
MASTER THESIS
Thesis submitted in partial fulfillment of the requirements for
the degree of Master of Science in Engineering at the Univer-
sity of Applied Sciences Technikum Wien - Degree Program
Game Engineering and Simulation Technology

Using Procedural Content Generation via
Machine Learning as a Game Mechanic

By: Bernhard Rieder, BSc

Student Number: 1610585006

Supervisors: FH-Prof. Dipl.-Ing. (FH) Alexander Hofmann
Dr. Santiago Ontañón

Wildendürnbach, September 19, 2018

Declaration

“As author and creator of this work to hand, I confirm with my signature knowledge of the rele-
vant copyright regulations governed by higher education acts (see Urheberrechtsgesetz /Aus-
trian copyright law as amended as well as the Statute on Studies Act Provisions / Examination
Regulations of the UAS Technikum Wien as amended).

I hereby declare that I completed the present work independently and that any ideas, whether
written by others or by myself, have been fully sourced and referenced. I am aware of any con-
sequences I may face on the part of the degree program director if there should be evidence of
missing autonomy and independence or evidence of any intent to fraudulently achieve a pass
mark for this work (see Statute on Studies Act Provisions / Examination Regulations of the UAS
Technikum Wien as amended).

I further declare that up to this date I have not published the work to hand nor have I presented
it to another examination board in the same or similar form. I affirm that the version submitted
matches the version in the upload tool.“

Wildendürnbach, September 19, 2018 Signature

Kurzfassung

Prozedurale Inhaltsgenerierung ist ein maßgebliches Thema in modernen Videospielen, da sie
eine erhebliche Rolle bei der Erstellung von Spielinhalten beiträgt. Neue Forschungsergeb-
nisse haben nun mit maschinellem Lernen neue Horizonte für prozedurale Inhaltsgenerierung
erschlossen. Dabei wurde festgestellt, dass es noch bestimmte Thematiken zu erforschen gilt,
wie etwa die Verwendung von prozeduraler Inhaltsgenerierung durch maschinelles Lernen als
Spielmechanik.

Folglich beschäftigt sich diese Arbeit mit der Fragestellung, wie prozedurale Inhaltsgener-
ierung durch maschinelles Lernen als Spielmechanik verwendet werden kann, was im Folgen-
den als Spielmechanik bezeichnet wird. Die Arbeit folgt dem Ansatz, einen Leitfaden für En-
twickler zu erschaffen, der diese mit theoretischem und praktischem Wissen für eine Entwick-
lung dieser Spielmechanik vorbereitet. Es wird zuerst Theoretisches behandelt, anschließend
näher auf mögliche Spielmechanik-Konzepte eingegangen, woraus eine der Mechaniken als
Prototyp entwickelt wird. Die Entwicklung dieses Prototypen wurde dokumentiert, so dass Spie-
lentwickler dieser Umsetzung bei Bedarf folgen können.

Diese Abhandlung zeigt, dass sich die Spielmechaniken für eine große Palette von Spielgen-
res eignen. Dreizehn unterschiedliche Konzepte von Spielmechaniken werden thematisiert,
woraus die Spielmechanik "Wechselnde Waffen" für einen Prototypen gewählt wurde. Das
Hauptmerkmal dieser Mechanik ist, dass sie einen Waffen-Generator besitzt, welcher neue,
aber ähnliche Waffen – basierend auf Waffen eines bekannten Ego-Shooters – generieren
kann. Der Generator verwendet einen in TensorFlow implementierten "Variational Autoen-
coder", um die verborgene Struktur der zur Verfügung gestellten Waffen abzubilden und ist
in der Lage, sinnvolle Waffen Daten zu generieren. Als Beweis, dass der Generator ohne Prob-
leme in häufig verwendeten Spieleentwicklungsumgebungen funktioniert, wurde er in einem
Test Spielszenario integriert, welches mit Unreal Engine 4 entwickelt wurde.

Um die Arbeit abzuschließen, wurde ein detaillierter Leistungsbericht erstellt, welcher zeigt,
dass die entwickelte Spielmechanik keine nennenswerten Leistungseinbußen mit sich bringt.
Das bedeutet, dass es möglich ist diese Spielmechaniken in gewöhnlichen Videospielen zu
verwenden. Daher zeigt dieser Nachweis der Machbarkeit, dass für zukünftige Spiele eine
neue Ära von Spielmechaniken angebrochen ist.

Schlagworte: Prozedurale Inhaltsgenerierung, Maschinelles Lernen, Spielemechanik, Kün-
stliche Intelligenz, Spieleentwicklung, Neuronale Netze

Abstract

Procedural Content Generation (PCG) is a powerful and essential topic in modern video games
which helps developers to create a vast amount of game elements. Recent research now
connected PCG with Machine Learning (ML) to enable new horizons of content generation.
Nevertheless, the research showed that there is still much to do and left the problem of using
PCG via ML (PCGML) as a game mechanic open for further research.

For this reason, this thesis dedicated itself to address this open problem with a theoretical and
practical approach and furthermore provides developers with a guideline about the procedure of
developing PCGML game mechanics. It first addresses fundamental theoretical issues which
help to create awareness for PCGML in the first place. It then addresses possible PCGML
game mechanics where one of them was implemented in a game prototype scenario. The
entire development process for this prototype was documented so that developers can follow
them step by step to implement their PCGML game mechanics.

Now, the research showed that PCGML game mechanics are suitable for a broad range of
games without limitation to particular genres. 13 different ideas are described in the thesis and
one particular idea called "Changing Weapons" was then implemented in a game prototype
scenario. The game mechanics primary feature is a weapon generator which can generate
new but similar weapons based on the weapons of a well-known first-person shooter game. In
specific, the generator uses a with TensorFlow implemented variational autoencoder to learn
the underlying and hidden structure of the provided weapon data and can generate useful
weapon data. This generator was then integrated into Unreal Engine 4 to test and prove that a
PCGML game mechanic can be used in a typical game engine and showed that this application
is possible without any issues.

To conclude the thesis, a performance report was created which showed that the imple-
mented game mechanic does not cause significant performance losses. Thus, it is possible
to use PCGML-based game mechanics in regular video games. Therefore, with this proof-of-
concept, a new game mechanic area for creating new player experience has opened for future
games.

Keywords: Procedural Content Generation, Machine Learning, Game Mechanic, Artificial In-
telligence, Game Development, Neural Networks

Acknowledgements

I want to thank the Austrian Marshallplan Foundation which sponsored my stay in the United
States of America to write this master thesis. Moreover, many thanks to Dipl.-Ing. (FH) Alexan-
der Hofmann who contributed with his consent, extensive help and support, and the excellent
recommendation for the most suitable international University for a study abroad. For this rea-
son, I also want to say thank you to the Drexel University and Dr. Michael Wagner who invited
me to work on the thesis in their department. Last but not least, a special thank you to Dr. San-
tiago Ontañón - my supervisor at the Drexel University - I could not have finished this master
thesis without your extraordinary support!

Contents

1 Introduction 1
1.1 Idea . 2

1.1.1 Advantages . 2
1.1.2 Challenges . 3

1.2 Desired Goals . 3
1.3 Approach . 4
1.4 Thesis Overview . 5
1.5 Target Audience . 6

2 Game Mechanics 7
2.1 Definition . 7
2.2 Types of Mechanics . 8
2.3 Considerations with Procedural Content Generation and Machine Learning . . . 10

3 Procedural Content Generation 12
3.1 Introduction . 12

3.1.1 Reasons to Use . 12
3.1.2 Taxonomy . 13

3.2 Development . 14
3.2.1 Design Considerations . 15
3.2.2 Possibilities . 16
3.2.3 Conceptual Implementation . 17

3.3 Game Mechanics . 17
3.3.1 Current Games . 18
3.3.2 Possible Core Mechanics . 19

4 Machine Learning 21
4.1 Types of Learning Problems . 21

4.1.1 Supervised Learning . 21
4.1.2 Unsupervised Learning . 22
4.1.3 Reinforcement Learning . 23
4.1.4 Generative versus Discriminative Models 23

4.2 Development . 24
4.2.1 Design Considerations . 24
4.2.2 Common Pitfalls . 25

4.2.3 Data Preprocessing . 26
4.2.4 Game Engine Plugins . 27

4.3 Game Mechanics . 28
4.3.1 Current Games . 28
4.3.2 Possible Mechanics . 29

5 Procedural Content Generation via Machine Learning 32
5.1 Difference to Procedural Content Generation . 32
5.2 Use Cases . 33
5.3 Development Considerations . 33

5.3.1 Machine Learning Models . 34
5.4 Development Example . 34

5.4.1 Data . 35
5.4.2 Training . 35
5.4.3 Generation . 36

6 Possible Game Mechanics 37
6.1 Concepts and Development Evaluation . 37

6.1.1 Rules and Behavior . 38
6.1.2 Changing Weapons . 39
6.1.3 Changing Powers . 39
6.1.4 Solver Weapon . 40
6.1.5 Defeat of the Enemy . 41
6.1.6 Caught in a Thunderstorm . 42
6.1.7 Train to Progress . 42
6.1.8 Building with Assistance . 43
6.1.9 The exploring Co-Worker . 43
6.1.10 Observe and Learn . 44
6.1.11 Express Yourself . 44
6.1.12 Big Boss Helper . 44
6.1.13 Figure it Out . 45
6.1.14 Novel Vehicles . 45

6.2 Summary . 46
6.2.1 Game Mechanic for the Prototype . 46

7 Prototype Preparations 47
7.1 Test Scenario . 47

7.1.1 Environment and Objective . 47
7.1.2 Weapon and Ammunition . 48
7.1.3 Player and Enemies . 48

7.2 Which Game Engine? . 48
7.2.1 Unity . 49
7.2.2 Unreal Engine 4 . 50
7.2.3 Conclusion . 51

7.3 Hardware and Software Requirements . 51
7.3.1 TensorFlow Plugin . 51

7.4 Data Acquisition . 52
7.4.1 Unreal Tournament and Template Project 52
7.4.2 Counter-Strike: Global Offensive . 53
7.4.3 Real-World Data . 53
7.4.4 Battlefield 1 . 53

7.5 The Learning Problem . 54
7.5.1 Suitable Models . 55
7.5.2 Model Conclusion . 56

7.6 Used Model Introduction . 57

8 Prototype Development 60
8.1 Data Preprocessing . 60

8.1.1 Dump Extraction . 60
8.1.2 Manual Dimension Reduction, Addenda and Unification 61
8.1.3 Encoding and Feature Scaling . 63
8.1.4 Training and Test Dataset . 63
8.1.5 Convenience Class Overview . 63

8.2 Variational Autoencoder . 64
8.2.1 Class Overview . 64
8.2.2 Model Accuracy Measurement . 65
8.2.3 Network Hyperparameter Selection . 66
8.2.4 Random Input Generation Example . 69
8.2.5 Development Issues . 69

8.3 Game Scenario . 71
8.3.1 Head-up Display . 72
8.3.2 Player . 72
8.3.3 Bots . 72
8.3.4 Weapons . 73

8.4 Weapon Generator . 73
8.4.1 Workflow . 74
8.4.2 Parameter Modification and Adjustable Parameters 76
8.4.3 TensorFlow Plugin Changes . 76

8.5 Performance and Profiling . 76
8.5.1 Conclusion . 77

9 Conclusion 80
9.1 Research Result . 80

9.1.1 Theoretical Introduction . 80
9.1.2 Practical Examination . 81

9.2 Future Work . 81

Bibliography 83

List of Figures 88

List of Tables 89

List of Code 90

List of Abbreviations 91

A Procedural Content Generation via Machine Learning Game Mechanics Summary 93

B Battlefield 1 Community Weapon Analytic Dump Parameters 94

C Battlefield 1 Weapon Distribution Charts 98

1 Introduction

Procedural Content Generation (PCG) is an essential and aspiring topic in modern games and
is extensively used for decades (Togelius et al., 2011). Therefore, further research on different
subjects of PCG is necessary to provide new techniques for games development. Notably, it
is primarily a very crucial topic for small independent game development studios due to a low
budget, where PCG can generate much content for less effort and human resources (Blatz &
Korn, 2017). For example, it can be a difficult task to design and develop a broad range of
content in a short amount of time and a small team. With this in mind and according to Moore’s
Law, more and more storage will be available on a gaming system in the future and thus will
offer game developers more space for content. While gamers and players will be getting used
to massive amounts of content because of big gaming companies which can establish a broad
range of new content without the use of PCG, the small development teams will not keep up
as smooth as the market leaders. Here is where Machine Learning (ML) comes into play. PCG
is getting much more accessible and compelling with the help of ML which combined form the
new technique of Procedural Content Generation via Machine Learning (PCGML) (Summerville
et al., 2017).

The critical advantage of PCGML over PCG is that standard PCG techniques need to be
finetuned or even explicitly designed for specific generation tasks, while PCGML techniques
aim at designing general PCG algorithms that can generate a large class of content by just
seeing data via ML. Therefore, a PCGML system opens a lot of new possibilities because it
makes use of ML. For example, it can be trained on its own and evolve if they do not generate
usable output (Summerville et al., 2017). Furthermore, the system could also be trained by
some designers with unique input or by a regular user with their creative input (Summerville
et al., 2017). PCGML can be used for many aspects of a game since it can learn from simple
examples and existing domains. Most current work on PCGML focuses on creating designed
content like unlimited amounts of different levels (Summerville et al., 2017). However, there
are some open problems which need to be addressed to utilize the whole power of PCGML,
and one of the open problems is about the use of PCGML as a game mechanic (Summerville
et al., 2017). In particular, this research problem is very promising for, e.g., evolving the overall
player experience in games, which could enhance the future of player experience development.

1

1.1 Idea

PCGML is a relatively new method and technique for creating different kinds of content in mod-
ern video games, and most current work focuses mainly on replicating designed content to
provide the player with infinite and unique variations on gameplay (Summerville et al., 2017).
In general, Summerville et al. (2017, p. 1) defined PCGML as ”the generation of game content
using ML models trained on existing content.”

Another possible innovative use of PCGML is its use as the central mechanic of a game,
e.g., presenting the PCGML system as an adversary or toy for the player to engage with
(Summerville et al., 2017). However, the promising paradigm of using PCGML as a game
mechanic is an open and unexplored research problem (Summerville et al., 2017). On this ac-
count, the main idea to pursue in this thesis is to explore the possibilities in the use of PCGML
as a game mechanic.

With this in mind, it needs a detailed analysis on how it could be used best in games. For
example, a design of mechanics could include enticing the player to generate content that is
significantly similar to or different from the corpus the system was trained on, or identify content
examples that are outliers or typical examples of the system (Summerville et al., 2017). Alter-
natively, players could also train PCGML systems to generate examples that possess certain
qualities or fulfill specific objective functions, teaching the player to operate a model by feeding
it examples that shape its output in one direction or the other (Summerville et al., 2017).

Various design patterns can guide the development of an exemplary PCGML game mechanic
system. As illustrated by Treanor et al. (2015), design patterns can follow the concepts of
the Artificial Intelligence (AI) as visualized, role-model, trainee, editable, guided, co-creator,
adversary, villain or spectacle. Every one of them provides an excellent guiding principle for
designing and implementing a PCGML game mechanic.

1.1.1 Advantages

As already mentioned, PCGML can offer an unlimited amount of content when used as a con-
tent generation pipeline which is also applicable to game mechanics. In general, PCG mechan-
ics are offering knowingly more replay value than usual game mechanics (Shaker et al., 2016).
However, this is going to increase significantly and offers more flexibility with the help of ML
by, e.g., behavior learning where a player could replay a game with a different behavior which
would lead to different events in the game.

Another advantage offers the use of preference learning for, e.g., a difficulty adaption system
in combat between the player and the PCGML system. In that scenario, the system could work
against the player’s preference with using, e.g., a specific weapon and counter-attack with a
defensive advantage and therefore can increase or decrease its difficulty on demand.

In particular, a player could also experience an emotional connection with, e.g., a trainee-
based PCGML system that needs to be taken care of by hatching, raising and training

2

it throughout the game. This effect of emotional attachment to software is known as
the "Tamagotchi-Effect" which has arisen from the famous pet hatching game Tamagotchi
(Holzinger et al., 2001). Hence, a system like that can enhance positive and magnificent mem-
ories for the players and thus for the game experience and the game itself.

1.1.2 Challenges

One of the leading challenges in creating a PCGML game mechanic is the design of the me-
chanic which should fulfill some crucial requirements of game design to offer a good player
experience. As well, the ML part is going to be a challenging part since it might take much
tweaking and data to get a fully working AI algorithm.

1.2 Desired Goals

It is important to note that the main idea of this master thesis is to create game mechanics
which rely on the principles of PCGML rather than creating a generic PCGML game mechanic
generator.

With this in mind, it is expected to provide a first insight into the use of PCGML as a game
mechanic in modern games. The primary goal is to demonstrate the possibilities as well as the
development process of game mechanics when it comes to the use of PCGML and also how
games should work when using PCGML.

Additionally, there are some further questions which need to be addressed by this thesis. It
should impart some theoretical and practical knowledge of PCG, ML, PCGML, and PCGML
as a game mechanic. On this account, it is desired to show how an implementation of these
concepts can look like and which dependencies are given and needed for a fully working imple-
mentation.

Furthermore, it should provide a good overview and function as a primer for developing pro-
prietary PCGML game mechanics in a specific game engine or other environments. In partic-
ular, it shall be a focus on implementations in commonly used game engines since most of the
independent game developers are using existing free-to-use game engines instead of creating
a new engine.

A substantial goal of this work is a fully working game prototype with PCGML as the core
game mechanic which acts as a perfect example of what is possible with this kind of function-
ality. Also, since video games, in general, are performance-heavy applications, it should cover
a performance report as a point of reference for future implementations and uses. As an ad-
ditional point, it should include an outlook of the opportunities of PCGML game mechanics in
future games and work, which should also function as motivation for future work in this field of
research.

Generally speaking, it should be an overall guideline for bringing PCGML game mechanics
into a game.

3

1.3 Approach

As mentioned before, one goal of this thesis shall be the support of small and independent
game developers with an introduction to PCGML game mechanics in a game engine like Unreal
Engine or Unity. For doing so, it is going to address all essential topics which are dependent on
building PCGML game mechanics and their use in game engines. For this reason, the planned
agenda to approach the use of PCGML as a mechanic will be broken down into two parts.
The first one is a scientific-informal part about getting to know more about the foundations of
PCGML and its use as a game mechanic. Since PCGML is a relatively new subject in game
development, it focuses on topics regarding central fields of interest in PCG and ML separately
and game mechanics to act as a base for further research on PCGML as a game mechanic
and to create awareness for these topics in the beginning. Following topics shall be a part of
the informal research:

• Game mechanics and their use in games.

• Necessary and essential theory of PCG and ML which is dependent on PCGML with a
constant focus on game mechanics, like types of PCG and some of the most used learning
and training models of ML.

• The conceptual use of PCG and ML in a game engine as well as best practices, other
approaches, and possible issues.

Afterward, all the beforehand discussed topics shall be combined into PCGML and further-
more into PCGML game mechanics. Therefore, the second part of the research agenda deals
with the central scientific problem of this master thesis. It addresses every aspect of PCGML
and discusses how to use PCGML as a game mechanic in modern games with a focus on the
maximum possible benefit for game developers. This part shall contain the following fields of
research:

• The theory of PCGML and its methods in general.

• Research on different PCGML implementations and practical usage possibilities in a
game engine.

• Overview of possible game mechanics with PCGML.

• Conceptual implementation of possible PCGML game mechanics in a game engine and
subsequent evaluation as well as a detailed comparison.

• Game development insights with one of the best-evaluated PCGML game mechanic as
the central game mechanic of the game.

• Proof of concept with a fully working PCGML game mechanic game scenario prototype.

4

• Research summary with the meaning of PCGML as a game mechanic for the future of
games.

However, as necessary as a well-prepared agenda are some methodological questions which
need to be raised and answered at both research and implementation time, like:

• Which free-to-use game engine is eligible for PCGML game mechanics?

• What are applicable PCGML game mechanics for games?

• What are appropriate evaluation criteria?

1.4 Thesis Overview

The thesis starts with a short introduction to game mechanics and their possibilities with some
considerations to PCGML. This chapter follows an introduction to PCG and ML to create aware-
ness of their development and their use with and without games. Additionally, they mention
some best practices and common mistakes during the development. Right after this chapter
follows the PCGML chapter which describes the differences to conventional PCG algorithms,
lists its most useful use cases, and explains development considerations of previous research
and the development for the prototype. A theoretical development example of how PCGML can
work in a game closes this chapter.

The next chapter addresses the possible applications of PCGML as a game mechanic and
describes 14 different ideas. Each one consists of a short introduction followed by pros and
cons as an evaluation for theoretical development. A summary of the game mechanics with a
conclusion for the prototype’s game mechanic sums up this chapter.

The next step on the agenda is the preparations for the prototype so that developers learn
about requirements to implement a PCGML game mechanic. It starts with a simple game
design of the prototype scenario, goes straight to the question of which game engine is the
most promising one, and explains the hard and software requirements for the development
environment and the game. The further focus then moves to the actual data which is used
to train the PCGML model. It first shows different sources for the model’s training data and
then goes over to the actual learning problem which needs to be solved by the PCGML model.
This chapter addresses the actual learning problem, shows suitable learning models and lastly
introduces the used model so that the reader knows about its unique characteristics.

Now, that there are no further questions about the development, it starts with the proof-of-
concept and practical part of the thesis and the development of the prototype PCGML game
mechanic. The first chapter addresses the procedure of processing the PCGML model raw
data into a usable and convenient class for the prototype. The next and most crucial part of
the development is the introduction of the actual PCGML model. It shows the classes, ad-
dresses specific topics about the development, and shows empirical observations of the model
to prove that it is working. Afterward comes a short introduction to the game scenario and its

5

implemented features. Following comes the explanation of the workflow and parameters for the
most crucial part of the implemented game mechanic. To sum up the prototype development, it
shows performance and profiling charts of the used game mechanic in the game engine.

A concluding chapter sums up the thesis, recaps, and analyses the research results in-depth.
At last, it addresses possible improvements and future work for the implemented game me-
chanic and PCGML as a game mechanic.

1.5 Target Audience

Advanced game developers who are interested in using PCGML game mechanics in their game
are the core focus of this thesis. The theoretical part assumes knowledge of game design and
mechanics, PCG, AI, and ML since it will not be explained everything in detail. In particular,
specific topics of PCG and ML which contribute to the use of PCGML as a game mechanic will
be discussed and handled in more detail, but it requires an understanding of Neural Networks
(NNs).

