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Abstract 

Wildlife surveying is an important task that improves understanding how species 

live and distribute and therefore, improving methods to better understand and 

observe wildlife are in need. Ground and manned aircraft-based surveying are 

traditional methods that are performed to achieve such goals. However, these 

methods have disadvantages regarding the time consumption, potential risks on 

survivors, and isolated area reachability. 

Uninhabited aerial system (UAS) brought advantages regarding risk and special 

coverage scale but with more lab time required to manually analyse imagery. 

Thus, we need to mitigate human intervention while maintaining satisfactory results 

by using machine methods. Different machine-based methods such as spectral-

based analysis, supervised multi spectral classification and template matching 

are used to automate the process but are limited of their abilities to capture 

targeted species in environments where surroundings can be confused with 

target objects. In this project, we compare the performance of different 

architectures of Convolutional Neural Networks (CNN’s) to propose an alternative 

method that automates the process of waterfowl species detection and 

classification.  

Our dataset consists of 13 images each of size 5472x3648 and in these images 

LabelBox was used by 13 experts from United States Fish and Wildlife Service 

(USFWS) to label waterfowls. The waterfowl dataset includes three species (duck, 

goose, and crane) and eight sub-species (American wigeon, Canadian goose, 

gadwall, mallard, northern pintail, sand-hill crane and “Other” [mostly duck]). Thus, 

we test the ability of CNN’s to detect the targeted objects on three levels 

(waterfowl, species, and sub-species).  

We investigate the pre-processing steps that are necessary to be implemented on 

our dataset such as image cropping, redundant label removal, and label format 

standardization. We implemented three CNN architectures (YOLO, Retinanet and 

Faster R-CNN). CNNs recorded an average of 79.47% accuracy in the task of 

waterfowl detection. As for species classification, the CNN’s recorded averages of 

71.3%, 54.6 and 66.6 for duck, goose, and crane, respectively. Also, we found 

major performance degradation on the sub-species level to less than 30%. We 

discovered that results of CNN do not have a common denominator because it 

can detect non-waterfowl objects which have no reference in the ground truth. 

Faster R-CNN was found to detect much more non-waterfowl objects than YOLO 

and Retinanet.  

Finally, we also analyzed the effect rough surroundings such as shadows and plants 

were CNN’s were more likely to produce false negative prediction. Also, CNNs’ 

ability to detect decreases as the waterfowl population density in the image 

increases. 
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1. Introduction 

In this chapter, we discuss the motivation behind the CNN methodology and what 

advantages it has over traditional methods. We define our problem and research 

questions then We list the expected results. 

1.1 Motivation  

Waterfowl population recognition and classification have traditionally been 

undertaken by a combination of ground-based and manned aircraft surveys. 

Manned aircraft surveys indeed brought advantages when searching in large 

areas because of the large area scale at which it can cover (relative to ground-

based) and the development of ultra-high-resolution and thermal cameras. 

However, manned aircraft surveys are expensive and can cause stress to wildlife 

(Wilson et al. 1991). UAS have been used to successfully survey a variety of bird 

species worldwide with much lower costs and risks. However, one factor hindering 

the adoption of UAS surveying is the additional human hours required in the lab to 

manually identify animals in the captured UAS imagery, compared with counts in 

the field (Linchant et al. 2015). Different automation techniques have been used 

in the process of waterfowl recognition with accuracy comparable to manual 

image counts such as spectral based analysis, including spectral thresholding 

(Laliberte and Ripple 2003), supervised classification (Grenzdörffer 2013), and 

template matching (Abd-Elrahman et al. 2005). However, these methods are 

limited in that they require animals to be highly spectrally separable from their 

environments, which hinders applications in heterogeneous environments in the 

study of species with cryptic colouration, or with image sets of varying brightness 

due to camera performance or weather conditions (Linchant et al. 2015, Chabot 

and Francis 2016). Thus, Machine Learning (ML) can be used to try to overcome 

the time consumption and spectral separation issues as the ML field has shown 

significant improvement with detection and classification tasks especially using 

CNN (Chen et al. 2012). 

1.2 Problem Definition and Research Questions 

The field of ML is the study of using computers to perform specific tasks without 

explicit instructions by learning from data. Several ML models can be applied to 

perform image classification such as support vector machine (SVM) and Key 

Nearest Neighbour (kNN). However, CNN's are chosen to be employed in this 

project because of their leading accuracy performances, non-linearity, and the 

ability to increase model complexity (adding convolutional layers for deeper 

feature extraction). A CNN is a class of ML that is applied for imagery segmentation 

and classification. CNN's have now been studied and matured to be utilized in 

many different types of automation processes in several application domains, for 

example, but not limited to crowd counting, object detection, face attributes 

recognition and geo-localization (Howard et al. 2017, Girshick et al. 2014, van 

Gemert et al. 2014) (Chen et al. 2012). These automation applications have major 

advantages such as cost reduction and time-saving that make the automated 
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task more efficient. However, different architectures of CNN’s are currently 

available to accomplish such goals. 

 

This project aims to setup a comparative study of different CNN architectures for 

automated waterfowl detection, classification and counting by answering the 

following questions: 

 

• What are the necessary preprocessing steps that should be done on the UAS 

waterfowl imagery for CNN to perform classification and counting? 

 

• How does the prediction of CNN’s change across the three different models 

(waterfowl, species, and sub-species)? 

 

• How accurate can state of the art CNN’s perform on UAS waterfowl imagery 

datasets? 

1.3 Methodology 

We want to utilize state of the art CNN architectures and evaluate how accurate 

they can detect and classify different waterfowl species on three levels namely 

(waterfowl count, species, and sub-species). The implementation of the selected 

CNN architectures will run on an already existing training set of labelled and high-

resolution waterfowl images taken by UAS to enable comparison of various 

architecture’s ability to recognize and classify different waterfowl species. The 

training set was collected using a crowdsourced image labelling service called 

LabelBox and consists of 13 images each of size 5472x3648 with total label count 

of 18469 labels. The survey mission took place in Bosque del Apache Wildlife 

Refuge in New Mexico using DJI Mavic drone in November 2018. The major goal 

of this empirical research project is to obtain the CNN architecture that performs 

best results defined as the number of correct classifications and counts (relative to 

the ground truth) and implements it with a special focus on the application 

domain of wildlife identification to produce an automated approach for 

identifying different waterfowl classes and in turn, feed accurate information 

about the counts and distribution to the specialists for more efficient decision 

making process. 

 

Different CNN architectures (e.g., CifarNet, MobilNets, AlexNet, GoogLeNet, YOLO, 

etc.) (Howard et al. 2017, Zha et al. 2015) have accomplished significant 

performance improvements in many application domains such as object labelling 

and classification, event detection for safety systems, obstacle avoidance in 

autonomous driving and identity checking (Zha et al. 2015). Each architecture 

differs by certain aspects and features such as the number of intermediary layers 

that they have, number and size of the kernels used to be convolved with the main 

image and feature maps, error calculation methods, and activation functions. 

However, if we want to change the application but still use these CNNs, a process 
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of training should be done. CNN should be fed with a training set that contains 

both the desired input and output (question and right answers). The CNN then 

performs error calculation for its predictions and as the CNN crawls over the 

training set, the error of prediction gets reduced. We want to compare different 

CNN architectures in terms of their performance in the recognition and 

classification of waterfowl species in support of the USFWS. 

1.4 Expected results 

• build a comprehensive evaluation study to compare and judge the performance 

of different CNN architectures based on the accuracy of classification and 

counting and being able to discover the necessary preprocessing steps for the 

waterfowl imagery dataset. 

 

• To estimate the potential of using CNN’s in waterfowl surveying. 

