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Overview

At the beginning of my stay at the Laboratory of Mathematics in Imaging
(LMI) in Boston I was invited to give a talk at the LMI and the Applied Chest
Imaging Laboratory to present my research. Moreover, I could attend several
seminars in the LMI itself and related research groups, including the Applied
Chest Imaging Laboratory, the Golby Lab at Brigham and Women’s Hospital
and the Computer Science and Artificial Intelligence Laboratory (Csail) at MIT.
It was a perfect possibility to connect with a wide range of researchers and find
suitable people for collaborations. That yielded two main projects during my
stay:

1. Coil combination with orthogonal projections

2. Brain tissue segmentation with an augmented target loss function

In both projects I could merge different parts of my PhD project with ap-
plications in Magnetic Resonance Imaging (MRI). At the end of my stay I
presented a poster about my research on MRI reconstruction with orthogonal
projections at the 7th Annual Radiology Research Symposium, Brigham and
Women’s Hospital.

The outline of the report is as follows: in the first chapter I will present my
work on orthogonal projections for coil combination in the form of a preprint
paper with the status of September 2019. The second chapter consists of three
parts: first, a section from my paper [1] introduces the method of augmented
target loss functions, then I present results of the application to brain tissue
segmentation with MRI data, and at the end the application to photoreceptor
segmentation in optical coherence tomography (OCT) data. All projects are
ongoing and shall yield more research results in the future.
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Abstract

MRI signal acquisition with multiple coils in a phased array is nowa-
days a standard setting. It increases the signal-to-noise ratio (SNR) and
can be accelerated by using parallel imaging methods. Some of these
methods like GRAPPA or SPIRiT yield fully sampled data in the k-space,
which need to be combined to get the final images. For this last step of
the image reconstruction, often the root sum of squares (rSOS) is used.
This straightforward method works well for coil images with high SNR,
but can yield problems in images with artifacts or low SNR in all indi-
vidual coils. We aim to analyze that final coil combination step in the
framework of linear compression. With two data sets, a simulated and
an in-vivo, we use random projections as a representation of the whole
space of orthogonal projections. This allows us to study the impact of
incorporation of linear compression on image space data, including prin-
cipal component analysis (PCA) that provides an orthogonal projection.
The L2 error, variance, SNR and visual results serve as performance mea-
sures to describe the final accuracy of reconstructions. We study their
relationships and observe that the minimal L2 error does not necessarily
correspond to the best visual results. In terms of visual evaluation and
SNR, the incorporation of compression with PCA outperforms all other
methods, including rSOS on the uncompressed image space data.

1 Introduction

Magnetic Resonance Imaging (MRI) is a unique medical imaging modality that
provides excellent image quality without ionizing radiation, but on the other
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hand is relatively slow. The acquired samples, also known as the k-space data,
are samples of the Fourier transform of the MR image. To reconstruct an
accurate MR image, sampling theory indicates the total number of k-space data
that must be acquired to avoid artifact-like reconstruction. As this number is
relatively large and cannot be arbitrarily reduced, the total scan time cannot
be shortened without compromising the image quality.

A turning point in MRI reconstruction was the implementation of phased-
array coils in the acquisition pipeline. With phased-array coils, the k-space data
is acquired in multiple receivers/coils simultaneously. On top of increasing the
signal-to-noise (SNR) ratio, a phased-array coil acquisition allows accelerating
the total acquisition time [1]. These methods, known as Parallel Imaging meth-
ods, exploit the fact that there exist complementary k-space data information
in each coil/receiver. The k-space data set is undersampled, but the multiple
measurements allow the reconstruction of missing k-space samples in a kind
of inverse problem reconstruction framework. See [2] for an overview of basic
reconstruction algorithms for parallel imaging and their history.

The computational costs and required memory of the reconstruction algo-
rithms highly depend on the dimension of the phased array, i.e. the number
of receiver coils. Several coil compression methods have been developed that
reduce to a smaller set of virtual channels without a significant loss of SNR,
see e.g. [3],[4],[5]. Moreover, PCA-based methods have shown to even have a
beneficial denoising effect, e.g. [6]. In [7], the optimal linear projection for coil
compression based on the resulting SNR is derived. Note that this is related to
our analysis approach, but we work in the image space instead of the k-space.

After the obligatory compression step, PI reconstruction methods are applied
and can result in different output spaces. Some of the methods reconstruct the
image directly (image-based methods), e.g. SENSE [8]. K-space based methods
retrieve the missing k-space data, thereby providing a fully-sampled k-space
array per each receiver/coil, e.g. GRAPPA or SPIRiT [9, 10]. Next, all k-space
data is inversely Fourier transformed and the resulting image array has to be
combined into a single final image. This image represents the conventional MR
image and is used for analysis, quantification, or visualization purposes.

In [1], optimal methods to combine the arrays from phased array elements
have been developed. These methods rely on detailed knowledge of each coil’s
magnetic fields. In practice, the exact position of the coils is not always known
or not possible to compute, because of computational limitations. To overcome
this issue, a method that combines the data without detailed knowledge of the
coils, while preserving a high SNR, is needed. For this purpose, the root sum of
squares (rSOS) has become the standard method of combining multi-coil images
in MRI [1], [11]. For arrays with high SNR the rSOS yields nearly optimal
reconstruction, whereas problems arise if all coils yield low SNR. Especially
data with artifacts are problematic since rSOS weights them equally to the
non-defective parts.

Noise has a huge impact in MRI imaging and is often caused by thermal noise
in the reception and the patient’s body itself due to radiofrequency emissions.
Moreover, the SNR in the coil images depends highly on the scanner, imaging
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modality (e.g. T1/T2/diffusion weighted) and the number of coils/receivers.
Extensive statistical noise analysis can be found in [12].

In this work, we aim to analyze the coil combination in a comprehensive
way by comparing different performance measures. To address coil combina-
tion independent of prior knowledge, we will study the rSOS in the framework
of linear image space compression via orthogonal projections. Random projec-
tions will serve us as a tool to study the correlation between reconstruction
error and voxel variance of the varying reconstructions. Correlation analysis
with random orthogonal projections has been studied in a related context in
[13], yielding an underlying understanding of the relation between important
information preservation features in data combination and compression. More-
over, we will describe the performances regarding the SNR and visualization,
indicating a clear improvement by compressing the image space data with PCA.

