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Abstract  

Wildlife surveying is an important task that improves understanding how species 

live and  distribute and therefore, improving methods to better understand and 

observe wildlife are in need. Ground and manned aircraft -based surveying are 

traditional methods that are performed to achieve such goals. However, these 

methods have disadvantages regar ding the time consumption, potential risks on 

survivors, and isolated area reachability.  

Uninhabited aerial system  (UAS) brought advantages regarding risk and special 

coverage scale but with more lab time required to manually analyse imagery. 

Thus, we need to mitigate human intervention while maintaining satisfactory results 

by using machine methods. Different machine -based  methods such as spectral -

based analysis , supervised multi spectral classification  and template matching  

are used to automate the process but are limited of  their abilities to capture 

targeted species in environments where surroundings can be confused with  

target objects.  In this project, we compare the performance of different 

architectures of Convolutional Neural Networks (CNNõs) to propose an alternative 

method that automates the process of waterfowl species detection and 

classification.  

Our dataset con sists of 13 images each of size 5472x3648 and in these images 

LabelBox was used by 1 3 experts from United States Fish and Wildlife Service 

(USFWS) to label waterfowls . The waterfowl dataset includes  three species (duck, 

goose, and crane) and eight sub -species ( American wigeon , Canadian goose, 

gadwall, mallard, northern pintail, sand -hill crane and òOtheró [mostly duck]). Thus, 

we test the ability of CNNõs to detect the targeted objects on three levels 

(waterfowl, species, and sub -species).  

We investigate the pre -processing steps that are necessary to be implemented on 

our dataset  such as image cropping, redundant label removal, and label format 

standardization. We implemented three CNN architectures (YOLO, Retinanet and 

Faster R-CNN) . CNNs recorded an average of  79.47% accuracy in the task of 

waterfowl detection . As for species classification, the CNNõs recorded averages of 

71.3%, 54.6 and 66.6 for duck, goose, and crane, respectively. Also, we found 

major performance degradation on the sub -species level to less than 30%. We 

discovered that results of CNN do not ha ve a common denominator because it 

can detect non -waterfowl objects which have no reference in the ground truth. 

Faster R-CNN was found to  detect much more non -waterfowl objects  than YOLO 

and Retinanet.  

Finally, we  also analyzed the effect rough surroundi ngs such as shadows and plants 

were CNNõs were more likely to produce false negative prediction. Also, CNNsõ 

ability to detect decreases as the waterfowl population density in the image 

increases.  
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1. Introduction  

In this chapter, we discuss the motivation behind the CNN methodology and what 

advantages it has over traditional methods. We define our problem and research 

questions then We list the expected results.  

1.1 Motivation  

Waterfowl population recognition and classification have traditionally been 

undertaken by a combination  of ground -based and manned aircraft surveys. 

Manned aircraft surveys indeed brought advantages when searching in large 

areas because of the large area scale at which it can cover (relative to ground -

based) and the development of ultra -high -resolution and thermal cameras . 

However, manned aircraft surveys are expensiv e and can cause stress to wildlife 

(Wilson et al. 1991). UAS have been used to  successfully survey a variety of bird 

species worldwide with much lower costs and risks. However, one  factor hindering 

the adoption of UAS surveying is the additional human hour s required in the lab to  

manually identify animals in the captured UAS imagery, compared with counts in 

the field (Linchant et al.  2015). Different automation techniques have been used 

in the process of waterfowl recognition with accuracy comparable to man ual 

image counts such as spectral based analysis, including spectral thresholding 

(Laliberte and Ripple 2003), supervised classification (Grenzdörffer 2013), and 

template matching (Abd -Elrahman et al. 2005). However, these methods are 

limited in that they require animals to be highly spectrally separable from their 

environments, which hinders applications in heterogeneous environments in the 

study of species with cryptic colouration, or with image sets of varying brightness 

due to camera performance or weat her conditions (Linchant et al. 2015, Chabot 

and Francis 2016). Thus, Machine Learning (ML) can be used to try to overcome 

the time consumption and spectral separation issues as the ML field has shown 

significant improvement with detection and classificati on tasks especially using 

CNN (Chen et al. 2012).  