 

• To build an implementation framework that other waterfowl datasets can utilize to 

reproduce prediction results 

1.5 Structure of the Thesis  

The thesis structure is as follows: 

First, we present the literature review for traditional surveying methods, what 

improvements UAS brought into the field and where does the machine-based 

surveying stand. After that, the approach goes into the details of data acquisition, 

CNN’s, and workflow of the implementation. Then, we present the project setup and 

implementation and we discuss the results. Finally, we present the conclusion of our 

findings and we talk about potential future work.  

2.  State of the Art and Literature Review 
In this chapter, we review traditional surveying methods from literature where they 

differ and what are the advantages and disadvantages of each method. Then, we 

discuss surveying using UAS and what benefits can be achieved with it for both manual 

counts from imagery and machine-based from the same imagery. Finally, we review 

ML in image recognition and justify our choice of using CNN. 

2.1. Traditional surveying methods 

surveying of water birds emerged as an important method of tracking the changes 

that happen in the wildlife ecosystem and has been used to estimate populations. 

Traditional surveying of waterbirds refers to ground and aerial surveying. Ground 

surveying is done by walking or on vehicle and manually count the number of target 

species whereas aerial surveying is done by flying an aircraft above the surveying area 

on an altitude where the surveyor can see and count target species. 

One advantage of aerial surveying of water birds is the spatial scale at which it can 

be performed. Entire floodplain wetland systems can be surveyed which means that 
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data can be collected at a scale similar to that at which a river system is managed. 

Aerial surveying of water birds can simultaneously collect data on a range of species, 

but the efficiency of areal methods has been investigated (Kingsford et al. 1999). 

However, more needs to be known about the accuracy and precision of multispecies 

surveys such as the limitations and the ability to distinguish between different kinds of 

species, to determine their usefulness compared with ground-based methods. 

In (Kingsford et al. 1999), water birds living around Lake Altibouka in north-western New 

South Wales were surveyed using a Cessna 206 aircraft operated at a height of 30m, 

the lake covers 300 ha with a long axis of 3.3 km and a short axis of 0.8 km. It should be 

mentioned here that this lake was chosen because of its relatively small size and the 

absence of vegetation obstacles which makes it possible to effectively count water 

birds from the ground also thus, better comparison conditions.  

The data was collected for both areal and ground surveys, into four classes (< 10 / 11 

to 100 / 101 to 1000 / > 1000) species per survey. This was done to avoid the problem 

of large counts with high variance dominating counts. It should be noted that it took 

around 2.3 min to fly around the lake and between two and seven hours to do ground 

counts of the lake. 

 

Figure1: Numbers of water birds counted on Lake Altibouka per field trip during 15 trips, (dotted are areal and continuous 
are ground-based), Adopted from “Aerial survey of water birds on wetlands as a measure of river and floodplain health” 
by (R. T. Kingsford. 1999) in Freshwater Biology (1999) 41, 425-438 

It was clear after collecting the results that the number of species distinguished in the 

ground surveys was higher: 54 species of water birds could be differentiated during 

ground counts compared with 45 during aerial survey counts. As seen in figure1, 

ground counts were slightly more precise than aerial counts and aerial counts and 

ground counts for species which occurred in numbers of less than 10 were similarly 

imprecise. For accuracy, both methods recorder the same standard error (SE) except 
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for the case where the abundance of birds was between 100 and 1000 where aerial 

count recorded SE of 0.02 and ground count recorder 0.2. 

Aerial surveys can be used to collect data on waterbird population for up to 50 

different species (Kingsford et al. 1999). Because the method is quick and inexpensive 

compared with ground counts, large areas may be surveyed, providing information 

at a landscape scale. More than one aerial survey of the same birds on a wetland 

allows estimation of precision. One of their most significant advantages is that the 

results of aerial surveys may be applied to the management of an entire river and its 

floodplain. Such information is more easily incorporated by river managers who tend 

to manage at the scale of the catchment. The more indices we have of river and 

floodplain health at the catchment scale, the more likely it is that results of studies by 

ecologists will be implemented by river managers. 

However, it was shown by (Wilson et al. 1991) that wild birds can be disturbed as 

aircraft approach. Also, (Sasse 2003) showed that Ninety-one people died while 

participating in wildlife research and management activities between 1937 and 2000 

and Aviation accidents, drowning, car, and truck accidents were the most common 

causes of death for aircraft surveyors. 

2.2. UAS Surveying 

UAS equipped with high resolution multispectral sensors offer many of the advantages 

of manned-aircraft surveys at lower cost and lower risk in terms of operation. Bird 

population counts using UAS imagery have lower variance compared with traditional 

ground-based counts, and precision up to an order of an acceptable magnitude of 

± (5 to 10) percent. 

It was demonstrated that the precision (defined as the variance between replicated 

counts by different counters attempting to count the same sample) of population 

counts of waterbirds in both tropical and polar environments can be improved using 

UAV technology compared to ground counts where UAV-driven counts had 

significantly lower variance within colonies than ground counts for all species surveyed 

(Hodgson et al. 2016). 

It was also found in (Hodgson et al. 2016) that UAV-driven counts are consistently similar 

to or significantly larger than ground counts because of the downward-facing 

perspective of UAV imagery that reduces the likelihood of missed counts due to 

topography and birds obscuring the counters’ line of sight which states that the 

surroundings can greatly affect the accuracy of UAS count results. Additionally, still, 

imagery from UAVs presents the option of separating the count area into manageable 

subsets and completing counts in multiple sittings. However, the transition from 

traditional to new UAV-based monitoring methods requires careful consideration, 

particularly in terms of maintaining the relevance of historical data that has been 

collected at a substantial time and financial cost. Figure2 shows measurements 

sources of variance when estimating the number of subjects in a faunal aggregation 

using a traditional ground (green) or UAS (blue) counting technique ( (+,-)minor, (++,-

-)moderate, (+++,---)major) 
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Moreover, it was found that no geese were observed flushing or leaving during drone 

surveys flown at 183 m altitude (Chabot and Bird 2012). The benefits of UAS for 

collection of data on surface-nesting birds are compelling, including perceived 

reductions in impact and greater spatial coverage and frequency compared to 

ground surveying. Therefore, UAS provide an alternative means of collecting important 

demographic and environmental data. For surface-nesting birds, UAS technology can 

provide a more accurate method of collecting population data because of its ability 

to take images of colonies, which can be counted carefully in the lab and compared 

through time, therefore reducing the uncertainty of estimates in traditional observer 

counts (Hodgson et al. 2016, van Gemert et al. 2014). 

 

Figure2: Measurements of sources of variance when estimating the number of subjects in a faunal aggregation using a 
traditional ground (green) or UAV (blue) counting technique. Adaptet from” Precision wildlife monitoring using 
unmanned aerial vehicles” by (Hodgson, J. C. et al 2016). In Precision wildlife monitoring using unmanned aerial 

vehicles. Scientific Reports, 6(1). 

2.3. Automated wildlife detection from UAS imagery 

Image processing techniques to extract elements from an image that match a target 

object can broadly be divided into two major classes namely area-based matching 

and feature-based matching. Feature matching algorithms make use of attributes 

such as colour, and texture. Features in one image are compared with potential 

corresponding features in the other image. A pair of features with similar attributes is 

accepted as a match. Area-based image matching methods use statistical similarity 
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measures to compare the spectral composition of an image of a target object with 

the same size area in a moving window across another image. One such measure, 

normalized cross-correlation, is widely used for identifying control points and common 

features in overlapped imagery. 

Although bird surveys conducted using UAS Imagery can be more accurate than the 

traditional methods (ground-based and manned aircraft), they can be more time 

consuming if images would be analysed manually (Chabot and Francis 2016). 

In (Laliberte and Ripple 2003), spectral-based analysis (in this case, changes in 

brightness value per unit distance in any part of an image see Figure3) on black-and-

white and coloured aerial images was applied with variety of resolutions containing 

different wildlife species so that the methods could be tested under various condition. 

The image analysis programs used were ERDAS Imagine and ImageToo. 