The practical part concentrates primarily on the design and implementation of a game and
game mechanics which makes it necessary for the reader to be familiar with these subjects.
Particular algorithms used throughout the chapters will be covered in detail whereas basic algo-
rithm knowledge is assumed. Furthermore, it does not require exceptional game development
back-end skills since it addresses the use of the technique in game engines.

6

2 Game Mechanics

Starting this chapter with a quick insight into the Mechanics-Dynamics-Aesthetics (MDA) frame-
work which was introduced by Hunicke et al. (2004), helps to understand the foundation and
the correlation of game mechanics in video games. In general, the MDA framework describes
the division of gaming experience emergence into three dependent parts, starting with "Rules"
followed by "System" and concluded with "Fun" (Hunicke et al., 2004). On this account, Hu-
nicke et al. (2004) described these fundamental parts of a game by the designs of mechanics,
dynamics, and aesthetics. Therefore, mechanics contribute to a significant amount of gaming
experience, and it needs adequately thought through mechanics because otherwise, a game
will not be fun at all even if it has incredible graphics (Adams & Dormans, 2012). Consequently,
game mechanics are acting as one of the most critical roles in game design which is the reason
to create awareness for this topic at the beginning of the thesis.

2.1 Definition

As already indicated, a game mechanic is a concept with many underlying sub-concepts like
dynamics, aesthetics, rules, systems, processes, procedures or data which all characterize the
heart of a game besides story and technology (Adams & Dormans, 2012) (Schell, 2008). It also
creates gameplay and the experience of playing a game. However, there is no concrete defini-
tion of what a game mechanic is. Nonetheless, there are some essential concepts mentioned
by different game designers which contribute to an interpretation of what a game mechanic can,
shall be or do:

• Defines how a game is played, their objectives can be achieved or how to lose a game
(Schell, 2008). Thus, mechanics are precisely designed, detailed, specified and imple-
mented to fulfill playability (Adams & Dormans, 2012) (Schell, 2008).

• Often used to indicate the most influential and affecting aspect of a game which is also
mostly referred to as core mechanic (Adams & Dormans, 2012).

• Enables interaction and control of game objects and elements (Adams & Dormans, 2012).

• Is mostly hidden from the player, media-independent and easy to learn (Adams & Dor-
mans, 2012). For example, players are mostly aware of primary and often explained
mechanics like character abilities whereby mechanics like an enemy damage model with
its damage points are hidden concepts (Adams & Dormans, 2012).

7

• Can also be described as a meeting point for a designers question and their provided
tools for answering that question by a player (Stout, 2015).

2.2 Types of Mechanics

It is evident that one tries to divide possible mechanics into concrete types based on their
various possibilities and shared base ideas. For this purpose, Adams & Dormans (2012) sum-
marized different types of game mechanics which are mainly used in games nowadays. Adams
& Dormans first categorized them into the following five types which are listed below with some
related mechanics:

• Physics: Motion and forces like gravity, shooting, fighting, jumping, moving, driving or
any other kind of position change (Adams & Dormans, 2012).

• Internal Economy: In general, all game elements which involve transaction like collect-
ing, consuming, harvesting, buying, building, upgrading, risking or customizing of re-
sources like currency, ammunition, portions, power-ups or other kinds of items (Adams
& Dormans, 2012). Also the use of energy, health, lives, power, points, popularity or
experience and management actions for a team, resources or inventory (Adams & Dor-
mans, 2012).

• Progression Mechanisms: Usually the elements or mechanisms which are controlling
the players progress in the game world (Adams & Dormans, 2012). For example, quests,
missions, competitions, tournaments, races, challenges, levers, switches, locks, keys or
unique items which allow a player to defeat an AI (Adams & Dormans, 2012).

• Tactical Maneuvering: Is mainly used in strategy games but also in roleplay or simulation
games and often deals with the placement of elements on a map like in chess (Adams
& Dormans, 2012). Mechanics are for instance internal tactics where a player gains of-
fensive or defensive advantage but also team tactics and management of resources and
buildings (Adams & Dormans, 2012).

• Social Interaction: Refers to rules that govern play-acting of a player or strategic actions
of forming allies to defeat bosses or other allies like in Roleplay Games (RPGs) (Adams &
Dormans, 2012). Further mechanics would be, e.g., a reward of giving gifts, inviting new
friends to join the game, competition between players or in a co-op game where at least
two players are forced to work together to achieve an objective (Adams & Dormans, 2012).

Besides, it is possible to subdivide all prior mentioned mechanics into discrete and continu-
ous mechanics concerning their internal values (Adams & Dormans, 2012). For example, the
internal economy is mostly discrete since it is mostly represented by an integer value because,
e.g., a player cannot pick up half of a portion — either he or she picks up the portion entirely or
not (Adams & Dormans, 2012). In contrast, continuous mechanics make use of high precision

8

values for accuracy with continuous calculation throughout the game like the movement of a
character (Adams & Dormans, 2012).

Furthermore, every type can also be used to categorize game genres based on their average
usage in games. Table 1 shows this distinction between mechanics and genres.

Game Mechanics

Game Genres Physics Economy Progression Tactical Social

Action x x x

Strategy x x x x x

Roleplay x x x x x

Sports x x x x

Vehicle Simulation x x x

Management Simulation x x x x

Adventure x x

Puzzle x x

Social Games x x x

Table 1: Game genres and their related game mechanics (Adams & Dormans, 2012).

However, since the overview of Adams & Dormans (2012) is no universal taxonomy for game
mechanics, there is another excellent approach to categorize them as described by Schell
(2008). Following somewhat similar types to Adams & Dormans’ approach are used which also
correlate to some parts described in the MDA framework:

• Space: Every game takes place in some game space or spaces (Schell, 2008). Spaces
can be continuous or discrete, consists of dimensions and can have bounded areas that
may or may not be connected (Schell, 2008). The mechanics of Tic-Tac-Toe are an ex-
cellent example of this kind of mechanics which are taking place in a discrete space.

• Time: Contains mechanics which are using time, clocks, races or controlled time
(Schell, 2008). A well-known example of this kind of mechanics is the game SUPERHOT
(SUPERHOT Team, 2016) which tweaks the time to create a unique game experience.

• Objects, Attributes, States, and Actions: A comparison between mechanics and the
structural elements of a sentence reveals similarities (Schell, 2008). Game objects rep-
resent the nouns, attributes and states are their adjectives and actions are the verbs of
a game mechanic (Schell, 2008). This paradigm applies to most of the mechanics which
enable interaction with game elements (Schell, 2008).

• Rules: Combines all spaces, times, objects, actions and their consequences, constraints
and the goals to form the behavior of the game (Schell, 2008).

9

• Skill: Shifts the focus to the players and focus on their physical, mental and social skills
(Schell, 2008). That means it includes mechanics like dexterity, coordination, memory, ob-
servation, puzzle solving, reading or fooling an opponent or coordinating with teammates
(Schell, 2008).

2.3 Considerations with Procedural Content Generation
and Machine Learning

This chapter shall state some crucial considerations for the next chapters since PCG and ML
game mechanics are not visible used in big game titles and therefore need particular atten-
tion on their implementation in a game. One of the good things is that there are dozens of
possibilities for mechanics which should not create a big problem in coming up with new and
novel ideas for new mechanics. With certainty, the focus of implementing such mechanics will
lie on the introduction to the player and their ability for interactions because PCG and ML me-
chanics could confuse some players. Therefore, the implemented mechanics should be kept as
transparent as possible if user interaction is needed instead of creating complex but novel and
unusual mechanics. A good starting point is to design the mechanics as soon as the central
gameplay concept is set and adhere to the design stages of concept, elaboration, and tuning
during development (Adams & Dormans, 2012).

It is necessary to list and consequently avoid some possible design flaws since game me-
chanics shall amaze people instead of frustrate them while playing a game. Besides, much
detailed planning is made to come up with new extraordinary mechanics, but plans for their
proper introduction are often missing (Pears, 2018). For this reason, it is relevant to address
some common mistakes and their possible improvements:

• Do not introduce all mechanics of a game as fast as possible because players need time
to learn and get used to them (Pears, 2018). For this reason, it is advisable to introduce
just one mechanic at a time.

• Do not introduce mechanics when the player has no time to explore them. They need
time at their own pace to explore them otherwise they will not enjoy their new ability
(Pears, 2018).

• Use and create feedback loops for game mechanics otherwise players will not know what
to do with them (Adams & Dormans, 2012). For example, if someone uses a portion and
there is no clear visualization for the use of it, then the player probably does not know
what to use it for.

Introducing the concept of the basic grammar model described by Koster (2013) shows
that feedback is one of the most critical elements. This model can be applied to most of
the games nowadays, and it loops the concepts of a mental model, intent, input, actual

10

model and rules, state change and feedback (Koster, 2013). Where the mental model of
a player assumes how a game works and what their intentions for the input and the actual
input are, and what then really happens with their input regarding applying core mechan-
ics, concluded with feedback for their inputs (Koster, 2013). If there would be a lack of
feedback, then the player could never update their mental model and cannot progress
through a game. Feedback can appear in a quite simple binary or even complicated way
(Koster, 2013).

• Besides feedback loops, do not forget to provide the player with directions for parts of the
mechanic which are or could not be visible to the player (Pears, 2018). Further tutorials
should be easily accessible if they are needed because there is nothing more frustrating
to a player than being confused (Doan, 2017).

• In particular, essential considerations for core mechanics are to provide clear rules on how
to be successful, create a natural interaction but do not forget to challenge the player and
provide the possibility for a natural progression of their skills (Doan, 2017). Furthermore,
they should adequately guide the player towards completing their in-game objectives with
directions and feedback, allow players to progress from objective to objective in a natural
way without the necessity of using the core mechanic and provide options besides the
core mechanic (Doan, 2017).

• In general, the skill of a player will grow throughout the game which means that the diffi-
culty curve shall match the player’s skill during the whole experience (Doan, 2017).

• As described by Zook & Riedl (2014) where their goal was to generate and adapt game
mechanics, it is necessary that mechanics fulfill the requirements of playability to create
an acceptable experience. For example, a requirement could be that it is necessary that
a player can reach the end of a level or win a fight without dying. Overall, it should ensure
that a game is playable to a specific given goal with that mechanic (Zook & Riedl, 2014).

11

3 Procedural Content Generation

PCG is a broad topic in the game industry which has evolved throughout the years, and much
research was done and is currently going on to enhance and further explore its possibilities.
Accordingly, it is a necessity to introduce general parts of PCG to understand some concepts
and therefore be able to understand its further use in PCGML.

3.1 Introduction

Game content creation is an expensive task where often many designers are involved over an
extended period (Amato, 2017). That is where the encouragement of PCG comes into play!
It aims towards automatic game content generation which is done by different algorithms on
their own with or without direct user or designer input to decrease the cost of content creation
(Amato, 2017) (Togelius et al., 2011).

However, it would be too easy to come up with a standard definition on what procedurally gen-
erated content in a game defines because too many people attempted it with way too many and
different approaches (Togelius et al., 2011). With this in mind, procedurally generated content
seems to be a concept with fuzzy and unclear boundaries which cannot be defined precisely
(Togelius et al., 2011). Nevertheless, for this thesis, content generated by PCG algorithms are
seen as content or elements in a game which are affecting the gameplay, for instance, puz-
zles, quests, rules, dynamics, weapons, stories, terrain, maps and other similar kinds of game
elements.

3.1.1 Reasons to Use

There are many reasons why PCG is a significant and rising topic in games. For this reason,
Short & Adams (2017) came up with two classifications representing the fundamental motiva-
tion behind using and researching PCG techniques.

Utilization

The first argument is utilization which is the principal argument why PCG is popular (Short &
Adams, 2017). It can be time-saving because it could produce more content than a human in an
hour, for instance, a whole galaxy in No Man’s Sky (Hello Games, 2016) (Short & Adams, 2017).
Moreover, PCG overcomes technical limitations concerning their use for devices with, e.g.,
limited space like mobile devices, it is expandable and has reusable code due to modularity

12

and same field of applications (Short & Adams, 2017). Lastly, it increases replayability by
generating many similar but different instances of content (Short & Adams, 2017).

Uniqueness

The second argument why PCG is of particular importance is the uniqueness of their output
(Short & Adams, 2017). It offers individual experiences with, i.e., different generated content
every time it is played and creates new gameplay and interaction modes for replayability. It
is unpredictable which can be a thrilling fact for players but also designers, can create bizarre
content no human might think of, and can be an inspiration of infinity because of its possibility
for creating infinite various content (Short & Adams, 2017).

3.1.2 Taxonomy

The use cases for using procedurally generated content for different kind of problems with dif-
ferent methods and approaches are almost unlimited. This variety of PCG possibilities made it
necessary to find distinctive features and create a taxonomy of PCG to highlight the differences
and similarities between approaches (Shaker et al., 2016). In fact, there are two different views
for a taxonomy which were described by Hendrikx et al. and Shaker et al.. The first and initial
approach was created by Hendrikx et al. whereas Shaker et al. gave the new one derived from
Hendrikx et al.’s taxonomy.

As an initial classification, Hendrikx et al. (2013) extracted the following four classes by ana-
lyzing all possibilities of PCG which they could think of:

• Game Bit: Basic elements of a game that do not affect the player’s gameplay. For ex-
ample, procedurally generated textures, sounds, trees, fire, stones, mountains or clouds.
(Hendrikx et al., 2013)

• Game Space: Represents game environments and usually consist of different game bits.
One can think of, e.g., dungeons maps, whole planets with procedurally generated terrain,
lakes, rivers and many more. (Hendrikx et al., 2013)

• Game System: Includes all game elements like ecosystems or other relations between
game objects like rules or objectives. (Hendrikx et al., 2013)

• Game Scenario: Like occurring events in games which could be, e.g., an event in a
generated storyboard, the history of a character, a concept of levels or a puzzle. (Hendrikx
et al., 2013)

Whereas Shaker et al. (2016) extended their view of possibilities for PCG and came up with the
following 13 classes which are more focused on technical issues:

13

• Online versus Offline: Is about runtime generated game elements or content as the
player is playing the game versus predefined and or pre-generated content which is cre-
ated before the start of a game (Shaker et al., 2016). For instance, an interactive maze,
generated during runtime, versus a procedurally generated terrain which is used as the
uniform environment of a game and does not affect the players playing experience re-
garding a PCG process during the game.

• Necessary versus Optional: Distinguishes content which is necessary or required to
reach an objective in a game and content which does not need to fulfill this or other
requirements (Shaker et al., 2016). For example, a puzzle could be necessary to finish
the game whereas a generated texture is just an optional and cosmetic content.

• Degree and Dimensions of Control: Adds control over content generation via adjustable
generator parameter or with a specific seed for a Random Number Generator (RNG). In
general, content where designers or users and players are in control of the generation
space. (Shaker et al., 2016)

• Generic versus Adaptive: By means of generic content which does not take the behavior
of the player into account whereas adaptive content could adapt on a player’s progress in
the game and will be generated on top of his or her current progress and skills. (Shaker
et al., 2016)

• Stochastic versus Deterministic: This paradigm differs content creation in a scientific
manner where deterministic algorithms will produce the same content over and over again
provided that the same parameters are given whereas stochastic algorithms will create
different content every time they are used. (Shaker et al., 2016)

• Constructive versus Generate-and-Test: Addresses in one pass generated content
versus generated and continuously improved content (Shaker et al., 2016). Latter PCG
method generates desired content as a result of continuous testing against requirements
in a finite generate and test loop (Shaker et al., 2016). Usually, there is some AI involved
in the evaluation of generate-and-test content (Shaker et al., 2016).

• Automatic Generation versus Mixed Authorship: By means of fully autonomous con-
tent generation provided by an algorithm versus generators where designers and players
can change the behavior of the design process due to any input and cooperate with the
algorithm (Shaker et al., 2016). For example, the creature creation in the game Spore
(Maxis, 2008) with automatically generated and user-created creatures.

3.2 Development

Developing a PCG algorithm can be tough and needs to be well-prepared. On this account,
there are given some important design considerations about PCG and also a conceptual imple-

14

mentation of an algorithm in the next two sections.

3.2.1 Design Considerations

It is a good practice to stick to desirable and required properties when designing and developing
algorithms and especially algorithms for generating content. One can quickly lose sight of
crucial and influencing factors when developing a PCG algorithm with one of many various
options which could lead to lousy player experience. For this reason, Shaker et al. (2016)
stated some of the most critical factors of an algorithm which should be satisfied:

• Speed: In general, this property depends on the online versus offline class which was
described in Chapter 3.1.2. Equally, whether a PCG algorithm produces content during
gameplay or generated it before the core game starts, it should never exceed an accept-
able amount of time which is needed to generate content because otherwise, it could
affect the player’s experience (Shaker et al., 2016).

• Reliability: Some generators create content from scratch without even knowing what they
should produce whereas others are capable of generating and evaluating their content
due to given requirements (Shaker et al., 2016). For this reason, it is a very crucial
property if someone wants to generate dungeons or puzzles because of their necessity
of being a solvable problem which makes it either possible or not to progress throughout
a game whereas a tree or flower which looks weird does not break a game (Shaker
et al., 2016).

• Controllability: Is also one of the most crucial properties of PCG since it is advantageous
to be in control in order to specify aspects of the generated content. Mainly, this refers
to the classes of degree and dimensions of control, generic, adaptive deterministic as
well as mixed authorship which was described in Chapter 3.1.2 and also overlaps with
the desired reliability property (Shaker et al., 2016). For example, a designer or a player-
adaptive algorithm should have control over parameters to specify a desired outcome
(Shaker et al., 2016).

• Expressivity and Diversity: This property speaks mostly for itself because the human
brain can quickly detect and recognize patterns in various environments (Shaker et al.,
2016). That makes it a necessity to develop algorithms which can generate content with
a right amount of expressivity and diversity (Shaker et al., 2016).

• Creativity and Believability: Following up the last property, it is also necessary that
an algorithm produces believable content which cannot be distinguished to human de-
signed content (Shaker et al., 2016). It should not be evident for the players to be able to
distinguish between algorithm-generated content and entirely designed content (Shaker
et al., 2016).

15

Notably, a central component which ties expressivity, diversity, and creativity together is their
essential use of different RNGs. There are possibilities like using a standard RNGs or the cre-
ating of randomness via knowledge presentation, distribution altering or look-up tables (Shaker
et al., 2016). For this reason, it is essential to give special considerations to the randomness
implementation as well to fulfill the described properties. Some of the most important tech-
niques used with random generations are, e.g., Perlin Noise, Simplex Noise or Fractals (Blatz
& Korn, 2017).

Another helpful point is to visualize the PCG for either debugging or gameplay purposes
(Shaker et al., 2016). For example, visualization can help to understand the output and dis-
tribution of a PCG when used for debugging. Furthermore, if PCG requires interaction with
the player, then it is useful to show some visual feedback or visualization so that players can
understand the consequences of their actions on the system (Smith et al., 2012).

Lastly, it is recommended to keep PCG algorithms simple and focus them on specific content
generation tasks so that a bunch of content generators could be combined afterward (Shaker
et al., 2016). Also, players should not be overwhelmed by interactive PCG systems (Blatz &
Korn, 2017). For this reason, avoidance is possible with simple sensors which are taking care
of the players’ experience and furthermore adapt the system, provided that it is an online system
(Blatz & Korn, 2017). In general, all discussed points in Chapter 2.3 should be taken in mind
when implementing interactive PCG systems.

3.2.2 Possibilities

Using procedurally generated content in a game offers many possibilities as described in the
last few sections. One of the most promising facts for using PCG in games is that players can
experience a game in a new way each time it is played provided that it uses online systems
(Rose, 2012). For this purpose, Liapis et al. (2014) extracted the creative facets of games
where PCG can be used to create content in games. Beginning with visuals as the most
prominent application where the most successful example is "SpeedTree" (IDV, 2018) which
can create 3-Dimensional (3D) models of trees and vegetation (Liapis et al., 2014). However,
also textures, every other kind of 3D or 2-Dimensional (2D) models or even whole solar system
as in the game "No Man’s Sky" (Hello Games, 2016) or visualizations are part of visuals (Liapis
et al., 2014). The next classification includes every kind of generated audio and narrative (Liapis
et al., 2014). Ludus also offers a vast field of possibilities where the term Ludus refers to
activities under a system of rules which defines the outcome of a game (Liapis et al., 2014).
Also, level architecture like generated maps or generated gameplay can be found as creative
facets of games (Liapis et al., 2014).

In general, the determining term in PCG is "content" which means that one can barely gener-
ate everything in a game (Shaker et al., 2016)! There is even a PCG algorithm called "Angelina"
which can generate whole games (Cook, 2018).

16

3.2.3 Conceptual Implementation

PCG algorithms can vary from simple to very complex ones depending on the field of their appli-
cation. Usually, they are algorithms which are fed with different parameters and then generate
some content out of these parameters.

Algorithms, like used for world generation, can consist out of many details and therefore will
not be addressed in this section. Instead, the development steps of an algorithm for generating
complex rock structures called "Cascades" presented by NVIDIA (2007) will be shown to give a
quick insight into how a PCG algorithm can work.

Cascades

The simplification of NVIDIA’s approach for a procedurally generated complex rock structure is
as follows:

1. 3D texture generation where density values represent either rock or air.

2. Take the texture and make use of the Marching Cubes algorithm to generate the actual
3D model.

3. Use tri-planar texturing to complete the model with textures.

A possible output of this algorithm can be seen in Figure 1 depending on their used RNG and
definition of density distribution in the 3D texture.

Figure 1: Example of a procedurally generated rock (NVIDIA, 2007).

3.3 Game Mechanics

Now it comes to the most crucial part of this chapter of PCG because of its leading part in
PCGML as a game mechanic — the use of PCG as a game mechanic! This chapter provides

17

an overview of games which are using PCG as a game mechanic and some examples of
possible PCG core mechanics.

3.3.1 Current Games

Many games are using procedurally generated content nowadays, but not all of them are using
PCG as a game mechanic. The following sections describe three games which are using PCG
as a game mechanic.

Galactic Arms Race

Initially, a research project which is a perfect example of PCG-based core mechanics in a game
(Evolutionary Games, 2014). Galactic Arms Race is a multiplayer space shooter game in which
the player needs to complete tasks and missions to progress through the game (Evolutionary
Games, 2014). To complete tasks and missions, players need to fly around in space and try
to kill enemies with different weapons. A highlight of the game is the particle weapon system
which is used to defeat enemies whereas weapons are entirely generated by a PCG algorithm
using evolutionary AI algorithms to evolve and generate new weapons (Hastings et al., 2009a).
The AI in Galactic Arms Race creates and evolves weapons based upon actions, strategies,
and most used weapons of a player (Hastings et al., 2009a) (Hastings et al., 2009b). Besides,
a player can possess three weapons at a time whereby new evolved weapons are continuously
spawned in space and dropped by enemies (Hastings et al., 2009b). Consequently, players
need to decide which weapons they want to use and thus feed the AI with information about
their preferences (Hastings et al., 2009b). In this case, a player functions as the fitness function
of the evolutionary algorithm used by the overall PCG system (Hastings et al., 2009b).