1.2 Problem Definition and Research Questions  

The field of ML is the study of using computers to perform specific tasks without 

explicit instructions by learning from data. Several ML models can be applied to 

perform image classification such as support vector machine (SVM) and Key 

Nearest Neighbour (kNN). However, CNN's are chosen to be employed in this 

project because of their leading accuracy performances, non -linearity, and the 

ability to increase model complexity (adding convolutional layers for deeper 

feature extraction). A CNN is a class of ML that is applied for imagery segmentation 

and classification. CNN's have now been studied and matured to be utilized in 

many different types of automation process es in several application domains, for 

example, but not limited to crowd counting, object detection, face attributes 

recognition and geo -localization (Howard et al. 2017, Girshick et al. 2014, van 

Gemert et al. 2014) (Chen et al. 2012). These automation applications have major 

advantages such as cost reduction and time -saving that make the automated 
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task more efficient. However, different architectures of CNNõs are currently 

available to accomplish such goals.  

 

This project aims to setup a comp arative study of different CNN architectures for 

automated waterfowl detection, classification and counting by answering the 

following questions:  

 

¶ What are the necessary preprocessing steps that should be done on the UAS 

waterfowl imagery for CNN to perfor m classification and counting?  

 

¶ How does the prediction of CNNõs change across the three different models 

(waterfowl, species, and sub -species)?  

 

¶ How accurate can state of the art CNNõs perform on UAS waterfowl imagery 

datasets ? 

1.3 Methodology  

We want to utilize state of the art CNN architectures and evaluate how accurate 

they can detect and classify different waterfowl species on three levels namely 

(waterfowl count, species, and sub -species). The implementation of the selected 

CNN architectures will run on an already existing training set of labelled and high -

resolution waterfowl images taken by UAS to enable comparison of various 

architectureõs ability to recognize and classify different waterfowl species. The 

training set was collected using a crowdsour ced image labelling service called 

LabelBox and consists of 13 images each of size 5472x3648 with total label count 

of 18469 labels. The survey mission took place in Bosque del Apache Wildlife 

Refuge in New Mexico using DJI Mavic drone in November 2018. Th e major goal 

of this empirical research project is to obtain the CNN architecture that performs 

best results defined as the number of correct classifications and counts (relative to 

the ground truth) and implements it with a special focus on the applicatio n 

domain of wildlife identification to produce an automated approach for 

identifying different waterfowl classes and in turn, feed accurate information 

about the counts and distribution to the specialists for more efficient decision 

making process . 

 

Different CNN architectures  (e.g., CifarNet, MobilNets, AlexNet, GoogLeNet, YOLO, 

etc.) (Howard et al. 2017, Zha et al. 2015) have accomplished significant 

performance improvements in many application domains such as object labelling 

and classification, event de tection for safety systems, obstacle avoidance in 

autonomous driving and identity checking (Zha et al. 2015). Each architecture 

differs by certain aspects and features such as the number of intermediary layers 

that they have, number and size of the kernels  used to be convolved with the main 

image and feature maps, error calculation methods , and activation functions. 

However, if we wa nt to change the application but still use these CNNs, a process 
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of training should be done. CNN should be fed with  a  training  set that contains 

both the desired input and output (question and right answers). The CNN then 

performs error calculation for its predictions and as the CNN crawls over the 

training set, the error of prediction gets reduced. We want  to compare different 

CNN architectures in terms of their performance in the  recognition and 

classification of waterfowl species in support of the  USFWS. 

1.4 Expected results  

¶ build a comprehensive evaluation study to compare and judge the performance 

of different CNN architectures  based on  the  accuracy of classification and 

counting  and being able to discover the necessary preprocessing steps for the 

waterfowl imagery dataset.  

 

¶ To estimate the potential of using CNN õs in waterfowl surveying.  

 

¶ To build an implementation framework that other waterfowl datasets can utilize to 

reproduce prediction results  

1.5 Structure of the Thesis  

The thesis structure is as follows:  

First, we present the literature  review for traditional surveying methods , what 

improvements UAS brought into the field and where does the machine -based 

surveying stand . After that, the approach goes into the details of data acquisition, 

CNNõs, and workflow of the implementation.  Then, we present the project setup and 

implement ation and we discuss the results. Finally, we present the conclusion of our 

findings and we talk about potential future work.   

2.  State of the Art and Literature Review  
In this chapter, we review traditional surveying methods from literature  where they 

diffe r and what are the advantages and disadvantages of each method. Then, we 

discuss surveying using UAS  and what benefits can be achieved with it for both manual 

count s from imagery and machine -based from the same imagery.  Finally, we review 

ML in image recognition and justify our choice of using CNN . 