The outline is as follows: first we will explain how rSOS can be interpreted
in the context of orthogonal projections. Moreover, we will describe samples
of random orthogonal projections, that shall serve us as coverings enabling nu-
merical experiments. Then we describe the two data sets, a simulated and an
in-vivo, that we use for experimental investigations. The simulated data set
allows us to compare the behavior with different noise levels in the coils. In the
results, we show scatter plots describing the relation between the L2 reconstruc-
tion error and the voxel variance in reconstructed magnitude images. Finally,
we will interpret and discuss the results in Section 5.

2 Methods

We aim to study the impact on reconstruction accuracy by incorporating linear
compression in the last coil combination step with rSOS. For example, phased-
array data that has been processed with GRAPPA or SPIRiT in k-space, needs
to be combined as the final step of the reconstruction pipeline. Before com-
bining this fully sampled, multidimensional image space data, we include linear
compression with orthogonal projections.

The common reconstruction pipeline including our linear compression can
be summarized as follows:

ŷi ∈ Cd GRAPPA−−−−−→ x̂i ∈ Cd IFFT + abs−−−−−−→ xi ∈ Rd projection−−−−−→ pxi ∈ Rk rSOS−−−→ ‖pxi‖2 ∈ R

where ŷi corresponds to an undersampled k-space voxel, x̂i is fully sampled
in k-space after some PI reconstruction (e.g. GRAPPA) and xi is the image
space data. Our analysis takes place on the image space data in Rd that is
subsequently projected to Rk with k < d.

2.1 Framework of orthogonal projections

As the basis for our analysis we will use random orthogonal projections yielding
different linear coil compressions. We will work with image data consisting of d
channels that are combined into one final magnitude image. To do so, we study
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the space of k-dim linear subspaces of Rd, which can be identified by orthogonal
projections

Gk,d = {p ∈ Rd×d : p2 = p, pT = p, rank(p) = k}, (1)

called the Grassmannian manifold.
Let x = {xi}mi=1 ∈ Rd be an image space data set with m voxels measured by

d coils. Then, the final image volume is given by ‖px‖2 with p in Gk,d, where d
is the fixed number of channels and k < d varies. This corresponds to projecting
the d coil channels to different dimensions k and computing root sum of squares
(rSOS) afterwards. Note that we can study the rSOS itself in this context, since
rSOS(x) = ‖x‖2 and it holds for all p ∈ Gk,d that the expectation value

E[‖pxi‖2] = c · ‖xi‖2 ∀xi ∈ Rd, (2)

with c =
(
Γ(k+1

2 )Γ(d
2 )
)
/
(
Γ(k

2 )Γ(d+1
2 )
)
, where Γ denotes the Gamma function.

This is based on the Chi distribution and the fact that the length of a
random unit vector projected onto a fixed k-dimensional subspace has the same
distribution as the length of a unit vector in Rd being projected onto a random
k-dimensional subspace (see e.g. [14]).

Remark 2.1 The equality (2) allows us to analyze the rSOS itself in the frame-
work of orthogonal projections, i.e. no added coil compression in the image
space. Summing up the projected voxels obtained by a reasonably big sample set
of random orthogonal projections p = {pl}nl=1 ∈ Gk,d, yields approximately the
rSOS combined voxel up to the constant c, i.e.

1
n

n∑

l=1

‖plxi‖2 ≈ c · ‖xi‖2 . (3)

Since we linearly rescale the final image volumes between [0,1] to enable error
estimation with the ground truth, the constant is negligible. Note that also prin-
cipal component analysis (PCA) yields an orthogonal projection that lays in the
Grassmannian manifold and therefore can be studied in that context.

We will use random orthogonal projections, i.e. projections p ∈ Gk,d dis-
tributed according to the orthogonally invariant probability measure µk,d, as
samples of orthogonal projections, see e.g. [15], [16]. The L2 error will serve
us as a measure of reconstruction accuracy for combining a image space data
set x = {xi}mi=1 ∈ Rd. Note that w.l.o.g. x contains here just the voxels in the
region of interest and not the full image volume with background. For a fixed
projection p ∈ Gk,d, the error between some provided ground truth y = {yi}mi=1

and the combined magnitude image voxels ‖px‖2 := {‖pxi‖2}mi=1, is then given
by

Err(y, ‖px‖2) :=
1

m

m∑

i=1

(
yi − ‖pxi‖2

)2
. (4)
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We aim to study the relation between the reconstruction error and the variance
in the reconstructed magnitude images, which can be interpreted as contrast in
noise-free images. The variance of the final magnitude images depending on the
projection method can be computed as

Var
(
‖px‖2

)
=

1

m(m− 1)

∑

i<j

(
‖pxi‖2 − ‖pxj‖2

)2
. (5)

Moreover, we will use the mean signal-to-noise ratio to interpret the perfor-
mance. Note that in MRI it is common to use the non-squared version, i.e.

SNR
(
‖px‖2

)
=

1

m

m∑

i=1

‖pxi‖2
σ

, (6)

where σ corresponds to estimated standard deviation of the noise, see e.g. [12].

2.2 Random projections as coverings

To enable a numerical analysis, we need a finite set of orthogonal projections that
represents the overall space well, i.e. covers the Grassmannian Gk,d properly.
To measure how well a set covers the underlying space, we use the definition of
the covering radius.

Definition 2.2 Let the covering radius of a finite set {p1, . . . , pn} ⊂ Gk,d be
denoted by

ρ({pl}nl=1) := sup
p∈Gk,d

min
1≤l≤n

‖p− pl‖F, (7)

where ‖ · ‖F is the Frobenius norm.

Note that the smaller the covering radius, the better the finite set of projections
{pl}nl=1 represents the entire space Gk,d: it yields smaller holes and the points
are better spread.

