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Abstract: The KKLT scenario is the most investigated construction of de Sitter vacua
from string theory that is presently known and is based on type IIB string theory. In
this work we outline how this set up can be extended to type IIA theory and how there
the anti-D6 brane takes the role of the uplifting contribution. We further show that
this contribution can be best described by the use of constrained multiplets that realize
non-linear supergravity. This starting point sparked an investigation in both type IIA
and IIB set ups and led to the so called mass production process of de Sitter vacua, a
predictive formalism that allows to build de Sitter vacua by starting from Minkowski
solutions without the need of particular fine tuning.
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1 Indroduction

This work is a report based on three scientific papers that were written during a stay

at SLAC/SITP funded by a generous scholarship of the Austrian Marshall Plan Foun-

dation. The papers are, in order of appearance:

1. Uplifting Anti-D6-brane [1]

2. Mass Production of IIA and IIB dS Vacua [2]

3. de Sitter Minima from M theory and String theory [3]

The author expresses his sincere gratitude towards the Austrian Marshall Plan Foun-

dation for making his stay at SLAC/SITP and, by extension, these works possible.

Building de Sitter vacua is one of the most important applications of string theory and,

by extension, its low energy limit supergravity. Due to the accelerated expansion of

the universe, caused by what we call dark energy, it is known that the universe cannot

be a simple flat Minkowski space. The best way to describe the large scale spacetime

structure of the universe is by a de Sitter space. In terms of string theory such a space

can be built by having one (or possibly multiple) scalars in the theory that are stabilized

but the minimum of their potential is not at zero. The difference of zero to the the

minimum of the potential then has to match the non-zero cosmological constant that

we observe in our universe today.

Constructing de Sitter spaces in theories that come from string theory is not an easy

task. In fact most constructions do not work out at all. The problem that usually

appears are tachyons. These negative mass particles cause instabilities and prohibit a

stable solution. Even in theories that do have a completely stable vacuum state there

are typically remaining problems that need to be solved. Often the relation of the ten

dimensional theory to the compactified effective four dimensional one is not quite clear

or additional requirements from string theory are hard to satisfy.

Keeping all of this in mind the best understood and investigated working construction is

the so called KKLT (Kachru-Kallosh-Linde-Trivedi) scenario [4]. This set up works by

including non-perturbative corrections and extended objects in string theory in order

to first stabilize all scalar particles in the theory at an anti-de Sitter minimum and then

lifting this minimum to de Sitter. The KKLT scenario is built in what is called type

IIB string theory. Interestingly it has not been possible thus far to achieve a similar
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set up in the closely related type IIA string theory. On of the topics of this report

will show how this can be achieved. Here the formalism of non-linear supergravity is

important in order to describe general Dp-branes in terms of constrained superfields in

the language of the effective low energy theory in four dimensions.

An other interesting question regards the predictive power of the KKLT scenario. A

priori there is no reason that an uplift has to lead back to a stable minimum and even

getting a stable minimum in anti-de Sitter is non trivial. Only in Minkowski space there

is a way to show that tachyons are absent. Using this fact we were able to introduce

what we call the mass production procedure. Starting from a stable Minkowski solution

a simple 3 step process guarantees stable de Sitter solutions that do not rely on fine

tuning the parameters.

In all of the above models the inclusion of non-perturbative terms is essential. Without

them we were unable to find concrete solutions that give rise to stable de Sitter vacua.

An investigation of models that include all tree level terms that are present in M-theory,

the generalization of string theory that should include all string theories, allowed us to

drastically reduce the amount of non-pertubative terms required and in one case even

build a stable minimum without any non-perturbative corrections.

This report is structured as follows: In section 2 some general facts about the KKLT

scenario and uplifts in general are presented. Of particular interest is non-linear su-

pergravity as it allows the description of the uplifting branes in terms of constrained

multiplets in the effective four dimensional supergravity. In section 3 the uplifting pro-

cedure in type IIA theory is introduced. We describe how an anti-D6 brane, described

by constrained multiplest, take the role of the anti-D3 branes of the usual KKLT model

and not only outline in detail how this procedure works but also give an explicit exam-

ple. In section 4 we introduce the mass production procedure and show how, if we start

from a Minkowski minimum, a stable de Sitter vacuum is guaranteed. Examples of this

procedure, based on the Kallosh-Linde superpotential, are presented in section 5. In

the penultimate section 6 we show how it is not necessary to include the Kallosh-Linde

double exponential by including tree-level contributions and that in a certain set up it

is possible to build a models without non-pertubative terms at all. Finally, section 7

contains the summary and conclusion.
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2 Overview and Description of anti-Dp-brane Uplifts

In this first section we give an overview about the KKLT model of de Sitter building on

which the rest of this work is based. Furthermore we show how the uplifting branes used

can be described using non-linear supergravity, in particular constrained superfields. At

the end of the present section we also make the connection to the observable universe in

order to properly motivate the need of solid de Sitter constructions from string theory.

2.1 The KKLT Scenario

The KKLT scenario [4] is a well know mechanism to obtain dS vacua in a low energy

supergravity limit of type IIB string theory compactified on some Calabi-Yau manifold.

A lot of research has been conducted about this type of set up, see for some examples

[5–14], and some criticism was raised, starting with [15], much of which is summarized

in the review [16]. However, the fact remains that it is one of the best understood

models to construct dS vacua that is known today.

On a basic level the KKLT construction works in the following way:

First one starts with a warped compactification from 10 to 4 dimensions, including

non-trivial NS and RR three-from fluxes. This allows to stabilize the axio-dilaton and

the complex structure moduli at a high scale.

In the second step one introduces non-perturbative corrections for the Kähler modulus.

This leads to a stable AdS vacuum, see figure 1. The superpotential for this theory

reads

W = W0 + AeiaT , (2.1)

where W0 comes from the flux superpotential, fixing the axio-dilaton and complex

structure moduli, and the exponential term is the non-perturbative correction, stabi-

lizing the Kähler modulus.

Lastly, in order to obtain a dS vacuum, an uplift by anti-D3-branes, located at the

tip of a warped throat, is introduced, which will lift the minimum with negative vac-

uum energy to de Sitter by introducing a positive energy contribution into the scalar

potential [17].

2.2 Non-linear Supergravity

In [18] it was shown how the contribution from the uplifting anti-D3-brane can be

written consistently in 4 dimensional supergravity. This requires the use of so called
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Figure 1. A basic example of a scalar potential in the KKLT scenario. The lower, blue line
shows the AdS vacuum and the upper, black line the resulting de Sitter vacuum after the
uplift.

nilpotent superfields and non-linear supersymmetry. Due to its importance we give a

short description of these fields here.

A superfield X has the expansion in terms of superspace given by

X = φ+
√

2θψ + θ2F , (2.2)

where θ are the (anti-commuting) superspace coordinates, φ is a scalar field, ψ is a

fermion and F is an auxiliary field, introduced such that the super-algebra closes off-

shell. A good introduction into the topic of supergravity and superspace can be found

in the book [19]. This expansion is exact due to the anti-commuting nature of the

superspace directions θ1 and θ2 and the component fields φ, ψ and F can depend on

the coordinates of normal space, say x. A nilpotent superfield of this type satisfies

X2 = 0, (2.3)

which leads to the restriction that the other component fields are given in term of the

fermion:

X =
ψ2

2F
+
√

2θψ + θ2F . (2.4)

Note that the auxiliary field is not an independent degree of freedom as it is not

physical at all. It also interesting that, while this breaks supersymmetry, there is still

some relation between the fields remaining. This is called non-linear supersymmetry.

