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Abstract

The time required for jitter measurement in digital communications waveforms can

be dominated by computation time which increases with waveform depth. Previous

work on decreasing this computation time includes the use of parallel resources on

microprocessors and graphics processing units. However, the waveform depth and

computation speed were limited by the need to have the entire waveform and inter-

mediate results derived from it in memory all at once. We present a new dataflow-

based method for clock recovery and time interval error (TIE) and TIE standard

deviation computation. Memory usage does not grow with waveform depth, so the

latter is not limited by memory size. We describe an implementation in LIDE-OCL,

a tool for simplifying implementation of dataflow signal processing using multicore

processors and GPUs. The resulting measurement accuracy is compared on actual

measured waveforms with prior methods.



Chapter 1

Introduction

In the design of advanced digital communication systems, timing jitter mea-

surement must often be performed on deep waveforms — i.e., on signals that are

of relatively long duration. By jitter measurement we mean summary statistics of

time interval error (TIE), the difference (in units of time) between when an feature

should be found in the waveform and when it actually occurred.

There are two main purposes for capturing and measuring deep waveforms in

this context: (1) to increase the likelihood of capturing rare events that can cause

communication errors [1], and (2) to enable estimation of tails in jitter probabil-

ity distributions, as a replacement for or to improve the accuracy of distribution

extrapolation [2]. Implementations of timing jitter measurement are available in

instruments such as digital oscilloscopes. However, the computation time increases

with waveform depth, and so it is desirable to seek methods for faster yet still

cost-effective jitter computation from deep waveforms.

To address this problem and help accelerate jitter measurement, researchers

have introduced parallel algorithms for constant clock period computation. For

example, [3] exploits multi-core processors such as Intel central processing units

(CPUs) together with their streaming single instruction multiple data extensions

(SSE) [4] instruction sets to enable fast and accurate jitter measurement. However
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this design suffers from large memory requirements and high latency due to its

“swallow and wallow” characteristic whereby the computation is started only after

all input data has arrived and has been stored in memory. This limits the amount

of signal data that can be measured, and results in high response time for engineers

to start seeing measurement results.

A new jitter measurement algorithm was demonstrated in [5] that significantly

improves measurement response time by partitioning the overall data set into win-

dows and allowing jitter measurement results to be reported for earlier windows

before later windows are received. This re-formulation of jitter measurement elimi-

nates the swallow and wallow characteristic, and provides improved speed. However,

a memory requirement limitation still remains: the memory required (like of [3]) is

unbounded. In other words, the memory requirement grows without bound as the

size of the data set is increased. This characteristic again limits the amount of

signal data that can be measured, which is problematic, for example, in measuring

relatively long signals or signals with high sample rates.

In this report, we build on the previous work in [3, 5], and present a new

jitter measurement system design that provides both fast, real-time response and

memory-efficient operation.

We demonstrate that our proposed design involves novel implementation trade-

offs among measurement response time, memory requirements, and accuracy. We

optimize the algorithm, including the design of the actors, to improve the latency

of the application. We present a detailed experimental study where we validate the

correctness of our new jitter measurement system design; demonstrate its capability
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for real-time operation; investigate the underlying trade-offs among latency, memory,

requirements, and accuracy; and show how the realized trade-offs can be controlled

by the system designer (for example, to provide complementary highest-accuracy

and fastest-response-time modes).

For design and implementation of our novel jitter measurement system, we

integrate the application of Graphics Processing Units (GPUs) [6], the Open Com-

puting Language (OpenCL) [7], and dataflow-based modeling of signal processing

systems [8]. GPUs are massively parallel processors that execute large numbers of

specialized computational modules, called kernels, concurrently to achieve improved

performance in terms of throughput and latency. OpenCL is an open standard for

programming applications, and executing programs on heterogeneous computing

platforms, including platforms that integrate CPU and GPU devices. Dataflow-

based modeling provides representations for signal processing application design

that help to formally capture high level algorithmic and computational structure in

a systematic way. The structure exposed by well-designed dataflow models can help

to significantly enhance the reliability and efficiency of derived implementations.

A preliminary version of some of the work presented in this report has been

published in [9].