Let µk,d denote the normalized Riemannian measure on Gk,d as before. Ac-
cording to [17], the expectation of the covering radius ρ of n random points
{pj}nj=1, independent identically distributed according to µk,d, satisfies 1

Eρ ∼ n− 1
k(d−k) log(n)

1
k(d−k) . (8)

Following the definition of asymptotically optimal covering in [16], the expec-

tation yields an optimal covering radius up to a logarithmic factor log(n)
1

k(d−k) .
To remain flexible in the dimension of Gk,d, i.e. the choice of k and d, and the
number of projections n, we will work here with random projections distributed
according to µk,d rather than constructing optimal covering sequences as in [16].
These random orthogonal projections can be efficiently computed by the QR

1We use the symbol ∼ to indicate that the corresponding equalities hold up to a positive
constant factor on the respective right-hand side.
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decomposition of a matrix M = QR with independent identically distributed
entries [18].

In the following we will use finitely many samples of random projections in
the experimental analysis.

3 Data

We will run our numerical analysis on two different MR data sets: a simulated
T1-weighted data set from brainweb ([19], [20], [21]) and an in-vivo data set
from a head coil receiver.

3.1 Simulated data set

Simulation experiments were conducted to assess the quality in image recon-
struction for different type of projections in a controlled, rigorous manner. To
do so, first, a ground-truth volume was created with the popular numerical
simulator BrainWeb [22]. A (magnitude) multi-slice T1-weighted volume was
simulated with a Spoiled Fast Low Angle Shot (SFLASH) sequence with the
following parameters: TR/TE = 20 /10 ms, flip angle of 90 degrees and ETL
= 1. Matrix size: 181× 21× 76 with isotropic voxel size of 1 mm.

Next, simulated images with 32 channels, mimicking a 32-channel coil ac-
quisition, were created. First, synthetic coil sensitivity profiles were simulated
assuming a smooth Gaussian profile [12]. Voxel-wise multiplication of those
coil sensitivities by the simulated ground-truth image creates the 32 coil-based
images. Uncorrelated complex Gaussian noise with zero mean and standard
deviation σ was added. Finally, to simulate a magnitude-based acquisition, the
absolute value of 32 noisy images were taken. The value of σ was chosen differ-
ently to recreate experiments with different noise levels, resulting in the SNR
values 2, 3, 5.5 and 11 for the mean rSOS reconstruction.

3.2 In-vivo data

MR data was acquired in-vivo from a healthy volunteer using a Siemens (Erlan-
gen, Germany) 3T Prisma equipped with a 32-channel head coil receiver. An
Echo-Planar diffusion sequence was employed to acquire 24 slices in a 2mm iso-
tropic volume, with slice-thickness 2mm (TR=3.2 sec, TE=85ms, flip-angle=90,
matrix size 128x128, FOV: 256mm by 256mm). A T2-weighted volume was
acquired, with no diffusion weighting (a ”b=0” image), followed by 62 vol-
umes acquired using a single repeated diffusion vector and diffusion setting
of b=1000. The measured EPI data was reconstructed using Dual-Polarity
GRAPPA (DPG) to minimize Nyquist ghosts, see [23]. In-plane acceleration of
the original data was R = 2. The ground-truth image was formed by motion-
correcting the 62-volume diffusion-weighted series, using the Advanced Nor-
malization Tools (ANTs) library ([24]), and averaging across time. The first
diffusion direction was studied regarding linear coil combination and compared
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to the computed the ground-truth. Few outliers have been removed by using
the 99.99th percentile and setting the remaining 0.01% to the maximum of the
used percentile.

4 Results

Both studied image volumes have a phased-array with 32 channels, therefore we
work with projections p in Gk,d2 with d = 32 and varying k. In the following
scatter plots we see how the L2 reconstruction error (4) relates to the voxel
variance (5) and state corresponding mean SNR values in the visualization.

Each point in the plots corresponds to some linear compression in rSOS,
yielding a final magnitude image volume as described in the previous sections.
The symbols + correspond to a combined image by a projection p ∈ Gk,32, i.e.
‖px‖2, and the colors correspond to the different dimensions k:

+ p ∈ G1,32,+ p ∈ G4,32,+ p ∈ G12,32,+ p ∈ G20,32,+ p ∈ G28,32,+ p ∈ G31,32 .

As described in Section 2.2 the projections p serve as a covering of the un-
derlying space and are chosen randomly according to the orthogonally invari-
ant probability measure µk,d. For the simulated data set (see Section 3.1)
n = 500 projections have been randomly chosen for every space Gk,32 with
k ∈ {1, 4, 12, 20, 28, 31}, for the in-vivo data set (see Section 3.2) n = 1000.

The symbol � corresponds to the rSOS method, i.e. ‖x‖2, and ◦ to the
compression with the orthogonal projection provided by PCA. The colors cor-
respond to the different spaces Gk,32 as stated above.

Figure 1 contains the scatter plots for 4 different noise levels in the simulated
data set and Figure 2 shows corresponding image cross-sections. Figure 3 shows
the scatter plot and image cross-sections of the in-vivo data set.

5 Discussion

In Figure 1 and Figure 3 we illustrate the scatter plots of the described linear
compression methods regarding the two data sets. To simplify the visualization
we display the spaces Gk,32 only for k ∈ {1, 4, 12, 20, 28, 31}. In all plots we
can see that the smaller the dimension k, the more the projections are spread
regarding Err(y, ‖px‖2) and Var

(
‖px‖2

)
; the reconstructions including random

projections from G1,32 are widely distributed, whereas using the projections
in G31,32 are clustered closely around the rSOS. The smaller the k, the more
original information can be randomly dismissed: the preservation and loss of
original information varies less for image space data compressed with a random
projection p ∈ G31,32 than for images space data compressed with p ∈ G1,32.