We will illustrate this in the example of the Volkov-Akulov action [20] which is given
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as:

SV A = −
∫
E0 ∧ E1 ∧ E2 ∧ E3 where Eµ = dxµ + ψ̄γµdψ . (2.5)

This action is invariant under a non-linear transformation of the fermion ψ given as:

δελ = ε+
(
ψ̄γµε

)
∂µψ . (2.6)

In [21, 22] it was noted that the Volkov-Akulov model is equivalent to

SV A =

∫
d4x

∫
d2θ

∫
d2θ̄XX̄ +M2

(∫
d2θX + h.c.

)
, (2.7)

And the fermion in X exhibits the same non-linear behaviour that was outlined above.

For this work this is relevant because in [18, 23] it was shown that the action of an

anti-D3-brane can be written as

SV A = −2

∫
Ẽ0 ∧ Ẽ1 ∧ Ẽ2 ∧ Ẽ3 where Ẽµ = dxµ +

3∑
α=1

ψ̄αγµdψα . (2.8)

Furthermore in [24] the complete action of an anti-D3-brane at the bottom of a warped

throat in a KKLT background was derived and non-linear supergravity was a key

component of this description.

The in cooperation of the anti-D3-brane into the superpotential W and Kähler potential

K, using non-linear supergravity, will be discussed in the the next section.

2.3 General Uplifts

Anti-D3-branes are not exclusive in their ability to uplift a scalar potential from AdS

to dS. In [18] the 4d supergravity description for all viable anti-D-branes was given and

it was proposed that it should be possible to use any of these branes in order to achieve

an uplift. For type IIB theory it is possible to consider anti-D9-, anti-D7-, anti-D5

and anti-D3-branes. This is because these branes have to wrap around supersymmetric

(p − 3)-cycles on the compactification manifold. As it turns out in IIB theory there

are 0-, 2-, 4- and 6-cycles and thus the above mentioned branes are possible. In type

IIA theory on SU(3) structure manifolds, the most commonly studied compactification

manifolds for type IIA, however, there are only 3-cycles. Thus only anti-D6-branes are

able to give a positive contribution to the scalar potential and hence lift the minimum

from AdS to dS.
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For the KKLT scenario these anti-branes can be described by inclusion of a nilpotent

field X into the Kähler- and superpotential:

K = −3log
(
−i(T − T̄ )

)
+XX̄

W = W0 + AeiaT + µ2X
(2.9)

where µ2 gives the hight of the uplift and depends on the type of anti-brane that is

used. An important thing to remember is that the nilpotent field X has to be set to 0

at the end of all calculations.

In general, the scalar potential in a supergravity that is given by the Kähler potential

K and superpotential W is

V = eK
(
DIWKIJDJW + 3|W |2

)
, (2.10)

where I and J run over all moduli in the theory and DIW is the Kähler-covariant

derivative DIW = ∂IW +W∂IK.

The effective contribution of anti-Dp-branes to the scalar potential of the KKLT sce-

nario is:

V up = +
µ4

(T + T̄ )3
. (2.11)

The fact that the uplift will always have a form similar to this one simplifies calculations

greatly. Once the relation to the description using nilpotent multiplets is shown one

does not need to consider them during each step of the investigation but rather can

add the effective uplift term after the (supersymmetric) AdS minimum was found.

How this translates in detail to other models will be discussed in the corresponding

section 4.4.

2.4 The expanding Universe and dark Energy

Since the observations in [25, 26] it is an established fact that our universe is expanding

at an accelerated rate. This expansion is described by the inclusion of the cosmological

constant Λ ∼= 10−121 in the Einstein equations. The best way to accommodate this

result is by considering the spacetime of our universe to be of the de Sitter type.

This geometry intrinsically has the property that its volume grows with time. In the

language of particle physics the source of this expansion is attributed to dark energy.

It can be described by a scalar particle that sits at the minimum of its potential,

however, the value of the potential at the minimum is not zero but rather some value
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〈V 〉, corresponding to the behaviour of the expansion. In order to match this language

with the gravity side of things we have to match the value of the minimum with the

cosmological constant: 〈V 〉 = Λ. This fine tuning problem usually is explained via the

anthropic principle. For us this means that, in building our de Sitter models, we should

build a model such that this matching is achieved. In practice we choose not to do so

for reasons of presentation. The true value of the cosmological constant is too small

to be depicted by anything but zero. It is, however, clear from our constructions that

the value can easily be achieved by changing some parameters which does not alter the

general behaviour of the set up.

3 Anti-D6-Uplift

While the description an uplifting anti-D6-brane for type IIA models was proposed in

[18], no concrete examples were know. Indeed, the mere existence of an anti-Dp-brane

that can lift an AdS minimum to a (meta) stable dS vacuum does not mean it is possible

to construct such a situation. The brane only gives a positive contribution to the scalar

potential (see (2.10), (2.11)) but does not guarantee that all moduli are stabilized. In

order to establish a KKLT-like construction in type IIA one needs not only a working

description of the ant-D6-brane but also concrete models as examples. We gave first,

working, examples in [1]. In this work we not only discuss the aforementioned method

of construction dS vacua but also discuss an issue related to M-theory U-duality.

3.1 The STU Model

The so called STU model is a simple set up where there are only 3 independent mod-

uli. We call the axio-dilaton S, the complex structure modulus T and the (volume)

Kähler modulus U . The ten dimensional supergravity is compactified on a calibrated

manifold, for example Calabi-Yau manifolds or more general SU(3) structure mani-

flods. In this way standard four dimensional supergravity with linearly realized N = 1

supersymmetry will be our effective low energy theory. In addition we add a pseudo

calibrate anti-D6-brane which will give a positive contribution to the scalar potential

and facilitate a KKLT like uplift.

As a specific example we take a T 6/(Z2 × Z2) orbifold compactification of type IIA

string theory [27]. The ten dimensional metric is given by

ds2
10 = τ−2ds2

4 + ρ
(
σ−3Gabdy

adyb + σ3Gijdy
idyj

)
. (3.1)
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In this metric τ , σ and ρ are moduli and they are identified in the following way [28]:

ρ = Im(U) = (vol6)1/3

τ = Im(S)1/4Im(T )3/4 = e−φ
√
vol6

σ = Im(S)−1/6Im(T )1/6 .

(3.2)

On the other hand, Gab and Gij correspond to two independent three cycles around

which the anti-D6-branes can be wrapped. We distinguish N
‖
D6

, corresponding to an

amount of branes that are wrapped around one cycle only, and N⊥
D6

, which are branes

wrapped around directions along both cycles, in different combinations.

After the compactification the scalar potential of our model will be given as a sum of

both the standard N = 1 supergravity potential (2.10)

V N=1 = eK
(
Kij̄DiWDj̄W − 3WW

)
, (3.3)

with K the Kähler potential and W the superpotential, and the positive energy con-

tribution from the anti-D6-brane, given effectively as:

V D6 =
µ4

1

Im(T )3
+

µ4
2

Im(T )2Im(S)
. (3.4)

Here µ4
1 = 2eA1N

‖
D6

and µ4
2 = 2eA2N⊥

D6
. eA1(2) corresponds to the warp factor at the

position of the brane.

As Kähler and superpotential we use:

K = −log
(
−i(S − S̄)

)
− 3log

(
−i(T − T̄ )

)
− 3log

(
−i(U − Ū)

)
W = f6 + f4U + f2U

2 + f0U
3 + (hT + rTU)T + (hS + rSU)S +Wnp .

(3.5)

Here we will set all terms in W to zero except f6 and Wnp which comes from non-

perturbative contributions to the superpotential that take the general form

W np =
∑
i

Aie
iaiΦi where Φi = {S, T, U} . (3.6)

For the sake of simplicity we will assume that all parameters in the potentials are con-

stant. In principle they can depend on the moduli but under certain conditions it is

reasonable to assume them to be constant.
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These non-perturbative contributions can have different origins, for the S and T di-

rection the may arise, for example, from gaugino condensation [27] or, alternatively,

from Euclidean D2-branes wrapping 3-cycles. For the U direction the origin of these

terms is not quite as clear, however, a good motivation for the existence of these terms

is the concept of M theory U -duality. String theory exhibits both S and T -duality

but not explicit U -duality. M-theory is the parent theory of all string theories and in

fact does include U -duality. It is thus reasonable to expect that there are effects of

U -duality present in string theory, allowing for the missing terms since they should

exist in M-theory [29–31]. Concretely worldsheet instantons of N = 1 orientifold com-

pactifications in type IIA give generically rise to the required exponential terms, see

[32, 33].