2.1. Traditional surveying  methods  

surveying of water birds emerged as an  important  method  of tracking the changes 

that happen in the wildlife ecosystem  and has been used to e stimate populations.  

Traditional surveying of waterbirds refers to ground and aerial surveying . Ground 

surveying is done by walking  or on vehicle  and manually count the number of target 

species  whereas aerial surveying is done by flying an aircraft above the surveying area  

on an altitude where the surveyor can see and count target species . 

One advantage  of aerial surveying  of water birds  is the spatial scale at which it can 

be performed . Entire floodplain wetland systems can be surveyed which means that 
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data can be collected at a scale similar to that at which a river system is managed. 

Aerial survey ing  of water birds  can simultaneously collect data  on a range of species, 

but the efficiency of ar eal methods has been investigated  (Kingsford et al. 1999) . 

However, m ore needs to be known about the accuracy and precision of multispecies 

surveys such as the limitations and the ability to distinguish between different kinds of 

species , to determine their usefulness compared with ground -based methods.  

In (Kingsford et al. 1999 ), water birds  living around  Lake Altibouka in north -western New 

South Wa les were surveyed using a  Cessna 206 aircraft operated at a height of 30m, 

the lake covers  300 ha with a long axis of 3.3 km and a short axis of 0.8 km. It should be 

mentioned here that this lake  was chosen because of its relatively small size and the 

abse nce of vegetation obstacles which makes  it possible to effectively count water 

birds from the ground also thus, better comparison conditions.  

The data was collected  for both areal and ground surveys , into four classes (< 10 / 11 

to 100 / 101 to 1000 / > 1 000) species per survey . This was done to  avoid the problem 

of large counts with high variance dominating counts . It should be noted that it took 

around  2.3 min to fly around the lake and between two and seven hours to do ground 

counts of the lake . 

 

Figure1: Numbers of water birds counted on Lake Altibouka per field trip during 15 trips, (dotted are areal and continuous 
are ground-ōŀǎŜŘύΣ !ŘƻǇǘŜŘ ŦǊƻƳ ά!ŜǊƛŀƭ ǎǳǊǾŜȅ ƻŦ water birds ƻƴ ǿŜǘƭŀƴŘǎ ŀǎ ŀ ƳŜŀǎǳǊŜ ƻŦ ǊƛǾŜǊ ŀƴŘ ŦƭƻƻŘǇƭŀƛƴ ƘŜŀƭǘƘέ 
by (R. T. Kingsford. 1999) in Freshwater Biology (1999) 41, 425-438 

It was clear after collecting the results that the number of species distinguished in the 

ground surveys was higher : 54 species of water birds  could be differentiated during 

ground counts compared with 45 during aerial survey counts. As seen in figure1 , 

ground counts were slightly more precise than aerial counts and aerial counts and 

ground counts for species which occurred in numbers of less than 10 were similarly 

imprecise . For accuracy, both methods r ecorder the same standard error (SE) except 
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for the case where  the  abundance of birds was between 100  and 1000 where aerial 

count recorded SE of 0.02 and ground count recorder 0.2.  

Aerial surveys can be used to collect data on waterbird  population  for up t o 50 

different species  (Kingsford et al. 1999) . Because the method is quick and inexpensive 

compared with ground counts, large areas may be surveyed, providing information 

at a landscape scale. More than one aerial survey of the same birds on a wetland 

allows estimation of precision. One of their most significant advantages is that the 

results of aerial surveys may be applied to the management of an entire river and its 

floodplain. Such information is more easily incorporated by river managers who tend 

to m anage at the scale of the catchment. The more indices we have of river and 

floodplain health at the catchment scale, the more likely it is that results of studies by 

ecologists will be implemented by river managers.  

However, it was shown by (Wilson et al. 1991) that wild birds  can be disturbed as 

aircraft approach. Also, (Sasse 2003) showed that Ninety -one people died while 

participating in wildlife research and management activities between 1937 and 2000 

and Aviation accident s, drowning, car,  and truck accidents were the most common 

causes of death for aircraft surveyors. 

2.2. UAS Surveying  

UAS equipped with high resolution multispectral sensors offer many of the advantages 

of manned -aircraft surveys  at lower cost and lower ri sk in terms of operation . Bird 

population counts using UAS imagery have lower variance compared with traditional 

ground -based counts, and precision up  to an order of an acceptable magnitude  of 

± (5 to 10) percent . 

