

MASTER THESIS

Thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Engineering at the

University of Applied Sciences Technikum Wien

Degree Program Renewable Urban Energy systems

Multi-objective optimization of building control

to minimize operational cost with a machine

learning approach

Andreas Rippl, BSc

Student Number: 1810578009

Supervisor 1: Simon Schneider, MSc

Supervisor 2: Christoph Gehbauer, MSc

Berkeley, December 21, 2020

Declaration of Authenticity

“As author and creator of this work to hand, I confirm with my signature knowledge of the

relevant copyright regulations governed by higher education acts (see Urheberrechtsgesetz/

Austrian copyright law as amended as well as the Statute on Studies Act Provisions /

Examination Regulations of the UAS Technikum Wien as amended).

I hereby declare that I completed the present work independently and that any ideas,

whether written by others or by myself, have been fully sourced and referenced. I am aware

of any consequences I may face on the part of the degree program director if there should

be evidence of missing autonomy and independence or evidence of any intent to fraudulently

achieve a pass mark for this work (see Statute on Studies Act Provisions / Examination

Regulations of the UAS Technikum Wien as amended).

I further declare that up to this date I have not published the work to hand, nor have I

presented it to another examination board in the same or similar form. I affirm that the version

submitted matches the version in the upload tool.”

Place, Date Signature

 3

Abstract

The transition to more renewable energy sources, will become an ever-greater challenge in

the future. Herein, one critical issue, is the natural volatile generation of sun and wind

powered power plants, which strain the power grid during peak generation times. Buildings

as flexible consumers can help to relieve the stress on the power grids without having them

significantly increase their capacity. Current control systems are often realized with

proportional-integral-derivative (PID) controllers do not react to predictions. Whereas Model-

predictive-controllers (MPC) represent an innovation in control, as they can, adapt the control

strategy to the needs of the grid by means of weather forecasts and predictions on the

occupancy of people. Nevertheless, their application requires a high accuracy regarding the

thermal model of the building. These two state-of-the art controllers are compared with the

developed controller in this thesis.

A so-called agent with reinforcement learning (RL) is trained to learn the necessary rules to

control the room temperature in an office building. RL refers to the fact that the agent

improves itself with the help of experience as it takes over the control. The goal of this thesis

is to develop an agent that controls the heating and cooling system in a room of a new office

building in Berkeley, California and the tint of the electrochromic window used for shading.

The room is represented as a resistance and capacitance (RC) model and is controlled by

the agent with the goal of minimizing operating costs for heating, cooling, artificial lighting

and office equipment. The performance of the agent is compared to a PID controller and a

perfect information MPC. Past studies of RL-algorithms have shown the potential of the for

this thesis chosen Deep Deterministic Policy Gradient (DDPG), in regard to the typical RL

benchmark games. The agent interacts with the RC-model during a training process, where

the agent learns how to operate the HVAC-system and dynamic façade to gain the highest

reward based on the reward function including the total energy and demand costs and any

violation of room temperature boundary. The goal of the agent is to maximize the reward

over all possible timesteps.

To enable a foresightedness, the agent uses the weather forecast, electricity tariff

information and information about occupancy for the next 4 hours. An agent with a DDPG-

algorithm in combination with a multi-layer perceptron network succeeds in its primary task

of ensuring the room temperature but is not farsighted enough to lower the maximum

demand, what leads to high demand costs. The further improvement with four hours of

forecast data as inputs and a reward system based on multiple steps lead to a behavior

where the agent precools and preheats the room with lower the peak load and therefore

lower demand and total operation costs. The best network configurations and settings for

the reward system are found with a gridsearch, where all preselected settings are combined

in all variants.

 4

The final trained agent is based on a DDPG algorithm in combination with a multi-layer

perceptron network with three hidden layers with a layer size of 400 of the first hidden layer

and 300 of the following hidden layers. A Gaussian noise process is used for exploration as

the action noise and for the sampling of the training data a High-Value Prioritization

Experience Replay Buffer is used. The PI controller as a benchmark controller is

outperformed by the agent in terms of the optimization goals with total cost savings in a test

week starting on August 1st of 11.49 $ (30.21%). A "perfect information" model as MPC,

optimizes the room over the entire period and minimizes the energy costs compared to the

PI controller by 54.02 %, which saves 20.55 $ in the test week. Compared to the MPC the

operation costs with the agents are 9.06 $ (44.12%) higher.

Keywords: Control, Building Technologies, Electrochromic Window, Machine Learning

(ML), Reinforcement Learning (RL)

 5

Kurzfassung

Der Übergang zu mehr erneuerbaren Energiequellen wird in Zukunft zu einer immer

größeren Herausforderung werden. Ein kritischer Punkt ist dabei die natürliche volatile

Erzeugung von sonnen- und windbetriebenen Kraftwerken, die das Stromnetz zu

Spitzenerzeugungszeiten besonders belasten. Gebäude als flexible Verbraucher können

dazu beitragen, die Stromnetze zu entlasten, ohne deren Kapazität wesentlich erhöhen zu

müssen. Regelungssysteme werden derzeit oft mit Proportional-Integral-Derivativ-(PID)-

Reglern realisiert, können nicht auf Vorhersagen reagieren. Daher stellen Modell-Prädiktive

Regler (MPC) eine Regelungsinnovation dar, da sie in der Lage sind, die Regelungsstrategie

durch Berücksichtigung von Wettervorhersagen und Vorhersagen über die Belegung von

Personen an die Bedürfnisse des Stromnetzes anzupassen. Ihre Anwendung erfordert

jedoch eine hohe Genauigkeit der Gebäudemodells. Diese beiden derzeit angewendeten

Regler werden mit dem in dieser Arbeit entwickelten Regler verglichen.

Ein sogenannter Agent mit Reinforcement Learning (RL) wird trainiert, um die notwendigen

Regeln zur Regelung der Raumtemperatur in einem Bürogebäude zu erlernen. RL bezieht

sich auf die Tatsache, dass sich der Agent mit Hilfe von eigener gesammelter Erfahrung

verbessert, während er die Regelung übernimmt. Das Ziel dieser Arbeit ist es, einen Agenten

zu entwickeln, der das Heiz- und Kühlsystem in einem Raum eines neuen Bürogebäudes in

Berkeley, Kalifornien, sowie die Verschattung mittels elektrochromen Fensters regelt. Der

Raum wird als Widerstands- und Kapazitätsmodell (RC-Modell) dargestellt und durch den

Agenten geregelt, mit dem Ziel, die Betriebskosten für Heizung, Kühlung, künstliche

Beleuchtung und Bürogeräte im Vergleich zu einem PID-Regler und einem perfect

information-MPC zu minimieren. Bereits durchgeführte Studien von RL-Algorithmen haben

das Potential des Deep Deterministic Policy Gradient (DDPG), der als Algorithmus für den

Agenten gewählt wird, in den zum Benchmark verwendeten Spielen gezeigt. Der Agent

interagiert mit dem RC-Modell während eines Trainingsprozesses, in dem der Agent lernt,

wie das HVAC-System und die dynamische Fassade zu regeln sind, um die höchstmögliche

Belohnung zu erhalten. Die Belohungsfunktion beruht dabei einschließlich auf den gesamten

Energie- und Bedarfskosten und jeder Über- oder Unterschreitung der

Raumtemperaturgrenzen. Das Ziel des Agenten ist es, die Belohnung über alle möglichen

Zeitschritte zu maximieren.

Der Agent verwendet dazu die Wettervorhersage, Informationen über den Stromtarif und die

Personenbelegung, um dem Agenten eine Weitsichtigkeit zu ermöglichen. Der Agent mit

einem DDPG-Algorithmus in Kombination mit einem multi-layer perceptron Netzwerk erfüllt

seine primäre Aufgabe, die Raumtemperatur sicherzustellen, ist aber nicht weitsichtig

genug, um die vom Stromnetz bezogene Spitzenleistung zu senken, was zu hohen

Netznutzungsentgelten führt. Die weitere Verbesserung mit vier Stunden Vorhersagedaten

als Input und ein auf mehreren Schritten basierendes Belohnungssystem führen zu einem

 6

Verhalten, bei dem der Agent den Raum vorkühlt und vorheizt, um die Netznutzungsentgelte

zu senken. Die besten Konfigurationen des Neuronalen Netzes und Einstellungen für das

Belohnungssystem werden mit einer Rastersuche gesucht, bei der alle vorgewählten

Einstellungen in allen Varianten kombiniert werden.

Der endgültig ausgebildete Agent basiert auf einem DDPG-Algorithmus in Kombination mit

einem multi-layer perceptron Netzwerk mit zwei versteckten Layern mit einer Layergröße

von 400 im ersten versteckten Layer und 300 in den folgenden Layern. Der PI-Regler als

Benchmark wird vom Agenten in Bezug auf die Optimierungsziele mit einer

Gesamtkosteneinsparung in einer Testwoche, die am ersten August startet, von 11,49 $

(30,21 %) übertroffen. Ein "perfect Information Modell" als MPC optimiert den Raum über

den gesamten Zeitraum der Testwoche und verringert die Energiekosten im Vergleich zum

PI-Regler um 54,02 %, das 20,55 $ Einsparung in dieser Testwoche entspricht. Im Vergleich

zum MPC sind die Betriebskosten mit dem Agenten um 9,06 $ (44,12 %) höher.

Schlagwörter: Regelung, Gebäudetechnik, Elektrochromes Fenster, Maschinelles lernen

(ML), Reinforcement Learning (RL)

 7

Acknowledgements

My greatest gratitude goes to my supervisor Christoph Gehbauer, who has given me the

opportunity to write my master thesis in Berkeley, California. Already in fall 2019 Christoph

supported me completing all necessary documents for the application. Without his support

even before my arrival in the U.S.A. I would not have had such a good start into the new

topic. The ongoing support throughout the last nine months, especially for programming

made the work much easier.

Thanks Christoph!

My UAS supervisor Simon Schneider, has agreed at the end of 2019 very spontaneously

and at short notice to support me with my master's thesis. Especially in the last stressful

period, the support in the completion of the master's thesis was very important.

Thanks, Simon!

Since the pandemic also shut down Berkeley and the Lawrence Berkeley National

Laboratory before I could really start, the first weeks were exhausting. I received great

support from Ellen Thomas, who took care of my ergonomics in the home-office and always

had good camping tips at hand. The meetings of the Windows & Daylighting Group under

the leadership of Christian Kohler were very refreshing with the "Ice-breakers" to escape the

home office.

Thanks Ellen, Christian and the whole Windows & Daylighting Group!

A special thanks to my two housemates, Ulrike and Christian in the "Haste Mansion" for their

support as professional readers and friends throughout the year. I have been able to learn a

lot about chemistry, but that is enough for me now!

Thanks, Ulrike and Christian

I would like to thank my parents for their support during my entire studies in Vienna and my

studies before. Without the time I got to take care of my education I would not have achieved

all this.

Thanks, mom and dad!

Last of all I want to thank the Marshall Plan Foundation for their scholarship which financially

supported the research stay.

 8

Danksagung

Den größten Dank verdient mein Betreuer Christoph Gehbauer, der mir die Chance

ermöglicht hat, meine Arbeit in Berkeley, Kalifornien zu schreiben. Bereits im Herbst 2019

hat mich Christoph dabei unterstützt alle notwendigen Anträge fristgerecht fertig zu stellen.

Ohne die Unterstützung bereits vor Beginn meiner Ankunft in den U.S.A wäre mir der Start

in das neue Thema nicht so gut gelungen. Auch das Programmieren wurde mir durch die

laufende Hilfestellung in den letzten neun Monaten enorm erleichtert.

Danke Christoph!

Mein FH-Betreuer Simon Schneider, hat sich zu Jahresende 2019 sehr spontan und

kurzfristig dazu bereit erklärt mich bei meiner Masterarbeit zu unterstützen. Besonders in

der letzten stressigen Zeit war die Unterstützung bei der Fertigstellung der Masterarbeit sehr

wichtig.

Danke Simon!

Da die Pandemie auch Berkeley und das Lawrence Berkeley National Laboratory

lahmgelegt hat, bevor ich richtig starten konnte war besonders der Beginn sehr anstrengend.

Besondere Unterstützung habe ich dabei von Ellen Thomas erhalten, die sich um meine

Ergonomie am Heimarbeitsplatz gekümmert hat und auch immer gute Campingtipps parat

hatte. Die Meetings der Windows & Daylighting Group unter der Leitung von Christian Kohler

waren mit den „Ice-breakern“ doch sehr erfrischend um dem Home-office zu entkommen.

Danke Ellen, Christian und das gesamte Windows & Daylighting Team!

Meinen beiden Mitbewohnern, Ulrike und Christian in der „Haste Mansion“ danke ich für die

Unterstützung als professionelle Korrekturleser und Ablenkung während des gesamten

Jahres. Ich habe sehr viel über Chemie lernen dürfen, aber das ist jetzt auch genug!

Danke Urike und Christian

Meinen Eltern danke ich für die Unterstützung während meines gesamten Studiums in Wien

und meiner gesamten Ausbildung. Ohne die Zeit mich um meine Bildung zu kümmern hätte

ich das alles nicht erreicht.

Danke Mama und Papa!

Zum Schluss möchte ich noch der Marshall Plan Foundation für das Stipendium und damit
die finanzielle Unterstützung danken.

 9

Table of Contents

1 Introduction ..11

1.1 Motivation ..11

1.2 Aim of the Thesis and Scientific Question ..12

1.3 Approach ...12

2 Methodology ..13

2.1 Programming Language – Python 3.8 ..13

2.1.1 Machine Learning Framework..14

3 Machine Learning ..15

3.1 Applications ...17

3.2 Learning Techniques ...17

3.3 Reinforcement Learning ...19

3.4 Reinforcement Learning in Building Technologies ...25

3.5 Neural Networks ..25

3.5.1 Multi-Layer Perceptron...27

3.5.2 Recurrent Neural Network ...28

3.5.3 Network features..30

4 Results ..32

4.1 Deep Deterministic Policy Gradient (DDPG) ..33

4.2 Replay Buffer ...37

4.3 Noise ...40

4.4 State of the art Controller ...41

4.4.1 PID Control ..41

4.4.2 Model Predictive Control ..43

4.5 Room Model ..45

4.5.1 Electrochromic Window ...46

4.5.2 Solar Position and Radiation ..48

4.5.3 Electricity Market in California ..53

4.6 RL-Setup ...55

4.6.1 Environment ..55

4.6.2 Development ...57

5 Discussion and Outlook ...76

 10

Bibliography ..78

List of Figures ...82

List of Tables ...85

List of Abbreviations ..86

Appendix A: Setting ...88

Appendix B: Execution ..92

Anhang C: RL-Setup ...97

 11

1 Introduction

Building envelopes play a crucial role in the energy performance of buildings, imposing an

annual 21.3 quadrillion Btu (6,242.41 TWh) primary energy in the U.S. in 2019, which

represents 28 % of the total primary energy consumption (U.S. Energy Information

Administration 2020). The initiative of the U.S. Department of Energy launched an initiative

for Grid-interactive Buildings whose aim is to optimize the interplay of energy efficiency,

demand response, behind-the-meter generation and energy storage to enable more

demand-side management possibilities. State-of-the-art control systems, such as

Proportional Integral Derivative (PID) controls use conventional feedback and are rule-

based. Specifically, they are reactionary (cannot consider future operation) and largely

univariate (only consider a single variable) and often fail to deliver sustained performance

over the time of the installation (Wang and Hong 2020). These controllers cannot consider

future climatic conditions like predicted hot outside air temperatures and only react to the

outside conditions, which leads to high peak loads for heating and cooling.

Model-predictive controls (MPC) on the other hand can take the future outside conditions

into account and have proven the potential to save energy in simulations, as well as in real

life buildings. The disadvantage of the MPC is the fact that as the name implicates a detailed

model of the building must be programmed. Therefore, the development and calibration are

cost intensive as every building is unique. That is the main reason for the limited application

of, predictive control in real buildings.

Current investigations at the Lawrence Berkeley National Laboratory (LBNL) in California

induce the application of machine learning (ML) in a building life cycle and show that ML is

applicable in many stages of this life cycle (Hong et al. 2020). These studies already

demonstrate the potential of ML to benefit the performance of the buildings. ML and the field

of reinforcement learning (RL) is especially suited for the desired control strategies and can

help to eliminate the developing and calibrating of detailed building models as known from

MPC.