For lower noise levels in the simulated data, Figure 1 (a)-(b), we can directly
see that the correlation between the L2 reconstruction error and the variance
within the final combined images is very strong. Since variance can be inter-
preted as contrast in images with high SNR, it shows that high contrast directly
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(a) SNR = 10.64 (b) SNR = 5.45

(c) SNR = 2.77 (d) SNR = 1.96

Figure 1: Scatter plots for the simulated data set with different noise levels,
showing the reconstruction error (4) and variance (5) obtained by combining
the coils with random projections in Gk,32, PCA and rSOS. A varying amount
of Gaussian noise was added in each coil assuming no correlation [12]. The SNR
value corresponds to the mean over all voxels in the reconstructed rSOS image
volume.
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Figure 2: Cross-sectional image corresponding to the scatter plots in Figure 1
for the simulated data set with different noise levels. The left column shows the
first channel of the simulated noisy 32-dim coil array before the coil combination
step. The second column shows the final image obtained by a sample of random
projections p ∈ G28,32 with the minimal reconstruction error (4). The third
column shows the image provided by rSOS as coil combination method. The
second last columns show the magnitude images when using PCA in G1,32 and
G4,32 for compression, yielding the highest mean SNR.
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Figure 3: Left - Scatter plot for the in-vivo data set showing the reconstruc-
tion error (4) and variance (5) obtained by combining the coils with random
projections in Gk,32, PCA and rSOS. Right - Ground Truth and final images
obtained by different coil combinations of a cross-sectional image example. The
SNR value corresponds to the mean over all voxels in the reconstructed image
volume, see (6).

relates here to a good reconstruction in the L2 sense. However, the higher the
noise level, the more noise is also described in the measured variance and there-
fore it cannot directly be interpreted as contrast any more. In the simulated
data set, Figure 1 (c)-(d), this can be seen in the change of correlation behav-
ior, where higher variance does not relate to a lower reconstruction error for
all dimensions k. In Figure 1 (d) the projections from the spaces Gk,32 with
k = {12, 20, 28, 31} do not show any connection between the variance and L2

error. This might happen because the high noise level in the original data in-
fluences the measure of variance strongly, overriding the underlying meaning of
contrast. Interestingly, for k = 1 there is still some negative correlation, indicat-
ing that the randomization leads to several poor reconstructions where noise is
secondary in comparison to issues with contrast. The scatter plot corresponding
to the in-vivo data (Figure 3) shows similar behavior. Because of this varying
behavior, the variance itself does not act as a useful measure of reconstruction
performance in this experimental setup.

We can see that in all experiments, rSOS itself as well as including some
PCA yield nearly optimal L2 reconstruction error, but are always outperformed
by some random projections. Nevertheless, regarding SNR and visualization,
these reconstructed images with random compression cannot compete with PCA
compression or rSOS. That indicates some contradicting behavior, when mea-
suring the reconstruction performance with the L2 error versus the SNR. Indeed,
when using PCA for the simulated data set, the L2 error is the lowest in G31,32,
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whereas highest SNR is always achieved by PCA in G4,32, which contradictory
yields the worst L2 error. Also in the in-vivo data set the highest SNR was
achieved by using PCA in G4,32, which again does not correspond to the low-
est L2 error. Following the visual results it seems that the SNR describes here
the visual performance better than the L2 error. The compression with PCA
in G4,32 yields the highest SNR in all experiments and therefore outperforms
rSOS consistently. Compression with the standard PCA in G1,32 yields predom-
inantly better results than rSOS, but yields an insufficient visual result on the
in-vivo data.

6 Summary

Based on random orthogonal projections we have shown a numerical investi-
gation on reconstruction accuracy regarding rSOS coil combination with linear
compression. Two different MR data sets were used for our experiments; a simu-
lated T1 weighted data set with varying amount of noise and an in-vivo diffusion
weighted data set. We used diverse measures of performance to evaluated the
accuracy of the reconstructions. For the lower noise levels in the simulated data,
the L2 reconstruction error yields strong correlation with the variance, but the
behavior changes for higher noise levels and the in-vivo data. Moreover, mea-
suring L2 error and SNR acts contradictory in terms of optimality and in these
cases we observe that the visual evaluation corresponds more to the SNR. The
highest SNR values were achieved by incorporating PCA as compression before
using rSOS, outperforming rSOS with no compression in all experiments. This
clearly suggests to use PCA on image space data before computing the final coil
combination with rSOS, yielding a beneficial denoising effect with higher SNR.
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Chapter 2

Augmented target loss
function in medical
applications

The following introductory section about the loss function can be found in
my paper ([1], Section 5), which was accepted in the Journal of Mathematical
Imaging and Vision (JMIV), Springer (2019).

2.1 Augmented target loss functions [1]

Whereas the input data is processed and optimized in each iteration, the target
data stays usually unchanged during the whole learning process, serving as
measure of accuracy. The representation of the target data is one key property
for successful approximation with neural networks. Here, we will introduce a
general class of loss functions, i.e. augmented target (AT) loss functions, that
use projections and features to yield beneficial representations of the target
space, emphasizing important characteristics.

In optimization problems additional penalty terms are used for regulariza-
tion or to enforce other beneficial constraints. In deep learning, weight decay
(i.e. Tikhonov regularization) is a standard adaption of the loss function to
that effect. Incorporating additional underlying information via features of the
output/target data has been studied in diverse settings tailored to particular
imaging applications. Perceptual loss functions have been used in [2] for image
super-resolution, incorporating the comparison of high-level image features that
arise from pretrained convolutional neural networks, i.e. the VGG-network [3].
Deep perceptual similarity metrics have been proposed in [4] for generating im-
ages, comparing image features instead of the original images. In [5] a similar
approach was successfully used for style transfer and super-resolution, adding a
network that defines loss functions. Anatomically constrained neural networks
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(ACNN) have been introduced in [6] and applied to cardiac image enhancement
and segmentation. Their loss functions incorporate structural information by
using autoencoders to gain features about lower dimensional parametrization
of the segmentation. Brain segmentation was studied in [7], where information
about the desired structure has been added in the loss function via an adja-
cency matrix. It was used for fine-tuning the supervised learned network with
unlabeled data, reducing the number of abnormalities in the segmentation.

The information of certain target characteristics can be very powerful and
even replace the need of annotations in some tasks. In [8] label-free learning
is approached by using just structural information of the desired output in the
loss function instead of annotated target values.

In the following, we will define a general framework of loss functions that add
information of target characteristics via features and projections in supervised
learning tasks.

2.1.1 General framework

Let the training data be input vectors {xi}mi=1 ⊂ Rr with associated target
values {yi}mi=1 ⊂ Rs. We consider training a neural network

fθ : Rr → Rs,

where θ ∈ RN corresponds to the vector of all free parameters of a fixed architec-
ture. In each optimization step for θ, the network’s output {ŷi = fθ(xi)}mi=1 ⊂
Rs is compared with the targets {yi}mi=1 via an underlying loss function L.