It was demonstrated that the precision (de fined as the variance between replicated 

counts by di erent counters attempting to count the same sample) of population 

counts of waterbirds in both tropical and polar environments can be improved using 

UAV technology compared to ground counts where UAV -dr iven counts had 

significantly lower variance within colonies than ground counts for all species surveyed 

(Hodgson et al. 2016).  

It was also found in (Hodgson et al. 2016) that UAV -driven counts are consistently similar 

to or significantly larger than groun d counts because of the downward -facing 

perspective of UAV imagery that reduces the likelihood of missed counts due to 

topography and birds obscuring the countersõ line of sight which states that the 

surroundings can greatly affect the accuracy of UAS coun t results. Additionally, still, 

imagery from UAVs presents the option of separating the count area into manageable 

subsets and completing counts in multiple sittings. However, the transition from 

traditional to new UAV -based monitoring methods requires car eful consideration, 

particularly in terms of maintaining the relevance of historical data that has been 

collected at a substantial time and financial cost.  Figure2 shows measurements 

sources of variance when estimating the number of subjects in a faunal ag gregation 

using a traditional ground (green) or UA S (blue) counting technique  ( (+,-)minor, (++, -

-)moderate, (+++, ---)major)  
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Moreover, it was found that no geese were observed flushing or leaving during drone 

surveys flown at 183 m altitude  (Chabot and Bird 2012) . The benefits of UAS for 

collection of data on surface -nesting birds are compelling, including perceived 

reductions in impact and greater spatial coverage and frequency  compared to 

ground surveying.  Therefore, UAS provide  an alterna tive means of collecting important 

demographic and environmental data. For surface -nesting birds, UAS technology can 

provide a more accurate method of collecting population data because of its ability 

to take images of colonies, which can be counted carefu lly in the lab and compared 

through time, therefore reducing the uncertainty of estimates in traditional observer 

counts (Hodgson et al. 2016, van Gemert et al. 2014).  

 

Figure2: Measurements of sources of variance when estimating the number of subjects in a faunal aggregation using a 
ǘǊŀŘƛǘƛƻƴŀƭ ƎǊƻǳƴŘ όƎǊŜŜƴύ ƻǊ ¦!± όōƭǳŜύ ŎƻǳƴǘƛƴƎ ǘŜŎƘƴƛǉǳŜΦ !ŘŀǇǘŜǘ ŦǊƻƳέ tǊŜŎƛǎƛƻƴ ǿƛƭŘƭƛŦŜ ƳƻƴƛǘƻǊƛƴƎ ǳǎƛƴƎ 
ǳƴƳŀƴƴŜŘ ŀŜǊƛŀƭ ǾŜƘƛŎƭŜǎέ ōȅ (Hodgson, J. C. et al 2016). In Precision wildlife monitoring using unmanned aerial 

vehicles. Scientific Reports, 6(1). 

2.3. Automated wildlife  detection from UAS imagery  

Image processing techniques to extract elements from an image that match a target 

object can broadly be divided into two major classes namely area -based matching 

and featu re-based matching. Feature matching algorithms make use of attributes 

such as colour, and texture. Features in one image are compared with potential 

corresponding features in the other image. A pair of features with similar attributes is 

accepted as a matc h. Area -based image matching methods use statistical similarity 
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measures to compare the spectral composition of an image of a target object with 

the same size area in a moving window across another image. One such measure, 

normalized cross -correlation, is widely used for identifying control points and common 

features in overlapped imagery.  

Although bird surveys conducted using UAS Imagery can be more accurate than the 

traditional methods (ground -based and manned aircraft), they can be more time 

consuming if  images would be analysed  manually  (Chabot and Francis 2016).  

In (Laliberte and Ripple  2003), spectral -based analysis  (in this case,  changes in 

brightness value per unit distance in any part of an image see Figure3) on black -and -

white and colou red  aerial images  was applied  with  variety of resolutions containing  

different wildlife species so that the methods could be tested under variou s condition. 

The image analysis programs used were ERDAS Imagine and ImageToo.  

 

Figure3: Applying Lowpass filter (b) and High pass filter (d) to an image, AdoǇǘŜŘ ŦǊƻƳ ά!ǳǘƻƳŀǘŜŘ ǿƛƭŘƭƛŦŜ Ŏƻǳƴǘǎ ŦǊƻƳ 
ǊŜƳƻǘŜƭȅ ǎŜƴǎŜŘ ƛƳŀƎŜǊȅέ by (Laliberte, A. S., and Ripple, W. J. 2003) In Wildlife Society Bulletin, 362ς371. 
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Authors report  that the results were promising  even though the number of animals 

would be greater in conditions where objects are more spectrally separable  (109 to 

299 in the images used in the study). Figure4 shows the high correlation between 

manual  from imagery  and computer counts that was encouraging and demonstrated 

that this technique worked well.  