3.2 Four-dimensional Action

While the effective contribution of the anti-D6-branes to the scalar potential has already

been given above, we have not shown how to incorporate them into the Kähler - and

superpotential. In [18] it was shown that this is indeed possible by the use of a nilpotent

chiral goldstino superfield X where X2 = 0. The Kähler potential for the STU model,

including the nilpotent field and thus the contribution from the anti-D6-branes, is given

as

K =− log
(
−i(S − S̄)

)
− 3log

(
−i(T − T̄ )

)
− log

([
−i(U − Ū)

]3 − XX̄

eA1ND61

(
−i(S − S̄)

)
+ eA2ND62

(
−i(T − T̄ )

)) .
(3.7)

The contribution to the superpotential has the form

W = µ2X (3.8)

where we identify µ4
1(2) = 1

8
µ4eA1(2)ND61(2)

. Using this formula for the Kähler potential

K and adding µ2X to the superpotential we arrive at the same result once we derive

(2.10) and use that X2 = 0. For the remainder of this work we will use the effective

description, adding the contribution of the anti-D6-brane to the scalar potential without

the nilpotent field X since it is equivalent.
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3.3 Requirements from String Theory

There are a number of requirements that low energy effective theories originating from

string theory should satisfy for consistency. Here we give an overview about the most

important ones and what kind of conditions they imply on our model.

First we need to satisfy Gauss’ law in the compact space which is equivalent to satisfying

the Bianchi identities for the RR fields. For our explicit example this reduces to the

tadpole condition including the D6-brane charges:∫
dF2 − F0H = −2NO6 +ND6 −ND6 , (3.9)

for each three-cycle independently. Since our model does not include any fluxes the

contributions from O6-planes, D6-branes and anti-D6-branes need to cancel identically.

We are free to add D6-branes as needed but must take care to find a geometry that is

stable. In principle D6 and D6 can annihilate. Hence it is important to find a set up

that allows for a stable configuration. This might be non-trivial [34].

An additional condition on the fluxes is quantization. In principle all fluxes need to

be properly quantized for consistency. Luckily there is a remaining, overall scaling

symmetry of the superpotential that can be used in order to achieve any desired value

of the f6 flux. This changes the parameters Ai but not the existence nor the location

of the vacua.

Another important requirement concerns higher order non-perturbative and α′ correc-

tions. All these contributions need to be small in order to not change the system.

Generally the sum of corrections we consider is of form

∞∑
n=1

AneinaiΦi , (3.10)

for each modulus. In order to only have the first contribution of this infinite sum matter

we require that aiIm(Φi) > 1.

The α′ corrections are suppressed if the volume of the internal manifold is large, or in

other words, vol(6) = (Im(U))3 has to be large und thus Im(U)� 1.

3.4 Finding Vacua

The first step in order to find a stable dS vacuum is to stabilize all moduli in a su-

persymmetric anti de Sitter state. In principle it suffices to satisfy the Breitenlohner-
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Freedman bound for stability in AdS but, since we want to find stable dS, we require

that all moduli have masses above zero. To find such a vacuum we have to follow the

F-term equations

DiW = 0 , (3.11)

for the Kähler - and superpotential

K = −log
(
−i(S − S̄)

)
− 3log

(
−i(T − T̄ )

)
− 3log

(
−i(U − Ū)

)
W = f6 + ASeiaSS + AT eiaTT + AUeiaUU .

(3.12)

Note that while DiW = 0 implies ∂iV = 0 the reverse is not true.

Since the Re(Φi) do not appear in the Kähler potential they are axions and we can set

all of them to zero. The solution we find will be consistent for as long as all masses are

positive. We also choose to set the location of the AdS vacuum to be at:

Im(S) = S0 , Im(T ) = T0 , Im(U) = U0 , (3.13)

and solve for the Ai. This allows us to freely choose the values of the moduli as well

as f6. After finding a critical point in this way we have to check whether or not it is a

stable minimum by evaluating either the canonical mass matrix

mj
i =

1

2
Kjk∇k∂iV (3.14)

or the second derivative of the scalar potential. Either one suffices for the purpose of

checking stability.

After checking stability we can introduce the uplifting contribution from the anti-D6-

brane, in the from of

V D6 =
µ4

1

Im(T )3
+

µ4
2

Im(T )2Im(S)
. (3.15)

We can choose the values of µ1 and µ2 such that the minimum of the potential is above

zero or even match the cosmological constant.

The uplift will slightly change the position of the minimum, depending on the magni-

tude of the µ. We thus need to find it’s new position, typically very close to the original

one. It is also necessary to check the mass matrix again after uplifting in order to make

sure that the vacuum remains stable.
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3.5 An explicit Example

Investigating this model we found that it is not only possible to choose the remaining

free parameters such that one is able to find a suitable solution but that in fact no

particular amount of fine tuning is necessary [1]. One particular solution will be given

in this section.

A convenient choice for the position of the AdS vacuum is S0 = T0 = 1 and U0 = 10,

where the value of Im(U) was chosen in order to have a large internal volume. f6 is

set equal to 2 and the aS = 3.1, aT = 3.3 as well as aU = 0.32 in order to have all

e−aiΦi . 0.1. For the uplift we chose µ4
1 = µ4

2 = 1.34 · 10−5. In table 1 the masses for

AdS and dS are given and plots for this model are given in figures 2 and 3.

m 2
1 m 2

2 m 2
3 m 2

4 m 2
5 m 2

6

AdS 1.19 · 10−3 1.01 · 10−3 2.43 · 10−4 2.20 · 10−4 1.64 · 10−4 1.45 · 10−4

dS 8.00 · 10−4 7.40 · 10−4 1.76 · 10−4 1.63 · 10−4 1.61 · 10−4 1.50 · 10−4

Table 1. The canonically normalized masses squared for both before and after the uplift are
positive.
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Figure 2. 2D plots of the total scalar potential Vtot, the anti-de Sitter potential VN=1 and the D6
potential VD6. Starting from the top we have the Im(S) direction on the left, followed by Im(T ) on
the right and below that Im(U). In all plots we see clearly the anti-de Sitter and de Sitter vacua as
well as the uplift term.
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Figure 3. 3D plots of the de Sitter potential for our set of parameters. We have the following slices.
Top Left: Im(S) and Im(T ), Top Right: Im(S) and Im(U), Bottom: Im(U) and Im(T ). In all three
different plots the de Sitter minimum is clearly visible and it is metastable.

4 Mass Producing dS Vacua

While the method described above seems to work very well, at least for the class of

models we investigated, there is not particular reason it has to work. In [2, 35] it was

proposed that it is possible to make a prediction about the existence and success of this

method by introducing an additional first step. The suggested procedure is as follows:

1. Solve the F-term equations DiW = 0 as well as the Minkowski condition: W = 0.

This will give a Minkowski vacuum without negative masses. Adjust the free

parameters such that the masses are non-zero.

2. Introduce a parametrically small shift into the scalar potential: W → W + ∆W .

This will change the vacuum from Minkowski to anti de Sitter. It is possible to

show that the resulting AdS state is stable with all masses still positive.

3. Introduce the uplift via anti-D6-branes. For small uplifts the changes will be

again small and the vacuum stable.
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In the following we will outline how this procedure guarantees stable vacua. The details

and more information about this procedure can be found in [35].