 

Figure3: Applying Lowpass filter (b) and High pass filter (d) to an image, Adopted from “Automated wildlife counts from 
remotely sensed imagery” by (Laliberte, A. S., and Ripple, W. J. 2003) In Wildlife Society Bulletin, 362–371. 
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Authors report that the results were promising even though the number of animals 

would be greater in conditions where objects are more spectrally separable (109 to 

299 in the images used in the study). Figure4 shows the high correlation between 

manual from imagery and computer counts that was encouraging and demonstrated 

that this technique worked well. 

 

Figure4: Graphs of manual versus computer counts for 10 image subsets for 3 species. (a) snow geese, (b) Canada geese, 
(c) caribou all with the corresponding regression equations and the correlation. Adopted from Adapted from “Automated 

wildlife counts from remotely sensed imagery” by (Laliberte, A. S., and Ripple, W. J. 2003) In Wildlife Society Bulletin, 
362–371. 

Another spectral-based analysis introduced in (Grenzdorffer 2013) where ArcGIS 10 

software was employed to perform supervised multi spectral classification with a total 

of 7 classes was used to perform supervised classification of gulls and an accuracy of 

97.6% was verified. However, this methodology does not necessarily apply to other bird 

species, as the examined gulls provide very good contrast to its surroundings. 
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Figure5: Identified gulls objects (red dots) from UAS aerial survey of 25.5.2012 on the birds reserve island Langenwerder, 
Adopted from “UAS-based automatic bird count of a common gull colony” by (G. J. Grenzdörffer 2013) in 
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, W2. 

In the study of species with cryptic coloration, or with image sets of varying brightness 

due to camera performance or weather conditions (Linchant et al. 2015, Chabot and 

Francis 2016). 

 

Moreover, a multi-stage pattern recognition algorithm (by means of template 

matching) was developed to identify individual birds using images captured by UAS 

(Abd-Elrahman et al. 2005). The developed pattern recognition algorithm for counting 

birds relies on a four-stage algorithm to enhance the overall obtained accuracy as 

follows: Normalize cross-correlation, Region grouping, Spectral Characteristics and 

Zero order shape moment. The algorithm performed with 94.02% to 96.42% accuracy. 

 

However, the mentioned methods above are limited in that they require animals to 

be highly spectrally separable from their environments, which hinders applications in 

heterogenous environments, in the study of species with cryptic coloration, or with 

image sets of varying brightness due to camera performance or weather conditions 
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Figure6: Automatically identified individual birds are shown as blue polygons using template matching, Adopted  
from“Development of Pattern Recognition Algorithm for Automatic Bird Detection from Unmanned Aerial Vehicle 

Imagery” by (Abd-Elrahman, A., Pearlstine, L., and Percival, F. 2005) In Surveying and Land Information Science, 65(1), 37 

2.4. Machine Learning 

ML is a field that studies the building of computer systems that learn and improve by 

experience from data (Mitchell, T.M 2006). ML algorithms are mainly divided into two 

styles in terms of learning supervision.  

The first is Supervised Learning, where the machine is given an input data that has 

known labels. The machine then goes through a learning process and continuously 

make predictions about in input data until it achieves a targeted level of accuracy. 

Examples od such algorithms are linear regression and neural networks (NN). 

 

Figure7: A simplified diagram for supervised learning 
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The second style is Unsupervised Learning. In this style the input data are not labelled, 

and the machine rely on a mathematical operation to cluster the data an obtain 

general rules/similarities between data points. Examples of such algorithms are Apriori 

algorithm, K-Means and SVM. 

 

Figure8: A simplified diagram of unsupervised learning 

One of the most famous concepts of supervised learning is deep learning (DL). DL is a 

sub-category of ML that mimics how the human brain works. It uses what is called 

Artificial Neural Networks (ANN) that consists of many layers that contain neurons (or 

nodes) all connected to form a web structure. 

 

 Each node transforms data by multiplying every value that inters the node with 

“bias/weight”, which is a node-specific value of the node. Then the node sums all 

entered values. Then the node normalizes the output value by using an activation 

function. This process repeats until the nodes’ weights are adjusted and the network 

achieves the target accuracy. The main task of the activation function is to provide 

nonlinearity to the process, which increases the networks’ ability to capture complex 

patterns. 

Input 

Layer 1 Layer 2 

Output 

Figure9: A simplified diagram for a neural network 
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One of the forms of data that can be fed to an ML model are images. Several tasks 

can be achieved by employing ML algorithms in images such as object localization 

and classification, area segmentation, face recognition and action recognition. CNN, 

SVM and kNN are examples of ML algorithms that can be applied to perform 

object classification. In kNN, the algorithm relies on computing the distance 

between features (e.g. Euclidean distance) associated with target objects, then 

groups images that are close to each other as seen in figure 10. 

 

Figure10: simplified diagram of kNN function 

The parameter k refers to number of closest neighbors considered for class assignment. 

One of the disadvantages of k-NN is becomes limited with large data. This is due to 

huge cost of computation for distances between new data points and large training 

set. Moreover, the major reason why k-NN is not used in this project, is that k-NN can 

have a hard time separating high-dimensional data such as images, especially when 

we want to distinguish between images that contain birds that look fairly similar such 

as sub-species of duck. 

SVM works in a different manner to k-NN, the algorithm assumes that there exists a 

hyperplane that separate the data such that each distinct group od data points can 

be clustered together. 

Figure11: simplified diagram of SVM function 
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Sometimes the data points cannot be separated by a hyperplane due to the nature 

of data distribution such as circular data. SVM use kernels to re-shape the data such 

that a new hyperplane exists that can separate the data points. 

 

Figure12: kernel operation by Grace Zhang. November 2018. In "What is the kernel trick? Why is it important?". 
https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d 

The main disadvantage SVM suffers from is that it assumes that data can be linearly 

separated. Even though, choosing the proper kernel function is not easy especially 

with high dimensional data such as images. 

2.5. Convolutional Neural Networks 

CNNs are just like regular neural networks which may be visualized as a group of 

neurons organized as in a cyclic graph. The main difference from a neural network is 

that a hidden layer neuron is only connected to a subset of neurons in the previous 

layer. Figure13 shows the basic architecture of a CNN. 

CNNs are a widely used deep learning framework which was inspired by the visual 

cortex of animals. Initially it had been widely used for object recognition tasks but now 

it is being examined in other domains as well like object tracking, text detection and 

recognition, action recognition, scene labelling and many more (Aloysius N. and 

Geetha M. 2017). 

 

Figure13: Basic CNN architecture, Adopted from “A Review on Deep Convolutional Neural Networks” by (Aloysius, N. and 
Geetha, M., 2017) In International Conference on Communication and Signal Processing (ICCSP) (pp. 0588-0592). IEEE. 

https://medium.com/@zxr.nju/what-is-the-kernel-trick-why-is-it-important-98a98db0961d
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Convolutional Layer: This layer forms the basic unit of a CNN where most of the 

computation is involved. It is a set of feature maps with neurons arranged in it. The 

parameters of the layer are a set of filters (or kernels). These filters are convolved with 

the input image and the extracted feature maps from each stage. The parameters 

that control the size of the output volume are the depth (number of filters at a layer), 

stride (filter step) and padding (to control the size of output after convolution). 

 

Figure14: Convolution operation for R layer in an RGB image Adopted from “A Review on Deep Convolutional Neural 
Networks” by (Aloysius, N. and Geetha, M., 2017) In International Conference on Communication and Signal Processing 

(ICCSP) (pp. 0588-0592). IEEE. 

Pooling Layer: pooling layers and the latter functions to reduce the spatial dimension 

of the activation maps (without loss of information as much as possible) and the 

number of parameters in the net and thus reducing the overall computational 

complexity. This controls the problem of overfitting. Some of the common pooling 

operations are max pooling, average pooling, stochastic pooling. 

