
Ing. Roman Zeleznik BSc

Efficient implementation of virtual physics
experiments for web based interactive

courses at the MIT

Report - Marshall Plan Foundation

Graz University of Technology

Institute for Information Systems and Computer Media - IICM
Head: Univ.-Prof. Dipl-Ing. Dr.techn. Frank Kappe

Massachusetts Institute of Technology

Center for Educational Computing Initiatives - CECI
Head: Professor John Belcher

Supervisor: Univ.-Doz. Dipl-Ing. Dr.techn. Christian Guetl
Co-Supervisor: Professor John Belcher

Boston, July 2014

Contents

Abstract v

1. Introduction 2
1.1. Problem Definition . 3

1.2. Structure of the following work . 4

2. Background and Technologies 6
2.1. E-learning and MOOCs . 6

2.2. Simulations . 7

2.3. TEAL and TEALsim . 12

2.4. EdX - An online learning platform 13

2.5. EdX and the mix of HTML, Python, JavaScript and Latex 14

2.6. Main structure of an edX online course 14

2.6.1. A basically setup of an edx course 15

2.6.2. The setup of the courses 8.02x 15

2.7. GWT - Extending edX with a new programming language 19

2.8. Summary . 20

3. Problem Definition 22
3.1. TEALsim goes edX . 22

3.2. The goal of this master thesis . 23

3.2.1. Adapting the simulations for answering questions 24

3.2.2. Getting an initial state from edX to the simulation 25

3.2.3. Returning an answer to edX 25

3.2.4. Reloading a previous state 26

3.3. Summary . 26

4. Related work 27
4.1. Similar concept but different problem - The jsinput sample problem 27

4.2. Different concept but similar problem - The edX course STAR-
Biology by Ivica Ceraj . 28

4.3. Summary . 28

ii

Contents

5. Implementation of the interface between TEAL simulations and edX 29
5.1. Grading a simulation . 32

5.1.1. EdX - customresponse . 33

5.1.2. EdX - jsinput . 35

5.1.3. Grading using python . 37

5.2. Starting a simulation with initial values 37

5.2.1. Creating the initial values with python 38

5.2.2. Iframes and postmessages 39

5.3. Implementation of a test course using jsinput 41

5.4. Loading, saving and sending values between the different pro-
gramming languages and different files 43

5.4.1. One variable in one file used by two programming languages 43

5.4.2. One variable in two files used by the same programming
language . 44

5.4.3. One variable in two files used by two programming lan-
guages . 44

5.5. The synchronization problem . 51

5.6. Summary . 53

6. The converted TEAL simulations 55
6.1. The first extended TEAL simulation:

Point Charges Extended 56

6.1.1. Requirements . 56

6.1.2. The simulation . 57

6.1.3. The buttons in detail . 58

6.1.4. Different states of the running simulation 59

6.1.5. The prototype of Point Charges Extended 62

6.2. The second TEAL simulation:
Gausses Law Extended 63

6.2.1. Requirements . 63

6.2.2. The simulation . 64

6.2.3. The buttons in detail . 65

6.2.4. Different states of the running simulation 66

6.3. The third TEAL simulation:
Amperes Law Extended 69

6.3.1. Requirements . 69

6.3.2. The simulation . 70

6.3.3. Different states of the running simulation 71

6.4. Discoveries . 74

6.5. Summary – The incidental gamification of the TEAL simulations 75

iii

Contents

7. Evaluation 77

8. Future Work 78
8.1. Near future - The rest of the seven TEAL simulations 78

8.2. Ultimate goal - A complete new framework for simulations . . . 85

8.3. Improvements on jsinput . 85

9. Summary 87

A. Code parts 1
A.1. Limit the movement . 1

A.2. Place elements on a grid . 3

A.3. Place and remove dummies . 5

B. Used Software and Hardware 8

C. Setup of a local edX test server 9
C.1. Setup of the edX test server - Version 2013 9

C.2. Setup of the edX test server - Version 2014 10

Bibliography 12

iv

Abstract

Teaching freshman MIT students physics is a challenging task, as every MIT
student has to go through this courses no matter what topics they are studying.
As the student are hence not very interested as well as the rest of their study is
very time consuming it is easy to understand why the students do not like this
courses. Trying to motivate the students to learn the physics stuff the courses
were ported to so called e-learning courses as evaluations in the past have
shown that this new form of education can increase students motivation as well
as simplify learning. Especially interactive simulations help student understand
the taught topics.

Therefore in 2005 Technology Enabled Active Learning (TEAL) was introduced.
Therefore a special TEAL classroom was developed which combined tradi-
tional teaching with interactive elements like videos, simulations and physics
experiments.

As technology got faster and better and the Internet got a permanent part of our
life a new e-learning platform called edX was created. It is an online platform
for many different courses. Two of them are the basic physics courses 8.01x and
8.02x which are held in the TEAL classrooms.

For giving students a easier and more flexible access to the physics experiments
7 of the original TEAL simulations where ported to edX using JavaScript. This
simulations give the students the possibility of working whenever they want
and as often they want and should increase students motivation and interest in
the physics stuff.

Unfortunately evaluations of the courses have shown that students did not or
just very short make use of the simulations. Therefore the wish was born to
make them interact with edX to give the course creator the possibility of asking
students questions which have to be answered by using the simulations.

In this master thesis we created an interface between the existing TEAL simu-
lations and the edX platform. Furthermore we extended 3 of the simulations
which now are used for answering questions by using them.

v

Acknowledgement

I want to thank so many people for making this master thesis as incredible as it
is. I have to thank all of you for your support and guidance through my work.
In the six months I wrote this master thesis I had the opportunity to work with
some of the best scientists at one of the best universities.

First I want to thank all the people from Boston, especially the CECI team. My
thanks go to John for making all this possible, for showing me a whole new
form of education and a new direction in which I want to steer my future work
and for introducing me to so many wonderful people. Thanks to Phil for all
your support and help with all the technical stuff. Thanks to Kirky and Maria
for all the administrative support. At this point a special thanks to Kirky for all
the help before my trip, answering my thousand mails and your help getting
my visa! Thanks to Luciano for having lunch so many times with me. Thanks
to Kimberle for bringing Kyla into the office. Furthermore I want to thank Saif
for the work on the edX course with me. And of course thanks to Ivan for all
your help and for the bike. Thanks also to Mark for all the wonderful stories
about the MIT, Boston and the US and for the many recommendations for our
weekends and vacation.

Thanks all of you!

And I want to thank every one from the Graz University of Technology. Es-
pecially Christian for making this all possible and for your continuous help
and support through all the six month in Boston and the time back in Graz.
Thanks also to Johanna for all the help getting the visa and also the technical
help through my work.

I want to thank the Marshall Plan foundation for the financial support which
made this journey possible!

From my home town Graz I want to thank Karli and Eveline for having an eye
on our apartment and all the other things you helped me during my trip!

Finally I want to thank my love and life Oana. Words can cot describe how
much I owe you!

1

1. Introduction

At the Massachusetts Institute of Technology (MIT) every undergraduate student
has to take two semesters of basic physics, no matter which field of studying
they are going to take. These courses are tough and require a lot of work and
hence not very favored by the students. Since 2005 the physics courses are
held in so called Technology-Enabled Active Learning (TEAL) classes. TEAL is a
method for giving the students, among other things, the possibility to work
on their own with different physics experiments. This changed the traditional
and passive way of teaching to an interactive way where students can test
their understanding. There were different reasons for the TEAL project [7]. One
was to decrease the number of students failing the courses. Another was to
make studying easier and hopefully to make students remember the learned
material for the rest of their life. It was also made to motivate the students to
learn physics. During one of the first meetings, Prof. Belcher explained that he
wanted the students to not hate the courses any more. And if they just dislike it
instead of hating it, he would be happy.

With technology getting faster and better TEAL-simmulations (TEALsim) was
created. It was a stand alone software including several virtual TEAL simulations
which where used in TEAL classes but could be used by every student at home
also.

The last evolutionary step was to use the e-learning platform edX for teaching
the physics courses. These courses included the whole course material as
well as 7 ported virtual TEAL simulations. Furthermore online questionnaires
with instant feedback and online homeworks are part of these edX courses.
Evaluations of further semesters have shown that students really liked the
edX courses [12]. Most important for them was the immediately feedback they
received for online questions. Past works have also shown that interactive
simulations can improve students learning [5]. That was also the reason why
the TEAL simulations where ported to edX. Evaluations of the physics courses
have shown that students did not use them or used them insufficiently. Prof.
Belcher wanted to extend the existing 7 TEAL simulations with the possibility of
asking students questions during the online course which have to be answered

2

1. Introduction

by using them. This would on the one hand make the students using them, on
the other hand it would give them the fast feedback they liked most from the
edX courses.

I. Ceraj did something similar at various courses, for example 7.QBWx, 8.EFTx
and others. They also contain interactive experiments which were used to
answer questions and solve tasks. But differently to this courses, where he
created the edX part as well as the JavaScript part, our courses were created by
two different people. One was responsible for the course content, which was
written in XML and python, the other for the simulations, which were written
in Java and JavaScript. So we had not only to extend the existing simulations,
we also had to create an interface between them and the course content to keep
the strict separation.

Then we had to think about how to change the existing simulations for giving
the lecturers the possibility of asking useful questions which increase students
motivation for using them. Once all requirements where set we began to work
on the implementation. J.M Claus from edX recommended the using of jsinput,
an edX function made for interacting with JavaScript implementations like our
simulations. Here we had to deal with a peculiarity of the existing simulations
as they where written in Java and compiled with the Google Web Toolkit (GWT)
to JavaScript Code. This made a direct use of jsinput with our simulations
impossible. Once the programming work and implementation was done we
had to present it to the physics education stuff which consisted of brilliant, well
experienced and very smart MIT lecturers. Here we realized that our work was
not just to create a working interactive simulation with an stable interface. Each
decision was questioned, every tiny detail had to be correct and everything had
to be perfect to fulfill the high standards of the MIT.

1.1. Problem Definition

In order to solve the problems described above two main objectives were
defined.

Objective One

Extend one of the existing virtual TEAL simulations which where ported to
edX for giving the course creator the possibility of asking students questions
which have to be answered by using them. This includes on the one site to

3

1. Introduction

setup a virtual edX server locally for creating and testing an prototype course
and furthermore understanding and editing an existing course. On the other
hand understand the implementation of the existing simulations. After that we
had to think about how to extend the simulations for asking useful questions.
This was an interesting process which included many different people from
education as well as programmers. We had to combine the wishes of lecturers
with the possibilities the programmers had and take into account the available
time period.

Objective Two

Create an interface between the extended TEAL simulation and the course
which embeds it. This was a very important aspect as the main course was
created by educational stuff who have no knowledge of programming but the
simulations where created by programmers which where not familiar with
education. While this circumstance was very reasonable for creating the best
physics course for a great education it also led to the requirement of an interface
between simulation and online course which ensures none of the two creators
has to work in the others field.

1.2. Structure of the following work

This master thesis is divided into three main parts. The first section describes
the background and basics of this work. It encompasses the chapters 2, 3 and
4. Part two is about the implementation and our results, containing chapters 5

and 6. The third and last part includes a small evaluation in chapter 7 as well
as an outlook in chapter 8.

In chapter 2 we explain the terms e-learning, MOOCs and simulation and their
application in education. Furthermore we describe the Technology-enabled ac-
tive learning teaching format and the conversion to TEALsim with the virtual
simulations, which we want to extend in this work. We give an overview of
edX, an online e-learning platform for which the physics courses and hence
our simulations were created and we show the structure of such an online
course and the programming languages which were used. Finally we give an
introduction to GWT, the Google Web Toolkit and how an edX course can be
extended using it. Chapter 3 illustrates the problem definition. Therefore we
get a little more into the relation of TEALsim and edX. After that we specify

4

1. Introduction

the individual points we want to accomplish with this work. In chapter 4 we
write about related work to this master thesis. We show the innovation of our
work and consequently why there was so less related work we could build
on. Afterwards two concepts which we thought we can use for our work are
explained and why they turned out to be incompatible for our requirements.

Chapter 5 refers to the whole implementation of our work. It shows the under-
lying technologies, which problems we ran into and how we solved them. For
better understanding we show a text course which we created for testing the
new mechanisms. At the end we present a float chart which explains the whole
structure of our simulations and its interaction with edX. In chapter 6 we show
the final results of our work, the three converted simulations. We describe how
we extended the existing simulations, which changes had to be done, where the
problems were and finally the implementation and underlying mechanism of
our new simulations. As the three new simulations are all different we made an
own sub-chapter for each one where we show the ideas and possibilities how
they could be used in future courses.

Chapter 7 is sadly a little shorter then we hoped it would be. During our work
on the simulations it seemed they will be used in the following term by the
edX course 8.02x which would have given us an evaluation of about 150 MIT
students for this thesis. But different reasons lead to a delay in integrating them
into the course and so they will be used after this thesis is written. Thus we
made a evaluation with colleagues and student assistants which is unfortunately
with less people. In the last chapter 8 we show a short outlook on how our
simulations will be used in online courses. Furthermore we describe how our
work will be continued and where it may lead to and which modifications to
edX and its functions would have to be done.

5

2. Background and Technologies

Electronic learning (e-learning) and Massive Open Online Courses (MOOCs) are
both relatively new learning methods, especially MOOCs. They became very
famous during the last years but have also changed enormous during that
time. Used techniques are very different and hence results and experiences too.
Therefore we want to give only a short general description of this two terms and
present then an evaluation of the physics course 8.02x to describe the benefits
and disadvantages of their application specifically in this course.