In summary, the contributions of this report are three-fold. First, we present

the design and implementation of a novel jitter measurement system that pro-

vides capabilities for real-time response and memory-efficient operation. Second,

we investigate fundamental trade-offs among accuracy, processing speed, and mem-

ory requirements in the implementation of jitter measurement systems. Third, we
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demonstrate the integrated application of GPU, OpenCL and dataflow technologies

to address design challenges of high speed signal measurement applications.
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Chapter 2

Jitter Measurement System Design

In our previous work, we developed dataflow modeling methods and window-

based signal analysis methods to improve the efficiency of jitter measurement [5].

In Section 2.1 and Section 2.2, we provide a brief review of these methods, and of

fundamental concepts in dataflow modeling. We then present the main contribu-

tions of this report, which enable real-time jitter measurement by (1) significantly

improving response time, and (2) providing bounded memory requirements that are

dependent on the window length rather than on the overall duration across which

the jitter measurement is performed. We discuss novel GPU implementation tech-

niques that we have applied to improve the efficiency of jitter measurement in these

dimensions of response time and memory requirements.

2.1 Dataflow Modeling

Dataflow is a form of model-based design that is employed for design and

implementation in many areas of signal processing [10, 8]. By providing formal

methods to represent and analyze the flowgraph structures within signal process-

ing applications, dataflow methods help to enhance the efficiency and reliability

of implementations, and assist in the retargeting of designs across different hard-

ware platforms. Dataflow methods involve representing applications as dataflow
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graphs, where vertices (actors) represent computational tasks, and edges represent

the passage of data between pairs of actors. Data passes through edges in a first-in,

first-out (FIFO) fashion, and thus, the terms “edge” and “FIFO” are often used

interchangeably in the context of dataflow graphs.

Connections between actors and edges are called ports. Each port is either

an input port or an output port, depending on whether the actor consumes data

from the incident edge or produces data on it. Each unit of data associated with a

given dataflow edge is referred to as a token. Tokens can have arbitrary data types,

although typically all tokens for a given edge have the same type.

Execution of dataflow actors is decomposed in terms of discrete units referred

to as firings. During a firing, an actor consumes tokens from its input ports and

produces tokens onto its output ports. The amount of data produced or consumed

during a firing is referred to as the production or consumption rate, respectively,

of the associated output or input port. These rates are collectively known as the

dataflow rates of the actor. Dataflow rates can be constant, as in the synchronous

dataflow (SDF) form of dataflow [11], or they may vary dynamically (i.e., from one

firing to the next).

Our jitter measurement system design takes the form of a computation graph [12].

Computation graphs are similar to SDF, except that the consumption rate of a port

can be different from the number of tokens from the associated input edge that

is accessed during a firing. Tokens that are accessed but not consumed during a

firing remain in the associated FIFO so that they can be accessed or consumed in

subsequent firings. The number of tokens that is accessed from an edge is referred
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to as the threshold for the associated actor port.

An important step in the implementation of a dataflow graph is the assignment

of actors to processing resources, and the ordering of actors that share the same

processor. This step is referred to as dataflow graph scheduling. The result of the

scheduling step is a design component called a schedule, which is used to execute the

actors in the graph. A wide variety of scheduling techniques have been developed

based on specific constraints and objectives in different signal processing application

areas (e.g., see [8]).

2.2 Window-based Signal Analysis

To help reduce memory requirements for jitter measurement computations on

large input data sets, we have developed a windowing method that decomposes

the jitter analysis process into fixed-size blocks of successive samples, where the

block (“window”) size Ws is relatively small compared to the size of the overall data

set [5]. The dataflow graph can then be executed repeatedly on successive windows

of the input data stream. The measurement system designer can set the window size

Ws to influence an underlying trade-off between jitter measurement accuracy and

memory requirements. Larger window sizes generally provide increased accuracy at

the expense of increased memory cost.
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Figure 2.1: Dataflow model for our real-time jitter measurement system.

2.3 System-Level Model

The dataflow (computation graph) model of our jitter measurement system is

illustrated in Figure 2.1. We implement the individual dataflow modeling compo-

nents (actors and edges) in OpenCL. Details on these implementations are discussed

below. The integers next to the actor ports represent the production and consump-

tion rates associated with the ports. For all input ports except one (the input port

of the DVL actor), the consumption rate and threshold are equal, so they are not

shown separately. The dataflow behavior of the input port of the DVL actor is

represented by the parameter pair [c, τ ], where c is the consumption rate and τ is

the threshold of the port. The parameter τ is the window size for the actor, and

satisfies τ ≥ c.
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2.3.1 Actor Descriptions

Here, we briefly summarize selected actors that are employed in Figure 2.1.