1.1 Motivation

The rising requirements for energy management, occupant interactions, on-site renewable

generation, on-site storage, electric grid interfacing, etc., demand innovative control methods

to integrate multiple subsystems. Furthermore, it becomes necessary to address the number

of high-performance objectives, such as minimizing the use of energy, energy cost,

increasing the demand response capacity, while satisfying the occupant comfort. Therefore,

the control methods need to be responsive to real-time and forecasted conditions, consider

the interaction of multiple subsystems, require minimal to no set-up and commissioning and

have to be adaptable over the life of the installation.

 12

First studies already indicate the high potential for energy savings, the current challenge

hereby is the implementation in buildings to enable more electric loads and distributed

Energy systems without reinforcement of the power grid.

Here, the latest study of the LBNL focusing on model predictive controllers (MPC) showed

that a total energy cost saving of 28% is possible compared to state-of-the-art heuristic

controllers (Gehbauer et al. 2020). The complexity of the building model necessary for the

development of the controllers must be decreased to enable more buildings to have

advanced building controls in order to path the way for renewable energy systems.

1.2 Aim of the Thesis and Scientific Question

The LBNL investigates the potential of MPC in an environment, where the shading system

and the heating ventilating air conditioning (HVAC) system is controlled. Herein, the

constraints in form of occupancy comfort (e.g. indoor temperature control) and cost savings

have to be considered. Therefore, the aim of this thesis is the implementation of an agent

that aims to minimize the total energy costs and the peak electricity load, while ensuring the

comfort parameters for the occupants.

Within this framework, the following question needs to be answered to improve existing

control strategies:

• Which Reinforcement Learning (RL) methodology is best suited for the control of

building technology to further reduce total energy costs compared to state-of-the-art

controllers and MPC controllers?

1.3 Approach

At the beginning of the work, a fundamental understanding of state-of-the-art ML approaches

and of RL in particular, needs to be gained. RL is a powerful deep learning (DL) technique

in the field of artificial intelligence (AI). The most renowned successes of DL were achieved

in the video game and board game sector. For example, an agent trained with RL defeated

the world champion in the game “Go” which was considered to be impossible due to the

complexity of the game (DeepMind 2016). Based on the gained knowledge the RL agent

shall be developed in open-source based programming language Python which supports

modules and packages that make it suitable for ML applications.

The development of the agent will be performed entirely in Python with the ML framework

TensorFlow. The RL agent must regulate the heating and cooling of the building, as well as

the control of the dynamic façade as a shading device. The costs for electricity will be

compared with a MPC system programmed in python with the module pyomo. The

 13

comparison will be performed in the context of California, using the electricity tariff for

medium office buildings of Pacific Gas and Electricity (E-19) as a time-of-use (TOU) tariff.

2 Methodology

A plethora of research and development has already been conducted in the field of ML. In

the following chapter, the relevant methods employed to answer the scientific question posed

in this thesis are summarized and explained.

Some of the tools used to develop the agent are prescribed by the LBNL to enable the

communication with existing programs and environments. All used tools and programs used

are freeware to ensure reproducibility.

2.1 Programming Language – Python 3.8

Python is an open-source programming language which is administrated by the non-profit

corporation Python Software Foundation (Python Software Foundation 2020). The language

use is widely spread amongst industry due to its flexibility. It is used for web-development,

scientific and numeric or software development. Python is an interpreted, object-oriented

high-level programming language with a clear syntax.

Figure 1 shows the popularity of programming languages based on raw data based on

Google Trends. The numbers show the share of how often a programming tutorial for the

corresponding language has been searched in 2020. By a large margin, python is the most

popular programming language with a share of more than 30 % of searches on Google.

Figure 1: Worldwide PYPL PopularitY of Programming Language in 2020 (modified according to

(Pierre 2020))

0

5

10

15

20

25

30

35

Python Java Javascript C# C/C++ PHP R

s
h

a
re

 [
%

]

 14

2.1.1 Machine Learning Framework

The variety of ML frameworks was studied by Jeff Hale who described the popularity of

different ML frameworks with a power ranking based on online Job Listings, Google Search

Volume, Medium Articles, ArXiv Articles, GitHub Activity and others (Figure 2) (Hale 2019).

With applied weights, Tensorflow is the most popular framework for machine learning

followed by Keras and Pytorch.

Figure 2: ML Framework Power Scores 2018 (modified according to (Hale 2019))

The further development of deep learning frameworks lead to a new survey by Hale where

the growth of the leading frameworks in 2019 was observed as presented in Figure 3 (Hale

2020). The leading frameworks currently are Tensorflow with Keras as the high-level

application programming interface (API) and Pytorch with fast.ai. According to these results

Tensorflow is the most in demand framework, as well as fastest the growing.

Figure 3: DL Framework Six-Month Growth Scores 2019 (modified according to (Hale 2020))

0

20

40

60

80

100

P
o

w
e

r
S

c
o

re

0

20

40

60

80

100

Tensorflow PyTorch Keras FastAI

G
ro

w
th

 S
c
o

re

 15

The open-source library Tensorflow (version 2.3.0) was developed by Google and was

intended for the spam filter of Gmail before it was available to the public in 2015 (Open Data

Science 2019). As shown before, TensorFlow is currently one of the most popular ML

frameworks and is widely employed for DL. TensorFlow can run on various platforms, such

as Linux, macOS, Windows and on the mobile platforms iOS android or on Raspberry Pi.

For performance reasons, the library is written in C++, but the API is also available in Python

and others. TensorFlow can be executed on the central processing unit (CPU) or on the

graphics processing unit (GPU) with enabled multiprocessing to boost the performance. One

of the biggest advantages of TensorFlow is the possibility to work with low-level, as well as

with high-level API.

Keras (version 2.4.0) as a high-level API was launched in 2015 and became the framework

for developers due a clean API and the possibility to use it with different DL libraries as the

backend such as TensorFlow, Theano or CNTK (Google Inc. 2019). In 2019 with TensorFlow

2.0, Keras was integrated and now is the standard interface, when developing DL

environments.

The python package pyomo (version 5.7) is used for developing the MPC is an open-source

package which provides a variety of different optimization models (Sandia National

Laboratories 2019). The high-level programming language has the advantage of usability

over other algebraic modelling languages.

3 Machine Learning

In 1942, the idea of AI was born in the USA when it was mentioned in the science fiction

short story called “Runaround” by Isaac Asimov (Haenlein and Kaplan 2019). At the same

time, a machine called “The Bombe” for deciphering Enigma, an encryption device used for

secure communications by the German military in the second world war was developed by

the English mathematician Alan Turing. The ability to decipher Enigma led to Turing’s

seminal paper “Computing Machinery and Intelligence” in 1950 which stated, that, for a

machine to be intelligent, it needs to respond in a manner that it is not differentiable from a

human being (Turing 1950). These criteria are a benchmark for the intelligence of machines

considered to be AI-systems. The first machine that matched this criterion was called ELIZA,

it was able to simulate a conversation with a human and was developed between 1964 and

1966 at MIT. The System used for ELIZA was a so-called “Expert System” in which rules are

programmed assuming that human intelligence can be formalized with a top-down “if-then”

approach. The same system was used in IBM’s Deep Blue in 1997 which was able to beat

the reigning chess world champion Gary Kasparov.

A more technical definition for ML was stated by Tom M. Mitchell in 1997: “A computer

program is said to learn from experience E with respect to some class of tasks T and

 16

performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.”(Mitchell 1997, p.2). Ethem Alpaydin describes the task of ML as a

optimization of a performance criterion using example data and experience (Alpaydin 2010).

These definitions are still valid today and based on them different algorithms and approaches

have evolved.

The next big milestone for Artificial Intelligence (AI) was made in 2015 by Google with the

program “Alpha-Go” which can play the board game Go and was able to beat Lee Sedol the

reigning world champion (Haenlein and Kaplan 2019). Figure 4 shows two children playing

Go on a board with black and white stones which are placed anywhere on the grid and

cannot be moved afterwards (DeepMind 2016). The goal of Go is to capture as much free

space and surround as many of the opponent’s stones until no more move is possible. This

leads to 1017 possible board configurations.

Figure 4: Children playing Go on a regular Go board (DeepMind 2016)

The possibility of 361 first moves in Go makes the game more complex than chess with only

20 possible starting moves. The brute-force of analyzing all possible moves as used in IBM’s

Deep Blue chess gets infeasible for that number of possible actions with an exponentially

increasing cost for calculation. Therefore, the team of DeepMind chose an approach in form

of a deep neural network (NN). By playing against amateur players and against itself

AlphaGo developed an understanding of how humans play and ultimately outplayed them.

 17

3.1 Applications

The use of AI in industry is strongly driven by information technology companies like Google,

Microsoft, Apple and Intel (Pan 2016). Google as an example uses Deep Learning to improve

their picture search or develop their unmanned ground vehicle. The research in AI is shifting

from academia-related research to research which addresses social demands like intelligent

cities, medicine, transportation, logistics, manufacturing, as well as driverless automobiles.

AI nowadays supports us constantly in everyday life. Google uses AI to sort the emails into

different categories and, most importantly, to filter spam emails. Moreover, it recommends

search queries based on the first words typed into the search field and then tries to find the

best matches for the question (Bradley 2018). The business-focused social media platform

LinkedIn uses AI to find best matches of employees to employers, by observing the behavior

of applicants and the outcome of hiring processes. Facebook is helping to prevent suicide

and to save lives by detecting suicidal thinking patterns and sending resources to help.

In the specific field of building technologies the research in RL started as early as 1997 and

gained more interest since 2015 (Wang and Hong 2020). Wang and Hong found in their

study that the main focus in building technologies was Heating-Ventilating-Air Conditioning

(HVAC) with a 35 % margin of papers released in this topic in 2015. In 2015 Barrett and

Lindner introduced a learning thermostat where the desired room temperature is set by the

user and the learning thermostat controls the heating or cooling signal with on or off signals

by learning the time schedule of the occupants (Barrett and Linder 2015). In comparison,

Wei et. al. introduced a system which controls the air flow of the HVAC system with an agent

(Wei et al. 2017). An RL-algorithm for the combination of HVAC control and window control

was developed by Chen et. al. in 2018 (Chen et al. 2018). The similarity of these approaches

is the cost saving potential in comparison to a heuristic control system.

These examples show that ML can be applied to a variety of integral tasks and different

learning techniques are necessary to solve these problems.

3.2 Learning Techniques

The different ML techniques can be classified in the four categories of supervised,

unsupervised, semi-supervised and reinforcement learning, depending on the required data

(Figure 5) (Mohammed et al. 2017). The designation of the data with classified data refers

to whether the data have a specific label, e.g. the picture of the dog has the name dog. With

unclassified data, where the name of the picture iis not referred to the content.

 18

Figure 5: Different machine learning techniques and their required data (modified according to

(Mohammed et al. 2017)

Supervised learning

The goal of supervised learning in its basic form is to find a correlation between input data

and output data (Brownlee 2019). The two main types of supervised learning are

classification and regression. A classification problem could be e.g. a dataset of handwritten

digits with pixel data for which the learner should recognize the digits representing numbers

from 0 to 9. The regression problem deals with numerical numbers as output, for example

house prices could be calculated by given variables that describe the house itself and the

neighborhood.

Unsupervised learning

Problems are solved without labelled input data as a reference for learning. In contrast to

supervised learning, the model tries to describe or extract relationships in the data. The two

main problems it is being used for, are clustering and density estimation which are performed

to find patterns in data. Another method where unsupervised learning is used is visualization

for graphing or data plotting, as well as projection for reducing the complexity of

multidimensional data.

Semi-supervised learning

This technique is a hybrid of supervised- and unsupervised learning where the training

dataset contains more unlabeled then labeled data. This method is common for real-world

supervised learning problems as in computer vision, natural language processing and

automatic speech recognition, due to the lack of training data.

Reinforcement learning

The reinforcement learning technique does not have a dataset available at the start of the

training process. In this case, an agent operates in an environment and learns how to

operate using feedback and stores the experience. Google’s AlphaGo is an example for the

most recognized example of reinforcement learning problem. Reinforcement leaning is the

technique used in this work and will be discussed in greater detail in the next chapter.

Supervised Unsupervised Semi-supervised Reinforcement

Machine learning techniques

Concerned with

classified

(labeled) data

Concerned with

unclassified

(unlabeled) data

Concerned with

mixture of

classified and

unclassified data

No Data

 19

3.3 Reinforcement Learning

The goal of this thesis to control the temperature and illuminance in a room for minimal cost.

For the problem at hand, no initial dataset exists prior to the training, making this an obvious

candidate for RL.

RL is based on the process by which humans naturally learn (Sutton and Barto 2018).

Gaining experience by interacting with our environment is one of the major sources for our

knowledge. Figure 6 shows the basic agent-environment setup for RL. The agent operating

with the environment selects the actions 𝑎𝑡 to take in the current state 𝑠𝑡 to reach the next

state 𝑠𝑡+1 and get the reward 𝑟𝑡+1 as a feedback.

Figure 6: The agent–environment interaction in a Markov decision process. (modified according to

(Sutton and Barto 2018, p.48))

The main elements of the RL-system are the policy, the reward function and the value

function which are built into the agent and the Environment.

Environment

The environment can be a variety of problems, such as a car or boardgames like chess. In

this thesis, the given environment is a thermal room model. The room temperature is the

state and output of the environment which should be ensured by the agent. The possible

actions for the agent are the energy input by heating or cooling, as well as the control of the

shading system. The room reacts to actions taken by the agent and creates an output in

form of the next state and the immediate reward.

The reward signal is a single number calculated with a reward function in the environment.

Its design is crucial for the learning success of the agent, as discussed by Sutton and Barto

(Sutton and Barto 2018). The reward in the context of the given room model in this thesis

contain the cost of energy and every exceedance of any comfort parameter. How the agent

can learn from this reward function is described in chapter 4.1 in greater detail.

 20

Agent

The agent is responsible for selecting actions according to the current state of the

environment following a policy as the main element of the process. This policy can be a

look-up table, a function, or a search policy. Recent algorithms make use of parameterized

policy by introducing a NN. The actions can be selected with a stochastic function, with

probabilities for each action, or deterministic with the output of the policy being the real value

of the action. The optimization goal of the agent in this thesis is to save energy costs while

maintaining the needs of the occupants. To achieve an optimal control strategy, the agent

tries to maximize a cumulated reward (return) over all viewed timesteps. In its simplest case,

this return can be the sum of the rewards (equation 1).

𝐺𝑡 =̇ 𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ + 𝑅𝑇 (1)

𝐺𝑡 …… return, cumulated reward

𝑅𝑡+𝑖 … reward of timestep

𝑅𝑇 ….. reward of the terminal timestep, last, timestep in the viewed timeperiod

Heating or cooling a building is a continuous task without a terminal state which would lead

to an infinite return with the formulation in equation 1. Adding a discount rate 𝛾 to future

rewards prevents this behavior with equation 2. The initially received reward is worth more

than the reward received after the next step.

𝐺𝑡 =̇ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯

𝐺𝑡 … return, cumulated reward

𝑅𝑡+𝑖 … reward of timestep

𝛾 .… discounting factor

(2)

Value-function

In RL, the two value functions used are called state-value and the action-value function.

The value functions are used to estimate the return, because the rewards for each timestep

are not known prior to the state visitation. The value functions are used to train the agent to

achieve the optimization goal of maximizing the return.

The state-value 𝑣𝜋(𝑠) is defined as the total expected reward achievable in the future

starting from this state. The state-value noted as 𝑣𝜋(𝑠) indicates what the best option for the

long run is and takes the next states which are most likely to follow into account. That means

that the reward in a specific state can be low, however the value of this state can still be high

if the following states can gain a high reward. In the simple maze depicted in Figure 7, the

goal is to move from the start in the top left corner to the goal in the bottom right corner.

Following the orange line with the highest reward in every single box and summing up the

rewards (green numbers), the total return is 120 whereas following the red line by taking the

future rewards into account results in the total reward of 155, making it the better option.