In short, a combination of PCG algorithms and evolutionary AI algorithms produces the novel
weapon system which represents the core mechanic of Galactic Arms Race.

Inside a Star-Filled Sky

Inside a Star-Filled Sky is an almost entirely procedural generated game (Rohrer, 2011). The
objective of a player is to progress through levels and try to reach one of the highest stages of
progress to rule the leaderboard (Rohrer, 2011). Players need to fight enemies, collect items,
power-ups or weapons to defeat enemies and get over to the next level. Each level is generated
and can represent the inside of an enemy, item or another entity in the game which gives the
player an infinite choice of possibilities on how to play the game. Moreover, players can move
in or out of the recursively nested levels, and every collected item or killed enemy change the
random seed for generating the next level (Smith et al., 2012). Players can even move into
their character to increase their power and more than 165000 simple weapon combinations are
explorable due to PCG (Rohrer, 2011).

18

Summarized, the core mechanic of Inside a Star-Filled Sky is heavily PCG-based and about
exploring and progressing through generated levels with the help of generated weapons and
items.

Endless Web

Is an entirely PCG-based game and thus uses PCG as its core mechanic (Smith et al., 2012).
It is about fighting the nightmares in human dreams and rescue the trapped ones and thus re-
leasing dreamers from their fears. The central objective of the game is to rescue six dreamers
by exploring and make decisions on exploring new areas in the world which affects the param-
eters of the rescue progress and also the generation of new world parts (Smith et al., 2012).
For example, if a player kills an enemy then depending on the configuration, it strengthens or
weakens an associated challenge and furthermore changes the world (Smith et al., 2012).

So, Endless Web’s core mechanic is about manipulating the generative space where players
influence the changes of the world generation with their chosen decisions on how they are
playing the game (Smith et al., 2012).

Other Games

Games like Black & White, Diablo, Dwarf Fortress, Elite, Eve Online, Roque, Spelunky or
Minecraft are other good examples which made use of PCG and related mechanics as an
essential part in their game.

3.3.2 Possible Core Mechanics

There are a few possibilities and use cases for PCG as mechanics in games. As seen, some
core mechanics aim at weapon creation and progressing through generated space with the help
of generated or altered "helper" mechanisms. Apart from that promising ideas are also other
noteworthy ideas:

• One exciting idea is about using PCG for multiplayer games as a multi-instance PCG
system given by Smith (2014). A game could use a central PCG system consisting of dif-
ferent and unique systems for each player, and every content generation would affect the
PCG systems of other players (Smith, 2014). In that case, the core mechanic of the game
would include influencing other players with each others PCG system to work towards a
specific goal. For example, a use case would be a collaborative multiplayer game where
each content generation causes a new content generated in the other’s player space, and
they must find a way to communicate how to achieve a mutual objective (Smith, 2014).

• There is much research done in the generation of quests as well. The research of Doran &
Parberry (2011) introduced generated quests based on analysis of four existing massively
multiplayer online RPGs and their quests. One could create a simulation game where

19

players need to create random quests by doing interaction with the PCG system in order to
provide an AI agent with missions which need to be fulfilled to solve some other problems
in the game and thus progress throughout the game.

• Another idea is to adapt existing and successful introduced game mechanics with a PCG-
backend. For example, one could create a game like Tetris where the core mechanics
of rotating a block generates new blocks. For example, every time the player rotates the
block, the next block will be altered with evolutionary algorithms and changes their shapes
to increase the difficulty. Moreover, the system could adapt its difficulty to the player’s skills
regarding the success or failure rate of using the new blocks to maintain an acceptable
experience.

20

4 Machine Learning

ML is such a vast topic so that a detailed explanation of every type, approach, method, and
model used in ML would go beyond the scope of this thesis. Therefore, the next sections will
describe essential subjects of ML which can be useful to understand its further use in PCGML.

However, let us ask a question first: What is the difference between ML and AI and what is
ML about actually? The fact is, there is no difference between ML and AI. In particular, ML
developed from fields of research in AI and is thus a subset of AI. It concentrates on using
mechanisms to learn from given data where data represents experience for a given problem.
For instance, a famous example of ML is an application where the machine can distinguish
between apples and pears with the help of a given dataset of features for both apples and
pears (Yannakakis & Togelius, 2018).

4.1 Types of Learning Problems

ML consists out of three main types which all address a different kind of problem to solve and
goal to achieve. One can classify types of supervised learning, unsupervised learning and
Reinforcement Learning (RL) (Bonnin, 2017). Each of them functions as a solver to a specific
task or problem where it fits best and creates the desired results.

4.1.1 Supervised Learning

This type of learning is a task-driven approach of ML (Bonnin, 2017). Its primary application is
predicting or approximating data based on existing historical or empirical values where the an-
swer to the problem is already known (Yannakakis & Togelius, 2018). The previously described
problem of classifying apples and pears is a supervised learning problem which is solved by
predicting the specific fruit or also referred to as a class (Bonnin, 2017). In this case, we would
provide a sample set of real data with features for both fruits and classify each feature to a
specific fruit. With this, the algorithm links the given features to a specific result and can predict
those fruits based on a given test set (Bonnin, 2017). A training and test set could exist out
of a bunch of pictures or other specific features described with numeric values in a table for
each fruit. Hence, the reason why this is called supervised learning is that an ML algorithm is
provided with data labels and therefore knows what to learn (Yannakakis & Togelius, 2018).

Typical applications for supervised learning are, for example, image recognition and classi-
fication, spam detection, pattern detection, speech recognition, natural language processing,
sentiment analysis or forecasting (Bonaccorso, 2017).

21

Regression

A statistical process is the basis of this supervised learning technique where particular probabil-
ity distributions of a given training data control the prediction output (Bonnin, 2017). In specific,
a regression algorithm is processing independent and dependent variables of a given problem
and build relationships between them which are furthermore used to predict the correct an-
swers of a given unknown set (Bonnin, 2017). Independent variables are describing features
and dependent variables the meaning or outcome of a regression problem. Usually, regres-
sion algorithms are applicable when the output values are constant prediction problems like for
example, the predicted time of completion for a game level based on, e.g., the current player
position (Yannakakis & Togelius, 2018).

Some use cases where concepts of regression algorithms can be applied are, e.g., for im-
itation and prediction of a player’s behavior or player preference learning (Yannakakis & To-
gelius, 2018). Some popularly used algorithm for regression are the linear or polynomial re-
gression, Artificial Neural Network (ANN) or Support Vector Machine (SVM). (Yannakakis &
Togelius, 2018)

Classification

Addresses problems where classification transition of independent values into specific values
is needed (Yannakakis & Togelius, 2018). The famous problem of classifying and distinguishing
apples and pears from each other falls into this section.

Like regression algorithms, classification algorithms are applicable for imitation and predic-
tion of a player’s behavior, such as prediction of completion time (Yannakakis & Togelius, 2018).
However, in this case, the possible outputs are specific values or classes like slow, average or
fast instead of continuous values (Yannakakis & Togelius, 2018). Some popularly used algo-
rithm for classification are, e.g., ANN, decision tree, random forests, SVM, K-Nearest Neigh-
bor (KNN) or ensemble learning (Yannakakis & Togelius, 2018).

4.1.2 Unsupervised Learning

In contrast to supervised learning, the base of unsupervised learning is a data-driven approach
where the algorithm has no information about the meaning or value of any sample and needs to
infer it automatically (Bonnin, 2017). Hence, an unsupervised learning algorithm gets so-called
unlabeled data without having a specific relationship to the target output and finds unknown
structures and pattern in that set (Yannakakis & Togelius, 2018). Thinking about the apples
and pears example, then an algorithm would try to detect that there are two different types or
classes in the dataset instead of predicting if it is an apple or a pear.

Typical applications for unsupervised learning are object segmentation, similarity or pattern
detection, automatic labeling, pre-training of supervised algorithms or preprocessing data such

22

as data compression, noise smoothing or outlier detection (Bonaccorso, 2017) (Yannakakis &
Togelius, 2018).

Clustering

For example, solves the previous described apples and pears problem by clustering apples and
pears out of the given training set with features of both fruits. Based on the trained knowledge
due to the training set, it can differentiate new and unknown samples into either apples, pears
or an entirely new class (Yannakakis & Togelius, 2018). In detail, clustering algorithms are
looking for similarities between given features and values, and by doing this, they are inferring
a relationship between them and thus separate specific classes (Bonnin, 2017).

Popularly used algorithms for clustering are, e.g., k-means, NNs or hidden Markov models
(Bonnin, 2017).

4.1.3 Reinforcement Learning

In short, RL is a goal-oriented approach where an AI tries to reach a goal with the best strategy
(Bonnin, 2017). RL uses so-called agents who are used to get feedback or specific states
of an environment which is further used to learn and improve new decisions based on taken
decisions (Bonnin, 2017). Inspired by the way humans and animals learn to take decisions, it
aims at rewarding the algorithm for good behavior and thus leads it towards the best knowledge
and output (Yannakakis & Togelius, 2018).

In general, RL makes use of a bit of supervision in the form of feedback for an action executed
by an agent (Dangeti, 2017). Among experts, this feedback exists as the reward for actions in
RL algorithms (Dangeti, 2017). The tricky part is that RL usually consists of following decisions
and every chosen action — chosen out of a set of actions — by an agent is changing the
environment which usually makes it difficult to train a model (Dangeti, 2017). Hence, an agent
executes different decisions in a loop and is looking for the highest total reward for its sequence
of actions since it will always want to increase its total reward. (Yannakakis & Togelius, 2018)
With this strategy, an RL algorithm is getting better and better over time in solving a specific
problem until it found the best solution.

During the last years, RL algorithms have been used to learn an AI how to play classical
games, find the best strategy to win a game, learn an AI how to walk and many other applica-
tions (Bonaccorso, 2017). Algorithms include NNs, deep NNs, Q-Learning or Markov decision
process (Dangeti, 2017).

4.1.4 Generative versus Discriminative Models

Another viewpoint to differ ML models is to group them into generative and discriminative mod-
els. Both of them have different applications and advantages. As the name of generative models
suggests, their application is for data generation problems instead of simple label predictions

23

problems (Ghotra & Dua, 2017). This fact infers that there is a difference in their underlying
learning approach which is the crucial point of the distinction (Ghotra & Dua, 2017). Discrimi-
native models include NNs, decision trees, random forests or SVMs whereas generative models
include Generative Adversarial Networks (GANs), Autoencoders (AEs) such as Variational Au-
toencoders (VAEs), Long Short-Term Memory Networks (LSTMs) or recurrent NNs (Ghotra &
Dua, 2017).

In particular, the primary distinguishing feature between the models is their approach on how
to learn the relationships of the training attributes to either the labels or all the other attributes as
a whole. With this said, discriminative models try to learn the conditional relationship between
the features and the labels, denoted as P (Y |X), whereas generative models try to learn the
joint probability distribution of the whole data and then infer the conditional relationship, denoted
as P (X,Y) (Ghotra & Dua, 2017).

4.2 Development

Developing an easy to use AI needs to be a well-structured and planned process. Especially,
when using ML as a focus of interaction, it is even more important to be well-prepared. For
this reason, this chapter addresses some design considerations about developing user-friendly
AI systems in games, as well as standard pitfalls to keep in mind, standard procedures for
data preprocessing and possibilities of how to use ML algorithms in two commonly used game
engines.

4.2.1 Design Considerations

Someone cannot just develop a new novel AI system and expect to create a whole new experi-
ence — it needs to have a thoughtful plan how to achieve new experience (Eladhari et al., 2011).
Firstly, it is useful to think about the MDA framework, which was described in Chapter 2, be-
cause an AI-based game is often tightly integrated into its game mechanics and therefore it is
necessary to make no mistakes in the first place to fulfill playability and emerging experience
(Eladhari et al., 2011).

Here are some critical considerations for AI-based games described by Eladhari et al. (2011)
which are also worth noting for implementing an ML-based AI system:

• First, develop a rough design of the game system and then model the AI system upon that
game system or vice versa (Eladhari et al., 2011). In particular, for AI-based games, the AI
system should support the designed core experience of the game (Eladhari et al., 2011).

• An AI should provide possible exploration and allow a player to experiment with it which
means it should be robust enough and not lead to game crashes or misbehavior (Eladhari
et al., 2011).

24

• Avoid a too mechanical and unnatural player experience with an unpredictable system
(Eladhari et al., 2011).

• The environment of an AI-based game should be observable for an AI system which
means it should be able to access states of different game entities at any time (Eladhari
et al., 2011). Consequently, game states should be described in a way so that an AI
system can easily access and read it (Yannakakis & Togelius, 2018).

• A system should be as accessible and transparent as possible for a player so that a player
will not be overwhelmed by the system and its possibilities (Eladhari et al., 2011). Notably,
an interactive ML system as an AI system in the game could be a confusing thing for a
player if it, e.g., exposes too much information (Eladhari et al., 2011). That is of particular
importance when using RL as the backbone AI agent algorithm.

• Provide ways for emergent gameplay with the help of the AI system with, e.g., possible
strategies which can be applied to the system (Eladhari et al., 2011).

Lastly, the discussed issues and considerations in Chapter 2.3 also apply for the implemen-
tation of an ML-based AI agent.

4.2.2 Common Pitfalls

Following pitfalls are commonly occurring problems when implementing and training ML models
for a specific problem.

Under- and Overfitting

ML models are used to approximate unknown output based on the given training data
(Bonaccorso, 2017). When talking about fitting, then it is referred to fit a model to a given
training set and its features which are used to train the model. This set can consist of many
independent variables and different entries which can create some issues:

• Underfitting: Happens when the training set for the model consists of too less informa-
tion or independent variables (Bonaccorso, 2017). In that case, the model is not able to
capture the dynamics of the values (Bonaccorso, 2017).

• Overfitting: Is exactly the opposite of underfitting. When a model is over-fitted, then it is
fed with too much information and variables so that it is not able to generalize the dynamic
relationship of variables during the training (Bonaccorso, 2017).

Therefore, a right amount of information for the training of a ML model should be provided to
achieve an excellent fitted model. A method to check and prevent the model from being over or
under-fitted is the technique of validation such as cross-validation which helps to detect those
problems (Bonaccorso, 2017).

25

Curse of Dimensionality

This problem often occurs when the training set is smaller than the number of feature variables,
or also called the dimensions of a set, which are used to train a model (Bonaccorso, 2017). In
this case, if the number of features increases then the performance of the model gets dramati-
cally reduced (Bonaccorso, 2017). Possible ways to prevent and solve this problem are, e.g., a
decrease of dimensions or providing more training data (Bonaccorso, 2017).

4.2.3 Data Preprocessing

A standard procedure in ML is the technique of data preprocessing so that data values are
consistent with each other. Table 2 shows a simple example data table which could be usable
for the systems training. The table’s data can contain any discrete or continuous values which
could originate from any decoded non-numerical data.

V1 V2 ... Vn

2.1 A ... 100

5 B ... 64

...

-0.958 A ... 986

Table 2: ML training data example.

Encoding

For example, if the dataset provides categorical data like the values for V2, as shown in Table
2, then this data needs to be encoded so that it does not differ from the other data values. This
procedure is a standard procedure in the data preprocessing for training an ML model and can
be done with so-called "One Hot Encoding." Table 3 shows an example of what an one hot
encoder does with categorical data as provided by V2. The new values generated by the one

V2 V2
1 V2

2 V2
3

A −→ 1 0 0

B −→ 0 1 0

C −→ 0 0 1

Table 3: One hot encoder example.

hot encoder replace the old categorizes values, and the dataset is ready to go. It is essential
to keep in mind that this encoding can cause the curse of dimension if there are too many
categories in the data.

26

V1 V2
1 V2

2 V2
3 ... Vn

2.1 1 0 0 ... 100

5 0 1 0 ... 64

...

-0.958 0 0 1 ... 986

Table 4: Encoded training data example.

Feature Scaling

Feature scaling is a crucial process in data preprocessing. It helps to make unbalanced
datasets more manageable for the training and especially during backpropagation or error
correction (Bonnin, 2017). The occurring problem is that most optimizer functions in ML, for
example in KNN, are using Euclidean distance to measure the cost of, e.g., a prediction which
is then used to calculate the delta for backpropagation. Now, the main problem with taking the
Euclidean distance is that it is getting easily biased with, e.g., significant values in the dataset
which furthermore dominate all the other ones. For example, the last attribute in column Vn in
Table 4 is an immense value which would create a more significant delta for all other attributes
during backpropagation. Now, there are two commonly used methods to avoid this problem:

• Standardization: Aims to balance the dataset so that its distribution is closer to a normal
distribution (Bonnin, 2017). The formula for standardization is: z =

x− µ
σ

.

• Normalization: Aims to transform the distribution of the dataset into a range between 0
and 1 (Bonnin, 2017). The formula for normalization is: xnorm =

x− xmin

xmax − xmin
.

Applying normalization to the example dataset in Table 4 results in a dataset shown in Table 5.

V1 V2
1 V2

2 V2
3 ... Vn

0.513 1 0 0 ... 0.039

1 0 1 0 ... 0

...

0 0 0 1 ... 1

Table 5: Normalized training data example.

4.2.4 Game Engine Plugins

Indeed, all the different ML models or the one which applies to the game prototype of this thesis
could be self-implemented. However, there are other people out there who have already imple-
mented and improved their implementations which are a good starting point when implementing

27

a PCGML game mechanic. As discussed at the beginning of the thesis, it is going to focus on
an implementation in commonly used game engines which is the reason why to envisage the
two most used free to use game engines nowadays.

Unity

Unity made an incredible effort in its research and use of ML in their engine in the last year
(Unity Technologies, 2018a). They recently released a beta version of an open-source ML
agents plugin that enables games to train an AI with RL, imitation learning, neuroevolution
or other ML methods (Unity Technologies, 2018b). The base of the plugin is Google’s open-
source ML framework TensorFlow (TF) (Google, 2018) which is accessible via a simple-to-
use Python Application Programming Interface (API) (Unity Technologies, 2018b). They are
also providing essential instructions and documentary for the usage of their plugin which is a
promising, definite and significant advantage when implementing the PCGML game mechanic.

Unreal Engine 4

At the time of writing this section, there is no available officially announced ongoing plugin or
feature development for ML in Unreal Engine 4 (UE4). However, there are others who were
concerned about the missing feature of ML in UE4. For this reason, Kaniewski (2018) created
an open-source TF plugin for UE4 which implements a Python API accessible interface based
on a fork of a UE python plugin. Indeed, there are also some other plugins available via UE4’s
marketplace such as a Q-Learning plugin, but there do not look that promising as Kaniewski’s
TF plugin. Also, provided documentation and guidance on how to use the plugin leads it to a
tolerable option besides to Unity’s ML agent plugin.

4.3 Game Mechanics

It is unclear which games used specific methods of ML for a game mechanic because there
are not any research paper or published articles about, i.e., game companies who talked about
using ML in their mechanics. Nevertheless, there is a research focus on AI-based games,
including game mechanics which can be adapted with ML and is therefore used to come up
with ideas for ML game mechanics.

4.3.1 Current Games

Two games which use AI as a core mechanic were already described in Chapter 3.3.1 and are
the games Endless Web and Galactic Arms Race. Both games make use of a PCG and AI mix-
ture mechanic where the AI generates new world segments based on game world states (Smith
et al., 2012) or new weapons based on player preferences (Hastings et al., 2009a). These

28

games are going to be first reference points and inspiration when implementing a PCGML
game mechanic. Other games which used ML techniques as a mechanic were, e.g., Black and
White or Creatures (Champandard, 2007).

Black and White

The player is in control and owns a creature who can be trained to do things for the player. They
used techniques such as decision trees and NNs to train and learn it the prediction of a player’s
action (Dalmau, 2005) (Champandard, 2007). In particular, the belief-desire-intention approach
was used to implement the creature’s behavior (Champandard, 2007). The creature’s training
happens due to a player’s reaction upon the creature’s executed actions which therefore follows
the rules of RL where the creature would like to achieve the best total reward for its behavior
(Dalmau, 2005).

Creatures

Creatures is a game where players need to hatch animals and try to teach them how to behave
and survive in their world (Champandard, 2007). As well as Black and White, Creatures also
used NNs to teach and learn animals how to behave based on a player’s input (Champandard,
2007).

4.3.2 Possible Mechanics

Treanor et al. (2015) introduced nine design patterns, summarized in Table 6 which illustrates
ways to develop game mechanics based on AI techniques and furthermore to create AI-based
games. Following sections describe some examples of possible mechanics or core mechanics
with ML, based on Treanor et al.’s design patterns.

Artificial Intelligence as a Role-Model

For example, a game in which a player needs to follow an AI to solve quests or missions.
Based on the players progress in each quest and imitation level, the AI adjusts its solution of
solving the current or a new problem and provides the player with either a less competitive
or harder solution and reward. Hence, player experience is adapting due to player behavior
learning and predicting an appropriate difficulty level. For instance, a quest could be following
or remembering the path of the AI to a treasure whereas built-in traps are crossing the way.
Hypothetically, if the player cannot remember and succeed in the path after, e.g., three times,
then the AI shows a new and less challenging path to a less rewarding treasure.

29

Pattern Name Description Role of Player Role of AI

Visualized Visualization of AI system states so that game-
play revolves around state manipulation

Observation and ma-
nipulation of an AI sys-
tem

Shows states and gives
information

Role-Model Player needs to imitate AI agents AI system imitation Shows actions and be-
havior, e.g., as a puzzle

Trainee AI system needs to be trained to perform game-
play tasks

Teacher for AI system Learns desired behav-
ior

Editable Player needs to change elements of an AI agent
which are related to gameplay

Observation and ma-
nipulation of the AI

Handles changes and
shows a new behavior

Guided Player partly assists or guides an AI agent who
is threatened by a problem

Guidance and manage-
ment of the AI

Acts on its own but
mostly does what the
player wants

Co-Creator Player and AI work together as equal partners Learns how to play the
game with AI assis-
tance

Acts as co-creator
and assistance for the
player

Adversary Player needs to defeat an AI system Adapts to an AI and de-
feats it

Tries to defeat the
player

Villain Player needs to defeat an AI system whereas
AI system does not want to defeat the player

Adapts to an AI and try
to defeat it

Acts as villain and mob
the player

Spectacle AI which implements a complex system and the
player needs to observe, interact or overcome it

Observation, interac-
tion or manipulation of
the system

Spectacles and simu-
lates the system

Table 6: AI-based game mechanics design pattern (Treanor et al., 2015).