The actors summarized here are those whose implementations have changed (com-

pared to the system presented in [5]) due to our use of a GPU for the new mea-

surement system.

Actor DVL (Determine Voltage Level) sorts the input data of the current win-

dow and determines the high and low voltage thresholds. Actor STR (State Repre-

sentation) performs analog-to-digital conversion based on the voltage thresholds to

assign low or high voltage states. Actor FSM (Finite State Machine) identifies volt-

age transitions from high to low or low to high voltage states. Actor TRT (Compute

Transition Time) computes the transition time for every voltage transition in the

current window. Actor RE (Rough Estimation) derives a preliminary estimate of

the clock period. Actor RRE (Refine Rough Estimation) refines the rough estimate

of the clock period to improve the accuracy. Actor LFT (Linear Fitting) further

refines the clock period estimate using a linear fitting method, and computes time

interval errors using the refined clock period estimate. For descriptions of the other

actors in Figure 2.1, we refer the reader to [5].

In addition to changing the implementation platform to a GPU, we have made

important improvements in the dataflow graph structure compared to the graph

in [5]. In particular, phase computation is now implemented as part of the LFT

actor instead of as a separate actor. This graph transformation is motivated from

observations that (1) GPU kernels for both actors have similar levels of parallelism,
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and (2) combination of the actors provides significant reduction in GPU memory

requirements. In the transformed graph of Figure 2.1, the outputs of the LFT

actor encapsulate the derived clock period and time interval error (TIE) for jitter

estimation.

2.4 Actor Implementation

In this section, we discuss the implementation of the dataflow graph actors

summarized in Section 2.3. We emphasize our optimized application of GPU features

to jitter measurement tasks, and improvements incorporated in our GPU-based actor

implementations compared to our previously reported system in [5].

The GPU-targeted actors in our implementation are developed using LIDE-

OCL. LIDE-OCL provides an integrated software tool for implementing signal pro-

cessing dataflow graphs using OpenCL. LIDE-OCL is centered on OpenCL imple-

mentations of the abstract (platform- and language-independent) dataflow program-

ming APIs (application programming interfaces) in the lightweight dataflow envi-

ronment (LIDE) [13].

2.4.1 Jitter Measurement Optimization using LIDE-OCL

In LIDE-OCL implementation, computations in an actor can be decomposed

into one or more kernels with different amounts of concurrency (GPU “work group”

sizes). Initialization of device and kernel configurations is performed before graph

execution. Before actors and FIFOs are constructed, relevant host device and GPU
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device properties, including device and command queue initialization, are set up.

The command queue can be viewed as a dynamically-managed list of commands

that have been submitted (“issued”) to the GPU for execution, and are waiting to

be fetched and executed by the GPU. When a GPU-targeted actor is constructed,

GPU memory used by the kernels in the actor is allocated, and the kernels are

dynamically loaded and compiled so that they are available to the dataflow graph

schedule when the graph is executed. Once these initialization and configuration

steps are completed, the dataflow graph is ready to execute.

In our implementation of jitter measurement, the deep waveform analysis com-

putations are performed on the GPU. After a window of data is processed, the de-

rived clock period results, and Time Interval Error (TIE) results are sent from GPU

memory to the host device (CPU). Since all of the waveform analysis is performed

within the GPU, parallelism be exploited extensively throughout the associated com-

putations, and all inter-actor communication is performed within the GPU (rather

than between the GPU and the host). These features help significantly to improve

jitter measurement response time. The token type used by the GPU-targeted actors

is a generic type associated with OpenCL objects [7]. This organization provides

flexibility and efficiency in processing different kinds of data within actors on the

GPU.

In the remainder of this section on actor implementation, we provide details

on how efficient parallel execution of jitter measurement computations is achieved

on the targeted GPU platform.
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2.4.2 DVL and RE

Efficient sorting of numeric values is important in our jitter measurement sys-

tem. For example, in the DVL actor shown in Figure 2.1, a sorting algorithm is

applied to determine thresholds for high and low voltage values. Similarly, the RE

actor operates by sorting the differences between neighboring transition times.

