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Abstract 

The transition to more renewable energy sources, will become an ever-greater challenge in 

the future. Herein, one critical issue, is the natural volatile generation of sun and wind 

powered power plants, which strain the power grid during peak generation times. Buildings 

as flexible consumers can help to relieve the stress on the power grids without having them 

significantly increase their capacity. Current control systems are often realized with 

proportional-integral-derivative (PID) controllers do not react to predictions. Whereas Model-

predictive-controllers (MPC) represent an innovation in control, as they can, adapt the control 

strategy to the needs of the grid by means of weather forecasts and predictions on the 

occupancy of people. Nevertheless, their application requires a high accuracy regarding the 

thermal model of the building. These two state-of-the art controllers are compared with the 

developed controller in this thesis. 

 

A so-called agent with reinforcement learning (RL) is trained to learn the necessary rules to 

control the room temperature in an office building. RL refers to the fact that the agent 

improves itself with the help of experience as it takes over the control. The goal of this thesis 

is to develop an agent that controls the heating and cooling system in a room of a new office 

building in Berkeley, California and the tint of the electrochromic window used for shading. 

The room is represented as a resistance and capacitance (RC) model and is controlled by 

the agent with the goal of minimizing operating costs for heating, cooling, artificial lighting 

and office equipment. The performance of the agent is compared to a PID controller and a 

perfect information MPC. Past studies of RL-algorithms have shown the potential of the for 

this thesis chosen Deep Deterministic Policy Gradient (DDPG), in regard to the typical RL 

benchmark games. The agent interacts with the RC-model during a training process, where 

the agent learns how to operate the HVAC-system and dynamic façade to gain the highest 

reward based on the reward function including the total energy and demand costs and any 

violation of room temperature boundary. The goal of the agent is to maximize the reward 

over all possible timesteps. 

 

To enable a foresightedness, the agent uses the weather forecast, electricity tariff 

information and information about occupancy for the next 4 hours. An agent with a DDPG-

algorithm in combination with a multi-layer perceptron network succeeds in its primary task 

of ensuring the room temperature but is not farsighted enough to lower the maximum 

demand, what leads to high demand costs. The further improvement with four hours of 

forecast data as inputs and a reward system based on multiple steps lead to a behavior 

where the agent precools and preheats the room with lower the peak load and therefore 

lower demand and total operation costs. The best network configurations and settings for 

the reward system are found with a gridsearch, where all preselected settings are combined 

in all variants. 
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The final trained agent is based on a DDPG algorithm in combination with a multi-layer 

perceptron network with three hidden layers with a layer size of 400 of the first hidden layer 

and 300 of the following hidden layers. A Gaussian noise process is used for exploration as 

the action noise and for the sampling of the training data a High-Value Prioritization 

Experience Replay Buffer is used. The PI controller as a benchmark controller is 

outperformed by the agent in terms of the optimization goals with total cost savings in a test 

week starting on August 1st of 11.49 $ (30.21%). A "perfect information" model as MPC, 

optimizes the room over the entire period and minimizes the energy costs compared to the 

PI controller by 54.02 %, which saves 20.55 $ in the test week. Compared to the MPC the 

operation costs with the agents are 9.06 $ (44.12%) higher. 

Keywords: Control, Building Technologies, Electrochromic Window, Machine Learning 

(ML), Reinforcement Learning (RL) 
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Kurzfassung 

Der Übergang zu mehr erneuerbaren Energiequellen wird in Zukunft zu einer immer 

größeren Herausforderung werden. Ein kritischer Punkt ist dabei die natürliche volatile 

Erzeugung von sonnen- und windbetriebenen Kraftwerken, die das Stromnetz zu 

Spitzenerzeugungszeiten besonders belasten. Gebäude als flexible Verbraucher können 

dazu beitragen, die Stromnetze zu entlasten, ohne deren Kapazität wesentlich erhöhen zu 

müssen. Regelungssysteme werden derzeit oft mit Proportional-Integral-Derivativ-(PID)-

Reglern realisiert, können nicht auf Vorhersagen reagieren. Daher stellen Modell-Prädiktive 

Regler (MPC) eine Regelungsinnovation dar, da sie in der Lage sind, die Regelungsstrategie 

durch Berücksichtigung von Wettervorhersagen und Vorhersagen über die Belegung von 

Personen an die Bedürfnisse des Stromnetzes anzupassen. Ihre Anwendung erfordert 

jedoch eine hohe Genauigkeit der Gebäudemodells. Diese beiden derzeit angewendeten 

Regler werden mit dem in dieser Arbeit entwickelten Regler verglichen. 

 

Ein sogenannter Agent mit Reinforcement Learning (RL) wird trainiert, um die notwendigen 

Regeln zur Regelung der Raumtemperatur in einem Bürogebäude zu erlernen. RL bezieht 

sich auf die Tatsache, dass sich der Agent mit Hilfe von eigener gesammelter Erfahrung 

verbessert, während er die Regelung übernimmt. Das Ziel dieser Arbeit ist es, einen Agenten 

zu entwickeln, der das Heiz- und Kühlsystem in einem Raum eines neuen Bürogebäudes in 

Berkeley, Kalifornien, sowie die Verschattung mittels elektrochromen Fensters regelt. Der 

Raum wird als Widerstands- und Kapazitätsmodell (RC-Modell) dargestellt und durch den 

Agenten geregelt, mit dem Ziel, die Betriebskosten für Heizung, Kühlung, künstliche 

Beleuchtung und Bürogeräte im Vergleich zu einem PID-Regler und einem perfect 

information-MPC zu minimieren. Bereits durchgeführte Studien von RL-Algorithmen haben 

das Potential des Deep Deterministic Policy Gradient (DDPG), der als Algorithmus für den 

Agenten gewählt wird, in den zum Benchmark verwendeten Spielen gezeigt. Der Agent 

interagiert mit dem RC-Modell während eines Trainingsprozesses, in dem der Agent lernt, 

wie das HVAC-System und die dynamische Fassade zu regeln sind, um die höchstmögliche 

Belohnung zu erhalten. Die Belohungsfunktion beruht dabei einschließlich auf den gesamten 

Energie- und Bedarfskosten und jeder Über- oder Unterschreitung der 

Raumtemperaturgrenzen. Das Ziel des Agenten ist es, die Belohnung über alle möglichen 

Zeitschritte zu maximieren. 

 

Der Agent verwendet dazu die Wettervorhersage, Informationen über den Stromtarif und die 

Personenbelegung, um dem Agenten eine Weitsichtigkeit zu ermöglichen. Der Agent mit 

einem DDPG-Algorithmus in Kombination mit einem multi-layer perceptron Netzwerk erfüllt 

seine primäre Aufgabe, die Raumtemperatur sicherzustellen, ist aber nicht weitsichtig 

genug, um die vom Stromnetz bezogene Spitzenleistung zu senken, was zu hohen 

Netznutzungsentgelten führt. Die weitere Verbesserung mit vier Stunden Vorhersagedaten 

als Input und ein auf mehreren Schritten basierendes Belohnungssystem führen zu einem 
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Verhalten, bei dem der Agent den Raum vorkühlt und vorheizt, um die Netznutzungsentgelte 

zu senken. Die besten Konfigurationen des Neuronalen Netzes und Einstellungen für das 

Belohnungssystem werden mit einer Rastersuche gesucht, bei der alle vorgewählten 

Einstellungen in allen Varianten kombiniert werden. 

 

Der endgültig ausgebildete Agent basiert auf einem DDPG-Algorithmus in Kombination mit 

einem multi-layer perceptron Netzwerk mit zwei versteckten Layern mit einer Layergröße 

von 400 im ersten versteckten Layer und 300 in den folgenden Layern. Der PI-Regler als 

Benchmark wird vom Agenten in Bezug auf die Optimierungsziele mit einer 

Gesamtkosteneinsparung in einer Testwoche, die am ersten August startet, von 11,49 $ 

(30,21 %) übertroffen. Ein "perfect Information Modell" als MPC optimiert den Raum über 

den gesamten Zeitraum der Testwoche und verringert die Energiekosten im Vergleich zum 

PI-Regler um 54,02 %, das 20,55 $ Einsparung in dieser Testwoche entspricht. Im Vergleich 

zum MPC sind die Betriebskosten mit dem Agenten um 9,06 $ (44,12 %) höher. 

  

Schlagwörter: Regelung, Gebäudetechnik, Elektrochromes Fenster, Maschinelles lernen 

(ML), Reinforcement Learning (RL) 
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1 Introduction 

Building envelopes play a crucial role in the energy performance of buildings, imposing an 

annual 21.3 quadrillion Btu (6,242.41 TWh) primary energy in the U.S. in 2019, which 

represents 28 % of the total primary energy consumption (U.S. Energy Information 

Administration 2020). The initiative of the U.S. Department of Energy launched an initiative 

for Grid-interactive Buildings whose aim is to optimize the interplay of energy efficiency, 

demand response, behind-the-meter generation and energy storage to enable more 

demand-side management possibilities. State-of-the-art control systems, such as 

Proportional Integral Derivative (PID) controls use conventional feedback and are rule-

based. Specifically, they are reactionary (cannot consider future operation) and largely 

univariate (only consider a single variable) and often fail to deliver sustained performance 

over the time of the installation (Wang and Hong 2020). These controllers cannot consider 

future climatic conditions like predicted hot outside air temperatures and only react to the 

outside conditions, which leads to high peak loads for heating and cooling. 

 

Model-predictive controls (MPC) on the other hand can take the future outside conditions 

into account and have proven the potential to save energy in simulations, as well as in real 

life buildings. The disadvantage of the MPC is the fact that as the name implicates a detailed 

model of the building must be programmed. Therefore, the development and calibration are 

cost intensive as every building is unique. That is the main reason for the limited application 

of, predictive control in real buildings. 

 

Current investigations at the Lawrence Berkeley National Laboratory (LBNL) in California 

induce the application of machine learning (ML) in a building life cycle and show that ML is 

applicable in many stages of this life cycle (Hong et al. 2020). These studies already 

demonstrate the potential of ML to benefit the performance of the buildings. ML and the field 

of reinforcement learning (RL) is especially suited for the desired control strategies and can 

help to eliminate the developing and calibrating of detailed building models as known from 

MPC. 

 

1.1 Motivation 

The rising requirements for energy management, occupant interactions, on-site renewable 

generation, on-site storage, electric grid interfacing, etc., demand innovative control methods 

to integrate multiple subsystems. Furthermore, it becomes necessary to address the number 

of high-performance objectives, such as minimizing the use of energy, energy cost, 

increasing the demand response capacity, while satisfying the occupant comfort. Therefore, 

the control methods need to be responsive to real-time and forecasted conditions, consider 

the interaction of multiple subsystems, require minimal to no set-up and commissioning and 

have to be adaptable over the life of the installation. 
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First studies already indicate the high potential for energy savings, the current challenge 

hereby is the implementation in buildings to enable more electric loads and distributed 

Energy systems without reinforcement of the power grid.  

Here, the latest study of the LBNL focusing on model predictive controllers (MPC) showed 

that a total energy cost saving of 28% is possible compared to state-of-the-art heuristic 

controllers (Gehbauer et al. 2020). The complexity of the building model necessary for the 

development of the controllers must be decreased to enable more buildings to have 

advanced building controls in order to path the way for renewable energy systems. 

 

1.2 Aim of the Thesis and Scientific Question 

The LBNL investigates the potential of MPC in an environment, where the shading system 

and the heating ventilating air conditioning (HVAC) system is controlled. Herein, the 

constraints in form of occupancy comfort (e.g. indoor temperature control) and cost savings 

have to be considered. Therefore, the aim of this thesis is the implementation of an agent 

that aims to minimize the total energy costs and the peak electricity load, while ensuring the 

comfort parameters for the occupants.  

 

Within this framework, the following question needs to be answered to improve existing 

control strategies: 

 

• Which Reinforcement Learning (RL) methodology is best suited for the control of 

building technology to further reduce total energy costs compared to state-of-the-art 

controllers and MPC controllers?  

 

1.3 Approach 

At the beginning of the work, a fundamental understanding of state-of-the-art ML approaches 

and of RL in particular, needs to be gained. RL is a powerful deep learning (DL) technique 

in the field of artificial intelligence (AI). The most renowned successes of DL were achieved 

in the video game and board game sector. For example, an agent trained with RL defeated 

the world champion in the game “Go” which was considered to be impossible due to the 

complexity of the game (DeepMind 2016). Based on the gained knowledge the RL agent 

shall be developed in open-source based programming language Python which supports 

modules and packages that make it suitable for ML applications. 

 

The development of the agent will be performed entirely in Python with the ML framework 

TensorFlow. The RL agent must regulate the heating and cooling of the building, as well as 

the control of the dynamic façade as a shading device. The costs for electricity will be 

compared with a MPC system programmed in python with the module pyomo. The 
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comparison will be performed in the context of California, using the electricity tariff for 

medium office buildings of Pacific Gas and Electricity (E-19) as a time-of-use (TOU) tariff. 

 

2 Methodology 

A plethora of research and development has already been conducted in the field of ML. In 

the following chapter, the relevant methods employed to answer the scientific question posed 

in this thesis are summarized and explained. 

 

Some of the tools used to develop the agent are prescribed by the LBNL to enable the 

communication with existing programs and environments. All used tools and programs used 

are freeware to ensure reproducibility.  

 

2.1 Programming Language – Python 3.8 

Python is an open-source programming language which is administrated by the non-profit 

corporation Python Software Foundation (Python Software Foundation 2020). The language 

use is widely spread amongst industry due to its flexibility. It is used for web-development, 

scientific and numeric or software development. Python is an interpreted, object-oriented 

high-level programming language with a clear syntax. 