2.1. E-learning and MOOCs

With the increasing use of computers and the spread of network technologies
and the Internet, teaching is continuously moving from the traditional classroom
learning to electronic-learning (e-learning) as described in the work of Zhang
et al. [14]. He defines e-learning as every form of learning where the course
material is delivered electronically via the Internet. Therefor different systems
can be used:

• E-mails
• Newsgroups
• Knowledge boards
• Online databases
• Websites

For us the last point, Websites, is most interesting. In the near past, especially
since the rise of JavaScript, websites became more and more the preferred
way of e-learning. This progress was supported with the upcome of HTML5

which, although it is officially not a released standard yet, is supported by every
modern browser by today (2014). The benefits of e-learning are numerous: It is
completely time and location flexible. The latter leads to the next advantage,
cost and time saving. Up to 40% of in-person corporate learning are spend
for traveling [14]. Furthermore the students gets unlimited access to learning
materials so they can reuse it as much as they need to understand a specific

6

2. Background and Technologies

topic or also skip parts they maybe already know. Zhang et al. also found
out, that no significant difference of effectiveness of e-learning and traditional
learning.

In 2011 a new learning method was introduced: Massive open online courses
(MOOCs) which is topic of the work of Stephen Brown [4]. MOOCs are, as
their name says, online courses which are available over the Internet for a huge
amount of learners. Today most well known universities like MIT, Harvard,
Stanford University and many more are offering such online courses but also
companies are using it for training their employees and for support services.
The most powerful advantage of e-learning is feedback. This can be obtained in
two ways: First, by analyzing the users conduct. How long are students working
on which task? How often is a question answered right or wrong? How many
students are passing the course? And many more. With all this information
we are able to adjust the course for the next iteration. We can identify which
topics are maybe too less explained or which homework was too complicated.
The second way is by asking students questions at the end or maybe also at
the middle of the course. S. Rayyan et al. did so for the current term (autumn
2014) [12]. Some results are shown in section 2.1. A benefit of MOOCs is that
with only a view and short questions, which take every student just a few
minutes, we can accomplish a huge feedback which can be used for improving
the course.

Evaluation of prior courses

The magnificent positive feedback of prior terms of 8.01x and 8.02x was the
impulse for this master thesis as the wish was merged to improve and extend
these courses. Therefor we want to show some results of the mid-semester
evaluation of the physics course 8.02x 2014, see figure 2.1. Very interesting is
the result for Checkable answers on MITx for written Pset problems as the goal of
this work is to extend exactly the referred problem set. Furthermore we want to
show the result of two specific questions in figure 2.2. The evaluation shows
that MOOCs is working great for 8.02x and students really like the way they
are taught. We will get back to this in section 7.

7

2. Background and Technologies

Figure 2.1.: Mid-Semester evaluation of 8.02x, spring 2014 [12]

8

2. Background and Technologies

Figure 2.2.: Mid-Semester evaluation of 8.02x, spring 2014 [12]

2.2. Simulations

As Gibbons et al. outlines in his work [9], a simulation simulates something.
That can be on the one hand things that really exists, for example a physics
experiment demonstrating the gravity. On the other hand a simulation can be
used to explore and present things that we do not know if and how they exists
like a black whole in the universe. Therefore a simulation creates a set of things
and build the relationships between them which can be defined by simple rules
to very complex mathematical expressions. After a simulation is started a user
can perform changes to the state or values of the simulation and observes the
consequences.

Simulations open up the possibility of changing things, that can not be changed
in real life, for example, again, the gravity on earth. They can also be used for
experiments which would be too expensive or simply to difficult in real life.
Furthermore simulations are predestined for dangerous experiments that would
risk human life.

Since many decades simulations were used in education to help students
understand processes and coherences of various topics as described by Clayton

9

2. Background and Technologies

et al. in his work [5]. Many students have troubles understanding the relevance
of the topics they were taught or were not able to apply the learned material to
real life problems. Here simulations can demonstrate applications of learned
subject matter to simplify learning and understanding. Simulations can also
help motivate students learning very complex things or topics in which they
were not so interested in. The higher interest leads to a deeper understanding
and furthermore to learning more in less time [5].

Simulations, games and gamification

At this point we want to step a little deeper into the terms simulation and game
and their difference. For us, our virtual physics experiments where always
simulations. But when we had some colleagues shown them we frequently got
the answer ”That’s funny, let me play with it!”. It seemed we accidentally gamified
our simulations. Accidentally, because we never actively tried to do so. But it
was the reason to step into this matter during this master thesis. We will discuss
the expression gamification a little later in this section and the impact of it on
our results in chapter 6.

We want to look into the differences about games and simulations. When we
searched the literature about simulations in education we consistently came
across the term game. Very often the terms simulation and game are used in
the same context. Interestingly, as shown by Crookall at al. [6], the term game
is used to refer to the term simulation but never in the other way around. He
defined the differences between games and simulations. As many features are
same within both of them there are two man differences.

1. A game does not represent a real world system. Of course a game can
be based on real world situations and environments, like for example
ego shooters, but they are not supposed to be realistic. A simulation in
contrast is always made to be as realistic as necessary as it should reflect
real world behavior. A very interesting example here is the game Chess.
It was initially made as a simulation but over years the reference to real
life got lost as the world has changed and nowadays it is a definitely a
game. A game has it’s own world with it’s own rules and rights while a
simulation always tries to project the real world. That means a game is a
real system but a simulation is just a meta system.

2. The error cost. An error during a game can lead to real life costs like for
example losing money by playing Poker. The costs of losing a game can

10

2. Background and Technologies

be very small, maybe only a wounded pride. In contrast, a simulation can
not be lost.

With this knowledge Crookall at al. realized that we can create a simulation of
a game but we can not create a game of a simulation[6].

Now that we know about simulations, how they are used to improve education
and where the differences to games are, we want to extend our knowledge
about games and their place in education.

Games in education

Pim van de Pavoordt has shown in his work [13] that games can improve
education. Main reasons are on the one hand fun while playing games. On
the other hand he described the environment in which young people today
are growing up. The students of today use computers, laptops, smartphones
and the Internet since they where very young. They are very familiar with this
techniques and thus they feel comfortable with them. This fact leads to more
fun during learning and hence to higher engaging. That does not mean that
games or simulations are the new and ultimate way of teaching, they are rather
an extension of traditional methods. For this purpose already existing games
can be used as well as new games specific made for education. A very famous
game created for education is Supercharged! by Microsoft and MIT iCampus. It is
”an abstract world of electric charges, electric fields, magnetic fields, charged spheres - all
of the basics of a physics textbook, but come to life in 3D” for teaching physics at MIT
[10]. Evaluations have shown that students who were playing Supercharged!
performed about 20% better on the tests then students who were taught with
traditional methods [13]. This facts lead to thoughts about how to increase the
use of games in education as well as how to teach different topics through
games which then leaded to the new expression gamification.

Gamification

As mentioned earlier in this chapter, during our work we were confronted with
the fact that our simulations where called games. It seemed we unintentionally
gamified our simulations. Muntean et al. describes in her work [11] gamification
as the use of game elements in non-game applications for raising motivation
and engagement of students. This should lead to having fun using the gamified
applications and furthermore in spending more time with them. Hence Muntean

11

2. Background and Technologies

et al. expect better results on final tests from students which where learning
using gamified applications.

2.3. TEAL and TEALsim

As described in [7], teaching freshmen physics is a challenging task. The teaching
material should motivate students to learn, as well as to understand the the
things they are learning. Technology-enabled active learning (TEAL) is a teaching
format that merges lectures, simulations and hands-on desktop experiments to
create a rich collaborative learning experience. TEAL is used for almost all MIT
introductory physics instruction. The TEAL classes feature:

1. Collaborative learning - students working during class in small groups
with shared laptop computers

2. Desktop experiments with data acquisition links to laptops
3. Media-rich visualizations and simulations delivered via laptops and the

Internet
4. Personal response systems that stimulate interaction between students

and lecturers

A sketch of a TEAL classroom can be senn in figure 2.3.

The course design is based on the following premises:

1. Interaction between teacher and student is an important factor in promot-
ing learning

2. Interaction among students is another
3. Active learning is better than passive learning
4. Hands-on experience with the phenomena under study is crucial

Even though traditional e-learning systems bring many advantages such as
flexible learning possibilities, internationalization and cost reduction, STEM
(Science, Technology, Engineering, and Mathematics) education is a challenging
task. Educational principles based on constructivism can help improve the
students’ understanding. In particular, learning theories such as TEAL, based
on interactive engagement activities are proven to improve the students’ con-
ceptual understanding of abstract domains such as physics. However, not every
institution or university can apply this method due to the high implementation
costs. In addition, the TEAL approach is not designed to enhance distance
education scenarios. Traditional e-learning approaches do not seem to fulfill

12

2. Background and Technologies

Figure 2.3.: A TEAL class room [7].

TEAL’s requirements because of a lack of interactivity, motivational aspects and
communicative and collaborative potential.

2.4. EdX - An online learning platform

EdX is a non-profit platform that provides free online classes
and so called MOOCs (massive open online courses). It was
created by the Massachusetts Institute of Technology (MIT)
and Harvard and launched in May 2012. EdX is open Source
and the code can be found on GitHub.

By today (March 2014) there are 32 edX charter members and 12 edX members
offering 157 online courses. Famous examples of members and charter members
are Massachusetts Institute of Technology, Harvard University, Berkeley Univer-
sity of California, ETH Zürich, Caltech, University of Toronto and University of
Hong Kong.

The online courses are located in a wide variety of subjects including physics,
law, history, science, engineering, business, social sciences, computer science,
public health and artificial intelligence. The offered courses are free and open,
what means everyone all over the world is able to join them.

EdX was created with three goals in mind:

13

2. Background and Technologies

1. Open up access to quality education globally
2. Improve on campus education
3. Conduct research to understand more precisely how students learn

2.5. EdX and the mix of HTML, Python, JavaScript
and Latex

The edX platform allows the use of different programming languages for
creating an online course. Generally said, when an edX course is opened in
a browser everything shown is always HTML code maybe including some
JavaScript code. This does not mean, that the whole course is written in HTML
and JavaScript. As we will describe in the next section 2.6 there are different
ways of creating an online course. The method we used included using XML
and Python. XML is used for the whole course content like all the text as well
as text-boxes or check-boxes for the online homeworks and also for hints and
shown solutions of questions. Python is used for all the things behind the visible
course site. For example for creating random variables, different calculations
and computations as well as evaluating given answers. And the last language
we used is latex. Normally latex is used for writing books, papers or journals but
it can be also used for creating edX courses using MIT’s latex2edx compiler.

2.6. Main structure of an edX online course

Certainly the goal of this thesis is not to describe how to create a whole edX
course. However, for understanding how to embed the physics simulations in
the edX course it is important to know at least the main structure of such a
course.

Basically there are three different ways of creating an edX course:

1. Using edX studio: Studio is a browser based course management system
see https://studio.edx.org/. It provides everything needed for creating an
online course including an online editor, calendar, easy drag and drop
tools and many more.

2. latex2edx: With this tool a whole course as well as individual problems
can be written in latex. The latex source is then converted to edX XML
code. This method was implemented because of the common use of latex

14

2. Background and Technologies

at universities and the well-known highly suitable mathematical content
of latex. This method is used by the people at MIT for whom this thesis is
written.

3. Using a plain editor: This method is of course the most complicated
way to create an edX course but also gives the most capabilities and for
programmers it is the most familiar way. Furthermore it is often used for
editing existing courses where other tools meet their limits. This was the
way the work was done in this master thesis.

Regardless which of this methods is used for creating and testing a course,
a test environment is needed. Therefore edX offers a test server. A detailed
manual can be found at: http://people.csail.mit.edu/ichuang/edx/. We used Oracle-
VirtualBox for running a virtual Linux machine together with Vagrant for setting
up the development environment. EdX offers a .box file which includes the
Ubuntu Linux distribution with edX running and everything that is needed
therefore. The edX test system can then be reached using a browser calling
http://192.168.42.2. On this test environment a user is precreated which can be
used for logging into the system and sign up for the created courses. This can be
done by using the email xadmin@mitxvm.local and password xadmin. Of course
more different users can be created. For more details see the manual linked
above.

2.6.1. A basically setup of an edx course

An example of an edX course can be seen in figure 2.4. It shows the physics
course 8.02x with a site for an interactive homework opened.

Every course contains of an horizontal top menu with links to general course
dates and an vertical left menu which includes the course material divided in
weeks. In the top menu two sections are interesting for our work:

• Courseware: This tab contains the main online course including Pre-Class
assignments, online problems, forms for hand written homework, problem
solving examples, visualization and other course stuff.
• Instructor (only visible if logged in as admin): This is an important section

for creating a course. Here one can perform a Reload course from XML files.
This has to be done if the course source XML files were changed.

In the left menu we will just need the homework links which will point to our
simulations.

15

2. Background and Technologies

Figure 2.4.: An example for an edX course with an interactive homework opened.

16

2. Background and Technologies

2.6.2. The setup of the courses 8.02x

This section is important for understanding how to extend standard edX prob-
lems for working with GWT compiled HTML pages. We describe the setup
on the pre-class assignment week one site 3 of the MITx course 8.02 of spring
2014. As we will describe in chapter 7 the experiments written in GWT will be
compiled in one single HTML file. For embedding we have to use an iframe
which is an HTML5 compliant tag. Embedded HTML files should be located in
the static/html folder. This is the place for non edX created and complete and
static HTML files that are included in the dynamically created edX course.

The HTML file is included by hand written source code with an iframe tag:

<iframe id="teal-iframe"

src="/static/html/gwt-teal/PCharges2.html?size=400"

width="818"

height="475"

scrolling="no"

frameborder="1" />

The benefit of this method is that the course page is dynamically created by
edX using XML. As seen in 2.6.2 a whole problem set can be created including
questions, check-boxes, etc., only the experiment itself is external HTML code.
Here the main problem and limitations of edX can be seen: There is no way of
interaction between edX and the GWT created simulation.