We apply a sorting algorithm called bitonic sort to accelerate the sorting op-

erations required for jitter measurement calculation. Bitonic sorting was applied

originally in the construction of sorting networks [14], which can be viewed as inter-

connections of comparators and wires that are used to sort collections of values. It

is well known that bitonic sort is useful for its utility as a parallel sorting algorithm.

We apply this feature to derive fast implementations of the DVL and RE actors on

the targeted GPU.

Figure 2.2 illustrates our design of the RE actor.

2.4.3 RRE and LFT

The RRE and LFT actors involve computing sums over large numbers of

data values. The associativity of the addition operator allows for use of efficient

GPU implementation techniques that are based on parallel computation methods

for reduction operations [15]. However, due to the large volumes of data involved,

reduction techniques must be applied carefully in our implementation to optimize

performance. For example, non-local synchronization of data between every com-

ponent operation within a reduction operation is costly. In OpenCL-based GPU
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Figure 2.2: Design of the RE actor.

implementation, relatively costly non-local synchronization arises when the data in-

volved in an operation crosses the boundary of a set of operations called a local work

group. Thus, we structure the summations in the RRE and LFT actors such that

they are reduced first at the level of local work groups. This makes maximal use of

local memory operations (fast synchronization) during the reduction process.

Figure 2.3 illustrates our application of reduction methods to summation op-

erations. In the example of Figure 2.3, the total data length (number of values to

be added) is 16, and the local work group size is 4.

2.4.4 TRT

Another computationally-intensive process in our jitter measurement system

is the stream compaction [16] of the transition time array in the TRT actor. Stream
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Figure 2.3: Illustration of reduction methods applied to a summation operation.

compaction refers to the process of compressing the storage requirements of a sparse

array by removing zero-valued elements from the array. In each jitter measurement

window, transitions are detected at switching points between high and low volt-

age levels, the corresponding transition times are computed, and these transition

times are stored by setting array elements to non-zero values at array indices that

correspond to the transition time intervals. This approach is efficient for initial com-

putation and storage of the transition times, but it results in a sparse array that is

costly in terms of memory.

Thus, within our implementation of the TRT actor, we compress the sparse

transition time array using a prefix sum [17] technique. This stream compaction

process is illustrated in Figure 2.4 with a simple example involving 8 data items.

In OpenCL, a prefix sum computation on a large data set can be implemented

in a manner similar to a reduction operation. Using such an approach, we compute

the prefix sum for the local work groups in parallel. Then we compute the prefix sum
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Figure 2.4: An illustration of stream compaction, which is employed in the TRT
actor.

of those partial prefix sums. The result of this intermediate prefix sum operation

is called the “summation offset”. The final prefix sum result is then computed by

adding the summation offset to the results computed on the local work groups.

2.5 Schedule for Dataflow Graph Execution

As is discussed in Section 2.1, a schedule is needed to execute the dataflow

graph on a targeted hardware platform. Many possible schedules can be constructed

for the dataflow graph of Figure 2.1. The alternative schedules in general have

different implementation costs in terms of relevant metrics. For the experiments in

Section 4, we derive a static schedule that employs a heuristic to decrease the CPU

and GPU memory requirements. A static schedule is one in which the assignment

and ordering of all actors are fixed before the graph is executed. Static schedules are

useful for reducing the run-time overhead of schedule execution, and for improving
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the predictability of the implementation [8]. Constant-valued dataflow rates and

thresholds allow for the construction of static schedules, and we exploit this property

of our dataflow graph model when constructing the schedule.

The static schedule that we employ in our implementation can be expressed

as

(Ws SRC ) DVL STR FSM TRT RE RRE

LFT DBS DAS ,

where the parenthesized term (Ws SRC ) represents the successive execution Ws

times of the SRC actor. Recall from Section 2.3 that Ws represents the window size

for jitter measurement.

2.6 Real-time versus Accumulated Implementation

We have developed two kinds of implementation for the targeted jitter mea-

surement system. We refer to these as the accumulated version, and real-time ver-

sion. In the accumulated version, transition times from the first input window are

accumulated, and clock period estimation is based on all transitions found from the

first window to the current window. The voltage thresholds are fixed in the first

window, and these fixed thresholds are used for all subsequent windows.