 

Figure 1 shows the popularity of programming languages based on raw data based on 

Google Trends. The numbers show the share of how often a programming tutorial for the 

corresponding language has been searched in 2020. By a large margin, python is the most 

popular programming language with a share of more than 30 % of searches on Google.  

 

 

Figure 1: Worldwide PYPL PopularitY of Programming Language in 2020 (modified according to 

(Pierre 2020)) 
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2.1.1 Machine Learning Framework  

The variety of ML frameworks was studied by Jeff Hale who described the popularity of 

different ML frameworks with a power ranking based on online Job Listings, Google Search 

Volume, Medium Articles, ArXiv Articles, GitHub Activity and others (Figure 2) (Hale 2019). 

With applied weights, Tensorflow is the most popular framework for machine learning 

followed by Keras and Pytorch. 

 

 

Figure 2: ML Framework Power Scores 2018 (modified according to (Hale 2019)) 

The further development of deep learning frameworks lead to a new survey by Hale where 

the growth of the leading frameworks in 2019 was observed as presented in Figure 3 (Hale 

2020). The leading frameworks currently are Tensorflow with Keras as the high-level 

application programming interface (API) and Pytorch with fast.ai. According to these results 

Tensorflow is the most in demand framework, as well as fastest the growing.  

 

  

Figure 3: DL Framework Six-Month Growth Scores 2019 (modified according to (Hale 2020)) 

0

20

40

60

80

100

P
o

w
e

r 
S

c
o

re

0

20

40

60

80

100

Tensorflow PyTorch Keras FastAI

G
ro

w
th

 S
c
o

re



 

   15 

The open-source library Tensorflow (version 2.3.0) was developed by Google and was 

intended for the spam filter of Gmail before it was available to the public in 2015 (Open Data 

Science 2019). As shown before, TensorFlow is currently one of the most popular ML 

frameworks and is widely employed for DL. TensorFlow can run on various platforms, such 

as Linux, macOS, Windows and on the mobile platforms iOS android or on Raspberry Pi. 

For performance reasons, the library is written in C++, but the API is also available in Python 

and others. TensorFlow can be executed on the central processing unit (CPU) or on the 

graphics processing unit (GPU) with enabled multiprocessing to boost the performance. One 

of the biggest advantages of TensorFlow is the possibility to work with low-level, as well as 

with high-level API.  

 

Keras (version 2.4.0) as a high-level API was launched in 2015 and became the framework 

for developers due a clean API and the possibility to use it with different DL libraries as the 

backend such as TensorFlow, Theano or CNTK (Google Inc. 2019). In 2019 with TensorFlow 

2.0, Keras was integrated and now is the standard interface, when developing DL 

environments.  

 

The python package pyomo (version 5.7) is used for developing the MPC is an open-source 

package which provides a variety of different optimization models (Sandia National 

Laboratories 2019). The high-level programming language has the advantage of usability 

over other algebraic modelling languages. 

 

3 Machine Learning 

In 1942, the idea of AI was born in the USA when it was mentioned in the science fiction 

short story called “Runaround” by Isaac Asimov (Haenlein and Kaplan 2019). At the same 

time, a machine called “The Bombe” for deciphering Enigma, an encryption device used for 

secure communications by the German military in the second world war was developed by 

the English mathematician Alan Turing. The ability to decipher Enigma led to Turing’s 

seminal paper “Computing Machinery and Intelligence” in 1950 which stated, that, for a 

machine to be intelligent, it needs to respond in a manner that it is not differentiable from a 

human being (Turing 1950). These criteria are a benchmark for the intelligence of machines 

considered to be AI-systems. The first machine that matched this criterion was called ELIZA, 

it was able to simulate a conversation with a human and was developed between 1964 and 

1966 at MIT. The System used for ELIZA was a so-called “Expert System” in which rules are 

programmed assuming that human intelligence can be formalized with a top-down “if-then” 

approach. The same system was used in IBM’s Deep Blue in 1997 which was able to beat 

the reigning chess world champion Gary Kasparov.  

 

A more technical definition for ML was stated by Tom M. Mitchell in 1997: “A computer 

program is said to learn from experience E with respect to some class of tasks T and 
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performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E.”(Mitchell 1997, p.2). Ethem Alpaydin describes the task of ML as a 

optimization of a performance criterion using example data and experience (Alpaydin 2010). 

These definitions are still valid today and based on them different algorithms and approaches 

have evolved. 

 

The next big milestone for Artificial Intelligence (AI) was made in 2015 by Google with the 

program “Alpha-Go” which can play the board game Go and was able to beat Lee Sedol the 

reigning world champion  (Haenlein and Kaplan 2019). Figure 4 shows two children playing 

Go on a board with black and white stones which are placed anywhere on the grid and 

cannot be moved afterwards (DeepMind 2016). The goal of Go is to capture as much free 

space and surround as many of the opponent’s stones until no more move is possible. This 

leads to 1017 possible board configurations. 

 

 

Figure 4: Children playing Go on a regular Go board (DeepMind 2016) 

The possibility of 361 first moves in Go makes the game more complex than chess with only 

20 possible starting moves. The brute-force of analyzing all possible moves as used in IBM’s 

Deep Blue chess gets infeasible for that number of possible actions with an exponentially 

increasing cost for calculation. Therefore, the team of DeepMind chose an approach in form 

of a deep neural network (NN). By playing against amateur players and against itself 

AlphaGo developed an understanding of how humans play and ultimately outplayed them. 
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3.1 Applications 

The use of AI in industry is strongly driven by information technology companies like Google, 

Microsoft, Apple and Intel (Pan 2016). Google as an example uses Deep Learning to improve 

their picture search or develop their unmanned ground vehicle. The research in AI is shifting 

from academia-related research to research which addresses social demands like intelligent 

cities, medicine, transportation, logistics, manufacturing, as well as driverless automobiles. 

AI nowadays supports us constantly in everyday life. Google uses AI to sort the emails into 

different categories and, most importantly, to filter spam emails. Moreover, it recommends 

search queries based on the first words typed into the search field and then tries to find the 

best matches for the question (Bradley 2018). The business-focused social media platform 

LinkedIn uses AI to find best matches of employees to employers, by observing the behavior 

of applicants and the outcome of hiring processes. Facebook is helping to prevent suicide 

and to save lives by detecting suicidal thinking patterns and sending resources to help. 

 

In the specific field of building technologies the research in RL started as early as 1997 and 

gained more interest since 2015 (Wang and Hong 2020). Wang and Hong found in their 

study that the main focus in building technologies was Heating-Ventilating-Air Conditioning 

(HVAC) with a 35 % margin of papers released in this topic in 2015. In 2015 Barrett and 

Lindner introduced a learning thermostat where the desired room temperature is set by the 

user and the learning thermostat controls the heating or cooling signal with on or off signals 

by learning the time schedule of the occupants (Barrett and Linder 2015). In comparison, 

Wei et. al. introduced a system which controls the air flow of the HVAC system with an agent 

(Wei et al. 2017). An RL-algorithm for the combination of HVAC control and window control 

was developed by Chen et. al. in 2018 (Chen et al. 2018). The similarity of these approaches 

is the cost saving potential in comparison to a heuristic control system.  

 

These examples show that ML can be applied to a variety of integral tasks and different 

learning techniques are necessary to solve these problems. 

 

3.2 Learning Techniques 

The different ML techniques can be classified in the four categories of supervised, 

unsupervised, semi-supervised and reinforcement learning, depending on the required data 

(Figure 5) (Mohammed et al. 2017). The designation of the data with classified data refers 

to whether the data have a specific label, e.g. the picture of the dog has the name dog. With 

unclassified data, where the name of the picture iis not referred to the content. 
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Figure 5: Different machine learning techniques and their required data (modified according to 

(Mohammed et al. 2017) 

Supervised learning 

The goal of supervised learning in its basic form is to find a correlation between input data 

and output data (Brownlee 2019). The two main types of supervised learning are 

classification and regression. A classification problem could be e.g. a dataset of handwritten 

digits with pixel data for which the learner should recognize the digits representing numbers 

from 0 to 9. The regression problem deals with numerical numbers as output, for example 

house prices could be calculated by given variables that describe the house itself and the 

neighborhood.  

 

Unsupervised learning 

Problems are solved without labelled input data as a reference for learning. In contrast to 

supervised learning, the model tries to describe or extract relationships in the data. The two 

main problems it is being used for, are clustering and density estimation which are performed 

to find patterns in data. Another method where unsupervised learning is used is visualization 

for graphing or data plotting, as well as projection for reducing the complexity of 

multidimensional data. 

 

Semi-supervised learning 

This technique is a hybrid of supervised- and unsupervised learning where the training 

dataset contains more unlabeled then labeled data. This method is common for real-world 

supervised learning problems as in computer vision, natural language processing and 

automatic speech recognition, due to the lack of training data. 

 

Reinforcement learning 

The reinforcement learning technique does not have a dataset available at the start of the 

training process. In this case, an agent operates in an environment and learns how to 

operate using feedback and stores the experience. Google’s AlphaGo is an example for the 

most recognized example of reinforcement learning problem. Reinforcement leaning is the 

technique used in this work and will be discussed in greater detail in the next chapter. 

Supervised Unsupervised Semi-supervised Reinforcement 

Machine learning techniques 

Concerned with 

classified 

(labeled) data 

Concerned with 

unclassified 

(unlabeled) data 

Concerned with 

mixture of 

classified and 

unclassified data 

No Data 
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3.3 Reinforcement Learning 

The goal of this thesis to control the temperature and illuminance in a room for minimal cost. 

For the problem at hand, no initial dataset exists prior to the training, making this an obvious 

candidate for RL. 

 

RL is based on the process by which humans naturally learn (Sutton and Barto 2018). 

Gaining experience by interacting with our environment is one of the major sources for our 

knowledge. Figure 6 shows the basic agent-environment setup for RL. The agent operating 

with the environment selects the actions 𝑎𝑡 to take in the current state 𝑠𝑡 to reach the next 

state 𝑠𝑡+1 and get the reward 𝑟𝑡+1 as a feedback. 

 

 

Figure 6: The agent–environment interaction in a Markov decision process. (modified according to 

(Sutton and Barto 2018, p.48)) 

The main elements of the RL-system are the policy, the reward function and the value 

function which are built into the agent and the Environment. 

 

Environment 

The environment can be a variety of problems, such as a car or boardgames like chess. In 

this thesis, the given environment is a thermal room model. The room temperature is the 

state and output of the environment which should be ensured by the agent. The possible 

actions for the agent are the energy input by heating or cooling, as well as the control of the 

shading system. The room reacts to actions taken by the agent and creates an output in 

form of the next state and the immediate reward. 

 

The reward signal is a single number calculated with a reward function in the environment. 

Its design is crucial for the learning success of the agent, as discussed by Sutton and Barto 

(Sutton and Barto 2018). The reward in the context of the given room model in this thesis 

contain the cost of energy and every exceedance of any comfort parameter. How the agent 

can learn from this reward function is described in chapter 4.1 in greater detail. 
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Agent 

The agent is responsible for selecting actions according to the current state of the 

environment following a policy as the main element of the process. This policy can be a 

look-up table, a function, or a search policy. Recent algorithms make use of parameterized 

policy by introducing a NN. The actions can be selected with a stochastic function, with 

probabilities for each action, or deterministic with the output of the policy being the real value 

of the action. The optimization goal of the agent in this thesis is to save energy costs while 

maintaining the needs of the occupants. To achieve an optimal control strategy, the agent 

tries to maximize a cumulated reward (return) over all viewed timesteps. In its simplest case, 

this return can be the sum of the rewards (equation 1). 

𝐺𝑡 =̇  𝑅𝑡+1 + 𝑅𝑡+2 + 𝑅𝑡+3 + ⋯ + 𝑅𝑇 (1) 

𝐺𝑡 …… return, cumulated reward 

𝑅𝑡+𝑖 … reward of timestep  

𝑅𝑇 ….. reward of the terminal timestep, last, timestep in the viewed timeperiod 

 

Heating or cooling a building is a continuous task without a terminal state which would lead 

to an infinite return with the formulation in equation 1. Adding a discount rate 𝛾 to future 

rewards prevents this behavior with equation 2. The initially received reward is worth more 

than the reward received after the next step. 

𝐺𝑡 =̇  𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ 
 

𝐺𝑡 … return, cumulated reward 

𝑅𝑡+𝑖 … reward of timestep  

𝛾 .… discounting factor 

(2) 

 

Value-function 

In RL, the two value functions used are called state-value and the action-value function. 

The value functions are used to estimate the return, because the rewards for each timestep 

are not known prior to the state visitation. The value functions are used to train the agent to 

achieve the optimization goal of maximizing the return. 

 

The state-value 𝑣𝜋(𝑠)  is defined as the total expected reward achievable in the future 

starting from this state. The state-value noted as 𝑣𝜋(𝑠)  indicates what the best option for the 

long run is and takes the next states which are most likely to follow into account. That means 

that the reward in a specific state can be low, however the value of this state can still be high 

if the following states can gain a high reward. In the simple maze depicted in Figure 7, the 

goal is to move from the start in the top left corner to the goal in the bottom right corner. 