Artificial Intelligence as a Trainee

Is one of the most promising design pattern since it revolves around teaching an AI different
things whereby it fits perfectly for using ML methods. As introduced before, the games Black
and White and Creatures are using precisely this kind of pattern for implementing their creature
behavior. A game could use a mechanic the same way and introduce new mechanics on how
to interact and use the AI agent by teaching it how to behave in specific situations. A simple
idea would be a teaching game in which the player needs to educate fighters to defeat enemies.
Alternatively, a tower defense game in which the player uses defense entities to teach an ML
agent first target preferences.

Artificial Intelligence as a Co-Creator

An exciting base idea of a co-creator AI game would be a split-screen game in which the player
plays on one side and the AI agent on the other side. The gameplay would be symmetrical,
and everything a player does, the AI will try to imitate. In doing so, the player needs to do
things to complete challenges whereas done actions affect the AI agents space and vice versa.
For example, a challenge could be pushing a button which only exists in the space of the AI

30

but opens, e.g., a door in the player’s space. Therefore, the player would need to behave in a
specific manner to lead the AI towards the button to progress through the game.

31

5 Procedural Content Generation via Machine
Learning

A purpose for research in AI-based PCG methods like PCGML was to invent algorithms which
can create and generate content of the same type and style based on existing content with
or without human involvement (Yannakakis & Togelius, 2018) (Summerville et al., 2017). In
general, Summerville et al. (2017) defined PCGML as ”the generation of game content using
ML models trained on existing content.”

On this account, different research was and is carried out to generate music, sound effects,
images, textures, worlds or levels (Yannakakis & Togelius, 2018). Research showed that ML-
backed PCG methods are working well for music and images but are facing some issues when it
comes to world or level generation because of its necessity of playability to create an adequate
experience for the player (Yannakakis & Togelius, 2018). Thus, the generation of gameplay
content raised challenges, demanding further research for solving such problems (Yannakakis
& Togelius, 2018). Therefore, PCGML approaches were not used in games yet. Another reason
is that there is often not enough game content available to train a PCGML model for a specific
content generation problem (Yannakakis & Togelius, 2018).

The next chapters introduce the difference to usual PCG, use cases of PCGML, some de-
velopmental features used in other research and explains how PCG and ML work together to
generate new content in an example. Overall, this chapter is not going into many details since
all essential cornerstones of PCGML where discussed and introduced in the previous chapters.

5.1 Difference to Procedural Content Generation

Usual PCG and PCGML have in common their hand-made algorithms, parameters, and con-
straints made by developers (Summerville et al., 2017). Typically, designers would use existing
game data and content as a foundation for new ideas and develop generators for creating new
material on top of that inspiration, whereas PCGML itself can get utilize existing data to develop
new content and thus assist the designer (Summerville et al., 2017). So, the basic idea is to
train the PCGML model on various but similar game content to produce new one (Summerville
et al., 2017).

In contrast, different PCG algorithms might use ML for evaluation, but their content genera-
tion process entirely relies on their specific domain space rather than a trained model space
(Summerville et al., 2017). For example, experience-driven PCG relies on models of player ex-
perience whereas PCGML models can use existing balanced domain-specific content to create

32

new one (Summerville et al., 2017).

5.2 Use Cases

The focus of PCGML is to generate new content based on training with existing content. For this
reason, PCGML can be used for adaption, reparation, evaluation, critique or analysis of new
content but also for general PCG tasks like autonomous generation, co-creative, and mixed
design or data compression (Summerville et al., 2017).

• Autonomous Generation: Is one of the primary application for PCGML because it can
generate game content without human input which is especially useful when online con-
tent generation is needed (Summerville et al., 2017). Also, a designer could create, e.g.,
a set of levels and for a model’s training to create new and novel but similar levels with the
help of the PCGML system (Summerville et al., 2017).

• Co-creative and Mixed-initiative Design: This use case focuses on the collaboration
between designers and the PCGML algorithm (Summerville et al., 2017). For instance,
the algorithm could generate new content based on provided examples as a draft for the
designer who could polish and finish the drafted content afterward.

• Data Compression: PCGML offers significant potential for data compression with the
help of ML. Extracting specific dimensions of game content can save data size and would
allow more efficient storage (Summerville et al., 2017).

• Recognition: This is where PCGML stand out from the conventional PCG algorithms.
Its recognition capabilities make it possible to analyze, evaluate, adapt, critique or re-
pair either existing, new designed, player created or algorithm generated game content
(Summerville et al., 2017).

• Repair: In particular, reparation of a designed or generated content can be a useful
tool. For example, during generation or learning time, the algorithm could check for, e.g.,
playability of a level and repair it immediately or suggest a fix (Summerville et al., 2017).

5.3 Development Considerations

There are some unique development considerations to take when someone wants to make use
of PCG via ML for game elements. In general, every design consideration, possible issue, pitfall
and best practices described and discussed in Chapters 3.2 and 4.2 will apply for implement-
ing PCGML algorithms. Furthermore, an initial examination of the data representation for the
training set during the ML model’s training could be helpful. On this account, the research of
Summerville et al. (2017) showed that specific datasets with significant difference share pos-
sible training methods to obtain excellent and practical generation results. Summerville et al.

33

(2017) further organized their used datasets into sequence-, grid- and graph-based data. They
made that distinction because it fitted best with their main problem addressed in the paper
which was primarily about generating levels.

5.3.1 Machine Learning Models

Because PCGML generates new content based on an existing one, it seems reasonable that
the models which fit best for most of the PCGML tasks are generative ML models.

This is confirmed by the fact that the primarily used training models in Summerville et al.’s
research of using PCGML for, e.g., level generation, were based on the paradigm of NN and are
models such as convolutional NNs, LSTMs, Markov models like N-grams or multi-dimensional
Markov chains, Bayes models, AEs, clustering or Matrix factorization. Nevertheless, not all of
them are pure generative models which means that discriminative models can be a better fit
sometimes.

5.4 Development Example

There is no right or wrong proceeding in the generation process for PCGML. PCGML is a very
new paradigm in the content generation community, and its research results drive the right or
wrong approaches. With this in mind, the PCGML generation process can take shape in any
form, and someone should do what fits best for a given problem.

This section explains a development example of a generation process for data with depending
attributes realized with discriminative models as ML backend. However, Chapter 7 provides the
detailed development walk-through of a PCGML system. For this example, a data’s structure
example of a PCGML system provides the Figure 2. As it is a sequence of data, there is a
connection between all variables. In the figure, the node "S" represents a start value, and all
other nodes represent independent attributes or features. Figure 3 shows dashed rectangles

Figure 2: Basic training data for a PCGML system.

around the attributes which indicates separately trained ML models for each attribute pairs. It is

Figure 3: Basic training data for a PCGML system with shown ML models.

34

worth noting that values do not need just one predecessor but can have multiple which would
change the dashed rectangles, ML models and their associated variables shown in Figure 3.

5.4.1 Data

First of all, it is necessary to come up with efficient and sufficient data for the system’s training.
Depending on the variables, the model requires more or fewer data. For example, a data
structure with around ten features would probably need at least 100 data rows to train the ML
model properly. In particular, there is an unofficial rule of thumb that the dataset should be ten
time times bigger than the provided number of parameters. As soon as the data is available,
preprocessing for the training should be applied, following the steps described in Chapter 4.2.3.

5.4.2 Training

After provision and preprocessing of the dataset follows the training. Training can happen with
different training models as described in Chapter 5.3. For example, the use of an ANN could be
a suitable training model for a given example dataset. In the scenario of previously described
training data, the NNs would be trained for each pair of values to output the next value in the
sequence. Figure 5 shows an example of a simple feed-forward NN where the start value and
the first variable are used to predict the second variable. The neurons in all NNs shown in this
thesis will follow the color scheme introduced in Figure 4.

Figure 4: Neuron legend for all NNs in this thesis.

Figure 5: Basic feed-forward NN to output a variable based on given input variables.

35

In specific, the training of several NNs for every following variable of the data sequence is
necessary to output and generate a complete result. Another possibility to use NNs would be
to make use of the so-called "Softmax" function which outputs the categorical distribution or
probability distribution of a variable. With this probability, it can generate and train the following
variables. Figure 6 shows this kind of NN with an example probability distribution in the output
layer.

Figure 6: NN with a probability distribution example in the output layer.

5.4.3 Generation

The next step in developing a PCGML system after the correct training of the model is the
generation process. This process can differ depending on the used training model, given data
and data representation. For example, the system could generate the first variable and get the
other ones from the model. Alternatively, it could generate any variable in the sequence and
retrieve the others from that one. Alternatively, it could make use of the probability distribution
output by the Softmax function which leads the variables and generates a new piece of game
element. As mentioned at the beginning of this chapter, there are no standards in the PCGML
generation process, and someone can make use of every possibility which is provided by the
system.

36

6 Possible Game Mechanics

The initial ideas on how to use PCGML as a game mechanic were created by Summerville
et al. (2017). They came up with the following seven different ideas based on the AI-based
game design pattern described in Chapter 6:

• Role-Model: "A PCGML system replicates content which is generated by players of var-
ious levels of skill or generates content suitable for players of certain skill levels. New
players are trained by replicating the content or by playing the generated content in the
form of generative tutorial." (Summerville et al., 2017, p. 13)

• Trainee: "The player trains a PCGML system to generate a piece of necessary content
(e.g., part of a puzzle or level geometry)." (Summerville et al., 2017, p. 13)

• Editable: "Rather than training the AI to generate the missing puzzle piece via examples,
the player changes the internal model’s values until acceptable content is generated."
(Summerville et al., 2017, p. 13)

• Guided: "The player corrects the PCG system’s output to fulfill increasingly difficult re-
quirements. The AI, in turn, learns from the player’s corrections, following the player’s
guidance." (Summerville et al., 2017, p. 13)

• Co-Creator: "The player and a PCGML system take turns in creating content, moving
towards some external requirements. The PCGML system learns from the player’s exam-
ples." (Summerville et al., 2017, p. 13)

• Adversary: "The player produces content that the PCGML system must replicate by
generation to survive or vice versa in a “call and response” battle." (Summerville et al.,
2017, p. 13)

• Spectacle: "The PCGML system is trained to replicate patterns that are sensorically
impressive or cognitively interesting." (Summerville et al., 2017, p. 13)

These ideas were used to come up with more ideas on how to use PCGML as a game mechanic
in modern video games.

6.1 Concepts and Development Evaluation

Each of the following chapters describes an idea of a PCGML mechanic followed directly with a
development related evaluation. It is to say that in general, the central issue in the implementa-

37

tion of the PCGML system will be the training data for the ML model rather than the PCG output
itself. Proper training for the ML model requires the right amount of training data to function as
intended. The size of the right dataset can differ from application to application based on the
given values as dependencies for an output.

Moreover, each idea has the advantage of PCGML that it can generate similar elements as
used during training time, the possibility of changing the training set and thus the output. Also,
there is no need for finetuning to generate a broad range of elements in contrast to standard
PCG algorithms. For this reason, as it is the implication of using PCGML, these described
advantages are not mentioned in the evaluation. Also, the provision of playability is a necessary
criterion which contributes equally to each game mechanic.

6.1.1 Rules and Behavior

A possible idea is a PCGML system which generates rules for a strategy game. A generic
and modular strategy game offers the perfect foundation for generating its internal rules and
behavior based on its internal elements. In particular, a strategy game mostly exists out of
different sequences of actions emerging from new elements in the game which furthermore lead
the game in a specific direction. All of those available actions have a different effect in the game
whereas the effects can be changed with other appropriate effects causing different changes
during the game. More particular, the design of a strategy game can introduce more game
elements than used in the game itself. This kind of game element preselection often arises in
cardboard games where players need to choose the available cards in advance which affects
the flow of the game. For example, if a game provides the players with 25 different elements and
just ten elements are used in the game, then it provides, regarding the mathematical theorem
of combinatorics, 3268760 possible ways to play a game. This formula only applies if the
introduction of each element happens after a specific time with no reuse of elements. Moreover,
specific conditions for, e.g., the specific timeslot of an element’s revelation can also be a part of
the generation process which emerges a more dynamic game.

In this case, working configurations of the game provide the training set of the PCGML system
with which it learns the different dependencies between elements and effects to each other.

Pros and Cons

• A proper learned model can be saved to generate the same sessions again.

• Providing more designed content in the training set offers more possibilities for the game-
play.

• It needs a sophisticated game design with balanced dependencies between the available
elements.

38

• Possible complications in the training of the ML model because elements can consist of
many values which create complex dependencies.

• The game design must include a broad range of game elements with harmonization be-
tween each other and proper design and balancing.

6.1.2 Changing Weapons

Game mechanics often share a connection with some interactable objects. In the case of a First
Person Shooter (FPS) game, different weapons like guns, rifles or shotguns represent these in-
teractable objects. Moreover, different weapons often result in different mechanics such as
particular tactics. With this in mind, another idea of using PCGML as a game mechanic is its
use as a weapon generator. In specific, an FPS game with generated weapons where providing
different weapons at the training time results in different ways to play the game. A virtually cre-
ated weapon can have different properties, such as weight, recoil, firing rate, ammunition and
others which form the base to generate new weapons procedurally. Furthermore, as weapons
need ammunition, the generation of new bullets and projectiles can also be part of the PCGML
system.

For example, a game could be an FPS game with generated weapons from a pre-trained
PCGML system whereby the model will be fed with the new generated weapons during runtime
and furthermore specializes in a specific direction. After a bunch of time, the system only
generates a specific weapon, and that is where the game or session would end.

Pros and Cons

• Open source FPS projects and FPS communities are offering a good base of training data
to build on.

• Properties of weapons and ammunition are not quite complex to train the ML model.

• It does not matter if the generated weapon works in every environment. Different weapons
offer different advantages in different environments.

• There is no need for sophisticated game design.

• The diversity of weapons can be minimal if there is no training set with enough weapons
because of the non-complex structure.

6.1.3 Changing Powers

Often, the central mechanic provided in most RPGs is fighting with a sword and other weapons
or by applying magic spells. Moreover, the weapons often possess a magic power as an ad-
vantage or disadvantage. These powers and the magic spells themselves can be part of a

39

generation process powered by a PCGML system. The system could generate new weapons
or spells affecting the duration, spell category, continuing effect on the enemy or player, energy
cost and other similar and often used properties. Providing useful weapons with advantages or
disadvantages or some magic attacks as an example would serve as the training of the system.

Pros and Cons

• Magic attacks and spells do not need to be generally effective against enemies because
their tactical use forms their effectiveness in the game.

• There are no general rules of what and how spells and magic attack appear in games,
thus they can be anything.

• Often, they do not consist of complex structures which should make ML model training
easy.

• It needs proper designs of balanced and tweaked spells.

• Visuals should also be part of the generation process because there is no universal usable
appearance for magic attacks.

6.1.4 Solver Weapon

The solver weapon is an idea based on the co-creator pattern described in Chapter 6. It is
about a game mechanic of using a generation weapon to progress through the game. The
weapon’s purpose is to help the player in particular conditions such as solving puzzles with a
missing piece in it. The highlight of the game mechanic is the required drawing interaction to
generate a missing piece. A player needs to draw the missing piece on a given "drawing panel"
connected with the weapon which tries to replicate the figured piece. Drawings could consist of
big solid circles indicating corners and lines representing edges. The detection of the drawing
involves object detection via ML which forwards detected chunks to the PCGML system. For
example, introductive gameplay could be to find or generate the missing key for a door whereas
the player is aware of the lock’s shape.

This idea could work as follows:

1. Different input with different drawings of puzzle elements or geometric shapes depending
on the style train the ML model. The system is then able to detect essential points on the
drawing and suggests what the drawing would be.

2. The PCGML system detects the drawings with any object detection algorithm. As the
system has obtained the chunks from the detection algorithm, it uses each chunk data to
generate a fragment of geometry and finally combines all of them into a combined shape.

40

Furthermore, an extension of this idea is able with the trainee and guided pattern where the
player would provide the system with feedback if the PCGML system outputs the wrong object.
In this case, it would learn the specific drawing conventions of a player and adjust itself to the
player.

Pros and Cons

• Training set for each model can be easily created by hand.

• The concept is straightforward and easy to learn.

• Virtual reality offers an easy-to-use drawing mechanic and fits perfectly.

• It needs two trained ML models. One for the object detection and another for the genera-
tion of puzzle objects.

• It needs the design of proper puzzles where the mechanic of generating objects is appli-
cable.

6.1.5 Defeat of the Enemy

The PCGML system tries to defeat the player, and one or more players try to defeat the enemy.
The adversary design pattern described in Chapter 6 where the role of the AI is to defeat
the player forms the base of this idea. In this case, the system is trained on simple player
behavior such as movement paths or attack preferences in a specific environment and uses
this knowledge to overcome the player. Moreover, it would also be able to find a new behavior
pattern during the fight. In short, the output of the system consists of new tactics, behaviors or
attack sequences. Furthermore, the PCGML system could categorize used behavior regarding
their success or failure and learn from these outcomes to increase its accuracy.

An example scenario would be that an AI has the intention of applying a critical hit to the
player. In doing so, the PCGML system generates, e.g., a possible path to fulfill the desire of
hitting the player based on, e.g., both the players and AI positions and the pre-trained knowl-
edge.

Pros and Cons

• The training input for the ML model can be real data of fights with a standard AI enemy,
extended with randomized values.

• Possible improvement of the ML model during runtime with system feedback.

• PCG generation and especially an interactive modification of terrain can be complicated.

• It needs a well-balanced training set for not overwhelming the player with a too tricky
enemy.

41

6.1.6 Caught in a Thunderstorm

A game which revolves around a player which is in control of a thundercloud and has the ob-
jective to destroy cities or enemies with the power of lightning. In this scenario, a PCGML
system would generate a pattern for the diffusion of lightning and impact points based on differ-
ent weather conditions, cloud height, enemy or building position, physical materials and similar
properties. This idea offers its potential as a thunderstorm simulation game supported by em-
pirical or real weather data as the training set for the PCGML system.

Pros and Cons

• Pattern generation is easy to implement with, e.g., the L-system.

• Training of the ML model is possible with statistical, empirical and real data.

• It needs a proper game design with a proper sense of using the mechanic.

• The proper simulation of weather conditions and changes can be too complicated to im-
plement.

6.1.7 Train to Progress

A player is forced to play with an empty and untrained PCGML system. The system can gener-
ate an essential part of the gameplay but needs to be trained first to activate its full potential of
creating necessary or missing elements. In this case, a player’s primary objective is to train the
PCGML system to progress towards a given goal. For instance, a puzzle game where the cen-
tral puzzle is the system’s training to generate, e.g., some missing piece. A level could contain
hidden objects which need to be found first to train the system correctly.

For example, if the goal would be to unlock a door with a generated key, then the player needs
to find sample keys first to train the system with those which are similar to the lock’s key. If there
isn’t any success in generating the right key, then the player can reset the internal model of the
system and try it again with another pair of sample keys. This principle also offers its application
with other kinds of objects and is mainly based on the trainee design pattern.

Pros and Cons

• The ML model does need pretraining because it is done in the game by the player.

• The creation of puzzles does not need to consider the PCGML system because the puzzle
forms the base of the system’s implementation.

• It takes time to train the model by the player correctly, and it can be frustrating if the model
does not learn properly.

• Each puzzle element needs its design and its PCGML system.

42

6.1.8 Building with Assistance

The mechanic revolves around a PCGML system, trained to generate incomplete game el-
ements for a specific goal. For example, a building game where the PCGML system never
outputs the correct element which is currently needed. On the other hand, the player can im-
prove and overhaul the generated elements. All these changes made by the player will change
the internal model to guide it to a desired generation output direction. Thus, the guide design
pattern with the focus on guidance is the base of this idea. The training of the PCGML system
would consist of examples of incomplete but usable and modifiable game elements.

Pros and Cons

• The PCG is easy to implement since it just needs to generate objects proper to the game
corpus.

• There is a margin for generation errors because it revolves around guidance of the
PCGML system.

• The generation of usable and extendable elements need to be secured.

• The model takes a while to get well guided, and it can be frustrating if the system does
not generate anything usable at the beginning of the game.

• It needs an interaction system with generated objects.

6.1.9 The exploring Co-Worker

Another idea based on the co-creator pattern could be, e.g., a strategy game where the player’s
focus is to mine, build and create strategic plans to overcome his or her opponent. Moreover,
to evolve in the game, the player possesses a PCGML system which is used to explore and
conquer new sections of a map. This system would work entirely on its own and functions as a
helper and teammate for the player. The exploration process of a new section consists mainly of
creating new terrain by the system. In this case, the system is trained to generate new chunks
or section of unexplored terrain mainly based on the player’s progress, mined resources, and
similar elements.

Pros and Cons

• The PCGML implementation focuses only on the exploring task.

• The terrain generation can be based on the game corpus and does not apply to specific
rules. Thus, the training of the ML model with sample terrains should be easy.

• PCG generation and especially an interactive modification of terrain can be complicated.

• The terrain needs to be interactable with the player’s mechanics to build and mine.

43

6.1.10 Observe and Learn

A PCGML system which is trained to generate and modify terrains including a particular path to
reach a specific goal. The highlight is that the system does not always generate possible ways,
demanding the player to change the properties of the system influencing the terrain, the level,
the map or the world. In doing so, the player is forced to observe the interactive and smooth
changes in the system to reach the current goal. The visualization and editable design pattern
form the base for this idea.

Pros and Cons

• Terrain generation can be based on the game corpus and does not apply to specific rules.
Thus, training of the ML model with sample terrains should be easy.

• There is a margin for errors since it is the system conception to work faulty and the player’s
task to interact with the system to reach the goal.

• PCG generation and especially interactive modification of terrain can be complicated.

• The necessity of "incorrect operation" for challenging terrain generation needs to be se-
cured.

6.1.11 Express Yourself

An application as a game mechanic in a point and click game could be a PCGML system,
trained to generate new storylines, events, choices and outcomes based on already made de-
cisions. The system is trained on designed stories and learns the dependencies to create new
and novel storylines with individual possible choices and outcomes. Like in the idea described
in 6.1.1, the designer can provide more game elements than used in the game which provides
the system with a variety of possibilities on how to compose the game. The spectacle pattern
is the base of this idea of a PCGML generated story.

Pros and Cons

• As described in the first idea about "Rules and Behavior, the same type of considerations
apply to this idea about generating whole storylines with interaction.