4.1 Fermion and Scalar Masses

For the general case of some number of chiral matter superfields za and some Kähler

potential K(za, z̄ā) as well as an arbitrary holomorphic superpotential W (za) it is pos-

sible to show that the above works for as long as we can solve the equations outlined

in 1) and find strictly positive masses.

For this section we will use the notation of [36, 37] where we use a covariantly holo-

morphic superpotential

m(za, z̄ā) = eK/2W , (4.1)

which is related to the gravitino mass via

M2
3/2 = |mm̄| . (4.2)

The Kähler covariant derivative on m is defined to be Dam = ∂am+ 1
2
(∂aK)m ≡ ma =

eK/2DaW and likewise for the barred quantity. m, like W , is holomorphic, meaning

that:

D̄ām = ∂ām−
1

2
(∂āK)m = 0 . (4.3)

The fermion mass matrix is given as

mab ≡ DaDb m̄āb̄ (4.4)

or, alternatively, as [38]

mab = eK/2(∂a +Ka)DbW − eK/2ΓcabDcW (4.5)

which, at the supersymmetric Minkowski minimum, simplifies to

mMink
ab = eK/2∂a∂bW . (4.6)

The standard supergravity scalar potential (2.10) can be re-written in terms of this

notation as

V = maK
ab̄m̄b̄ − 3|m|2 = |ma|2 − 3|m|2 . (4.7)
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An extremum of the scalar potential is given at

∂aV = DaV = −2mam̄+mabK
bb̄m̄b̄ = 0 . (4.8)

If the extremum is supersymmetric we have ma = m̄b̄ = 0.

The masses at an extremum are given by the second derivative of the scalar potential

and read

M2 =

(
Vab̄ Vab

Vāb̄ Vāb

)
. (4.9)

4.2 Minkowski Vacua

For our first step we want to find a Minkowski vacuum [37], which, in the conventions

of the last section, is given by

m = ma = a . (4.10)

The masses in the supersymmetric Minkowski vacuum are

(
M2

)Mink
=

(
V Mink
ab̄

0

0 V Mink
āb

)
, (4.11)

where:

V Mink
ab̄ = macK

cc̄m̄c̄b̄ . (4.12)

We note that the mass matrix is block diagonal and both blocks are positive definite

and thus all eigenvalues will be non-negative. This means that, in Minkowski, we know

for certain that there will be no tachyons to worry about.

For the remainder of this work we will require that all masses are larger than zero. In

practice this is usually the case for a chosen set of parameters unless some accidental

cancellations happen.

4.3 Downshift to AdS

Solving for a Minkowski vacuum means satisfying the equations DaW = 0 as well

as W = 0. When we take these solutions but add a small contribution ∆W to the

superpotential (W → W + ∆W ), we find that the previously found Minkowski vacuum

becomes an AdS Minimum. This will change the position of the Minimum slightly

and we also have to keep in mind that the supersymmetry conditions are not solved

explicitly. This means that we have to check that this state remains superymmetric.
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Here we will show that a parametrically small downshift ∆W will lead only to a small

modification of the vacuum and the state will remain stable.

Using the covariant notation introduced above the change in the superpotential means

that

m = eK/2W 6= 0 and ma = 0 . (4.13)

In the following we will show the shift of the position of the minimum. We explic-

itly require that the shift appears only in the superpotential W and the functional

dependence of both potentials on the moduli remains the same:

KAdS(z, z̄) = KMink(z, z̄) and WAdS(z) = WMink(z) + ∆W , (4.14)

where ∆W is a constant that does not depend on the moduli. For supersymmetry we

require that ma = eK/2DaW = 0. This requirement tells us that the shift in z needs to

be given as

δza = −(mab)
−1Kb∆m+ · · · , (4.15)

where the dots are sub leading terms. ∆m is much smaller than the smallest eigenvalue

mχ of the mass matrix mab.

∆m = eK/2∆W � mχ . (4.16)

In Minkowski space we found that the mass matrix is block diagonal (4.11). Now this

does not hold any more and we have generically:

(
M2

)AdS
=

(
V AdS
ab̄

V AdS
ab

V AdS
āb̄

V AdS
āb

)
. (4.17)

The change in the mass matrix due to the downshift turns out to be

V AdS
ab̄ = macK

cc̄m̄c̄b̄ − 2Kab̄mm̄ . (4.18)

We observe that the first part in this formula does not change from the Minkowski case

and is still positive definite. The second term, however, has an explicit minus sign.

This does not pose a problem since it is parametrically small compared to the first

term. For reasonably large positive masses in Minkowski space the AdS masses will be

positive as well.
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4.4 Lifting the Minimum to de Sitter

After finding a Minkowski minimum where all masses are positive and subsequently

shifting it to anti de Sitter by introducing a small constant shift in the superpotential

we arr no free to apply the uplifting procedure as outlined in in sections 2.3 and 3.

In the 4d effective theory the uplifting contribution from an anti-Dp brane is given by

the inclusion of a nilpotent field X [18] that satisfies X2 = 0. The complete Kähler -

and superpotential are given as

KdS = KAdS +KXX̄XX̄ and W dS = WAdS + µ2X . (4.19)

The inclusion of the nilpotent fieldX introduces additional contributions intom that we

nee to take into account. For the derivatives of m we now also need include derivatives

on X and for this we define I = {a,X}. The new derivatives are:

mX = DXm,

maX = DaDXm,

mabX = DaDbDXm

(4.20)

and so on. For the de Sitter scalar potential one finds

VdS = eK
(
DIWKIJ̄DJ̄W − 3|W |2

)
= |mI |2 − 3|m|2 = |F |2 − 3m2

3/2 > 0 . (4.21)

Here |F |2 = |mI |2 denotes the supersymmetry breaking terms that have to be above

the scale of the gravitino.

In the end the final goal would be to build a dS vacuum where the value of the potential

at the minimum matches the cosmological constant, so:

V dS|min = |mI |2 − 3|m|2 ∼ 10−120 and V ′dS|min = 0 . (4.22)

We are now interested whether or not we can show that under the assumptions of

section 4 we can predict that the vacuum will be stable after the uplift. In other

words we need to check that all eigenvalues of the mass matrix are positive. The the

holomorphic-holomorphic and holomorphic-anit-holomorphic part of the mass matrix
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are given, respectively, by

V dS
ab = −mabm̄−mabIm̄

I and

V dS
ab̄ = macK

cc̄m̄c̄b̄ − 2Kab̄mm̄+Kab̄mIm̄
I −Rab̄IĪm̄

ImĪ −mam̄b̄ ,
(4.23)

where Rab̄IĪ is the moduli space curvature. Note that we do not consider the mass of

X since it is not a fundamental scalar but rather given in terms of fermions as outlined

in section 2.2.

The change both in the masses and also in the position of the minimum after the uplift

can be related back to the anti de Sitter expressions by considering how the uplift

depends on the moduli. Since the uplift is given by

mX = eK/2DXW ⇒ |mX |2 = eKµ4 , (4.24)

it is evident that for parametrically small µ2 the shift in the position will be small.

Indeed we will see that in all examples given in sections 5 and 6 the uplift parameter

is indeed small. To make this statement more precise we remember that the dS scalar

potential is the sum VdS = VAdS + Vup and that the AdS part does not get modified.

Now we split the complex fields in real and imaginary part za = zar + izai and consider

the condition for the minimum:

∂zaα
[
V AdS + V up

]
= 0 . (4.25)

We can write the first and second part respectively as:

∂zaαV
AdS =

(
∂zaα∂zbβV

AdS
)
δzbβ ,

∂zaαV
up = µ4∂zaα

(
eKKXX̄

)
.

(4.26)

This allows us to write the shift in the minimum as

δzbβ = −µ4∂zaα
(
eKKXX̄

) (
∂zaα∂zbβV

AdS
)−1

. (4.27)

The masses in anti de Sitter, given by ∂zaα∂zbβV
AdS are larger than the scale of the uplift

and thus the shift of the position of the minimum will be parametrically small.