Following the orange line with the highest reward in every single box and summing up the 

rewards (green numbers), the total return is 120 whereas following the red line by taking the 

future rewards into account results in the total reward of 155, making it the better option. 
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Figure 7: Simple Maze displaying the difference of reward and state-value 

This simple example shows that the state-value is crucial for the performance of RL 

algorithms but is not as straightforward as the reward estimation which is a direct feedback 

from the environment. The state-value of each state is dependent on the possible actions 

and the probability these actions are taken following the current policy. Figure 8 shows the 

state-value and is the visualization of equation 3. Starting from a specific state 𝑠 the agent 

can perform any action 𝑎. The transition from state 𝑠 to the next state 𝑠′ and the immediate 

reward is expressed as the probability 𝑝(𝑠′, 𝑟|𝑠, 𝑎) The reward 𝑟 is added to the discounted 

state-value of the next state 𝑣𝜋(𝑠′). The sum of all possible state-values by taking different 

actions is then averaged over all possible actions by multiplying the probabilities 𝜋(𝑎|𝑠) of 

taking each action 𝑎 in state 𝑠. 

 

Figure 8: backup diagram for 𝑣𝜋(𝑠) (Sutton and Barto 2018, p.59) 

𝑣𝜋(𝑠) =  ∑ 𝜋(𝑎|𝑠)

𝑎

∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)

𝑠′,𝑟

[𝑟 + 𝛾𝑣𝜋(𝑠′)] (3) 

𝑣𝜋 … state-value 

𝜋 …. policy 

𝑠 ….. state 

𝑠′ …. next state 

𝑎 ….. action 

𝑟 …... reward 

 

 

Like the state-value, the action-value 𝑞𝜋(𝑠, 𝑎) is the estimated return with respect to the 

state 𝑠 and the action 𝑎. The action value indicates how good it is to take a specific action in 

a specific state (Figure 9). 
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Figure 9: 𝑞𝜋 backup diagram (Sutton and Barto 2018, p.61) 

For RL two algorithms can be differed. Figure 10 displays an overview of modern RL-

Algorithms divisible into model-based- and model-free algorithms (OpenAI 2018). Model-

based algorithms do know the model dynamics or learn the dynamics of the environment 

model with the advantage for planning ahead and seeing what will happen when choosing 

certain actions. While Google’s AlphaZero is model-based with the agent being provided 

with the ruleset of the game, whereas algorithms like Stochastic Value Gradient learn the 

model dynamics as part of the learning process. This has the disadvantage that biased 

models are possibly learnt during the training with the result of sub-optimal performance in 

the real environment. 

 

Model-free algorithms are separated into the two main approaches of policy optimization and 

Q-learning. The RL-system either learns policies, action-values (Q-functions) or value 

functions. As can be seen in Figure 10, the DDPG, TD3 or SAC algorithm are a combination 

of Policy-Optimization and Q-learning. These policy optimization algorithms are so-called 

actor-critic algorithms and are characterized by using a critic and an actor for training and 

selecting an action. The state-value of the current step in actor-critic algorithms is calculated 

with the estimated state-value of the next step and this is added to the actual reward given 

by the environment. The reward with the estimated state-value of the second step is then 

called the one-step return 𝐺𝑡:𝑡+1 which is used to assess the action (Sutton and Barto 2018). 

The use of the state-value function in this way is called a critic and the function which takes 

actions is called the actor. Actor-critic algorithms take the one-step return to update and 

improve the policy. 

 

Other well-known algorithms like PPO or TRPO are pure policy gradient algorithms. Another 

group of algorithms are Q-learning algorithms, because they learn the Q-value which is in 

fact the state-value. These algorithms are not feasible for large action spaces because of 

the discrete actions they use and the necessity to calculate the action-value of all possible 

actions in the specific state. Policy optimizations can perform in continuous action spaces 

and are therefore the preferred algorithms for the problem discussed in this work. 
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Figure 10: A non-exhaustive, but useful taxonomy of algorithms in modern RL (OpenAI 2018) 

The key differences of the Policy-optimization algorithms are described in terms of the action 

space and policy, the performance measure, and the question if the algorithm is an on- or 

off-policy algorithm. Off-policy means, that the experience used for training the policy and 

value functions is not produced by the current policy and can be used multiple times which 

makes these algorithms more sample efficient. On-policy methods only use the experience 

from the last episode or steps and compare the new policy with the old one to find out if this 

episode is better. The performance measure for the comparison is called the advantage of 

the policy. The key points of the policy optimization algorithms are: 

 

DDPG: Deep Deterministic policy gradient (Lillicrap et al. 2015) (Lillicrap et al. 2019) 

• Continuous action spaces with a deterministic policy 

• Learns policy and action-value function 

• Off-policy 

TD3: Twin Delayed Deep Deterministic policy gradient (Fujimoto et al. 2018) 

• Continuous action spaces with a deterministic policy 

• Learns policy and stabilized action-value function 

• Off-policy 

SAC: Soft Actor-Critic (Haarnoja et al. 2018) 

• Continuous or discrete action spaces with a stochastic policy 

• Learns policy and stabilized action-value function 

• Off-policy 

 

A2C/A3C: Asynchronous Advantage Critic (Mnih et al. 2016) 

• Continuous or discrete action spaces with a stochastic policy 
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• Advantage function  

• On-policy 

PPO: Proximal Policy Optimization (Schulman, Wolski, et al. 2017) 

• Continuous action spaces with a stochastic policy 

• clipped, advantage function  

• On-policy 

TRPO: Trust Region Policy Optimization (Schulman, Levine, et al. 2017) 

• Continuous or discrete action spaces with a stochastic policy 

• KL-divergence advantage function  

• On-policy 

 

The policy gradient algorithms select the actions based on a parameterized policy (e.g. NN) 

that uses a performance measure (e.g. value function) to update the parameters and 

improve the performance (Sutton and Barto 2018). The policy is learned based on the 

gradient of an accumulated reward, as the performance measure with respect to the policy 

parameters referred to as 𝐽(𝜃) which can be written as equation 4 with 𝜇 as the distribution 

of the states and 𝜋 as the policy corresponding to the parameter vector 𝜃. 
 

∇𝐽(𝜃) = ∑ 𝜇(𝑠)

𝑠

∑ 𝑞𝜋(𝑠, 𝑎)

𝑎

∇𝜋(𝑎|𝑠, 𝜃) 
(4) 

∇𝐽(𝜃) … gradient of the performance measure  

𝑠 ……… state 

𝑎 ….….. action 

𝜃 …..…. parameter vector 

𝜇(𝑠) ..… state distribution 

𝑞𝜋 …….. action-value 

𝜋 …....... policy 

 

 

The update of policy gradient methods is based on gradient ascent with respect to the current 

policy parameters  𝜃𝑡 in equation 5. 

𝜃𝑡+1 =  𝜃𝑡 +  𝛼∇𝐽(𝜃𝑡)̂  (5) 

𝜃𝑡+1 … current parameter vector at timestep t+1 

𝛼 ……. learning rate (step size of the gradient) 

𝜃𝑡 …… parameter vector at timestep t 

∇𝐽 …… gradient of performance measure 

 

 

The policy 𝜋 selects actions 𝑎 based on the current state 𝑠 with the current parameters 𝜃 

and can be noted as 𝜋(𝑎|𝑠, 𝜃). 
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3.4 Reinforcement Learning in Building Technologies 

Wang and Hong have very recently published a review giving a detailed analysis of 

publications since 1997 in the field of RL in building technologies (Wang and Hong 2020). 

The algorithms which have been used so far are to 76.6 % based on the number of 

publications value-based algorithms (Q-learning) which were already excluded for this thesis 

because of their disability to work in continuous action spaces. Actor-critic algorithms got 

more popular in recent years with a total share of 15.1 % of all publications. The popularity 

of actor-critic algorithms is due to the possibility for transfer-learning which means, that a 

trained behavior from one building can be generalized to other buildings as well. The policy 

function is suitable for transfer learning because the task of ensuring the room temperature 

is the same in every building, whereas the mapping from states to actions is not transferable 

due to different control goals and structures in building technologies. 

 

The methods used to represent the policy and value function shift more and more to NN 

estimators which were used in all publications in 2019 listed by Wang and Hong. The study 

concludes that the majority of utilized RL controllers adopted supervisory control which they 

describe as setpoint control where conventional controllers are still needed to track this 

setpoint.  

 

Given the analysis by Wang and Hong this thesis will focus on an actor-critic algorithm for 

developing a RL-controller applicable for transfer learning. Sutton and Barto state, that the 

advantage of an approximation policy is that it can approach a deterministic policy. Together 

with the advantages of the policy gradient algorithm the Deep Deterministic Policy Gradient 

fulfils the approach of a deterministic policy which is described in detail in the section 4.1. 

 

3.5 Neural Networks 

The chosen DDPG-algorithm uses NN for the actor to select the actions and the critic to 

estimate the actor-value. The idea of a NN is based on the functionality of a brain (Ertel 

2016). The big step towards an AI with NNs was taken by McCulloch and Pitts in 1943 with 

the mathematical model of the neuron as a basic switching element for brains. This 

formulation laid the foundation for the construction of artificial NNs.  

 

The neuron of a brain is comparable with a conductor which get charged by incoming 

impulses and sends a signal if the voltage exceeds a certain threshold to all connected 

neurons where the same process is repeated. A neuron can have multiple inputs and outputs 

and is connected to other neurons (Figure 11). 
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Figure 11: Formal model with neurons and directed connections between them (modified according 

to (Ertel 2016, p.267)) 

The mathematical formulation for this process replaces the continuous process of the brain 

with a discrete time scale and the charging of the activation potential is the sum of the 

weighted output values with weight 𝜔𝑖𝑗 of all input values 𝑥𝑗 with an applied activation 

function 𝑓 (equation 6 and Figure 12). There are several options for the activation function 

which are explained in the section 3.5.3. 

 

𝑥𝑖 = 𝑓 (∑ 𝜔𝑖𝑗𝑥𝑗

𝑛

𝑗=1

) (6) 

𝑥𝑖 ..… output of neuron 

𝑓 …... activation function 

𝜔𝑖𝑗 … weights of the connections 

𝑥𝑗 ….. inputs pf neuron 

 

 

 

Figure 12: The structure of a formal neuron that applies the activation function f to the weighted sum 

of all inputs (modified according to (Ertel 2016, p.269)) 

The most used NN model is the backpropagation algorithm because of its universal 

applicability for any approximation task. Figure 13 shows a backpropagation network with an 

input layer, a hidden layer and an output layer. The values 𝑥𝑗
𝑝
 of the output layer are 

compared with the values of the targets 𝑡𝑗
𝑝
. In the tables to the right in Figure 13 the values 
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of the inputs and outputs and the target values of the NN used in this thesis are shown. The 

state input is the room temperature and the forecast input is the weather forecast with the 

outside air temperature, solar radiation, cost of energy and the occupancy of the room. The 

actor output 𝑄 is the heating-or cooling energy input and 𝑇𝑣 is the value for the shading 

system. 

 

 

Figure 13: A three-layer backpropagation network with n1 neurons in the first layer, n2 neurons in the 

second and n3 neurons in the third layer (modified according to (Ertel 2016, p.291)) 

The target value for the critic network is compared with the value of the output layer and the 

error is calculated with the preferred function. This error is then used to calculate the negative 

gradient of the weights and further tune the weights to minimize the error and make accurate 

estimations of the action-value. The actor network with the actions as an output is not trained 

to minimize an error and get accurate predictions but trained to minimize the action-value 

function. 

The following section shows two NN architectures based on the backpropagation model for 

RL which have already proven their usefulness in a wide range of problems. The structure 

of multi-layer perceptron models and Recurrent NN (RNN) models is described in the 

following section. 

 

3.5.1 Multi-Layer Perceptron 

The multi-layer perceptron network is viewed as the classical NN (Brownlee 2016). The basic 

structure of this network class is an input layer followed by one or multiple hidden layers and 

an output layer. Figure 14 shows this structure and displays that the layer size of the layers 

can vary. 
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Figure 14: Model of a Simple Network (Brownlee 2016) 

The input layer is not constructed with neurons and passes the input to the first hidden layer 

in the network. The network can have multiple hidden layer which is referred to as Deep 

Learning. The properties of the output layer as the final layer depends on the problem the 

NN is used for. The output layer in this thesis has one output neuron for the critic network 

estimating the action-value function and the actor has two outputs for two actions. The 

properties and what range of values this neuron can output is depending on the activation 

function described in 3.5.3. 

 

3.5.2 Recurrent Neural Network 

Multi-layer perceptron networks are not able to learn time related dependencies, because 

they have no knowledge of what happened in the timestep before (Olah 2015). RNN address 

this issue with loops in the neurons of the RNN layers. A RNN neuron look like the left-hand 

side of Figure 15 with a loop that allows to use the past information to be used in the current 

step. The right-hand side shows the unrolled neuron where the output ℎ0 of timestep zero is 

passed to the next timestep and is the input together with 𝑋0. 

 

 

Figure 15: An unrolled recurrent neural network (Olah 2015) 

This additional knowledge led to success in speech recognition, language modelling, image 

captioning or timeseries forecasting. In 2015 Heess et al. used an RNN approach in the 

DDPG algorithm to conquer problems with partial observable environments like a way sign 

in a navigation task which is only temporary available (Heess et al. 2015). In the task of room 

conditioning the interesting value to remember is the past actions and states. 
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The idea to use an RNN in such a task is to connect previous information (way sign) to the 

present task (navigation). Unfortunately, basic RNNs have a problem with long term 

dependencies where not only the information of the last time-step is needed but also the 

information of a few timesteps back (Olah 2015). Following example by Olah makes this 

issue clear: I grew up in France …. I speak fluent “?”. For a human it is clear, that the missing 

word is French. The bigger this gap grows it gets more likely for the RNN to fail.  

