88 0.02 2.96 4.0E-07 1.00 1.8 133.1 374 2103 224.98 52.21
15 0.79 0.86 0.09 2.96 2.5E-07 1.00 1.3 156.4 511 3064 425.35 61.38
16 0.92 0.96 0.04 2.96 5.6E-05 1.00 1.9 35.8 8 2 0.44 14.04
21 1.00 0.95 0.05 7.8 3.4E-06 1.00 2.0 35.5 132 163 24.97 12.14
26 0.72 0.79 0.09 11.4 2.6E-05 1.00 2.6 65.9 41 34 9.17 22.02
28 0.82 0.85 0.04 11.4 1.9E-05 1.00 2.1 49.3 34 32 9.39 16.46

Extension1

32 / 0.80 / 2.96 2.2E-05 1.00 10.0 40.0 114 32 1.25 15.69
33 / 0.88 / 2.96 2.2E-05 1.00 10.0 60.0 172 53 1.87 23.54
35 / 0.81 / 2.96 2.2E-05 1.00 15.0 20.0 86 17 0.62 7.85
36 / 0.75 / 2.96 2.2E-05 1.00 15.0 40.0 172 44 1.25 15.69
39 / 0.75 / 2.96 2.2E-05 1.00 20.0 20.0 114 22 0.62 7.85
40 / 0.72 / 2.96 2.2E-05 1.00 20.0 40.0 229 55 1.25 15.69
41 / 0.83 / 2.96 2.2E-05 1.00 20.0 60.0 343 92 1.87 23.54
61 / 0.60 / 11.4 2.6E-05 1.00 10.0 105.0 253 184 14.62 35.10
63 / 0.59 / 11.4 2.6E-05 1.00 10.0 30.0 72 49 4.18 10.03
64 / 0.59 / 11.4 2.6E-05 1.00 15.0 65.0 235 161 9.05 21.73
65 / 0.40 / 11.4 2.6E-05 1.00 20.0 65.0 313 208 9.05 21.73
68 / 0.71 / 2.96 2.6E-05 1.00 25.0 60.0 361 87 1.57 23.54
69 / 0.63 / 2.96 2.6E-05 1.00 30.0 60.0 434 99 1.57 23.54
71 / 0.79 / 2.96 2.6E-05 1.00 20.0 85.0 410 114 2.23 33.35
72 / 0.42 / 11.4 2.6E-05 1.00 25.0 30.0 181 103 4.18 10.03
73 / 0.40 / 11.4 2.6E-05 1.00 30.0 30.0 217 119 4.18 10.03
74 / 0.42 / 11.4 2.6E-05 1.00 25.0 45.0 271 167 6.27 15.04
75 / 0.36 / 11.4 2.6E-05 1.00 30.0 45.0 325 194 6.27 15.04
76 / 0.42 / 11.4 2.6E-05 1.00 25.0 65.0 392 267 9.05 21.73
77 / 0.07 / 11.4 2.6E-05 1.00 30.0 65.0 470 316 9.05 21.73
80 / 0.52 / 2.96 2.2E-05 1.00 25.0 85.0 607 167 2.65 33.35
83 / 0.00 / 11.4 2.6E-05 1.00 20.0 125.0 602 454 17.40 41.78
96 / 0.64 / 11.4 2.6E-05 1.00 10.0 60.0 145 104 8.35 20.06
97 / 0.46 / 11.4 2.6E-05 1.00 20.0 30.0 144 87 4.18 10.03
98 / 0.45 / 11.4 2.6E-05 1.00 20.0 60.0 289 190 8.35 20.06
99 / 0.84 / 11.4 2.6E-05 1.00 2.60 30.0 18 17 4.18 10.03
100 / 0.56 / 11.4 2.6E-05 1.00 10.0 45.0 108 77 6.27 15.04
101 / 0.47 / 11.4 2.6E-05 1.00 20.0 45.0 216 139 6.27 15.04
102 / 0.80 / 11.4 2.6E-05 1.00 2.60 45.0 28 25 6.27 15.04
103 / 0.78 / 2.69 2.6E-05 1.00 20.0 60.0 289 75 1.57 23.54
67 / ?* / 11.4 2.6E-05 1.00 20.0 85.0 410 298 11.83 28.4
82 / ?* / 11.4 2.6E-05 1.00 20.0 100.0 482 357 13.92 33.4
90 / ?* / 11.4 2.6E-05 1.00 20.0 94.0 453 329 13.09 31.4
94 / ?* / 11.4 2.6E-05 1.00 25.0 80.0 482 343 11.14 26.7