 21

Figure 7: Simple Maze displaying the difference of reward and state-value

This simple example shows that the state-value is crucial for the performance of RL

algorithms but is not as straightforward as the reward estimation which is a direct feedback

from the environment. The state-value of each state is dependent on the possible actions

and the probability these actions are taken following the current policy. Figure 8 shows the

state-value and is the visualization of equation 3. Starting from a specific state 𝑠 the agent

can perform any action 𝑎. The transition from state 𝑠 to the next state 𝑠′ and the immediate

reward is expressed as the probability 𝑝(𝑠′, 𝑟|𝑠, 𝑎) The reward 𝑟 is added to the discounted

state-value of the next state 𝑣𝜋(𝑠′). The sum of all possible state-values by taking different

actions is then averaged over all possible actions by multiplying the probabilities 𝜋(𝑎|𝑠) of

taking each action 𝑎 in state 𝑠.

Figure 8: backup diagram for 𝑣𝜋(𝑠) (Sutton and Barto 2018, p.59)

𝑣𝜋(𝑠) = ∑ 𝜋(𝑎|𝑠)

𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑠′,𝑟

[𝑟 + 𝛾𝑣𝜋(𝑠′)] (3)

𝑣𝜋 … state-value

𝜋 …. policy

𝑠 ….. state

𝑠′ …. next state

𝑎 ….. action

𝑟 …... reward

Like the state-value, the action-value 𝑞𝜋(𝑠, 𝑎) is the estimated return with respect to the

state 𝑠 and the action 𝑎. The action value indicates how good it is to take a specific action in

a specific state (Figure 9).

 22

Figure 9: 𝑞𝜋 backup diagram (Sutton and Barto 2018, p.61)

For RL two algorithms can be differed. Figure 10 displays an overview of modern RL-

Algorithms divisible into model-based- and model-free algorithms (OpenAI 2018). Model-

based algorithms do know the model dynamics or learn the dynamics of the environment

model with the advantage for planning ahead and seeing what will happen when choosing

certain actions. While Google’s AlphaZero is model-based with the agent being provided

with the ruleset of the game, whereas algorithms like Stochastic Value Gradient learn the

model dynamics as part of the learning process. This has the disadvantage that biased

models are possibly learnt during the training with the result of sub-optimal performance in

the real environment.

Model-free algorithms are separated into the two main approaches of policy optimization and

Q-learning. The RL-system either learns policies, action-values (Q-functions) or value

functions. As can be seen in Figure 10, the DDPG, TD3 or SAC algorithm are a combination

of Policy-Optimization and Q-learning. These policy optimization algorithms are so-called

actor-critic algorithms and are characterized by using a critic and an actor for training and

selecting an action. The state-value of the current step in actor-critic algorithms is calculated

with the estimated state-value of the next step and this is added to the actual reward given

by the environment. The reward with the estimated state-value of the second step is then

called the one-step return 𝐺𝑡:𝑡+1 which is used to assess the action (Sutton and Barto 2018).

The use of the state-value function in this way is called a critic and the function which takes

actions is called the actor. Actor-critic algorithms take the one-step return to update and

improve the policy.

Other well-known algorithms like PPO or TRPO are pure policy gradient algorithms. Another

group of algorithms are Q-learning algorithms, because they learn the Q-value which is in

fact the state-value. These algorithms are not feasible for large action spaces because of

the discrete actions they use and the necessity to calculate the action-value of all possible

actions in the specific state. Policy optimizations can perform in continuous action spaces

and are therefore the preferred algorithms for the problem discussed in this work.

 23

Figure 10: A non-exhaustive, but useful taxonomy of algorithms in modern RL (OpenAI 2018)

The key differences of the Policy-optimization algorithms are described in terms of the action

space and policy, the performance measure, and the question if the algorithm is an on- or

off-policy algorithm. Off-policy means, that the experience used for training the policy and

value functions is not produced by the current policy and can be used multiple times which

makes these algorithms more sample efficient. On-policy methods only use the experience

from the last episode or steps and compare the new policy with the old one to find out if this

episode is better. The performance measure for the comparison is called the advantage of

the policy. The key points of the policy optimization algorithms are:

DDPG: Deep Deterministic policy gradient (Lillicrap et al. 2015) (Lillicrap et al. 2019)

• Continuous action spaces with a deterministic policy

• Learns policy and action-value function

• Off-policy

TD3: Twin Delayed Deep Deterministic policy gradient (Fujimoto et al. 2018)

• Continuous action spaces with a deterministic policy

• Learns policy and stabilized action-value function

• Off-policy

SAC: Soft Actor-Critic (Haarnoja et al. 2018)

• Continuous or discrete action spaces with a stochastic policy

• Learns policy and stabilized action-value function

• Off-policy

A2C/A3C: Asynchronous Advantage Critic (Mnih et al. 2016)

• Continuous or discrete action spaces with a stochastic policy

 24

• Advantage function

• On-policy

PPO: Proximal Policy Optimization (Schulman, Wolski, et al. 2017)

• Continuous action spaces with a stochastic policy

• clipped, advantage function

• On-policy

TRPO: Trust Region Policy Optimization (Schulman, Levine, et al. 2017)

• Continuous or discrete action spaces with a stochastic policy

• KL-divergence advantage function

• On-policy

The policy gradient algorithms select the actions based on a parameterized policy (e.g. NN)

that uses a performance measure (e.g. value function) to update the parameters and

improve the performance (Sutton and Barto 2018). The policy is learned based on the

gradient of an accumulated reward, as the performance measure with respect to the policy

parameters referred to as 𝐽(𝜃) which can be written as equation 4 with 𝜇 as the distribution

of the states and 𝜋 as the policy corresponding to the parameter vector 𝜃.

∇𝐽(𝜃) = ∑ 𝜇(𝑠)

𝑠

∑ 𝑞𝜋(𝑠, 𝑎)

𝑎

∇𝜋(𝑎|𝑠, 𝜃)
(4)

∇𝐽(𝜃) … gradient of the performance measure

𝑠 ……… state

𝑎 ….….. action

𝜃 …..…. parameter vector

𝜇(𝑠) ..… state distribution

𝑞𝜋 …….. action-value

𝜋 …....... policy

The update of policy gradient methods is based on gradient ascent with respect to the current

policy parameters 𝜃𝑡 in equation 5.

𝜃𝑡+1 = 𝜃𝑡 + 𝛼∇𝐽(𝜃𝑡)̂ (5)

𝜃𝑡+1 … current parameter vector at timestep t+1

𝛼 ……. learning rate (step size of the gradient)

𝜃𝑡 …… parameter vector at timestep t

∇𝐽 …… gradient of performance measure

The policy 𝜋 selects actions 𝑎 based on the current state 𝑠 with the current parameters 𝜃

and can be noted as 𝜋(𝑎|𝑠, 𝜃).

 25

3.4 Reinforcement Learning in Building Technologies

Wang and Hong have very recently published a review giving a detailed analysis of

publications since 1997 in the field of RL in building technologies (Wang and Hong 2020).

The algorithms which have been used so far are to 76.6 % based on the number of

publications value-based algorithms (Q-learning) which were already excluded for this thesis

because of their disability to work in continuous action spaces. Actor-critic algorithms got

more popular in recent years with a total share of 15.1 % of all publications. The popularity

of actor-critic algorithms is due to the possibility for transfer-learning which means, that a

trained behavior from one building can be generalized to other buildings as well. The policy

function is suitable for transfer learning because the task of ensuring the room temperature

is the same in every building, whereas the mapping from states to actions is not transferable

due to different control goals and structures in building technologies.

The methods used to represent the policy and value function shift more and more to NN

estimators which were used in all publications in 2019 listed by Wang and Hong. The study

concludes that the majority of utilized RL controllers adopted supervisory control which they

describe as setpoint control where conventional controllers are still needed to track this

setpoint.

Given the analysis by Wang and Hong this thesis will focus on an actor-critic algorithm for

developing a RL-controller applicable for transfer learning. Sutton and Barto state, that the

advantage of an approximation policy is that it can approach a deterministic policy. Together

with the advantages of the policy gradient algorithm the Deep Deterministic Policy Gradient

fulfils the approach of a deterministic policy which is described in detail in the section 4.1.

3.5 Neural Networks

The chosen DDPG-algorithm uses NN for the actor to select the actions and the critic to

estimate the actor-value. The idea of a NN is based on the functionality of a brain (Ertel

2016). The big step towards an AI with NNs was taken by McCulloch and Pitts in 1943 with

the mathematical model of the neuron as a basic switching element for brains. This

formulation laid the foundation for the construction of artificial NNs.

The neuron of a brain is comparable with a conductor which get charged by incoming

impulses and sends a signal if the voltage exceeds a certain threshold to all connected

neurons where the same process is repeated. A neuron can have multiple inputs and outputs

and is connected to other neurons (Figure 11).

 26

Figure 11: Formal model with neurons and directed connections between them (modified according

to (Ertel 2016, p.267))

The mathematical formulation for this process replaces the continuous process of the brain

with a discrete time scale and the charging of the activation potential is the sum of the

weighted output values with weight 𝜔𝑖𝑗 of all input values 𝑥𝑗 with an applied activation

function 𝑓 (equation 6 and Figure 12). There are several options for the activation function

which are explained in the section 3.5.3.

𝑥𝑖 = 𝑓 (∑ 𝜔𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) (6)

𝑥𝑖 ..… output of neuron

𝑓 …... activation function

𝜔𝑖𝑗 … weights of the connections

𝑥𝑗 ….. inputs pf neuron

Figure 12: The structure of a formal neuron that applies the activation function f to the weighted sum

of all inputs (modified according to (Ertel 2016, p.269))

The most used NN model is the backpropagation algorithm because of its universal

applicability for any approximation task. Figure 13 shows a backpropagation network with an

input layer, a hidden layer and an output layer. The values 𝑥𝑗
𝑝
 of the output layer are

compared with the values of the targets 𝑡𝑗
𝑝
. In the tables to the right in Figure 13 the values

 27

of the inputs and outputs and the target values of the NN used in this thesis are shown. The

state input is the room temperature and the forecast input is the weather forecast with the

outside air temperature, solar radiation, cost of energy and the occupancy of the room. The

actor output 𝑄 is the heating-or cooling energy input and 𝑇𝑣 is the value for the shading

system.

Figure 13: A three-layer backpropagation network with n1 neurons in the first layer, n2 neurons in the

second and n3 neurons in the third layer (modified according to (Ertel 2016, p.291))

The target value for the critic network is compared with the value of the output layer and the

error is calculated with the preferred function. This error is then used to calculate the negative

gradient of the weights and further tune the weights to minimize the error and make accurate

estimations of the action-value. The actor network with the actions as an output is not trained

to minimize an error and get accurate predictions but trained to minimize the action-value

function.

The following section shows two NN architectures based on the backpropagation model for

RL which have already proven their usefulness in a wide range of problems. The structure

of multi-layer perceptron models and Recurrent NN (RNN) models is described in the

following section.

3.5.1 Multi-Layer Perceptron

The multi-layer perceptron network is viewed as the classical NN (Brownlee 2016). The basic

structure of this network class is an input layer followed by one or multiple hidden layers and

an output layer. Figure 14 shows this structure and displays that the layer size of the layers

can vary.

 28

Figure 14: Model of a Simple Network (Brownlee 2016)

The input layer is not constructed with neurons and passes the input to the first hidden layer

in the network. The network can have multiple hidden layer which is referred to as Deep

Learning. The properties of the output layer as the final layer depends on the problem the

NN is used for. The output layer in this thesis has one output neuron for the critic network

estimating the action-value function and the actor has two outputs for two actions. The

properties and what range of values this neuron can output is depending on the activation

function described in 3.5.3.

3.5.2 Recurrent Neural Network

Multi-layer perceptron networks are not able to learn time related dependencies, because

they have no knowledge of what happened in the timestep before (Olah 2015). RNN address

this issue with loops in the neurons of the RNN layers. A RNN neuron look like the left-hand

side of Figure 15 with a loop that allows to use the past information to be used in the current

step. The right-hand side shows the unrolled neuron where the output ℎ0 of timestep zero is

passed to the next timestep and is the input together with 𝑋0.

Figure 15: An unrolled recurrent neural network (Olah 2015)

This additional knowledge led to success in speech recognition, language modelling, image

captioning or timeseries forecasting. In 2015 Heess et al. used an RNN approach in the

DDPG algorithm to conquer problems with partial observable environments like a way sign

in a navigation task which is only temporary available (Heess et al. 2015). In the task of room

conditioning the interesting value to remember is the past actions and states.

 29

The idea to use an RNN in such a task is to connect previous information (way sign) to the

present task (navigation). Unfortunately, basic RNNs have a problem with long term

dependencies where not only the information of the last time-step is needed but also the

information of a few timesteps back (Olah 2015). Following example by Olah makes this

issue clear: I grew up in France …. I speak fluent “?”. For a human it is clear, that the missing

word is French. The bigger this gap grows it gets more likely for the RNN to fail.

This problem is solved with Long-Short-Term Memory (LSTM) networks which are designed

to learn these long-term dependencies. LSTMs were introduced by Hochreiter and

Schmidhuber in 1997 (Hochreiter and Schmidhuber 1997). The difference between the RNN

and the LSTM is how the information of past timesteps is passed to the next timestep. In

RNN the repeating modules responsible for the forward pass of past information is a simple

structure with an activation function (Figure 16).

Figure 16: The repeating module in a standard RNN contains a single layer (Olah 2015).

The improved LSTM network layers repeating module is built with four interacting network

layers shown in the middle of Figure 17.

Figure 17: The repeating module in an LSTM contains four interacting layers (Olah 2015).

The architecture of LSTM decides and learns what information to keep of the past

information, what information to store as the state of the layer and what information to pass

as the output. This is done with the sigmoid (sig) or hyperbolic tangent (tanh) layers called

gate layers. The first layer is the forget gate layer which decides what information is thrown

away and what to keep followed from the input gate layer which decides which values are

 30

updated. Together with the tanh layer the state is updated. The output of the LSTM is a

filtered version of the state which is put through a tanh layer to push the values between -1

and 1 multiplied by a sigmoid gate.

3.5.3 Network features

For both presented network architectures the network features like the number of layers,

number of neurons of each layer, activation function of the layer and what loss-function

should be used to train the network have to be set.

Activation functions

The most common activation functions in NNs are the sig, tanh and variants of rectified linear

units (relu) (Ding et al. 2018). Ding et al. analyzed the different activation functions based on

their characteristics in NNs.

The sig function is the most used

activation function because the

calculation is easy. The problem with

the sigmoid function is that while

backpropagating the derivative will

reduce to zero around saturation, as

shown in Figure 18 and that leads to

a vanishing gradient. The gradient

vanishes, when more layers with the

same activation function are added

to a NN (Wang 2019). The weights

are not updated effectively which

can lead to an inaccurate NN. The

output of the sigmoid function is

between 0 and 1.

Figure 18: The graphic depiction of Sigmoid function and

its derivative (Ding et al. 2018, p.1837).

 31

Similar to the sigmoid function is

the tanh with output values

between -1 and 1 (Figure 19). The

symmetric nature of the function

makes it more likely to be used

than sigmoid because the average

of the layer is close to zero and the

NN converges faster. The problem

with the vanishing gradient also

exists with the tanh activation and

is more complicated to calculate

what makes the computing of the

gradient and the update of the

weights more time consuming.

The relu activation and its

improvements are currently the

most used activation functions in

NNs. Values smaller zero which are

passed to the activation are always

zero and values bigger zero are

activated with a linear function

(Figure 20). The relu function has

advantage of being less

computational demanding. With a

derivative of 1 the NN converges

faster and avoids local optimizations

and a vanishing gradient. The

disadvantage of relu function is the

dying neuron problem. The output of

negative values as zero lead to so

called dead neurons which will

never be activated.

Figure 19: The graphic depiction of hyperbolic tangent

function and its derivative (Ding et al. 2018, p.1838)

Figure 20: The graphic depiction of ReLU function and its

derivatives (Ding et al. 2018, p.1838)

 32

This dying neuron issue can be

solved with the leaky relu (lrelu)

activation function where the

negative values of the neuron are

not zero and are calculated with a

fixed scale for the negative slope,

shown in Figure 21. For other

activation functions like the prelu

and the rrelu, the negative slope is

not fixed but trainable or selected

randomly. Ding et. al. tested these

activation functions with a

classification problem where the NN

with the ReLU function performed

the best.

Loss function

The loss function is the measure of how accurate the model of the NN predicts the target

values (Seif 2019). The Mean Squared Error loss used as a default in the DDPG (equation

7) is the right choice when the aim for a NN is to be accurately in the majority of situation.