 

Figure4: Graphs of manual versus computer counts for 10 image subsets for 3 species. (a) snow geese, (b) Canada geese, 
(c) caribou all with the corresponding regression equations and the correlation. Adopted from !ŘŀǇǘŜŘ ŦǊƻƳ ά!ǳǘƻƳŀǘŜŘ 
ǿƛƭŘƭƛŦŜ Ŏƻǳƴǘǎ ŦǊƻƳ ǊŜƳƻǘŜƭȅ ǎŜƴǎŜŘ ƛƳŀƎŜǊȅέ ōȅ (Laliberte, A. S., and Ripple, W. J. 2003) In Wildlife Society Bulletin, 

362ς371. 

Another spectral -based analysis  introduced in (Grenzdorffer 2013 ) where  ArcGIS 10 

software was employed to perform supervised multi spectral classification with a total 

of 7 classes was used to perform supe rvised classification of gulls and an accuracy of 

97.6% was verified . However, this methodology does not necessarily apply to other bird 

species, as the examined gulls provide very good contrast to its surroundings.  
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Figure5: Identified gulls objects (red dots) from UAS aerial survey of 25.5.2012 on the birds reserve island Langenwerder, 
AdoǇǘŜŘ ŦǊƻƳ ά¦!{-ōŀǎŜŘ ŀǳǘƻƳŀǘƛŎ ōƛǊŘ Ŏƻǳƴǘ ƻŦ ŀ ŎƻƳƳƻƴ Ǝǳƭƭ Ŏƻƭƻƴȅέ ōȅ (G. J. Grenzdörffer 2013) in 
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, W2. 

In the study of species with cryptic  coloration, or with image sets of varying brightness 

due to camera performance or weather conditions  (Linchant et al. 2015, Chabot and 

Francis 2016). 

 

Moreover, a multi -stage pattern recognition algorithm (by means of template 

matching) was developed to identify individual birds using images captured by UAS 

(Abd -Elrahman et al. 2005).  The developed pattern recognition algorithm for counting 

birds relies on a four -stage algorithm to enhance the overall obtained accuracy as 

follows: Normalize c ross-correlation , Region grouping, Spectral Characteristics and 

Zero order shape moment. The algorithm performed with 94.02% to 96.42% accuracy.  

 

However, the mentioned methods above are limited in that they require animals to 

be highly spectrally separabl e from their environments, which hinders applications in 

heterogenous environments, in the study of species with cryptic coloration, or with 

image sets of varying brightness due to camera performance or weather conditions  
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Figure6: Automatically identified individual birds are shown as blue polygons using template matching, Adopted  
ŦǊƻƳά5ŜǾŜƭƻǇƳŜƴǘ ƻŦ tŀǘǘŜǊƴ wŜŎƻƎƴƛǘƛƻƴ !ƭƎƻǊƛǘƘƳ ŦƻǊ !ǳǘƻƳŀǘƛŎ .ƛǊŘ 5ŜǘŜŎǘƛƻƴ ŦǊƻƳ ¦ƴƳŀƴƴŜŘ !ŜǊƛŀƭ ±ŜƘƛŎƭŜ 

LƳŀƎŜǊȅέ ōȅ (Abd-Elrahman, A., Pearlstine, L., and Percival, F. 2005) In Surveying and Land Information Science, 65(1), 37 

2.4. Machine Learning  

ML is a field that studies the building of computer systems that learn  and improve  by 

experience  from data  (Mitchell, T.M 2006).  ML algorithms are mainly divided into two  

styles in terms of learning supervision.  

The first is Supervised Learning , where the machine  is given an input data that has 

known labels . The machine then goes through a learning process and continuously 

make predictions about in input data until it achieves a targeted level of accuracy.  

Examples od such algorithms are linear regression and neural networks (NN).  

 

Figure7: A simplified diagram for supervised learning 
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The second style is Unsupervised  Learning . In this style the input data are not labelled, 

and the machine rely on a mathematical operation  to cluster the data an obtain 

general  rules/ similarities between data  points . Examples of  such algorithms are  Apriori 

algorithm , K-Means  and SVM . 