Table 5.2: Numerical and experimental data from configurations according to Herringe [15] for the Θ10 domain.
1 material properties (ν, ρs) from ID = 0, 26 oscillation properties (β, A) extended
* indicates a non-quasi-steady-state trajectory, U

U0
= ? unmeasureable



Herringe Data-Set (Θ6)
ID U

U0 exp
[-] U

U0 num
[-] errnum [-] ρs [-] ν [ kgm2

s
] D

[mm]
β [-] f [Hz] Re [-] Rep [-] St [-] Sr [-]

0 (0.89) 0.88 0.01 2.96 2.2E-05 1.00 5.9 19.9 33 9 0.62 7.82
1 (0.85) 0.91 0.07 2.96 2.6E-06 1.00 6.3 19.0 284 158 4.90 7.44
2 (0.89) 0.90 0.01 2.96 2.6E-06 1.00 2.4 68.0 391 221 17.90 26.68
3 (0.91) 0.86 0.06 2.96 2.0E-05 1.00 2.2 68.5 47 23 2.38 26.88
4 (0.92) 0.84 0.09 7.8 3.8E-06 1.00 2.0 86.8 289 258 54.84 29.70
5 (0.94) 0.94 0.00 7.8 4.1E-06 1.00 2.0 34.0 104 133 19.84 11.62
6 (0.94) 0.87 0.08 2.96 3.9E-05 1.00 1.7 95.3 26 9 1.66 37.38
7 (0.95) 0.92 0.03 2.96 3.4E-06 1.00 1.9 36.2 129 86 7.32 14.19
8 (0.91) 0.93 0.02 2.96 3.7E-06 1.00 1.9 35.5 111 74 6.54 13.93
9 (0.89) 0.92 0.04 2.96 3.3E-06 1.00 1.8 92.3 322 178 19.36 36.23
10 (0.94) 0.89 0.05 2.96 2.4E-06 1.00 2.1 50.0 277 173 14.39 19.61
11 (0.95) 0.96 0.01 2.96 2.3E-06 1.00 2.1 19.2 112 100 5.80 7.53
12 (0.89) 0.91 0.02 2.96 1.9E-05 1.00 2.0 51.1 33 13 1.86 20.05
13 (0.89) 0.95 0.07 2.96 2.6E-05 1.00 2.1 20.2 10 3 0.53 7.93
14 (0.86) 0.97 0.13 2.96 4.0E-07 1.00 1.8 133.1 3740 2103 224.98 52.21
15 (0.79) 0.86 0.09 2.96 2.5E-07 1.00 1.3 156.4 5117 3064 425.35 61.38
16 (0.92) 0.91 0.01 2.96 5.6E-05 1.00 1.9 35.8 8 2 0.44 14.04
21 (1.00) 0.98 0.02 7.8 3.4E-06 1.00 2.0 35.5 132 164 24.97 12.14
25 (0.71) 0.75 0.06 11.4 3.2E-06 1.00 2.7 61.3 326 349 69.77 20.48
26 (0.72) 0.73 0.02 11.4 2.6E-05 1.00 2.6 65.9 41 34 9.17 22.02
28 (0.82) 0.84 0.02 11.4 1.9E-05 1.00 2.1 49.3 34 32 9.39 16.46