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑞𝜋(𝑠, 𝑎))2

𝑁

𝑖=1

 (7)

𝑁 ……..… number of samples

𝑦𝑖 …….…. action-value as the target value

𝑞𝜋(𝑠, 𝑎) … estimated action-value

4 Results

The basis of the algorithm used to solve the control problem for heating, cooling and

controlling of the shading device in an office room is the DDPG, an improvement of the initial

Deterministic Policy Gradient by Silver et al which implements a Deep NN, was proposed in

2015 by Lillicrap et al.(Lillicrap et al. 2015) (Lillicrap et al. 2019). Numerous improvements

have been made to this RL-algorithm since it was introduced. Improvements considered in

this thesis are optimized replay buffer approaches and ways to manage the exploration of

the agent using different noise processes.

For a better understanding of the nomenclature in the following chapter and for linking the

algorithm to the use case, the state properties and the action space is defined as follows.

Figure 21: The graphic depiction of LReLU, PReLU and

RreLU function (Ding et al. 2018, p.1839)

 33

state room temperature

forecast forecast data for air temperature, solar irradiation, cost of energy and a

Boolean variable if the room is occupied or not.

observation the state and forecast

actions thermal heating/cooling power and the shading factor

action space heating/cooling power is bound between -1 and 1 with a scaling factor

depending on the room properties

shading factor is bound between 0.01 and 0.6.

4.1 Deep Deterministic Policy Gradient (DDPG)

The DDPG is a model-free, off-policy, actor-critic algorithm which can solve problems with

high dimensional, continuous action spaces (Lillicrap et al. 2015) (Lillicrap et al. 2019).

Lillicrap et al. showed, that DPG is unstable for challenging problems and therefore

combined the DPG algorithm with a Deep Q Network algorithm. The advantage of the Deep

Q Network algorithm is given by the replay buffer which is replayed in an off-policy way to

reduce the correlation between the samples and the use of target networks to reduce the

variance of targets while calculating the temporal difference errors for training. The

implementation of DDPG follows a straight-forward actor-critic architecture and is therefore

easy to implement and to scale to different tasks and network sizes.

The main elements, visualized in Figure 22 of this algorithm are the replay buffer, the

environment, the actor network initialized as 𝜇(𝑜|𝜃𝜇) and the critic network as 𝑄(𝑜, 𝑎|𝜃𝑄).

The weights 𝜃𝑄, 𝜃𝜇 of both networks are used to initialize the target networks 𝜇′, 𝑄′ as copies

of the actor and critic with the respective weights 𝜃𝑄′
← 𝜃𝑄, 𝜃𝜇′

← 𝜃𝜇 which are introduced

to stabilize training.

Figure 22: Elements of the DDPG algorithm

The off-policy algorithm explores the action space by selecting an action following the current

policy 𝜇 in the current observation 𝑜𝑡 with an action noise 𝑁𝑡 added to the selected action at

equation 8. In the DDPG the action noise for exploring the action space can be handled

independently of the learning algorithm.

 34

𝑎𝑡 = 𝜇(𝑜𝑡|𝜃𝜇) + 𝑁𝑡 (8)

𝑎𝑡 … selected actions (Q-input, Tvis)

𝑜𝑡 … observation (state and forecast values)

𝜇 …. deterministic policy (actor)

𝜃𝜇 … parameters of the actor

𝑁𝑡 … action noise

The trajectory following the execution of the action is stored with the transition from one state

𝑠𝑡 with a forecast 𝑓𝑡 and action 𝑎𝑡 to the next state 𝑠𝑡+1 with the next forecast 𝑓𝑡+1 and the

reward 𝑟𝑡 for the current timestep as the trajectory(𝑠𝑡 , 𝑓𝑡, 𝑎𝑡 , 𝑠𝑡+1, 𝑓𝑡+1, 𝑟𝑡). Figure 23 shows

the process starting from selecting the action until storing the trajectory.

Figure 23: DDPG – agent-environment interaction

The training of the actor-critic networks is executed after each timestep with a minibatch of

trajectories, which are sampled randomly from the replay buffer. The training process starts

with calculating the action-value with the target networks. With the observation of the

timestep t+1 from the sampled minibatch the target actor selects an action and passes it to

the target critic to calculate the action-value by adding it to the reward from timestep t. In

Figure 24 the green arrows show input data from the replay buffer and the purple arrows are

outputs of NNs. Equation 9 depicts the mathematical formulation of the process.

 35

Figure 24: DDPG – calculating the action-values

𝑦𝑡 = 𝑟𝑡 + 𝛾 ∗ 𝑄′(𝑜𝑡+1, 𝜇′(𝑜𝑡+1|𝜃𝜇′
)|𝜃𝑄′

) (9)

𝑦𝑡 …… action-value as target

𝑜𝑡+1 … observation of timestep t+1 (state and forecast values)

𝑟𝑡 ….... reward of timestep t

𝛾 ……. discount factor

𝑄′ …... target critic

𝜃𝑄′
 …. parameters of target critic

𝜇′ ...… target actor

𝜃𝜇′
 .… parameters of target actor

The loss 𝐿 of the critic-network by estimating the action-value is minimized during training

of the critic with the mean squared error between the action-value 𝑦𝑡 and the

approximation of the critic (equation 10).

 36

𝐿 =
1

𝑁
∑ (𝑦𝑡 − 𝑄(𝑜𝑡 , 𝑎𝑡|𝜃𝑄))2

𝑡
 (10)

𝐿 ….. critic loss

𝑁 ….. number of samples

𝑦𝑡 .… action-value as target

𝑜𝑡 …. observation of timestep t (state and forecast values)

𝑎𝑡 .… selected actions (Q-input, Tvis)

𝑄 ….. critic

𝜃𝑄 … parameter of critic

The training process presented in Figure 25 illustrates the off-policy training of DDPG. Green

arrows are the inputs from the replay buffer, purple arrows are the outputs from the NN and

the blue arrows are the values used for backpropagation through the network. The critic is

trained with actions selected by an old policy and the action value calculated before. The

training of the actor starts with selecting actions with the sampled inputs according to the

new policy. The new observation and action inputs are feed into the critic. The objective for

optimizing the actor policy is the sampled policy gradient following the updated critic network.

The mean value of the estimated actor-value is used to calculate the gradients which are

applied to the actor policy. Equation 11 depicts the mathematical formulation of the process.

Figure 25: DDPG – training of the critic and actor network

 37

∇𝜃𝜇𝐽 ≈
1

𝑁
∑ ∇𝛼𝑄(𝑜𝑡 , 𝜃𝑄)|𝑜=𝑜𝑡,𝑎=𝜇(𝑜𝑡)

∇𝜃𝜇𝜇(𝑜𝑡|𝜃𝜇)|𝑜𝑡
𝑡

 (11)

∇𝜃𝜇𝐽 … gradient of the performance measure

𝑁 ……. Number of samples

𝑜𝑡 …… observation of timestep t (state and forecast values)

𝑄 ……. critic

𝜃𝑄 …… parameter of critic

𝜇 …….. deterministic policy (actor)

𝜃𝜇 …… parameters of the actor

𝛼 …….. learning rate (stepsize of the gradient)

The training of the NN is stabilized with target networks updated with a soft update, which

means that the parameter of the actor- and critic network are decreased with the factor 𝜏

before copying the parameters to the target networks, calculated with equation 12 for the

target critic network and with equation 13 for the target actor network. The disadvantage of

this soft update is the slower propagation of the action-value estimation of the critic.

𝜃𝑄′
 ← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

 (12)

𝜃𝜇′
 ← 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

 (13)

𝜃𝑄′
 … parameters of the target critic

𝜃𝑄 …. parameters of the critic

𝜃𝜇′
 … parameters of the target actor

𝜃𝜇 …. parameters of the actor

𝜏 …… soft constraint

4.2 Replay Buffer

Experience from the interaction of the agent with the environment is stored in the replay

buffer with state, forecast, action, next state, next forecast and the reward. In the original

DDPG-algorithm by Lillicrap et al a subset of experiences is randomly sampled from the

replay buffer to train the networks (Lillicrap et al. 2019).

Schaul et. al proved that the learning process can be improved by sampling the experiences

according to a priority for each experience. Prioritized Experience Replay (PER) uses the

absolute value of the temporal difference (TD) error (equation 14) of the estimation of the

action-value by the critic network (Schaul et al. 2016). The priority of each sample is updated

after these experiences are used for training the NN for future training steps. Since new

experience do not have a priority and thus, would never be selected for training the priority

is set to the clipped maximum priority set by the user.

 38

𝛿𝑖 = |𝑟𝑡 + 𝛾 ∗ 𝑄′(𝑜𝑡+1, 𝜇′(𝑜𝑡+1|𝜃𝜇′
)|𝜃𝑄′

) − Q(𝑜𝑡−1, 𝑎𝑡−1)| (14)

𝛿𝑖 …… TD error

𝑜𝑡+1 … observation of timestep t+1 (state and forecast values)

𝑜𝑡−1 … observation of timestep t-1 (state and forecast values)

𝑎𝑡−1 … actions of timestep t-1

𝑟𝑡 ….... reward of timestep t

𝛾 ……. discount factor

𝑄′ …... target critic

𝜃𝑄′
 …. parameters of target critic

𝜇′ ...… target actor

𝜃𝜇′
 .… parameters of target actor

In PER, the TD error shrinks slowly, which leads to a frequent replay of experiences with an

initial high TD error. This lack of variety in the training data for the NN can lead to over-fitting,

meaning that the agent is able to solve the problem in specific states with specific forecasts

only. To overcome this issue Schaul et al. introduces a stochastic sampling method, which

interpolates between a pure greedy-sampling and random sampling of the experiences with

equation 15. The exponent 𝛼 sets how much prioritization is used with 𝛼 = 1 as the prioritized

case with no randomness.

𝑃(𝑖) =
𝛿𝑖

𝛼

∑ 𝛿𝑖
𝛼

𝑖

 (15)

𝑃(𝑖) … priority of sample i

𝛿𝑖
𝛼 ….. scaled TD error of sample i

𝛼 ……. prioritization of randomness

Prioritized sampling introduces a bias in the network because experiences with high priorities

are used more often for training. Importance sampling weight (equation 16) is a way to

correct the bias. An unbiased sampling is especially important at the end of training,

therefore the exponent 𝛽 sets the amount of correction and increases over time to one.

Another benefit of IS weights are the lower magnitudes of the gradients of samples with a

high TD error, which enables the use of a higher global step size of the optimizer.

𝜔𝑗 =
(𝑁 ∗ 𝑃(𝑖))−𝛽

𝑚𝑎𝑥𝑖𝜔𝑖
 (16)

𝑃(𝑖) … priority of sample

𝜔𝑗 …... weight of sample

𝑁… batch size

𝛽 ….… amount of importance correction

 39

The weight change with IS weights is set according to equation 17.

Δ ← ∆ + 𝜔𝑖 ∗ 𝛿𝑖 ∗ ∇𝜃𝑄(𝑜𝑖−1, 𝑎𝑖−1) (17)

𝜔𝑖 … importance sampling weight

𝛿𝑖 … TD error

𝑜𝑖−1 … observation of timestep t-1

𝑎𝑖−1 … actions of timestep t-1

𝜃 ……. parameter of critic network

Another priority sampling algorithm introduced by Cao et al. in 2019 called the High-Value

Prioritized Experience Replay (HVPER) builds on PER but combines the action-value and

the TD-error for each sample (Cao et al. 2019). The high TD-errors in the first episodes of

training do not improve the agent because the optimal policy will not reach these states. The

IS weight, as well as the TD error are calculated the same way as in equation 16 and

equation 17, respectively. The priority calculation is extended by the variable 𝑢𝑖 ,which is

updated with 𝑢𝑖 = 𝑢0 ∗ 𝜇 every time the experience is used for training.

The priority value for the action-value and the TD-error are often not in the same range.

Therefore, these values must be normalized. Cao et al. used the sigmoid function

(equation 18) to do so and updates the priorities the action-value and TD error-priority with

equation 19 and equation 20.

𝑦 =
1

(1 + 𝑒−𝑥)
 (18)

𝑝𝑞𝜋
(𝑖) = 𝑠𝑖𝑔(𝑞𝜋(𝑜𝑖 , 𝑎𝑖)) (19)

𝑝𝑇𝐷(𝑖) = 𝑠𝑖𝑔(|𝛿𝑖|) ∗ 2 − 1 (20)

𝑝𝑄(𝑖) ….. priority of action-value

𝑝𝑇𝐷(𝑖) … priority of TD-error

𝑞𝜋 ……... action-value

𝑜𝑖 …....… observation of sample

𝑎𝑖 ……… actions of sample

𝛿𝑖 …….... TD error

The full calculation of the priority is presented in equation 21. The variable 𝜆 shifts the weight

of the priorities from the start with a higher weight for the Q-priority until the end with a higher

weight of the TD error to speed up the convergence of the NN. The value of 𝑢𝑖 declines every

time this experience is used, which leads to a smaller priority.

 40

𝑝(𝑖) = 𝜆 ∗ 𝑝𝑞𝜋
(𝑖) + (1 − 𝜆) ∗ 𝑝𝑇𝐷(𝑖) ∗ 𝑢𝑖 (21)

𝑝(𝑖) ….… priority of sample

𝑝𝑞𝜋
(𝑖) ….. priority of action-value

𝑝𝑇𝐷(𝑖) …. priority of TD error

𝜆 …….…. Prioritization of action-value/TD-error

𝑢𝑖 …….… scale of priority according to the number of using this sample

The sampling of the experience is a combination of random sampling and priority sampling

to reduce the time overhead for updating every priority in the replay buffer with a capacity of

up to 106 samples. The first step is to randomly select samples with a size of 𝑘 ∗ 𝑛 and then

select samples via HVPER sampling with a size of 𝑛.

These three different approaches for the replay buffer are investigated within the research

environment.

4.3 Noise

The noise in RL-algorithms prevents the algorithm to converge to a local optimum and can

be applied as an action noise or as a parameter noise (Plappert et al. 2018). In the original

DDPG algorithm an Ornstein-Uhlenbeck noise-process is initialized at the start of each

episode and added to the selected action (Lillicrap et al. 2019). The Ornstein-Uhlenbeck

noise is a temporally correlated noise visualized in Figure 26 by the blue line compared to a

Gaussian noise. As discovered by Barth-Maron et al. the correlated noise has no impact on

the performance of the algorithm compared to a fixed Gaussian noise. (Barth-Maron et al.

2018).

Figure 26: Action-noise process Ornstein-Uhlenbeck and Gaussian

 41

An alternative to action noise is to perturbate the network parameters of the actor (Plappert

et al. 2018). Gaussian noise is applied to the parameter vector of the policy network at the

beginning of every episode. The action obtained by the policy with action space noise is

different with a fixed observation as the input because the noise is independent of the

observation. With parameter space noise the obtained action will always be same when

passing a fixed observation.

Especially in environments with a sparse reward, means not providing a reward at every

timestep, the algorithm with parameter space noise succeeded in the task, whereas the

algorithm with action noise failed completely. Scaling the Gaussian noise for the perturbed

actor is not as intuitive as scaling the actor noise. Plappert et al. introduced an adaptive

noise scaling suitable for all RL-algorithm where the scale over time changes over time with

a measure depending on the distance between the actor and the perturbed actor.

4.4 State of the art Controller

PID -controller and MPC can be considered as state of the art controller with MPC (Wang et

al. 2017). The simplicity and reliability of PID controllers makes them still widely used, even

though MPC has proven to perform better for energy savings and cost savings as Gehbauer

et al. demonstrated in their study (Gehbauer et al. 2020).

4.4.1 PID Control

PID controller are a simple form of feedback-controller seen in the control loop displayed in

Figure 27 shows the PID controller with the three main elements of P, I and D (Heinrich et

al. 2020).

Figure 27: Functional diagram of a PID-controller (modified according to(Heinrich et al. 2020,

p.163))

The following icons show the step function after a step for the target value. The step of the

target value could be a change of the temperature setpoint, due a time schedule or

occupancy sensor. In the control terminology the elements are described with the unit-step

response 𝐺(𝑠).

 42

Proportional

The P element is a multiplication by a proportional constant with the error between setpoint

and the target value (room temperature). This element follows the error without delay

(equation 22).