 

Figure15: Max-pooling operation Adopted from “A Review on Deep Convolutional Neural Networks” by (Aloysius, N. and 
Geetha, M., 2017) In International Conference on Communication and Signal Processing (ICCSP) (pp. 0588-0592). IEEE. 

Fully Connected Layer: Neurons in this layer are fully connected to all neurons in the 

previous layer, as in a regular Neural Network. The neurons are one dimensional so 

there cannot be a conv layer after a fully connected layer. 
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Loss Layer: The last fully connected layer serves as the loss layer that computes the loss 

or error which is a penalty for discrepancy between desired and actual output. For 

predicting a single class out of K mutually exclusive classes Softmax loss is usually used. 

It maps the predictions to non-negative values and normalized to get probability 

distribution over classes. 

Activation Functions: Activation functions are non-linarites that take on a pixel in the 

input, feature maps or fully connected neurons and do a mathematical operation on 

them. Many such functions exist such as Sigmoid, Tanh, ReLU and Leaky ReLU. 

Many frameworks are available for deep learning, of which Google's TensorFlow is the 

latest and fast growing. With this, a single API can be used to distribute load between 

multiple nodes (CPUs or GPUs). This library is publicly available since November 2015. 

Keras is second fast-growing deep learning framework. This open source library written 

in Python can run on top of TensorFlow or Theano. Theano is an open source Python 

library for numerical computations and simplifies the process of writing deep learning 

models. Another framework is Caffe, developed by the Berkeley Vision and Learning 

Center (BVLC). It has many worked examples of deep learning, written in Python. 

Giving more importance to GPUs is the framework called Torch, having an underlying 

C/CUDA implementation. MATLAB’s matconvnet and Torch's torch are also widely 

used frameworks for deep learning. 

2.6. Related work in bird detection using Convolutional Neural Networks 

In a recent study done in Korea (Hong, S.J. et. al. 2019), five different CNN architectures 

where employed for the purpose of bird detection namely (Faster R-CNN, R-FCN, SSD, 

Retinanet and YOLO) and evaluated by comparing their speed and accuracy. The 

accuracy of the detection was measured using the intersection of union IOU, defined 

as the ratio of intersection between the predicted box and the ground truth box. A 

threshold of 0.3 and 0.5 of IOU to determine the acceptability of the detection and 

the CNNs’ performance was measured for both thresholds. The training data was 

25,864 UAS images including 137,486 birds. 

Table1:  Evaluation results in (Hong, S.J. et. al. 2019) for CNN architectures 

Architecture 

Feature 

extractor 

Interface Time 

(ms/photograph) IOU:0.3 IOU:0.5 

Faster R-

CNN 

Resnet 101 95 95.44 80.63 

Inception v.2 82 94.04 79.35 

R-FCN Resnet 101 87 94.86 79.83 

Retinanet Resnet 50 75 91.49 73.66 

  Mobilenet v.1 57 85.01 66.01 

SSD Mobilenet v.2 23 85.9 54.87 

YOLO v3 Darknet-53 41 91.8 58.53 

YOLO v2 
Darknet-19 34 90.99 56.8 

Tiny YOLO 21 88.23 54.22 
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It is shown that Faster R-CNN and R-FCN performed relatively the same in accuracy 

and speed. It is also noticed that Retinanet was slightly better than YOLO in accuracy 

when having IOU:0.3 but YOLO was almost twice as fast. However, if we looked at the 

IOU:0.5 accuracy, Retinanet performed much better than YOLO. SSD averaged the 

least IOU:0.3 and was better than YOLO in IOU:0.5 with Mobilenet v.1 feature extractor.  

It should be mentioned here that the study evaluated the performance of different 

CNNs with how accurate they can detect a “bird” object without further classification. 

In our case, we have two additional levels of evaluation for species (duck, goose, and 

crane) and sub-species (American wigeon, Canadian goose, gadwall, mallard, 

northern pintail, sand-hill crane and “Other”). However, the results obtained indicate 

that the CNN architectures are suitable as a bird detection technique with UAS 

imagery with average precision of 85.01% to 94.44% (IOU:0.3). 

The bird size in the images used in the study was calculated to be 40x40 pixels in 

6480x4320 pixels aerial photographs which implies that the bird objects can rarely be 

detected without preprocessing because the CNN resizes the large input image to a 

much smaller scale e.g. (416x416 in YOLO) which makes the target area in the image 

(bird area) very hard to recognize due to vanishing characteristics of the object. 

Therefore 233 sub-images were obtained for each aerial photograph so that bird 

object can be detected easier by CNNs with clearer localization. 

 In our project, the dataset consists of 13 images each of size 5472x3648 pixels and 

JSON file containing 18469 labels for 8 waterfowl classes performed by 13 experts. The 

average bird dimensions were calculated to be 52x54 pixels and therefore, the used 

CNN’s in our project can benefit from applying similar cropping to avoid blank 

predictions (close to zero confidence). 

3. Approach 
In this chapter, we describe the necessary steps for implementation. We begin with a 

big picture overview on the building block of this project from data acquisition to 

implementation. Then we justify our choice of CNN architectures with detailed 

description. Finally, we present the work and requirement breakdown structure. 

3.1. General project breakdown structure 

Our project goes through five main phases. The first phase is the data acquisition and 

consists of flight missions done on the studied area to collect imagery and LabelBox 

labelling by experts. The second phase is the justification of chosen CNN architectures 

where we apply a decision-making process to choose the best 3 CNN based on the 

results presented in (Hong, S.J. et. al. 2019). Third is pre-processing phase where we 

discover the necessary data manipulation and reformation so that our dataset is ready 

to be fed to the CNN. Implementation phase is the fourth stage where we begin the 

training and fine-tuning process to get acceptable accuracies and also setup the 

software (installing python environment and downloading necessary libraries) and 

hardware requirements (running the implementation on GPU). Finally, we do the 

evaluation phase where we compare the predictions with ground truth data. 
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It should be mentioned here that the data acquisition phase was done by USFWS and 

our part was to utilize their effort in implementation. Nevertheless, this phase is included 

because it represents a substantial asset in the study and gives a better general 

understanding in the application domain. Figure 16 represents the phases breakdown. 

 

3.2. USFWF Dataset 

The surveyed area is Bosque del Apache Wildlife Refuge in New Mexico, two main 

location were surveyed (Maxwell Lake and Bosque del Apache). The flight mission took 

place between December 2017 and November 2018. Table 2 represents a summary 

of missions. 

 

 

Figure:16 General Workflow structure 
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Table2: Summary of USFWS surveying mission 

Location Date Time Number 

of 

Images 

Flight 

AGL 

(m) 

Sensor Platform GSD 

(cm/px) 

Maxwell 

Lake 

12/15/2017 12:00 1963 50 senseFly 

S.O.D.A. 

senseFly 

eBee 

1.1 

Bosque del 

Apache 

11/06/2018 12:00 974 40 Hasselblad 

L1D-20c 

DJI 

Mavic 

0.94 

Bosque del 

Apache 

11/07/2018 9:30 1278 40 Hasselblad 

L1D-20c 

DJI 

Mavic 

0.94 

Bosque del 

Apache 

11/13/2018 12:00 608 40 Hasselblad 

L1D-20c 

DJI 

Mavic 

0.94 

Bosque del 

Apache 

11/27/2018 11:30 264 40 Hasselblad 

L1D-20c 

DJI 

Mavic 

0.94 

 

Only 13 images were selected from this set based on the following requirements: 

images must contain substantial number of birds (>10) and contain a variety of 

background conditions. Figure 17 shows the studied area of Bosque del Apache 

Figure17: Bosque del Apache Wildlife Refuge 
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Wildlife Refuge in New Mexico. The images were then used in a LabelBox environment 

to be labeled by 13 experts 

Figure18: LabelBox interface 

We can see that the number of sub-species classes in 12 how ever classes with less 

than 200 label are not representative and have a very slight chance of being 

detected (compared to other larger classes) and will behave as a source of confusion 

to the CNN. The eliminated classes are (Northern Shovler, Ringneck, Ruddy and 

Redhead). 