17

2.
B

ackground
and

T
echnologies

Remark: The segmentation of the edX course
8.02x in separate files

The physics course, for which our simulations are written, are
separated in several files. At the beginning the file structure can
be confusing wherefore we show here the file hierarchy of a
course page with an example simulation. The colored areas are
defined by the following file names with the same coloring.

1 \802r-TTh \course.xml
This file only holds a link to the next file, 2014 Spring.xml.
It is the base file which prompts edX to create the main
course page with the horizontal menu at the top of the
page and all the administrative stuff.

2 \802r-TTh \course \2014 Spring.xml
With this file the chapters of the course are created. At our
example course 8.02x two chapters spans a week. One for
pre-class assignments and one for the weekly homeworks.

3 \802r-TTh \chapter \pcq \W01pcq.xml
Here the second horizontal menu beneath the first one
is created. Every pre-class assignment or homework is
divided into smaller parts which can be reached over this
menu.

4 \802r-TTh \vertical \802r \W01 D1 q1.xml
This is the file where the actual course data is written. It
contains explanations, questions, hints and many more.
This is also the place, where our simulations are included.

5 \802r-TTh \static \html \gwt-teal \PCharges2.html
This is the HTML file with the simulation. It contains
everything thats needed for running the simulation. It is
created from GWT and compiled from the Java code. This
simulation.html file is fully executable on it’s own. That
means it is just embedded in the edX course.

18

2. Background and Technologies

2.7. GWT - Extending edX with a new
programming language

The Google Web Toolkit (GWT) is a toolkit that allows writing code in Java
and compiling it to JavaScript. The main difference to other frameworks is
that with GWT we are able to write server side as well as client side code in
Java. For embedding our virtual experiments in online courses we depend on
JavaScript, but writing such big applications directly in JavaScript is difficult
and complex since it was not developed to implement big projects. Because of
that, there exist almost no kind of debugging system for JavaScript. That is a
big advantage of using GWT, as we are able to write our code in Java using our
well known Java environment and test it with a powerful debugging system
beneath it. Furthermore, the existing TEALsim experiments are written in Java.
Unfortunately, this does not mean that we can take the Java written experiments
and compile them straight forward to JavaScript using GWT. The TEALsim
code contains a large number of external libraries that are not supported by
GWT. At least we were able to use parts of the already existing code and for the
parts we had to rewrite we could use Java which we were way more familiar
with than with JavaScript. Another big advantage of GWT is that if we need
JavaScript Code that is not available in GWT we can weave our Java code with
JavaScript Code. This is important for example for accessing browser variables.
Furthermore, GWT provides a great number of templates and libraries, such as
html forms and input textboxes.

The GWT compiler

The main function of the GWT compiler is compiling Java code to JavaScript.
While doing that it analyzes the written code and optimizes and minimizes
it. The created code is then as compact as possible in order to keep data that
has to be sent over the Internet as less as possible. The compiler also runs so
called generators which are part of GWT and create code at compilation time. A
generator replaces specific code, such as templates or other simplifications, and
replaces it with new generated and working code. This decreases the amount
of code that has to be written by the programmer. There exist a large number
of generators which can furthermore also be own written. The compiler will
call itself the right generator depending on the code. Another important task of
the compiler is the generation of different versions of JavaScript for different
browsers and therefor also a bootstrap loader. The bootstrap loader will be
running on the client side and recall the right version for the client’s browser.

19

2. Background and Technologies

Figure 2.5.: The GWT Compiler in Detail [3]

This method is called deferred binding and allows the programmer take into
account differences of how individual browsers are handling specific JavaScript
code. An illustration of the GWT compiler can be seen in figure 2.5. How the
generated code will be shown to a user can be seen in 2.6. A user enters a URL
in the browser’s address field. The browser and the server then interact with
each other to create the appropriate application for the user and its system.

Advantages of GWT

There are many advantages of GWT especially the fact of being able to use
Java, a high level object-oriented programming language, instead of JavaScript.
Moreover GWT is perfectly adjusted for communicating between client and
server which we needed to communicate between an iframe and its parent
site, which was written using a mix of XML, python, HTML and JavaScript.
In conclusion there is no direct access from GWT to edX variables and vice
versa.

2.8. Summary

In this section we describe what e-learning, MOOCs and simulations are, how
they are used for education and what their advantages and disadvantages are.

20

2. Background and Technologies

Figure 2.6.: Starting a GWT application [3]

With the mid-semester evaluation of the physics edX course 8.02x 2014 we
show specific benefits that are reached by using these techniques at the MIT.
Subsequently we describe the origins of the virtual physics experiments in
TEAL and TEALsim followed by the online learning platform edX and how
these simulations can be embedded in edX courses. We discuss how a course
can be build and written and which techniques exist. At the end we show how
we extended the existing course by the programming language Java which is
compiled with GWT to JavaScript.

21

3. Problem Definition

During the first semesters of each MIT study every student has to pass the basic
physics courses 8.01x and 8.02x. These courses are held in TEAL classrooms
enhanced by the edX platform. The x at the end of the course number indicates
the use of edX. In the edX system students can find the complete course
material, videos of the lessons as well as administrative details. Furthermore,
students have to complete online homework, such as answering multiple choice
questions or filling in text boxes. Handwritten answers are also submitted
through the edX system. 8.01x and 8.02x made use of 7 TEAL simulations which
were accessible through the edX platform. These simulations should support
students to understand various topics of the course. Evaluations in the past
have shown that many students have not used them sufficiently and some
even ignored them entirely. There are various reasons for this behavior. Many
students mentioned their tight schedule as studying at the MIT is very time
consuming. Some students simply did not understand the experiments, others
where just too lazy to work intensively with them and some where completely
not interested. This led to the idea of extending the edX course as well as
the simulations in such a way that the homework/exam questions have to be
answered by using the virtual experiments. The desired result is that students
truly understand the learning material and, as a consequence, have a strong
advantage when solving homework and exam problems.

3.1. TEALsim goes edX

Each term about 800 freshman MIT students attend the physics courses 8.01

and 8.02. During the courses various experiments are presented. Giving every
single student the possibility to work himself with an experiment to understand
the stuff is just impossible for this amount of students. That leaded to the
idea of creating virtual simulations which are accessible for every student.
In the first place about 20 simulations of the physics courses 8.01 and 8.02

where implemented in a stand alone software called TEALsimulation or short
TEALsim which was written in Java. The goal was to give all the students

22

3. Problem Definition

the possibility of working with physics experiments and understanding the
course stuff. The drawback of TEALsim was the fact, that the students had
to download the software, install an Java SDK and work on their own on the
simulations with no hints and background information about what is going on
in the simulation.
As the Internet got more and more normal to our live, many courses at the MIT
where held with edX as well as the two basic physics courses which where then
called 8.01x and 8.02x with the x indicating that they are edX courses. The next
consequent step was to integrate the TEAL simulations into the edX courses.
For a first test 7 simulations where ported to edX using the Google Web Toolkit
(GWT) and JavaScript. Evaluations of the courses have shown that the students
still hate the physics courses but the really liked the benefits of edX. Especially
the fact that they had to answer online questions and submit homeworks in edX
and immediately got a feedback to their answers where the best thing for them
as it made learning very efficient. But as mentioned at the beginning of this
chapter the evaluations also showed that the students did not really made use
of the simulations. This leaded to the desire of making the simulations more
interactive with edX which is the topic of this master thesis.

3.2. The goal of this master thesis

The main problem of the TEAL simulations in edX was their lacking of inter-
activity between them and edX. The goal of this master thesis was to create
an interface between edX and the simulations for giving the course creator the
possibility of asking students questions which have to be answered by using
the simulations. This led to four requirements. The simulations needed to -

1. - be adapted for being able to ask useful questions.
2. - get an initial state from edX.
3. - be able to return an answer to edX.
4. - be able to reload a previous state giving the student the possibility of

making a break and continue working at a later point.

The most important requirement for the interface was to keep the simulations
strictly separated from the edX course. The reason behind this claim was the
fact that for 8.01x and 8.02x there was a course creator and a simulation creator
and the interface should provide the interaction between them. Ideally that
means that the course creator has no knowledge about the simulation and the
simulation creator no knowledge about the course. They should each other just
once at the beginning of creating a new simulation for a course where they

23

3. Problem Definition

Figure 3.1.: The original point charges simulation.

discuss how the course should look like, what the simulation should do and
finally which data should be sent between the course page and the simulation.

The first simulation we wanted to adapt was the point charges experiment
which we will use as an example here. The experiment can be seen in figure 3.1.
It has two point charges which can be placed anywhere within the dark blue
box. After starting the simulation the point charges will start moving depending
on the influence of their charge on each other. Furthermore the field lines are
shown. Using the sliders the student can adjust the charge of the point charges.
This simulation is well done for understanding the interaction between point
charges but only as long as a student takes the time to work with it.

3.2.1. Adapting the simulations for answering questions

The first thing we had to do was to find a the questions we wanted to ask
students and how the simulations had to be adapted to answer them. The
questions should be in a way that they make the students work intensively with
the simulations, understand the physically processes, be well prepared for the
exam at the end of the term and ideally get a knowledge for the rest of his life.

24

3. Problem Definition

Observing our example, the point charges experiment, we can see that there
are no questions which can be answered with it. So we had to adapt it. A first
idea was to hide one point charge and the student has to find it by moving the
second charge. He then places a pointer where he thinks the hidden charge is
located and submit his answer.

3.2.2. Getting an initial state from edX to the simulation

Taking the example of the previous chapter 3.2.1 we will quickly find the first
problem namely cheating. Students will of course work and learn together. If
every student gets the same question, which would mean every student get the
same place of the hidden charge, it would make it to easy for them to cheat and
the learning effect would be gone. Therefore every student has to get a different
place of the hidden charge. EdX is here really helpful. In an edX question we
are able to create random numbers moreover we can decide if we want just one
random number per student per experiment no matter how often he repeats
the simulation, or if we want a new random number on every attempt. We just
needed to to get this random number into our simulation, that implies we need
an initial state for our simulations.

3.2.3. Returning an answer to edX

Once the student gave his answer we had to grade it. This has to be done by
edX for two reasons. First, as we described in the introduction of this chapter,
we want to give the course creator as much freedom at creating a question set
as possible. For example that gives the course creator the possibility of deciding
how exact the place of the hidden charge has to be found to be marked as
correct. Furthermore again edX provides us some very useful advantages. The
most important is, edX saves the answers of the student. And even more, it saves
all given answers as well as how much time the student has invested to find the
answer. That gives the course creator an overview how hard or easy it was for
all the students to find the answer and how he should adjust questioning for
the next term. Therefor we needed to return the answer from our simulation to
edX.

25

3. Problem Definition

3.2.4. Reloading a previous state

It is an important feature of edX courses that a student can make a break during
a question set or maybe edit his answers till the deadline and we also wanted
this feature for our simulations and again edX helps us reaching this aim. EdX
not only provides a Grade button, it also provides a Save button. Compared to
each other this buttons do mostly the same. Both return the current state of the
simulation to edX and save it. The only difference is, that at save the answer is
not graded. But as said, both save the answer. So for reloading we just need to
load our simulation not with the initial state but with the save state.

We will get in more detail of this points in chapter 5.

3.3. Summary

In this chapter we describe the points we wanted to achieve within this mas-
ter thesis. MIT basic physics courses 8.01x and 8.02x were held with the edX
platform, using seven virtual physics experiments, so called TEAL simulations,
for teaching and helping students understanding the topics. These simulations
are working stand alone in an embedded html page with no possibility of
interacting with edX and no option of asking students questions which have
to be answered by using them. The first problem was to find an as effective as
possible way of adapting the existing simulations for a suitable questioning.
With this knowledge we had to realize an interface between edX and the simula-
tions with the claim to provided everything needed for a stable communication
between them. Therfore the interface had to support loading an initial state,
returning the students answer as well as saving and reloading the current state
of the simulation for giving a student the possibility of resuming his work after
a break. Another very important task was to keep the strict separation between
course creator and simulation creator as these are two different persons for the
physics courses who were not familiar with each other’s tasks. We describe our
work on the first simulation we extended during this master thesis, the point
charges simulation, which can be seen in figure 3.1.

26

4. Related work

The main reason for this thesis was that, to the best of our knowledge when this
work was written, there did not exist something similar. As described in 4.2,
there was the online course STAR-Biology which would have fitted our needs
but their implementation concept was not suitable for us.
J.M Claus from edX suggested the use of jsinput. Unfortunately, jsinput was
available only as a beta version and did not provide enough functionality for
our simulations. Additionally, as described 4.1, the synchronization with GWT
was problematic.

4.1. Similar concept but different problem - The
jsinput sample problem

Jsinput was created to give course creators the possibility of creating interactive
JavaScript simulations and to let the students answers be graded and stored by
edX. It is an interface between edX and the JavaScript simulation. Therefore,
jsinput includes three functions: GetGrade, setState and getState. GetGrade can
be used for returning an answer of a student from the JavaScript simulation to
edX and grade it afterwards. SetState and getState can be used for saving and
restoring the current state of the simulation. For more details on this functions
see section 5.1.2. At the time we worked on this master thesis jsinput was still
in development and there existed no online course which used it. Furthermore
there was no up to date and complete documentation, only a more or less
stable working sample problem, written by J.M. Claus who is responsible for
the development of jsinput. Due to this we had to work only with this sample
problem, write our own tests and relay on the help of J.M. Claus. Though jsinput
looked quite useful for our implementation but there were two problems. First:
We needed the option of setting an initial state for our simulations as described
in section 3, which was not possible with jsinput. Second: Our simulations were
written in GWT. This may not look like a problem because GWT compiles the
Java code to JavaScript but there was a synchronization problem. That means

27

4. Related work

jsinput would try to call functions from our compiled JavaScript code which
may not have been loaded at that time. The reason for that can be found in
the code optimization of GWT. For a detailed description of this problem and
our solution see section 5.5. For us that meant a plain jsinput implementation
would not work.
A more detailed description of jsinput can be found in the edX-manual [8] and
also in section 5.1.2 of this work.