6.1.12 Big Boss Helper

This mechanic is based on the villain pattern but here the AI rather mobs players than tries to
defeat them. This kind of design pattern fits almost perfectly in, e.g., an RPG big boss fight
with more than one Non-playable Character (NPC) to defeat. For example, two NPC’s must be
defeated to win the fight and obtain a unique item. One of the NPC’s applies mainly damage,

44

and the second one protects the first one. This helper NPC is represented by the PCGML
system which is trained on player behavior such as attack preferences or movement behavior
in a specific level or environment to generate or adapt the terrain or level, keeping the player
away from the main enemy.

Pros and Cons

• The same pro and cons described for the mechanic "Defeat of the Enemy" apply to this
concept since their PCGML systems are operating in the same manner.

6.1.13 Figure it Out

A possible application in a multiplayer game could be a mechanic in which each player pos-
sesses a PCGML system for generation purposes. However, the challenge in the game is that
each generation of the system changes the other’s systems output, and they need to work to-
gether towards a specific goal. For instance, a puzzle game where players need to figure out
the connection between their system. The PCGML system would be trained with a specific
game corpus and enables interaction based on the editable pattern. One player changes pa-
rameters which subsequently influences the other player, all while they need to generate an
object combined from each system’s output. Parameter adjustment can either be done directly
or indirectly by moving stones around in a room and find their right position. Furthermore, this
idea is also applicable in a single player puzzle game without the need of another player.

Pros and Cons

• Creation of puzzles does not need to consider the PCGML system because the system
revolves around the puzzle.

• The training of the ML models should be easy since the system is modeled based on a
puzzle.

• Each PCGML system focuses on its piece of the puzzle element.

• It needs training for each ML model and puzzle.

• Each puzzle element needs own design and own PCGML system.

• The connection between PCGML systems will be complicated; therefore it needs a proper
design of the system’s connection.

6.1.14 Novel Vehicles

Another possible application for a PCGML system can be the generation of cars or vehicles as
they also consist of many properties and parameters. The finetuning process of these proper-

45

ties is usually a lengthy process which is a perfect field of application for an ML trained PCG
system.

Pros and Cons

• The generated vehicles can decide the kind of game; therefore it does not matter what
the system’s output is as long as it secures playability.

• Vehicles are not limited to cars; therefore it can be any wheeled vehicle.

• The training set needs the designs of many vehicles so that the system can learn the
complex dependencies of a vehicle.

• The design of vehicles often involves a long process of balancing.

6.2 Summary

The ideas how someone can make use of PCGML as a game mechanic show that there are
many possibilities which differ in their implementation complexity. Appendix A provides a sum-
mary of each PCGML game mechanic training data and output.

Many of the ideas are about generating items used as a game mechanic, but PCGML also
offers the possibility to generate any item such as quests, missions or challenges. Furthermore,
the implementation of any progression mechanics is also applicable via PCGML. It just needs
the right idea and a training set with an appropriate data representation to properly train the ML
system.

6.2.1 Game Mechanic for the Prototype

As already mentioned, all the introduced ideas differ in their development complexity. Most of
the ideas require a sophisticated game design where the PCGML game mechanic can work
and create an adequate experience for the players. For instance, ideas like "Train to Progress"
or "Figure it Out" offer an exciting approach for creating a unique player experience but require
a very sophisticated game design and much balancing and polishing. For this reason, the
most straightforward and most applicable ideas for showing the potential of PCGML as a game
mechanic in this thesis offer "Changing Weapons" and "Changing Powers." Availability of open
source FPS projects, real weapon data, and communities of big FPS titles lead the decision for
the prototype game mechanic to the idea of "Changing Weapons." Therefore, the rest of this
thesis deals with the implementation of a PCGML game mechanic prototype which revolves
around PCGML generated weapons.

46

7 Prototype Preparations

The dedication of this chapter is the development preparations for a game prototype using the
PCGML game mechanic chosen in the last chapter. Every section in this chapter is in direct
relation with the picked game mechanic which does not mean that the process is not applicable
to other PCGML game mechanics. Most of the described processes are transferable and follow
a fundamental principle suitable for every other kind of PCGML game mechanic.

The next sections contain every conceivable and necessary topic for implementing the
PCGML mechanic "Changing Weapons" in a game prototype. From an initial game idea to
the most useful game engine to the training model. Note that this idea functions as the founda-
tion of a prototype for implementing PCGML game mechanic rather than being a sophisticated
designed game. This chapter and the next chapter functions as a proof-of-concept and shows
how a PCGML game mechanic can be implemented and used in a game.

7.1 Test Scenario

A one player arena-like 3D player versus environment game scenario in which the player is in
control of a PCGML system which produces weapons such as pistols, machine guns and other
kinds of guns to interact with. The weapon generator is of vital importance, and the game forces
the player consistently to make use of it to win the game. Specific datasets of weapons can
bias the system which leads the kind of game and its flow.

7.1.1 Environment and Objective

The environment is a mountain-forest-like environment. The player spawns anywhere on the
map and needs to find the arena and the last AI opponent which then starts "the battle of
the changing guns" which also represents the last fight of the scenario. The player’s primary
objective is to defeat the end game boss AI in a battle at the end of the scenario. The player
either wins or loses the battle but can retry after a loss.

Training Session

However, first of all, the player needs to fight against NPC enemies on the way towards the
arena to specialize and get used to the weapons. Even though this is a training session, the
player has a specific amount of lives and need to take care of them. If the player loses all of the

47

lives during this session, then the game is lost, and it ends. Specific spawn points provide the
player with health, ammunition, and armor packages.

Battle of the Changing Guns

Initialization of the battle happens as soon as the player is in a specific range to the AI in
the arena. As soon as the player initiated the battle, the training session ends and recovers
the player’s lives for an epic final battle. The player can now move everywhere on the map and
needs to defeat the AI with his weapons to win the game. During the battle, ammunition, health,
and armor packages are randomly spawned in the player’s range, forcing her or him to move
around on the map to give the battle more energy. Furthermore, the end boss is powerful which
forces the player to use the weapon generator very often.

7.1.2 Weapon and Ammunition

The player can hold a maximum of two generated weapons but can only use one at a time.
Generated weapons come with a specific amount of ammunition with the possibility to be refilled
during the game. The player can either use a weapon as long as ammunition is available or
dismantle it at any time to generate a new one.

Every generated weapon is fed into the existing PCGML model to specialize the system’s
model in a specific direction. Newly generated weapons are biased based on the kill count and
time of usage of the dismantled weapon. A Head-up Display (HUD) shows statistics about the
generated weapon to provide the player with information about it.

7.1.3 Player and Enemies

The player is a third-person character with a specific amount of health, armor, and lives with no
customization options. An initial synchronization between these mentioned properties and the
properties of the generated weapons is necessary to maintain a balanced game.

A simple AI controls all enemies to act as a training enemy for the battle. Enemies come in
three different types of ascending power and health. They spawn in fixed locations throughout
the training path. The enemies desire is to eliminate the player in a straightforward way rather
than in a complex and sophisticated way.

The design of the boss AI enemy defines specific base health, armor and damage. The base
values could increase with the time of the training session and regenerate during the battle.

7.2 Which Game Engine?

The decision of the most applicable game engine is not only based on how quickly the imple-
mentation for a FPS game could be done but also about their support for ML. The decision

48

envisages the two most used free to use game engines nowadays but is not necessarily limited
to them. Another reason to further examine these two particular engines is the writer’s expertise
for them.

As described in Chapter 4.2.4, both Unity and UE4 have available ML plugins for their en-
gine. On the one hand is Unity’s ML plugin which is boosted by Unity’s developers themselves
whereas on the other hand is UE4’s community member created open source ML plugin. Nev-
ertheless, both are using the same concepts of including ML functionality into the engine. In
specific, they are using a Python interface or plugin to make use of the open source ML frame-
work TensorFlow (TF). With this in mind, the next chapters concentrate on the workflow in
each engine to find the most suitable game engine for implementing the chosen PCGML game
mechanic.

7.2.1 Unity

Unity’s ML plugin is actively in development, is mainly focused on the development of ML-
agents or so-called NPCs and supports multiple environments and Operating Systems (OSs)
(Unity Technologies, 2018b). They are focusing on the development of learning methods like
RL, imitation learning and curriculum learning but also enable the application of other methods
(Unity Technologies, 2018b). Moreover, their GitHub page offers an extensive introduction to
ML and their plugin, some example projects on how to use the plugin and is a perfect starting
point to dive in.

With this said, in the beginning, and before any functionality of the plugin is usable, it needs
an installation of a Python and TF environment on the Personal Computer (PC). This installation
is a different procedure and can sometimes be tricky, depending on the OS and preferences for
TF.

Once the installation process of all prerequisites is complete, nothing stands between the de-
veloper and a working ML environment. The first thing to do is a setup of a training environment
to train a new model to make use of it. This learning environment is a typical Unity scene and
consists of an academy, brain and the ML-agents itself, created and programmable in C#:

• Academy: Is mainly used to communicate with the brain, agents and Python API (Unity
Technologies, 2018b). It is also involved in environment observations and the decision-
making process (Unity Technologies, 2018b).

• Brain: Encapsulates the logic for decision-making process for the agent (Unity Technolo-
gies, 2018b). For example, the brain holds the policy for the agent and the given rewards
for received observations for an RL-based brain (Unity Technologies, 2018b).

• Agent: Is just a Unity GameObject which generates observations and processes provided
actions by the brain (Unity Technologies, 2018b).

As soon as the training environment is set up, the real training can begin with a build of just
the training environment. Only the external Python environment is involved in the training of the

49

model. This environment contains the logic of the ML algorithm based on the TF framework.
The Python environment itself can start the training environment build and communicates with
Unity’s academy with the help of JavaScript Object Notation (JSON) data sent over an open
socket connection. After the training’s completion, it is possible to save the trained model to
use it in the game. A trained model is saveable in a ".byte" data format which can then be used
instead of the previously created brain.

7.2.2 Unreal Engine 4

Other than Unity’s ML plugin, the open source and community member developed ML plugin
for UE4 does not focus on any specific ML algorithm and offers only an API to develop projects
with TF (Kaniewski, 2018). The plugin is under continuous development by just one developer,
works with one of the newest versions of TF and currently only supports Windows. As a starter
help, Kaniewski (2018) provides different releases for different engine versions and hardware,
documentation about the installation process and the API, and an example project in which the
plugin is used to predict hand-written numbers.

The installation process of the plugin is pretty straightforward. One downloads a release build
from the GitHub page and copies the plugin folders into a UE4 project. The plugin itself is de-
pendent on two other plugins. One for a Python environment and the other one for open socket
connections, called "SocketIO," directly integrated into UE4. After importing the plugins and
restart of the project, the Python plugin triggers the installation process to obtain all necessary
dependencies for a working ML Python environment. The ML environment is now fully working
and usable for development and does not need external installations.

Setting up an ML environment in UE4 is rather simple and is done in two steps:

1. TensorflowComponent: Add a so-called TensorflowComponent to a UE4 Actor which
can communicate and execute a so-called TFPluginAPI Python script. The component
itself is a Python scripted UE4 ActorComponent and can only be attached to a UE4 Actor.
One might provide some functionality within the component for inputting or outputting data
to or from the Python API. The communication uses JSON data, sent via an open socket
connection to the Python plugin.

2. TFPluginAPI: Create a Python script which derives from the TFPluginAPI which is a base
class script for handling all TensorflowComponent calls. This script can override functions
of the TFPluginAPI for setup, input via JSON data, training start and end, and provides
functionality to send custom events. ML code goes in the training functions and will be
called either by the TensorflowComponent or if deactivated, by a user.

Other than Unity’s procedure, the training process for this plugin does not need a separated
environment. The training can happen directly during the game or separately in advance to use
an external trained model. Another possibility is to train the model during the game and save it
for use in another game session. Every functionality provided by a usual Python API and the

50

TF framework can be used to develop an ML application within UE4. Furthermore, save and
loading functionality of trained models make use of TF’s specific data format.

7.2.3 Conclusion

Unity’s ML plugin is very focused on implementing ML-agents and provides much code which
is more or less useless for the implementation of the PCGML game mechanic. All of their
code revolves around implementing an agent with an ML brain, and it would need an overall
inspection of their code to set up an own environment to implement the chosen game mechanic.
Furthermore, they are making use of an external Python environment which means that every
user would need to set up an own ML environment on their PCs. This fact limits the possible
application of a PCGML system implementation to an offline system where the training of the
brain happens separately, and the build then includes the pre-trained model.

In contrast to Unity’s plugin, the plugin for UE4 is just focused on providing a simple interface
to create projects with TF and has no specific code in its API. The plugin provides and inherits
all documentation needed to implement a working project since it uses mainly the TF frame-
work. Furthermore, there is no necessity of setting up an external environment which makes it
possible to include every involved plugin into a fully functional build of a game. Therefore, it is
possible to use this plugin for online and offline PCGML systems.

These reasons of a basic TF framework to implement ML algorithms on top of it and that
it does not need to set up an external Python and TF environment drives the decision for the
game engine to UE4 with its open source community member developed TF plugin. Therefore,
the rest of this thesis addresses the implementation of a PCGML game mechanic in UE4.

7.3 Hardware and Software Requirements

UE4 itself does not require particular hardware to run. They support many different OS and
hardware. This support leads the requirements examination of this chapter on the UE4 TF
plugin.

7.3.1 TensorFlow Plugin

The UE4 TF plugin currently only supports the Windows OS (Kaniewski, 2018). To get started
with the plugin, it needs the installation of TF on the executing system or in this case in the UE
project. TF supports 64-bit and x86 desktops or laptops with Windows 7 or later (Google, 2018).
There are two installation options for enabling different types of TF on the PC:

• Central Processing Unit (CPU): TF with CPU support is the standard alternative which
works for most of the standard PCs in use nowadays. The only significant drawback of
using the CPU variant of TF are longer training computation times.

51

• Graphics Processing Unit (GPU): The GPU alternative of TF offers faster computation
of ML algorithms and significantly reduces training time. The only requirement for using
the GPU variant is that the user needs to use a GPU which is eligible for NVIDIA’s CUDA
toolkit (Corporation, 2018) to run the GPU variant of TF. Nevertheless, modern PCs with
an integrated NVIDIA graphic card are usually eligible to support the CUDA toolkit.

As already mentioned before, the only fundamental difference between the installations is
their result in different computation times. Notably, this is getting an important role when the
game uses online training, trains a large model and requires suitable computation times for
the model’s training. For this reason and to avoid initial delays, it is advisable to use a pre-
trained model and apply changes to a copy of the model during runtime so that players are not
concerned about the computation time.

7.4 Data Acquisition

The most important part of the prototype development focuses on the data for the ML model’s
training. To get a well-trained model, it requires to have a representative sample of the genera-
tion space. For the sake of simplicity in the data search, this dataset size is defined to contain at
least 100 entries. However, the right amount of data entries depends on the available features
to train the model, and there is no simple formula for this problem as described in Chapter 4.

The search for appropriate data starts with the sample and template projects provided in UE4
since its the engine used for the prototype. The templates can offer a significant advantage
because they could provide usable data and implementations for the prototype. Unfortunately,
these template projects are not eligible, and the search ends with the conclusion of either using
real-world or games data. The next chapters are going into the detail of all found and thus
evaluated data sources.

7.4.1 Unreal Tournament and Template Project

Epic Games provide the source code for Unreal Tournament to registered users on their GitHub
account (Epic Games, 2018b). After following their installation instructions, the project is ready
to go and ready for inspection.

It shows that Unreal Tournament does not use as many weapons as needed for the training.
The implementation contains only 16 different guns with ten common and usable parameters to
train the model. Nevertheless, the source code of their weapons and used parameters are the
perfect reference or template for implementing an own weapon class.

The other starting point for finding appropriate data is the so-called "Shooter Game" project
which provides an introduction for implementing FPS games (Epic Games, 2018a). Unfortu-
nately, this project does not provide any usable data. It only provides the developer with basic

52

implementation for two different kinds of weapons with an example for each one. The variables
used in their implementation are similar to Unreal Tournament’s weapon parameters.

7.4.2 Counter-Strike: Global Offensive

The next point of an initial reference is the favorite eSports game Counter-Strike: Global Offen-
sive (CS:GO). Websites with community-driven analysis on the game’s central mechanic are
the perfect base for finding appropriate data to train an ML model and use the data for weapon
generation. Unfortunately, CS:GO does not use many weapons and specializes in 32 weapons
for the game (FANDOM Games Community, 2018b). Nevertheless, the available analysis data
provides an excellent base to work with and to extend the available and balanced game data
with, e.g., real-world data.

7.4.3 Real-World Data

Plenty of websites about weapons are findable on the world wide web. However, most of them
do not provide much data about the weapons themselves. The search leads to, e.g., army and
manufacturer websites to find the appropriate weapon data for specific weapons. Nevertheless,
the procedure for finding and obtaining real-world weapon data is a lengthy process. Besides,
it shows that weapon manufacturers do not always provide all the data, and it would take real-
world tests to obtain specific weapon data. In particular, all found weapon data have about
seven to eight similar variables which are usable for training the model. These parameters are
the type of weapon, average weight, overall length, barrel length, bullet caliber, magazine size,
muzzle velocity, and the rate of fire.

For sure, this data is suitable to train a model and generate weapons even if this takes more
time to implement and balance. It would be easier to use already balanced game data to train
the model and generate new weapons. For this reason, the search leads to the most valuable
data source which is usable for the implementation.

7.4.4 Battlefield 1

The investigation showed that the game Battlefield 1 (BF1), released in 2016, uses more
than 100 different weapons constellations in the game. The setting of the game takes place
during World War One (WW1) and therefore uses weapons of this period. Fortunately,
gamers gathered all possible weapon statistics for Battlefield games on the community web-
site "http://symthic.com" (Symthic, 2018). They provide a list of 148 weapons constellations
used in the game with very detailed description and statistics (Symthic, 2018). In fact, they
provide more than 70 parameters, describing every weapon (Symthic, 2018).

Further evaluation specializes in these parameters to 18 most suitable and meaningful vari-
ables for a weapon implementation. Nevertheless, one can use even more, less or other param-

53

eters to generate weapons and train the model - but not all of them are always useful. Table 7

shows these most useful parameters for the future weapon class and model training. However,
the number of the variables is a subject to change during the implementation.

Name Description

Damage Points Damage points per hit.

Firerate Fired bullets per minute.

Num of Pellets Number of pellets in one shot.

Muzzle Velocity Bullet velocity when exiting the muzzle.

Bullet Drop Gravitational bullet drop.

Magazine Size Number of bullets in a magazine.

Projectile Type of projectile used.

Horizontal Dispersion Horizontal pellet dispersion.

Vertical Dispersion Vertical pellet dispersion.

Reload Empty Reload time with an empty magazine.

Reload Ammo Reload time with a magazine with ammo left.

Reload Single Bullet Reload time for a single bullet.

Recoil Up Recoil in the up direction.

Recoil Left Recoil in the left direction.

Recoil Right Recoil in the right direction.

Recoil Decrease Recoil decrease after a specific time.

Spread Increase Spread increase per shot.

Spread Decrease Spread decrease after a specific time.

Table 7: Eligible weapon statistic for the prototype provided by Symthic (2018).

7.5 The Learning Problem

A quick recap of the game mechanic: It is about generating new weapons based on existing
weapons or more specifically weapons from the game BF1. That means that there is a training
dataset X and it is desired to generate data which is similar to X. In more specific, this fact let
the problem seems to be an unsupervised learning and a clustering problem, earlier described
in Chapter 4.1.2. Therefore, the model should be able to learn relations among the attributes in
the data. This procedure is also known as probability density estimation which attempts to learn
the underlying probability distribution of all the data features (Doersch, 2016). In other words:
The given weapons X share a real and unknown distribution p(X) and the model should ap-

54

proximate this distribution with a new distribution p̂(X) by learning its underlying relationships.
This process is also known as density estimation or maximum likelihood estimation.

However, there are also other solutions to this problem of generating similar features of a
weapon than the identified way. Therefore, the next section describes all possible methods and
approaches which are possible to solve the problem of generating new weapons.

7.5.1 Suitable Models

Now, the PCGML system infers that the model should be able to generate content which leads
the logical answer of suitable models to generative models. The model should be able to cluster
all the weapons to furthermore generate new ones out of the existing ones. Although it is
a generative model problem, discriminative models might also be a possible solution to the
problem.

Notably, as seen throughout the previous chapters, there are no distinctive right or wrong
methods to train a PCGML model. PCGML is a relatively new approach, and many different
methods are suitable to reach a particular goal. For example, the same proceeding as pre-
sented in the PCGML development example in Chapter 5.4 is usable for this problem but is
most likely not the most useful and fastest. For this reason, this section focuses on generative
models instead of discriminative models. Nevertheless, it would be interesting for future work
to see if that model would work better than a generative model.

Besides, as the research of (Summerville et al., 2017) shows, methods like NN, LSTM, AE,
deep convolutional networks, Markov models or Markov chains are applicable for a model’s
training to generate, e.g., levels of 2D games. Nevertheless, because TF is a framework for
developing deep NNs, the chosen model for this problem and the PCGML system implemen-
tation are NNs. Following sections describe two top-rated generative models for deep NNs
(Doersch, 2016). However, it is to keep in mind that this does not mean that they are the only
ones possible for the generation problem.

Generative Adversarial Network

GAN is a network which fundamentally finds its primary use case in generating high-quality
pictures (Bonnin, 2017). The uniqueness of GAN is its composition out of two different types of
networks, securing a high-quality. It is composed of a generative network for generating new
data and a discriminative network for verification (Bonnin, 2017). This synergy of both networks
secures that the model is trained to output high-quality data.

In particular, the generative part is the so-called "Generator" whereas the discriminative
model is called the "Discriminator" (Bonnin, 2017). Its workflow is as follows:

1. The generator takes a random sample from a random normal distribution and produces
data which could be from the same distribution as the input data (Bonnin, 2017).

55

2. The discriminator then takes the real input data, compares it to the generated data, tries
to identify if it is from the real or a fake distribution and rejects it if it identified as fake
(Bonnin, 2017).

The repeating of steps 1 and 2 stops as soon as the generator network can "beat" the dis-
criminator network with fake data (Bonnin, 2017). This repeating counterplay is the reason
why GAN got its adversarial part in the name. Specific models for the generator and discrim-
inator can differ, but a possible model for the generator would be a modified VAE (Ghotra &
Dua, 2017).

Variational Autoencoder

An VAE is an advancement of an AE with the same principal strategy (Doersch, 2016). AEs
aim to reduce and compress the feature dimension of input data which enables the possibility of
decompression and reconstruction of all features afterward (Ghotra & Dua, 2017). This method
means that, for example, an image can be compressed into a minimal number of features
and decompressed to the same image afterward with a small amount of reconstruction error.
Although, a crucial difference to GANs is that AEs and VAEs do not reproduce with the same
quality because they compress and decompress the data and often lose some detail as a result
(Ghotra & Dua, 2017).