𝐺(𝑠) = 𝐾𝑃 (22)

Integral

With the I element the controller gets more accurate, due to the nature of integration, the

control value is not zero if the error is not zero. The target value is reached accurately but

the minimization of the error takes longer than with the P element. The unit-step response is

given in equation 23.

𝐺(𝑠) =
𝐾𝐼

𝑠
 (23)

Derivative

The unit-step response calculated with equation 24 gives the step function of the D element

which is an impulse function with a value of zero except at timestep t=0. In combination with

a P-element as a PD controller the performance is fast, but the controller is inaccurate,

produces high frequent malfunctions.

𝐺(𝑠) = 𝐾𝐷 ∗ s (24)

The combination of P- and I-element or of P-, I- and D-element is a classic combination for

controller as PI-controller or PID-controller. The unit-step response of the PID-controller is

specified in equation 25. For a PID controller the equation remains the same, but the

derivative constant is set to zero.

𝐺(𝑠) = 𝐾𝑃 (1 +
𝐾𝐼

𝐾𝑃

1

𝑠
+

𝐾𝐷

𝐾𝑃
𝑠)

𝐺(𝑠) = 𝐾𝑃 (1 +
1

𝑇𝐼𝑠
+ 𝑇𝐷𝑠)

(25)

𝐺(𝑠) … unit-step function

𝐾𝑃 …... proportional constant

𝐾𝐼 …… integration constant

𝐾𝐷 …... derivative constant

𝑠 ….…. operator for the derivative by time d/dt

𝑇𝐼 ……. reset time

𝑇𝐷 …… rate time

 43

Setting

The configuration of the PID controller parameters can be done empirically by analyzing the

step response and apply the equations 26 of Ziegler and Nichols with the tuning parameters

given by the step response in Figure 28.

𝐾𝑃 = 0.9 ∗
𝑇𝑏

𝐾𝑆𝑇𝑒

𝑇𝐼 = 3.3 ∗ 𝑇𝑒

𝑇𝐷 = 0.5 ∗ 𝑇𝑒

(26)

𝑇𝑏 …... time constant

𝑇𝑒 …… delay time

𝐾𝑆 …… gain

𝑇𝐼 ……. reset time

𝑇𝐷 …… rate time

Figure 28: Step response with aperiodic course (Heinrich et al. 2020, p.174)

In this thesis a PI-controller is used to compare it with the developed agent. The parameters

of the PI controller in this thesis are:

𝐾𝑃 = 10,000

𝑇𝐼 = 30

𝑇𝐷 = 0

4.4.2 Model Predictive Control

In a perfect world, the predictive control model has the knowledge of all relevant information

and optimizes its strategy based on this knowledge. The model built in this thesis is a perfect

 44

information model and is used to evaluate the agent in the development process. The perfect

information model is built with numerical functions and is a twin of the RC-model built in

python as the environment of the RL-setup. In Figure 29 the information flow in the model

and the constraints and penalties are shown.

Figure 29: Information flow in the perfect knowledge MPC model

𝑇𝑎𝑚𝑏 ……….. outside air temperature

𝑆𝑖𝑟𝑟 …………. solar irradiation on the tilted window

𝑆𝑖𝑙𝑙 ………..... global horizontal illuminance

𝑄𝑡ℎ …………. thermal internal load

𝑄𝑒𝑙 …………. electrical internal load

𝑐𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 …. tariff information energy costs

𝑐𝑜𝑠𝑡𝑑𝑒𝑚𝑎𝑛𝑑 ... tariff information demand costs

𝑇𝑟 …………… room temperature

𝐸𝑐𝑜𝑠𝑡 ……….. energy costs

𝐷𝑐𝑜𝑠𝑡 ……….. demand costs

𝑝𝑡𝑖𝑛𝑡 ………... penalty for tinting the window

𝑇𝑚𝑖𝑛 ……..… minimum room temperature

𝑇𝑚𝑎𝑥 …….…. maximum room temperature

𝑤𝑝𝑖𝑚𝑖𝑛 …….. minimum workplace illuminance

Q …………… energy input

𝑇𝑣 ………….. visibility through EC-window

 45

4.5 Room Model

For this thesis a medium office building, based on a study conducted by the National

Renewable Energy Laboratory is the basis of the building properties used for developing the

agent (Deru et al. 2011). The reference building has the form parameters of a medium office

building which corresponds to a mass or steel construction. These parameters are

summarized in Table 1.

Table 1: Reference Building Form Assignments (Deru et al. 2011, p.19)

Floor Area Aspect

Ratio

No. of

Floors

Floor-to-Floor

Height

Floor-to-ceiling

Height

Glazing

Fraction

ft2 m2 ft m ft m

53,628 4,982 1.5 3 13 3.96 9 2.74 0.33

The energy relevant specifications of medium office buildings are shown in Table 2.

Table 2: U-Value by Reference Building Vintage - Standard 90.1-2004 (Deru et al. 2011, p.26)

 Btu/h*ft2*ºF W/m2*K

Roof 0.034 0.1936

Wall 0.580 3.294

Window 1.22 6.927

The single office room controlled in this thesis (Figure 30 in green) has an area of 14 m2 and

a window with a size of 5.2 m2 which corresponds to a typical window to wall ratio according

to a study conducted by the U.S. Department of Energy of 33 % (Deru et al. 2011).

Figure 30: Room model (green)

 46

The resistance value (R-value) is calculated applying the U-values and the respective wall-

and window area. The room has no heat loss through ceiling, floor or inside walls. The total

capacity of the room is calculated by taking the air properties at 20 °C and by calculating the

effective thermal mass of the walls, floor and ceiling following the standard EN-ISO 13786

with the calculation tool developed by HTflux (Rüdisser 2018). The specifications of the room

regarding the building envelope are stated in Table 3.

Table 3: specification of the room model

area 14 m2 (150 ft2)

height 3.95 m (13.12 ft)

window area 5.2 m2

exterior wall area 10.6 m2

U-value wall 3.294 W/m2K (1.22 Btu/h·ft2 ºF)

U-value window 6.923 W/m2K (1.22 Btu/h·ft2 ºF)

R-value room 0.014 K/W

C Room 2205 kJ/K

The HVAC system is modelled with a fixed coefficient of performance with 3.5 for cooling

and 1 for heating.

4.5.1 Electrochromic Window

The shading device controlled by the agent is integrated in the glazing of the window as an

Electrochromic Window (EC-window). EC-windows are coated with a switchable nanometer-

thick (1x10-9 m) thin-film which tint can be reversibly changed by applying a small direct

current voltage (Lee et al. 2006). The thin film is formed with the following layers:

1. transparent conductor

2. active electrochromic

3. counter-electrode

4. ion-conducting electrolyte

When a bipolar potential is applied to the outside layer (transparent conductor) where lithium

ions migrate across the ion-conducting layer from the counter electrode layer to the

electrochromic layer. The EC-window is tinted to a Prussian Blue and can be reversed to a

clear state by reversing the potential. The window only needs power while changing its tint

state and remains unchanged until a voltage is applied. In Figure 31 the principle of an EC-

window is shown for the clear and colored state.

 47

Figure 31: Diagram of a typical tungsten-oxide electrochromic coating (Lee et al. 2006, p.6)

The window can be controlled by changing the visibility transmittance (Tv) in a range of

Tv = 0.6 - 0.01. Consequently, the solar heat gain coefficient (SHGC) changes accordingly

ranging from SHGC = 0.48 - 0.09. EC-windows are considered to have the potential for real

time optimization in buildings regarding the total energy-and demand costs, the stress on

the power grid and occupant comfort due to an undistorted view to the sky. In Figure 32 the

EC-window is shown installed in an office building in Sacramento. CA (Fernandes et al.

2018).

Figure 32: Each window pane had three sub-zones that could be independently controlled

(Fernandes et al. 2018, p.14)

 48

The three independent subpanels of the glass enable a better glare control. The Subpanels

can be tinted in four discreet states with the glazing properties for the EC-windows used in

this study shown in Table 4.

Table 4: Name and visible transmittance of the four tint levels. (Fernandes et al. 2018, p.15)

Tint name Visible

transmittance [%]

Solar

transmittance [%]

SHGC

[-]

U-value

[W/m2K] [BTU/ft2F]

Clear 60 33 0.42

1.816 0.32
Light tint 18 7 0.16

Medium tint 6 2 0.12

Full tint 1 0.4 0.1

The dependency of Tv to SHGC is shown in Figure 33 as a linear and a quadratic function.

The SHGC is calculated after taking the action Tv to calculate the solar heat gain. The linear

function is chosen to calculate SHGC because the quadratic function would slow the

simulation down and has no further advantage over the linear function. The action taken by

the agent is continuous and can be any number between 0.6 and 0.01.

Figure 33: EC-window properties

4.5.2 Solar Position and Radiation

The determination of the solar position and thus the calculation of the incident radiation on

the window is necessary for the calculation of the room model. The global horizontal

irradiance (GHI), the diffuse horizontal irradiance (DHI) and the direct normal irradiance

(DNI) together with the geographical position and the time zone are needed as inputs for the

calculation. Starting with the calculation of the real location time 𝑡𝑊𝑂𝑍 (equation 29) and the

hour-angle 𝜔 (equation 30) (Duffie and Beckman 2013). Equation 27 describes the time the

 49

earth traveled on the orbit so far this year in degrees and is used in the equation of time

(equation 28) which describes the variable length of the days in the year.

𝐵 =
360

365
∗ (𝑁 − 1) (27)

𝐵 … travelled distance in degree

𝑁 … day of year

𝐸 = 229,2 ∗ (0,000075 + 0,001868 ∗ 𝑐𝑜𝑠 𝐵 − 0,032077 ∗ 𝑠𝑖𝑛 𝐵 − 0,014615

∗ 𝑐𝑜𝑠 2𝐵 − 0,04089 ∗ 𝑠𝑖𝑛 2𝐵)

𝐸 … equation of time

𝐵 … distance in degree of the earth on the earth orbit

(28)

The real location time is referenced to the standard meridian of the timezone and the latitude

of the location. With 𝐸 the elliptic orbit of the earth is also included in the equation 29.

𝑡𝑊𝑂𝑍 = 𝑡𝐿𝑍 − 𝐷𝑆𝑇 +
𝜙𝐵𝑧 − 𝜙

15
+ 𝐸 ∗

1ℎ

60𝑚𝑖𝑛
 (29)

𝑡𝑊𝑂𝑍 … real location time

𝑡𝐿𝑍 …... local time

𝐷𝑆𝑇 .… daylight saving time

𝜙𝐵𝑧 …. standard meridian

𝜙 ….… latitude

𝐸 ……. equation of time

The hour angle is referenced to the real location time and is negative before noon and

positive in the afternoon.

𝜔 = (𝑡𝑊𝑂𝑍 − 12) ∗ 15 (30)

𝜔 …. hour angle

𝑡𝐿𝑍 ... real local time

The orbit of the sun and thus also the position of the sun can be described over several

angles, some of them are shown in Figure 34 and described further on.

 50

Figure 34: (a) Zenith angle, slope, surface azimuth angle and solar azimuth angle for a tilted

surface. (b) Plan view showing solar azimuth angle (Duffie and Beckman 2013, p.13)

Another angle, not shown in Figure 34 is the declination of the earth which varies between -

23° and 23° as seen in Figure 35 and can be described with the approximation by Cooper in

equation 31 (Duffie and Beckman 2013). The declination is the angle between the sun at

solar noon and a plane on the equator.

Figure 35: Maximum and minimum value of declination angle (Mousavi Maleki et al. 2017, p.2)

𝛿 = 23,45 ∗ 𝑠𝑖𝑛 (360 ∗
284 + 𝑁

365
) (31)

𝛿 … declination

𝑁 … day of year

 51

Figure 36: Declination angle in Oakland, CA

The zenith – angle 𝜃𝑧 shown in Figure 34 is a function of the declination 𝛿, latitude 𝜑 as well

as, the hour angle 𝜔.

𝑐𝑜𝑠(𝜃𝑧) = 𝑐𝑜𝑠(𝜙) ∗ 𝑐𝑜𝑠(𝛿) ∗ 𝑐𝑜𝑠 (𝜔) + 𝑠𝑖𝑛(𝜙) ∗ 𝑠𝑖𝑛(𝛿) (32)

𝜃𝑧 … zenith angle

𝜙 …. latitude

𝛿 …. declination

𝜔 .… hour angle

The azimuth angle 𝛾𝑠 is related to south and varies between -180° and 180° which represents

before noon and after noon.

𝛾𝑆 = 𝑠𝑖𝑔𝑛(𝜔) |𝑎𝑟𝑐𝑐𝑜𝑠 (
cos(𝜃𝑍) ∗ sin(𝜙) − sin (𝛿)

sin(𝜃𝑍) ∗ cos (𝜙)
)| (33)

𝛾𝑆 … azimuth angle

𝜃𝑍 … zenith angle

𝜙 …. latitude

𝛿 …. declination

𝜔 .… hour angle

With the calculated angles the angle of incidence 𝜃𝐷𝑖 can be calculated according to

equation34.

𝑐𝑜𝑠 𝜃𝐷𝑖 = 𝑐𝑜𝑠(𝜃𝑍) ∗ 𝑐𝑜𝑠(𝛽) + 𝑠𝑖𝑛(𝜃𝑍) ∗ 𝑠𝑖𝑛(𝛽) ∗ 𝑐𝑜𝑠 (𝛾𝑠 − 𝛾) (34)

𝜃𝐷𝑖 … angle of incidence

𝛾𝑆 … azimuth angle

𝜃𝑍 … zenith angle

𝜙 …. latitude

𝛿 …. declination

𝜔 .… hour angle

𝛾 …. surface azimuth angle

𝛽 …. slope of the surface (window 90 °)

 52

The GHI is a product of DHI and the DNI dependent on the zenith angle.

𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 ∗ 𝑐𝑜𝑠(𝜃𝑍) (35)

𝐺𝐻𝐼 … global horizontal irradiation

𝐷𝐻𝐼 … diffuse horizontal irradiation

𝐷𝑁𝐼 … direct normal irradiation

𝜃𝑍 …... azimuth angle

The product of equation 36 is the DNI on the tilted surface, calculated with the angle of

incidence.

𝐷𝑁𝐼𝑇 = 𝐷𝑁𝐼 ∗ 𝑐𝑜𝑠 𝜃𝐷𝑖 (36)

𝐷𝑁𝐼𝑇 … direct normal irradiation on the surface (window)

𝐷𝑁𝐼 ….. direct normal irradiation

𝜃𝐷𝑖 … angle of incidence

The total irradiation on the tilted surface, calculated with equation 37 is the sum of the DNI

on the tilted surface, the DHI depending on the angle of the surface in respect to the sky and

the GHI depending on the angle of the surface in respect to the ground and the value for

ground reflection.

𝐼𝑇 = 𝐷𝑁𝐼𝑇 + 𝐷𝐻𝐼 ∗ (
1 + 𝑐𝑜𝑠(𝛽)

2
) + 𝜌𝐵 ∗ 𝐺𝐻𝐼 ∗ (

1 − 𝑐𝑜𝑠(𝛽)

2
)

𝐼𝑇 …….. total irradiation on the tilted surface

𝐷𝑁𝐼𝑇 … direct notmal irradiance on the tilted surface

𝐷𝐻𝐼 … diffuse horizontal irradiation

𝐺𝐻𝐼 … global horizontal irradiation

𝛽 …. slope of the surface (window 90 °)

𝜌𝐵 ……. reflectance of the ground (albedo)

(37)

Figure 37 summarizes the calculated solar angles and displays the total solar irradiation on

a window oriented to the south for Oakland, CA with a longitude of -122.22 and latitude 37.72

for a window with an orientation with 0° off south and the slope with 90° of the window. The

figure shows the calculated values for January 1st and August 1st with the weather data from

2019.

 53

Figure 37: Solar angles and solar irradiation on tilted surface

4.5.3 Electricity Market in California

The master thesis focuses on cost savings for electricity demand. Therefore, the tariff

structure of the electricity market in California for economic criteria are analyzed. The focus

in this thesis is on the electricity market in Berkeley, Alameda County. This area of California

is in the electric utility area of Pacific Gas and Electricity (PG&E) (CEC 2020). The electric

power industry is deregulated since 1992 when the U.S. Congress passed the Energy Policy

Act and opened the transmission networks to independent energy producers and dissolved

the natural monopole of electric utilities (State of California 2018). Due to an energy crisis in

2001 the costumer choice has a limited availability. Customers can enter a lottery system if

they intend to choose their energy service provider and opt out of from PG&E as the default

energy provider in the city of Berkeley.