4.2. Different concept but similar problem - The
edX course STAR-Biology by Ivica Ceraj

It would take way too long to describe the implementation of the online course
STAR-Biology. The reason is that it was created a while ago when jsinput was
not yet implemented or at least only in early beta stage. STAR-Biology was
mainly written in GWT so it also struggled with the synchronization problem.
Hence, Ivica Ceraj decided to build the whole communication between edX and
the GWT simulation on his own. The result is a huge library which provides
everything for a stable interaction between GWT and edX. But there was a
major difference too our work. As we describe in section 3, we needed a strict
separation between the course creator and the simulation creator. Furthermore
both did not want to write JavaScript code. At STAR-Biology that was different.
The whole course was written by only one person which additionally had
outstanding JavaScript knowledge. Thus it had no separate interface. The code
for interacting between edX and the simulation is rather spread over the course
xml file, the GWT simulation and a HTML page connecting them. Therefor we
could not adopt this concept for our course.

4.3. Summary

For the implementation of our interactive simulations we found two different
concepts as reference. First: Jsinput, which provided an interface for the interac-
tion between edX and a JavaScript simulation. Even so, at the time we worked
on this thesis jsinput was still in development and also lacking functionality
we needed. Second: STAR-Biology, an edX course that also featured interactive
simulations which are graded by edX. Since the source code of this course had
no strict separation between the edX course and the interactive GWT simulation
the concept and implementation did not fulfill our requirements .

28

5. Implementation of the interface
between TEAL simulations and
edX

Basis for our work was the course 8.02x from 2013. This course contained
seven TEAL simulations which where used in so called pre-class assignments.
As described in chapter 3.2 these simulations should be extended for asking
students questions which had to be answered by using them.

The first simulation we wanted to extend was the Point Charges simulation. The
original Point Charges simulation can be seen in figure 2.6.2. Initially it had
two point charges, a positive and a negative one. Principally the student could
move them within the bounding box and observe the field pattern created by
the charges.

From the programming point of view, the edX course page including the
simulation is a problem-set XML file. This file contains the whole course text for
simulation description and the background and everything else. Furthermore it
embeds the simulation with an iframe element which is HTML5 compliant. The
structure of this page is illustrated in 5.1.

As described in chapter 2.7 the simulations are written in Java and compiled
with GWT to JavaScript. Therefore GWT creates a HTML host page which then
embeds the JavaScript simulation. That means, in the edX course XML page a
normal HTML page is embedded no matter what this page contains or how
this page is created. For edX every HTML page is same, it will be embedded
statically and there is no possible interaction between them.

29

5. Implementation of the interface between TEAL simulations and edX

Figure 5.1.: Structure of an edX course page which includes a non interactive simulation.

The first extended simulation

For better understanding in this work we will call our modified simulations
extended simulations. Figure 3.1 shows the basis for our fist simulation we wanted
to extend, the point charges simulation. This simulation should be changed to
give students an assignment which has to be solved by using it.

The idea for the new simulation was to place two hidden charges and the
student has to find them by moving a visible point charge and observing the
field lines. The extended simulation can be seen in figure 5.2.

30

5. Implementation of the interface between TEAL simulations and edX

Figure 5.2.: The first extended simulation. The point charge on the left top is the movable point
charge with visible field lines. The two others are dummy charges with no effect on
the electrical field.

The extended simulation has two boxes. The inner box describes the area where
the hidden charges will be placed. Between the inner and the outer box is the
area where the moving point charge is placed and can be moved. That means,
the student is not able to move the point charge inside the inner box, what would
make the task too easy. Instead he has to observe carefully the field lines of the
moving charge to predict the places of the two hidden charges. For answering,
the student can place so called dummy charges. This are point charges with no
effect on the electrical field indicating where the student assumes the hidden
point charges are placed.

The requirements on the extended simulations are:

• Place hidden charges. For making cheating for students impossible the
hidden point charges should be placed randomly. The random places
should be created by edX and sent to the simulation on starting it. Every

31

5. Implementation of the interface between TEAL simulations and edX

student will get a unique set of hidden charges. The simulation will get
the initial values for the hidden charges from edX.
• When the student presses edX’ Check button, the simulation has to send

the places of the dummy charges to edX which then verifies the answer
by comparing the places of the hidden charges with the dummy charges.
• Enabling or disabling the Show/Hide button. This button can toggle the

visibility of the hidden charges. For learning assignments this button can
be enabled, for exam assignments it will be disabled.

5.1. Grading a simulation

The first task of our work was the grading of a students given answer by using
the simulation. A GWT created simulation contains a HTML host page which
then embeds the JavaScript simulation. J.M Claus from edX told us to use a
edX command called jsinput. Jsinput was implemented to communicate with
JavaScript applications embedded in an edX course. More precisely it embeds
a HTML host page containing the JavaScript application and calls JavaScript
functions within the HTML host file for communicating. This functions do not
have to be part of the application as long as they exist and accept and return
the correct parameters. For us that meant for the beginning we will reduce
the embedded simulation to the HTML host file holding variables for manual
created answers. This variables will then be updated later by our simulation
but for now it is enough to have them static as they simplify the task.

For the beginning, the HTML host file has two variables:

1. positions hidden charges - This is a list of the x and y coordinate of the
hidden charges as well as their charge.

2. positions dummy charges - This is a list of the x and y coordinate of the
dummy charges as well as their charge.

As mentioned before we will use jsinput for communicating with the HTML host
page. Jsinput itself has to be enclosed in a edX command called customresponse.
We will describe this two functions in the next chapters 5.1.1 and 5.1.2. Applied
to the example in the introduction of this chapter the structure has changed as
shown in figure 5.3.

The problem XML file contains now the customresponse tag that includes the
jsinput tag. Jsinput embeds then the HTML host file. Furthermore the XML file
includes a python function for grading an answer. The data stream in detail:
Jsinput communicates with the HTML host file. When a student clicks the Check

32

5. Implementation of the interface between TEAL simulations and edX

1 <problem>
2 <s c r i p t type=” loncapa/python”>
3 def grade answer (expect , answer) :
4 sum = i n t (answer [0])
5 i f sum== i n t (expect) :
6 re turn { ’ ok ’ : True , ’msg ’ : ’ Right answer . ’ }
7 e l s e :
8 re turn { ’ ok ’ : False , ’msg ’ : ’Wrong answer . ’ }
9 </ s c r i p t>

10 <p>What i s the sum of 4 + 6 ?</p>
11 <customresponse cfn=” grade answer ” expect=”10”>
12 < t e x t l i n e s i z e =”10/>
13 </customresponse>
14 </problem>

Listing 5.1: A Customresponse sample problem, based on [8].

button in the edX page jsinput will call the function grade function of the HTML
host page which will return the value of the variable position dummy charges
which holds the students answer. Customresponse calls the python grade
function of the edX XML page which grades it. The output of this python
grade function will be processed by edX. That means for example edX saves the
answer, it records all given answers for evaluations or give the student a mark
based on the answer. All this is done by edX itself, the python grade function
has just to determine if the given answer is right or wrong.

5.1.1. EdX - customresponse

Customresponse is used to evaluate student answers using a python script. A
code example can be seen in 5.1. The customresponse tag contains a single
text-line where a student can enter his answer. The exercise in this example is to
calculate the sum of 6 plus 4 and enter the answer. For grading, customresponse
takes two parameters. The first cfn takes the name of the python check-function.
The second expect is the expected answer. Expect does not have to be set. If not,
the check function has to get the expected from somewhere else or calculate it
on its own.

In this example, when a student enters an answer and presses the check button
customresponse will take the entered value and call the check function with it.
The python function then compares the given answer with the expected answer
and returns the either Right answer or Wrong answer.

33

5. Implementation of the interface between TEAL simulations and edX

Figure 5.3.: Structure of a course page that embeds a HTML file using jsinput. Illustrating the
data stream.

34

5. Implementation of the interface between TEAL simulations and edX

5.1.2. EdX - jsinput

Jsinput is a method for getting edX communicate with standalone HTML files.
This is useful if an application is written in JavaScript and should be embedded
in an edX problem. Therefore any application like GWT can be used for creating
the simulation. Jsinput provides three functions for interacting with a HTML
file. They can be used for grading students work with the simulation, saving
and reloading it. The three functions in detail:

• gradefn: for grading students work. This is a JavaScript function that
returns the students answer. It is not grading it!
• get state: for getting the current state of students work for saving it. It

returns the current state of the simulation. The difference to gradefn is, that
the state can be more complicated than the students answer and therefore
returning more values can be required. For example, if we would ask in
our extended simulation just for the overall charge, the answer would
be just a number. But for reloading the simulation after a brake also the
positions of the dummy charges are needed. In this case gradefn would
return the number and get state the positions of the dummy charges.
• set state: for reloading students previous work. This function takes input

values for reloading a previous state.

This leads to a clear separation of edX and the JavaScript simulation and is
perfect for our case where the edX course and the physics simulations are
written by different people. It means for the developer of the simulation that he
has just do implement these three functions and does not need to worry about
grading, evaluating, student’s identification, state saving and so on. This is all
done by edX. On the other hand for the developer of the edX course it means
he can be sure that there exist these three functions in the HTML file. He can
use them without knowing how the simulation is created, how the students
answer is prepared or anything else. He gets the answer and can evaluate it
using known edX XML and python code.

An example code for a minimal jsinput problem set can be seen in 5.2.

The parameters jsinput can take are the three functions as described above as
well as:

• height and width: two integer values that set the size of the area the
included HTML page will get in the edX course
• html file: the source of the embedded HTML file

The parameters and their properties can be seen in table 5.1.

35

5. Implementation of the interface between TEAL simulations and edX

1 <?xml vers ion=” 1 . 0 ” ?>
2 <problem>
3 <s c r i p t type=” loncapa/python”>
4 import j son
5 def grade answer (expect , ans) :
6 answer and state = j son . loads (ans)
7 answer = j son . loads (answer and state [”answer”])
8 x = i n t (answer [’ x ’])
9 i f x == e x p e c t :

10 re turn { ’ ok ’ : True , ’msg ’ : ’Good Job ! ’ }
11 e l s e :
12 re turn { ’ ok ’ : False , ’msg ’ : ’ Try again . ’ }
13 </ s c r i p t>
14 <customresponse cfn=” grade answer ” expect=”3”>
15 < j s i n p u t
16 gradefn=” gradefn ”
17 s e t s t a t e f n =” s e t s t a t e ”
18 g e t s t a t e f n =” g e t s t a t e ”
19 width=”818 ”
20 height=” 700”
21 h t m l f i l e =”/ s t a t i c /s imulat ion . html ? s i z e =400”/>
22 </customresponse>
23 </problem>

Listing 5.2: A jsinput sample problem, based on [8].

Attribute Name Value Type Required Default
html file Url string Yes None
gradefn Function name Yes gradefn
set statefn Function name Yes None
get statefn Function name No None
height Integer No 500

width Integer No 400

Table 5.1.: Attributes for jsinput [8].

36

5. Implementation of the interface between TEAL simulations and edX

5.1.3. Grading using python

In the previous sections we described how we get the given answer from the
HTML host file to the edX XML course. For evaluating the answer python
is used. The code example is the same as for jsinput 5.2. The defined grade
function is called grade answer and takes the two parameters expect ant ans.

The structure of the parameter ans is depending on the use of jsinput. If
get state and set state are not set, ans contains only the given answer as a
string. If get state and set state are set the answer is a json string containing
the answer and state!

For our example code 5.2 that means, in line 6 the value of the parameter ans
is loaded in answer and state which contains now as the name says the state
and the answer. As we are just interested in the answer string we store it in a
separate variable called answer as seen in line 7. This variable now holds the
given answer as a list of values. In line 8 we take a specific value called x which
will then be compared to the expected variable. Finally we return True or False
depending on the given answer.

5.2. Starting a simulation with initial values

The previous section 5.1 describes how to get data from the HTML host file
to the edX XML file. In this section the other way around is explained. The
requirement was to create random variables for the positions of the hidden
charges in the edX XML file and send them to the HTML host file. The reason
why the values have to be created in the edX XML file is that edX offers some
advantages which should be utilized. One is the capability of setting if edX
should create a new random variable on each attempt a student makes or just
once for every student and then this variable will on every attempt be the same.
This is important for our work as we wanted just one randomly created set
of hidden charges positions per student. This give the student the possibility
of checking if his answer is correct and on a fail retry to find them. The other
reason was to give the course creator the possibility of having influence on the
positions of the hidden charges and hence on the difficulty of the assignment.
For our extended simulation that means the course creator can limit the range
of the randomly created positions. This is important as hidden charges near to
the moving charge are easier to find then centered charges.

37

5. Implementation of the interface between TEAL simulations and edX

Figure 5.4.: Structure of a course page that embeds a HTML file using postmessages for sending
the values of the initial positions of the hidden charges to the HTML host file.

Again we extend our initial example 5.1 with the new methods. The resulting
structure and data stream can be found in figure 5.4. As in our example for
grading the students answer we work only with the simulations HTML host file,
hiding the simulation itself for better understanding and as it is not involved in
the communication.