In contrast to ordinary learning problems with highly accurate target data,
complicated learning tasks arising in many real world problems do not yield
sufficient results when optimizing neural networks with standard loss functions
L, such as the widely used mean least squares error

LMSE({yi}mi=1, {ŷi}mi=1) :=
1

m

m∑

i=1

‖yi − ŷi‖2 . (2.1)

The training data may include important information that is obvious for hu-
mans, but poorly represented within the original target data and therefore lacks
consideration in the learning process. To overcome this issue, we propose to add
information tailored to the particular learning problem represented by additional
features of the outputs and targets.

First, we select transformations

Tj : Rs → Rt, j = 1, . . . , d,

to enable error estimation in transformed output/target spaces. Note that the
transformations Tj are not required to be linear. However, they should be piece-
wise differentiable to enable subsequent optimization of the loss function with
gradient methods. We shall allow for additional weighting of the transformations
T1, . . . , Td to facilitate the selection of features for a specific learning problem.
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The previous sections suggest that orthogonal projections can provide favorable
feature combinations, which essentially turns into a weighting procedure.

To enable suitable projections, we stack the d output/target features

T (yi) :=



T1(yi)

>

...
Td(yi)

>


 ∈ Rd×t,

so that applying a projector p ∈ Gk,d to each column of T (yi) yields p(T (yi)) ∈
Rd×t. We now define the augmented target loss function with projections by

Lp
(
{yi}, {ŷi}

)
:= L({yi}, {ŷi}) + α · L̃

(
{p(T (yi))}, {p(T (ŷi))}

)
, (2.2)

where α > 0 and L, L̃ correspond to conventional loss functions. Apparently,
Lp depends on the choice of p ∈ Gk,d. The projection p(T (yi)) weighs the

previously chosen feature transformations T (yi). Standard choices of L and L̃
are LMSE, in which case Lp becomes

Lp
(
{yi}, {ŷi}

)
=

1

m

m∑

i=1

‖yi − ŷi‖2 + α · 1

m

m∑

i=1

‖p(T (yi))− p(T (ŷi))‖2F. (2.3)

Remark 2.1.1 For k = d the projector p is the identity. In this case the
transformations can map into different spaces, i.e.

Tj : Rs → Rtj , j = 1, . . . , d,

and we can now write the standard augmented target loss function by

LAT
(
{yi}, {ŷi}

)
=

d∑

j=1

αj · Lj
(
{Tj(yi)}, {Tj(ŷi)}

)
, (2.4)

where T1 corresponds to the identity function, L1, . . . , Ld are common loss func-
tions and α1, . . . , αd > 0 are weighting parameters.

It should be mentioned that α resembles a regularization parameter. The
actual minimization of (2.1) among θ is usually performed through Tikhonov
type regularization in many standard deep neural network implementations.
The formulation (2.2) adds one further variational step for beneficial output
data representation.

Remark 2.1.2 Our proposed structure with target feature maps T1, . . . , Td as
in (2.4) relates to multi-task learning, which has been successfully used in deep
neural networks [9]. It handles multiple learning problems with different outputs
at the same time. In contrast to multi-task learning, we aim to solve a single
problem but also penalize the error in transformed spaces enhancing certain
target characteristics.
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2.2 Augmented target loss for brain tissue seg-
mentation

The following research was developed in collaboration with Fan Zhang, PhD
(Instructor, Harvard Medical School).

2.2.1 Introduction

Brain tissue segmentation is important in diffusion-weighted magnetic resonance
imaging (dMRI) for quantification of brain microstructure and visualization
tasks. The segmentation aims to label the regions of gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF). Tissue segmentation with T1- or
T2-weighted (T1w or T2w) anatomical MRI data are based on images with
high resolution and good tissue contrast. State-of-the-art dMRI segmentation
is based on anatomical MRI data segmentation that is registered to the dMRI
space. This requires inter-MRI modality registration, which is challenged by
low image resolution [10] and echo-planar image (EPI) distortions [11].

In dMRI, specific MRI sequences are used to generate images based on the
diffusion of water molecules, creating contrast in MR images. Diffusional pro-
cesses are influenced by the geometrical structure of the environment and can
be explored by MR non-invasively. This is especially beneficial when the size
of the boundaries influencing diffusion are very small, such that it could not
be resolved by conventional MRI techniques [12]. As dMRI provides important
microstructural tissue information that is not available in anatomical MRI, it
adds new informatin and could be useful for tissue segmentation.

Since diffusion appears to be a 3-dimensional process, molecular mobility in
tissues may be anisotropic. Diffusion anisotropy effects can be fully extracted
and characterized with diffusion tensor imaging (DTI). It provides further de-
tails on tissue microstructures and enables advanced application of fiber tracking
in the brain [13]. Features derived from the DTI model, such as mean diffusiv-
ity (MD) and fractional anisotropy (FA), are commonly used for dMRI-based
brain tissue segmentation methods, see e.g. [14], also in deep learning, see e.g.
[15]. However, DTI is known to be relatively non-specific to tissue changes and
can be similar between GM and WM. Diffusion kurtosis imaging (DKI) [16]
is a clinically feasible extension of DTI that characterizes non-Gaussian water
molecule diffusion. It enhances DTI by providing information about molecular
restrictions and tissue heterogeneity in the brain.

We aim to study the application of an augmented target loss function in a
deep learning method for brain tissue segmentation prediction with only dMRI
data. Instead of just using DTI parameters, DKI parameters have been derived
from the kurtosis tensor ([17]) and added as input features for the segmentation
task. The augmented target loss penalizes misclassification of voxels during the
training of a convolutional neural networks (CNN) model.
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2.2.2 Data

For our experiments we used a high-quality HCP dMRI data set for the train-
ing, validation and testing of the neural network. Diffusion weighted images
(DWIs) were acquired using a customized Connectome Siemens Skyra scanner
(acquired in both AP and PA phase encoding to correct for EPI distortions),
with TE/TR=89.5/5520 ms, 25× 1.25× 1.25mm3, and 18 b=0 images, 90 gra-
dient directions at each of b = 1000, 2000 and 3000s/mm3. The DWI data
was processed following the HCP processing pipeline [18] and co-registered to
the corresponding T1w data. Ground truth labels were obtained by using a
freesurfer segmentation (computed from the T1w data) creating a label map
with WM, GM and CSF. Here we use 50 subjects (30 for training, 10 for vali-
dation and 10 for testing).