 

This problem is solved with Long-Short-Term Memory (LSTM) networks which are designed 

to learn these long-term dependencies. LSTMs were introduced by Hochreiter and 

Schmidhuber in 1997 (Hochreiter and Schmidhuber 1997). The difference between the RNN 

and the LSTM is how the information of past timesteps is passed to the next timestep. In 

RNN the repeating modules responsible for the forward pass of past information is a simple 

structure with an activation function (Figure 16). 

 

 

Figure 16: The repeating module in a standard RNN contains a single layer (Olah 2015). 

The improved LSTM network layers repeating module is built with four interacting network 

layers shown in the middle of Figure 17.  

 

Figure 17: The repeating module in an LSTM contains four interacting layers (Olah 2015). 

The architecture of LSTM decides and learns what information to keep of the past 

information, what information to store as the state of the layer and what information to pass 

as the output. This is done with the sigmoid (sig) or hyperbolic tangent (tanh) layers called 

gate layers. The first layer is the forget gate layer which decides what information is thrown 

away and what to keep followed from the input gate layer which decides which values are 
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updated. Together with the tanh layer the state is updated. The output of the LSTM is a 

filtered version of the state which is put through a tanh layer to push the values between -1 

and 1 multiplied by a sigmoid gate. 

 

3.5.3 Network features 

For both presented network architectures the network features like the number of layers, 

number of neurons of each layer, activation function of the layer and what loss-function 

should be used to train the network have to be set.  

 

Activation functions 

The most common activation functions in NNs are the sig, tanh and variants of rectified linear 

units (relu) (Ding et al. 2018). Ding et al. analyzed the different activation functions based on 

their characteristics in NNs.  

 

The sig function is the most used 

activation function because the 

calculation is easy. The problem with 

the sigmoid function is that while 

backpropagating the derivative will 

reduce to zero around saturation, as 

shown in Figure 18 and that leads to 

a vanishing gradient. The gradient 

vanishes, when more layers with the 

same activation function are added 

to a NN (Wang 2019). The weights 

are not updated effectively which 

can lead to an inaccurate NN. The 

output of the sigmoid function is 

between 0 and 1.  

 

 

Figure 18: The graphic depiction of Sigmoid function and 

its derivative (Ding et al. 2018, p.1837). 
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Similar to the sigmoid function is 

the tanh with output values 

between -1 and 1 (Figure 19). The 

symmetric nature of the function 

makes it more likely to be used 

than sigmoid because the average 

of the layer is close to zero and the 

NN converges faster. The problem 

with the vanishing gradient also 

exists with the tanh activation and 

is more complicated to calculate 

what makes the computing of the 

gradient and the update of the 

weights more time consuming.  

 

 

The relu activation and its 

improvements are currently the 

most used activation functions in 

NNs. Values smaller zero which are 

passed to the activation are always 

zero and values bigger zero are 

activated with a linear function 

(Figure 20). The relu function has 

advantage of being less 

computational demanding. With a 

derivative of 1 the NN converges 

faster and avoids local optimizations 

and a vanishing gradient. The 

disadvantage of relu function is the 

dying neuron problem. The output of 

negative values as zero lead to so 

called dead neurons which will 

never be activated. 

 

Figure 19: The graphic depiction of hyperbolic tangent 

function and its derivative (Ding et al. 2018, p.1838) 

Figure 20: The graphic depiction of ReLU function and its 

derivatives (Ding et al. 2018, p.1838) 
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This dying neuron issue can be 

solved with the leaky relu (lrelu) 

activation function where the 

negative values of the neuron are 

not zero and are calculated with a 

fixed scale for the negative slope, 

shown in Figure 21. For other 

activation functions like the prelu 

and the rrelu, the negative slope is 

not fixed but trainable or selected 

randomly. Ding et. al. tested these 

activation functions with a 

classification problem where the NN 

with the ReLU function performed 

the best.  

 

 

Loss function 

The loss function is the measure of how accurate the model of the NN predicts the target 

values (Seif 2019). The Mean Squared Error loss used as a default in the DDPG (equation 

7) is the right choice when the aim for a NN is to be accurately in the majority of situation. 
 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑞𝜋(𝑠, 𝑎))2

𝑁

𝑖=1

 (7) 

𝑁 ……..… number of samples 

𝑦𝑖 …….…. action-value as the target value 

𝑞𝜋(𝑠, 𝑎) … estimated action-value  

 

 

4 Results  

The basis of the algorithm used to solve the control problem for heating, cooling and 

controlling of the shading device in an office room is the DDPG, an improvement of the initial 

Deterministic Policy Gradient by Silver et al which implements a Deep NN, was proposed in 

2015 by Lillicrap et al.(Lillicrap et al. 2015) (Lillicrap et al. 2019). Numerous improvements 

have been made to this RL-algorithm since it was introduced. Improvements considered in 

this thesis are optimized replay buffer approaches and ways to manage the exploration of 

the agent using different noise processes. 

 

For a better understanding of the nomenclature in the following chapter and for linking the 

algorithm to the use case, the state properties and the action space is defined as follows.  

 

Figure 21: The graphic depiction of LReLU, PReLU and 

RreLU function (Ding et al. 2018, p.1839) 



 

   33 

state   room temperature 

forecast forecast data for air temperature, solar irradiation, cost of energy and a 

Boolean variable if the room is occupied or not. 

observation the state and forecast 

actions  thermal heating/cooling power and the shading factor 

action space heating/cooling power is bound between -1 and 1 with a scaling factor 

depending on the room properties  

shading factor is bound between 0.01 and 0.6. 

 

4.1 Deep Deterministic Policy Gradient (DDPG) 

The DDPG is a model-free, off-policy, actor-critic algorithm which can solve problems with 

high dimensional, continuous action spaces (Lillicrap et al. 2015) (Lillicrap et al. 2019). 

Lillicrap et al. showed, that DPG is unstable for challenging problems and therefore 

combined the DPG algorithm with a Deep Q Network algorithm. The advantage of the Deep 

Q Network algorithm is given by the replay buffer which is replayed in an off-policy way to 

reduce the correlation between the samples and the use of target networks to reduce the 

variance of targets while calculating the temporal difference errors for training. The 

implementation of DDPG follows a straight-forward actor-critic architecture and is therefore 

easy to implement and to scale to different tasks and network sizes. 

 

The main elements, visualized in Figure 22 of this algorithm are the replay buffer, the 

environment, the actor network initialized as 𝜇(𝑜|𝜃𝜇) and the critic network as 𝑄(𝑜, 𝑎|𝜃𝑄). 

The weights 𝜃𝑄, 𝜃𝜇 of both networks are used to initialize the target networks 𝜇′, 𝑄′ as copies 

of the actor and critic with the respective weights 𝜃𝑄′
← 𝜃𝑄, 𝜃𝜇′

← 𝜃𝜇 which are introduced 

to stabilize training.  

 

 

Figure 22: Elements of the DDPG algorithm 

The off-policy algorithm explores the action space by selecting an action following the current 

policy 𝜇 in the current observation 𝑜𝑡 with an action noise 𝑁𝑡 added to the selected action at 

equation 8. In the DDPG the action noise for exploring the action space can be handled 

independently of the learning algorithm. 

 

 



 

   34 

𝑎𝑡 =  𝜇(𝑜𝑡|𝜃𝜇) + 𝑁𝑡  (8) 

𝑎𝑡 … selected actions (Q-input, Tvis) 

𝑜𝑡 … observation (state and forecast values) 

𝜇 …. deterministic policy (actor) 

𝜃𝜇 … parameters of the actor  

𝑁𝑡 … action noise  

 

 

The trajectory following the execution of the action is stored with the transition from one state 

𝑠𝑡 with a forecast 𝑓𝑡 and action 𝑎𝑡 to the next state 𝑠𝑡+1 with the next forecast 𝑓𝑡+1 and the 

reward 𝑟𝑡 for the current timestep as the trajectory(𝑠𝑡 , 𝑓𝑡, 𝑎𝑡 , 𝑠𝑡+1, 𝑓𝑡+1, 𝑟𝑡). Figure 23 shows 

the process starting from selecting the action until storing the trajectory. 

 

 

Figure 23: DDPG – agent-environment interaction 

The training of the actor-critic networks is executed after each timestep with a minibatch of 

trajectories, which are sampled randomly from the replay buffer. The training process starts 

with calculating the action-value with the target networks. With the observation of the 

timestep t+1 from the sampled minibatch the target actor selects an action and passes it to 

the target critic to calculate the action-value by adding it to the reward from timestep t. In 

Figure 24 the green arrows show input data from the replay buffer and the purple arrows are 

outputs of NNs. Equation 9 depicts the mathematical formulation of the process. 
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Figure 24: DDPG – calculating the action-values  

𝑦𝑡 =  𝑟𝑡 + 𝛾 ∗ 𝑄′(𝑜𝑡+1, 𝜇′(𝑜𝑡+1|𝜃𝜇′
)|𝜃𝑄′

) (9) 

𝑦𝑡 …… action-value as target 

𝑜𝑡+1 … observation of timestep t+1 (state and forecast values) 

𝑟𝑡 ….... reward of timestep t 

𝛾 ……. discount factor 

𝑄′ …... target critic 

𝜃𝑄′
 …. parameters of target critic 

𝜇′ ...… target actor 

𝜃𝜇′
 .… parameters of target actor 

 

 

The loss 𝐿 of the critic-network by estimating the action-value is minimized during training 

of the critic with the mean squared error between the action-value 𝑦𝑡 and the 

approximation of the critic (equation 10). 
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𝐿 =  
1

𝑁
∑ (𝑦𝑡 −  𝑄(𝑜𝑡 , 𝑎𝑡|𝜃𝑄))2

𝑡
 (10) 

𝐿 ….. critic loss 

𝑁 ….. number of samples 

𝑦𝑡 .… action-value as target 

𝑜𝑡 …. observation of timestep t (state and forecast values) 

𝑎𝑡 .… selected actions (Q-input, Tvis) 

𝑄 ….. critic  

𝜃𝑄 … parameter of critic 

 

 

The training process presented in Figure 25 illustrates the off-policy training of DDPG. Green 

arrows are the inputs from the replay buffer, purple arrows are the outputs from the NN and 

the blue arrows are the values used for backpropagation through the network. The critic is 

trained with actions selected by an old policy and the action value calculated before. The 

training of the actor starts with selecting actions with the sampled inputs according to the 

new policy. The new observation and action inputs are feed into the critic. The objective for 

optimizing the actor policy is the sampled policy gradient following the updated critic network. 

The mean value of the estimated actor-value is used to calculate the gradients which are 

applied to the actor policy. Equation 11 depicts the mathematical formulation of the process. 

 

 

Figure 25: DDPG – training of the critic and actor network 
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∇𝜃𝜇𝐽 ≈  
1

𝑁
∑ ∇𝛼𝑄(𝑜𝑡 , 𝜃𝑄)|𝑜=𝑜𝑡,𝑎=𝜇(𝑜𝑡)

∇𝜃𝜇𝜇(𝑜𝑡|𝜃𝜇)|𝑜𝑡
𝑡

 (11) 

∇𝜃𝜇𝐽 … gradient of the performance measure 

𝑁 ……. Number of samples 

𝑜𝑡 …… observation of timestep t (state and forecast values) 

𝑄 ……. critic  

𝜃𝑄 …… parameter of critic 

𝜇 …….. deterministic policy (actor) 

𝜃𝜇 …… parameters of the actor  

𝛼 …….. learning rate (stepsize of the gradient) 

 

 

The training of the NN is stabilized with target networks updated with a soft update, which 

means that the parameter of the actor- and critic network are decreased with the factor 𝜏 

before copying the parameters to the target networks, calculated with equation 12 for the 

target critic network and with equation 13 for the target actor network. The disadvantage of 

this soft update is the slower propagation of the action-value estimation of the critic. 

𝜃𝑄′
 ←  𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

 (12) 

𝜃𝜇′
 ←  𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′

 (13) 

𝜃𝑄′
 … parameters of the target critic 

𝜃𝑄 …. parameters of the critic 

𝜃𝜇′
 … parameters of the target actor 

𝜃𝜇 …. parameters of the actor 

𝜏 …… soft constraint 

 

 

4.2 Replay Buffer 

Experience from the interaction of the agent with the environment is stored in the replay 

buffer with state, forecast, action, next state, next forecast and the reward. In the original 

DDPG-algorithm by Lillicrap et al a subset of experiences is randomly sampled from the 

replay buffer to train the networks (Lillicrap et al. 2019). 

 

Schaul et. al proved that the learning process can be improved by sampling the experiences 

according to a priority for each experience. Prioritized Experience Replay (PER) uses the 

absolute value of the temporal difference (TD) error (equation 14) of the estimation of the 

action-value by the critic network (Schaul et al. 2016). The priority of each sample is updated 

after these experiences are used for training the NN for future training steps. Since new 

experience do not have a priority and thus, would never be selected for training the priority 

is set to the clipped maximum priority set by the user. 
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𝛿𝑖 = |𝑟𝑡 + 𝛾 ∗ 𝑄′(𝑜𝑡+1, 𝜇′(𝑜𝑡+1|𝜃𝜇′
)|𝜃𝑄′

) − Q(𝑜𝑡−1, 𝑎𝑡−1)| (14) 

𝛿𝑖 …… TD error 

𝑜𝑡+1 … observation of timestep t+1 (state and forecast values) 

𝑜𝑡−1 … observation of timestep t-1 (state and forecast values) 

𝑎𝑡−1 … actions of timestep t-1 

𝑟𝑡 ….... reward of timestep t 

𝛾 ……. discount factor 

𝑄′ …... target critic 

𝜃𝑄′
 …. parameters of target critic 

𝜇′ ...… target actor 

𝜃𝜇′
 .… parameters of target actor 

 

 

In PER, the TD error shrinks slowly, which leads to a frequent replay of experiences with an 

initial high TD error. This lack of variety in the training data for the NN can lead to over-fitting, 

meaning that the agent is able to solve the problem in specific states with specific forecasts 

only. To overcome this issue Schaul et al. introduces a stochastic sampling method, which 

interpolates between a pure greedy-sampling and random sampling of the experiences with 

equation 15. The exponent 𝛼 sets how much prioritization is used with 𝛼 = 1 as the prioritized 

case with no randomness.  