5.2.1. Creating the initial values with python

The positions of the hidden charges are created by python function in the edX
course XML file. In the final simulations this positions should be randomly
created. For our prototype simulation we created static positions as it would
make testing easier. An python code example for randomly created values are
shown in 5.3. Note the first line. Here we tell edX to create random variable
just once for every student. The example code creates the positions and charges
for two point charges, where the possible position is between -5 and 5 and the
charge is either -1 or 1.

38

5. Implementation of the interface between TEAL simulations and edX

1

2 <?xml vers ion=” 1 . 0 ” ?>
3 <problem display name=” Point Charges Extended” rerandomize=”

per s tudent ” attempts=” 1000 ”>
4

5 <s c r i p t type=” loncapa/python”>
6 hidden charges = numpy . zeros ((2 , 3))
7

8 hidden charges [0] [0] = random . randint (−5 ,5)
9 hidden charges [0] [1] = random . randint (−5 ,5)

10 hidden charges [0] [2] = random . choice [−1 ,1]
11

12 hidden charges [1] [0] = random . randint (−5 ,5)
13 hidden charges [1] [1] = random . randint (−5 ,5)
14 hidden charges [1] [2] = random . choice [−1 ,1]
15 </ s c r i p t>
16

17 . . .

Listing 5.3: Creating randomly positions for two hidden charges using python.

5.2.2. Iframes and postmessages

For getting the created positions from the edX course XML file to the simulations
HTML host file the JavaScript postmessage method is used. By using the jsinput
function, the HTML host file will be embedded with an iframe HTML tag. For
security reasons a direct access to JavaScript variables in the host file is not
allowed as the embedded site can also be on a unknown server. Hence messages
are sent for communication. A benefit of this circumstance is that our extended
simulations could be stored on an external server also.

The postmessage method always needs a sender and a receiver. The receiver
listens for a message which causes a so called message event.

The communication between our edX XML file and our HTML host file is as
followed. Important is the exact chronology!

1. The edX XML page is called
2. The initial values for the positions of the hidden charges are created by

the XML file
3. An eventlistener is started by the XML file
4. The HTML host page is embedded by the XML file
5. The HTML host page also starts an eventlistener

39

5. Implementation of the interface between TEAL simulations and edX

1

2 <s c r i p t type=” t e x t / j a v a s c r i p t ”>
3 initRespond = funct ion (e)
4 {
5 e . source . postMessage ($ hidden charges [0] [0] + ’ : ’ + $

hidden charges [0] [1] + . . . , e . o r i g i n) ;
6 }
7

8 window . addEventListener (’ message ’ , initRespond) ;
9 </ s c r i p t>

Listing 5.4: JavaScript code for postmessage communication of the edX XML file

6. The HTML host file sends a message to the XML file requesting the initial
values

7. The eventlistener of the XML page receivs the message and calls the
message-event function.

8. The message-event function of the XML file sends a message with the
initial values back to the HTML host file.

The JavaScript code of the edX xml file can be seen in 5.4. First the message
event function is created and below in line 8 the event listener is implemented.
The syntax of the eventlistener:

element.addEventListener(event type, message event);

The line begins with element which defines the element where the listener is
added to, in our case the current window. Event type a string describing is the
type of the sent event which could be a click event for buttons or as in our case
a message. message event is the function that will be called when a message is
received, for our example the defined initResponse function.

The initResponse function is also just a message sender which gets a single
parameter e that is used for sending a message back to the sender of the initial
message. The message itself is a single string containing all values of the initial
positions separated by a colon.

The JavaScript code of the HTML host file is very same to the XML file and can
be seen in 5.5.

The sender in line 14 just sends a message to everyone who listens, which is
defined by ”*”.

40

5. Implementation of the interface between TEAL simulations and edX

1

2 handleResponse = funct ion (e)
3 {
4 pos i t ions h idden charges [0] [0] = e . data . s p l i t (’ : ’) [0] ;
5 pos i t ions h idden charges [0] [1] = e . data . s p l i t (’ : ’) [1] ;
6 pos i t ions h idden charges [0] [2] = e . data . s p l i t (’ : ’) [2] ;
7

8 pos i t ions h idden charges [1] [0] = e . data . s p l i t (’ : ’) [3] ;
9 pos i t ions h idden charges [1] [1] = e . data . s p l i t (’ : ’) [4] ;

10 pos i t ions h idden charges [1] [2] = e . data . s p l i t (’ : ’) [5] ;
11 }
12

13 window . addEventListener (’ message ’ , handleResponse) ;
14 parent . postMessage (’ message ’ , ”∗”) ;

Listing 5.5: JavaScript code for postmessage communication of the HTML host file

The message-event is again a simple function which takes one parameter includ-
ing the received message. As described above it is a string containing all values
for the positions of the hidden charges. The function takes this string, splits it at
every colon and stores the values in the local variable positions hidden charges.

5.3. Implementation of a test course using jsinput

The previous sections 5.1 and 5.2 describe the communication between the edX
XML file and the HTML host file of the simulation. Each section describes one
direction of the communication. In this section we want to merge both of them
and finally embed the actual simulation. Therefore we extend our structure
example again to the final test course which is shown in 5.5.

The shown structure consists of the previous described communication between
the edX XML file and the simulations HTML host file. Additionally the simu-
lation which is written in Java is embedded and its communication with the
HTML host file is described.

When a student clicks the simulations button Start Simulation, the simulation
loads the initial values for the positions for the hidden charges and place them.
Furthermore it enables or disables the Show/Hide Button depending on the value
of enable show/hide.

When a student clicks the Restart Simulation button, the same procedure as
with Start Simulation is processed. Additionally dummy charges are placed

41

5. Implementation of the interface between TEAL simulations and edX

Figure 5.5.: Structure of the final test course page that embeds a HTML file.
42

5. Implementation of the interface between TEAL simulations and edX

depending on the values of positions dummy charges.

The last job our simulation has to do is to update the positions dummy charges on
every placement or move of a dummy charge by the student. That ensures that
at every moment during the running of the simulation the current positions of
all dummy charges are saved in the HTML host file and hence jsinput can read
them for grading the simulation whenever the Check button is clicked.

5.4. Loading, saving and sending values between the
different programming languages and different
files

In our work values of variables are used within different programming lan-
guages and different files. At this point we want to get more into this topic and
describe the different situations we were confronted with.

5.4.1. One variable in one file used by two programming
languages

As described in section 5.2 for the initial positions of our hidden charges
we created random variables within the edX course XML file using python.
For starting the simulation we had to send the values of this variables with
JavaScript to the HTML host file. The question was, how does JavaScript get the
value of the Python variable? As long as this happens within one XML file the
solution is very easy. JavaScript can directly access python variables within the
same file. The syntax of the code can be seen in the code example 5.6.

In this example we create the variable python variable using python. Then we
are printing it to the browsers console using JavaScript. Therefore we can access
the Python variable by using its name with a leading ”$”. That is also working
for saving values with JavaScript in a Python variable.

43

5. Implementation of the interface between TEAL simulations and edX

1 <problem display name=” Point Charges Extended”>
2 <s c r i p t type=” loncapa/python”>
3 python var iable = 4

4 </ s c r i p t>
5

6 <s c r i p t type=” t e x t / j a v a s c r i p t ”>
7 console . i n f o (’ The value of the python v a r i a b l e i s ’ ,
8 $ python var iable) ;
9 </ s c r i p t>

10 </problem>

Listing 5.6: Example for using a Python variable with JavaScript

1 publ ic nat ive S t r i n g getValue (i n t i , i n t j)
2 /∗−{
3 re turn $wnd. e i n i t V a l u e s [i] [j] ;
4 }−∗/;

Listing 5.7: Example for using a Python variable with JavaScript

5.4.2. One variable in two files used by the same programming
language

We discussed this problem detailed in section 5.2 so we mention it here just for
completion. To get the initial values from the XML course file to the HTML host
file we could not directly access variables of the other file neither they were
displayed via iframe in the same browser window. That is a security mechanism
of JavaScript and hence very important. The solution was using postmessages
for sending the values between the two files. For further information please see
the mentioned section.

5.4.3. One variable in two files used by two programming
languages

As we stored the values for the hidden charges directly in HTML we had to get
them into the GWT code. Therefore GWT offers the JavaScript Native Interface
(JSNI). It gives programmers the possibility of writing JavaScript code within
the uncompiled Java Code. An example for reading a JavaScript variable within
Java can be seen in 5.7.

An example for writing JavaScript variables within can be seen in 5.8.

44

5. Implementation of the interface between TEAL simulations and edX

1 publ ic nat ive void updateDummyPos (i n t id , i n t x)
2 /∗−{
3 $wnd.DummyPos[id] = x ;
4 }−∗/;

Listing 5.8: Example for using a Python variable with JavaScript

1 publ ic s t a t i c na t ive void log (S t r i n g msg)
2 /∗−{
3 console . log (msg) ;
4 }−∗/;

Listing 5.9: Example for using a Python variable with JavaScript

At this point we want to introduce a very useful function we used for writing
text in the browser’s JavaScript console. The code can be seen in 5.9.

There are a few rules every JSNI method has to fulfill [3]:

• The function has to be declared as native.
• The function has to have an empty body. Furthermore it has to end with a

semicolon.
• The JavaScript code has to be written within /*-{ and }-*/ .

For examples see the code examples prior in this section.

Reloading a previous state - The way from XML to JavaScript to Java

As we described, jsinput offers a the set state function for reloading the previous
stored state of the simulation. But for our special case where the simulations
are written in Java there is a fact that needs further attention: The formating of
strings by different programming languages.

In many tests of our interface we had problems that we where sure our code is
right but communication did not work. As we mentioned debugging is a little
complicated in our case so it took us quite long to figure out what went wrong.
The problem where that jsinput is returning and forwarding the answers and
states always as a long string.

For example if we want to send the position of this two point charges and their
charge:

• ChargeId 1; X: 5; Y: 2; Charge: 1

45

5. Implementation of the interface between TEAL simulations and edX

• ChargeId 2; X:-3; Y: 3; Charge: -1

This values as a string could look like:

1,5,2,1,2,-3,3,-1

Unfortunately they can also look like this:

1,5,2,1,2,- 3,3,- 1

In the last string, there is a space between every ”-” and the number!

Furthermore in different programming languages a string ends with a different
indicators. The most common is the ”\n”.

It can be a problem sending strings or variables through different programming
languages. Hence we want to show at our example how we did saving and
reloading the simulations state. We show the data stream in figure 5.6. As seen
in the figure, edX demands from get state one single string. And it delivers
set state the same single string back. That means, our HTML host file has also
send and save the values as string.

We had to decide how to handle this strings and where we want to convert
them from integers and to integers. Both time we do it using JavaScript, once
direct in JavaScript and once using JSNI in our Java Code.
To prevent problems with reloading and overriding the dummy positions we
decided to store them twice in the HTML host file. First for the reloaded
positions from a previous state. This positions are stored through the whole
simulation till the next time the student stores the new state. So the student
can reload the previous state as often as he wants. Second we store the current
dummy positions and and update them on every move by the student.

String to Integer

The first case is the converting the string of all values to integers. This has to be
done on reloading a previous state of the simulation. The edX course XML file
sends this string using jsinput to our HTML host file. We store this string as it
is in the HTML host file. On loading the dummy positions we split the string
into substrings where every substring contains one value. The code for this can
be seen in 5.10.

46

5. Implementation of the interface between TEAL simulations and edX

Figure 5.6.: Data stream of saving and reloading the simulations state and the used data types.

47

5. Implementation of the interface between TEAL simulations and edX

1 publ ic nat ive i n t getDummyValue (i n t i)
2 /∗−{
3 var myString = $wnd. s t a t e s t r ;
4 myString = myString . r e p l a c e (/ [[\]] / g , ’ ’) ;
5 var myValue = myString . s p l i t (’ , ’) [i] ;
6 var myInt = p a r s e I n t (myValue) ;
7 re turn myInt ;
8 }−∗/;

Listing 5.10: Example for using a Python variable with JavaScript

Basically the string stored in the HTML host file contains the values separated
by ”,”. But as we described above there can be other characters like spaces or
something else. So before converting we need to clean up the string. This is
done in line 4 in our code where we delete all spaces and characters which
should not be in there. After that we split the string in substrings and take the
i-th element.

We do that in our Java Code using JSNI for writing the code in JavaScript. The
function in 5.10 is a Java function using JavaScript code as we described earlier
in this section. In this function we load the string from the HTML host file. We
clean it up, split it into substrings and take the i-th element. This element is
converted into a integer and returned to Java.

Integer to String

The second case is to convert the integers to a single string. We have to do that
twice. One in set state and once in gradefn. Both return a single string and in
particular they send the same string.

In our HTML host file we store a matrix holding the dummy positions and
charge. How to save a value in the HTML host file using JNSI in Java is described
in the example code 5.8. When the students presses the Check or Save button the
HTML host file has to deliver a single string containing all the dummy values.
Therefore we take all the values and ”stringify” them with JavaScript. This can
be done in two different ways. We used both of them, one for gradefn and one
for set state. The reason we did that is that the used method in gradefn is a little
more work but better to debug. Once we were sure it is working correctly we
used the simpler method in get state.