For each brain we extract a 3D image with 11 features per voxel: 3 novel MK-
curve features, 3 corrected DKI parameters and 5 corrected DTI parameters.
These new features are now used as input for training a U-Net [19] that segments
WM, GM and CSF.

2.2.3 Augmented target loss

We use an adapted augmented target loss function ([1]), described in Section
2.1, to train a U-Net.

The design is motivated by the fact that segmentation of CSF is relatively
challenging, see e.g. [18], due to partial volume effects. This yields the loss
function

LAT = LCE + α · LMSE(xT y, xT t), (2.5)

where LCE corresponds to the categorical cross-entropy loss, LMSE is the mean-
squared error loss, α is the weighting parameter and x = (0.5, 0.5, 0)T . This cor-
responds to the transformation T (·) := 〈·, x〉 for y and t in the general definition
(2.4).

Considering that CSF has essentially different diffusion properties (unre-
stricted water diffusion) from GM and WM, using the augmented target loss
LAT adds penalization of misclassification of GM and WM as CSF and can be
regulated with the parameter α. We tested different parameters and set α = 0.5
and x = (0.5, 0.5, 0)T , where the three channels correspond to WM, GM and
CSF, respectively. Including the augmented target loss improved the prediction
accuracy by around 1% compared to the training of the U-Net without LAT .

2.2.4 Results

In Table 2.1 we quantitatively compare the segmentation performance for dif-
ferent input features:

1. FDTI , containing the 5 DTI parameters from DTI modeling (as in [24])

2. Fprop, containing the proposed 11 corrected parameters
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Acc Prec Rec
FDTI 89.21% 89.24± 2.10% 88.79± 3.39%
Fprop 91.42% 91.59± 2.16% 91.07± 1.88%

Table 2.1: Quantitative comparison between different tissue features

Comparison of the input feature sets FDTI and Fprop was performed on
the HCP test data set with 10 subjets, using the overall prediction accuracy
(Acc), as well as mean precision (Prec) and mean recall (Rec) across the three
tissue classes. The proposed U-Net with the LAT loss function was used for the
segmentation prediction.

2.2.5 Discussion

The tissue segmentation learning based on our feature selection and the aug-
mented target loss function yields promising segmentation results. We can see
that the proposed DKI-based features improved GM/WM/CSF segmentation
compared to using only conventional DTI features. This probably happens due
to including information about restricted water diffusion properties. Moreover,
we could visually observe that most of the misclassifications happens at the tis-
sue boundaries. This yields the idea to include an augmented target loss that
puts more focus on these regions in the future.

Further experiments are going on, including bigger data sets and clinical
data as well as different configurations of the augmented target loss.
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2.3 Augmented target loss for photoreceptor layer
segmentation in OCT scans

The following paper is accepted at OMIA6 (MICCAI 2019) workshop and will
be published in Springer Lecture Notes in Computer Science.
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photoreceptor layer segmentation in

pathological OCT scans
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Abstract. Segmenting anatomical structures such as the photoreceptor
layer in retinal optical coherence tomography (OCT) scans is challeng-
ing in pathological scenarios. Supervised deep learning models trained
with standard loss functions are usually able to characterize only the
most common disease appearance from a training set, resulting in sub-
optimal performance and poor generalization when dealing with unseen
lesions. In this paper we propose to overcome this limitation by means
of an augmented target loss function framework. We introduce a novel
amplified-target loss that explicitly penalizes errors within the central
area of the input images, based on the observation that most of the
challenging disease appearance is usually located in this area. We exper-
imentally validated our approach using a data set with OCT scans of
patients with macular diseases. We observe increased performance com-
pared to the models that use only the standard losses. Our proposed loss
function strongly supports the segmentation model to better distinguish
photoreceptors in highly pathological scenarios.

1 Introduction

Supervised deep learning techniques have revolutionized the field of medical
image segmentation [1], particularlly with fully convolutional neural network
architectures such as the U-Net [2]. To learn these networks, a loss function L is
optimized using gradient based approaches and backpropagation. This function
is usually defined in terms of metrics that quantify the discrepancies between a
trustworthy/ground truth labelling and the predicted segmentation.

In this typical framework a loss function is not explicitly tailored to aim for
a specific feature in the target space. Hence, the network firstly learns the domi-
nating characteristics of the target images in the training set, and its remaining
capacity is gradually devoted to characterize other less prevalent target features.
This becomes an issue when dealing with highly pathological data, where lesions
or disease appeareance might significantly differ between patients. To overcome
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this limitation, some authors proposed to train segmentation models using a lin-
ear combination of different losses such as cross-entropy and Dice [3]. However,
these metrics are still computed from the same target representation, so they do
not enhance a specific target feature. In this paper we propose to extend this
idea by using the framework of augmented target loss functions, introduced in [4].
Rather than relying on a single or a linear combination of loss functions defined
on the original prediction and target space, Breger et al. [4] proposed to compute
the loss on alternative representations of the predictions and targets, obtained by
applying differentiable transformations T that enhance specific characteristics.

This paper focuses on the application of an augmented target loss function
for photoreceptor layer segmentation in retinal optical coherence tomography
(OCT) scans of patients with macular diseases. OCT is the state-of-the-art tech-
nique for imaging the retina, as it brings volumetric information through a stack
of 2D scans (B-scans) at a micrometric resolution [5]. Ophthalmic disorders such
as diabetic macular edema (DME), retinal vein occlusion (RVO) and age-related
macular degeneration (AMD) gradually affect photoreceptors while progressing.
The abnormal accumulation of fluid due to these diseases significantly alters
the retina, eventually leading to photoreceptor cell death. This last characteris-
tic can be noticed through OCT imaging: first as a pathological thinning of the
photoreceptor layer, and more lately as complete disruptions on it (Fig. 1, right).
It has been observed that these abnormalities are highly correlated with focal
vision impairment [6] and visual accuity loss when located at the central area of
the retina [7]. Hence, the automated characterization of the morphology of the
photoreceptor layer is relevant for efficient quantification of functional loss.