𝑃(𝑖) =  
𝛿𝑖

𝛼

∑ 𝛿𝑖
𝛼

𝑖

 (15) 

𝑃(𝑖) … priority of sample i 

𝛿𝑖
𝛼 ….. scaled TD error of sample i 

𝛼 ……. prioritization of randomness 

 

 

Prioritized sampling introduces a bias in the network because experiences with high priorities 

are used more often for training. Importance sampling weight (equation 16) is a way to 

correct the bias. An unbiased sampling is especially important at the end of training, 

therefore the exponent 𝛽 sets the amount of correction and increases over time to one. 

Another benefit of IS weights are the lower magnitudes of the gradients of samples with a 

high TD error, which enables the use of a higher global step size of the optimizer. 

 

𝜔𝑗 =  
(𝑁 ∗ 𝑃(𝑖))−𝛽

𝑚𝑎𝑥𝑖𝜔𝑖
 (16) 

𝑃(𝑖) … priority of sample 

𝜔𝑗 …... weight of sample 

𝑁 ....… batch size 

𝛽 ….… amount of importance correction 
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The weight change with IS weights is set according to equation 17. 

Δ ←  ∆ + 𝜔𝑖 ∗ 𝛿𝑖 ∗ ∇𝜃𝑄(𝑜𝑖−1, 𝑎𝑖−1) (17) 

𝜔𝑖 … importance sampling weight 

𝛿𝑖 … TD error 

𝑜𝑖−1 … observation of timestep t-1 

𝑎𝑖−1 … actions of timestep t-1 

𝜃 ……. parameter of critic network 

 

 

Another priority sampling algorithm introduced by Cao et al. in 2019 called the High-Value 

Prioritized Experience Replay (HVPER) builds on PER but combines the action-value and 

the TD-error for each sample (Cao et al. 2019). The high TD-errors in the first episodes of 

training do not improve the agent because the optimal policy will not reach these states. The 

IS weight, as well as the TD error are calculated the same way as in equation 16 and 

equation 17, respectively. The priority calculation is extended by the variable 𝑢𝑖 ,which is 

updated with 𝑢𝑖 = 𝑢0 ∗ 𝜇 every time the experience is used for training. 

 

The priority value for the action-value and the TD-error are often not in the same range. 

Therefore, these values must be normalized. Cao et al. used the sigmoid function 

(equation 18) to do so and updates the priorities the action-value and TD error-priority with 

equation 19 and equation 20.  

𝑦 =  
1

(1 + 𝑒−𝑥)
 (18) 

𝑝𝑞𝜋
(𝑖) =  𝑠𝑖𝑔(𝑞𝜋(𝑜𝑖 , 𝑎𝑖)) (19) 

𝑝𝑇𝐷(𝑖) =  𝑠𝑖𝑔(|𝛿𝑖|) ∗ 2 − 1  (20) 

𝑝𝑄(𝑖) ….. priority of action-value 

𝑝𝑇𝐷(𝑖) … priority of TD-error 

𝑞𝜋 ……... action-value 

𝑜𝑖 …....… observation of sample 

𝑎𝑖 ……… actions of sample 

𝛿𝑖 …….... TD error 

 

 

The full calculation of the priority is presented in equation 21. The variable 𝜆 shifts the weight 

of the priorities from the start with a higher weight for the Q-priority until the end with a higher 

weight of the TD error to speed up the convergence of the NN. The value of 𝑢𝑖 declines every 

time this experience is used, which leads to a smaller priority.  
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𝑝(𝑖) =  𝜆 ∗  𝑝𝑞𝜋
(𝑖) + (1 − 𝜆) ∗ 𝑝𝑇𝐷(𝑖) ∗ 𝑢𝑖 (21) 

𝑝(𝑖) ….… priority of sample 

𝑝𝑞𝜋
(𝑖) ….. priority of action-value 

𝑝𝑇𝐷(𝑖) …. priority of TD error 

𝜆 …….…. Prioritization of action-value/TD-error 

𝑢𝑖 …….… scale of priority according to the number of using this sample 

 

The sampling of the experience is a combination of random sampling and priority sampling 

to reduce the time overhead for updating every priority in the replay buffer with a capacity of 

up to 106 samples. The first step is to randomly select samples with a size of 𝑘 ∗ 𝑛 and then 

select samples via HVPER sampling with a size of 𝑛.  

 

These three different approaches for the replay buffer are investigated within the research 

environment. 

 

4.3 Noise 

The noise in RL-algorithms prevents the algorithm to converge to a local optimum and can 

be applied as an action noise or as a parameter noise (Plappert et al. 2018). In the original 

DDPG algorithm an Ornstein-Uhlenbeck noise-process is initialized at the start of each 

episode and added to the selected action (Lillicrap et al. 2019). The Ornstein-Uhlenbeck 

noise is a temporally correlated noise visualized in Figure 26 by the blue line compared to a 

Gaussian noise. As discovered by Barth-Maron et al. the correlated noise has no impact on 

the performance of the algorithm compared to a fixed Gaussian noise. (Barth-Maron et al. 

2018). 

 

 

Figure 26: Action-noise process Ornstein-Uhlenbeck and Gaussian 
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An alternative to action noise is to perturbate the network parameters of the actor (Plappert 

et al. 2018). Gaussian noise is applied to the parameter vector of the policy network at the 

beginning of every episode. The action obtained by the policy with action space noise is 

different with a fixed observation as the input because the noise is independent of the 

observation. With parameter space noise the obtained action will always be same when 

passing a fixed observation.  

 

Especially in environments with a sparse reward, means not providing a reward at every 

timestep, the algorithm with parameter space noise succeeded in the task, whereas the 

algorithm with action noise failed completely. Scaling the Gaussian noise for the perturbed 

actor is not as intuitive as scaling the actor noise. Plappert et al. introduced an adaptive 

noise scaling suitable for all RL-algorithm where the scale over time changes over time with 

a measure depending on the distance between the actor and the perturbed actor. 

 

4.4 State of the art Controller 

PID -controller and MPC can be considered as state of the art controller with MPC (Wang et 

al. 2017). The simplicity and reliability of PID controllers makes them still widely used, even 

though MPC has proven to perform better for energy savings and cost savings as Gehbauer 

et al. demonstrated in their study (Gehbauer et al. 2020). 

 

4.4.1 PID Control 

PID controller are a simple form of feedback-controller seen in the control loop displayed in 

Figure 27 shows the PID controller with the three main elements of P, I and D (Heinrich et 

al. 2020). 

 

Figure 27: Functional diagram of a PID-controller (modified according to(Heinrich et al. 2020, 

p.163)) 

The following icons show the step function after a step for the target value. The step of the 

target value could be a change of the temperature setpoint, due a time schedule or 

occupancy sensor. In the control terminology the elements are described with the unit-step 

response 𝐺(𝑠). 
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Proportional 

The P element is a multiplication by a proportional constant with the error between setpoint 

and the target value (room temperature). This element follows the error without delay 

(equation 22).  

𝐺(𝑠) = 𝐾𝑃 (22) 

 

Integral 

With the I element the controller gets more accurate, due to the nature of integration, the 

control value is not zero if the error is not zero. The target value is reached accurately but 

the minimization of the error takes longer than with the P element. The unit-step response is 

given in equation 23. 

𝐺(𝑠) =
𝐾𝐼

𝑠
 (23) 

 

Derivative 

The unit-step response calculated with equation 24 gives the step function of the D element 

which is an impulse function with a value of zero except at timestep t=0. In combination with 

a P-element as a PD controller the performance is fast, but the controller is inaccurate, 

produces high frequent malfunctions.  

𝐺(𝑠) = 𝐾𝐷 ∗ s (24) 

The combination of P- and I-element or of P-, I- and D-element is a classic combination for 

controller as PI-controller or PID-controller. The unit-step response of the PID-controller is 

specified in equation 25. For a PID controller the equation remains the same, but the 

derivative constant is set to zero. 

 

𝐺(𝑠) = 𝐾𝑃 (1 +
𝐾𝐼

𝐾𝑃

1

𝑠
+

𝐾𝐷

𝐾𝑃
𝑠) 

𝐺(𝑠) = 𝐾𝑃 (1 +
1

𝑇𝐼𝑠
+ 𝑇𝐷𝑠) 

(25) 

 

𝐺(𝑠) … unit-step function 

𝐾𝑃 …... proportional constant 

𝐾𝐼 …… integration constant 

𝐾𝐷 …... derivative constant 

𝑠 ….…. operator for the derivative by time d/dt 

𝑇𝐼 ……. reset time 

𝑇𝐷 …… rate time 
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Setting 

The configuration of the PID controller parameters can be done empirically by analyzing the 

step response and apply the equations 26 of Ziegler and Nichols with the tuning parameters 

given by the step response in Figure 28. 

𝐾𝑃 = 0.9 ∗
𝑇𝑏

𝐾𝑆𝑇𝑒
 

𝑇𝐼 = 3.3 ∗ 𝑇𝑒 

𝑇𝐷 = 0.5 ∗ 𝑇𝑒 
 

(26) 

𝑇𝑏 …... time constant 

𝑇𝑒 …… delay time 

𝐾𝑆 …… gain 

𝑇𝐼 ……. reset time 

𝑇𝐷 …… rate time 

 

 

 

Figure 28: Step response with aperiodic course (Heinrich et al. 2020, p.174) 

In this thesis a PI-controller is used to compare it with the developed agent. The parameters 

of the PI controller in this thesis are: 

𝐾𝑃 = 10,000  

𝑇𝐼 = 30  

𝑇𝐷 = 0 

 

4.4.2 Model Predictive Control 

In a perfect world, the predictive control model has the knowledge of all relevant information 

and optimizes its strategy based on this knowledge. The model built in this thesis is a perfect 
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information model and is used to evaluate the agent in the development process. The perfect 

information model is built with numerical functions and is a twin of the RC-model built in 

python as the environment of the RL-setup. In Figure 29 the information flow in the model 

and the constraints and penalties are shown. 

 

 

Figure 29: Information flow in the perfect knowledge MPC model 

𝑇𝑎𝑚𝑏 ……….. outside air temperature 

𝑆𝑖𝑟𝑟 …………. solar irradiation on the tilted window 

𝑆𝑖𝑙𝑙 ………..... global horizontal illuminance 

𝑄𝑡ℎ …………. thermal internal load 

𝑄𝑒𝑙 …………. electrical internal load 

𝑐𝑜𝑠𝑡𝑒𝑛𝑒𝑟𝑔𝑦 …. tariff information energy costs 

𝑐𝑜𝑠𝑡𝑑𝑒𝑚𝑎𝑛𝑑 ... tariff information demand costs 

𝑇𝑟 …………… room temperature 

𝐸𝑐𝑜𝑠𝑡 ……….. energy costs 

𝐷𝑐𝑜𝑠𝑡 ……….. demand costs 

𝑝𝑡𝑖𝑛𝑡 ………... penalty for tinting the window 

𝑇𝑚𝑖𝑛 ……..… minimum room temperature 

𝑇𝑚𝑎𝑥 …….…. maximum room temperature 

𝑤𝑝𝑖𝑚𝑖𝑛 …….. minimum workplace illuminance 

Q …………… energy input 

𝑇𝑣 ………….. visibility through EC-window 
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4.5 Room Model 

For this thesis a medium office building, based on a study conducted by the National 

Renewable Energy Laboratory is the basis of the building properties used for developing the 

agent (Deru et al. 2011). The reference building has the form parameters of a medium office 

building which corresponds to a mass or steel construction. These parameters are 

summarized in Table 1. 

Table 1: Reference Building Form Assignments (Deru et al. 2011, p.19) 

Floor Area Aspect 

Ratio 

No. of 

Floors 

Floor-to-Floor 

Height 

Floor-to-ceiling 

Height 

Glazing 

Fraction 

ft2 m2 ft m ft m 

53,628 4,982 1.5 3 13 3.96 9 2.74 0.33 

 

The energy relevant specifications of medium office buildings are shown in Table 2. 

Table 2: U-Value by Reference Building Vintage - Standard 90.1-2004 (Deru et al. 2011, p.26) 

 Btu/h*ft2*ºF W/m2*K 

Roof 0.034 0.1936 

Wall 0.580 3.294 

Window 1.22 6.927 

 

The single office room controlled in this thesis (Figure 30 in green) has an area of 14 m2 and 

a window with a size of 5.2 m2 which corresponds to a typical window to wall ratio according 

to a study conducted by the U.S. Department of Energy of 33 % (Deru et al. 2011). 

 

 

Figure 30: Room model (green)  
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The resistance value (R-value) is calculated applying the U-values and the respective wall- 

and window area. The room has no heat loss through ceiling, floor or inside walls. The total 

capacity of the room is calculated by taking the air properties at 20 °C and by calculating the 

effective thermal mass of the walls, floor and ceiling following the standard EN-ISO 13786 

with the calculation tool developed by HTflux (Rüdisser 2018). The specifications of the room 

regarding the building envelope are stated in Table 3. 