On the other hand, in the real-time version, clock estimation in each window

is regarded as a complete and independent clock recovery process. That is, results

16



from the current window are independent of previous windows, and the voltage

thresholds are computed separately in each window. In this implementation, the

memory requirement is independent of the number of windows processed, which

provides great flexibility for continuous operation of the system.
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Chapter 3

Optimization on the Jitter Measurement System Design

The real-time system design for jitter measurement that we presented in the

last chapter provides a memory-efficient design. When this design is applied to a

measurement system that samples data in real time, the system response time for

each window of samples should be no slower than the time required to acquire the

samples in the window (the reciprocal of the sampling speed for the window). In the

targeted real-time measurement application, data is retrieved from a DAQ (data ac-

quisition) board, which collects data from a real-time input source. If the processing

speed of the implementation is slower than the DAQ sampling rate, then the data

buffer on the DAQ subsystem will overflow as increasing numbers of windows are

processed. Therefore, to support unbounded input streams in the measurement ap-

plication, our system design needs to be optimized based on the constraint described

above on the response time.

In this chapter, we will examine our jitter measurement system design as a case

study to demonstrate design optimization using LIDE-OCL. We discuss transforma-

tions applied to the dataflow graph, and optimization performed on selected actor

implementations to help achieve the latency constraint imposed by the sampling

rate of data acquisition.
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3.1 Dataflow Graph Design Optimization

In the design of the jitter measurement system discussed in the previous chap-

ter, the final clock period is estimated for a single window in each graph iteration.

Based on the final clock period, the TIE (time interval error) of each transition in

the window is computed as well. The number of TIEs in one window is equal to

the number of transitions in the window. The final clock period and the computed

TIEs are the output results for the window. The number of TIEs is roughly equal

to Ws/CP , where Ws is the window size and CP is the clock period. Therefore,

increasing the window size increases the number of TIEs in the window.

Storing to disk large numbers of TIEs in this way significantly slows down

system performance. To address this problem, we have designed an actor TIESD,

which first computes the standard deviation of all TIEs in a window first, and then

outputs this standard deviation (a single number) to the result file rather than

outputting all TIEs. Therefore, in the optimized dataflow graph, the results in each

iteration are the final estimated clock period and the standard deviation of TIEs in

the window. The updated dataflow graph is shown in Figure 3.1. Here, f
num

(the

production and consumption rates on the output edge of the DAQSRC actor) is the

number samples retrieved from the DAQ board to construct one window of jitter

measurement input.

In this optimized dataflow graph, the DAQSRC actor retrieves data from the

DAQ subsystem, and the DAQTRF actor converts the collected data from digit values

to floating point format, and transmits the data to GPU memory for GPU-based
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Figure 3.1: Improved dataflow model for our real-time jitter measurement system.

computation with the following actors. The TIESD actor computes the standard

deviation of the TIEs in the current window. The SNKCRE and SNKTIESD actors

are the sink actors for the final clock period and standard deviation of the TIEs,

respectively. The other actors in Figure 3.1 have the same functionality as the

corresponding actors in Figure 2.1.

3.2 Optimization on Actor Design

In this section, we discuss how to optimize selected actors in Figure 3.1 to

further improve system latency.

In our jitter measurement system, sorting is an important procedure in two of

the key actors — the DVL and RE actors. In the DVL actor, the input data is first

sorted and then a voltage threshold is derived from the sorted data to quantize each

sample to a binary value. In the RE actor, sorting is applied to order the transition

time intervals so that a rough estimation of the clock period can be determined.
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Figure 3.2: An illustration of the bitonic sort algorithm.

In both of these actors that employ sorting, bitonic sort is applied to par-

allelize the sorting process. However, the transformed sorting process is not fully

parallelized, which means that increasing amount of data to be sorted leads to an

increase in execution time. The performance of the sorting algorithm becomes a bot-

tleneck of the overall jitter measurement system when increasing the window size to

improve the system throughput. In Section 3.2.1 and Section 3.2.2, we discuss how

to optimize the sorting process for these two actors.