 

Figure8: A simplified diagram of unsupervised learning 

One of the most famous concepts of supervised learning is deep learning  (DL). DL is a 

sub-category of ML that mimics how the human brain works . It uses what is called 

Artificial Neural Networks (ANN)  that consists of  many  layers that contain  neurons (or 

nodes ) all  connected  to form a web structure . 

 

 Each node transforms data by multiplying every value that inters the node with 

òbias/weight ó, which is a node -specific value of the node. Then the node sums all 

entered values . Then the node normalizes the output value by using an activation 

function . This process repeats until the nodesõ weights are adjusted  and  the network  

achieves the target accuracy.  The main task of the activation function is to provide 

nonlinearity to the process, which increases the networksõ ability to capture complex 

patterns.  

Input 

Layer 1 Layer 2 

Output 

Figure9: A simplified diagram for a neural network 
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One of the forms of data that can be fed to a n ML model  are images. Several tasks 

can be achieved by employing ML algorithms in images such as object localization  

and classification , area  segmentation, face recognition  and action recognition. CNN, 

SVM and kNN are examples of  ML algorithms that  can be applied to perform 

object  classification . In kNN, the algorithm relies on computing the distance 

between features  (e.g. Euclidean  distance ) associated with target objects , then 

groups images that are close to each other  as seen in figure 10 . 

 

Figure10: simplified diagram of kNN function 

The parameter k refers to number of closest neighbors considered for class assignment . 

One of the disadvantages of k -NN is becomes limited with large data. This is due to 

huge cost of co mputation for distances between new data points and large training 

set. Moreover, the major reason why k -NN is not used in this project, is that k -NN can 

have a hard time separating high -dimensional data such as images , especially when 

we want to distinguish between images  that contain birds that look fairly similar such 

as sub-species of duck.  

SVM works in a different manner to k -NN, the algorithm assumes that there exists  a 

hyperplane that separate the data such that each  distinct group od data points can 

be clustered together.  

Figure11: simplified diagram of SVM function 
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Sometimes the data points cannot be separated by a hyperplane due to the nature 

of data distribution such as circular data.  SVM use kernels to re -shape the data such 

that a new hyperplane exists that can separate the data points.  

 

Figure12: kernel operation by Grace Zhang. November 2018. In "What is the kernel trick? Why is it important?". 
https://medium.com/@zxr.nju/what -is-the-kernel-trick-why-is-it-important-98a98db0961d 

The main disadvantage SVM suffers from is that it assumes that data can be linearly 

separated. Even thou gh, choosing the proper kernel function is not easy especially 

with high dimensional data such as images.  

2.5. Convolutional Neural  Networks  

CNNs are just like  regular  neural networks which  may be  visualized as  a group  of 

neurons  organized  as in a cyclic graph.  The main difference from a neural network is 

that a hidden layer neuron is only connected to a subset of neurons in the previous 

layer. Figure 13 shows the basic architecture of a CNN.  

CNNs are  a  widely used deep learning framework which was inspired by the visual 

cortex of animals. Initially it had been widely used for object recognition tasks but now 

it is being examined in other domains as well like object tracking, text detection and 

recogniti on , action recognition, scene labelling  and many more  (Aloysius N. and 

Geetha M. 2017) . 

 

Figure13: Basic CNN architectureΣ !ŘƻǇǘŜŘ ŦǊƻƳ άA Review on Deep Convolutional Neural Networksέ ōȅ (Aloysius, N. and 
Geetha, M., 2017) In International Conference on Communication and Signal Processing (ICCSP) (pp. 0588-0592). IEEE. 

https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
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Convolutional Layer:  This layer forms the basic unit of a CNN where most of the 

computation is involved. It is a set of feature maps with neurons arranged in it. The 

parameters of the layer are a set of filters (or kernels ). These filters are convolved with 

the input image and the extracted feature maps from each st age . The parameters  

that control the size of the output volume are the depth  (number of filters at a layer), 

stride ( filter step ) and padding  (to control the  size of output  after convolution ). 

 

Figure14: Convolution operation for R layer in an RGB image AŘƻǇǘŜŘ ŦǊƻƳ άA Review on Deep Convolutional Neural 
Networksέ ōȅ (Aloysius, N. and Geetha, M., 2017) In International Conference on Communication and Signal Processing 

(ICCSP) (pp. 0588-0592). IEEE. 