 

  

Figure19: Sub-species class count 
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3.3. Choice of CNN Architectures 

We will run a Weighted Linear Combination (WLC) operation in order to rank the used 

CNNs and take the best three based on accuracy defined as IOU:0.3 score. It should 

be noted here that not all CNN’s in Table1 would be taken into consideration. R-FCN 

with Resnet 101 will not be taken as this model performed very similarly to Faster R-

CNNs with slightly less accuracy but better time. Another reason to suppress R-FCN is 

that it contains the same feature extractor of Faster R-CNN which is (Resnet 101) as the 

core model for detection and thus not much to compare would be available if we 

chose both in our implementation. Also, we will only take the IOU:0.3 measurement 

accuracy as it was stated in the study that even with IOU:0.3 all bird objects were 

detected. Also, YOLOv2 was suppressed because the latest version of YOLOv3 was 

developed to obtain better accuracy which is the prime focus in this study. 

We first normalize the speed and accuracy for each option using the below equation. 

zi = xi−min(x)/max(x) − min(x) 

To obtain values between 0 and 1 for each field. 

Table3: Normalized Speed and accuracy measurements 

 

Table4: WLC operation scores and ranking 
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3.4. Detailed specifications of chosen CNN’s  

You Only Look Once(YOLO): YOLO is a CNN designed by collaboration between 

University of Washington, Allen Institute of AI and Facebook AI Research and built for 

wide range of computer vision tasks such as but not limited to activity 

recognition, face detection, face recognition and video object co-segmentation. 

YOLO utilizes a single CNN for object detection and the architecture takes the whole 

image and split it up on a SxS grid, pass it through a neural network to create bounding 

boxes and class predictions to determine the final detection output. 

To calculate the bounding boxes, YOLO implements two key post-processing steps: 

IOU (Intersect of Union) and NMS (Non-maximum suppression). 

 

 

 

 

 

 

 

 

 

In Figure21, The Red box is what the computer thinks is the person, while the blue is 

the actual bounding box of the object. The overlap of the two boxes gives us our 

IOU. 

Figure 20: YOLO Architecture, Adopted from “Unified, real-time object detection” by (Redmon, J. et al 2016) 
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 779-788). 

Figure21: IOU illustration 

Actual object 

Prediction 

https://en.wikipedia.org/wiki/Activity_recognition
https://en.wikipedia.org/wiki/Activity_recognition
https://en.wikipedia.org/wiki/Face_detection
https://en.wikipedia.org/wiki/Face_recognition
https://en.wikipedia.org/wiki/Object_Co-segmentation
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NMS ensures we identify the optimal cell among all candidates where the desired 

object belongs. Rather than determining that there are multiple cases of the object in 

the image, NMS chooses the highest probability of the boxes that are determining the 

same object (Rothe, R et. al 2014). Figure 22 shows a demonstration of NMS. 

 

 

 

 

 

 

 

 

 

However, one drawback of YOLO is the inability to detect multiple objects that are 

either too close or too small (Redmon, J. et al 2016). 

Faster R-CNN:  

Faster R-CNN is a CNN designed by Microsoft Research to propose possible regions 

of interest and to classify and adjust them. 

R-CNN is a type of detecting algorithms which detect objects by proposing region in 

the input image that may contain an object. These regions which are also called 

anchors in the image are proposed by an external region proposal method which is 

selective search. A convolutional layer is then applied to the proposed regions for 

different purposes. The problem with R-CNNs is that the time consumption during the 

testing process that is due to the large number of regions proposed. 

Fast R-CNNs is an improved version of R-CNN that applies the convolution operation 

to the input image first then it performs region proposal on the feature maps 

Figure22: NMS illustration 

Figure23: Fast R-CNN architecture, Adapted from “Fast R-CNN” by (Girshick, R. 2015) In Proceedings of the IEEE 
international conference on computer vision (pp. 1440-1448). 

Candidates 

Best 

candidate 
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extracted by the convolution process which is less in size as convoluting the input 

image with the CNN kernels results smaller images of feature hence less proposed 

regions. 

Faster R-CNN is an improvement over Fast R-CNN. The input image of Faster R-CNN is 

first resized to 600 pixels on the shorter side and 1000 pixel on the shorter side then a 

sliding window of the size 40x60 is applied to the reduced image which result on a 

maximum of 2400 possible window locations. 

 

 

 

 

 

 

The anchors are proposed or using Region Proposal Network (RPN) shown in Figure24. 

Each produced region has what is called an abjectness score measured using IOU. 

the model ignores boundary windows and applies NMS to further reduce the number 

of proposed regions 

this operation results 512 window locations out of the 2400. The 512 regions are then 

split in half as positive and positive regions based on the IOU of each window. 

 

 

 

 

 

 

 

 

 

  

Figure24: Faster R-CNN architecture, Adapted from “Domain Adaptive Faster R-CNN for Object Detection in the Wild” 
by (Chen, Y. et al 2018) In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3339-

3348). 

Figure25: Region Proposal Network (RPN), Adopted from “Faster r-cnn: Towards real-time object 
detection with region proposal networks.” By (Ren, S. et al 2015) In Advances in neural 

information processing systems (pp. 91-99). 
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Retinanet: 

Retinanet is a single-stage detection architecture, built by Facebook AI Research 

(FAIR) to outperform the state-of-the art one-stage detectors (YOLO and SSD) and 

achieve accuracy results close to two-stage detectors (Faster-RCNN, Fast R-CNN). 

Retinanet overcome the problem of accuracy in one-stage detectors by densely 

covering all possible locations that could contain objects in an input Image. 

In practice, Retinanet processes ~100k locations which is significantly larger number 

than some one-stage detectors such as YOLOv2(~1k) and SSD(8~26k). 

The Primary problem of having that much possible locations in an image is that most 

of these locations would be from the background of the Image and therefore 

uninformative and only few locations from the foreground of the image. This problem 

is called Class Imbalance and Figure27 shows an illustration of the problem. 

 

 

 

 

 

 

 

 

 

Retinanet solves the problem of class imbalance by introducing a Focal Loss function 

instead of cross entropy loss function which is commonly used in one-stage detectors. 

The importance of Focal Loss is that it reduces the features learned from background 

locations (not informative) while maintaining the features learned from the foreground 

locations (informative). 

Figure27: illustration of class imbalance 

Figure26: Retinanet Architecture, Adopted from “Focal Loss for Dense Object Detection” by (Lin, T.Y. et al 2017) In 
Proceedings of the IEEE international conference on computer vision (pp. 2980-2988 

Informative 

Not 

informative 
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Figure28: Cross Entropy and Focal loss functions, Adopted from “Focal Loss for Dense Object Detection” by (Lin, T.Y. et al 
2017) In Proceedings of the IEEE international conference on computer vision (pp. 2980-2988 

3.5. Workflow for the evaluation 

Before proceeding with implementation, we must make sure that dataset is 

prepossessed, and the software and hardware setups to supports the implementation. 

The first part of the setup is preprocessing the dataset and this is done in the following 

steps: 

• Convert LabelBox JSON Annotations to each CNN acceptable format. 

• Split each image to a group on sub-images for the object to be easily identified. 

• Adjust the labels so each label corresponds to an object in the sub-images. 

• Construct a training set (images not fed to the CNN in the training process) 

We should also link the software with the hardware available. For example, CUDA 

Toolkit with compatible Keras and TensorFlow versions. Moreover, minimum 

requirements of software and hardware should be met such as Windows 64bit with 

Python v3.5 or higher to support the implementation of the chosen CNNs. Figures 29 

and 30 show the requirements and work structures, respectively. 

 

Figure 29: Requirements Breakdown 
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The data should be segmented into 3 parts namely: training, testing, and evaluation. 