The bitonic sort network used in the applied sorting algorithm is shown in

Figure 3.2. In this network, the computation represented by each inner box in Fig-

ure 3.2 is fully parallelized, while the different inner boxes are executed sequentially.

Therefore, increasing the number of data items for sorting can be expected to result

in a linear or almost-linear increase in execution time.
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3.2.1 Optimization of the DVL Actor

The DVL actor operates by sorting its input data, and selecting two values from

the sorted data. From a given period of the periodic input waveform, high and low

voltage thresholds can be recorded. As we increase the window size, the number of

periods encompassed by the window increases given our assumption that the input

signal has a constant frequency.

To improve the performance of the DVL actor, we observe that voltage thresh-

olds can be derived with acceptable accuracy without sorting all of the input data

in the a given window. To exploit this observation, we apply an optimization that

randomly selects a proper subset S of the input data for sorting, and then derive the

voltage thresholds using the result of sorting S. To ensure sufficient accuracy, the

number samples in S should be sufficiently large. This number should be selected

carefully because selecting too large a value (overdesigning for accuracy) will slow

down performance.

3.2.2 Optimization of the RE Actor

As previously discussed, the RE actor computes transition time intervals be-

tween pairs of successive transitions. The maximum vectorization degree for this

computation is (Ws − 1), where Ws is the window size. However, using a static

vectorization degree based on this maximum value can result in excessive numbers

of threads and excessive amounts of synchronization overhead. Thus, to further

optimize our GPU-based RE actor implementation, we dynamically configure the
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vectorization degree of the actor based on the number of transitions that are com-

puted for a given window of data. This ensures that the vectorization degree is

matched dynamically to the amount of data parallelism available in a given window

of data.

The RE actor sorts all of the derived time intervals and then selects the 25th per-

centile of the sorted intervals as the rough estimated clock period. Experimentally,

we find that most of the time intervals are clustered close to this rough estimate.

The transitions with significant jitter are the ones that deviate significantly from

the rough estimate.

As an additional optimization for our RE actor implementation, we apply a

random sampling technique similar to the one described in Section 3.2.1. This

reduces the amount of data that needs to be sorted in the actor RE, thereby reducing

the computational load. The specific size of the data subsets selected for sampling

is determined experimentally to achieve an effective trade-off between accuracy and

computational cost.
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Chapter 4

Experimental Verification

In this section, we present an experimental validation of the proposed method.

Actual measured data were used: a two-state digital waveform representing bits

from a PRBS sequence measured using a deep-memory digital oscilloscope. A fuller

description of the waveform and the measurement apparatus used to acquire it

appear in [5]. Also in that reference, there were proposed two criteria for judging the

correctness of a measurement algorithm that is transformed in order to meet software

engineering goals such as increased throughput, decreased latency, or decreased

memory consumption:

• Intermediate values obtained using both the old and new algorithms should

be comparable, and

• The difference between the final measurement results of the old and new al-

gorithms should be small compared to the total measurement uncertainty in

either.

Here, we compare the measurement results of [3] and [5] with those of two variants

of the proposed method, which we will refer to as the accumulated and real-time

variants. The same actual measured data is used for the comparison.

In the accumulated variant, the transition times from the very first window are

accumulated in a buffer and the clock period estimation is based on all transitions
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found from the first window to the current window. Voltage thresholds are fixed

based on the voltage statistics found in the first window. Thus, the first window

needs to contain at least one logic state transition. The accumulated variant needs

only to store one array that grows with waveform depth: the transition times. Thus,

it has lower memory consumption that the methods of [3] and [5] but nevertheless

can run only for some finite time before computer memory is exhausted.

In the real-time variant, clock recovery in every window is regarded as a com-

plete and independent process. The voltage thresholds, transition locations, clock

recovery, and time interval errors within each window are computed independently

of all other windows. This variant has memory requirements that are fixed, in-

dependently of the amount of time it runs: the amount of time it can run is not

memory-limited. By “real-time” we refer to the ability of this method to operate

successfully on a temporally unbounded waveform. The term is not to be under-

stood as a claim to be able to measure at the full, many-gigasample per second,

sampling rate of contemporary instruments.