Now, the distinctive characteristics about VAEs are that they make use of the compressed
state to transform the reduced features onto a normal distribution (Doersch, 2016). It achieves
this by additionally sampling from a normal distribution right after the feature reduction which
further enables the ability to process random input and reconstruct new data in the same distri-
bution as the training data distribution (Doersch, 2016).

7.5.2 Model Conclusion

Both of the described models are promising and eligible for the PCGML model implementation.
Nevertheless, the training time of a GAN might take longer than a VAE due to the generator
and discriminator interplay. Furthermore, it would overall require a bigger network and increase
the computation times during training. However, this would be a reasonable network if the
mechanic would not require retraining.

For this reason, the decision leads to the model of VAEs. They are possibly easier and faster
to train than GAN and still can generate data which is similar to the trained data. Therefore, the
rest of this thesis addresses a weapon generator game mechanic which uses VAE as the ML
backbone for the generation task.

56

7.6 Used Model Introduction

As already described in the previous chapter, AEs aim to reduce the features of the input to
create a compressed feature vector. Therefore, they are also used for encoding and decoding
the same structure, feature extraction and data compression (Ghotra & Dua, 2017). Figure 7

shows a schematic representation of an AE which gets a pistol as input and outputs a pistol
with a little bit of inaccuracy. The left side of the network is called the encoder which gets the
input and encodes all features into the so-called "latent variables" or "latent space" whereas the
right site is called the decoder and decodes the latent variables back into the input data (Ghotra
& Dua, 2017).

Figure 7: Schematic representation of an AE NN with a blurry output.

The latent space got its name because someone does not necessarily know which features
led to it (Doersch, 2016). It represents a transformed representation of the most valuable input
data features. For example, someone could think of handwritten numbers and identify a latent
variable in the number eight as the upper circle of the number. With this, the decoder would
always reproduce this circle during decoding since it learned it as it would be a shared feature
among all features. This assumption would make sense if there are only the same numbers in
the input data but not if there are many different. Furthermore, if the latent space has the same
dimension as the input or hidden space, then it could easily happen that all the information
is fed straight forward through the network without any encoding, decoding and latent vector
creation. This network constellation is the worst case and is not intended.

Now, the VAE makes use of the same technique and resembles a traditional AE (Doersch,
2016). The primary difference is that it alters the latent space with new variables and a sampling
process to map the input data latent space onto a normal distribution like a Gaussian distribution
instead to a fixed vector (Doersch, 2016). Figure 8 shows a schematic representation of a VAE

57

network and the difference to regular AEs.

Figure 8: Schematic representation of a VAE NN.

It is worth noting that all of the mentioned details of VAEs are excerpts from the excellent
tutorial on VAEs from Doersch (2016) which shall serve as a further reading source if the reader
is interested in the detailed mathematics of VAEs.

Now, as seen in Figure 8, the VAE adds two new variables to the latent space. The variables
µ and σ2 represent the mean and variance of a normal distribution and are trained and learned
via backpropagation and the so-called "reparameterization trick." The variable z is the actual
latent vector which is a combination of µ, σ2 and a random number sample ε from a normal
distribution. Now, the reparameterization trick introduces the random sample variable ε which
enables the possibility of backpropagation and helps to map the estimated distribution onto a
normal distribution. In specific, the sampling process is applied to alter the latent vector and
furthermore the output of the decoder network. However, the actual normal distribution mapping
happens with the optimization part of the network which works as follows:

1. Calculate the reconstruction loss of the decoded data compared to the real data.

2. Calculate the so-called "Kullback-Leibler divergence" or short "KL-divergence" which
makes sure that the latent vector z stays close to a normal distribution with a mean of
zero and a standard deviation of one.

3. Combine the reconstruction loss and the KL-divergence to form the actual cost of the
current training batch.

4. Take the calculated overall cost and use backpropagation to optimize the model and min-
imize the cost.

58

It is worth noting that only the variables µ and σ2 are affected and adjusted by the backprop-
agation algorithm. The latent vector z is omitted and acts as a helper vector for the sampling
process. Otherwise, if z would not exist, then it would create a barrier for the backpropagation
algorithm since there would be a stochastic unit in the network (Doersch, 2016). For this rea-
son, the random sample ε acts as a new input layer and stochastic unit in the network which is
applied to z and not affected by backpropagation (Doersch, 2016). That means z gets indirectly
adjusted and optimized because it is a combination of µ, σ2, and the sample ε.

Furthermore, as the latent vector is always trained with a random normal distribution sam-
ple and mapped to a normal distribution, it enables the decoder to decode from noise data
(Doersch, 2016). Figure 9 shows an example of this behavior where the decoder decodes
noise data back to the learned data.

Figure 9: VAE latent space noise input decoding.

This possibility offers an excellent advantage for generating weapons from noise of a ran-
dom normal distribution. In specific, the explanation for why this is even possible is easy to
understand with the words of Doersch (2016, p. 6): "Any distribution in d dimensions can be
generated by taking a set of d variables that are normally distributed and mapping them through
a sufficiently complicated function."

However, decoding from noise input is not the only advantage. Another advantage is that this
also enables the use of noisy input on the encoder side which means that one can add noise
to the parameters of the input and the network will still generate a new weapon based on the
data.

59

8 Prototype Development

This chapter addresses every step of the development process of the weapon generator game
mechanic but does not cover UE4 specific game development topics. All previously mentioned
considerations apply to this implementation. It shows the development from the beginning
to the end and sums it up with additional profiling plots for performance concerned readers.
The ordering of all following chapters reflects more or less the actual workflow taken during
the development. The prototype was implemented with Python version 3.6.4 and TF 1.8.0
in Jupyter Notebook and then integrated into UE4 4.19.2; the source code developed for the
prototype is available on GitHub1.

8.1 Data Preprocessing

The first step of the development is the gathering and preprocessing of the BF1 community
weapon analytic raw data. All of the weapon data is accessible to everyone via the community
website of Symthic (2018). The community of Symthic kindly provides a database dump on
request which was extracted with a script by a community administrator. This database dump
contains every parameter of the weapons in a readable and manageable way.

8.1.1 Dump Extraction

More specifically, the dump contains 148 weapons with 90 parameters each. Some of the pa-
rameters can contain a list of further parameters. For example, the damage parameter consists
of a collection of different damage values which are listed related to distances. For this rea-
son, the damage and distance parameters were split into the first and last values to simplify
the extraction and the weapon implementation. The full list of available parameters and their
explanations is available in Appendix B.

Now, it would be more than impracticable to manually extract the useful data out of the dump
data file. The file has 13764 lines, and it would probably cause dozens of errors and wrong
extractions. Therefore, the development of a simple Python script to extract all the data into a
".csv" file was the simplest way to achieve a consistent data extraction.

The script reads a ".txt" file with the specified headers to extract in it as input and then extracts
these specified header names from the dump file. Right after completing the data gathering

1www.github.com/bernhardrieder/PCGML-Game-Mechanics

60

www.github.com/bernhardrieder/PCGML-Game-Mechanics

process, it creates a new .csv file with a timestamp and adds the extracted data in an organized
way so that someone can further process it by hand.

8.1.2 Manual Dimension Reduction, Addenda and Unification

One of the most significant issues in the extracted data was the ammo which was listed as it
would be a different one for some weapons even if it is the same. For this reason, a manual
examination of all ammo types was necessary to unify the range of all ammo types.

Weapon Type and Fire Modes

It turned out that the dump does not include the specific types and fire modes of the weapons.
Hence, it was necessary to examine that from the different game communities Symthic (2018),
FANDOM Games Community (2018a), and IGN Entertainment, Inc. (2018). This proceeding
added the unified weapon types of pistols, rifles, sniper rifles, shotguns, light machine guns,
and sub-machine guns as well as the unified fire modes of single-action, semi-automatic and
automatic. Some of the weapons in BF1 have more fire modes available which were further
simplified by the highest available fire mode. For instance, if a weapon can shoot with semi-
automatic and automatic, then automatic was chosen. Besides, the game specifies more fire
modes than the ones used. For example, they are using bolt-action, pump-action, single-barrel
fire, and lever-action which were summarized as single-action weapons since they are using
the same mechanic. Additionally, the weapons of BF1 have the possibility of double-action
and double-barrel fire which is now a semi-automatic weapon in the dataset. Charts about the
distribution of these two categories in the dataset are available in Appendix C.

Reload Times

Another problem was caused by the reload times of the weapons because BF1 uses distinct
reload mechanics for some weapons. In particular, the weapons of BF1 are from WW1 and
weapons of this time do not always have the same magazines as used in modern weapons.
Some of them do have special strip clip magazines instead of closed magazines which intro-
duced a particular reload mechanic. However, the community of Symthic (2018) provides an
explanation to this reload mechanic which made a manual calculation and unification of the
reload times for all magazine types possible so that there is no need of a distinction in the
prototype implementation.

Omitted Parameters and Final Set

Table 7 shows some parameters which are not very useful for the training of the VAE which
makes it necessary to omit some of these variables further. For example, the following param-
eters were omitted for specific reasons:

61

• The bullet drop is almost the same for each weapon and would not have an significant
impact during the training.

• The ammo types would need encoding which could probably cause the curse of dimen-
sion since there are about 30 different used ammo types in the dataset.

• The reload time for ammo if some bullets are available in the magazine is more comfort-
able to handle if it is directly calculated from the reload time for an empty magazine.

• The last omitted parameter is the recoil in the left direction which showed that it is always
the same value as the recoil in the right direction.

This refinement led the final set of parameters to the parameters shown in Table 8. Note that
the names of the parameters, except type and fire mode, are the same names as in the dump
file provided by the Symthic community. Moreover, the damages and distances are listed as
two parameters but are four parameters, as already mentioned in Chapter 8.1.1.

Parameter Explanation

Type The type of the weapon.

FireMode The fire mode of the weapon.

Damages Damage points applied, listed based on distance.

Dmg_distances The distances in correlation to each damage entry in the "Dam-
ages" parameter.

HIPRecoilDec Weapon recoil decrease if the character is not aiming down
sight.

HIPRecoilRight Weapon recoil upper bound of random recoil if the character is
not aiming down sight.

HIPRecoilUp Weapon recoil upwards if the character is not aiming down sight.

HIPStandBaseSpreadDec The decrease of shot spread if the character is standing, not
moving, and not aiming down sight.

HIPStandBaseSpreadInc The increase of shot spread if the character is standing, not mov-
ing, and not aiming down sight.

InitialSpeed Muzzle velocity.

MagSize Size of one magazine.

ReloadEmpty The time it takes if the magazine is empty.

RoF The rate of fire.

ShotsPerShell The number of pellets of one shot.

Table 8: Used weapon parameters for the training of the VAE.

62

8.1.3 Encoding and Feature Scaling

The next part of the data preprocessing is the encoding and feature scaling task so that the
VAE can efficiently process and train the network.

Encoding

The first part is to encode the two only categorical parameters in the dataset. On this account,
TF offers encoding mechanisms which help to encode the fire modes and weapon types. The
encoding procedure is the same as demonstrated in Chapter 4.2.3 and encodes the two cate-
gorical parameters into nine parameters. Therefore, the total number of features in the dataset
after encoding is 23.

Feature Scaling

Now, the last part is to normalize or standardize all features. In particular, this is a necessary
procedure for this dataset because there are many different value ranges. For example, the
rate of fire and muzzle velocity are large numbers whereas the values of the spread increase
or decrease are small. If there is no normalization or standardization, then this would cause
significant extra expenses, as explained in Chapter 4.2.3.

The approach used for the dataset is the standardization process since it transforms the data
in a way so that it has the properties of a standard distribution which may be useful during the
VAE’s training.

8.1.4 Training and Test Dataset

The total dataset consists of 148 weapon constellations. A typical split of the data would be
80% training data and 20% test data. For this reason, the dataset split is a training set of 127
weapons and a test set of 21 entries which are about 16%. The selection of the weapons for
the test set was done randomly and took into account to include at least as many weapons as
different fire modes, and weapon types are available, as well as different weapons with values
in low, middle and high range for damage, rate of fire, muzzle velocity, magazine size and reload
time.

8.1.5 Convenience Class Overview

TF offers many tutorials on how to use and develop with TF. A standard dataset used in the
tutorials is the MNIST dataset which encapsulates its data into a convenience class. This class
served as a base and inspiration for an own convenience class which encapsulates the weapon
data. Following Listing 1 presents the most valuable functions and accessible members of this
convenience class:

63

global functions:

get training and test data

class DataSet:

properties:

standardized and encoded data

number of features in data

number of data examples

standardized minimum values

standardized maximum values

functions:

get next batch for training either shuffled or not

add new weapons to the dataset

re-standardize the whole data

encode and standardize features

decode a processed tensor from TensorFlow

encode decoded tensor from TensorFlow

Code 1: Essential functions and properties of the weapon dataset convenience class.

8.2 Variational Autoencoder

The implementation of the VAE was driven and inspired by the explanation of Metzen (2015).
Metzen used a high-level approach in his design which is similar to high-level ML APIs. These
high-level APIs are easily modifiable and extensible which was the main reason for following
this approach. An easy modification is necessary to test different network hyperparameters
without significant changes in the code and thus to find the most suitable network parameters.
In particular, Chapter 8.2.3 explains the entire proceeding of the hyperparameters selection
process. Now, the next chapters show an overview of the VAE class, how the model accuracy
was measured to obtain an adequately trained model, address the already mentioned network
parameter selection, show two weapon generation examples and list development issues.

8.2.1 Class Overview

Listing 2 shows a VAE class overview with most of the available and necessary functions for
the generation task. The actual code contains some more functions which are not essential
to explain. As already introduced in the weapon convenience class, this class also has some
global convenience functions to obtain different stages of a VAE.

Two of the most essential functions of the VAE class for the weapon generation tasks are
the functions "decode from latent space" and "encoding and decoding" since they provide the
functionality to generate data similar to the training data. It is to mention that the VAE initializes
itself on construction where it calls all the initialization functions to maintain a working network.

64

The last most important function to mention is the loss calculation function since it is necessary
to secure a working generation during generation time so that the weapon is actually from
the distribution of the network and that the network was able to recreate a weapon from that
distribution.

global functions:

get an untrained variational autoencoder

get a fully trained variational autoencoder

class VariationalAutoencoder:

public functions:

train the model with a batch

decode a batch from latent space

encode and decode a batch

load the trained model from file

save the trained model to file

calculate the loss from a batch

private functions:

create the encoder network

create the z sampling operation

create the decoder network

create a hidden layer

create the weights and biases

create the loss optimizer

calculate the reconstruction loss

calculate the Kullback-Leibler divergence

Code 2: Essential functions of the VAE class.

8.2.2 Model Accuracy Measurement

One of the most important parts of training the VAE is to secure a high model accuracy. Two
different measurements will secure this accuracy:

• The value of the test set reconstruction loss.

• The value of a random input reconstruction loss.

Now, as already mentioned in Chapter 8.1, the data was split into 127 weapons as training data
and 21 weapons as test data. Both of the inputs are feed into the encoder side of the network
which outputs the manually examined test results. Following steps were taken to ensure a high
model accuracy:

1. Measure the model reconstruction accuracy by calculating the average loss caused by
the test set.

2. Generate a random input in the range of the normalized values of the test set and size of
the test set and measure the caused average loss.

65

3. Make sure that the average reconstruction loss of the test set is as small as possible and
the loss of the random input is as massive as possible.

Now, if the random input loss is very high, then it means that the model has learned the inter-
nal structure and dependencies of the training data because it cannot classify the input data
regarding the training data. In other words, a significant loss with random input data means
that the model has no idea which data is that supposed to be and cannot reconstruct anything
useful. On the other hand, if the reconstruction loss of the test set would be very high, then it
would not know what to reconstruct either. Therefore, it is crucial to secure a low loss with the
test set and a high loss of the random input.

8.2.3 Network Hyperparameter Selection

Finding the right network hyperparameters for a NN seems to be one of the trickiest parts in
designing a NN. Different constellations of learning rate, optimizer function, hidden layer size,
latent space size, number of training data features, activation functions after the hidden layers,
batch size and training epochs can have similar, better or worse performance since the weights
and biases in the NN are randomly initialized, dynamically trained and can emerge in either the
right or wrong way. For this reason, the development of a simple hyperparameter test script
was the easiest way to tackle that problem and detect the most promising parameters. This test
script iterates over each possible constellation and measures the average loss of an entire test
set. However, before any of the test iterations were in progress, the assumptions for a properly
working network were evaluated as follows:

• Learning rate: Between 0.01 and 0.001 because the weapon variables are standardized
and bigger rates would not make sense.

• Size of the hidden layers: Bigger than the latent space but smaller than the input layer
size to prevent the straightforward passing on of the variables without any training of the
weights.

• Size of the latent space: Not smaller than two and not bigger than the hidden layer
because of the same reason as mentioned in the hidden layer.

• Activation function after hidden layers: The commonly used hyperbolic tangent activa-
tion function "tanh" which outputs values between -1 and 1.

• Optimizer function: The common optimizer function "Adam" (Ruder, 2016).

• Batch size: Not larger than ten because of the small amount of training data.

• The number of training epochs: Inestimable but probably not more than 500.

However, after some test iterations, the values to all the hyperparameters were set empirically,
as those that achieved the best performance in the application domain.

66

• Learning rate: 0.01.

• Size of the hidden layers: 26 neurons in the first hidden layer and 12 in the second
hidden layer.

• Size of the latent space: 2 neurons.

• Activation function after hidden layers: The exponential linear unit activation function
"elu" which leads to higher classification accuracies (Clevert et al., 2015).

• Optimizer function: The optimizer function "RMSProp" (Ruder, 2016).

• Batch size: 4.

• The number of training epochs: A number of 400 shows the lowest costs.

It was interesting to see that the exponential linear unit activation function was able to detect
the underlying structure of the data much better than the standard hyperbolic tangent activa-
tion function. This detection was then further boosted with a collaboration with the RMSProp
optimizer. Why these particular activation function and optimizer works so good would be inter-
esting to know but exceed the scope of this thesis and therefore is not addressed.

Latent Space Visualization

A lucky coincidence of these hyperparameters is that the latent space has a dimension of
two neurons which means that it is easy to illustrate the values in the latent space. For this
reason, Figure 10 shows the parameter µ of an untrained latent space and Figure 11 shows the
parameter µ of a trained latent space after 70 epochs. The left side of the figure shows one dot
per weapon whereas the right side shows the same as the left side but with a density per dot.

Figure 10: Visualization of the untrained latent space.

Looking at Figure 11, one can easily see that the model was able to learn an underlying
structure of the provided weapon data. Furthermore, someone can easily assume and connect
the six visible clusters in the plot to the available weapon types in the training data.

67

Figure 11: The trained latent space after 70 training epochs.

Cost per Training Epoch

Another chart which helps to determine the right amount of training epochs shows Figure 12.
This chart shows that there is a minimum average cost at around 400 to 1000 training epochs
which will slightly rise with more and more epochs. This chart contains the average costs of 50
observations with 20 percent outliers included.

Figure 12: The average cost per training epoch of 50 observations.

Test Data Sample versus Random Sample Input

Another benchmark to determine the right amount of training epochs is to compare the test
results of the network with the different input of random sample and test data sample input.

68

Figure 13 shows this comparison in a chart with separate lines for each input. Each observation
point in the chart was calculated with the average of 25 observations and includes 20 percent of
outliers. Calculated cost values over 1000 or the ones not identified as a number were clamped
to 1000. Furthermore, please take note, that these samples are inputted into the encoder and
that a small average cost indicates a successful recreation of the input. Therefore, Figure 13

perfectly demonstrates that the network does not know what to do with random sample input.

Figure 13: A comparison of the average costs of the random sample versus test data sample input.

Now, an examination of the comparison chart shows that the average costs or rather losses
for the test dataset starts to fluctuate with more and more training epochs whereas the average
cost for a random input sample remains high. Hence, the decision for the training epochs in the
weapon generation was set to 70 epochs in the beginning and will increase with every newly
added weapon to the dataset.

8.2.4 Random Input Generation Example

Table 9 shows a comparison of a training weapon and a weapon which was generated with
random noise input to prove that the trained VAE can generate useful weapon data. One can
see that the VAE has issues with predicting and generating the correct category for a weapon.
This issue is still an unsolved problem but is easily solvable by checking the highest value of
all categories. In this case, it is most likely a sniper rifle with semi-automatic fire mode. Please
note that the listed parameters are the same parameters which are outputted by the VAE.

8.2.5 Development Issues

Two particular issues occurred during the development with TF:

69

Output Parameter Training Weapon Random Generated
Weapon

damages_first 26.5 42.767

damages_last 6.25 30.294

distances_first 14.0 13.988

distances_last 21.0 60.002

firemode_Automatic 0.0 0.302

firemode_Semi 0.0 0.333

firemode_Single 0.0 0.234

hiprecoildec 6.0 5.183

hiprecoilright 1.2 0.554

hiprecoilup 11.0 2.436

hipstandbasespreaddec 4.5 6.511

hipstandbasespreadinc 0.3 0.323

initialspeed 333 559.643

magsize 2 20.258

reloadempty 5.333 3.702

rof 299 298.027

shotspershell 12 1.527

type_Pistol 0.0 0.167

type_Rifle 0.0 0.189

type_Shotgun 1.0 0.067

type_Sniper 0.0 0.189

type_SMG 0.0 0.088

type_MG 0.0 0.095

Table 9: Comparison of a training weapon and a generated weapon with random noise as input.

1. It needs so-called sessions in TF to run TF operations. With the creation of this session
is a so-called graph included which contains all network nodes and there will be no graph
cleanup at session termination. In case of the necessary retraining for this network, this
missing cleanup created massive pollution of the graph which slowed the execution bit by
bit. The solution to this problem is a simple reset of the graph after the session termination
and right before the new trained model update procedure.

2. TF works with nodes which have a specific shape. If the node has no specific shape at

70

creation time, then it will get one during the training, and this shape will consist in the
trained and saved model. For this reason, all of the network nodes will have a similar
shape as the batch size because it propagates itself through every node in the network
during the training. That means that encoding and decoding, as well as simple decoding
from latent space, is just possible with an input which has the same size as the training
batch. Of course, this is not a big problem but narrows the possibilities of using the VAE.
This problem was solved with a simple replication of the input if it is not the same size as
the batch size and mean calculation of the output. For example, if the batch size is four,
then it will generate four different weapons of the replicated input and returns the mean
values of the generated weapons.

8.3 Game Scenario

The prototype scenario was implemented in UE4 version 4.19.2 and includes a simple map
with all requested elements described in Chapter 7. Figure 14 shows the created map of the
scenario from a top-down view, the possible spawn points of the player in green and the location
of the end boss AI in red. All 3D models and assets are either reused from UE4 template
projects or were freely downloaded from the internet and did not violate any copyrights.