For commercial customers PG&E offers two rate options with time-of-use (TOU) or peak day

pricing (PG&E 2020b). With the PDP rate plans the customer gets discounted electricity

rates in the summer in exchange of higher priced peak periods during peak events from 2-6

p.m., which occur during the summer months on the hottest days of the year. PGE&E

proposes the TOU rates with “Maximize your savings with time-of-use rates”. Since the

thesis focuses on reducing the electricity bill the electricity rate is chosen from the TOU plans

portfolio. The representative electricity rate is the PG&E E-19 tariff with a winter and summer

period with different time schedules and energy prices (PG&E 2020a).

 54

Table 5: E-19 definition of time periods, energy- and demand-costs

SUMMER May 1st October 31st Energy

cost

[$/kWh]

Demand

cost

[$/kW]

Peak 12:00 p.m. - 06:00 p.m. workdays 0.16225 19.63

Partial peak 08:30 a.m. - 12:00 p.m.

6:00 p.m. to 09:30 p.m.

weekdays

weekdays
0.11734 5.37

Off-peak 09:30 p.m. - 08:30 a.m.

24 hours

weekdays

weekends and holidays
0.08846 0.00

WINTER November 1st April 30th

Partial peak 08:30 a.m. - 09:30 p.m. workdays 0.11127 0.18

Off-peak 09:30 p.m.- 08:30 a.m.

24 hours

weekdays

weekends and holidays
0.09559 0.00

Base rate All year 17.63

The maximum demand is averaged over 15-minute intervals and is calculated and charged

monthly. For the demand calculation PG&E uses the maximum demand for each period

multiplied with the corresponding costs. The base rate is multiplied with the maximum

demand in the month. The bill for the demand costs of one month in the summer could look

like Table 6.

Table 6: Example for the demand cost calculation

 Demand [kW] Demand cost [$]

Peak 0.75 14.7225

Partial peak 1.12 6.0144

Off-peak 0.64 0.00

Base rate 1.12 19.7456

Total demand cost 40.4825

The energy costs are calculated according to the energy consumption every hour

corresponding to the TOU-tariff. Figure 38 shows the four different cases occurring in a year.

 55

Figure 38: E-19 tariff with time dependent energy- and demand costs (PG&E 2020a)

4.6 RL-Setup

The task of the agent is defined as follows:

Ensure the room temperature within the boundaries of 21 – 24 °C while the room is occupied

and 15,5 – 26,5 °C while the room is empty. The workplace illuminance (WPI) should be at

least 350 lx for office work. The goal hereby is, to lower the total costs for energy and demand

while the constraints are met. The agent can control the shading system by setting the

visibility with a linear dependency to the applied current and the heating – and cooling system

by controlling the thermal power distributed to the room.

4.6.1 Environment

In the environment in the RL-setup the thermal model and the reward function are defined

and calculated. The environment for the development of the agent is a simplified resistance

and capacitance (RC) model.

Room- Model

The equation for the RC-model is given with equation 38 and considers the outside air

temperature, the room temperature of the previous timestep and the current room

 56

temperature. The solar heat gain on the tilted surface 𝐼𝑇 is calculated with equation 37 as

described in chapter 4.5.2.

Q =
(𝑇𝑟(𝑡) − 𝑇𝑎𝑚𝑏)

𝑅𝑟
+ 𝐶𝑟 ∗ (𝑇𝑟(𝑡) − 𝑇𝑟(𝑡−1)) + 𝐼𝑇 ∗ 𝑆𝐻𝐺𝐶 − 𝑄𝑖𝑛𝑡

(38)

Q ………. heating- or cooling energy (action of agent)

𝐼𝑇 .…..… solar irradiation on the window glazing

𝑆𝐻𝐺𝐶 .… solar heat gain coefficient

𝑄𝑖𝑛𝑡 …… internal loads (people, power consumers, artificial lights)

𝑇𝑟(𝑡) …... current room temperature

𝑇𝑟(𝑡−1) … room temperature of last timestep

𝑇𝑎𝑚𝑏 ….. outside air temperature

𝐶𝑟 ……... capacitance of the room

𝑅𝑟 ….….. thermal resistance of the room

For the second task of the agent to ensure the WPI the illuminance in the room has to be

calculated. A detailed calculation of the WPI using raytracing is a computer intensive work.

In this thesis the goal is to develop an agent and a raytracing calculation exceeds the scope.

The Building Research Establishment on behalf of the Department for Communities and

Local Government of the United Kingdom developed an analyzing tool for the energy

consumption of buildings (BRE 2015). Building Research Establishment calculates the

average daylight factor with total window area and the area of all surfaces in the room

(equation 39).

DF = 45 ∗
𝐴𝑤 ∗ 𝑇𝑣

0.76 ∗ 𝐴𝑠𝑢𝑟𝑓
 (39)

DF …… average daylight factor

𝐴𝑤 .…… window area

𝐴𝑠𝑢𝑟𝑓 … area of all room surfaces (ceiling, floor, walls and windows)

𝑇𝑣 .……. visibility (action of the agent)

The daylight factor per definition is the ratio between global horizontal illuminance and the

average illuminance in the room. Therefore, by calculating the daylight factor with equation

39 the available illuminance in the room is calculated by multiplying the global horizontal

illuminance with the daylight factor.

The internal loads are the sum of artificial light, power consumers and the people in the

room. The artificial light ensures the minimum level of WPI, therefore the only signal the

agent gets for the tint status is the energy consumption of the artificial light. The power

consumers per workplace are assumed to be 10.78 W/m2 with 10 % of standby energy

 57

consumption (Deru et al. 2011). The thermal internal load per workplace, equivalent to one

person is 100 W The time schedule for the power consumers and people’s presence on

weekdays is 07:00 am to 06:00 pm and no occupancy on the weekends is assumed.

Reward

The reward (equation 40) is calculated with the total costs for energy and demand for all

energy consumers as the optimization goal. Furthermore, a penalty for exceeding the room

temperature boundaries and a penalty for tinting the EC-window with no solar radiation are

included in the calculation. The demand is charged monthly, therefore the costs per month

are scaled to represent the ratio between one hour of energy costs and the monthly demand

costs. The penalty for the room temperature is limited to a maximum value of two to prevent

the reward deviate too much from the optimal policy especially at the beginning of the training

process. The tint penalty is one when the visibility is set to a lower level than 99 % of the

maximum visibility level which means no tinting.

𝑟 = −
|𝐸𝑐𝑜𝑠𝑡|

𝑚𝑎𝑥𝐸𝑐𝑜𝑠𝑡
−

|𝐷𝑐𝑜𝑠𝑡|

𝑚𝑎𝑥𝐷𝑐𝑜𝑠𝑡
∗ 𝑠𝑐𝑎𝑙𝑒𝐷 − 𝑚𝑎𝑥 (|𝑇𝑟(𝑡) − 𝑇𝑐𝑜𝑛𝑠𝑡|, 2) − 𝑝𝑡𝑖𝑛𝑡 (40)

𝑟 ……..…… reward

𝐸𝑐𝑜𝑠𝑡 ……… energy costs

𝐸max _𝑐𝑜𝑠𝑡 … maximum energy costs

𝐷𝑐𝑜𝑠𝑡 ……… demand costs

𝐷max _𝑐𝑜𝑠𝑡 … maximum demand costs

𝑠𝑐𝑎𝑙𝑒𝐷 ……. scale factor for the demand costs

𝑇𝑟(𝑡) …….... current room temperature

𝑇𝑐𝑜𝑛𝑠𝑡 …..… temperature boundary (min, max)

𝑝𝑡𝑖𝑛𝑡 …….... penalty for tinting the window

4.6.2 Development

The development of the agent includes the selection of the algorithm, the network

architecture with its input values and the replay buffer to improve the agent. The action space

for the energy input 𝑄 is set with a maximum specific heat- and cooling power of 100 W/m2

and the visibility 𝑇𝑣 with the properties shown in 4.5.1 with action boundaries of 0.01 to 0.6.

The observation of the agent contains the state of the room and a forecast including the

outside air temperature, solar radiation, costs of energy and the occupancy of the room.

The training process of the agent runs within episodes with a length of one day and a total

of 3,000 episodes. For each episode, the start day is selected randomly from the weather

dataset and a random start state (room temperature) is selected within the temperature

boundaries. The agent is trained with the weather data set of Oakland Intl AP 724930,

distributed by EnergyPlus (EnergyPlus 2019).

 58

The basic setup of the agent is based on the experimental setup of the DDPG with a multi-

layer perceptron network with 2 hidden layers with a layer size of 400 and 300 respectively

(Lillicrap et al. 2019). The structure of both NNs is the same, with the difference that the

action is added to the critic network after the first hidden layer. The activation function for the

hidden layers is the relu function and for the output layer of the critic a linear function is

applied. For the actor, the activation function for the output of 𝑄 is tanh with values between

-1 and 1 and the output for 𝑇𝑣 with a relu function with a maximum value of 1 is utilized. The

learning rate was chosen to be 10-4 for the actor and 10-3 regarding the critic to ensure, that

the critic converges faster than the actor. The soft update for the target networks is set to

0.001.

Furthermore, the magnitude of the input values is a critical parameter for the NN. This in

regards, all input values are normalized between -1 and 1.

Figure 39: NN architecture; critic left and actor on the right with the shape of the input vectors

The default action noise in the DDPG algorithm is the Ornstein-Uhlenbeck process, which is

initialized for both actions with a different scale, due to the varying action spaces with 0.15

for 𝑄 and 0.1 for 𝑇𝑣. 64 samples for each training step are selected randomly from the replay

buffer.

The following figures represent the agent after the training process for one test week starting

from August 1st or January 1st. The figures are structured as follows:

• The weather data is represented in the first graph including:

o The solar radiation with (GHI, DHI, DNI)

o The outside air temperature (T-out) on the right y-axis

 59

• The second graph shows the themal power of the HVAC system whether its heating

or cooling.

• The third graph is the tint state of the EC-window

• The fourth graph shows the room temperature and the temperature boundaries with

the setpoints for the time the room is occupied and not.

In the first training run the agent is limited to one action with a fixed 𝑇𝑣 to 0.6 to proof if they

can succeed. After the training run the agent with the basic settings of the DDPG algorithm

is able to maintain the room temperature most of the time but has problems in the morning

hours when the minimal room temperature increases from 15.5 °C to 21 °C (Figure 40).

Figure 40: First training result of a week starting on August 1st with HVAC control and a fixed Tint

state

Moving on with the development the agent must control both possible actions. With the same

setup as before the agent does not succeed in its task (Figure 41). The agent is not eager

to heat the building, even though the temperature constraints are not met and only does that

on the weekends.

 60

Figure 41: Training result of a week starting on August 1st with HVAC and Tint state control

Investigating the reason, why the agent failed, the loss as an accuracy measurement of the

critic was analyzed. Figure 42 indicates that the critic loss increases over time but stabilizes

at the end of the run.

Figure 42: Critic loss of a week starting on August 1st with HVAC and Tint state control

To get a more accurate critic which is leading to a more successful agent, the NN architecture

of Fujimoto et. al. proposed in the TD3 algorithm in 2018 is implemented with the critic

architecture including the action in the same layer as the state-and forecast input (Figure 43)

while the rest of the network remains unchanged (Fujimoto et al. 2018).

 61

Figure 43: New critic network based on the TD3 algorithm with the shape of the input vectors

After another training run with the new critic network, the critic loss is lower (Figure 44), which

indicates that the critic is more accurate and stabilizes after 3,800 training steps.

Figure 44: Comparison of critic loss between DDPG critic and TD3 critic architecture

The agent is successful, regarding the temperature constraints by controlling the energy

input but fails to control the tint state Figure 45. Following the reward function, the agent

should select the brightest tint state during the night to avoid getting penalized for tinting the

window. The agent does not find the correct way to handle the reward function. The behavior

of the agent, regarding the HVAC system is not energy saving by any means. The agent

heats the room starting in the night until the room temperature gets close to the upper

boundary and then starts cooling the building Figure 45. The positive thing out of this analysis

is, that the agent recognizes the constraints.

 62

Figure 45: Training result with the new critic of a week starting on August 1st with HVAC and Tint

state control

A reason for this behavior may be the lack of forecast data. With forecast data, the agent

should be able to change its behavior based on future data. The training process should

guide the agent, which timestep is the most important to learn a control strategy that

optimizes the energy costs and keep the room temperature within the boundaries. Due to

the low capacitance of the room the long-term dependency is low and thus, leads to the

decision of four hours of forecast. The network architecture remains the same, but the

forecast input now has 16 values for the four-hour forecast (Figure 46).

 63

Figure 46: NN setup with 4 forecast hours with the shape of the input vectors with the critic on the

left and actor on the right

The critic loss, of the first training run with multiple hours of forecast is lower, than with only

current values of the forecast inputs.

Figure 47: Comparison of critic loss between 1h and 4h forecast

It is not clear why the agent fails in the control task since the loss of the four hour forecast is

lower (Figure 47). The agent failed to maintain the room temperature before noon but

performs better in terms of penalty and the taken actions do not fluctuate as much as with

one hour of forecast, as can be seen in Figure 48.

 64

Figure 48: Training run with four forecast hours of a week starting on August 1st with HVAC and Tint

state control

The solution in this case is not obvious, therefore a gridsearch is performed, where the

network configuration in terms of neurons per layer and number of hidden layers is tested in

all possible combinations of one or two hidden layers and a layer size of 300 to 600 neurons

with a step size of 100.The best results of the gridsearch in Table 7 compared with the

reference of the best run so far, show that the critic with two hidden layers tends to be more

accurate and the penalty for the test run with a larger first layer than the second layer is

lower.

Table 7: Gridsearch results of best NN configurations

jobID hidden

layer

layer size 1 layer size 2 critic loss test

Aug 1st

test

Jan 1st

Ref 1 400 300 0.026 54.15 164.58

30 2 500 300 0.101 32.81 71.78

07 1 600 400 0.491 35.19 102.41

27 2 400 300 0.245 35.42 81.78

06 1 600 300 0.232 37.83 141.14

25 1 600 400 0.277 39.42 110.48

 65

The results of the gridsearch in Figure 49 indicate, that long term dependencies were not

taken into account by the agent and thus, tend to react too slow on changes of outside air

temperatures. Herein, all agents manage to keep the room temperature within the

boundaries with a similar behavior. The best EC-window control was achieved by the agent

with jobID 07 which keeps a brighter tint state of the window from August 3rd to August 4th to

keep the room temperature higher compared to the other agents.

Figure 49: Comparison of best gridsearch results of a week starting on August 1st with HVAC and

Tint state control

The results of the performance in terms of the costs, penalty and the maximum peak load,

of the best results of the gridsearch, are summarized in Figure 50. The agent with jobID 07

has the lowest peak load with 1.41 kW with a small difference to the other two runs which

have a peak load of 1.54 kW and 1.58 kW. Based on these performances and general policy

of the agent during the test week, the next improvement step is conducted with all three

agents.

 66

Figure 50: Performance measure of the best gridsearch results

As already described the four-hour forecast does not lead the agent to a successful strategy

and increasing the forecast to eight hours does not contribute to an improvement either. A

possible way to overcome the issue of a too short dependence, is to use the N-step reward

for calculating the action-values with the critic. A variation of the DDPG algorithm was

proposed in 2018 called the Distributed Distributional Deterministic Policy Gradient which

outperforms the DDPG algorithm (Barth-Maron et al. 2018). The use of the N-step reward

had the greatest influence on their performance and was most successful with a length of 5

steps. The N-step reward is the sum of discounted rewards of a fixed length and is calculated

with equation 41.