In order to guarantee the stability of this constructed de Sitter vacuum we require that

the amount of supersymmetry breaking, introduced by the uplift, be small compared
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to the scale of the masses of the scalars given by the second derivative of the scalar

potential. This is in addition to the condition that the gravitino has small mass when

compared to the scalars:

m2
χ � |F |2 = |mI |2 and m2

χ � m2
3/2 . (4.28)

Since the potential is positive we also know that

|F |2 > 3m2
3/2 , (4.29)

Furthermore, from the formulation of the shift we conclude that breaking of supersym-

metry is smaller in the chiral directions than in the direction of the nilpotent field X

[39]:

|ma|2 � |mX |2 . (4.30)

With this we have established a mass hierarchy: |ma|2 � |mX |2 � m2
χ and thus the

amount of supersymmetry breaking if of the order of the gravitino mass, at least for a

very small cosmological constant.

Finally, since all contributions that we added after finding our Minkowski vacuum lead

to parametrically small changes, we conclude that, in fact, the change to the mass

matrix is small after all these steps:

V dS
ab̄ ≈ V Mink

ab̄ . (4.31)

5 KL-Models

In [2] the process that was outlined in the previous section was expanded on and many

explicit examples were built. The framework in [2] is based on so called Kallosh-Linde

(KL) models [40] where the moduli are stabilized using contributions from multiple

non-perturbative corrections, similar to the uplift models in [1] and as outlined here in

section 3. In particular it was necessary to introduce two exponents for each modulus

in order to achieve stability and facilitate the uplift. This is due to the requirement

to find a Minkowski vacuum, something that was not done in [1] because there the

starting point for the uplift procedure was an AdS state.
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5.1 The Kallosh-Linde Model

The superpotential for the KL model is given as

WKL(Φ, X) = W0 +
∑
i

(
Aie

iaiΦ
i −Bie

ibiΦ
i
)
, (5.1)

where Φi runs over all moduli that we consider from compactification but does not

include the nilpotent field X, which introduces the uplift. Note that here we do not

sum over repeating indices. The Kähler potential and superpotential for the uplift

remain unchanged in this set up. In order to find a Minkowski minimum with a KL-

type superpotential one has to solve the equations

∂ΦiW
KL = iaiAie

iaiΦ
i − ibiBie

ibiΦ
i

= 0 ∀i (5.2)

and, the Minkowski condition

WKL = W0 +
∑
i

(
Aie

iaiΦ
i −Bie

ibiΦ
i
)

= 0 . (5.3)

For as long as all masses are positive we can consistently simplify this problem by

writing Φi = φi + iθi and then letting all the θi = 0. The position of the minimum is

then given by

Φi
0 = φi0 =

i

ai − bi
ln

(
aiAi
biBi

)
(5.4)

and the constant and the constant part of the superpotential, W0, is fixed to be

W0 =
∑
i

{
−Ai

(
aiAi
biBi

) ai
bi−ai

+Bi

(
aiAi
biBi

) bi
bi−ai

}
(5.5)

at the minimum. We see that we also have to satisfy the constraints on the parameters:

ai > bi and aiAi > biBi (ore vice versa). Solving these conditions is sufficient in order

to find the stable Minkowski vacuum. The remaining free parameters have to be used

in order to make sure that all masses, given, essentially, by the second derivative of the

scalar potential, are strictly positive. This will the guarantee that the mass production

procedure will be successful, as per the discussion of the last section.

We will now use models like this and the three step program for mass production as

outlined in section 4 in order to build de Sitter vacua in both type IIA and type IIB
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models.

5.2 The Setup in Type IIA

First we want to study explicit models in type IIA theory. For this we consider the

following Kähler and superpotential:

K = −
m∑
i=1

Ni log
(
−i(Φi − Φ̄ī

)
W = W0 +

m∑
i=1

(
Aie

iaiΦ
i −Bie

ibiΦ
i
)
.

(5.6)

The masses of the scalars are proportional to the second derivative of the scalar po-

tential and there is a mass degeneracy between the moduli and the axions, meaning

m2
φiφi

= m2
θiθi

. The mixed derivatives on the scalar potential are zero ∂φi∂θjV = 0 and

thus the mass matrix is block diagonal. For the Minkowski solution the mass matrix is

actually diagonal meaning the only for i = j the entries are non-zero. The downshift

W → W + ∆W introduces a contribution into the mass matrix that we call ∆ΦiΦj .

Importantly this will keep the block diagonal structure of the matrix but will introduce

off-diagonal entries inside the blocks. In other words the complete mass matrix is still

block diagonal but no longer diagonal after the downshift to anti de Sitter space:

(
M2

)AdS
=

(
V Mink
φiφj + ∆φiφj 0

0 V Mink
θiθj + ∆θiθj

)
. (5.7)

In the third step an additional contribution will be added to the blocks, arising from

the uplift term that is sourced by the inclusion of anti-D6 branes in type IIA:

(
M2

)dS
=

(
V Mink
φiφj + ∆φiφj + ∆̃φiφj 0

0 V Mink
θiθj + ∆θiθj + ∆̃θiθj

)
. (5.8)

Again, the mass matrix remains block diagonal. Since we know that the contributions

from downshift and uplift are both parametrically small we expect to find a stable de

Sitter minimum after the mass production procedure.
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5.3 Seven Moduli in Type IIA

A rather general and very interesting model in type IIA theory is a seven moduli

model, originally developed in [41, 42], which is the general version of the STU model

from section 3.1. In this model there is no identification for the Kähler - and complex

structure moduli. Thus, we have seven different moduli appearing: one axio-dilaton S,

three complex structure moduli T and three Kähler moduli U . The model is type IIA

compactified on T 6/(Z2 × Z2) in the presence of generalized fluxes and D6-branes as

well as O6-planes. Alternatively, it can be viewed as an M-theory compactification on

a particular G2 manifold with E7(7) symmetry [43].

This model is of particular interest because it is related to a model from M-theory and

type IIA string theory in four dimensions with N = 8 supersymmetry which can be

related to B-mode detection [43, 44] and thus is relevant for phenomenology.

In this model, for Φi = {S, T1, T2, T3, U1, U2, U3}, the superpotential that we are going

to use is given by:

K = −
7∑
i=1

log
(
−i(Φi − Φ̄ī

)
,

W = f6 +
7∑
i=1

(
Aie

iaiΦ
i −Bie

ibiΦ
i
) (5.9)

which follows from equation (5.6). Only the contribution from the six-flux appears here

and we set all other fluxes, and thus tree level interactions of the moduli are absent.

In this model we have 29 parameters, 21 of which will remain free after solving for the

Minkowski minimum at W = ∂iW = 0. It is convenient to solve the seven equations

for the parameters Bi as well as the flux parameter f6. As per usual we choose the

minimum to be at Φi = iΦi
0, with the real parts of the moduli, which are the axions,

equal to zero. We can choose the exact position of the minimum in order to satisfy

stringy requirements, for example here we choose U0 = 5 in order to achieve a large

volume for the internal manifold. The complete list of choices for our explicit example

can be found in Table 2. The choice of parameters does not require any particular

AS = 1 AT1 = 3.1 AT2 = 3.2 AT3 = 3.3 AU1 = 11 AU2 = 12 AU3 = 13
aS = 2 aT1 = 2.1 aT2 = 2.2 aT3 = 2.3 aU1 = 0.41 aU2 = 0.42 aU3 = 0.43
bS = 3 bT1 = 3.1 bT2 = 3.2 bT3 = 3.3 bU1 = 1.1 bU2 = 1.2 bU3 = 1.3
S0 = 1 T1, 0 = 1.1 T2, 0 = 1.2 T3, 0 = 1.3 U1, 0 = 5.1 U2, 0 = 5.2 U3, 0 = 5.3

Table 2. The choice for the parameters in the seven-moduli model.
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amount of fine tuning. In fact many different ones will work out. This particular set

was chosen for convenience and the slightly different numbers are in order ot avoid

accidental cancellations. Furthermore the aUi are chosen such that the terms in the

superpotential stay at approximate same order even though the value of the Ui is larger

than the rest of the moduli. One thing to remember is that we have to avoid zero masses

in Minkowski. While no negative values can appear, in order for guaranteed stability

in anti-de Sitter and de Sitter, we have to have non-zero masses. We will give the

eigenvalues of the Minkowski mass matrix together with the masses in de Sitter below,

in table 3.