Pooling Layer:  pooling layers and the latter functions to reduce the spatial dimension 

of the activation maps (without loss of information  as much as possible ) and the 

number of parameters in the net and thus reducing the overall computational 

complexity. This controls the problem of overfitting. Som e of the common pooling 

operations are max pooling, average pooling, stochastic pooling . 

 

Figure15: Max-ǇƻƻƭƛƴƎ ƻǇŜǊŀǘƛƻƴ !ŘƻǇǘŜŘ ŦǊƻƳ άA Review on Deep Convolutional Neural Networksέ ōȅ (Aloysius, N. and 
Geetha, M., 2017) In International Conference on Communication and Signal Processing (ICCSP) (pp. 0588-0592). IEEE. 

Fully Connected Layer:  Neurons in this layer are fully connected to all neurons in the 

previous layer, as in a regular Neural Network. The neurons are one dimensional so 

there cannot be a co nv layer after a fully connected layer.  
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Loss Layer: The last fully connected layer serves as the loss layer that computes the loss 

or error which is a penalty for discrepancy between desired and actual output. For 

predicting a single class out of K mutual ly exclusive classes Softmax loss is usually used. 

It maps the predictions to non -negative values and  normalized to get probability 

distribution over classes.  

Activation Functions:  Activation functions are non -linarites that take on a pixel in the 

input, feature maps or fully connected neurons and do a mathematical operation on 

them. Many such functions exist such as Sigmoid, Tanh, ReLU and Leaky ReLU . 

Many frameworks are available for deep learning, of which Google's TensorFlow is the 

latest and fast growing. With this, a single API can be used to distribute load between 

multiple nodes (CPUs or GPUs). This library is publicly available since November  2015. 

Keras is second fast -growi ng  deep learning framework. This open source library written 

in Python can run  on top of TensorFlow or Theano . Theano  is an open source Python 

library for numerical computations and simplifies the process of writing deep learning 

models. Another framework is Caffe , developed by the Berkeley Vision and Learning 

Center (BVLC). It has many worked examples of deep learning, written in Python. 

Giving more importance to GPUs is the framework called Torch, having an underlying 

C/CUDA implementation. MATLABõs matco nvnet and Torch's torch are also widely 

used frameworks for deep learning.  

2.6. Related work in bird detection using Convolutional Neural Networks  

In a  recent  study done in Korea (Hong, S.J. et. al. 2019), five different CNN architectures 

where employed for the purpose of bird detection namely (Faster R -CNN, R-FCN, SSD, 

Retinanet and YOLO) and evaluated by comparing their speed and accuracy. The 

accuracy of the  detection was measured using the intersection of union IOU, defined 

as the ratio of intersection between the predicted box and the ground truth box. A 

threshold of 0.3 and  0.5 of IOU to determine the acceptability of the detection and 

the CNNsõ performanc e was measured for both thresholds. The training data was 

25,864 UAS images including 137,486 birds.  

Table1:  Evaluation results in (Hong, S.J. et. al. 2019)  for CNN architectures  

Architecture  

Feature 

extractor  

Interface Time 

(ms/photograph)  IOU:0.3 IOU:0.5 

Faster R-

CNN 

Resnet 101 95 95.44 80.63 

Inception v.2  82 94.04 79.35 

R-FCN Resnet 101 87 94.86 79.83 

Retinanet  Resnet 50 75 91.49 73.66 

  Mobilenet v.1  57 85.01 66.01 

SSD Mobilenet v.2  23 85.9 54.87 

YOLO v3 Darknet -53 41 91.8 58.53 

YOLO v2 
Darknet -19 34 90.99 56.8 

Tiny YOLO 21 88.23 54.22 
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It is shown that  Faster R-CNN and R -FCN performed relatively the same  in accuracy 

and speed. It is also noticed  that Retinanet was slightly better than YOLO in accuracy 

when having IOU:0.3 but YOLO was almost twice as fast. However, if we looked at the 

IOU:0.5 accuracy, Retinanet performed much better than YOLO. SSD averaged the 

least IOU:0.3 and was better than YOLO in IOU:0.5 with Mobilenet v.1 feature extr actor.   

It should be mentioned here that the study evaluated the performance of different 

CNNs with how accurate they can detect a òbirdó object without further classification. 