Extension1

31 / 0.76 / 2.96 2.2E-05 1.00 10.0 20.0 57 13 0.62 7.85
32 / 0.63 / 2.96 2.2E-05 1.00 10.0 40.0 114 32 1.25 15.69
33 / 0.59 / 2.96 2.2E-05 1.00 10.0 60.0 172 53 1.87 23.54
35 / 0.67 / 2.96 2.2E-05 1.00 15.0 20.0 86 17 0.62 7.85
36 / 0.55 / 2.96 2.2E-05 1.00 15.0 40.0 172 44 1.25 15.69
37 / 0.55 / 2.96 2.2E-05 1.00 15.0 60.0 257 73 1.87 23.54
39 / 0.62 / 2.96 2.2E-05 1.00 20.0 20.0 114 21 0.62 7.85
40 / 0.50 / 2.96 2.2E-05 1.00 20.0 40.0 229 55 1.25 15.69
41 / 0.48 / 2.96 2.2E-05 1.00 20.0 60.0 343 92 1.87 23.54
50 / 0.57 / 2.96 2.2E-05 1.00 15.0 80.0 343 104 2.49 31.39
51 / 0.59 / 2.96 2.2E-05 1.00 15.0 30.0 129 30 0.93 11.77
61 / 0.44 / 11.4 2.6E-05 1.00 10.0 105.0 253 183 14.62 35.10
63 / 0.52 / 11.4 2.6E-05 1.00 10.0 30.0 72 49 4.18 10.03
64 / 0.40 / 11.4 2.6E-05 1.00 15.0 65.0 235 160 9.05 21.73
65 / 0.26 / 11.4 2.6E-05 1.00 20.0 65.0 313 206 9.05 21.73
66 / 0.29 / 11.4 2.6E-05 1.00 15.0 85.0 307 215 11.83 28.41
68 / 0.38 / 2.96 2.6E-05 1.00 25.0 60.0 361 87 1.57 23.54
69 / 0.39 / 2.96 2.6E-05 1.00 30.0 60.0 434 99 1.57 23.54
70 / 0.42 / 2.96 2.6E-05 1.00 20.0 75.0 361 98 1.97 29.43
71 / 0.42 / 2.96 2.6E-05 1.00 20.0 85.0 410 114 2.23 33.35
72 / 0.35 / 11.4 2.6E-05 1.00 25.0 30.0 181 102 4.18 10.03
73 / 0.32 / 11.4 2.6E-05 1.00 30.0 30.0 217 118 4.18 10.03
74 / 0.32 / 11.4 2.6E-05 1.00 25.0 45.0 271 166 6.27 15.04
75 / 0.29 / 11.4 2.6E-05 1.00 30.0 45.0 325 192 6.27 15.04
76 / 0.24 / 11.4 2.6E-05 1.00 25.0 65.0 392 266 9.05 21.73
77 / 0.04 / 11.4 2.6E-05 1.00 30.0 65.0 470 314 9.05 21.73
80 / 0.38 / 2.96 2.6E-05 1.00 25.0 85.0 512 133 2.23 33.35
83 / 0.00* / 11.4 2.6E-05 1.00 20.0 125.0 602 454 17.40 41.78
86 / 0.60 / 11.4 2.6E-05 1.00 5.0 200.0 241 180 27.85 66.85
96 / 0.45 / 11.4 2.6E-05 1.00 10.0 60.0 145 103 8.35 20.06
97 / 0.38 / 11.4 2.6E-05 1.00 20.0 30.0 145 86 4.18 10.03
98 / 0.33 / 11.4 2.6E-05 1.00 20.0 60.0 289 189 8.35 20.06
99 / 0.80 / 11.4 2.6E-05 1.00 2.60 30.0 18 17 4.18 10.03
100 / 0.46 / 11.4 2.6E-05 1.00 10.0 45.0 108 76 6.27 15.04
101 / 0.34 / 11.4 2.6E-05 1.00 20.0 45.0 216 138 6.27 15.04
102 / 0.71 / 11.4 2.6E-05 1.00 2.60 45.0 28 25 6.27 15.04
103 / 0.44 / 2.69 2.6E-05 1.00 20.0 60.0 289 74 1.57 23.54
67 / ?* / 11.4 2.6E-05 1.00 20.0 85.0 410 296 1.14 112.91
82 / ?* / 11.4 2.6E-05 1.00 20.0 100.0 482 355 1.34 132.83
90 / ?* / 11.4 2.6E-05 1.00 20.0 94.0 453 332 1.26 124.86
94 / ?* / 11.4 2.6E-05 1.00 25.0 80.0 482 343 11.14 26.7

Table 5.3: Numerical and experimental data from configurations according to Herringe [15] for the Θ6 domain.
1 material properties (ν, ρs) from ID = 0, 26 oscillation properties (β, A) extended
* indicates a non-quasi-steady-state trajectory, U

U0
= ? unmeasureable
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