Both variants were implemented in LIDE-C and in LIDE-OCL. The two im-

plementations produced identical results to 8 decimal places, and so are identical

for all practical purposes. This validates the correctness of the LIDE-OCL imple-

mentation. The LIDE-OCL results are used in the following graphs.

The accumulated variant reports the desired statistic about jitter, the standard

deviation of time interval error (TIE), only after processing the entire waveform.

Table 4.1 shows the value of that statistic obtained using the accumulated variant

for various window sizes and reported in [3] and [5] for the same waveform. All of
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the results are within 0.02 of a sample time, under a half a percent of relative error.

Validation of the real-time variant is more complicated because it produces a

value of standard deviation of TIE for each window. And, as shall be seen below, the

statistical behavior of the measurement results varies considerably with the window

size. The same measured waveform was provided to the real-time variant, once for

each of a number of window sizes. Figure 4.1 summarizes the statistical distribution

of the key intermediate computed value, the waveform unit interval (UI). Figure 4.2

shows the standard deviation of TIE found for each window for each window size.

Figure 4.3 summarizes with a box plot the statistical distribution of the standard

deviations of the previous figure.

These figures show that the UI estimates and standard deviation of TIEs of the

real-time variant converge toward those of the accumulated variant and of [3] and [5].

However, there is a significant frequency of high measurement errors (shown with

the outlier circles in Figures 4.1 and 4.3) at lower window sizes. One the other hand,

the measurement results are visually as accurate with windows of 131072 samples

as they are when processing the entire waveform of over 14 million samples—yet the

windowed version requires approximately 1% of the memory.

Table 4.1: Standard deviation of TIE: Accumulated variant

window size (samples) [3] [5] 8192 16384 32768 65536 131072
std dev of TIE (sample times) 4.650 4.647 4.651 4.649 4.651 4.651 4.648
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Figure 4.1: Box plot showing distribution of corrected UIs as a function of window
size found by the LIDE-OCL implementation of the real-time variant, given the
actual measured data described in [5]. The known a priori correct value is 128.00.
Boxes extend from the 25th to the 75th percentile. The median corrected UI is
shown as a thick black horizontal line. Outliers are shown as circles. One extreme
outlier was deleted for window size 8192.
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Figure 4.2: Evolution of standard deviation of TIE as windows are processed in
the real-time variant. Colors indicate number of samples per window. The x-axis
indicates the final sample number of each window. Horizontal black line is at the
standard deviation of 4.65 samples obtained by the accumulated variants.
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Figure 4.3: Fig. 4.2 summarized as a box plot. The horizontal line passing through
the entire figure shows the standard deviation of 4.65 sample times obtained by the
accumulated variants.
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Chapter 5

Conclusion and Future Work

We have developed a novel jitter measurement system with applications to

design and evaluation of digital communication systems. By integrating methods

in window-based jitter analysis algorithms, dataflow-based system-level modeling,

OpenCL programming, and GPU implementation, we have demonstrated that our

measurement system achieves memory efficient, real-time operation. We have also

exposed and investigated system-level design trade-offs among computation accu-

racy, memory requirements and latency in jitter measurement. Finally, we have

validated our new jitter measurement system’s consistency with related previous

systems by verifying that it produces both intermediate computed values and fi-

nal measurement results that converge to within sub-percent measurement errors

compared to two previous systems. Useful directions for future work include op-

timization of the dataflow graph actors and the schedule to further improve the

execution speed of the implementation.
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Chapter 6

Personal Report

I have studied in Salzburg University of Applied Sciences for four months.

During the four-month study, I continued my research on the model-based design of

the measurement system application. Faculty, staff and students in this university

have impressed me a lot for their expertise and enthusiasm on the research. I strongly

recommend graduate students in America apply for the MPS scholarship and enjoy

the exchanging experience in the Salzburg University of Applied Sciences.

6.1 Overall Impression of the Research Period

During my stay in Salzburg University of Applied Sciences, I have been im-

pressed a lot for my research experience in this University.

6.1.1 Support from the International Office

During my application for the MPS scholarship, the staff in the international

office helped me a lot on how to complete the application including answering the

questions I had when applying and providing effective information on the scholarship

application. I appreciate a lot for their friendly help and timely assistance.