It should be mentioned here that the training data should be larger than testing and 

evaluation, giving the CNNs the chance as much as possible from all the possible 

variations in the dataset. The accuracy measurement should be divided into two 

major parts: accuracy of detection and accuracy of classification. The accuracy of 

detection will be defined as how close the number of successful predictions to the 

actual number of birds in the test set is. The classification accuracy is how close the 

number of successful class predictions to the number of actual class occurrences in 

the test set. Nevertheless, manual evaluation on the results (looking at each image 

result) is necessary to understand why an error has occurred in the detections. 

 

Figure 30: Work breakdown 
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4. Implementation 
In this chapter, we present the two steps of implementation. We begin with pre-

processing phase and discuss the necessary adjustments and modifications that 

should be done to the dataset. The second phase is the training and includes a 

description of the used software and hardware setup along with sample image results 

and an explanation of how to numerically present the performance of each CNN. 

4.1. Pre-processing 

In this section, we describe the data preprocessing steps along with the necessary 

software and hardware setup for the implementation. 

First, we should convert LabelBox JSON annotation to Darknet annotation format (YOLO 

format). The LabelBox annotations are represented as: 

<IMAGE_NAME>","Label":{"CLASS_NAME_1":[{"geometry":[{"x":X0,"y":Y0},{"x":X1,"y":Y1}…….."

:{"CLASS_NAME_2"":[{"geometry":[{"x":X0,"y":Y0},{"x":X1,"y":Y1}……….]}. 

While YOLOv3 annotation format is as follows: 

<IMAGE_PATH> Xmin,Ymin,Xmax,Ymax,<CLASS_ID>  [each label in a single line] 

Therefore, a python script to perform the conversion war written. The code goes to 

each row in the JSON file and extracts <IMAGE_NAME> and append it with the 

calculated X,Y (min and max)coordinates for each object <CLASS_NAME>. 

The conversion process result was 18469 labels for 8 classes. However, as the dataset 

was labelled by 13 experts: redundant labels for each object should be removed in 

the following manner: 

• If two or more labels have an IOU of more than 50% 

o Keep the label with the smallest area 

Figure31: Removing multiple labels from the training set 
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we chose to keep the smallest-area label because it contains less background noise 

relative to larger labels bounding the same object. It should be mentioned here that 

such a change is only valid under the assumption that all labels cover the body of the 

desired object as shown in the figure 31 

The result of removing multiple labels resulted 2908 labels with the following 

distribution: 

Table 5: Class distribution in the training set 

 

Each image is 5472x3648 pixels and an average label size is 52x54 which takes .014% 

of the total image area. This small percentage hinders YOLOv3 ability to detect desired 

objects. Thus, if we crop the image to multiple sub-images to enlarge the ratio of area 

taken by the label in the image. 

Each image will be cropped to 56 sub-images (7 rows 8 columns) of size 684x521 pixels 

and therefore the average percentage of area covered by a single label will be 

0.78%. Figure 32 shows how a bird is enlarged by the cropping process. 

 Figure32: Cropping results 
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After that, all labels should be adjusted to refer to each sub-image. The tile at which 

a label belongs can be found by the results of integer division between the original 

X,Y coordinates and the sub-image size. The new coordinates of the label will be the 

reminder of division operation as shown in the example below. 

<IMAGE_1> 4536,2581,4589,2602 →  <IMAGE_1_06_04> 432,497,485,518 

It should be mentioned here that, performing image cropping brings an advantage 

of reducing the background noise introduced to the CNN since we only feed the 

CNN on sub-images that contain labels. In our dataset a total of 728 sub-images 

were generated but only 357 had labels. 

Now that we have our training set ready, we can begin to build the test set by taking 

the following points into consideration: 

• Test images should contain all classes 

• Should not be fed to the CNN in the training process 

• A good practice is to augment the data (rotation, zoom in)  

• Choose different backgrounds, bird sizes 

• Different population density 

30 images were chosen with 177 waterfowls. Table 6 shows the class distribution in the 

test set. 

Table6: Class distribution in the test set 

 

4.2. Training 

The training processes was performed on Windows64bit equipped with NVIDIA 

GeForce GTX 1080 with 8GB dedicated RAM. 

Three training were performed with the flowing levels 

• Sub-species (American wigeon, Canadian goose, gadwall, mallard, 

northern pintail, sand-hill crane and “Other”) 

• species (Duck Goose and Crane) 

•  Waterfowl (count) 
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The idea of running three trainings with on three levels is to evaluate how results 

change by changing the complexity of features that must captured by the CNNs 

YOLOv3 Training: 

We used https://github.com/AntonMu/TrainYourOwnYOLO repository. The optimal number of 

epochs to be performed was decided using the elbow method where CNN loss drops 

by less than 5% as shown in figure 33 

 

 

Figure33: Loss value vs number of epochs 

The number of epochs changes with each level as 16, 12 and 11 for the sub-species, 

species, and waterfowl respectively, with an average of 200 seconds per epoch. This 

decrement in number of epochs is due to the decrement of data complexity or 

number of class-specific patterns needed to be learned. 

The output of YOLOv3, Retinanet and Faster R-CNN consists of two parts. The first part 

is labeled images and the second is an excel sheet with all labels with a degree of 

confidence for each label. The confidence value refers to how sure the CNN is about 

the generated prediction. 

https://github.com/AntonMu/TrainYourOwnYOLO
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Figure34: sample of YOLOv3 results for waterfowl level 

 

Figure35: sample of YOLOv3 results for species level 

 

Figure36: sample of YOLOv3 results for sub-species level 
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Multi-Labelling problem: 

We can see in figures 34, 35 and 36 that there is a problem of labelling an object 

more than once. There are two scenarios for this event. 

• Two or more labels with 100% IOU and different class assignment 

 

o Caused by the CNN not having enough training samples for to distinguish 

between each class, so the different class assignments happen to be 

above the display threshold which was 0.1% in YOLOv3 case. 

• Two or more labels with +50% IOU and different or same class assignment 

o This problem is caused by the generated BBOXES having very close 

confidence values which happen to be above the display threshold  

o The close confidence values are also a result of not having enough 

training samples 

The approach of solving the problem is to eliminate intersecting labels with IOU +50% 

and lower confidence. 

Confusion matrix representation: 

The most common method of representing prediction results is to build a confusion 

matrix. A cross validation process was implemented by taking the ground truth labels 

as a reference where we calculated the IOU between each label in the ground truth 

and prediction labels.  

Then the ground truth label gets assigned the prediction label with the highest IOU. 

An example of the final form of the confusion matrix is shown below in Table 7. 

Table7: Example Confusion Matrix 

 

The diagonal values (green cells) represent successful detection and classification of 

the desired object. If there is a ground truth label that has maximum IOU of 0, then 

we know that this label was undetected (blue cells). 

The process can be reverted by taking the predictions as a reference and if a 

prediction label has maximum IOU of 0 then we know that this label refers to non-

waterfowl label but was wrongly labeled as one (red cells). 

The yellow cells represent successful detection but incorrect classification of the 

desired object.  

Classes Class 1 Class 2 Class 3 Undetected Non-Waterfowl 

Class 1      

Class 2      

Class 3      
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Retinanet Training: 

The implementation of Retinanet was achieved using the famous 

https://github.com/fizyr/keras-retinanet repository. The number of epochs per level 

was 3, 2 and 2 for the sub-species, species, and waterfowl respectively, with an 

average of 1340 seconds per epoch. The increment of average computation time is 

expected as Retinanet generates much more areas in the image that potentially 

correspond to an object. 

As mentioned in section 3.2, Retinanet uses a focal loss function to boost the 

confidence of “informative labels” while keeping “uninformative labels” at a fairly low 

degree of confidence. Thus, it is expected that Retinanet labels will have higher 

average confidence value relative to YOLOv3. Boosting the confidence does not 

necessarily enhance the accuracy. The primary goal of this function is to prevent 

unwanted detections from the results. Also, boosting the confidence can lead to 

detection of non-waterfowl object in images having shadows of plants and birds that 

look like might look like a waterfowl. 