Table 3: specification of the room model  

area 14 m2 (150 ft2) 

height 3.95 m (13.12 ft) 

window area  5.2 m2 

exterior wall area 10.6 m2 

U-value wall 3.294 W/m2K (1.22 Btu/h·ft2 ºF) 

U-value window 6.923 W/m2K (1.22 Btu/h·ft2 ºF) 

R-value room 0.014 K/W 

C Room 2205 kJ/K 

 

The HVAC system is modelled with a fixed coefficient of performance with 3.5 for cooling 

and 1 for heating. 

 

4.5.1 Electrochromic Window 

The shading device controlled by the agent is integrated in the glazing of the window as an 

Electrochromic Window (EC-window). EC-windows are coated with a switchable nanometer-

thick (1x10-9 m) thin-film which tint can be reversibly changed by applying a small direct 

current voltage (Lee et al. 2006). The thin film is formed with the following layers:  

1. transparent conductor 

2. active electrochromic  

3. counter-electrode 

4. ion-conducting electrolyte 

 

When a bipolar potential is applied to the outside layer (transparent conductor) where lithium 

ions migrate across the ion-conducting layer from the counter electrode layer to the 

electrochromic layer. The EC-window is tinted to a Prussian Blue and can be reversed to a 

clear state by reversing the potential. The window only needs power while changing its tint 

state and remains unchanged until a voltage is applied. In Figure 31 the principle of an EC-

window is shown for the clear and colored state. 
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Figure 31: Diagram of a typical tungsten-oxide electrochromic coating (Lee et al. 2006, p.6) 

The window can be controlled by changing the visibility transmittance (Tv) in a range of 

Tv = 0.6 - 0.01. Consequently, the solar heat gain coefficient (SHGC) changes accordingly 

ranging from SHGC = 0.48 - 0.09. EC-windows are considered to have the potential for real 

time optimization in buildings regarding the total energy-and demand costs, the stress on 

the power grid and occupant comfort due to an undistorted view to the sky. In Figure 32 the 

EC-window is shown installed in an office building in Sacramento. CA (Fernandes et al. 

2018). 

 

 

Figure 32: Each window pane had three sub-zones that could be independently controlled 

(Fernandes et al. 2018, p.14) 
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The three independent subpanels of the glass enable a better glare control. The Subpanels 

can be tinted in four discreet states with the glazing properties for the EC-windows used in 

this study shown in Table 4. 

Table 4: Name and visible transmittance of the four tint levels. (Fernandes et al. 2018, p.15) 

Tint name Visible 

transmittance [%] 

Solar 

transmittance [%] 

SHGC  

[ - ]   

U-value  

[W/m2K] [BTU/ft2F] 

Clear 60 33 0.42 

1.816 0.32 
Light tint 18 7 0.16 

Medium tint 6 2 0.12 

Full tint 1 0.4 0.1 

 

The dependency of Tv to SHGC is shown in Figure 33 as a linear and a quadratic function. 

The SHGC is calculated after taking the action Tv to calculate the solar heat gain. The linear 

function is chosen to calculate SHGC because the quadratic function would slow the 

simulation down and has no further advantage over the linear function. The action taken by 

the agent is continuous and can be any number between 0.6 and 0.01. 

 

 

Figure 33: EC-window properties  

4.5.2 Solar Position and Radiation 

The determination of the solar position and thus the calculation of the incident radiation on 

the window is necessary for the calculation of the room model. The global horizontal 

irradiance (GHI), the diffuse horizontal irradiance (DHI) and the direct normal irradiance 

(DNI) together with the geographical position and the time zone are needed as inputs for the 

calculation. Starting with the calculation of the real location time 𝑡𝑊𝑂𝑍 (equation 29) and the 

hour-angle 𝜔 (equation 30) (Duffie and Beckman 2013). Equation 27 describes the time the 
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earth traveled on the orbit so far this year in degrees and is used in the equation of time 

(equation 28) which describes the variable length of the days in the year. 

𝐵 =
360

365
∗ (𝑁 − 1) (27) 

𝐵 … travelled distance in degree 

𝑁 … day of year 

 

 

𝐸 = 229,2 ∗ (0,000075 + 0,001868 ∗ 𝑐𝑜𝑠 𝐵 − 0,032077 ∗ 𝑠𝑖𝑛 𝐵 − 0,014615

∗ 𝑐𝑜𝑠 2𝐵 − 0,04089 ∗ 𝑠𝑖𝑛 2𝐵) 
 

𝐸 … equation of time 

𝐵 … distance in degree of the earth on the earth orbit 

(28) 

 

The real location time is referenced to the standard meridian of the timezone and the latitude 

of the location. With 𝐸 the elliptic orbit of the earth is also included in the equation 29. 

𝑡𝑊𝑂𝑍 = 𝑡𝐿𝑍 − 𝐷𝑆𝑇 +
𝜙𝐵𝑧 − 𝜙

15
+ 𝐸 ∗

1ℎ

60𝑚𝑖𝑛
 (29) 

𝑡𝑊𝑂𝑍 … real location time 

𝑡𝐿𝑍 …... local time 

𝐷𝑆𝑇 .… daylight saving time  

𝜙𝐵𝑧 …. standard meridian 

𝜙 ….… latitude 

𝐸 ……. equation of time 

 

 

The hour angle is referenced to the real location time and is negative before noon and 

positive in the afternoon. 

𝜔 = (𝑡𝑊𝑂𝑍 − 12) ∗ 15 (30) 

𝜔 …. hour angle 

𝑡𝐿𝑍 ... real local time 

 

 

The orbit of the sun and thus also the position of the sun can be described over several 

angles, some of them are shown in Figure 34 and described further on. 
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Figure 34: (a) Zenith angle, slope, surface azimuth angle and solar azimuth angle for a tilted 

surface. (b) Plan view showing solar azimuth angle (Duffie and Beckman 2013, p.13) 

Another angle, not shown in Figure 34 is the declination of the earth which varies between -

23° and 23° as seen in Figure 35 and can be described with the approximation by Cooper in 

equation 31 (Duffie and Beckman 2013). The declination is the angle between the sun at 

solar noon and a plane on the equator. 

 

Figure 35: Maximum and minimum value of declination angle (Mousavi Maleki et al. 2017, p.2) 

𝛿 = 23,45 ∗ 𝑠𝑖𝑛 (360 ∗
284 + 𝑁

365
) (31) 

𝛿 … declination 

𝑁 … day of year 
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Figure 36: Declination angle in Oakland, CA  

The zenith – angle 𝜃𝑧 shown in Figure 34 is a function of the declination 𝛿, latitude 𝜑 as well 

as, the hour angle 𝜔. 

𝑐𝑜𝑠(𝜃𝑧) = 𝑐𝑜𝑠(𝜙) ∗ 𝑐𝑜𝑠(𝛿) ∗ 𝑐𝑜𝑠 ( 𝜔) + 𝑠𝑖𝑛(𝜙) ∗ 𝑠𝑖𝑛(𝛿) (32) 

𝜃𝑧 … zenith angle 

𝜙 …. latitude 

𝛿 …. declination 

𝜔 .… hour angle 

 

 

The azimuth angle 𝛾𝑠 is related to south and varies between -180° and 180° which represents 

before noon and after noon.  

𝛾𝑆 = 𝑠𝑖𝑔𝑛(𝜔) |𝑎𝑟𝑐𝑐𝑜𝑠 (
cos(𝜃𝑍) ∗ sin(𝜙) − sin (𝛿)

sin(𝜃𝑍) ∗ cos (𝜙)
)| (33) 

𝛾𝑆 … azimuth angle 

𝜃𝑍 … zenith angle 

𝜙 …. latitude 

𝛿 …. declination 

𝜔 .… hour angle 
 

 

With the calculated angles the angle of incidence 𝜃𝐷𝑖 can be calculated according to 

equation34. 

𝑐𝑜𝑠 𝜃𝐷𝑖 = 𝑐𝑜𝑠(𝜃𝑍) ∗ 𝑐𝑜𝑠(𝛽) + 𝑠𝑖𝑛(𝜃𝑍) ∗ 𝑠𝑖𝑛(𝛽) ∗ 𝑐𝑜𝑠 (𝛾𝑠 − 𝛾) (34) 

𝜃𝐷𝑖 … angle of incidence 

𝛾𝑆 … azimuth angle 

𝜃𝑍 … zenith angle 

𝜙 …. latitude 

𝛿 …. declination 

𝜔 .… hour angle 

𝛾 …. surface azimuth angle 

𝛽 …. slope of the surface (window 90 °) 
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The GHI is a product of DHI and the DNI dependent on the zenith angle. 

𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 ∗ 𝑐𝑜𝑠(𝜃𝑍) (35) 

𝐺𝐻𝐼 … global horizontal irradiation 

𝐷𝐻𝐼 … diffuse horizontal irradiation 

𝐷𝑁𝐼 … direct normal irradiation 

𝜃𝑍 …... azimuth angle 

 

 

The product of equation 36 is the DNI on the tilted surface, calculated with the angle of 

incidence. 

𝐷𝑁𝐼𝑇 = 𝐷𝑁𝐼 ∗ 𝑐𝑜𝑠 𝜃𝐷𝑖 (36) 

𝐷𝑁𝐼𝑇 … direct normal irradiation on the surface (window) 

𝐷𝑁𝐼 ….. direct normal irradiation 

𝜃𝐷𝑖 … angle of incidence 

 

 

The total irradiation on the tilted surface, calculated with equation 37 is the sum of the DNI 

on the tilted surface, the DHI depending on the angle of the surface in respect to the sky and 

the GHI depending on the angle of the surface in respect to the ground and the value for 

ground reflection. 

 

𝐼𝑇 = 𝐷𝑁𝐼𝑇 + 𝐷𝐻𝐼 ∗  (
1 + 𝑐𝑜𝑠(𝛽)

2
) + 𝜌𝐵 ∗ 𝐺𝐻𝐼 ∗ (

1 − 𝑐𝑜𝑠(𝛽)

2
) 

𝐼𝑇 …….. total irradiation on the tilted surface 

𝐷𝑁𝐼𝑇 … direct notmal irradiance on the tilted surface 

𝐷𝐻𝐼 … diffuse horizontal irradiation 

𝐺𝐻𝐼 … global horizontal irradiation 

𝛽 …. slope of the surface (window 90 °) 

𝜌𝐵 ……. reflectance of the ground (albedo) 

(37) 

 

Figure 37 summarizes the calculated solar angles and displays the total solar irradiation on 

a window oriented to the south for Oakland, CA with a longitude of -122.22 and latitude 37.72 

for a window with an orientation with 0° off south and the slope with 90° of the window. The 

figure shows the calculated values for January 1st and August 1st with the weather data from 

2019.  
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Figure 37: Solar angles and solar irradiation on tilted surface  

 

4.5.3 Electricity Market in California 

The master thesis focuses on cost savings for electricity demand. Therefore, the tariff 

structure of the electricity market in California for economic criteria are analyzed. The focus 

in this thesis is on the electricity market in Berkeley, Alameda County. This area of California 

is in the electric utility area of Pacific Gas and Electricity (PG&E) (CEC 2020). The electric 

power industry is deregulated since 1992 when the U.S. Congress passed the Energy Policy 

Act and opened the transmission networks to independent energy producers and dissolved 

the natural monopole of electric utilities (State of California 2018). Due to an energy crisis in 

2001 the costumer choice has a limited availability. Customers can enter a lottery system if 

they intend to choose their energy service provider and opt out of from PG&E as the default 

energy provider in the city of Berkeley. 

 

For commercial customers PG&E offers two rate options with time-of-use (TOU) or peak day 

pricing (PG&E 2020b). With the PDP rate plans the customer gets discounted electricity 

rates in the summer in exchange of higher priced peak periods during peak events from 2-6 

p.m., which occur during the summer months on the hottest days of the year. PGE&E 

proposes the TOU rates with “Maximize your savings with time-of-use rates”. Since the 

thesis focuses on reducing the electricity bill the electricity rate is chosen from the TOU plans 

portfolio. The representative electricity rate is the PG&E E-19 tariff with a winter and summer 

period with different time schedules and energy prices (PG&E 2020a). 



 

   54 

Table 5: E-19 definition of time periods, energy- and demand-costs 

SUMMER May 1st  October 31st  Energy 

cost 

[$/kWh] 

Demand 

cost 

[$/kW] 

Peak 12:00 p.m. - 06:00 p.m. workdays 0.16225 19.63 

Partial peak 08:30 a.m. - 12:00 p.m. 

6:00 p.m. to 09:30 p.m. 

weekdays 

weekdays 
0.11734 5.37 

Off-peak 09:30 p.m. - 08:30 a.m. 

24 hours 

weekdays 

weekends and holidays 
0.08846 0.00 

WINTER November 1st   April 30th     

Partial peak 08:30 a.m. - 09:30 p.m. workdays 0.11127 0.18 

Off-peak 09:30 p.m.- 08:30 a.m. 

24 hours 

weekdays 

weekends and holidays 
0.09559 0.00 

     

Base rate All year    17.63 

 

The maximum demand is averaged over 15-minute intervals and is calculated and charged 

monthly. For the demand calculation PG&E uses the maximum demand for each period 

multiplied with the corresponding costs. The base rate is multiplied with the maximum 

demand in the month. The bill for the demand costs of one month in the summer could look 

like Table 6. 

Table 6: Example for the demand cost calculation 

 Demand [kW] Demand cost [$] 

Peak 0.75 14.7225 

Partial peak 1.12 6.0144 

Off-peak 0.64 0.00 

Base rate 1.12 19.7456 

Total demand cost  40.4825 

 

The energy costs are calculated according to the energy consumption every hour 

corresponding to the TOU-tariff. Figure 38 shows the four different cases occurring in a year.  