In this paper we build on top of the architectural innovations proposed in [8]
by training such a model using an augmented target loss function. Fitting the
framework we introduce a novel amplified-target loss that induces further penal-
ization to errors within the central area of the B-scans. As the most challenging
pathologies are usually observed at the central area of fovea-centered OCT scans,
our hypothesis is that incorporating this loss function as a kind of regularizer
enforces the network to better characterize disease appeareance. We validate our
approach using a series of OCT scans of patients with AMD, DME and RVO.
Our results empirically show that the proposed loss functions improve the perfor-
mance within the central millimeters of the retina compared to using traditional
losses without compromising the performance in the entire volume.

2 Methods

2.1 Augmented target loss functions for image segmentation

In a supervised learning problem we aim to learn a function f with fθ(x) ≈ y,
where θ denotes the free parameters and S = {(x, y)(i)}, 1 < i < N is a given
training set with pairs of inputs x and ground truth labels y. In the context
of image segmentation, x corresponds to an input image, y and ŷ are manual
and predicted segmentations and fθ is some segmentation model (e.g. a fully
convolutional neural network such as the U-Net [2]).
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(a)
(b)

Fig. 1. Left: scanning laser ophthalmoscopy (SLO) of a patient with RVO. The square
indicates the area captured by the OCT volume and the rings represent the central
subfield (CSF) and the 3 and 6 central millimeters (3 CMM and 6 CMM). The blue line
highlights the B-scan showed in the right side. Right: CSF B-scan with photoreceptor
layer annotation (green) with (a) disruptions and (b) abnormal thinning. The red
heat map represents the weighting strategy applied in our loss function. The central
coordinate of the image is indicated with the yellow dotted line, and a profile of the
weighting strategy is illustrated on top of the B-scan.

To adjust the weights θ from the chosen network structure fθ, a loss function
L is minimized using gradient based optimization. L is a piecewise differentiable
loss function, e.g. cross-entropy (CE) or mean square error (MSE), that measures
the pixel-wise differences between ŷ and y. In standard settings no specific areas
of the images are penalized more than others. Thus, the parameters θ are mostly
adjusted to characterize those features from the training set that have the most
impact on the overall loss. Although this might be helpful to segment healthy
anatomy, in pathological scenarios the network will overfit the prevalent features
unless explicit regularization is imposed during training.

Here, we propose to use the framework of augmented target (AT) loss func-
tions, introduced in [4]. These losses take into account prior knowledge of target
characteristics via error estimation in transformed target spaces. The framework
can be applied to any supervised learning problem based on loss optimization
where additional information about the target data is available, provided it can
be formulated as a transformation function T . The transformation may corre-
spond to any piecewise differentiable function on the target space that yields a
more beneficial representation of some known target characteristic.

Following [4], the AT loss functions LAT is a linear combination of losses
applied to transformed targets. Its general form is:

LAT =
d∑

j=1

λj · Lj
(
{Tj(yi)}, {Tj(ŷi)}

)
, (1)



4 Breger & Orlandoet al.

where λj > 0 corresponds to some weight, Tj to a specific transformation and
Lj to some loss function, for all j ∈ {1, . . . , d}.

Setting typically T1 to the identity and L1 to a standard loss, the additional
terms in the LAT loss act as as amplified target information, yielding a new
optimization problem:

θ̂ = arg min
θ
{λ1 · L1

(
{yi}, {ŷi}

)
+

d∑

j=2

λj · Lj
(
{Tj(yi)}, {Tj(ŷi)}

)
, (2)

where the weights λ1 and {λj}dj=2 control the balance between the main loss
and the regularization terms respectively.

2.2 Amplified-target loss functions for photoreceptor layer
segmentation

We experimentally study the AT loss function framework in the context of pho-
toreceptor layer segmentation in pathological OCT scans. We tailor a so called
amplified-target loss in which a transformation T is designed to bring an in-
creased penalty to errors within the central area of the images. This loss is
intended to incorporate the prior knowledge that abnormalities such as patho-
logical thinnings and disruptions of the photoreceptor layer are more common in
the central millimeters of the foveal area. To do so, we define a transformation
T (yi) = 〈yi,W 〉, where yi corresponds to the given binary targets and W rep-
resents a weighting matrix that encodes a penalization weight for errors. This
operation can analogously be applied to the predictions ŷi. Fig. 1 graphically il-
lustrates the design of the weighting matrix W . Formally, we define W = Gσ ∗V ,
where Gσ stands for a Gaussian filter with standard deviation σ. We define V
as:

Vi,j :=

{
ω for i0 < i < i1 and all j,
1 otherwise,

(3)

where ω denotes the maximum weight assigned to the central area and [i0, i1] is
the horizontal interval of the image that is amplified. The Gaussian filter Gσ is
used to smooth the penalization factor within the edges of the interval.

Following the formulation in (2), we can then redefine our empirical risk
minimization problem as

θ̂ = arg min
θ
{λ1 · L1

(
{yi}, {ŷi}

)
+ λ2 · L2

(
{〈yi,W 〉, 〈ŷi,W 〉}

)
}, (4)

where we choose λ1, λ2 ∈ R and L1 = L2 as CE or MSE losses.

3 Experimental setup

3.1 Materials

Our method was trained and tested on an in-house data set with 53 Spectralis
OCT volumes of patients suffering from DME (10), RVO (27) and AMD (10).
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Each image comprises 496×512 pixels per B-scan, 49 B-scans per volume. All the
B-scans were manually annotated by certified readers under the supervision of
a retina expert, who modified the labels when necessary to obtain ground truth
segmentations. The set was randomly divided into a training, a validation and a
test set, each of them with 34, 4 and 15 scans, respectively, with approximately
the same distribution of diseases and percentages of disrupted columns per B-
scan (or A-scans).

3.2 Network architecture and training setup

We used the photoreceptor segmentation network described in [8] in our experi-
ments (note that any other architecture could be applied within our framework).
We used as baselines CE and MSE comparing it to the adapted AT loss.