 

Figure 37: sample of Retinanet results for waterfowl level 

Figure 38: sample of Retinanet results for species level 

https://github.com/fizyr/keras-retinanet
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Faster R-CNN Training: 

we used https://github.com/kbardool/keras-frcnn.git repository to implement Faster R-

CNN. Faster R-CNN is a two-stage detector where the first stage performs binary 

classification of “object” and “no object” then second stage proceeds with further 

pattern recognition to classify “objects”. The term “Faster” is a description of the 

evolution of this type of two-stage detectors relative to the “Fast R-CNN”. However, 

single stage detectors such as YOLOv3 and Retinanet are faster than Faster R-CNN  

(Soviany and  Ionescu 2018). 

The number of epochs per level was 118, 92 and 87 for the sub-species, species, and 

waterfowl respectively, with an average of 2280 seconds per epoch. As the 

classification process is not performed with a single shot, it is expected that the first 

stage (binary classification) will be consistent in terms of the number of detected 

objects. However, further classification accuracy essentially depends on the amount 

of data fed per class. 

Figure 39: sample of Retinanet results for sub-species level 

Figure 40: sample of Faster R-CNN results for waterfowl level 

https://github.com/kbardool/keras-frcnn.git
https://scholar.google.com/citations?user=66RY2m_-ucoC&hl=en&oi=sra
https://scholar.google.com/citations?user=66RY2m_-ucoC&hl=en&oi=sra
https://scholar.google.com/citations?user=qVbwC6QAAAAJ&hl=en&oi=sra
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5. Results and error analysis  
In this chapter, we evaluate the results of CNN on the waterfowl (counting), species 

and sub-species. To evaluate the results properly, we use cross validation, where each 

prediction label is compared to the corresponding ground truth label then summarize 

the results in a confusion matrix. We performed three assessments in this chapter. The 

first assessment is the count performance, where we test how the accuracy changes 

in the different levels. The second and third assessments are to evaluate CNN’s ability 

to classify on the species and sub-species level 

Count Performance: 

The first assessment of the results is the waterfowl count performance. A waterfowl 

count is defined as a generated prediction label that bounds a labelled waterfowl in 

the test set. This assessment can be done to all levels (sub-species, species, and 

waterfowl) to obtain insights on what is the effect of increasing the number of classes 

on the general counting performance. 

Figure 41: sample of Faster R-CNN results for species level 

Figure 42: sample of Faster R-CNN results for sub-species 



 
 

40 
 

It should be mentioned here that number of detection labels generated in the results 

does not necessarily match the number of ground truth labels in the test set. A ground 

truth label can be undetected and additional labels can be generated that do not 

refer to a target object. Thus, the assessment of the results is to be carried in terms of 

Waterfowl Labels, Undetected Waterfowl, and Non-Waterfowl Detected. Figure 43 

shows the counting performance for all CNNs against the number of classes per level. 

We can see that increasing the number of classes to be detected limits the ability of 

CNNs to detect waterfowls and increases the number of undetected waterfowl. Also, 

this change increases the number of non-waterfowl species detected. 

One of the useful insights that can be derived from the count results is the consistency 

of the number of labels generated by a CNN against different levels. Consistency does 

not necessarily mean better accuracy but when the CNN is trained on a much larger 

dataset, it can be an indication of the ability of a the  CNN to still capture the same 

number of targeted objects as the number of classes to be detected increases.  As 

seen in table 8 Faster R-CNN generated the most consistent labels whereas YOLO and 

Retinanet behaved fairly the same. 

 
Table8: Number of labels generated for each CNN 

CNN 1-CLASS 3-CLASS 8-CLASS 

Faster R-CNN 159 156 158 

Retinanet 147 141 132 

YOLO 144 139 115 

 

 

 

Figure43: Count Performance 
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Species Level: 

The second assessment is the Duck, Goose and Crane detection accuracy. The 

confusion matrix reveals how the CNN behaved in detection and if a certain class was 

confused with another class. 

Table9: YOLO confusion matric for species level 

Class Duck Goose Crane undetected Ground Truth Total non WF 

Duck 95 14 0 34 143 3 

Goose 1 21 0 7 29 1 

Crane 0 0 4 1 5 0  

Detection Total 96 35 4 42 177 4 

 

Table10: Retinanet confusion matric for species level 

Class Duck Goose Crane undetected Grand Truth Total non WF 

Duck 106 4 0 33 143 6 

Goose 4 17 1 7 29 0 

Crane 0 0 3 2 5 0 

Detection Total 110 21 4 42 177 6 

 

Table11: Faster R-CNN confusion matric for species level 

 

From the above matrices, we can notice that class Duck was confused with class 

Goose but not Crane by all CNNs. This is a result of the very different look cranes 

have from ducks and geese.  

Next, per CNN, each class would be categorized as Correctly Classified, Incorrectly 

Classified, Undetected, and non-Waterfowl Detected. The non-Waterfowl Detected 

category refers to how many times a class was confused with non-Waterfowl 

surroundings.  

 

Class Duck Goose Crane undetected Grand Truth Total non WF 

Duck 106 3 0 34 143 25 

Goose 8 10 0 11 29 0 

Crane 1 0 3 1 5 0 

Detection Total 115 13 3 46 177 25 
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YOLO 3-Class Performance (Class vs Accuracy Measurements) Figure44: YOLO species level Performance (Class vs Accuracy Measurements) 

Figure45: Retinanet species level Performance (Class vs Accuracy Measurements) 

Figure46: Retinanet species level Performance (Class vs Accuracy Measurements) 
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Sub-species Level: 

This level will be assessed in a similar manner to the species Level. 

 

As we have six out of the eight classes belonging to super class Duck. It is no surprise 

that these sub classes were highly confused with each other as opposed to classes 

Canadian Goose and Sandhill Crane. 

  

Table 12: YOLO confusion matric for sub-species level 

 

Table 13: Retinanet confusion matric for sub-species level 

Table 14: Faster R-CNN confusion matric for sub-species level 
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Figure47: YOLO sub-species level Performance (Class vs Accuracy Measurements) 

Figure48: Retinanet sub-species level Performance (Class vs Accuracy Measurements) 

Figure49: Faster R-CNN sub-species level Performance (Class vs Accuracy Measurements) 
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Population density and surroundings: 

We can see from figure 50 that CNNs’ performance more limited in images with high 

population density where almost the same number of labels were generated for 

images with different population densities (High density on the left and Low density on 

the right). 

 

 

 

Also, better counting was recorded with clean surroundings (less shadows, plants 

etc.) as seen in figure 51  

Figure 50: label generation in different population densities (High on the left and low on the right) 

Figure 51: detection ability in different surrounding setup (clear on the left and rough on the right) 
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6. Discussion  
We will discuss the findings of this project as questions, we will use the insights of the 

results to answer questions regarding the nature of the waterfowl dataset, the 

behaviour of the CNN’s and the evaluation of the results. 

What are the special characteristics in the waterfowl dataset? How do these 

characteristics affect the implementation, especially preprocessing? What is the effect 

of crowdsourcing (LabelBox) on the quality of the data? 

The waterfowl dataset is an aerial imaging data captured by ultra-high-resolution 

sensors. This, combined with nature of the waterfowl species, produced large images 

with very small target objects that need to be detected. As the input image gets 

resized by the CNN, we noticed a limitation in the ability detection in all implemented 

CNN’s. As seen in figure 32, the waterfowl in the original image cover a very small 

percentage of total image area (0.014%) and therefore, when the image is resized by 

the CNN to say 416x416, it becomes very hard to detect and harder to classify as seen 

below in figure 52. 