The code of the function that is returning the string for gradefn is seen in 5.11.
In line 3 we store all values in a so called linked list. At this point we do not

48

5. Implementation of the interface between TEAL simulations and edX

1 func t ion getGrade ()
2 {
3 givenAnswer = {d1x: e curDummyPos [0] [0] ,
4 d1y: e curDummyPos [0] [1] ,
5 d1c : e curDummyPos [0] [2] ,
6

7 d2x: e curDummyPos [1] [0] ,
8 d2y: e curDummyPos [1] [1] ,
9 d2c : e curDummyPos [1] [2] ,

10

11 . . .
12

13 d10x: e curDummyPos [9] [0] ,
14 d10y: e curDummyPos [9] [1] ,
15 d10c : e curDummyPos [9] [2] } ;
16

17 console . i n f o (” getGrade c a l l e d . Given answer: ” , JSON . s t r i n g i f y (
givenAnswer)) ;

18 re turn JSON . s t r i n g i f y (givenAnswer) ;
19 }

Listing 5.11: Returning one single string containing all positions of the dummy charges - using
a linked list

want to describe linked lists as this would take too much space. Short sayed we
store for every value a name. For example

d1y: e curDummyPos[0][1]

the element d1y holds a value.

In line 17 we print the string to the browsers console for debugging. And in line
18 we stringify the linked list and return this string.

For comparison we want to show the easier code which was used for the
function that is returning the string for get state. It is shown in 5.12. It looks
very similar to the method we used for gradefn. The difference is that we used
an array instead of a linked list. In this case only the values are stored. This
leads to less code and also less data that is sent to edX. The disadvantage is that
it is less debugable data.

49

5. Implementation of the interface between TEAL simulations and edX

1 func t ion g e t S t a t e () {
2 givenAnswer = [e curDummyPos [0] [0] ,
3 e curDummyPos [0] [1] ,
4 e curDummyPos [0] [2] ,
5

6 e curDummyPos [1] [0] ,
7 e curDummyPos [1] [1] ,
8 e curDummyPos [1] [2] ,
9

10 e curDummyPos [2] [0] ,
11 e curDummyPos [2] [1] ,
12 e curDummyPos [2] [2] ,
13

14 . . .
15

16 e curDummyPos [9] [0] ,
17 e curDummyPos [9] [1] ,
18 e curDummyPos [9] [2]] ;
19 console . i n f o (” GetSta te c a l l e d . Given answer: ” , JSON . s t r i n g i f y (

givenAnswer)) ;
20 re turn JSON . s t r i n g i f y (givenAnswer) ;
21 }

Listing 5.12: Returning one single string containing all positions of the dummy charges - using
an array

50

5. Implementation of the interface between TEAL simulations and edX

For our first method using a linked list an example string would look like
(shortened):

{”d1x”:10,”d1y”:-2,”d1c”:1, ... ”d10x”:-10,”d10y”:2,”d10c”:-1}

The same example string for the second method using an array looks like
(shortened):

[10,-2,1, ... ,-10,2,-1]

For getting a value out of the strings methods are different. In the case of a
linked list we can select an element by it’s name. In the case of an array we have
to use the number of x-th element.
For example, the python code for getting the x value of the first dummy of the
stringified linked list would look like:

dummy 1 x = int(answer[’d1x’])

Getting the same element out of the stringified array would look like:

parted answer = answer.split(’,’)
dummy 1 x = int(parted answer[0])

5.5. The synchronization problem

At this point we want to get into an important questions which came up during
our work. Why are the three JavaScript functions for jsinput implemented in
the HTML host file and not directly within the GWT Java code as this code
will be compiled to JavaScript code? The short answer: To ensure a stable
communication. A more detailed answer is given in the next subsections 5.5.

We had different approaches for the communication during our work which
where less difficult but we always found specific situations where they did not
work correctly. We called that problem The Synchronization Problem. The reason
could be found in our complex problem definition. Firstly the circumstance that
we were not just embedding a plane JavaScript simulation. Our simulations
are written in Java and just compiled to JavaScript. What sounds negligible
emphasized as a real problem as we will describe in section 5.5. Secondly we
had to keep the strict separation of the course and the simulation code.

51

5. Implementation of the interface between TEAL simulations and edX

Why are the three JavaScript functions for jsinput implemented directly in
the HTML host file and not within the GWT Java code as this code will be
compiled to JavaScript code?

GWT offers a feature called JavaScript Native Interface (JSNI). This offers the
capability of writing JavaScript code directly in the Java code file. It was imple-
mented to use JavaScript functions which are not ported or portable to Java,
such as the window manipulation functions included with JavaScript. For us
this feature seemed to be a real benefit, as we could implement this functions
directly in our Java Code and hence they would be part of our extended simula-
tions. That would make a direct communication between edX and our extended
simulation possible without the intermediate step in the HTML host file.

We did try this approach and it seemed to work. But while testing our extended
simulations we found situations where communication did not work and we
could not find a comprehensible reason.

With the help of I. Ceraj we could find the problem. It could be found in the
optimization of GWT while compiling the Java code to JavaScript. As every
bit sent over the Internet slows an application the GWT compiler tries to keep
the code as small as possible. That means on the one hand that functions
which are not used could completely excluded. On the other hand a function
that is not needed at starting an application could be loaded later to keep
the start procedure as fast as possible. And this led to the malfunction of the
communication because GWT could not know that our jsinput functions have
to be present from the beginning of the extended simulation, especially the
set state function.

At the time we wrote this thesis, for our knowledge, there was no possibility
to tell GWT when a function has to be ready loaded. One solution would
be to implement a query if the functions are ready loaded and if not to wait
for a while and try again. But this could on the one hand lead to a longer
and noticeable delay for the user. On the other hand it is not good looking
programming style.

The solution was to use the HTML host file as a interim stage between the edX
course and the GWT simulation where the necessary values are always present
and usable for both of them.

52

5. Implementation of the interface between TEAL simulations and edX

5.6. Summary

In this section we described the communication between the edX XML course
file and our extended simulation created with GWT. We started with our basis, a
edX course page including the point charges simulation but with no interaction
between them. We then showed step by step how this basis page was extended
till the final interface.

At this point we want to give another overview of the interface but with
a focus on the chronology as this is very important for guarantee a stable
communication. Therefore we created a flowchart which is shown in figure 5.7.
It illustrates which function and which variable has to be available and updated
at which point of time.

The reason why it is so important to strictly keep this chronology is that there
are very few possibilities included in JavaScript for querying if a function or
variable exists at the moment and furthermore no methods for dealing with
this fact.

During our work we worked with programmers of edX and we were told that
at the time we wrote this master thesis, jsinput was still in beta stage. Moreover
we heard that jsinput is constantly improved and enhanced and for the future
there will be better and easier solutions for our interface.

53

5. Implementation of the interface between TEAL simulations and edX

Figure 5.7.: Flowchart of the complete communication between edX and our extended simula-
tion.

54

6. The converted TEAL simulations

The goal for this master thesis was to create an interface between edX and the
simulations and furthermore to extend one TEAL simulation for answering
questions using it. Luckily we had enough time to extend two more simulations.
The three simulations in chronological order:

• Point Charges Extended - Section 6.1
• Gausses Law Extended - Section 6.2
• Amperes Law Extended - Section 6.3

The order was based on the order of their occurrence in the edX course 8.02x.

After we had created a working example simulation as described in the chapters
before we had to think about how to extend an existing simulation to ask
educationally meaningful questions which have to be answered by using the new
extended simulation. We realized that this has to be done for every simulation
on its own as they are too different.

What all extended simulations should have in common is the fact that they
should be as simple or, as we called it ”as stupid”, as possible. That means, we
wanted to give the course creator as many possibilities and latitude as possible
that he can use them in different ways for different questions and with different
difficulties. One idea was to use various problem-sets to explain the physical
laws behind the simulation where every set could be used to describe specific
effects for different situations. Another idea was to increase difficulty with every
problem set to slowly explain problems.

55

6. The converted TEAL simulations

6.1. The first extended TEAL simulation:
Point Charges Extended

We already extended this simulation for the prototype and the tests as described
in the previous chapters. Hence at this point we had a principally working
simulation which was able to communicate with an edX course. Now we had
to define a real problem set with a meaningful simulation.

6.1.1. Requirements

When the student starts a simulation a number of hidden charges should be
placed in the inner box. A visible positive charge is placed between the inner
and outer box which can be moved around the inner box. This charge has
visible field-lines with finite length. By moving the visible charge the student
should find the hidden charges. Therefore he can place dummy charges with
no effect on the field-lines to mark the places of the hidden charges. When the
student checks his answer the positions of the placed dummies is sent to the
XML course file where the answer is graded.

The number of hidden charges should be determined by the course creator
within the XML course code using python. The maximum of hidden charges
should be five as we thought this would be the highest number of charges that
fits in our simulation space.

The places should also be determined by the course creator within the XML
course file so he can decide how difficult the charges should be placed. Again
python should be used as this would give the course creator the possibility of
random created places. With python edX can set every random number to one
per student or one per attempt as described in chapter 5.2.

The dummies should be only placeable on a grid as otherwise it would be too
hard to find the hidden charges. The size of the grid has to be adjusted while
testings.

The grading should be done by python in the XML file to utilize all benefits
of edX like statistics, overall course marks and others as described in chapter
5.1.

A Show/Hide Button should be implemented which shows and hides the
hidden charges. The course creator should get the possibility of turning this

56

6. The converted TEAL simulations

button on or of for every problem set so he can create learning sets including it
and exam sets excluding it.

6.1.2. The simulation

Figure 6.1 shows the final Point Charges Extended - Simulation. It displays the
started simulation with the moveable charge on the right top. Within the inner
box the five hidden charges are shown what can be done by the Show/Hide
button next to the simulation on the right.

Figure 6.1.: The final Point Charges Extended - Simulation

The simulation in figure 6.1 shows our test set for the hidden charges. The idea
was to place the maximum number of hidden charges with different difficult
places. Therefore we placed charges near the border and near the center as well
as near to each other and more separate.

57

6. The converted TEAL simulations

6.1.3. The buttons in detail

• Start Simulation: Starts the simulation. Loads and places the hidden
charges and enables the 4 dummy buttons.
• Restart Simulation: Loads and places the hidden charges, reloads previ-

ous set dummy charges and enables the 4 dummy buttons.
• Reset Simulation: Resets the view of the simulation as it can be rotated.
• Add positive dummy: Places a positive dummy which can be used for

marking a hidden charge. This button is only enabled till 5 positive dummy
charges.
• Add negative dummy: Places a negative dummy which can be used for

marking a hidden charge. This button is only enabled till 5 negative
dummy charges.
• Delete all dummies: Deletes all dummies from the simulation. This button

is disabled if no dummies are placed.
• Show/Hide Charges: It shows and hides the hidden charges. This button

can be disabled by the course creator for exam problem-sets.
• Check: With this button the students answer is checked and graded. The

places of the dummy charges are sent to the edX XML course file and grade
there by python. Afterwards a notification shows the student how many
charges he found correctly. Furthermore the students answer is stored and
can be reloaded whenever he wants. This button is only enabled till the
Due Date of the problem set.
• Save: Saves the students answer. It saves the positions of the hidden

charges. The stored state can be reloaded whenever the student wants.
This button is always enabled also after the Due Date.
• Show Answers: This button is not used for our simulations. It is embed-

ded by edX and we did not find a way of hiding it.

58

6. The converted TEAL simulations

6.1.4. Different states of the running simulation

Figure 6.2 top shows the simulation after loading the course page but with the
simulation not started. At this point the hidden charges are not placed. The
field-lines are straight without bending. Figure 6.2 bottom shows the running
simulation with our test set of the hidden charges as described above.. The
filed-lines are bended through the influence of the placed hidden charges.

Figure 6.2.: Top: The simulation after page was loaded
Bottom: The simulation started

59

6. The converted TEAL simulations

Figure 6.3 shows our test set for the hidden charges once with hidden and
once with visible charges. At the top simulation the dummy charges are placed
on the left and right side of the simulation. This are the positions where the
dummies placed when added.

Figure 6.3.: Top: Running simulation with hidden charges and placed dummies on the sides.
Bottom: Running simulation with hidden charged shown. This was our test set for
the hidden charges.

60

6. The converted TEAL simulations

Figure 6.4 shows a position of a hidden charge that is very hard to find as it
is near the center and the field-lines are not touching the it. Important: The
horizontal field line is not directly pointing to the center of the positive hidden
charge. This is because of the influence of the other charges. On an exam course
with Show/Hide button disabled this charge would be very difficult to find.
But it also illustrates very well the influence of all charges on the field-lines.

Figure 6.4.: Example for a hard to find position of a hidden charge.

61

6. The converted TEAL simulations

6.1.5. The prototype of Point Charges Extended

At the end of the section about the first extended simulation we want to present
a prior version we created and which problems we ran into. The prototype is
shown in figure 6.5.

Figure 6.5.: A prototype of the Point Charges Extended simulation.

The idea was the same, find hidden charges with one moving charge. But the
area where the visible charge could be moved was the upper right quarter as
seen in the figure.

It is easy to see that with this setup, hidden charges placed at the positions of
the white marker charges in the simulation can not be found exactly by moving
the visible charge only in the small box. Furthermore hidden charges in the
whole lower left quarter would be nearly impossible to find.

Another idea was to make a box of the size of the upper half of the simulation
and place the hidden charges in the lower half.

62

6. The converted TEAL simulations

6.2. The second TEAL simulation:
Gausses Law Extended

The second TEAL simulation we extended was the Gausses Law Simulation. It
was made to illustrate the Gausses Law on a Gaussian surface next to point
charges. The Gaussian surface can be either a sphere or cylinder and is moved
by sliders on the right side of the simulation, the charges are moved by dragging.
Yellow arrows display the local electric field on the surface.

6.2.1. Requirements

When the student starts the simulation a number of hidden charges should be
placed in the simulation as well as the Gaussian surface. The hidden charges
should now be found by moving the Gaussian surface. In this simulation the
student can place point charges. The assignment is to neutralize the hidden
charges by placing the opposite charge over a hidden charge.

The yellow arrows should be by default scaled by the magnitude of the electrical
field. That means, when an opposite charges is placed on a hidden charge, the
field turns zero.