 

   55 

 

Figure 38: E-19 tariff with time dependent energy- and demand costs (PG&E 2020a) 

4.6 RL-Setup 

The task of the agent is defined as follows: 

 

Ensure the room temperature within the boundaries of 21 – 24 °C while the room is occupied 

and 15,5 – 26,5 °C while the room is empty. The workplace illuminance (WPI) should be at 

least 350 lx for office work. The goal hereby is, to lower the total costs for energy and demand 

while the constraints are met. The agent can control the shading system by setting the 

visibility with a linear dependency to the applied current and the heating – and cooling system 

by controlling the thermal power distributed to the room. 

 

4.6.1 Environment 

In the environment in the RL-setup the thermal model and the reward function are defined 

and calculated. The environment for the development of the agent is a simplified resistance 

and capacitance (RC) model. 

 

Room- Model  

The equation for the RC-model is given with equation 38 and considers the outside air 

temperature, the room temperature of the previous timestep and the current room 
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temperature. The solar heat gain on the tilted surface 𝐼𝑇 is calculated with equation 37 as 

described in chapter 4.5.2. 

 

Q =
(𝑇𝑟(𝑡) − 𝑇𝑎𝑚𝑏)

𝑅𝑟
+ 𝐶𝑟 ∗ (𝑇𝑟(𝑡) −  𝑇𝑟(𝑡−1)) +   𝐼𝑇 ∗ 𝑆𝐻𝐺𝐶 −  𝑄𝑖𝑛𝑡 

(38) 

Q ………. heating- or cooling energy (action of agent) 

𝐼𝑇 .…..… solar irradiation on the window glazing 

𝑆𝐻𝐺𝐶 .… solar heat gain coefficient 

𝑄𝑖𝑛𝑡 …… internal loads (people, power consumers, artificial lights) 

𝑇𝑟(𝑡) …... current room temperature 

𝑇𝑟(𝑡−1) … room temperature of last timestep 

𝑇𝑎𝑚𝑏 ….. outside air temperature 

𝐶𝑟 ……... capacitance of the room 

𝑅𝑟 ….….. thermal resistance of the room  

 

 

For the second task of the agent to ensure the WPI the illuminance in the room has to be 

calculated. A detailed calculation of the WPI using raytracing is a computer intensive work. 

In this thesis the goal is to develop an agent and a raytracing calculation exceeds the scope. 

The Building Research Establishment on behalf of the Department for Communities and 

Local Government of the United Kingdom developed an analyzing tool for the energy 

consumption of buildings (BRE 2015). Building Research Establishment calculates the 

average daylight factor with total window area and the area of all surfaces in the room 

(equation 39). 

 

DF = 45 ∗
𝐴𝑤 ∗ 𝑇𝑣

0.76 ∗  𝐴𝑠𝑢𝑟𝑓
 (39) 

DF …… average daylight factor 

𝐴𝑤 .…… window area 

𝐴𝑠𝑢𝑟𝑓 … area of all room surfaces (ceiling, floor, walls and windows) 

𝑇𝑣 .……. visibility (action of the agent) 

 

 

The daylight factor per definition is the ratio between global horizontal illuminance and the 

average illuminance in the room. Therefore, by calculating the daylight factor with equation 

39 the available illuminance in the room is calculated by multiplying the global horizontal 

illuminance with the daylight factor. 

 

The internal loads are the sum of artificial light, power consumers and the people in the 

room. The artificial light ensures the minimum level of WPI, therefore the only signal the 

agent gets for the tint status is the energy consumption of the artificial light. The power 

consumers per workplace are assumed to be 10.78 W/m2 with 10 % of standby energy 



 

   57 

consumption (Deru et al. 2011). The thermal internal load per workplace, equivalent to one 

person is 100 W The time schedule for the power consumers and people’s presence on 

weekdays is 07:00 am to 06:00 pm and no occupancy on the weekends is assumed. 

 

Reward 

The reward (equation 40) is calculated with the total costs for energy and demand for all 

energy consumers as the optimization goal. Furthermore, a penalty for exceeding the room 

temperature boundaries and a penalty for tinting the EC-window with no solar radiation are 

included in the calculation. The demand is charged monthly, therefore the costs per month 

are scaled to represent the ratio between one hour of energy costs and the monthly demand 

costs. The penalty for the room temperature is limited to a maximum value of two to prevent 

the reward deviate too much from the optimal policy especially at the beginning of the training 

process. The tint penalty is one when the visibility is set to a lower level than 99 % of the 

maximum visibility level which means no tinting. 

 

𝑟 = −
|𝐸𝑐𝑜𝑠𝑡|

𝑚𝑎𝑥𝐸𝑐𝑜𝑠𝑡
−

|𝐷𝑐𝑜𝑠𝑡|

𝑚𝑎𝑥𝐷𝑐𝑜𝑠𝑡
∗ 𝑠𝑐𝑎𝑙𝑒𝐷 − 𝑚𝑎𝑥 (|𝑇𝑟(𝑡) − 𝑇𝑐𝑜𝑛𝑠𝑡|, 2) − 𝑝𝑡𝑖𝑛𝑡 (40) 

𝑟 ……..…… reward 

𝐸𝑐𝑜𝑠𝑡 ……… energy costs 

𝐸max _𝑐𝑜𝑠𝑡 … maximum energy costs 

𝐷𝑐𝑜𝑠𝑡 ……… demand costs 

𝐷max _𝑐𝑜𝑠𝑡 … maximum demand costs  

𝑠𝑐𝑎𝑙𝑒𝐷 ……. scale factor for the demand costs 

𝑇𝑟(𝑡) …….... current room temperature 

𝑇𝑐𝑜𝑛𝑠𝑡 …..… temperature boundary (min, max) 

𝑝𝑡𝑖𝑛𝑡 …….... penalty for tinting the window 

 

 

4.6.2 Development 

The development of the agent includes the selection of the algorithm, the network 

architecture with its input values and the replay buffer to improve the agent. The action space 

for the energy input 𝑄 is set with a maximum specific heat- and cooling power of 100 W/m2 

and the visibility 𝑇𝑣 with the properties shown in 4.5.1 with action boundaries of 0.01 to 0.6. 

The observation of the agent contains the state of the room and a forecast including the 

outside air temperature, solar radiation, costs of energy and the occupancy of the room.  

 

The training process of the agent runs within episodes with a length of one day and a total 

of 3,000 episodes. For each episode, the start day is selected randomly from the weather 

dataset and a random start state (room temperature) is selected within the temperature 

boundaries. The agent is trained with the weather data set of Oakland Intl AP 724930, 

distributed by EnergyPlus (EnergyPlus 2019). 
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The basic setup of the agent is based on the experimental setup of the DDPG with a multi-

layer perceptron network with 2 hidden layers with a layer size of 400 and 300 respectively 

(Lillicrap et al. 2019). The structure of both NNs is the same, with the difference that the 

action is added to the critic network after the first hidden layer. The activation function for the 

hidden layers is the relu function and for the output layer of the critic a linear function is 

applied. For the actor, the activation function for the output of 𝑄 is tanh with values between 

-1 and 1 and the output for 𝑇𝑣 with a relu function with a maximum value of 1 is utilized. The 

learning rate was chosen to be 10-4 for the actor and 10-3 regarding the critic to ensure, that 

the critic converges faster than the actor. The soft update for the target networks is set to 

0.001. 

 

Furthermore, the magnitude of the input values is a critical parameter for the NN. This in 

regards, all input values are normalized between -1 and 1. 

 

 

Figure 39: NN architecture; critic left and actor on the right with the shape of the input vectors 

The default action noise in the DDPG algorithm is the Ornstein-Uhlenbeck process, which is 

initialized for both actions with a different scale, due to the varying action spaces with 0.15 

for 𝑄 and 0.1 for 𝑇𝑣. 64 samples for each training step are selected randomly from the replay 

buffer. 

 

The following figures represent the agent after the training process for one test week starting 

from August 1st or January 1st. The figures are structured as follows: 

• The weather data is represented in the first graph including: 

o The solar radiation with (GHI, DHI, DNI) 

o The outside air temperature (T-out) on the right y-axis 
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• The second graph shows the themal power of the HVAC system whether its heating 

or cooling. 

• The third graph is the tint state of the EC-window  

• The fourth graph shows the room temperature and the temperature boundaries with 

the setpoints for the time the room is occupied and not. 

 

In the first training run the agent is limited to one action with a fixed 𝑇𝑣 to 0.6 to proof if they 

can succeed. After the training run the agent with the basic settings of the DDPG algorithm 

is able to maintain the room temperature most of the time but has problems in the morning 

hours when the minimal room temperature increases from 15.5 °C to 21 °C (Figure 40). 

 

 

 

Figure 40: First training result of a week starting on August 1st with HVAC control and a fixed Tint 

state  

Moving on with the development the agent must control both possible actions. With the same 

setup as before the agent does not succeed in its task (Figure 41). The agent is not eager 

to heat the building, even though the temperature constraints are not met and only does that 

on the weekends. 
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Figure 41: Training result of a week starting on August 1st with HVAC and Tint state control 

Investigating the reason, why the agent failed, the loss as an accuracy measurement of the 

critic was analyzed. Figure 42 indicates that the critic loss increases over time but stabilizes 

at the end of the run. 

 

 

Figure 42: Critic loss of a week starting on August 1st with HVAC and Tint state control  

To get a more accurate critic which is leading to a more successful agent, the NN architecture 

of Fujimoto et. al. proposed in the TD3 algorithm in 2018 is implemented with the critic 

architecture including the action in the same layer as the state-and forecast input (Figure 43) 

while the rest of the network remains unchanged (Fujimoto et al. 2018). 
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Figure 43: New critic network based on the TD3 algorithm with the shape of the input vectors 

After another training run with the new critic network, the critic loss is lower (Figure 44), which 

indicates that the critic is more accurate and stabilizes after 3,800 training steps. 

 

 

Figure 44: Comparison of critic loss between DDPG critic and TD3 critic architecture  

The agent is successful, regarding the temperature constraints by controlling the energy 

input but fails to control the tint state Figure 45. Following the reward function, the agent 

should select the brightest tint state during the night to avoid getting penalized for tinting the 

window. The agent does not find the correct way to handle the reward function. The behavior 

of the agent, regarding the HVAC system is not energy saving by any means. The agent 

heats the room starting in the night until the room temperature gets close to the upper 

boundary and then starts cooling the building Figure 45. The positive thing out of this analysis 

is, that the agent recognizes the constraints. 
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Figure 45: Training result with the new critic of a week starting on August 1st with HVAC and Tint 

state control 

A reason for this behavior may be the lack of forecast data. With forecast data, the agent 

should be able to change its behavior based on future data. The training process should 

guide the agent, which timestep is the most important to learn a control strategy that 

optimizes the energy costs and keep the room temperature within the boundaries. Due to 

the low capacitance of the room the long-term dependency is low and thus, leads to the 

decision of four hours of forecast. The network architecture remains the same, but the 

forecast input now has 16 values for the four-hour forecast (Figure 46). 
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Figure 46: NN setup with 4 forecast hours with the shape of the input vectors with the critic on the 

left and actor on the right 

The critic loss, of the first training run with multiple hours of forecast is lower, than with only 

current values of the forecast inputs. 

 

 

Figure 47: Comparison of critic loss between 1h and 4h forecast 

It is not clear why the agent fails in the control task since the loss of the four hour forecast is 

lower (Figure 47). The agent failed to maintain the room temperature before noon but 

performs better in terms of penalty and the taken actions do not fluctuate as much as with 

one hour of forecast, as can be seen in Figure 48. 
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Figure 48: Training run with four forecast hours of a week starting on August 1st with HVAC and Tint 

state control 

The solution in this case is not obvious, therefore a gridsearch is performed, where the 

network configuration in terms of neurons per layer and number of hidden layers is tested in 

all possible combinations of one or two hidden layers and a layer size of 300 to 600 neurons 

with a step size of 100.The best results of the gridsearch in Table 7 compared with the 

reference of the best run so far, show that the critic with two hidden layers tends to be more 

accurate and the penalty for the test run with a larger first layer than the second layer is 

lower. 

Table 7: Gridsearch results of best NN configurations 

jobID hidden 

layer 

layer size 1 layer size 2 critic loss test 

Aug 1st  

test 

Jan 1st  

Ref 1 400 300 0.026 54.15 164.58 

30 2 500 300 0.101 32.81 71.78 

07 1 600 400 0.491 35.19 102.41 

27 2 400 300 0.245 35.42 81.78 

06 1 600 300 0.232 37.83 141.14 

25 1 600 400 0.277 39.42 110.48 
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The results of the gridsearch in Figure 49 indicate, that long term dependencies were not 

taken into account by the agent and thus, tend to react too slow on changes of outside air 

temperatures. Herein, all agents manage to keep the room temperature within the 

boundaries with a similar behavior. The best EC-window control was achieved by the agent 

with jobID 07 which keeps a brighter tint state of the window from August 3rd to August 4th to 

keep the room temperature higher compared to the other agents. 

 

 

 

Figure 49: Comparison of best gridsearch results of a week starting on August 1st with HVAC and 

Tint state control 

The results of the performance in terms of the costs, penalty and the maximum peak load, 

of the best results of the gridsearch, are summarized in Figure 50. The agent with jobID 07 

has the lowest peak load with 1.41 kW with a small difference to the other two runs which 

have a peak load of 1.54 kW and 1.58 kW. Based on these performances and general policy 

of the agent during the test week, the next improvement step is conducted with all three 

agents. 