Every configuration was trained at a B-scan level with a batch size of 2 im-
ages, using Adam optimization and early stopping. Hence, training was stopped
if the validation loss did not improve for the last 45 epochs. The learning rate
was set to η = 0.0001, and divided by 2 if the validation loss was not improved
during the last 15 epochs. Data augmentation was used in the form of random
horizontal flippings. Binary segmentations were retrieved as in [8] by threshold-
ing the softmax scores of the photoreceptors class using the Otsu algorithm.

4 Results and Discussion

We evaluated the performance for segmenting the photoreceptor layer using the
volume-wise Dice index, at the CSF, the 3 CMM, the 3-1 ring and the full volume
(Fig. 1, left). All the experiments with our AT loss functions were conducted
using fixed values for σ = 1

16X, i0 = 1
4X and i1 = 3

4X (with X = 512 being
the horizontal size of the B-scans, in pixels), without optimizing them on the
validation set. Different configurations for ω = 2k, k ∈ {1, ..., 5} and λ1 and λ2 ∈
{0.001, 0.01, 0.1, 1, 2, 4, 8 } were analyzed, and the best configuration according
to Dice index on the validation set was then fixed to allow a fair comparison on
the test set. From this model selection step, we observed that ω = 8, λ1 = 1 and
λ2 = 8 reported the best performance for the AT loss with categorical cross-
entropy (CE), and ω = 32, λ1 = λ2 = 1 for the AT loss with mean square error
(MSE).

Fig. 2 depicts boxplots with the quantitative performance of each model on
the test set, compared with their corresponding baselines trained only with CE
and MSE, for each evaluation area. The mean and standard deviation values of
the Dice index are presented in Table 1. The incorporation of the AT loss allows
to perform consistently better in all the cases, with the best results reported
by the MSE loss. Statistical analysis using one-tail Wilcoxon sign-rank tests
at a significance level α = 0.05 showed that the model trained with MSE +
AT loss reported significantly higher Dice values in the CSF area compared to
using CE + AT loss or only MSE (p < 0.0171). These differences were not
statistical significant with respect to the model trained with CE (p = 0.1902).
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(a) Cross entropy (b) MSE

Fig. 2. Volume-wise Dice values for all the evaluated models and our proposed approach
in each evaluation area. Circles indicate mean values. CSF: central subfield (1 central
millimeter). 3 CMM: three central millimeter. 3-1 ring: area between CSF and 3 CMM.

Table 1. Volume-wise mean ± standard deviation Dice values in the test set for each
photoreceptor segmentation model in each area.

Method CSF 3 CMM 3-1 ring Full volume

CE loss
0.622

± 0.271
0.691

± 0.242
0.708

± 0.242
0.820

± 0.118

CE + AT loss
(CE, ω = 8, λ1 = 1, λ2 = 8)

0.656
± 0.256

0.718
± 0.218

0.732
± 0.218

0.828
± 0.100

MSE loss
0.560

± 0.303
0.707

± 0.223
0.727

± 0.223
0.835

± 0.096

MSE + AT loss
(MSE, ω = 32, λ1 = λ2 = 1)

0.708
± 0.254

0.749
± 0.215

0.760
± 0.213

0.821
± 0.102

When comparing the Dice values at the 3-1 ring, the MSE with AT loss model
reported statistically significant better results than using only CE or MSE (p <
0.0042), which is consistent with its behavior in the 3 CMM (p < 0.0416).
No statistically significant differences in performance were observed at the full
volume level (two-tails test, p > 0.0730).

We qualitatively analyzed the segmentation and score maps using the CE
and MSE combined with the AT loss. Fig. 3 depicts segmentation results in a
central B-scan from the test set, with score maps represented as heatmaps. Using
MSE produces noisy scores within the lateral areas of the B-scans, and therefore
spurious elements in the segmentation. CE, on the contrary, results in smoother
score maps, although with few false negatives in the vecinity of subretinal fluid.
This behavior is linked to the one observed in Table 1, where the MSE + AT loss
model reported higher Dice in the central area than using CE, and smaller values
in the full volume. The model trained with only MSE performs poorly in the
CSF, the 3 CMM and the 3-1 ring, which indicate that it struggles to deal with
pathologies. Similarly, the high performance at a volume level indicates that it
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Fig. 3. Qualitative effect of the loss selection in the pixel score values. From left to
right: manual annotation (green), score map (orange) and binary segmentation (yellow)
obtained with MSE + AT loss (MSE, ω = 32, λ1 = λ2 = 1) and CE + AT loss (CE,
ω = 8, λ1 = 1, λ2 = 8).

can better characterize normal appeareances. When using MSE + AT loss, a
significant reduction in the amount of false negatives occurs at the central areas.
However, as mentioned before, the score maps are noisy at the borders of the
B-scans, which causes a drop in the full volume Dice. The model trained with
CE + AT loss is less accurate at the center than the one trained with MSE +
AT loss, but it still outperforms the baseline approaches. Moreover, at a volume
basis the CE + AT loss remains competitive with respect to the one trained only
with CE loss.

Finally, Fig. 4 presents qualitative results in exemplary central B-scans from
our test set obtained both by the models trained with CE only and with CE
+ AT loss. Our approach produced more anatomically plausible segmentations
than the standard CE loss in pathological areas with subretinal fluid (Fig. 4 (a)
and (b)) or large disruptions (Fig. 4 (c)).

5 Conclusions

In this paper we proposed to use the framework of augmented target loss func-
tions for photoreceptor layer segmentation in pathological OCT scans. We define
an amplified-target loss incorparating a transformation that weights the central
area of the input B-scans to further penalize errors commited in this region.
We experimentally observed that this straightforward approach allows to sig-
nificantly improve performance within the central millimeters of fovea-centered
OCT scans, without affecting the overall performance in the entire volume. These
results indicate that the proposed AT loss function acts as a form of regulariza-
tion, better characterizing photoreceptors appeareance within highly pathologi-
cal regions. We are currently exploring new alternatives to identify the regions
to weight and to learn their corresponding weights. Further experiments are also
performed to evaluate our approach in the context of other OCT based applica-
tions such as fluid segmentation and using OCT scans from other vendors.
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(a)

(b)

(c)

Fig. 4. Qualitative results in central B-scans from the test set. From left to right:
manual annotations (green), results with only CE loss (blue) and results with CE +
AT loss (CE, ω = 8, λ1 = 1, λ2 = 8).
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