In our case , we have two additional levels of evaluation for species (duck, goose,  and 

crane) and sub -species (American wigeon , Canadian goose, gadwall, mallard, 

northern pintail, sand -hill crane and òOtheró). However, the results obtained indicate 

that the CNN architectures a re suitable as a bird detection technique with UAS 

imagery  with average precision of 85.01% to 94.44% (IOU:0.3).  

The bird size in the images used in the study was calculated to be 40x40 pixels in 

6480x4320 pixels aerial  photographs which implies that the b ird objects can rarely be 

detected without preprocessing  because the CNN resizes the large input image to a 

much smaller scale e.g. (416x416 in Y OLO) which make s the target area in the image 

(bird area) very hard to recognize due to vanishing characteristics of the object . 

Therefore 233 sub -images were obtained for each aerial  photograph so that bird 

object can be detected easier by CNNs with clearer localization.  

 In our project , the dataset consists of 13 images each of size 5472x3648 pixels and 

JSON file containing 18469 labels  for 8 waterfowl classes  performed by 1 3 experts . The 

average bird dimensions were calculated to be 52x54 pixels and therefore, the used 

CNNõs in our project can benefit from applying similar cropping to avoid blank 

predictions (close to zero confidence).  

3. Approach  
In this chapter, we describe the necessary steps for implementation. We begin with a 

big picture overview on the building block of this project from data acquisition to 

implementation. Then we justify our choice of CNN architectures with detailed 

description . Finally, we present the  work and requirement breakdown structure.  

3.1. General project  break down structure  

Our project goes through five  main phases . The first phase is the data a cquisition and 

consists of flight missions done on the studied area  to collect imagery and LabelBox 

labelling by experts. The second phase is the justification of chosen CNN architectures 

where we apply a decision -making process  to choose the best 3 CNN based on the 

results presented in (Hong, S.J. et. al. 2019) . Third is pre-processing phase where we 

discover the necessary data manipulation and reformation so that our dataset is ready 

to be fed to the CNN . Implementation phase is the fourth stage where  we begin the 

training and fine -tuning  process to get acceptable accuracies and also setup the 

software  (installing python environment and downloading necessary libraries)  and 

hardware requirements  (running the implementation on GPU). Finally,  we do the 

evaluation phase where we compare the pred ictions  with ground truth data.  
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It should be mentioned here that the data acquisition phase was done by USFWS and 

our part was to utilize their effort in implementation. Nevertheless, this phase is included 

because it represents a substantial asset in the study and gives a better  general  

understanding in the application domain.  Figure 16 represents the phases breakdown.  

 

3.2. USFWF Dataset 

The surveyed area is Bosque del Apache Wildlife Refuge in New Mexico, two main 

location were surveyed (Maxwell Lake and Bosque del Apache ). The flight mission took 

place between December 2017 and November 2018 . Table 2 represents a summary 

of missions. 

 

 

Figure:16 General Workflow structure 
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Table2: Summary of USFWS surveying mission 

Location  Date  Time Number 

of  

Images  

Flight 

AGL 

(m)  

Sensor Platform  GSD 

(cm/px)  

Maxwell 

Lake  

12/15/2017  12:00 1963 50 senseFly 

S.O.D.A. 

senseFly 

eBee  

1.1 

Bosque del 

Apache  

11/06/2018  12:00 974 40 Hasselblad 

L1D-20c  

DJI 

Mavic  

0.94 

Bosque del 

Apache  

11/07/2018  9:30 1278 40 Hasselblad 

L1D-20c  

DJI 

Mavic  

0.94 

Bosque del 

Apache  

11/13/2018  12:00 608 40 Hasselblad 

L1D-20c  

DJI 

Mavic  

0.94 

Bosque del 

Apache  

11/27/2018  11:30 264 40 Hasselblad 

L1D-20c  

DJI 

Mavic  

0.94 

 

Only 13 images were selected from this set based on the following requirements: 

images must contain substantial number of birds (>10) and contain a variety of 

background conditions.  Figure 17 shows the studied ar ea of Bosque del Apache 

Figure17: Bosque del Apache Wildlife Refuge 
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Wildlife Refuge in New Mexico . The images were  then used in a LabelBox environment 

to be labeled by 13 experts  

Figure18: LabelBox interface 

We can see that the number of sub -species classes in 12 how ever classes with less 

than 200 label  are not representative and  have a very slight chance of being 

detected (compared to other larger classes ) and will behave as a source of confusion 

to the CNN. The eliminated classes are (Northern Shovler, Ring neck, Ruddy and 

Redhead ). 

 

  

Figure19: Sub-species class count 


























