 

Figure52: Limitation of detection performance in original images 

Even though the above image has plenty of waterfowl species, the CNN (YOLO in this 

image) could only detect two of them. This has forced us to crop the images such that 

we have the target object cover a sufficient area in the input image so that they are 

identifiable by the CNN. It is clear to us that this is an essential step in the pre-processing 

of dataset of any aerial imaging of waterfowl in the application of detection if taken 

at a comparable drone altitude to that done by USFWS (40 m). 
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Another important feature in waterfowl dataset is the vertical view of the object. This 

indeed adds a difficulty to the detection, especially, when the target objects have 

large degree of similarity (waterfowl species). 

 

Because if that, we can say that in the case of detection in waterfowl aerial imaging, 

the dataset should be larger than that used in detection in normal images to produce 

high accuracy level (>90%). 

The second part of the dataset is the LabelBox labels. These has been done by several 

experts to make sure the data is labelled properly. Since every expert label all the 

images, this has caused almost all waterfowl objects to be labelled multiple times. As 

seen in figure 31, birds are labelled with different bounding box sizes. The larger the 

label is, the larger the amount of noise that will be introduced to the learning process 

gets. Thus, we managed that by selecting the smallest label amongst those who 

intersect over one object. This method of selection does not work sufficiently unless we 

assume two facts. First, is that all labels cover the area of the waterfowl. Second is that 

all experts agree on the type of the waterfowl. Without those two assumptions, we 

cannot proceed with the data pre-processing and the dataset becomes unusable by 

the CNN as we do not have an exact answer on what is the type of each captured 

waterfowl. 

it is beneficial to the training process to have a balanced training set where each class 

has enough, and similar training sample count compared to the other classes. 

However, since we have one dataset but three training levels, it is almost impossible to 

balance the classes in the three training levels. For example, we had 7.9% and 9% of 

total training samples from classes “Canadian Goose” and “Gadwall” respectively. 

Given that, we can say that the CNN will learn about “Canadian Goose” as much as 

what it would learn about “Gadwall”. But when we move to the species level, 

“Gadwall” belongs to the “Duck” class, which has 88% share of total labels while class 

“Goose” shares 7.9% only causing class imbalance.  

Figure 53: Horizontal view on the left and vertical view (aerial imagery) on the right 
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Whet benefits can we gain from automating the re-formatting of the labels from 

LabelBox JSON to Darknet? 

We achieved a solution by automating the label extraction procedure by converting 

the LabelBox JSON labels to Darknet format using a Python script. The major 

advantage of this script is that it can be scaled to bigger label files to ease 

preprocessing. This is important because it paves the way to use much more training 

data without being concerned about the effort needed for preprocessing. Adding 

much more data is something waterfowl dataset needs to prevent confusion between 

different bird types that look similar and decrease the number of undetected objects. 

What are the main insights that are taken from the results? How changing the detection 

level between waterfowl to sub-species affected the performance? 

The first observation on the results was the effect of increasing classes on the number 

of labels generated by the CNN’s. The number of detected waterfowl decreased as 

we increase the number of classes to be detected (waterfowl level to sub-species 

level). This is due to the decrement in the number of training examples per waterfowl 

type as we segregate waterfowl species. For example, when we train the net work on 

a single class of waterfowl, the single class will have the largest amount of training 

examples which gives the CNN a chance to capture general patterns that are 

common to all types of waterfowl, whereas in the species and sub-species level, the 

CNN tries to capture class-specific patterns with less amount of training samples. 

The second observation is that result images often have waterfowls that are labelled 

multiple times e.g. figure 36. This due to the limited ability of the CNN to distinguish 

between different types of waterfowl species. This limitation ca be fixed by inserting 

more data for each class. 

The third insight is the effect of surroundings and population density on the 

performance. As seen in figures 50 and 51, it was clear that better performance is 

achieved in low population densities and clear surroundings (no shadows, plants etc.). 

it is an interesting question to ask surveyors about how controllable these two features 

are and if there are methods to capture waterfowl species apart from each other or 

avoid areas with rough surroundings. 

How does the two-stage detector (Faster R-CNN) differ from the single-stage detector 

(YOLO and Retinanet). What is the impact of that on the results? 

In the case of Faster-RCNN, it uses the first stage to perform binary classification of 

(target or background) to recognize general patterns that apply to all classes, then a 

second stage learns class-specific patterns and performs classification. This caused 

Faster R-CNN to generate a consistent number of labels for the three implementations. 

In the case of YOLO and Retinanet, they learn to recognize patterns that are specific 

to each class. Combined with further dividing the dataset into more classes, the 

number of training samples for a class decreases and thus fewer patterns for these 

objects can be recognized. This has caused the CNNs to be confused between 

different types and in some cases not being able to detect a bird due to insufficient 

patterns supplied in the training samples. Nevertheless, the accuracy of detection has 

also decreased with Faster R-CNN less severely than YOLO and Retinanet. 
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Why do the confusion matrices look untraditional? What is the effect of that on the 

evaluation process? 

The confusion matrices generated after evaluation have a non-traditional setup. The 

number of detected objects does not match the number of objects in the ground 

truth. Some objects were not detected, and some others were detected but they do 

not represent a waterfowl. This has forced us to add an undetected and non-

waterfowl class which have no ground truth reference. We reported the results in terms 

of correct/incorrect classification, undetected waterfowl, and non-waterfowl 

detection. 

7. Conclusions 
In this thesis, we explored the use of a modern state of the art CNNs for detection and 

classification of waterfowl UAS imagery. We discovered that waterfowl data has 

special characteristics such as the relative size of the target object, class similarity, and 

label formatting. We essentially need to take those characteristics into consideration 

for adequate preprocessing. We were able to utilize the LabelBox dataset of 13 

images of size 5472x3648 labelled by 13 experts and fed it to three CNNs (YOLO, 

Retinanet and Faster R-CNN). We performed waterfowl, species and sub-species level 

prediction for each CNN, and it was noted in the results that, the confidence values 

of labels are close and this has caused multiple labelling problem that required post-

processing. We also discovered that increasing the number of classes limits the 

accuracy of all CNNs as well as the number of labels generated by single-stage 

detectors (YOLO and Retinanet) as opposed to the two-stage detector (Faster-RCNN). 

Moreover, increasing the number of classes resulted in a higher number if undetected 

objects as well as non-waterfowl object detection. Finally, noted performance 

degradation in images with high population densities and images that have unclear 

surroundings such as shadows and plants.  

8. Future work 
In this project, we have collected valuable insights on the dataset level as well as the 

implementation and evaluation levels. However, there are still open. It is very important 

to investigate how a much larger waterfowl datasets will change the results and the 

behaviour of the CNN’s. Also, how efficient this model is, when employed with different 

study areas with or different waterfowl types. One of the major improvements that 

could be done to the implementation is to investigate the possibility of entering aerial 

images of waterfowl to the CNN in their original size. The benefit of keeping images in 

their original size is to reduce the pre-processing task so the model becomes more 

efficient and eases the usage of the model. Moreover, if we want to solve this problem, 

we must investigate the computational feasibility entering ultra-high-resolution 

images. For example, what are the memory requirements and if it can be done as a 

modification of state-of-the-art CNN’s or should we build a CNN architecture from 

scratch where the design of the hyperparameters is oriented toward this application 

domain. Finally, it is very important to improve the ability of the model to solve the class  
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imbalance problem. As we can see in section 4.1, that the number of training samples 

for minor classes (such as goose and crane in the species level) is way less than the 

major class (duck). It would be beneficial to investigate the data manipulation and 

augmentation techniques to increase the number of training samples for these classes 

and therefore increase accuracy. Moreover, in section 3.2, we mentioned that 4 sub-

species classes were not taken into consideration in the training process because they 

do not have a representative number of training samples. We believe that using data 

augmentation techniques to increase those classes represents a crucial benefit in 

applications where detecting those rare classes is a prime interest.   
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