The next points are very similar to the requirements of our first simulation.
Hence we will only give a short review. For more details see chapter 6.1.1.

When the student checks his answer, the positions and charges he placed are
sent to the edX XML course file where they are graded by Python code.

The number of hidden charges should be determined by the course creator
using python and should be at maximum five.

The positions of the initial charges should be created within the python code of
the XML course file.

The position of the placed charges has to follow a grid.

The grading should be done by python in the XML file.

A Show/Hide Button should be implemented which shows and hides the
hidden charges.

63

6. The converted TEAL simulations

6.2.2. The simulation

Figure 6.6 shows the final Gausses Law Extended - Simulation. It shows the
running simulation with the Gaussian surface and 5 point charges which are
visible hidden charges. It shows the our test set for this simulation.

Figure 6.6.: The final Gausses Law Extended - Simulation

64

6. The converted TEAL simulations

6.2.3. The buttons in detail

Some of the buttons are similar to the Point Charges simulation. Their descrip-
tion can be found in chapter 6.1.3. We will describe here only the different
buttons and sliders.

• Choose Gaussian Surface: For switching the Gaussian surface between a
cylinder and a sphere. By default the sphere is chosen.
• Restart Simulation: Loads and places the hidden charges, reloads previ-

ous set dummy charges and enables the 4 dummy buttons.
• Three sliders: They are used for moving the Gaussian surface within the

simulation and rotate it, where rotating is only useful with the cylinder.
• Choose E field Scaling: Here the student can switch between scaled length

and equal length of the yellow arrows. Sometimes the field can be very
small and hence the arrows are very short. With the equal length setting
the arrows are always well seen. This mode had to be adapted by us
because with the equal length setting the arrows were always shown. So
we had to display them when the field is zero.
• Reset camera: The simulation can be rotated. This is sometimes very

helpful for finding the exact place of a hidden charge.

65

6. The converted TEAL simulations

6.2.4. Different states of the running simulation

Figure 6.7 top shows the simulation after loading the course page but with the
simulation not started. At this point the hidden charges are not placed and as
the field is zero the arrows are not visible. Figure 6.7 bottom shows the running
simulation. The hidden charges are placed in our test set as described above.

Figure 6.7.: Top: The simulation after page was loaded
Bottom: The simulation started

66

6. The converted TEAL simulations

Figure 6.8 shows at the top our test set for the hidden charges with visible
hidden charges. At the bottom charges where placed correctly over the hidden
charges and the field got zero.

Figure 6.8.: Top: Running simulation with visible hidden charges in our test configuration.
Bottom: Running simulation with correct placed charges over the hidden charges.

67

6. The converted TEAL simulations

The last figure 6.9 we want to present from our second extended simulation
shows the visible hidden charges as well as all possible charges, placed by a stu-
dent. It is clearly recognizable that the students places charges in contrast to our
first extended simulation where a student could place dummies. Furthermore
one can see that the placeable charges are a little larger to distinguish them
from the hidden charges.

Figure 6.9.: Placed charges and their influence on the field arrows.

68

6. The converted TEAL simulations

6.3. The third TEAL simulation:
Amperes Law Extended

The third simulation we extended was the Amperes Law simulation. It demon-
strates the impact of line currents on a open Amperean surface which could be
either a circle or rectangle. The line currents can be moved by dragging with
the mouse, the Amperean surface with sliders next to the simulation.

6.3.1. Requirements

When starting the simulation a number of hidden line currents are placed within
the simulation. They should be found by the students moving the Amperean
surface. We used the system from our second simulation again, where the
student has to eliminate all hidden line currents by placing opposite currents
on top of them.

The next points are very similar to the requirements of our first and second
simulation. Hence we will only give a short review. For more details see chapter
6.1.1 and 6.2.1.

The blue arrows should be by default scaled by the magnitude of the field.

When checking the answer the positions of the placed line currents are sent to
the edX XML Course file where they are graded by a Python function.

The number of hidden line currents is set by the course creator.

The initial positions of the hidden line currents are set by the course creator
using Python.

The student can place the line currents only on a grid.

Grading should be done by the edX XML File using Python.

A Show/Hide button should be implemented.

69

6. The converted TEAL simulations

6.3.2. The simulation

Figure 6.10 shows the final Amperes Law Extended - Simulation. It shows the
Amperean Rectangle as well as 5 hidden line currents which are enabled by the
Show/Hide button. The image shows the test set for this simulation.

Figure 6.10.: The final Amperes Law Extended - Simulation

The buttons have the same function as in our first and second simulation. For
more details see section 6.1.3 and 6.2.3.

70

6. The converted TEAL simulations

6.3.3. Different states of the running simulation

Figure 6.11 top shows the simulation after loading the page. The simulation is
not running. Bottom shows the the simulation running with the hidden line
currents at our test set, as described in figure 6.10.

Figure 6.11.: Top: The simulation after page was loaded
Bottom: The simulation started

71

6. The converted TEAL simulations

Figure 6.12 shows the result when an opposite line current is placed on top of a
hidden line current. The field gets zero and the blue arrows disappear.

Figure 6.12.: Top: Field induced by a line current.
Bottom: An opposite line current placed on top of the first current. The field gots
zero.

72

6. The converted TEAL simulations

The last figure 6.13 we want to present from our third extended simulation
shows the placed line currents and their impact on the field.

Figure 6.13.: Simulation with all line currents placed.

73

6. The converted TEAL simulations

6.4. Discoveries

During our testing with random positions for the hidden elements in our
simulations we recognized early that this topic needs more attention then we
thought it would need. We wrote about this shortly in the section about starting
our extended simulations with random values 5.2. For example in figure 6.3
we showed a very easy to find hidden charge of the point charges extended
simulation. In contrast in figure 6.4 a very hard to find hidden charge is shown.
Before our tests we thought we can place the hidden elements randomly within
the simulation maybe with some space to the outer border. Already the first test
showed us that this assumption was wrong. By placing the hidden elements
complete randomly the assignments for the students would be completely
different hard to solve. The main reason for placing hidden elements randomly
was to prevent students from cheating. To solve the problem of different hard
to solve problem sets we had to limit the possible positions the hidden charges
could be placed.
One idea to give same difficult assignments but vary the problem set is to only
randomize only the sign of the charges for every student. But we think it would
be too easy for the students to figure out that the positions are same and only
the charges are different.
The final solution was to create a number of similar difficult problem sets,
about 20, and choose for every student randomly one of this problem sets.
Additionally the first idea could applied and the charges could be shuffled to
create more different problem sets.

An idea for teaching was to create more problem sets getting harder after each
other or create sets to show special problems. These learning sets could be
with enabled Show/Hide button so the student can easily check the positions.
After the learning sets the exam set is with disabled Show/Hide button. For
example starting with one hidden element what should be easy to find. And
with every problem set another hidden element is added. Also special cases can
be implemented for example with very narrow placed hidden elements to show
the influence of them to each other and the field. After some of this learning
sets the student should be well prepared for the exam set.

74

6. The converted TEAL simulations

6.5. Summary – The incidental gamification of the
TEAL simulations

In this chapter we described our three extended simulations:

• Point Charges Extended 6.1
• Gausses Law Extended 6.2
• Amperes Law Extended 6.3

We chose this three simulations as they are used in the first weeks of the course
8.02x. Fortunately from the programmers point of view these simulations were
similarly to each other so we could reuse a lot of our code. Otherwise we would
definitely not have been able to extend three simulations.

As we described the technical background and the interface in the previous
section 5 we focused in this chapter on the simulations themselves, on the
requirements, the results and solutions as well as the handling.

The prime requirement for all simulations was that the extended simulations
can be used for answering questions asked by the edX course. The idea for this
three simulations was to place hidden elements in the simulation which have to
be found by the student. This should make the student use the simulation on
the one hand, on the other hand should the work with the simulation make the
student understand the physical background behind the simulation.

The requirements in detail:

• When starting the simulation, hidden elements should be placed
• The number of hidden elements should be determined by the course cre-

ator within the edX XML course file. The maximum should be 5 elements.
• The positions of the hidden elements should be defined by the course

creator within the edX XML course file.
• The student can place dummy elements for marking his found positions.
• The dummy elements should be placeable on a grid.
• Grading should be done by Python within the edX XML course file.
• A Show/Hide button should be implemented which can be enabled and

disabled by the course creator for every problem set,

The incidental gamification

During our work we presented our extended simulations to different people
to get feedback as well as for testing and finding bugs. What we recognized

75

6. The converted TEAL simulations

was the fact, that almost all of them talked about our extended simulations
as games and about playing them. In section 2.2 of this work we discussed
the term gamification. Referred to the described definition of gamification our
extended simulations fulfill two points:

1. Challenge - During the learning sets the user of our extended simulations
can check his answer and gets instantly feedback if he was successful. The
user is not starting the simulation to learn the physics behind them. He
starts the simulation to find the correct positions of the hidden elements
and that is a challenge.

2. Fun - Almost every person who tested our simulations had fun using it.

That does not mean we created games but it shows that our extended sim-
ulations fulfill some features of games. We hope the students will enjoy the
extended simulations as our testers did. And we hope they will learn easier and
faster using them.

76

7. Evaluation

Because the use of our new simulations in the MIT physics course 8.02x was
postponed, the evaluation of the extended simulations by MIT students was also
postponed. There will be an evaluation of our simulations in the next weeks by
MIT and TU-Graz colleagues for completion our work. We are sorry that this
will need some longer and we could not insert here.

At this point we can just refer to the mid-semester evaluation [12] about the
course in general.

77

8. Future Work

Professor Belcher is a visionary. He always tried to find new learning methods
and additional experiments to help students learning the topics of the basic
physics courses. That started with experiments in front of webcams, went to the
virtual TEAL simulations and came to the online platform edX. And this work
is part of the evolution of the basic physics courses at the MIT.

8.1. Near future - The rest of the seven TEAL
simulations

The next step will be to extend the rest of the seven TEAL simulations which
where ported to JavaScript. During this master thesis we also worked on the
rest of the simulations and how they could be used for interactive questions.
Indeed we were always sure that six month are way too short to extend all of
the seven TEAL simulations, but we did it also to know which requirements
our interface will have to fulfill. During the entire development of the interface
we tried always to keep it as open and universal as possible to make sure it can
be used for future work.

At this point we want to introduce the other four simulations and the ideas
we think would be on the one hand good for education and on the other hand
realistic to implement from the programmers point of view.

It is important to keep in mind that this are only ideas which where not tested.
As our work with the three extended simulations has shown, between the first
ideas and the final simulations sometimes is a huge difference. The reasons can
be different. We had once the problem that an assignment was simply unsolvable
with the tested implementation. Another idea was for us programmers good
but from the educational point of view it was senseless. And for other ideas we
just thought, lets try it out and see what colleagues think.

We think the following ideas could be work very well and lead to good extended
simulations. We will give them a try in future but of course we can not be sure

78

8. Future Work

if they will become useful extended simulations or if they will be implemented
completely different.

Floating Coil

In this simulation a current carrying coil rests on a platform centered on the
axis of a permanent magnet. With the slider on the right the current in the coil
can be set which can pull the ring towards the magnet or push it away from the
magnet. The simulation is shown in figure 8.1.

Figure 8.1.: The Floating Coil simulation

One idea was to randomly rotate the magnet, with the north pole or the south
pole at the top. The student has then to find out which pole is at the top
depending on which current he has to choose, a positive or negative one.

Another question could be which current is used to elevate the ring above a
given hight. Therefor a hight-meter would be implemented, what could be a
single text box.

79

8. Future Work

Faraday’s Law

In this simulation a magnet is movable on the axis of a ring with a self-
inductance and a resistance. I tis shown in figure 8.2.

Figure 8.2.: The Faraday’s Law simulation

80

8. Future Work

When moving the magnet along is axis through the ring, the ring will start
rotating. The rotation speed depends on the speed of the movement of the
magnet. Tho rotation direction depends on the direction of the movement of
the magnet. Some different states of the simulation can be seen in figure 8.3.

Figure 8.3.: A series of the Faraday’s Law simulation

A further option is to let the magnet automatically move sinusoidally through
the ring what lead to the sinus-shaped curves which can be seen in figure 8.4
on the right.

Figure 8.4.: The Faraday’s Law simulation with sinusoidally moving magnet.

Questions for this simulation could be to give the student a screen-shot of the

81

8. Future Work

flux and current curves showing sinus-shaped waves. The student has then to
set the right Dipole Moment and Ring Resistance to obtain the same curves as
questioned.

Furthermore we could implement new sliders for the movement of the magnet,
one for the speed and one for each endpoint of the magnet. The student should
then again set this sliders to get the same curves as questioned.

Charge by Induction

Figure 8.5 shows the Charge by Induction simulation. With the slider on the right
the current of the big charge in the middle can be set. Between the cylinders
are a number of point charges. Furthermore two other visualizations can be
displayed as shown in figure 8.6.

Figure 8.5.: The Charge by Induction simulation.

Figure 8.6 shows one state of the simulation in all three possible visualizations.

82

8. Future Work

Figure 8.6.: Different visualizations of the Charge by Induction simulation.

One idea for this simulation was that the course creator can place point charges,
as many as he wants and where he wants. Then the two visualizations are
stored. The student gets this visualizations as background of his simulation and
has to place point charges to accomplish the same field visualization.

For this idea again a number of different sets can be created and every student
could get randomly one of them.

Plane Wave simulation

The simulation shows a pink sheet of positive electric charge. By shaking it
plane electromagnetic waves are generated. The yellow arrows represent the
radiation electric field, the blue arrows the radiation magnetic field.

The sheet can be moved up and down by the user, as seen in figure 8.7. The
sheet can also be automatically moved up and down which can be seen in figure
8.8. The movement leads to sinus-shaped arrows.