Figure 14: Prototype scenario map with player spawn points in green and boss in red.

Furthermore, Figure 15 shows an in-game screenshot from the player’s perspective with the
HUD, an enemy AI with a health bar over the head and the waiting end boss AI.

71

Figure 15: Prototype scenario in-game screenshot.

8.3.1 Head-up Display

As designed in Chapter 7, the HUD should provide the player with feedback to the mechanic and
also the game. For this reason, it shows the most critical parameters of the currently equipped
weapon on the top left, as visible in Figure 15. Furthermore, it shows the current status of
the weapon generator which ranges from "Starting" to "Waiting for Input" to "Generating." The
status of the available ammo, current health and armor, and lives are also shown in the HUD
so that the player knows about the vitals.

8.3.2 Player

The player can do everything as in common FPS games and additionally has the possibility of
using the weapon generator to generate a new weapon. If the player decides to dismantle the
equipped weapon, then the currently equipped weapon will be removed from the player and the
player can only use the remaining weapon until the generation is complete. Specific movement
types increase or decrease weapon shooting behavior. Besides, the player can gather power-
ups which are placed randomly on the map and increase or refill movement speed, health,
armor, and ammo.

8.3.3 Bots

The implementation of the bots comes in three different types. The easiest one is a simple ball
bot which moves towards the player and explodes some time after reaching the player. The two

72

other bots are from the same type which is visible in Figure 15, they move towards the player
and shoot him or her with different weapons in a straightforward way. The easy bot does not
cause much damage but tries to heal itself if the health is low whereas the difficult bot causes
more damage, has more health and does not heal itself.

The end boss bot is even harder than the difficult bot and has an own weapon which has a
higher rate of fire than any other weapons of the bots. Furthermore, the end boss has many
health points so that the player needs to use the weapon generator to win against the boss.

8.3.4 Weapons

The weapon class contains almost every feature shown in Table 8. The only omitted parameter
is the initial speed or also known as muzzle velocity. For generator reasons, this parameter
needs to be saved in the weapon class but does not affect the weapon since they are all work-
ing as ray-tracing weapons with instant hits. For further simplicity in the prototype, one class
functions as a superclass for all different weapon types. Furthermore, to have a visible rep-
resentation of the weapon, every weapon type has its weapon model so that the player can
distinguish between the weapons inside the game.

Moreover, each weapon has specific modifier which affects either the weapons or the player.
For example, machine guns are heavier than pistols and therefore lower the movement speed
of a character. Alternatively, if a player aims down sight, then the shooting behavior regarding
recoil and spread is improved. These improvements can be adjusted for each weapon class
and propagate to the generated weapons of the same weapon type.

8.4 Weapon Generator

As already mentioned at the beginning of this chapter, the weapon generator was implemented
outside UE4 and imported as soon as it worked. Listing 3 shows the essential functions of the
weapon generator API class which inherits the functions from the TF plugin API class, described
in Chapter 7.2.

class WeaponGeneratorAPI:

functions:

on setup:

initialize the network

on begin training:

train the model

on json input:

check if a new trained model is available

add a dismantled weapon to the dataset and retrain the network if

necessary

process the input and return a new generated weapon

Code 3: Essential functions of the TF plugin weapon generator API class.

73

8.4.1 Workflow

The beginning of the game scenario directly triggers the initialization of the weapon generator
as well as the setup and training of the VAE model. This training runs on an own background
thread so that the player does not notice the training at all at runtime. That is the moment in
which the HUD displays the status "Starting" as feedback of the generator for the player. Figure
16 shows the workflow of the weapon generator initialization.

Figure 16: Weapon generator setup and training workflow.

As soon as the generator has changed the status to "Waiting for Input," it is ready to use for
the player. The player can now dismantle the equipped weapon which sends it to the weapon
generator. Subsequently, the generator extracts all parameters of the weapon, applies some
modification based on statistics, creates a JSON formatted string and sends it to the Python
API. The applied statistics are the kills and used time of the weapon which changes the random
change range of the parameters. The strength of each parameter and the starting range of the
random change rate are adjustable parameters. A detailed description of how this operates

74

is described in the next chapter. Figure 17 shows the workflow of the dismantling process for
generating a new weapon. Note that the generation process in the API runs on a background
thread so that the game does not freeze during that proceeding.

Figure 17: Weapon generator generation workflow.

The generator changes the status to "Generating" during the processing of the dismantled
weapon and the generation of the new weapon. Sometimes, this can take more time because of
the retraining of the model, triggered after a specific amount of dismantled weapons. The gen-
erator creates either a weapon based on the statistics of the dismantled weapon or a random
weapon if the average reconstruction costs exceed a specific threshold or a not unprocessable
number.

As soon as the VAE generator API is ready and has sent the result back to the weapon gen-
erator, it creates a new weapon and notifies the player about the completion. Subsequently, the
generator changes the status to "Waiting for Input" and can receive a new dismantled weapon.
During the creation process of the new weapon, the generator checks and makes sure, that all
of the parameters do not exceed critical values which could cause bugs in the game.

75

8.4.2 Parameter Modification and Adjustable Parameters

As already mentioned, the parameters of the dismantled weapon are modified before sent to
the generator API which includes some adjustable parameter. The parameters of weapons are
either increased or decreased depending on whether it would help the player against the boss.
For example, the damage is increased whereas reload time is decreased and so forth. Now,
the change of parameters results according to a random change rate which can be offset with
kills or using time. The starting range and the strength of the kills and time are adjustable in the
weapon generator.

Other adjustable parameters are tolerance values which can add a random element to the
weapon type and fire mode selection. The problem tackled with this proceeding was mentioned
in Chapter 8.2.4. The VAE sometimes generates small numbers which are almost similar to
each other for every categorical parameter. The solution to this problem is first to obtain the
highest value among the received values and then check which of the values lie in the specified
tolerance range, based on the highest found value. Therefore, this tolerance causes a random
selection among almost similar weapon types or fire modes.

8.4.3 TensorFlow Plugin Changes

The default TF version of the plugin is version 1.6.0. Nonetheless, the prototype development
used version 1.8.0. For this reason, the version of TF in the plugin was changed to 1.8.0 which
could be done without any issues since the plugin is not dependent on any TF specific variables.

The other significant change in the plugin was a change in the API class which does not
use a background thread for the input processing by default. This missing feature is causing a
game freeze during the weapon generation and is not tolerable. This freeze will also happen
if multithreading is disabled in the plugin which is not advisable. Therefore, the API code was
changed to run the input processing on a background thread and notify the API on completion
so that it can propagate the result to the weapon generator.

8.5 Performance and Profiling

Profiling was done in the UE4 Editor in development configuration with the following test device
specifications:

• Product: MSI GS60 2PE Ghost Pro

• OS: Windows 10 64-bit

• CPU: Intel Core i7-4710HQ CPU @ 2.50GHz

• GPU: NVIDIA GeForce GTX 870M

• Random access memory: 16 gigabyte

76

All of the following profiling charts were obtained with the same testing scenario. The scenario
map was loaded, the weapon generator either initializes or not, depending on its availability, and
the game was then actively played for more than 30 seconds. Hence, the weapon generator
was constantly used if available in the specific testing environment.

Figure 18 shows a profiling chart of the scenario map without any weapon generation me-
chanic enabled. The TF plugin, its dependent Python plugin, and the SocketIO plugin were fully
deactivated and did not affect the engine’s performance.

Figure 18: Profiling chart with the deactivated TF Plugin.

Figure 19 shows a profiling chart with an enabled TF plugin but which was not actively used
in the game. Therefore, the weapon generator was not available for the player.

Figure 20 shows a profiling plot with an actively used TF plugin and weapon generator in the
game. The TF plugin in this scenario was using the CPU for computation.

Figure 21 shows a profiling plot with an actively used TF plugin and weapon generator in the
game. The TF plugin in this scenario was using the GPU for computation.

8.5.1 Conclusion

The profiling charts show that there is a performance loss of about four milliseconds in the CPU
render thread when using the TF plugin actively in the game. Moreover, it seems that the CPU
variant of the plugin works better than the GPU variant in this case. This advantage might be
because the TF plugin uses CPU multi-threading for the setup, training, and input processing
tasks whereas the GPU variant interrupts the GPU from time to time because it needs to obtain
the calculated tensors from TF - but that is just an assumption and cannot be evidenced by

77

Figure 19: Profiling chart with the activated but not actively used TF Plugin for CPU.

Figure 20: Profiling chart with the actively used TF Plugin for CPU.

facts. Nevertheless, it should be noted that this profiling charts reflect only this specific use
case and could have other performances with other use cases.

However, this shows that it is not necessary that someone trains the model in advance and
loads a trained model on the first start. This procedure would only be necessary if the training

78

Figure 21: Profiling chart with the actively used TF Plugin for GPU.

would include a high number of training epochs and would prevent the player from using the
mechanic. However, this is not the case for this mechanic and therefore is not necessary.

79

9 Conclusion

The idea of this master thesis was to explore the possibilities of PCGML as a game mechanic
with a focus on their applications in video games. Its primary goal was to provide a demon-
stration of the possibilities as well as to address every aspect of developing a PCGML game
mechanic in common free-to-use game engines. Overall, it shall serve as a concise overview
and primer for developing PCGML game mechanics with a prototype development example
workflow.

In particular, the thesis fulfills all of the demanded requirements from the listing of unique
game mechanic ideas for PCGML up to an in-depth development of a prototype in a game en-
gine. The development of the "Changing Weapons" mechanic shows the potential for PCGML
as a game mechanic in future work and helps curious developers to quickly dive into every
knowledge necessary to start developing new games with PCGML game mechanics. It shows
the space for improvement and lists essential development considerations for implementing a
PCGML game mechanic so that there are no unexpected mistakes. In summary, this thesis
establishes and reflects an introduction and overall guideline for bringing PCGML game me-
chanics into a game.

9.1 Research Result

The focus of this thesis was to provide theoretical possibilities for PCGML game mechanics,
a practical development example and a showcase that PCGML game mechanics are suitable
for a broad range of games with no limitation to particular genres. Chapter 6 provides these
possibilities and furthermore shows some pros and cons of a theoretical development. The
game mechanic "Changing Weapons" was then implemented and introduced the development
workflow of a PCGML game mechanic. Overall, the thesis fulfilled all expectations of using
PCGML as a game mechanic and shows valuable research results.

9.1.1 Theoretical Introduction

The primary focus of "Changing Weapons" is a weapon generator which helps the player to
obtain its objective of defeating the end boss AI of a game. Hence, the development of this gen-
erator shows developers necessary preparations such as the decision between possible game
engines, the examination of hardware and software requirements, ML data acquisition, data
preprocessing knowledge, and at last, addresses the specific learning problem which needs to

80

be tackled by the ML model. Moreover, it introduces some suitable models which could be used
for the generator model and focuses on the most promising model.

9.1.2 Practical Examination

The practical part of the development showed the necessary steps for data preprocessing, an
overview of a weapon data convenience class, the actual ML model implementation and some
empirical observations of the working model used in the game, as well as the generator API
and the weapon generator in the game itself.

The prototype showed that the intention of emerging the model in a specific direction works
but is as not fixed as expected because of how the network initialization works. Therefore,
weapons during the game emerge in different directions for every new game due to the initial-
ization of the weights and biases which means the model always trains in another way. The
solution to that problem would be the pretraining and loading of the model at the beginning of
the game. Also, the weapons in the training dataset bias the model in a specific direction, for
example, shotguns are limited in the dataset and therefore are not often generated. Appendix
C shows the distribution of the weapons which is the reason for higher generation numbers for
specific weapons.

Research showed that there are dozens of possible network configurations for the ML model
which means that it has still room for possible improvements. Nevertheless, the developed
ML model works as intended and outputs the desired data. However, the model sometimes
produces unusable data during the generation process which was avoidable with omitting the
faulty data. Hence, this does not break the actual game since the generator API does not
propagate the faulty data into the game. This problem is due to the small training dataset and
is solvable with more data to train. Another open problem is that the model cannot always
reproduce and predict categorical features very well for which a workaround was introduced by
using the category with the highest value.

Last but not least, the profiling of the game shows that the used development configuration
does not affect performance too much. That means that it is possible to develop much more de-
tailed and sophisticated game mechanics with PCGML without significant performance losses.
Nevertheless, the next chapter proposes a possible minimization of the performance loss.

9.2 Future Work

Now, there is plenty of space for improvement and future work when implementing PCGML
game mechanics. If speaking of this particular use case of implementing a weapon generator
then there are following improvements possible:

• First of all, it would be possible to get rid of the TF plugin in UE4 with a full C++ UE4
ML plugin. This C++ plugin would probably save much performance because it would

81

not rely on a Python plugin, the SocketIO plugin or TF itself. Of course, this would work
even better with an engine integration of ML. Therefore, the only possible engine with
that advantage in the near future could be Unity with their current ML plugin development
since UE4 does not officially seem to show interest in an ML integration.

• Another improvement of the game mechanic would be an increase or replacement of the
weapons in the training dataset to refine the trained model. More weapons enable training
of the model with much more training features, and therefore it can learn the underlying
structure even better.

Nevertheless, this would currently cause a necessary refactoring of all the code to inte-
grate the new features.

• It would be a valuable improvement if the current classes would be extended to work as
generic types of classes and ML models for more use cases than the prototype game.
This generic implementation would enable designers to change features of a traditional
FPS game weapon with, e.g., RPG like features of causing fire damage and burning on
the hit enemy.

• The generation of different and new ammo types would also be a possible improvement
since the current prototype only uses ray-tracing weapons instead of projectile weapons.
This additional generation would enable a much more diverse game mechanic and expe-
rience for the player. For example, the new ammo types could follow a specific movement
pattern as used for the weapons in the game "Galactic Arms Race," described in Chapter
3.3.1.

• The weapon generator itself offers even more improvement. Currently, the generator does
not limit any values which means that because of the retraining functionality of the model,
the weapon can get extraordinary high damage and other values. These high values are
still okay if its intended but most likely they should be trimmed before sending them to the
generator API or creating the new weapons for the player.

• The gameplay concept for using the weapon generator also offers space for improvement.
In particular, it is to see how the weapon generator can be integrated into the gameplay
in a more natural way than pressing a button and get a new weapon. For example, a
possible concept would be for the player to call for reinforcements, and they will send new
random weapons. In this scenario, the player would need to hold on to his current weapon
until the reinforcement has arrived.

As someone can see, there are many possibilities with PCGML game mechanics. This thesis
only shows an example game mechanic which was rather easy to implement but offers much
more sophisticated game mechanics which enable even more innovative player experience. It
is now a further research question to find out whether the designs of the in Chapter 6 introduced
game mechanics will work out as intended or not.

82

Bibliography

Adams, E. & Dormans, J., 2012. Game Mechanics: Advanced Game Design. 1st edition. Thou-
sand Oaks, CA, USA: New Riders Publishing.

Amato, A., 2017. Procedural Content Generation in the Game Industry. In: Game Dynamics:
Best Practices in Procedural and Dynamic Game Content Generation, pp.15–25.

Blatz, M. & Korn, O., 2017. A Very Short History of Dynamic and Procedural Content Gen-
eration. In: Game Dynamics: Best Practices in Procedural and Dynamic Game Content
Generation, pp.1–13.

Bonaccorso, G., 2017. Machine Learning Algorithms: A Reference Guide to Popular Algorithms
for Data Science and Machine Learning: Packt Publishing.

Bonnin, R., 2017. Machine Learning for Developers: Packt Publishing.

Champandard, A. J., 2007. Top 10 Most Influential AI Games: AiGameDev.com. Available at:
<http://aigamedev.com/open/highlights/top-ai-games/> [Accessed 30.03.2018].

Clevert, D.-A., Unterthiner, T. & Hochreiter, S., 2015. Fast and accurate deep network learn-
ing by exponential linear units (elus).. CoRR, abs/1511.07289. Available at: <http://dblp.
uni-trier.de/db/journals/corr/corr1511.html#ClevertUH15> [Accessed 19.06.2018].

Cook, M., 2018. Games By Angelina - Developing an AI that can automatically design
videogames: Michael Cook. Available at: <http://www.gamesbyangelina.org/> [Accessed
21.03.2018].

Corporation, N., 2018. CUDA Toolkit | NVIDIA Developer: NVIDIA Corporation. Available at:
<https://developer.nvidia.com/cuda-toolkit> [Accessed 16.05.2018].

Dalmau, D. S.-C., 2005. Postcard from GDC 2005: Tutorial - Machine Learning: Gamasu-
tra. Available at: <https://www.gamasutra.com/view/feature/130633/postcard_from_gdc_
2005_tutorial__.php> [Accessed 30.03.2018].

Dangeti, P., 2017. Statistics for Machine Learning: Packt Publishing.

Doan, D., 2017. GameDev Protips: How To Design More Meaningful And Engaging
Game Mechanics: Gamasutra. Available at: <https://www.gamasutra.com/blogs/
DanielDoan/20170322/294224/GameDev_Protips_How_To_Design_More_Meaningful_
And_Engaging_Game_Mechanics.php> [Accessed 12.03.2018].

83

http://aigamedev.com/open/highlights/top-ai-games/
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#ClevertUH15
http://dblp.uni-trier.de/db/journals/corr/corr1511.html#ClevertUH15
http://www.gamesbyangelina.org/
https://developer.nvidia.com/cuda-toolkit
https://www.gamasutra.com/view/feature/130633/postcard_from_gdc_2005_tutorial__.php
https://www.gamasutra.com/view/feature/130633/postcard_from_gdc_2005_tutorial__.php
https://www.gamasutra.com/blogs/DanielDoan/20170322/294224/GameDev_Protips_How_To_Design_More_Meaningful_And_Engaging_Game_Mechanics.php
https://www.gamasutra.com/blogs/DanielDoan/20170322/294224/GameDev_Protips_How_To_Design_More_Meaningful_And_Engaging_Game_Mechanics.php
https://www.gamasutra.com/blogs/DanielDoan/20170322/294224/GameDev_Protips_How_To_Design_More_Meaningful_And_Engaging_Game_Mechanics.php

Doersch, C., 2016. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908, .

Doran, J. & Parberry, I., 2011. A prototype quest generator based on a structural analysis of
quests from four mmorpgs. In: Proceedings of the 2Nd International Workshop on Proce-
dural Content Generation in Games. Bordeaux, France: ACM, pp.1:1–1:8.

Eladhari, M. P., Sullivan, A., Smith, G. & McCoy, J., 2011. AI-Based Game Design: En-
abling New Playable Experiences. Available at: <https://www.soe.ucsc.edu/research/
technical-reports/UCSC-SOE-11-27> [Accessed 19.03.2018].

Epic Games, I., 2018a. Shooter Game: GitHub. Available at: <https://docs.unrealengine.com/
en-us/Resources/SampleGames/ShooterGame> [Accessed 24.05.2018].

Epic Games, I., 2018b. UnrealTournament - Help us build the next Unreal Tournament
game!: GitHub. Available at: <https://github.com/EpicGames/UnrealTournament> [Ac-
cessed 24.05.2018].

Evolutionary Games, 2014. Galactic Arms Race: Evolutionary Games. Available at: <http://gar.
eecs.ucf.edu/> [Accessed 22.03.2018].

FANDOM Games Community, 2018a. Battlefield Wiki | FANDOM powered by Wikia: FANDOM
Games Community. Available at: <http://battlefield.wikia.com> [Accessed 18.06.2018].

FANDOM Games Community, 2018b. Category:Weapons | Counter-Strike Wiki | FANDOM
powered by Wikia: FANDOM Games Community. Available at: <http://counterstrike.wikia.
com/wiki/Category:Weapons> [Accessed 24.05.2018].

Ghotra, M. S. & Dua, R., 2017. Neural Network Programming with Tensorflow: Packt Publishing.

Google, 2018. TensorFlow: Google. Available at: <https://www.tensorflow.org/> [Accessed
29.03.2018].

Hastings, E. J., Guha, R. K. & Stanley, K. O., 2009a. Automatic content generation in the
galactic arms race video game. IEEE Transactions on Computational Intelligence and AI
in Games, 1(4), pp.245–263.

Hastings, E. J., Guha, R. K. & Stanley, K. O., 2009b. Evolving content in the galactic arms
race video game. In: 2009 IEEE Symposium on Computational Intelligence and Games,
pp.241–248.

Hello Games, 2016. No Man’s Sky: Hello Games. Available at: <https://www.nomanssky.com/>
[Accessed 21.03.2018].

Hendrikx, M., Meijer, S., Van Der Velden, J. & Iosup, A., 2013. Procedural content generation
for games: A survey. ACM Trans. Multimedia Comput. Commun. Appl., 9(1), pp.1:1–1:22.

84

https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-11-27
https://www.soe.ucsc.edu/research/technical-reports/UCSC-SOE-11-27
https://docs.unrealengine.com/en-us/Resources/SampleGames/ShooterGame
https://docs.unrealengine.com/en-us/Resources/SampleGames/ShooterGame
https://github.com/EpicGames/UnrealTournament
http://gar.eecs.ucf.edu/
http://gar.eecs.ucf.edu/
http://battlefield.wikia.com
http://counterstrike.wikia.com/wiki/Category:Weapons
http://counterstrike.wikia.com/wiki/Category:Weapons
https://www.tensorflow.org/
https://www.nomanssky.com/

Holzinger, A., Pichler, A., Almer, W. & Maurer, H., 2001. Triangle: A multi-media test-bed for
examining incidental learning, motivation and the tamagotchi-effect within a game-show
like computer based learning module. In: Proceedings of EdMedia: World Conference on
Educational Media and Technology 2001. : Association for the Advancement of Computing
in Education (AACE), pp.766–771.

Hunicke, R., Leblanc, M. & Zubek, R., 2004. MDA: A Formal Approach to Game Design and
Game Research. , 1. Available at: <http://www.cs.northwestern.edu/~hunicke/pubs/MDA.
pdf> [Accessed 12.03.2018].

IDV, 2018. SpeedTree Vegetation Modeling: IDV. Available at: <https://store.speedtree.com/>
[Accessed 21.03.2018].

IGN Entertainment, Inc., 2018. Weapons - Battlefield 1: IGN Entertainment, Inc. Available at:
<http://www.ign.com/wikis/battlefield-1/Weapons> [Accessed 18.06.2018].

Kaniewski, J., 2018. getnamo/tensorflow-ue4: TensorFlow plugin for Unreal Engine 4: GitHub.
Available at: <https://github.com/getnamo/tensorflow-ue4> [Accessed 29.03.2018].

Koster, R., 2013. Theory of Fun for Game Design. 2nd edition: O’Reilly Media, Inc.