 



 

   66 

 

Figure 50: Performance measure of the best gridsearch results 

As already described the four-hour forecast does not lead the agent to a successful strategy 

and increasing the forecast to eight hours does not contribute to an improvement either. A 

possible way to overcome the issue of a too short dependence, is to use the N-step reward 

for calculating the action-values with the critic. A variation of the DDPG algorithm was 

proposed in 2018 called the Distributed Distributional Deterministic Policy Gradient which 

outperforms the DDPG algorithm (Barth-Maron et al. 2018). The use of the N-step reward 

had the greatest influence on their performance and was most successful with a length of 5 

steps. The N-step reward is the sum of discounted rewards of a fixed length and is calculated 

with equation 41. 

 

𝑌𝑡 =  (∑ 𝛾𝑛
𝑁−1

𝑛=0
𝑟𝑡+𝑛) + 𝛾𝑁 ∗ 𝑄′(𝑜𝑁+1, 𝜇′(𝑜𝑁+1|𝜃𝜇′

)|𝜃𝑄′
) (41) 

 

𝑌𝑡 ….… action-value as target 

𝑁 ….… length of N-step reward 

𝑛 …….. step in N-step reward 

𝛾𝑛 …… discount factor 

𝑜𝑁+1 … observation of timestep t+1 (state and forecast values) 

𝑟𝑡+𝑛 …. reward of timestep t 

𝑄′ ….... target critic 

𝜃𝑄′
 ….. parameters of target critic 

𝜇′ ....… target actor 

𝜃𝜇′
 .…. parameters of target actor 

 

 

The calculation of a three N-step reward looks like following example with the transition from 

the start step with time t to the time step t+2 as the last step.  

𝑌𝑡 =  𝑟𝑡 +  𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 
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The trajectories with the N-step reward are stored with the observation of the current 

timestep (𝑠𝑡 , 𝑓𝑡) with the timestep after the N-step reward (𝑠𝑡+𝑁+1, 𝑓𝑡+𝑁+1) as 

(𝑠𝑡 , 𝑓𝑡, 𝑎𝑡 , 𝑠𝑡+𝑁+1, 𝑓𝑡+𝑁+1, 𝑌𝑡). The trajectories are stored for every timestep, to gather as many 

trajectories as possible for the training process and not have any gaps in the stored data.  

 

The gridsearch for the best fitting N-step reward will be run with a possible N-steps of 2, 3, 

4, 5. The best results indicate, that the optimal length of the N-step for this problem is four 

steps of the run jobID 27, by taking both, the test week starting on August 1st and the week 

starting on January 1st into account. However, the critic loss for the run is higher, than of the 

run with 2 N-steps because a longer N-step reward makes it hard for the critic to estimate 

the action-value. The critic has no further information, of the next states and which actions 

are taken to reach the current state. 

Table 8: Gridsearch results of best N-step reward 

jobID hidden 

layer 

layer size 

1 

layer 

size 2 

N-step critic loss test 

Aug 1st  

test 

Jan 1st  

Ref 2 500 300 1 0.101 32.81 71.78 

30_2 2 500 300 2 0.108 33.15 106.79 

27_4 2 400 300 4 0.431 39.04 86.60 

07_2 1 600 400 2 0.283 41.92 129.78 

 

With the N-step reward system, the agent uses the forecast data to his advantage and 

precools or preheats the room displayed in Figure 51. The maximum peak demand can be 

lowered by all agents compared to the 1 step reward used in the basic DDPG algorithm. The 

agent with jobID 07_2 has promising behavior for tinting the EC-window and the oscillation 

of the thermal HVAC power on the weekend is the lowest but fails to keep the room 

temperature in the boundaries. This agent reacts always a bit slower than the two others. A 

non-optimal behavior, regarding the tinting of the EC-window is seen by the agent with jobID 

30_2. This agent tints the window on the weekend what leads to lower room temperatures 

and a higher demand to heat up the building. The N-step length of 4 of the agent with jobID 

27_4 leads to a farsighted behavior and a similar good tinting behavior as the agent with 

jobID 07_2.  
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Figure 51: Comparison of gridsearch results for different N-step rewards starting on August 1st 

The performance measures are compared in Figure 52 and show that the agent with 

jobID 27_4 with a N-step length of four has the highest cost saving potential and has the 

lowest impact on the power grid. 

 

 

Figure 52: Performance measure of the best gridsearch results for different N-step rewards 

The improvement introduced in chapter 4.1 with the replay buffer, noise process and the 

activation function of the hidden layers are applied in the final run with the agent with jobID 27 

as the most promising. Following options are possible for the improvements: 
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• Activation function 

o Rectified Linear Unit – relu 

o Leaky Rectified Linear Unit – lrelu 

• Replay Buffer 

o Uniform  

o Prioritized Experience Replay – PER 

o High-Value Prioritized Experience Replay – HVPER 

• Noise process 

o Ornstein Uhlenbeck noise – OU  

o Gaussian noise – Gauss  

o Parameter noise – Param  

 

The network architecture and size of the hidden layers from Figure 46 with a N-step length 

of 4 proves itself by keeping the room temperature within the boundaries with the best 

combinations of improvements shown in Table 9. Both versions of an improved replay buffer 

with priority sampling led to increased accuracy of the critic network. However, this does not 

automatically lead to a better performing actor. The new configurations are not as good in 

the test week starting in August as the best agent so far but perform better in the winter. The 

prioritized replay buffer led to an agent that is more generic, meaning it works not only in 

cooling mode, but also in heating mode. The combinations with the relu activation functions 

perform better, as also shown by Ding et al. (Ding et al. 2018). The noise process does not 

show any differences in performance, but as Barth-Maron also stated is, that the complexity 

of the Ornstein-Uhlenbeck noise is not benefiting the training compared to the simpler 

Gaussian noise. 3,000 episodes with a length of 24 steps/hours are not enough to train an 

agent to its optimum. The agent with jobID 07 is the most generic when comparing both the 

summer and winter performance.  

Table 9: Gridsearch results of the best improvements to the agent 

jobID activation 

function 

replay 

buffer 

noise 

process 

critic loss test 

Aug 1st  

test 

Jan 1st  

Ref relu Uniform OU 0.431 39.04 86.60 

07 relu HVPER Gauss 0.047 42.60 78.16 

03 relu PER OU 0.022 54.91 80.91 

06 relu HVPER OU 0.015 54.91 83.66 

 

The timeseries comparison of the agents in Figure 53 show the similar behavior for the 

HVAC system. Especially jobID 07 and 03 show the similar peak demand whereas, the agent 

with jobID 06 cools with a higher power in the afternoon, which is not so relevant for the total 

reward and the the demand costs since the COP for cooling is 3.5, which is visible in the 

lower graph in Figure 53. In this lower graph the sum of all electric power consumers is 
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displayed and shows that the agent with jobID 07 saves the most energy especially visible 

on the weekend on August 3rd and August 4th. Clearly better is the tint behavior of the agent 

with jobID 07 with almost no tint on the weekend, whereas the other agents behave almost 

the same as on weekdays. The tint behavior is even better without the recent improvements 

for agent 03 and 06.  

 

 

 

Figure 53: Comparison of gridsearch results for the improvements starting on August 1st  

.The performance measures in Figure 54 declare the agent with jobID 07 as the best agent 

regarding the total costs and penalty. The peak load is 3.8 % higher as of the agent with 

jobID 06 and 29.1 % lower as the peak load of the agent with jobID 03.  
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Figure 54: Performance measure of the best gridsearch results for the improvements 

With the N-step reward, introduced for the multi-layer perceptron network long term 

dependencies are taken into account but the agent misses knowledge of the steps taken 

after the initial step. Only the initial observation and action and the final observation are 

stored in the replay buffer. An algorithm developed for time series dependent problems 

published by Google DeepMind is the Recurrent Deterministic Policy Gradient (RDPG)with 

a LSTM network for both the actor and the critic (Heess et al. 2015). For this algorithm, the 

entire history of steps as (𝑜1, 𝑎1, 𝑜2, 𝑎2, … 𝑎𝑡−1,𝑜𝑡) is used for selecting actions with the 

deterministic policy 𝜇. The critic network therefore is initialized as 𝑄(ℎ, 𝑎|𝜃𝑄) and the actor 

as 𝜇(ℎ|𝜃𝜇). Same as in the DDPG algorithm noise is added to the selected actions to explore 

the continuous action space. The value function introduced in chapter 4.1 DDPG stays 

unchanged and is calculated for every step.  

 

The NN architecture is based on the experimental setup of Song et al. published in 2019. In 

their paper, the inputs for the NNs were based on a pixels and numerical inputs. Since that 

is not the case for this thesis, the layers dedicated to the pictures are not used. The adapted 

architecture is shown in Figure 55 with the critic and actor network. The inputs for the critic 

are the observation-and action history and for the actor only the observation history is 

passed. The forecast in the observation is passed with the current values. 
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Figure 55: NN setup for the RDPG with the shape of the input vectors vectors with the critic on the 

left and actor on the right 

With the described setup and the beforehand selected improvements for the activation 

function, the replay buffer and the noise process, the agent with the RDPG algorithm is 

successful in keeping the room temperature between the boundaries. The taken actions for 

the EC-windows, however, are not beneficial for cost saving. The lack of forecast information 

also leads to high peak loads for heating and cooling. 
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Figure 56: Training run with the LSTM network of a week starting on August 1st  

The same approach as with the DDPG algorithm of four forecast hours as inputs does not 

lead to any improvements but leads to a failure of the agent.  

 

Therefore, the latest DDPG agent is the best performing agent and is compared with the PI-

controller and the MPC in Figure 57. The agent has not the same foresight, as the MPC but 

can decrease the maximum peak compared to the PI-controller. During the high-priced 

period, the agent reduces the load to save operation costs. The agent, as it is clearly visible 

is fluctuating around zero between heating and cooling on the weekend where it is not 

necessary according to the MPC. The control of the EC-window is close to the MPC, which 

could be seen as the perfect behavior. The fifth chart shows the WPI where it is visible, that 

the MPC, as well as the agent control the EC-window to minimize the energy consumption 

for lighting. The artificial light would brighten the room to exactly 350 lx.  
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Figure 57: Results of the final RL agent compared to the PI controller and MPC of a week starting 

on August 1st 

The MPC as a perfect information model precools or preheats the room, which leads to a 

43.04 % lower peak load (Figure 58) compared to the agent with jobID 07. The PI controller 

has peak loads of 1,57 kW which is 98.7 % higher than the peak load of the agent. The MPC 

has a total energy consumption of 28.65 kWh which led to costs for demand and energy of 

17.49 $. With the PI controller the required room conditions need 22.28 kWh but, because 

of the higher peak load the demand and energy cost 38.04 $. The agent controls the HVAC 

system and EC-window in a way, that it consumes 32.14 kWh, which costs 26.55 $ in total. 
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Figure 58: Performance measure compared between PI-controller, MPC and best agent 
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5 Discussion and Outlook 

The aim of this thesis was the implementation of a machine learning agent which strives to 

minimize the total operation costs of a room, while ensuring the comfort parameters for the 

occupants. One of the main tasks was the question which Reinforcement Learning (RL) 

methodology would be best suited for the control of building technology to further reduce 

total energy costs compared to state-of-the-art controllers and MPC controllers. 

 

The agent, in this thesis was developed for the heating and cooling control of an office 

building, as well as its shading system with input values for the weather-forecast, occupancy 

and TOU-tariff. The latter is the most crucial factor for a cost-effective control system. The 

TOU-tariff as a main input value for the agent enables the power grid operator to actively 

manage the energy load of the building by changing energy costs for a short period of time. 

To keep the operation costs low the agent/controller must react to the changes. This 

possibility for the power grid operator will help to increase the share of renewable energy 

systems, without the necessity to reinforce the power grid. The advantage of the agent for 

building owners are the significantly lower total operation costs compared to state-of-the-art 

PI-controller. The main reason is the agent minimizing the maximum peak load and energy 

consumption during high priced periods with the agent learning a control strategy to keep 

costs low. With a controller that takes the total energy costs into account, including for the 

HVAC-system, as well as for the artificial light and all equipment, the illuminance level of the 

room remains unknown to the agent and is not required for training or operating. Compared 

to the MPC, the agent is not as farsighted and has a higher defined peak demand. However, 

the peak is building up over several timesteps which makes it easier for the power grid 

operator to predict upcoming peak demands. Whereas the MPC has a stable power level, 

for heating or cooling, with a sharp increase of power. The agent is not able to outperform 

the MPC in terms of operation costs but manages to control the temperature with the HVAC 

system and the EC-window with a similar behavior and performance as the MPC.  

 

The agent’s actions taken are never zero, but rather oscillate on the weekend where the 

room temperature would stay within the set boundaries even if no actions were taken by the 

agent. A solution for this problem could be a hierarchical agent setup. An agent would for 

example set the goal for the room temperature and the illuminance level and the underlying 

agent would try to take actions to reach these goals while an additional threshold would 

prevent the agent from performing unnecessary actions. Another important incident to 

consider is the change of the tariff or the tariff structure by the electricity utilities. It is 

important to recalibrate the normalization of the TOU tariff for the NN input to ensure a 

successful behavior with the new tariff.  

 

The agent could be trained as a generalized agent for multiple weather zones and RC 

models prior to deploying it to a real building. Therefore, the performance in the real building 
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would be acceptable and the chance for training a really good performing agent is higher, 

due to the lower risk of a biased agent. Therefore, the training time in different buildings 

could be decreased. Feedback loops for occupants could be integrated in the reward 

function which would lead to an agent, that fits the occupants comfort expectations. This 

thesis shows the high potential of machine learning in building controls for multiple actions 

and constraints.  
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