The next step in our procedure is the downshift to anti-de Sitter. For this we introduce

a shift in the value of the six flux parameter of the form f6− > f6 + ∆f6 with the value

of the shift given by:

∆f6 = −10−5 . (5.10)

An important note here is that the sign of the downshift does not matter for as long as

the downshift is actually small. For now we only considered small downshifts, however,

in 5.6 we will consider larger shifts and there we will find that it is favourable to

use positive shifts. One further note concerns the position of the minimum in anti-de

Sitter. The shift is very small but we need to find the position of the minimum after

the downshift again and check that it remains supersymemtric. For this we numerically

search for the minimum and calculate the first derivative of the scalar potential at that

location, which turns out to be (numerically) zero.

Finally, the uplift to de Sitter is achieved by the inclusion of the nilpotent field X in

our effective description, as discussed in section 3.2. In type IIA this nilpotent field

describes the presence of an anti-D6 brane which gives a positive energy contribution

to the scalar potential. This nilpotent field gives, in this case, a contribution to the

scalar potential of the form:

V uplift

D6
=

µ4
1

Im(T1)Im(T2)Im(T3)
+

µ4
2

Im(S)Im(T2)Im(T3)

+
µ4

3

Im(S)Im(T1)Im(T3)
+

µ4
4

Im(S)Im(T1)Im(T2)
.

24



The uplift parameters were chosen to be

µ4
1 = µ4

2 = µ4
3 = µ : 44 = 5.49028 · 10−15 . (5.11)

These values were not chosen to match the cosmological constant but rather for illus-

trative purposes. Like the choice of the free parameters we do not have a fine tuning

here. The only requirement is that the downshift should be small in some sense.

The masses in de Sitter space, given in Table 3, show how little the masses change

during the whole procedure. In fact, the anti-de Sitter masses are not given because

most of them are identical to the precision we give here. To conclude this section on

Mink dS
m 2

1 1.80473 · 10−3 1.80465 · 10−3

m 2
2 1.80473 · 10−3 1.80465 · 10−3

m 2
3 1.37269 · 10−3 1.37262 · 10−3

m 2
4 1.37269 · 10−3 1.37262 · 10−3

m 2
5 9.96519 · 10−4 9.96472 · 10−4

m 2
6 9.96519 · 10−4 9.96471 · 10−4

m 2
7 1.30924 · 10−4 1.30911 · 10−4

m 2
8 1.30924 · 10−4 1.30911 · 10−4

m 2
9 9.41773 · 10−5 9.41667 · 10−5

m 2
10 9.41773 · 10−5 9.41660 · 10−5

m 2
11 6.37973 · 10−5 6.37888 · 10−5

m 2
12 6.37973 · 10−5 6.37883 · 10−5

m 2
13 1.89843 · 10−5 1.89809 · 10−5

m 2
14 1.89843 · 10−5 1.89806 · 10−5

Table 3. The eigenvalues of the mass matrix for the seven-moduli type example. The mass shift
is small, but noticeable, when going from Minkowski to dS. One can also notice, as predicted by the
mass production procedure, that in dS the masses of scalars and pseudo scalars are not exactly equal
any more, as was the case in Minkowski.

type IIA we mention that a three moduli STU model can be easily constructed from

by identifying T = T1 = T2 = T3 and U = U1 = U2 = U3. This was explicitly done

in [2] and the results are given there explicitly. The procedure works exactly as in the

seven moduli case discussed here and no problems appeared.

5.4 The Setup in Type IIB

Before giving explicit examples for the procedure in type IIB models we use this section

in order to show some of the basics that are different from type IIA. A much more
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detailed description of the set-up in type IIB can be found in [2].

In our type IIB models we again consider a superpotential of the form

W = W0 +
m∑
i=1

(
Aie

iaiΦ
i −Bie

ibiΦ
i
)
, (5.12)

where now instead of the constant contribution from a six flux we have W0. Also of

note is that the identification of the moduli in type IIB does no longer work like in type

IIA. Here the axio-dilaton and the complex structure moduli are stabilized at a higher

scale and do not appear in our effective theory. Instead we have different Kähler moduli

appearing. For convenience we will however still call the up to three Kähler moduli S,

T and U . More importantly in type IIB the Kähler potentials are different from what

we considered thus far. In general the Kähler potential will be some function

K = K
(
−i(Φi − Φ̄ī)

)
, (5.13)

but where now, in some sense, more complicated forms of the potential are allowed. In

particular the Kähler potential is given in terms of the internal volume of the manifold

V6 as:

K = −2log (V6) . (5.14)

The volume of the compact manifold is given as a function of the Kähler moduli and is

characteristic for the chosen manifold. The choices that were investigated in [2] were

taken from [45] and [46].

The fact that the Kähler potential is now more complicated, when compared to the

type IIA case (5.6), has effects on the Minkowski mass matrix and, by extension, anti-

de Sitter and de Sitter mass matrix as well. The Minkowski mass matrix is no longer

strictly diagonal, as opposed to the matrix in type IIA. However, at every stage the

mass matrix will still remain block diagonal. Also, the masses in Minkowski are still

positive definite, thus the mass production mechanism works as intended.

One more thing to consider is that the uplift now is performed using anti-D3 branes.

The general mechanism remains the same, the branes still give effectively a positive

contribution to the scalar potential. However, now we have two different choices for

the placement of the branes [5]: We can place them either in the bulk or at the bottom
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of a warped throat. Depending on the choice the Kähler potential is different

Kbulk = −2log (V6) +XX̄ or

Kthroat = −3log

(
V2/3

6 − 1

3
XX̄

)
,

(5.15)

while the contribution to the superpotential remains µ2X. This will change the effective

contribution to the scalar potential to either

VD6, bulk =
µ4

V2
6

or

VD6, throat =
µ4

V4/3
6

.

(5.16)

Here we will only consider the placement of the brane in the bulk. Both possibilities

have been considered in [2] and it was found that, other than a difference in the uplift

parameter µ4, everything works equally well in both situations.

5.5 The Fibre Inflation Model

In [2] many different models in type IIB theory were investigated: K3-fibration models,

complete intersection Calabi-Yau models and so called multi-hole Swiss cheese models,

based on the Fano three-fold F11. For simplicity we restrict the discussion here to one

of the K3-fibrations as it is a model of particular interest: the fibre inflation model

[47–49]. While building a potential suitable for inflation is not the goal of this work, it

is still of particular interest for the possibility to do so.

In our notation the volume of the internal manifold for the fibre inflation model is given

by:

V6 = α

[√(
−i(S − S̄)

) (
−i(T − T̄ )

)
− γ

(
−i(U − Ū)

)3/2
]
, (5.17)

where α and γ are some positive constant that we can choose. Besides the values for

the parameters in the potentials, which are given in Table 4, we choose the value of the

downshift (W0 → W0 + ∆W ) to be:

∆W0 = −10−5 (5.18)
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and the uplift parameter to be

µ4
bulk = 3.10079 · 10−10 . (5.19)

These parameters lead, using our mass production procedure, to the eigenvalues of

AS = 1.1 AT = 1.2 AU = 1.3
aS = 2.1 aT = 2.2 aU = 2.3
bS = 3.1 bT = 3.2 bU = 3.3
S0 = 1 T0 = 1 U0 = 1
α = 1 γ = 1

2

Table 4. One possible set of parameters for the fibre inflation model.

the mass matrix as given in Table 5. It is evident from that table that the masses in

Minkowski and de Sitter are very close to each other, once more confirming that the

parametrical separation during the process works out as discussed.