𝑌𝑡 = (∑ 𝛾𝑛
𝑁−1

𝑛=0
𝑟𝑡+𝑛) + 𝛾𝑁 ∗ 𝑄′(𝑜𝑁+1, 𝜇′(𝑜𝑁+1|𝜃𝜇′

)|𝜃𝑄′
) (41)

𝑌𝑡 ….… action-value as target

𝑁 ….… length of N-step reward

𝑛 …….. step in N-step reward

𝛾𝑛 …… discount factor

𝑜𝑁+1 … observation of timestep t+1 (state and forecast values)

𝑟𝑡+𝑛 …. reward of timestep t

𝑄′ ….... target critic

𝜃𝑄′
 ….. parameters of target critic

𝜇′… target actor

𝜃𝜇′
 .…. parameters of target actor

The calculation of a three N-step reward looks like following example with the transition from

the start step with time t to the time step t+2 as the last step.

𝑌𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2

 67

The trajectories with the N-step reward are stored with the observation of the current

timestep (𝑠𝑡 , 𝑓𝑡) with the timestep after the N-step reward (𝑠𝑡+𝑁+1, 𝑓𝑡+𝑁+1) as

(𝑠𝑡 , 𝑓𝑡, 𝑎𝑡 , 𝑠𝑡+𝑁+1, 𝑓𝑡+𝑁+1, 𝑌𝑡). The trajectories are stored for every timestep, to gather as many

trajectories as possible for the training process and not have any gaps in the stored data.

The gridsearch for the best fitting N-step reward will be run with a possible N-steps of 2, 3,

4, 5. The best results indicate, that the optimal length of the N-step for this problem is four

steps of the run jobID 27, by taking both, the test week starting on August 1st and the week

starting on January 1st into account. However, the critic loss for the run is higher, than of the

run with 2 N-steps because a longer N-step reward makes it hard for the critic to estimate

the action-value. The critic has no further information, of the next states and which actions

are taken to reach the current state.

Table 8: Gridsearch results of best N-step reward

jobID hidden

layer

layer size

1

layer

size 2

N-step critic loss test

Aug 1st

test

Jan 1st

Ref 2 500 300 1 0.101 32.81 71.78

30_2 2 500 300 2 0.108 33.15 106.79

27_4 2 400 300 4 0.431 39.04 86.60

07_2 1 600 400 2 0.283 41.92 129.78

With the N-step reward system, the agent uses the forecast data to his advantage and

precools or preheats the room displayed in Figure 51. The maximum peak demand can be

lowered by all agents compared to the 1 step reward used in the basic DDPG algorithm. The

agent with jobID 07_2 has promising behavior for tinting the EC-window and the oscillation

of the thermal HVAC power on the weekend is the lowest but fails to keep the room

temperature in the boundaries. This agent reacts always a bit slower than the two others. A

non-optimal behavior, regarding the tinting of the EC-window is seen by the agent with jobID

30_2. This agent tints the window on the weekend what leads to lower room temperatures

and a higher demand to heat up the building. The N-step length of 4 of the agent with jobID

27_4 leads to a farsighted behavior and a similar good tinting behavior as the agent with

jobID 07_2.

 68

Figure 51: Comparison of gridsearch results for different N-step rewards starting on August 1st

The performance measures are compared in Figure 52 and show that the agent with

jobID 27_4 with a N-step length of four has the highest cost saving potential and has the

lowest impact on the power grid.

Figure 52: Performance measure of the best gridsearch results for different N-step rewards

The improvement introduced in chapter 4.1 with the replay buffer, noise process and the

activation function of the hidden layers are applied in the final run with the agent with jobID 27

as the most promising. Following options are possible for the improvements:

 69

• Activation function

o Rectified Linear Unit – relu

o Leaky Rectified Linear Unit – lrelu

• Replay Buffer

o Uniform

o Prioritized Experience Replay – PER

o High-Value Prioritized Experience Replay – HVPER

• Noise process

o Ornstein Uhlenbeck noise – OU

o Gaussian noise – Gauss

o Parameter noise – Param

The network architecture and size of the hidden layers from Figure 46 with a N-step length

of 4 proves itself by keeping the room temperature within the boundaries with the best

combinations of improvements shown in Table 9. Both versions of an improved replay buffer

with priority sampling led to increased accuracy of the critic network. However, this does not

automatically lead to a better performing actor. The new configurations are not as good in

the test week starting in August as the best agent so far but perform better in the winter. The

prioritized replay buffer led to an agent that is more generic, meaning it works not only in

cooling mode, but also in heating mode. The combinations with the relu activation functions

perform better, as also shown by Ding et al. (Ding et al. 2018). The noise process does not

show any differences in performance, but as Barth-Maron also stated is, that the complexity

of the Ornstein-Uhlenbeck noise is not benefiting the training compared to the simpler

Gaussian noise. 3,000 episodes with a length of 24 steps/hours are not enough to train an

agent to its optimum. The agent with jobID 07 is the most generic when comparing both the

summer and winter performance.

Table 9: Gridsearch results of the best improvements to the agent

jobID activation

function

replay

buffer

noise

process

critic loss test

Aug 1st

test

Jan 1st

Ref relu Uniform OU 0.431 39.04 86.60

07 relu HVPER Gauss 0.047 42.60 78.16

03 relu PER OU 0.022 54.91 80.91

06 relu HVPER OU 0.015 54.91 83.66

The timeseries comparison of the agents in Figure 53 show the similar behavior for the

HVAC system. Especially jobID 07 and 03 show the similar peak demand whereas, the agent

with jobID 06 cools with a higher power in the afternoon, which is not so relevant for the total

reward and the the demand costs since the COP for cooling is 3.5, which is visible in the

lower graph in Figure 53. In this lower graph the sum of all electric power consumers is

 70

displayed and shows that the agent with jobID 07 saves the most energy especially visible

on the weekend on August 3rd and August 4th. Clearly better is the tint behavior of the agent

with jobID 07 with almost no tint on the weekend, whereas the other agents behave almost

the same as on weekdays. The tint behavior is even better without the recent improvements

for agent 03 and 06.

Figure 53: Comparison of gridsearch results for the improvements starting on August 1st

.The performance measures in Figure 54 declare the agent with jobID 07 as the best agent

regarding the total costs and penalty. The peak load is 3.8 % higher as of the agent with

jobID 06 and 29.1 % lower as the peak load of the agent with jobID 03.

 71

Figure 54: Performance measure of the best gridsearch results for the improvements

With the N-step reward, introduced for the multi-layer perceptron network long term

dependencies are taken into account but the agent misses knowledge of the steps taken

after the initial step. Only the initial observation and action and the final observation are

stored in the replay buffer. An algorithm developed for time series dependent problems

published by Google DeepMind is the Recurrent Deterministic Policy Gradient (RDPG)with

a LSTM network for both the actor and the critic (Heess et al. 2015). For this algorithm, the

entire history of steps as (𝑜1, 𝑎1, 𝑜2, 𝑎2, … 𝑎𝑡−1,𝑜𝑡) is used for selecting actions with the

deterministic policy 𝜇. The critic network therefore is initialized as 𝑄(ℎ, 𝑎|𝜃𝑄) and the actor

as 𝜇(ℎ|𝜃𝜇). Same as in the DDPG algorithm noise is added to the selected actions to explore

the continuous action space. The value function introduced in chapter 4.1 DDPG stays

unchanged and is calculated for every step.

The NN architecture is based on the experimental setup of Song et al. published in 2019. In

their paper, the inputs for the NNs were based on a pixels and numerical inputs. Since that

is not the case for this thesis, the layers dedicated to the pictures are not used. The adapted

architecture is shown in Figure 55 with the critic and actor network. The inputs for the critic

are the observation-and action history and for the actor only the observation history is

passed. The forecast in the observation is passed with the current values.

 72

Figure 55: NN setup for the RDPG with the shape of the input vectors vectors with the critic on the

left and actor on the right

With the described setup and the beforehand selected improvements for the activation

function, the replay buffer and the noise process, the agent with the RDPG algorithm is

successful in keeping the room temperature between the boundaries. The taken actions for

the EC-windows, however, are not beneficial for cost saving. The lack of forecast information

also leads to high peak loads for heating and cooling.

 73

Figure 56: Training run with the LSTM network of a week starting on August 1st

The same approach as with the DDPG algorithm of four forecast hours as inputs does not

lead to any improvements but leads to a failure of the agent.

Therefore, the latest DDPG agent is the best performing agent and is compared with the PI-

controller and the MPC in Figure 57. The agent has not the same foresight, as the MPC but

can decrease the maximum peak compared to the PI-controller. During the high-priced

period, the agent reduces the load to save operation costs. The agent, as it is clearly visible

is fluctuating around zero between heating and cooling on the weekend where it is not

necessary according to the MPC. The control of the EC-window is close to the MPC, which

could be seen as the perfect behavior. The fifth chart shows the WPI where it is visible, that

the MPC, as well as the agent control the EC-window to minimize the energy consumption

for lighting. The artificial light would brighten the room to exactly 350 lx.

 74

Figure 57: Results of the final RL agent compared to the PI controller and MPC of a week starting

on August 1st

The MPC as a perfect information model precools or preheats the room, which leads to a

43.04 % lower peak load (Figure 58) compared to the agent with jobID 07. The PI controller

has peak loads of 1,57 kW which is 98.7 % higher than the peak load of the agent. The MPC

has a total energy consumption of 28.65 kWh which led to costs for demand and energy of

17.49 $. With the PI controller the required room conditions need 22.28 kWh but, because

of the higher peak load the demand and energy cost 38.04 $. The agent controls the HVAC

system and EC-window in a way, that it consumes 32.14 kWh, which costs 26.55 $ in total.

 75

Figure 58: Performance measure compared between PI-controller, MPC and best agent

 76

5 Discussion and Outlook

The aim of this thesis was the implementation of a machine learning agent which strives to

minimize the total operation costs of a room, while ensuring the comfort parameters for the

occupants. One of the main tasks was the question which Reinforcement Learning (RL)

methodology would be best suited for the control of building technology to further reduce

total energy costs compared to state-of-the-art controllers and MPC controllers.

The agent, in this thesis was developed for the heating and cooling control of an office

building, as well as its shading system with input values for the weather-forecast, occupancy

and TOU-tariff. The latter is the most crucial factor for a cost-effective control system. The

TOU-tariff as a main input value for the agent enables the power grid operator to actively

manage the energy load of the building by changing energy costs for a short period of time.

To keep the operation costs low the agent/controller must react to the changes. This

possibility for the power grid operator will help to increase the share of renewable energy

systems, without the necessity to reinforce the power grid. The advantage of the agent for

building owners are the significantly lower total operation costs compared to state-of-the-art

PI-controller. The main reason is the agent minimizing the maximum peak load and energy

consumption during high priced periods with the agent learning a control strategy to keep

costs low. With a controller that takes the total energy costs into account, including for the

HVAC-system, as well as for the artificial light and all equipment, the illuminance level of the

room remains unknown to the agent and is not required for training or operating. Compared

to the MPC, the agent is not as farsighted and has a higher defined peak demand. However,

the peak is building up over several timesteps which makes it easier for the power grid

operator to predict upcoming peak demands. Whereas the MPC has a stable power level,

for heating or cooling, with a sharp increase of power. The agent is not able to outperform

the MPC in terms of operation costs but manages to control the temperature with the HVAC

system and the EC-window with a similar behavior and performance as the MPC.

The agent’s actions taken are never zero, but rather oscillate on the weekend where the

room temperature would stay within the set boundaries even if no actions were taken by the

agent. A solution for this problem could be a hierarchical agent setup. An agent would for

example set the goal for the room temperature and the illuminance level and the underlying

agent would try to take actions to reach these goals while an additional threshold would

prevent the agent from performing unnecessary actions. Another important incident to

consider is the change of the tariff or the tariff structure by the electricity utilities. It is

important to recalibrate the normalization of the TOU tariff for the NN input to ensure a

successful behavior with the new tariff.

The agent could be trained as a generalized agent for multiple weather zones and RC

models prior to deploying it to a real building. Therefore, the performance in the real building

 77

would be acceptable and the chance for training a really good performing agent is higher,

due to the lower risk of a biased agent. Therefore, the training time in different buildings

could be decreased. Feedback loops for occupants could be integrated in the reward

function which would lead to an agent, that fits the occupants comfort expectations. This

thesis shows the high potential of machine learning in building controls for multiple actions

and constraints.

 78

Bibliography

Alpaydin, E., 2010, Introduction to machine learning. 2nd ed. London, England, The MIT
Press

Barrett, E., Linder, S., 2015, Autonomous HVAC Control, A Reinforcement Learning
Approach. in: A. Bifet, M. May, B. Zadrozny, R. Gavalda, D. Pedreschi, F. Bonchi, J.
Cardoso, & M. Spiliopoulou (eds.), Machine Learning and Knowledge Discovery in
Databases. Lecture Notes in Computer Science. Cham, Springer International Publishing;
3–19

Barth-Maron, G., Hoffman, M.W., Budden, D., Dabney, W., Horgan, D., TB, D., Muldal, A.,
Heess, N., Lillicrap, T., 2018, Distributed Distributional Deterministic Policy Gradients.
arXiv:1804.08617 [cs, stat]; http://arxiv.org/abs/1804.08617; 14.7.2020

Bradley, R., 2018, 16 Examples of Artificial Intelligence (AI) in Your Everyday Life | The
Manifest.; https://themanifest.com/development/16-examples-artificial-intelligence-ai-your-
everyday-life; 19.11.2020

BRE, 2015, A Technical Manual for SBEM.; https://www.uk-ncm.org.uk/filelibrary/SBEM-
Technical-Manual_v5.2.g_20Nov15.pdf; 26.11.2020

Brownlee, J., 2019, 14 Different Types of Learning in Machine Learning. Machine Learning
Mastery; https://machinelearningmastery.com/types-of-learning-in-machine-learning/;
18.8.2020

Brownlee, J., 2016, Crash Course On Multi-Layer Perceptron Neural Networks. Machine
Learning Mastery; https://machinelearningmastery.com/neural-networks-crash-course/;
23.11.2020

Cao, X., Wan, H., Lin, Y., Han, S., 2019, High-Value Prioritized Experience Replay for Off-
Policy Reinforcement Learning. in: 2019 IEEE 31st International Conference on Tools with
Artificial Intelligence (ICTAI). Portland, OR, USA; 1510–1514

CEC, 2020, Electric Utility Service Area.; https://cecgis-
caenergy.opendata.arcgis.com/pages/pdf-maps; 26.11.2020

Chen, Y., Norford, L.K., Samuelson, H.W., Malkawi, A., 2018, Optimal control of HVAC and
window systems for natural ventilation through reinforcement learning. Energy and
Buildings, Volume 169, Number; 195–205

DeepMind, 2016, AlphaGo: The story so far. Deepmind; /research/case-studies/alphago-
the-story-so-far; 13.7.2020

Deru, M., Field, K., Studer, D., Benne, K., Griffith, B., Torcellini, P., Liu, B., Halverson, M.,
Winiarski, D., Rosenberg, M., Yazdanian, M., Huang, J., Crawley, D., 2011, U.S. Department
of Energy Commercial Reference Building Models of the National Building Stock.

Ding, B., Qian, H., Zhou, J., 2018, Activation functions and their characteristics in deep
neural networks. in: 2018 Chinese Control And Decision Conference (CCDC). Shenyang;
1836–1841

 79

Duffie, J.A., Beckman, W.A., 2013, Solar Engineering of Thermal Processes. fourth Edition.
Madison, John Wiley & Sons

EnergyPlus, 2019, Weather Data by Location. EnergyPlus; https://energyplus.net/weather-
location/north_and_central_america_wmo_region_4/USA/CA/USA_CA_Oakland.Intl.AP.72
4930_TMY3; 28.11.2020

Ertel, W., 2016, Neuronale Netze. in: Grundkurs Künstliche Intelligenz. Wiesbaden, Springer
Fachmedien Wiesbaden; 265–311

Fernandes, L.L., Lee, E.S., Dickerhoff, D., Thanachareonkit, A., Wang, T., Gehbauer, C.,
2018, Electrochromic Window Demonstration at the John E. Moss Federal Building, 650
Capitol Mall, Sacramento, California.