Liapis, A., Yannakakis, G. N. & Togelius, J., 2014. Computational game creativity. In: ICCC.

Maxis, 2008. Spore: Electronic Arts Inc. Available at: <http://www.spore.com/> [Accessed
22.03.2018].

Metzen, J. H., 2015. Variational Autoencoder in TensorFlow: Jan Hendrik Metzen. Available at:
<https://jmetzen.github.io/2015-11-27/vae.html> [Accessed 19.06.2018].

NVIDIA, 2007. Cascades: NVIDIA. Available at: <http://www.nvidia.co.uk/coolstuff/demos#!/
cascades> [Accessed 21.03.2018].

Pears, M., 2018. Game Design: Introducing Mechanics: Gamasutra. Available at:
<https://www.gamasutra.com/blogs/MaxPears/20180307/315172/Game_Design_
Introducing_Mechanics.php> [Accessed 12.03.2018].

Rohrer, J., 2011. Inside a Star-filled Sky: Jason Rohrer. Available at: <http://insideastarfilledsky.
net/> [Accessed 22.03.2018].

Rose, M., 2012. 5 tips for using procedurally-generated content in your game: Gama-
sutra. Available at: <https://www.gamasutra.com/view/news/181853/5_tips_for_using_
procedurallygenerated_content_in_your_game.php> [Accessed 21.03.2018].

Ruder, S., 2016. An overview of gradient descent optimization algorithms. cite
arxiv:1609.04747Comment: Added derivations of AdaMax and Nadam. Available at: <http:
//arxiv.org/abs/1609.04747> [Accessed 19.06.2018].

85

http://www.cs.northwestern.edu/~hunicke/pubs/MDA.pdf
http://www.cs.northwestern.edu/~hunicke/pubs/MDA.pdf
https://store.speedtree.com/
http://www.ign.com/wikis/battlefield-1/Weapons
https://github.com/getnamo/tensorflow-ue4
http://www.spore.com/
https://jmetzen.github.io/2015-11-27/vae.html
http://www.nvidia.co.uk/coolstuff/demos#!/cascades
http://www.nvidia.co.uk/coolstuff/demos#!/cascades
https://www.gamasutra.com/blogs/MaxPears/20180307/315172/Game_Design_Introducing_Mechanics.php
https://www.gamasutra.com/blogs/MaxPears/20180307/315172/Game_Design_Introducing_Mechanics.php
http://insideastarfilledsky.net/
http://insideastarfilledsky.net/
https://www.gamasutra.com/view/news/181853/5_tips_for_using_procedurallygenerated_content_in_your_game.php
https://www.gamasutra.com/view/news/181853/5_tips_for_using_procedurallygenerated_content_in_your_game.php
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

Schell, J., 2008. The Art of Game Design: A Book of Lenses. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Shaker, N., Togelius, J. & Nelson, M. J., 2016. Procedural Content Generation in Games: A
Textbook and an Overview of Current Research: Springer.

Short, T. & Adams, T., 2017. Procedural Generation in Game Design: CRC Press.

Smith, G., 2014. The Future of Procedural Content Generation in Games. Available at: <https:
//www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/9078> [Accessed 16.03.2018].

Smith, G., Othenin-Girard, A., Whitehead, J. & Wardrip-Fruin, N., 2012. PCG-Based Game
Design: Creating Endless Web. Foundations of Digital Games 2012 (FDG ’12), .

Stout, M., 2015. Trinity, Part 3: Game Mechanics: Gamasutra. Available at:
<https://www.gamasutra.com/blogs/MikeStout/20150622/246683/Trinity_Part_3_Game_
Mechanics.php> [Accessed 12.03.2018].

Summerville, A., Snodgrass, S., Guzdial, M., Holmgård, C., Hoover, A. K., Isaksen, A.,
Nealen, A. & Togelius, J., 2017. Procedural Content Generation via Machine Learning
(PCGML). CoRR, abs/1702.00539. Available at: <http://arxiv.org/abs/1702.00539> [Ac-
cessed 12.03.2018].

SUPERHOT Team, 2016. SUPERHOT - The FPS where time moves only when you move:
SUPERHOT Team. Available at: <https://superhotgame.com/> [Accessed 04.04.2018].

Symthic, 2018. BF1 Weapon Stats: Damage, Accuracy etc. | Symthic: Symthic. Available at:
<http://symthic.com/bf1-stats> [Accessed 24.05.2018].

Togelius, J., Kastbjerg, E., Schedl, D. & Yannakakis, G. N., 2011. What is Procedural Content
Generation?: Mario on the Borderline. In: Proceedings of the 2Nd International Workshop
on Procedural Content Generation in Games. Bordeaux, France: ACM, pp.3:1–3:6.

Treanor, M., Zook, A., Eladhari, M. P., Togelius, J., Smith, G., Cook, M., Thompson, T., Magerko,
B., Levine, J. & Smith, A., 2015. AI-based game design patterns. Santa Cruz, CA: Soci-
ety for the Advancement of Digital Games. Available at: <https://strathprints.strath.ac.uk/
57219/> [Accessed 12.03.2018].

Unity Technologies, 2018a. Unity - Unity Machine Learning tools and resources: Unity Tech-
nologies. Available at: <https://unity3d.com/machine-learning> [Accessed 29.03.2018].

Unity Technologies, 2018b. Unity-Technologies/ml-agents: Unity Machine Learning Agents:
GitHub. Available at: <https://github.com/Unity-Technologies/ml-agents> [Accessed
29.03.2018].

Yannakakis, G. N. & Togelius, J., 2018. Artificial Intelligence and Games: Springer. http://
gameaibook.org.

86

https://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/9078
https://www.aaai.org/ocs/index.php/AIIDE/AIIDE14/paper/view/9078
https://www.gamasutra.com/blogs/MikeStout/20150622/246683/Trinity_Part_3_Game_Mechanics.php
https://www.gamasutra.com/blogs/MikeStout/20150622/246683/Trinity_Part_3_Game_Mechanics.php
http://arxiv.org/abs/1702.00539
https://superhotgame.com/
http://symthic.com/bf1-stats
https://strathprints.strath.ac.uk/57219/
https://strathprints.strath.ac.uk/57219/
https://unity3d.com/machine-learning
https://github.com/Unity-Technologies/ml-agents
http://gameaibook.org
http://gameaibook.org

Zook, A. & Riedl, M. O., 2014. Generating and Adapting Game Mechanics. Available at: <http:
//www.fdg2014.org/workshops/pcg2014_paper_03.pdf> [Accessed 19.03.2018].

87

http://www.fdg2014.org/workshops/pcg2014_paper_03.pdf
http://www.fdg2014.org/workshops/pcg2014_paper_03.pdf

List of Figures

Figure 1 Example of a procedurally generated rock (NVIDIA, 2007). 17
Figure 2 Basic training data for a PCGML system. 34
Figure 3 Basic training data for a PCGML system with shown ML models. 34
Figure 4 Neuron legend for all NNs in this thesis. 35
Figure 5 Basic feed-forward NN to output a variable based on given input variables. . . 35
Figure 6 NN with a probability distribution example in the output layer. 36
Figure 7 Schematic representation of an AE NN with a blurry output. 57
Figure 8 Schematic representation of a VAE NN. 58
Figure 9 VAE latent space noise input decoding. 59
Figure 10 Visualization of the untrained latent space. 67
Figure 11 The trained latent space after 70 training epochs. 68
Figure 12 The average cost per training epoch of 50 observations. 68
Figure 13 A comparison of the average costs of the random sample versus test data

sample input. 69
Figure 14 Prototype scenario map with player spawn points in green and boss in red. . . 71
Figure 15 Prototype scenario in-game screenshot. 72
Figure 16 Weapon generator setup and training workflow. 74
Figure 17 Weapon generator generation workflow. 75
Figure 18 Profiling chart with the deactivated TF Plugin. 77
Figure 19 Profiling chart with the activated but not actively used TF Plugin for CPU. . . . 78
Figure 20 Profiling chart with the actively used TF Plugin for CPU. 78
Figure 21 Profiling chart with the actively used TF Plugin for GPU. 79
Figure 22 Distribution of weapon types in the BF1 weapon dataset. 99
Figure 23 Distribution of weapon fire modes in the BF1 weapon dataset. 99

88

List of Tables

Table 1 Game genres and their related game mechanics (Adams & Dormans, 2012). . . 9
Table 2 ML training data example. 26
Table 3 One hot encoder example. 26
Table 4 Encoded training data example. 27
Table 5 Normalized training data example. 27
Table 6 AI-based game mechanics design pattern (Treanor et al., 2015). 30
Table 7 Eligible weapon statistic for the prototype provided by Symthic (2018). 54
Table 8 Used weapon parameters for the training of the VAE. 62
Table 9 Comparison of a training weapon and a generated weapon with random noise

as input. 70
Table 10 PCGML game mechanic training and output summary. 94
Table 11 BF1 community weapon analytic dump data parameter. 98

89

List of Code

Code 1 Essential functions and properties of the weapon dataset convenience class. . . 64
Code 2 Essential functions of the VAE class. 65
Code 3 Essential functions of the TF plugin weapon generator API class. 73

90

List of Abbreviations

2D 2-Dimensional

3D 3-Dimensional

AE Autoencoder

AI Artificial Intelligence

ANN Artificial Neural Network

API Application Programming Interface

BF1 Battlefield 1

CPU Central Processing Unit

CS:GO Counter-Strike: Global Offensive

FPS First Person Shooter

GAN Generative Adversarial Network

GPU Graphics Processing Unit

HUD Head-up Display

JSON JavaScript Object Notation

KNN K-Nearest Neighbor

LSTM Long Short-Term Memory Network

MDA Mechanics-Dynamics-Aesthetics

ML Machine Learning

NN Neural Network

NPC Non-playable Character

OS Operating System

PC Personal Computer

91

PCG Procedural Content Generation

PCGML Procedural Content Generation via Machine Learning

RPG Roleplay Game

RL Reinforcement Learning

RNG Random Number Generator

SVM Support Vector Machine

TF TensorFlow

UE4 Unreal Engine 4

VAE Variational Autoencoder

WW1 World War One

92

A Procedural Content Generation via Machine
Learning Game Mechanics Summary

Output Training

Rules and Behavior Configuration of a game with all
its game elements.

Working configuration of a
game.

Changing Weapons New and novel weapons. Existing balanced and unbal-
anced weapons.

Changing Powers New and novel powers. Existing useful powers like
magic spells.

Novel Vehicles New and novel vehicles. Existing balanced and useful ve-
hicles for a specific environment.

Solver Weapon E.g., elements of a puzzle. Object detection and example
drawings.

Defeat of the Enemy New and successful attack pat-
terns.

Possible AI behavior such as at-
tacks or movement for a specific
environment.

Caught in a Thunder-
storm

Lightning diffusion pattern. Example diffusion pattern based
on real weather data.

Train to Progress E.g., elements of a puzzle such
as a key for a lock.

No need for training due to train-
ing with player.

Building with Assis-
tance

Incomplete elements which al-
low modification.

Samples of incomplete elements
for the game.

The exploring Co-
Worker

Terrain generation or manipula-
tion.

Example terrains based on
player progress.

Observe and Learn Terrain generation or manipula-
tion.

Example terrains.

Express Yourself Storyline with events and
choices connected to it.

Configuration and story for pos-
sible games.

Big Boss Helper Terrain generation and modifica-
tion.

Example terrains with obstacles
based on a player behavior in a
specific environment.

93

Output Training

Figure it Out E.g., elements of a puzzle. Example puzzle elements to
progress in a game.

Table 10: PCGML game mechanic training and output summary.

B Battlefield 1 Community Weapon Analytic
Dump Parameters

Parameter Explanation

ADSCrouchBaseMax Maximum shot spread if the character is crouching, not mov-
ing, and aiming down sight.

ADSCrouchBaseMin Minimum shot spread if the character is crouching, not moving,
and aiming down sight.

ADSCrouchBaseSpreadDec The decrease of shot spread if the character is crouching, not
moving, and aiming down sight.

ADSCrouchBaseSpreadInc The increase of shot spread if the character is crouching, not
moving, and aiming down sight.

ADSCrouchMoveMax Maximum shot spread if the character is crouching, moving,
and aiming down sight.

ADSCrouchMoveMin Minimum shot spread if the character is crouching, moving,
and aiming down sight.

ADSCrouchMoveSpreadDec The decrease of shot spread if the character is crouching,
moving, and aiming down sight.

ADSCrouchMoveSpreadInc The increase of shot spread if the character is crouching, mov-
ing, and aiming down sight.

ADSProneBaseMax Maximum shot spread if the character is lying, not moving, and
aiming down sight.

ADSProneBaseMin Minimum shot spread if the character is lying, not moving, and
aiming down sight.

ADSProneBaseSpreadDec The decrease of shot spread if the character is lying, not mov-
ing, and aiming down sight.

94

Parameter Explanation

ADSProneBaseSpreadInc The increase of shot spread if the character is lying, not mov-
ing, and aiming down sight.

ADSProneMoveMax Maximum shot spread if the character is lying, moving, and
aiming down sight.

ADSProneMoveMin Minimum shot spread if the character is lying, moving, and
aiming down sight.

ADSProneMoveSpreadDec The decrease of shot spread if the character is lying, moving,
and aiming down sight.

ADSProneMoveSpreadInc The increase of shot spread if the character is lying, moving,
and aiming down sight.

ADSRecoilDec Weapon recoil decrease if the character is aiming down sight.

ADSRecoilLeft Weapon recoil to the left if the character is aiming down sight.

ADSRecoilRight Weapon recoil to the right if the character is aiming down sight.

ADSRecoilUp Weapon recoil upwards if the character is aiming down sight.

ADSStandBaseMax Maximum shot spread if the character is standing, not moving,
and aiming down sight.

ADSStandBaseMin Minimum shot spread if the character is standing, not moving,
and aiming down sight.

ADSStandBaseSpreadDec The decrease of shot spread if the character is standing, not
moving, and aiming down sight.

ADSStandBaseSpreadInc The increase of shot spread if the character is standing, not
moving, and aiming down sight.

ADSStandMoveMax Maximum shot spread if the character is standing, moving, and
aiming down sight.

ADSStandMoveMin Minimum shot spread if the character is standing, moving, and
aiming down sight.

ADSStandMoveSpreadDec The decrease of shot spread if the character is standing, mov-
ing, and aiming down sight.

ADSStandMoveSpreadInc The increase of shot spread if the character is standing, mov-
ing, and aiming down sight.

AltDeployTime Remnant parameter gathered by the script.

Ammo Type of ammunition used in the weapon.

Bdrop A bullet’s drop due to gravity.

BRoF The rate of fire in burst mode.

95

Parameter Explanation

BridgeDelay Delay added to the first reloaded single bullet.

Class Defines which character class in BF1 uses this weapon.

Damages Damage points applied, listed based on distance.

DeployTime Is the time it takes to weapon be able to fire after switching to
said weapon.

Dmg_distances The distances in correlation to each damage entry in the
"Damages" parameter.

Drag A bullet’s drag.

Edmg Least applied damage points.

FirstShotADSSpreadMul Spread multiplier applied on the first shot or the final shot in
burst mode if the character is aiming down sight.

FirstShotHIPSpreadMul Spread multiplier applied on the first shot or the final shot in
burst mode if the character is not aiming down sight.

FirstShotRecoilMul Recoil multiplier applied on the first shot or the final shot in
burst mode.

FirstSingleBulletTime The time it takes to reload the first bullet if single bullet reload-
ing is available.

HIPCrouchBaseMax Maximum shot spread if the character is crouching, not mov-
ing, and not aiming down sight.

HIPCrouchBaseMin Minimum shot spread if the character is crouching, not moving,
and not aiming down sight.

HIPCrouchBaseSpreadDec The decrease of shot spread if the character is crouching, not
moving, and not aiming down sight.

HIPCrouchBaseSpreadInc The increase of shot spread if the character is crouching, not
moving, and not aiming down sight.

HIPCrouchMoveMax Maximum shot spread if the character is crouching, moving,
and not aiming down sight.

HIPCrouchMoveMin Minimum shot spread if the character is crouching, moving,
and not aiming down sight.

HIPCrouchMoveSpreadDec The decrease of shot spread if the character is crouching,
moving, and not aiming down sight.

HIPCrouchMoveSpreadInc The increase of shot spread if the character is crouching, mov-
ing, and not aiming down sight.

96

Parameter Explanation

HIPProneBaseMax Maximum shot spread if the character is lying, not moving, and
not aiming down sight.

HIPProneBaseMin Minimum shot spread if the character is lying, not moving, and
not aiming down sight.

HIPProneBaseSpreadDec The decrease of shot spread if the character is lying, not mov-
ing, and not aiming down sight.

HIPProneBaseSpreadInc The increase of shot spread if the character is lying, not mov-
ing, and not aiming down sight.

HIPProneMoveMax Maximum shot spread if the character is lying, moving, and not
aiming down sight.

HIPProneMoveMin Minimum shot spread if the character is lying, moving, and not
aiming down sight.

HIPProneMoveSpreadDec The decrease of shot spread if the character is lying, moving,
and not aiming down sight.

HIPProneMoveSpreadInc The increase of shot spread if the character is lying, moving,
and not aiming down sight.

HIPRecoilDec Weapon recoil decrease if the character is not aiming down
sight.

HIPRecoilLeft Weapon recoil lower bound of random recoil if the character is
not aiming down sight.

HIPRecoilRight Weapon recoil upper bound of random recoil if the character is
not aiming down sight.

HIPRecoilUp Weapon recoil upwards if the character is not aiming down
sight.

HIPStandBaseMax Maximum shot spread if the character is standing, not moving,
and not aiming down sight.

HIPStandBaseMin Minimum shot spread if the character is standing, not moving,
and not aiming down sight.

HIPStandBaseSpreadDec The decrease of shot spread if the character is standing, not
moving, and not aiming down sight.

HIPStandBaseSpreadInc The increase of shot spread if the character is standing, not
moving, and not aiming down sight.

HIPStandMoveMax Maximum shot spread if the character is standing, moving, and
not aiming down sight.

97

Parameter Explanation

HIPStandMoveMin Minimum shot spread if the character is standing, moving, and
not aiming down sight.

HIPStandMoveSpreadDec The decrease of shot spread if the character is standing, mov-
ing, and not aiming down sight.

HIPStandMoveSpreadInc The increase of shot spread if the character is standing, mov-
ing, and not aiming down sight.

HorDispersion Horizontal pellet dispersion (for shotguns).

InitialSpeed Muzzle velocity.

MagSize Size of one magazine.

NumBulletsReloaded The Number of bullets reloaded when using magazines or strip
clips.

PostReloadDelay Post-reload delay after reloading mechanic ends.

ReloadDelay Pre-reload delay before actual reloading mechanic begins.
(Not strip clip reload or single bullet reload)

ReloadEmpty The time it takes if the magazine is empty.

ReloadLeft The time it takes if the magazine there is still some ammo left.

ReloadThrs The fraction of the reload time before someone can swap
weapons and still receives fully reloaded ammo.

RoF The rate of fire.

SDmg Maximum damage points without taking distance into account.

ShotsPerBurst The number of pellets of one shot in burst mode.

ShotsPerShell The number of pellets of one shot.

SingleBulletReloadTime The time it takes to reload single bullets after "FirstSingle-
BulletTime" was applied. (Semi-automatic and bolt-action
weapons)

StripClipSize The number of bullets reloaded by "strip" clips.

StripReloadTime The time it takes to reload the stripper clip.

TimeToLive Seconds how long the bullet lives before despawning.

VerDispersion Vertical pellet dispersion (for shotguns).

__CustomReload__ This parameter only applies in super individual cases.

Table 11: BF1 community weapon analytic dump data parameter.

98

C Battlefield 1 Weapon Distribution Charts

Figure 22: Distribution of weapon types in the BF1 weapon dataset.

Figure 23: Distribution of weapon fire modes in the BF1 weapon dataset.

99

	Introduction
	Idea
	Advantages
	Challenges

	Desired Goals
	Approach
	Thesis Overview
	Target Audience

	Game Mechanics
	Definition
	Types of Mechanics
	Considerations with Procedural Content Generation and Machine Learning

	Procedural Content Generation
	Introduction
	Reasons to Use
	Taxonomy

	Development
	Design Considerations
	Possibilities
	Conceptual Implementation

	Game Mechanics
	Current Games
	Possible Core Mechanics

	Machine Learning
	Types of Learning Problems
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning
	Generative versus Discriminative Models

	Development
	Design Considerations
	Common Pitfalls
	Data Preprocessing
	Game Engine Plugins

	Game Mechanics
	Current Games
	Possible Mechanics

	Procedural Content Generation via Machine Learning
	Difference to Procedural Content Generation
	Use Cases
	Development Considerations
	Machine Learning Models

	Development Example
	Data
	Training
	Generation

	Possible Game Mechanics
	Concepts and Development Evaluation
	Rules and Behavior
	Changing Weapons
	Changing Powers
	Solver Weapon
	Defeat of the Enemy
	Caught in a Thunderstorm
	Train to Progress
	Building with Assistance
	The exploring Co-Worker
	Observe and Learn
	Express Yourself
	Big Boss Helper
	Figure it Out
	Novel Vehicles

	Summary
	Game Mechanic for the Prototype

	Prototype Preparations
	Test Scenario
	Environment and Objective
	Weapon and Ammunition
	Player and Enemies

	Which Game Engine?
	Unity
	Unreal Engine 4
	Conclusion

	Hardware and Software Requirements
	TensorFlow Plugin

	Data Acquisition
	Unreal Tournament and Template Project
	Counter-Strike: Global Offensive
	Real-World Data
	Battlefield 1

	The Learning Problem
	Suitable Models
	Model Conclusion

	Used Model Introduction

	Prototype Development
	Data Preprocessing
	Dump Extraction
	Manual Dimension Reduction, Addenda and Unification
	Encoding and Feature Scaling
	Training and Test Dataset
	Convenience Class Overview

	Variational Autoencoder
	Class Overview
	Model Accuracy Measurement
	Network Hyperparameter Selection
	Random Input Generation Example
	Development Issues

	Game Scenario
	Head-up Display
	Player
	Bots
	Weapons

	Weapon Generator
	Workflow
	Parameter Modification and Adjustable Parameters
	TensorFlow Plugin Changes

	Performance and Profiling
	Conclusion

	Conclusion
	Research Result
	Theoretical Introduction
	Practical Examination

	Future Work

	Bibliography
	List of Figures
	List of Tables
	List of Code
	List of Abbreviations
	Procedural Content Generation via Machine Learning Game Mechanics Summary
	Battlefield 1 Community Weapon Analytic Dump Parameters
	Battlefield 1 Weapon Distribution Charts