To illustrate the model even better we include two dimensional plots of the scalar

potential for all directions in figure 4. In these plots we not only show the overall

behaviour of the potential in all three directions but also a close-up of the minimum,

which shows the shift of the position after the procedure. Furthermore, we include one

three dimensional plot of the scalar potential, for the Im(T ) and Im(U) direction in

figure 5. These plots show that the potential is indeed stable.

Mink dS
m 2

1 1.01997 1.01957
m 2

2 1.01997 1.01957
m 2

3 1.31424 · 10−1 1.31344 · 10−1

m 2
4 1.31424 · 10−1 1.31338 · 10−1

m 2
5 2.44807 · 10−2 2.44724 · 10−2

m 2
6 2.44807 · 10−2 2.44665 · 10−2

Table 5. The eigenvalues of the mass matrix for the fibre inflation model, for Minkowski and dS.

5.6 Stability under large Shifts

Thus far we always considered the mass production procedure with small downshifts

and subsequently small uplifts. This was shown to guarantee that, if we started from

a Minkowski vacuum with all masses positive, we would arrive in a stable de Sitter
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Figure 4. From top to bottom, we have the overall form of the potential on the left, for AdS and
dS as well as a close-up of the minimum on the right for the directions Im(S), Im(T ) and Im(U). The
shift of the minimum from the initial point, with the imaginary part of the moduli set at one, is also
visible.

vacuum. Admittedly, this is a vague criterion. It is therefore interesting to ask how

small the shift needs to be, or if it might be possible to do large shifts. While we were

only able to show that small shifts predict the procedure to be successful, there is a

priori no statement about large shifts. One might expect them to not work but, in

principle, there is nothing forbidding it to be possible. We devote this section to a

short investigation about possible large shifts and show in the simple example of a one

moduli set up with a Kallosh-Linde superpotential that large shifts can work out.

One important change when going to larger shifts is that the sign of ∆W becomes

relevant. It turns out that for this scenario it is preferable to have a positive shift, as

it will lead to stronger stabilization.
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Figure 5. A 3D slice of the scalar potential in the Im(T ) and Im(U) directions.

The model we want to consider is given by the Kähler - and superpotential

K = −3log
(
−i(T − T̄

)
+XX̄ and

W = eiπT
25 − eiπT

10 +W0 + ∆W + µ2X .
(5.20)

This model was used in [50] for inflation model building and we choose to keep the same

values for the parameters as in that paper. For ∆W = µ = 0 and W0 = −3
5

(
2
5

)2/3

we find a supersymmetric Minkowski minimum of the scalar potential as illustrated in

figure 6. The mass of the scalar at the Minkowski minimum is mT = 0.013. On the left

Figure 6. The potential of the KL model (5.20) in Planck units.

hand side in figure 7 we show the potential after the procedure with a shift of ∆W = 7
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and a large uplift of µ = 1.4019, which was chosen to arrive at a de Sitter vacuum with

small cosmological constant. The mass in de Sitter evaluates to mT = 0.27, we see

that the mass actually is higher than in Minkowski, large shifts stabilize the modulus.

Another nice feature is that it is actually possible to change both ∆W and µ simulta-

neously in such a way that the minimum stays more or less constant. This allows to

interpolate between a supersymmetric Miknowski minimum with m3/2 = 0 and a de

Sitter vacuum with strongly broke supersymmetry, where the gravitino has a Planckian

value of 1 for its mass. It is even possible to raise the value of the cosmological constant

Figure 7. The potential of the KL model (5.20) after the downshift obtained by adding ∆W = 7 to
the superpotential. The left panel shows the potential uplifted by µ = 1.40199. The right panel shows
the potential uplifted by µ = 1.42.

by increasing µ. On the right hand side of figure 7 this is pictured for ∆W = 7 and

µ = 1.42. The value of the potential in the de Sitter minimum is several orders of

magnitude larger than for the previous values and still the minimum is stable.

The very important conclusion here is that one can reach any desired value of super-

symmetry breaking and it is possible to choose the cosmological constant with great

freedom. In [2] this was also tested in the STU model in type IIA theory and it worked

out in the same way as here. This gives hope that this is a general statement that

should hold for any reasonable mass production model.

6 Models from M Theory

While the main focus of explicit examples thus far has been on models with a Kallosh-

Linde superpotential, the mass production procedure does not explicitly require this

exact type of potential. The requirement simply is that a Minkowski solution is possible.

The KL-type potentials are useful because it is know that a Minkowski exists for them

and also how it looks. While models with single exponents alone do not allow to
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construct Minkowski vacua it is possible that one can find a solution if in addition

to the non-perturbative terms, generating the exponents in the superpotential, also

flux contributions are present. In [3] it was investigated whether or not such tree level

contributions are sufficient to use the mass production procedure. For this investigation

models based on M-theroy compactified on T6/Z2
2 are considered. All models have seven

moduli which are the coordinates of the coset space [SL(2,R)/SO(2)]7. These models

have an interpretation in terms of either type IIA or IIB string theory, however, the

origin of one particular type of flux is not fully understood yet as we will discuss later.

6.1 The generalized twisted seven Torus

To start with we consider moduli stabilization on M-theory compactified on a seven

torus with a G2-structure. This is then called the twisted seven torus. Mathematically

it is obtained by considering the toroidal orbifold X7 = T7/(Z2×Z2×Z2). Interestingly,

this model leads directly to 4d, N = 1 supergravity with seven moduli. The derivation

of the twisted seven torus model from M-theory was proposed in [51] and [52]. It

involves describing the set up using a pseudo action where the potentials and dual

curvatures appear at the same time.

Following [51] and [53] we have the potentials in this model as

K = −
7∑
i=1

log
(
−i(Φi − Φ̄i)

)
and

Wpert = g7 +GiΦ
i +

1

2
MijΦ

iΦj ,

(6.1)

where the Φi are the seven moduli, g7 is a seven flux contribution and we choose Gi = 0

in order to have only quadratic terms in the superpotential. Finally, Mij is symmetric

and its diagonal entries vanish. These interactions arise from geometric fluxes. Adding

non-perturbative corrections, arising for example from wrapped M2-branes [54], the

superpotential we consider is:

W = g7 +
1

2
MijΦ

iΦj +
7∑
i=i

Aie
iaiΦ

i

. (6.2)

Our conventions remain such that all parameters in the superpotential are real.

Once again we follow the mass production procedure, as outlined in section 4. We

have to solve the equations ∂iW = 0 and W = 0 in order to find a supersymmetric
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Minkowski vacuum. First, considering ∂iW we find that

Ai = ia−1
i e−iaiΦiMijΦ

j . (6.3)

As always we choose to use Φi = θi+iφi and set θi = 0 because only the φi appear in the

Kähler potential. Plugging this back into the superpotential it is easy to solve forW = 0

and we arrive at the required Minkowski solution. In the earlier sections we always used

a KL-type double exponent in order to arrive at a Minkowski minimum, here we achieve

this by the inclusion of fluxes instead. Furthermore, we will find in the discussion down

below that it is even possible to completely get rid of the non-perturbative corrections

in some directions. This is interesting because in some directions these corrections are

better motivated than in others.

In [3] a variety of different models were investigated and explicit numerical examples

were given. Here we will list all these examples, however, we choose to omit the

numbers as they are not very illuminating. For all models it was not only found

that the procedure works and produces stable de Sitter minima but also no particular

amount of fine tuning was necessary. In other words a large parameter space is viable

in order to construct these models.