After I received the offer from MPS foundation, they positively contacted

me on my preparation for coming and joining the university this year. Moreover,
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they created a Facebook group for the incoming students and volunteers from the

university so that all incoming students had the opportunity to communicate with

current students in the university and better know about Salzburg and Austria

before arriving. Before the beginning of the semester, I was invited to attend the

welcome week for all incoming students. Plenty of events are provided in this week

to help us be familiar with the Salzburg city and the university itself. This effectively

help students adapted to the new life in Salzburg faster.

During the study and research in the Salzburg University of Applied Sciences,

the international office has provided a series of events such as visiting a famous salt

mine in Salzburg and hiking. This enriched our life in Austria a lot. The service

and instructions provided by the international office guided us know Salzburg and

studied in Salzburg better. They did make a lot of efforts to let us understand and

learn the culture in Austria.

6.1.2 Support and Communication with IT Department

I am a graduate student majoring in electrical and computer engineering.

Faculty in Department of Information Technology & Systems Management is my

advisor during the exchanging study. All staff and faculty in the department are

very friendly and helpful. Due to my research project requirement, some equipment

and software are necessary for my research project. When I discussed my project

with them before my arrival, they supported a lot on preparing the equipment and

software facilities for my research study. After my arrival, staff in the department
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introduced the whole university and department to me with enthusiasm. To help me

more involved in the department events, I was invited to join the regular meeting of

the department and several important public events this semester. These events let

me have a better understanding for the department culture and research projects it

has. I was also invited to participate in the regular meeting of one research project.

Discussion for the project in that semester expand horizons on different research

areas.

6.2 Quality of the Research Institution

The overall quality of Salzburg University of Applied Sciences is pretty good.

Although the university doesn’t cover majors for all different subjects, the majors

it has are very practical and largely required in the job market.

Campus of Salzburg University of Applied Sciences is perfectly formed though

small. Facilities like library, printing service and canteen are provided as well as

those outdoor facilities such as a mini beach volleyball court.

Although most of the departments in the university are in the same building,

Department of Information Technology & Systems Management is able to provide

several labs for different experiments’ requirements. Besides, there are lab assis-

tants coordinating lab-related preparation including hardware and software facili-

ties. Lounge and discussion areas make it more convenient for students and faculty

to discuss and talk about the research.

All in all, the quality of the research institution is satisfactory and full of
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surprise.

6.3 Integration in the research institution/organization

During my study in Salzburg University of Applied Sciences, I have attended

most events invited by the IT department. The following is what I have done to be

integrated to the research in the IT department.

There are a lot of research projects in the IT department. My research advi-

sor who is in charge of several projects invited me to join in the regular meeting of

one project every week. The discussion in the meeting promoted the understanding

and communication with each other. I have benefited a lot from these meetings.

Besides that, the department regular meetings I joined were given me a picture of

working and research style in Europe. During the semester, I was lucky to attend a

seminar about MATLAB hosted by IT department and joined in several events for

propagating the research projects and showing the research projects in the depart-

ments to the potential students and people from the industries. Furthermore, I was

also invited to do a presentation introducing what I have done during the study in

Salzburg. I first introduced my research lab in home university and software tools

developed by my research group. After that I introduced and discussed about my

research topic and what I have done in these four month study. Such presentation

and further discussion did help us know about the research with each other much

better and make me involved in the department better.
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6.4 Recommendations for future MPS scholars/fellows

First of all, I strongly recommend future potential students apply for the MPS

scholarship. Furthermore I also encourage students to choose Salzburg University

of Applied Sciences as their host university.

Austria locates at the center of Europe. Therefore it is much easier for students

to visit other Europe countries. On the other side, culture and history in Austria

could represent the Europe historical process to some extent. Salzburg, an important

city in Austria will give a basic picture of Austria history as well.

Another aspect is the education system. Education system in Austria is quite

different from what USA has. Experience of studying in Austria helps students

expand their horizons and know more about the whole world. Students will benefits

a lot from the education system in Austria.

Last but not least, there are opportunities that students could participate in

research projects in the university. One feature of the research project in Salzburg

University of Applied Sciences is that they frequently collaborate with companies in

the industry. Students could practice their skills in developing such research project

and discuss with people in the company which is also helpful for their future career

plan.

6.5 Contact information (email address) after the research period

Contact information after the research period: yzliu@umd.edu
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