Fujimoto, S., van Hoof, H., Meger, D., 2018, Addressing Function Approximation Error in
Actor-Critic Methods. arXiv:1802.09477 [cs, stat]; https://arxiv.org/pdf/1802.09477.pdf;
3.10.2020

Gehbauer, C., Blum, D.H., Wang, T., Lee, E.S., 2020, An assessment of the load modifying
potential of model predictive controlled dynamic facades within the California context.
Energy and Buildings, Volume 210, Number; 109762

Google Inc., 2019, Keras: the Python deep learning API.; https://keras.io/; 13.11.2020

Haarnoja, T., Zhou, A., Abbeel, P., Levine, S., 2018, Soft Actor-Critic: Off-Policy Maximum
Entropy Deep Reinforcement Learning with a Stochastic Actor. arXiv:1801.01290 [cs, stat];
http://arxiv.org/abs/1801.01290; 21.11.2020

Haenlein, M., Kaplan, A., 2019, A Brief History of Artificial Intelligence: On the Past, Present,
and Future of Artificial Intelligence. California Management Review, Volume 61, Number 4;
5–14

Hale, J., 2019, Deep Learning Framework Power Scores 2018. Medium;
https://towardsdatascience.com/deep-learning-framework-power-scores-2018-
23607ddf297a; 23.7.2020

Hale, J., 2020, Which Deep Learning Framework is Growing Fastest? Medium;
https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-
3f77f14aa318; 23.7.2020

Heess, N., Hunt, J.J., Lillicrap, T.P., Silver, D., 2015, Memory-based control with recurrent
neural networks. arXiv:1512.04455 [cs]; http://arxiv.org/abs/1512.04455; 14.7.2020

Heinrich, B., Linke, P., Glöckler, M., 2020, Grundlagen Automatisierung: Erfassen - Steuern
- Regeln. 3rd ed. Springer Vieweg

Hochreiter, S., Schmidhuber, J., 1997, Long Short-Term Memory.;
http://www.bioinf.jku.at/publications/older/2604.pdf

Hong, T., Wang, Z., Luo, X., Zhang, W., 2020, State-of-the-art on research and applications
of machine learning in the building life cycle. Energy and Buildings, Volume 212, Number;
109831

 80

Lee, E.S., Selkowitz, S., Clear, R., DiBartolomeo, D., Klems, J., Fernandes, L.L., Ward, G.,
Inkarojrit, V., Yazdanian, M., 2006, A Design Guide for Early-Market Electrochromic
Windows. California Energy Commission, PIER. 500-01-023. LBNL-59950

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.,
2015, Continuous control with deep reinforcement learning. arXiv:1509.02971 [cs, stat];
https://arxiv.org/pdf/1509.02971v1.pdf; 4.12.2020

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.,
2019, Continuous control with deep reinforcement learning. arXiv:1509.02971 [cs, stat];
https://arxiv.org/pdf/1509.02971v6.pdf; 20.5.2020

Mitchell, T.M., 1997, Machine Learning. New York, McGraw-Hill

Mnih, V., Badia, A.P., Mirza, M., Graves, A., Harley, T., Lillicrap, T.P., Silver, D.,
Kavukcuoglu, K., 2016, Asynchronous Methods for Deep Reinforcement Learning.
arXiv:1602.01783v2 [cs.LG]; https://arxiv.org/pdf/1602.01783v2.pdf; 10.12.2020

Mohammed, M., Khan, M.B., Bashier, E.B.M., 2017, Machine Learning: Algorithms and
Applications. 0 ed. Boca Raton : CRC Press, 2017., CRC Press

Mousavi Maleki, S., Hizam, H., Gomes, C., 2017, Estimation of Hourly, Daily and Monthly
Global Solar Radiation on Inclined Surfaces: Models Re-Visited. Energies, Volume 10,
Number 1; 134

Olah, C., 2015, Understanding LSTM Networks -- colah’s blog.;
http://colah.github.io/posts/2015-08-Understanding-LSTMs/; 23.11.2020

Open Data Science, 2019, What is TensorFlow? Medium;
https://medium.com/@ODSC/what-is-tensorflow-13200525e852; 11.11.2020

OpenAI, 2018, Part 2: Kinds of RL Algorithms — Spinning Up documentation.;
https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html#a-taxonomy-of-rl-
algorithms; 14.7.2020

Pan, Y., 2016, Heading toward Artificial Intelligence 2.0. Engineering, Volume 2, Number 4;
409–413

PG&E, 2020a, Electric Schedule E-19 Medium General Demand-Metered TOU Service,
effective April 19,2020.;
https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-19.pdf; 2.10.2020

PG&E, 2020b, PG&E, Pacific Gas and Electric - Gas and power company for California.;
https://www.pge.com/; 26.11.2020

Pierre, C., 2020, PYPL PopularitY of Programming Language index.;
http://pypl.github.io/PYPL.html; 23.7.2020

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R.Y., Chen, X., Asfour, T., Abbeel,
P., Andrychowicz, M., 2018, Parameter Space Noise for Exploration. arXiv:1706.01905 [cs,
stat]; http://arxiv.org/abs/1706.01905; 20.5.2020

Python Software Foundation, 2020, Python. Python.org; https://www.python.org/; 12.5.2020

 81

Rüdisser, D., 2018, A brief guide and free tool for the calculation of the thermal mass of
building components (according to ISO 13786).;
http://rgdoi.net/10.13140/RG.2.2.18312.72967; 26.11.2020

Sandia National Laboratories, 2019, Pyomo. Pyomo; http://www.pyomo.org; 13.11.2020

Schaul, T., Quan, J., Antonoglou, I., Silver, D., 2016, Prioritized Experience Replay.
arXiv:1511.05952 [cs]; https://arxiv.org/pdf/1511.05952.pdf; 14.5.2020

Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P., 2017, Trust Region Policy
Optimization. arXiv:1502.05477 [cs]; http://arxiv.org/abs/1502.05477; 21.11.2020

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., 2017, Proximal Policy
Optimization Algorithms. arXiv:1707.06347 [cs]; https://arxiv.org/pdf/1707.06347.pdf;
21.11.2020

Seif, G., 2019, Understanding the 3 most common loss functions for Machine Learning
Regression. Medium; https://towardsdatascience.com/understanding-the-3-most-common-
loss-functions-for-machine-learning-regression-23e0ef3e14d3; 24.11.2020

State of California, 2018, California Costumer Choice.;
https://www.cpuc.ca.gov/uploadedFiles/CPUC_Public_Website/Content/Utilities_and_Indu
stries/Energy_-
_Electricity_and_Natural_Gas/Cal%20Customer%20Choice%20Report%208-7-
18%20rm.pdf; 22.9.2020

Sutton, R.S., Barto, A.G., 2018, Reinforcement learning: an introduction. Second edition.
Cambridge, Massachusetts, The MIT Press

Turing, A.M., 1950, I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, Volume
LIX, Number 236; 433–460

U.S. Energy Information Administration, 2020, U.S. energy facts explained - consumption
and production - U.S. Energy Information Administration (EIA).;
https://www.eia.gov/energyexplained/us-energy-facts/; 9.11.2020

Wang, C.-F., 2019, The Vanishing Gradient Problem. Medium;
https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484;
24.11.2020

Wang, Y., Kuckelkorn, J., Liu, Y., 2017, A state of art review on methodologies for control
strategies in low energy buildings in the period from 2006 to 2016. Energy and Buildings,
Volume 147, Number; 27–40

Wang, Z., Hong, T., 2020, Reinforcement learning for building controls: The opportunities
and challenges. Applied Energy, Volume 269, Number; 115036

Wei, T., Wang, Y., Zhu, Q., 2017, Deep Reinforcement Learning for Building HVAC Control.
in: Proceedings of the 54th Annual Design Automation Conference 2017. DAC ’17: The 54th
Annual Design Automation Conference 2017. Austin TX USA, ACM; 1–6

 82

List of Figures

Figure 1: Worldwide PYPL PopularitY of Programming Language in 2020 (modified

according to (Pierre 2020)) ..13

Figure 2: ML Framework Power Scores 2018 (modified according to (Hale 2019))14

Figure 3: DL Framework Six-Month Growth Scores 2019 (modified according to (Hale 2020))

 ..14

Figure 4: Children playing Go on a regular Go board (DeepMind 2016)16

Figure 5: Different machine learning techniques and their required data (modified according

to (Mohammed et al. 2017) ...18

Figure 6: The agent–environment interaction in a Markov decision process. (modified

according to (Sutton and Barto 2018, p.48)) ..19

Figure 7: Simple Maze displaying the difference of reward and state-value.......................21

Figure 8: backup diagram for 𝑣𝜋(𝑠) (Sutton and Barto 2018, p.59)21

Figure 9: 𝑞𝜋 backup diagram (Sutton and Barto 2018, p.61) ...22

Figure 10: A non-exhaustive, but useful taxonomy of algorithms in modern RL (OpenAI 2018)

 ..23

Figure 11: Formal model with neurons and directed connections between them (modified

according to (Ertel 2016, p.267)) ...26

Figure 12: The structure of a formal neuron that applies the activation function f to the

weighted sum of all inputs (modified according to (Ertel 2016, p.269))26

Figure 13: A three-layer backpropagation network with n1 neurons in the first layer, n2

neurons in the second and n3 neurons in the third layer (modified according to (Ertel 2016,

p.291)) ..27

Figure 14: Model of a Simple Network (Brownlee 2016) ..28

Figure 15: An unrolled recurrent neural network (Olah 2015) ..28

Figure 16: The repeating module in a standard RNN contains a single layer (Olah 2015). 29

Figure 17: The repeating module in an LSTM contains four interacting layers (Olah 2015).

 ..29

Figure 18: The graphic depiction of Sigmoid function and its derivative (Ding et al. 2018,

p.1837). ...30

Figure 19: The graphic depiction of hyperbolic tangent function and its derivative (Ding et al.

2018, p.1838) ..31

Figure 20: The graphic depiction of ReLU function and its derivatives (Ding et al. 2018,

p.1838) ..31

Figure 21: The graphic depiction of LReLU, PReLU and RreLU function (Ding et al. 2018,

p.1839) ..32

Figure 22: Elements of the DDPG algorithm ..33

Figure 23: DDPG – agent-environment interaction ..34

Figure 24: DDPG – calculating the action-values ..35

Figure 25: DDPG – training of the critic and actor network ..36

https://d.docs.live.net/6c2ca1a31fe30631/Dokumente/Masterarbeit/20200309_Rippl_Master%20Thesis.docx#_Toc59485433
https://d.docs.live.net/6c2ca1a31fe30631/Dokumente/Masterarbeit/20200309_Rippl_Master%20Thesis.docx#_Toc59485433
https://d.docs.live.net/6c2ca1a31fe30631/Dokumente/Masterarbeit/20200309_Rippl_Master%20Thesis.docx#_Toc59485434
https://d.docs.live.net/6c2ca1a31fe30631/Dokumente/Masterarbeit/20200309_Rippl_Master%20Thesis.docx#_Toc59485434
https://d.docs.live.net/6c2ca1a31fe30631/Dokumente/Masterarbeit/20200309_Rippl_Master%20Thesis.docx#_Toc59485435
https://d.docs.live.net/6c2ca1a31fe30631/Dokumente/Masterarbeit/20200309_Rippl_Master%20Thesis.docx#_Toc59485435
https://d.docs.live.net/6c2ca1a31fe30631/Dokumente/Masterarbeit/20200309_Rippl_Master%20Thesis.docx#_Toc59485436
https://d.docs.live.net/6c2ca1a31fe30631/Dokumente/Masterarbeit/20200309_Rippl_Master%20Thesis.docx#_Toc59485436

 83

Figure 26: Action-noise process Ornstein-Uhlenbeck and Gaussian40

Figure 27: Functional diagram of a PID-controller (modified according to(Heinrich et al. 2020,

p.163)) ..41

Figure 28: Step response with aperiodic course (Heinrich et al. 2020, p.174)43

Figure 29: Information flow in the perfect knowledge MPC model44

Figure 30: Room model (green) ..45

Figure 31: Diagram of a typical tungsten-oxide electrochromic coating (Lee et al. 2006, p.6)

 ..47

Figure 32: Each window pane had three sub-zones that could be independently controlled

(Fernandes et al. 2018, p.14) ..47

Figure 33: EC-window properties ..48

Figure 34: (a) Zenith angle, slope, surface azimuth angle and solar azimuth angle for a tilted

surface. (b) Plan view showing solar azimuth angle (Duffie and Beckman 2013, p.13)50

Figure 35: Maximum and minimum value of declination angle (Mousavi Maleki et al. 2017,

p.2) ...50

Figure 36: Declination angle in Oakland, CA ...51

Figure 37: Solar angles and solar irradiation on tilted surface ...53

Figure 38: E-19 tariff with time dependent energy- and demand costs (PG&E 2020a)55

Figure 39: NN architecture; critic left and actor on the right with the shape of the input vectors

 ..58

Figure 40: First training result of a week starting on August 1st with HVAC control and a fixed

Tint state ...59

Figure 41: Training result of a week starting on August 1st with HVAC and Tint state control

 ..60

Figure 42: Critic loss of a week starting on August 1st with HVAC and Tint state control ...60

Figure 43: New critic network based on the TD3 algorithm with the shape of the input vectors

 ..61

Figure 44: Comparison of critic loss between DDPG critic and TD3 critic architecture61

Figure 45: Training result with the new critic of a week starting on August 1st with HVAC and

Tint state control ...62

Figure 46: NN setup with 4 forecast hours with the shape of the input vectors with the critic

on the left and actor on the right ..63

Figure 47: Comparison of critic loss between 1h and 4h forecast63

Figure 48: Training run with four forecast hours of a week starting on August 1st with HVAC

and Tint state control ...64

Figure 49: Comparison of best gridsearch results of a week starting on August 1st with HVAC

and Tint state control ...65

Figure 50: Performance measure of the best gridsearch results ..66

Figure 51: Comparison of gridsearch results for different N-step rewards starting on August

1st ...68

 84

Figure 52: Performance measure of the best gridsearch results for different N-step rewards

 ..68

Figure 53: Comparison of gridsearch results for the improvements starting on August 1st .70

Figure 54: Performance measure of the best gridsearch results for the improvements71

Figure 55: NN setup for the RDPG with the shape of the input vectors vectors with the critic

on the left and actor on the right ..72

Figure 56: Training run with the LSTM network of a week starting on August 1st73

Figure 57: Results of the final RL agent compared to the PI controller and MPC of a week

starting on August 1st ..74

Figure 58: Performance measure compared between PI-controller, MPC and best agent .75

 85

List of Tables

Table 1: Reference Building Form Assignments (Deru et al. 2011, p.19)45

Table 2: U-Value by Reference Building Vintage - Standard 90.1-2004 (Deru et al. 2011,

p.26)..45

Table 3: specification of the room model ...46

Table 4: Name and visible transmittance of the four tint levels. (Fernandes et al. 2018, p.15)

 ..48

Table 5: E-19 definition of time periods, energy- and demand-costs54

Table 6: Example for the demand cost calculation ..54

Table 7: Gridsearch results of best NN configurations ...64

Table 8: Gridsearch results of best N-step reward...67

Table 9: Gridsearch results of the best improvements to the agent69

 86

List of Abbreviations

AI Artificial Intelligence

DDPG Deep Deterministic Policy Gradient

DHI Diffuse Horizontal Irradiance

DL Deep Learning

DNI Direct Normal Irradiance

GHI Global Horizontal Irradiance

HVAC Heating Ventilating Air Conditioning

HVPER High-Value Prioritized Experience Replay

LBNL Lawrence Berkeley National Laboratory

lrelu Leaky Rectified Linear Unit

LSTM Long-Short Term Memory

ML Machine Learning

MPC Model Predictive Control

NN Neural Network

PER Prioritized Experience Replay

PG&E Pacific Gas and Electricity

PI Proportional-Integra

PID Proportional-Integral-Derivative

RC Resistance and Capacitance

RDPG Recurrent Deterministic Policy Gradient

relu Rectified Linear Unit

RL Reinforcement Learning

RNN Recurrent Neural Network

SHGC Solar Heat Gain Coefficient

sig Sigmoid

tanh Hyperbolic tangent

 87

TD Temporal Difference

TOU Time-Of-Use

Tv Visibility Transmittance

WPI Workplace Illuminance

 88

Appendix A: Setting

Parameter setting

 89

 90

 91

 92

Appendix B: Execution

Training

 93

 94

Gridsearch

 95

 96

 97

Anhang C: RL-Setup

Agent

 98

 99

 100

 101

 102

 103

 104

 105

 106

 107

Environment:

 108

 109

 110

Actor Critic Network

 111

 112

 113

 114

 115

 116

 117

 118

 119

 120

Replay Buffer

 121

 122

 123

Noise

 124

 125

Input calculations

 126