For the discussion of the models we will again use the notation where we split Φi =

{S, TI , UI}, I = 1, 2, 3, as in the earlier sections, regardless of the theory we are in.

Some of the models do have interpretations in terms of type IIA/IIB theory and there

this nomenclature is meaningful. For us it serves mainly as a presentation tool. In this

notation we can represent the quadratic terms as [53]:

1

2
MijΦ

iΦj = SbKUK + UIC
IJTj + aI

U1U2U3

UI
+ cI

T1T2T3

TI
+ SdKTK . (6.4)

The models we will consider differ in which ones of the parameters in this equation and

which non-perturbative terms are non-zero.

Model 1, all exponents

First off, we can consider a model where non-perturbative corrections in all directions

are present. For this we consider the superpotential (6.2) with the expansion (6.4)

where we set aI = cI = dI = 0. This reduces the superpotential to:

W1 = g7 + bkSUK + CIJUITJ + ASeiaSS +
∑
I

ATIe
iaTITI +

∑
I

AUIe
iaUIUI . (6.5)
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There are 19 parameters in this potential, 8 of which will be fixed by the Minkowski

conditions. In particular we choose g7 and the Ai. The rest of the parameters can be

used in order to tune the masses to our liking.

Model 1, all exponents, with satisfied tadpole conditions

Here we consider the same set up as above but we also solve the tadpole conditions

bICIJ + bJCII = 0

CIJCJK + CIKCJJ = 0
(6.6)

without introducing sources on the right hand side of the equation. This is usually

problematic and thus typically one has to include sources like O-planes on the right

hand side of these equations. In this specific model, however, wer were able to satisfy

all the relevant tadpole conditions in terms of the CIJ with I 6= J .

Model 2, without S exponent

Again we consider a similar set up as before but now we set AS = aS = 0 from the very

beginning:

W2 = g7 + bkSUK + CIJUITJ +
∑
I

ATIe
iaTITI +

∑
I

AUIe
iaUIUI . (6.7)

We solve the Minkowski equations for g7, ATI , AUI and now in addition b1. This does

not prohibit a solution and an explicit example was found.

Model 3, without U exponents

Even more interesting is the case where we do not include U -exponents into the su-

perpotential at all. For this we are, however, required to include the tree-level term

aI U1U2U3

UI
into the potential:

W3 = g7 + bkSUK + CIJUITJ + aI
U1U2U3

UI
+ ASeiaSS +

∑
I

ATIe
iaTITI . (6.8)

Once more an explicit solution for this model is possible. This is important because

the exponents in the U -directions are somewhat less well established than the other

directions.
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Model 4, without T and U exponents

If we decide to include even more tree level contributions into the superpotential we are

able to arrive at a solvable model that includes only one exponent in the S-direction:

W4 = g7 + bkSUK + CIJUITJ + aI
U1U2U3

UI
+ cI

T1T2T3

TI
+ ASeiaSS . (6.9)

Now we have 21 parameters in the superpotential and we solve for the parameters g7,

AS, aI and cI .

One important remark about the relation of these models to type IIA string theory

is in order. Models 1-3 can be related to type IIA on a generalized twisted six-torus.

There we can identify the ingredients with standard contributions also present in IIA.

Model 4 on the other hand includes the term cI T1T2T3
TI

which has no analogue in IIA

and this model thus can only be considered in M-theory.

6.2 A possible model in type IIB

The standard ingredients in the superpotential of type IIB theory include contributions

from F-flux, H-flux and Q-flux [55–57]. These are the standard contributions that

are usually considered. However, already in [55] it was conjectured that so called P-

fluxes might also be present and in [56] it was shown that such terms can arise in the

superpotential naturally as components of gauged supergravity in four dimensions.

Keeping again only even terms in the moduli the superpotential for this case reads

W5 = a0 + aI
U1U2U3

UI
+ S

(
bIUI + b3U1U2U3

)
+ TK

(
CIKUI − cKU1U2U3

)
− STK

(
dK −DIKU1U2U3

UI

)
.

(6.10)

Conveniently, we find that we do not need the term proportional to DIK for our pur-

poses of moduli stabilization. Note that we do not have included non-perturbative

contributions in this potential. It turns out that including the P-fluxes suffices in order

to achieve a de Sitter vacuum through the mass production procedure. In this case we

choose to solve for a0, aI , b3 and the cK and are able to find a stable de Sitter minimum

after the procedure.
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7 Summary and Conclusion

Building semi-realistic models of de Sitter vacua motivated by string theory has been

an ongoing endeavour since the discovery of Dark Energy. Still today, the most promis-

ing example of such a construction is the so called KKLT scenario [4]. Here, based on

[1–3, 35], we expand on several aspects of this mechanism.

The KKLT scenario is based in type IIB theory, using anti-D3-branes. In type IIA the-

ory no analogous uplifting procedure was known until the description of Dp-branes in

terms of nil-potent multiplets was investigated in [18]. There the authors also proposed

that it should be possible to use their formalism for uplifting using branes different from

anti-D3. In [1] we showed that this is indeed the case for type IIA theory and gave

explicit examples. The anti-D6 brane takes the role of the anti-D3 brane of KKLT

and supplies a positive energy contribution to the minimum of the potential, lifting

it from a stable anti-de Sitter to de Sitter. In further analogy to the KKLT scenario

non-perturbative corrections need to be included in order to make this procedure work.

Importantly, it was found that the slightly unconventional U -fluxes are needed in order

to achieve stability in a simple model. The availability of an uplifting procedure in

type IIA opens up many new possibilities for model building in this theory and will be

helpful in further endeavours of dS constructions.

Another problem in constructions of de Sitter vacua that utilize an uplift is that there

is a priori no predictive power that the mechanism will work out. At no point is it clear

that an uplift from a stable anti-de Sitter vacuum will lead to stable de Sitter with all

masses positive. In [2, 35] it was shown that, if one starts by building a Minkowski

vacuum first, it is guaranteed that the resulting de Sitter vacuum is stable if one follows

a three step program. First, solve the Minkowski equations ∂ΦW = 0 = W . This yields

a Minkowski vacuum where no tachyons will appear. The free parameters are adjusted

such that there are also no flat directions. Secondly one introduces a parametrically

small shift in the superpotential: W → W +∆W , after which one finds a stable anti-de

Sitter minimum. It can be shown that this is always the case. In the third and final

step we use and anti-Dp brane in order to lift this minimum to de Sitter which, again,

is guaranteed to be stable. This mass production procedure is useful not only for its

predictive power but also because the Minkowski conditions are usually relatively easy

to solve. In more conventional constructions fine tuning or numerical optimization is

an integral part of the procedure in order to even arrive at a suitable minimum. In

this regard the procedure proposed here is a huge step forward. However, whether this
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method is applicable to more general and realistic set ups remains to be seen.

An interesting observation that was made in [2] regards the possibility of large down-

shifts and uplifts. While the idea was not fully explored in that work it was further

investigated in [58]. There this concept was applied in the KKLT scenario and pushed

to its extreme. The author found that it is not necessary to have a stable anti-de Sitter

progenitor for the Minkowski vacuum and the uplifting procedure still works out. This

could potentially be important since it allows for stronger vacuum stabilization. During

the early universe the energy scales can be too large for usual models and the vacuum

could de-stabilize.

Finally, based on [3] more general set ups were investigated, originating ultimately

from M-theory. While most of the models do have an analogue in one of the string the-

ory compactifications the models can be understand most easily coming directly from

M-theory. We have shown that it might be worthwhile to investigate M-theory com-

pactifications on its own due to the way the additional tree level terms help in building

de Sitter vacua without the inclusion of all non-perturbative corrections. While M-

theory compactifications are certainly less well understood and investigated than their

string theory counterparts and there are many open questions it is also true that non-

perturbative corrections, for example from instantons, lack a complete description in

string theory. For this reason our M-theory models could be an alternative that are

worthy for further investigation.
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