The idea was to give the student a screen-shot of this simulation with sinus-
shaped arrows of specific length. The student should then have sliders for
the automatically moving of the sheet to obtain the same sinus curve. The
student should have to set the direction of the movement (up/down and
backward/forward) as well as the speed of each direction.

83

8. Future Work

Figure 8.7.: The plane wave simulation.

Figure 8.8.: The plane wave simulation.

84

8. Future Work

8.2. Ultimate goal - A complete new framework for
simulations

One of the disadvantages of the seven simulations which were ported to
JavaScript is that everyone was ported on its own and from different peo-
ple. That means there is code in every simulation written same. And so is our
new code which was added for extending them. The reason for this circum-
stance was time as this way was the fastest and easiest. The physics courses with
the simulations (and now the extended simulations) are still in development
and evolution.

A huge benefit of e-learning and online courses is the detailed feedback from
the students about every part and aspect of them. The seven simulations have
shown that they can help students understanding physics but evaluations have
shown that students did only insufficient make use of them. Our extended
simulations are the next evolutionary step of the basic physics courses. And
depending on future evaluations they will be improved again.

The logical next step will be to create a whole new framework for physics
simulations. The programmers at CECI call it a player for the simulations. An
environment where many different simulations can run and interact with an
enveloped system like edX.

The benefits for such a player would be on the one hand an easier and faster
implementation of new simulations as it would provide a broad library. This
would help reusing code in all simulations and prevent of duplicated code. On
the other hand it could implement a more stable and extensive interaction with
edX. This could possibly be in cooperation with edX and hence it could be used
from other institutes too.

8.3. Improvements on jsinput

One problem during our work was the documentation of jsinput. At the time
this work was written, jsinput was still in development and changed through
the last years. And so did the documentation. Thats why we found different
versions of jsinput documentation and often we just had to try how the current
version works. We were also in contact with the developer of jsinput and gave
feedback on it and what we would need in future, so we know jsinput is further
developed.

85

8. Future Work

One thing we know for sure is that jsinput will get an mechanism to send initial
values from edX to JavaScript applications. And we are sure there will be a
lot of improvement in future of jsinput. Maybe in near future there is a new
version of jsinput what would make our work a lot easier.

86

9. Summary

The basic physics courses at the MIT are not the favorite courses of students.
For motivating students to learn and furthermore simplify learning the TEAL
classroom was introduced. It offers different multimedia techniques as well as
interactive experiments. As technology improved over the last years and the
Internet got normal to almost everyone of us more and more parts of the physics
courses where brought to an e-learning course using the online platform edX.

Part of this online courses where seven virtual TEAL simulations which where
ported to JavaScript. Being more exact, the simulations where written in Java
and compiled to JavaScript using GWT. The simulations should help students
understand the learning topics.

Evaluations of previous courses have shown that students did not or just very
short work with the simulations. So the idea was born to make them interactive
and use them for answering questions through online homeworks and exams.

The first part of our work was to find out if it is possible to create an interface
between edX and the simulations to achieve communication and interaction
between them. From an edX programmer we got the hint to use the edX method
jsinput.

Jsinput was made to provide a communication between the edX course, which
is written in XML, and JavaScript applications. Unfortunately we had two
problems using jsinput. First, our simulations where not written in JavaScript,
instead they where written in Java and compiled to JavaScript. First tests show
that we were not able to set up a stable communication, there were always
synchronization problems. The second problem was the lag of sending initial
values to the JavaScript application using JavaScript.

We solved this problems in two steps. For the synchronization problem we used
the HTML host file of our JavaScript simulation as a buffer between edX and
our Java simulation. That means, edX did not directly communicate with the
Java written simulation. It was communicating only with the HTML host file.
And the Java simulation was also communicating only with the HTML host file
of the simulation. This led to a stable and reliable interaction.

87

9. Summary

For the initial values problem we had to create a work around. As we could
not use jsinput we implemented a second communication using postmessages.
This are messages sent by JavaScript between the edX XML course file and the
HTML host file. Again, we did not directly communicate between edX and our
Java simulation.

Once the technical problems where solved we started to extend the first simula-
tion. We chose the Point Charges simulation as this would be the first simulation
used during the next online course. At the beginning we had to think about how
we can extend this simulation to ask students useful questions. The idea was
to place hidden charges which has to be found by the students. Furthermore
we wanted to place these hidden charges randomly to avoid cheating between
students.

The second simulation we extended was the Gauss Law simulation and the
third simulation was the Amperes Law simulation. Both extended simulations
implement a similar approach to our first extended simulation using hidden
elements which have to be found by the students.

During the work we had colleagues testing our extended simulations. The
common opinion was that they liked to work with them and for all of them it
was some sort of playing a game. So it seemed we accidentally gamified the
simulations. In the past games have become increasingly usage in education. It
has been shown that games and simulations can rise the motivation to learn. For
us we think it is great if students have fun with the extended simulations as that
means they are having fun at learning. And if we achieved that students like
the basic physics course a little bit more we were successful. We are excitedly
looking forward to the first evaluation of a course using our simulations.

88

List of Figures

2.1. Mid-Semester evaluation of 8.02x, spring 2014 [12] 8

2.2. Mid-Semester evaluation of 8.02x, spring 2014 [12] 9

2.3. A TEAL class room [7]. 13

2.4. An example for an edX course with an interactive homework
opened. 16

2.5. The GWT Compiler in Detail [3] 20

2.6. Starting a GWT application [3] . 21

3.1. The original point charges simulation. 24

5.1. Structure of an edX course page which includes a non interactive
simulation. 30

5.2. The first extended simulation. The point charge on the left top is
the movable point charge with visible field lines. The two others
are dummy charges with no effect on the electrical field. 31

5.3. Structure of a course page that embeds a HTML file using jsinput.
Illustrating the data stream. 34

5.4. Structure of a course page that embeds a HTML file using
postmessages for sending the values of the initial positions of the
hidden charges to the HTML host file. 38

5.5. Structure of the final test course page that embeds a HTML file. . 42

5.6. Data stream of saving and reloading the simulations state and
the used data types. 47

5.7. Flowchart of the complete communication between edX and our
extended simulation. 54

6.1. The final Point Charges Extended - Simulation 57

6.2. Top: The simulation after page was loaded Bottom: The simula-
tion started . 59

6.3. Top: Running simulation with hidden charges and placed dum-
mies on the sides. Bottom: Running simulation with hidden
charged shown. This was our test set for the hidden charges. . . 60

6.4. Example for a hard to find position of a hidden charge. 61

89

List of Figures

6.5. A prototype of the Point Charges Extended simulation. 62

6.6. The final Gausses Law Extended - Simulation 64

6.7. Top: The simulation after page was loaded Bottom: The simula-
tion started . 66

6.8. Top: Running simulation with visible hidden charges in our test
configuration. Bottom: Running simulation with correct placed
charges over the hidden charges. 67

6.9. Placed charges and their influence on the field arrows. 68

6.10. The final Amperes Law Extended - Simulation 70

6.11. Top: The simulation after page was loaded Bottom: The simula-
tion started . 71

6.12. Top: Field induced by a line current. Bottom: An opposite line
current placed on top of the first current. The field gots zero. . . 72

6.13. Simulation with all line currents placed. 73

8.1. The Floating Coil simulation . 79

8.2. The Faraday’s Law simulation . 80

8.3. A series of the Faraday’s Law simulation 81

8.4. The Faraday’s Law simulation with sinusoidally moving magnet. 81

8.5. The Charge by Induction simulation. 82

8.6. Different visualizations of the Charge by Induction simulation. . 83

8.7. The plane wave simulation. 84

8.8. The plane wave simulation. 84

This document is set in Palatino, compiled with pdfLATEX2e and Biber.

The LATEX template from Karl Voit is based on KOMA script and can be found
online: https://github.com/novoid/LaTeX-KOMA-template

90

http://LaTeX.TUGraz.at
http://en.wikipedia.org/wiki/Biber_(LaTeX)
http://www.komascript.de/
https://github.com/novoid/LaTeX-KOMA-template

List of Abbreviations

CECI Center for Educational Computing Initiatives

e-learning Electronic Learning

ETH Zürich Eidgenössische Technische Hochschule Zürich

GWT Google Web Toolkit

HTML Hypertext Markup Language

JSNI JavaScript Native Interface

MIT Massachusetts Institute of Technology

MOOCs Massive Open Online Courses

SDK Software Development Kit

STEM Science Technology Engineering and Mathematics

TEAL Technology-Enabled Active Learning

TEALsim Technology-Enabled Active Learning Simulation

TU Graz Technical University of Graz

URL Uniform Resource Locator

XML Extensible Markup Language

91

Appendix A.

Code parts

In this section we want to present some code segments which colleagues where
interested in as they want to reuse it in their work on other courses. We will give
only an overview of every code part as we commented the code very extensive
for this work.

A.1. Limit the movement

The following function is used to update the elements of the simulation. The
code example is from the Point Charges simulation, hence the elements which
are updated are point charges. This function exists similarly in the two other
extended simulations.

With this function we limit the movement of the charge thats used for searching
the hidden charges. As we described in our work this charge should only be
movable between the inner and outer box. The simulation itself limits every
movement to inside the outer box so we need to implement only the limitation
to outside the inner box.

The box size of the outer box is 20 (unit less). The inner box is size of 16. The
boxes are centered around the zero point of the environment. Hence the walls
of the outer box are plus/minus 10 away from the zero point and the walls of
the inner box plus/minus 8.

1 // ! ! ! S e t s the l i m i t s of the moveable region of elements ! ! !
2 // Updates the elements of the s imulat ion .
3 // I s c a l l e d while moving a charge .
4 // Takes the parameter boolean i n i t i a l which i s t rue when funct ion

c a l l e d the f i r s t time .
5 p r i v a t e void updateScene (boolean i n i t i a l)
6 {

1

Appendix A. Code parts

7 double maxDist = 2 0 . 0 ;
8

9 // I n i t i a l placement of a l l charges
10 i f (i n i t i a l == true)
11 {
12 engine . requestReorder (pc1) ;
13 se tChargePos i t ion (pc1 , maxDist) ;
14 setChargeAppearance (pc1) ;
15 f o r (i n t i = 0 ; i < 5 ; i ++)
16 {
17 engine . requestReorder (hiddenCharges [i]) ;
18 se tChargePos i t ion (hiddenCharges [i] , maxDist) ;
19 setChargeAppearance (hiddenCharges [i]) ;
20 }
21 }
22

23 // Movement of the v i s i b l e charge t h a t i s moved by the student f o r
searching the hidden charges .

24 // R e s t r i c t movement between inner and outer boxes .
25 // Box s i z e outer box : +−10

26 // Box s i z e inner box : +−8

27 // Movement i s l i m i t e d to i n s i d e the outer box from the s imulat ion .
So we only need to r e s t r i c t the movement outs ide the inner box .

28 i f (pc1 . shape . i s S e l e c t e d)
29 {
30 Vector3d pos = pc1 . g e t P o s i t i o n () ;
31 pos . add (mouse . getObjectTransform ()) ;
32

33 // R e s t r i c t the movement in x d i r e c t i o n
34 i f (pos . x > 8 | | pos . x < −8)
35 {
36 pc1 . s e t P o s i t i o n (pos) ;
37 engine . requestReorder (pc1) ;
38 se tChargePos i t ion (pc1 , maxDist) ;
39 setChargeAppearance (pc1) ;
40 }
41 // R e s t r i c t the movement in y d i r e c t i o n
42 i f (pos . y > 8 | | pos . y < −8)
43 {
44 pc1 . s e t P o s i t i o n (pos) ;
45 engine . requestReorder (pc1) ;
46 se tChargePos i t ion (pc1 , maxDist) ;
47 setChargeAppearance (pc1) ;
48 }
49 }
50

51 i f (mouse . getObjectTransform () . length () > 0)
52 hideDLIC () ;
53 mouse . c learObjectTransform () ;

2

Appendix A. Code parts

54 }

A.2. Place elements on a grid

Placing an element on a grid means to only let them rest on a finite number of
points inside the environment. From the programmers point of view, placing
on a grid means rounding the position values depending on the grid size. In
our case we wanted to have a grid size of one, so we could round the values
to integers. This is done on the end of every move, when the mouse button
is released. The charge then jumps to the next grid point. This is important
as without a grid finding the exact position of a hidden charge is nearly
impossible.

The first function rounds the position of the charge. But as it could be possible
that a charge would jump on the place where another charge already rests
after rounding the current position the new position is evaluated by the second
function below.

1 // Every time a dummy i s moved , on r e l e a s i n g the mouse button the
dummy jumps to the next gr id p o s i t i o n .

2 // The new p o s i t i o n of the dummy i s evaluated i f there i s already a
dummy placed .

3 // I f the dummy i s s e t on top of another dummy, i t i s moved to the
r i g h t of the previous placed dummy.

4 // The new c a l c u l a t e d p o s i t i o n i s then again evaluated because there
could a l s o be a dummy placed .

5 // This i s done f o r a l l used dummies a f t e r a move .
6 p r i v a t e void roundPosi t ions ()
7 {
8 Vector3d curPos = new Vector3d () ; // The current p o s i t i o n where the

dummy should be placed
9 Vector3d evPos = new Vector3d () ; // The p o s i t i o n a f t e r evaluat ion

10

11 f o r (i n t i =0 ; i < posDummies . length ; i ++) //Loop over a l l used
p o s i t i v e dummies

12 {
13 curPos = posDummies [i] . g e t P o s i t i o n () ; // Get current p o s i t i o n

where the dummy should be placed
14 curPos . x = Math . round (curPos . x) ; // Place i t on the grid in x

d i r e c t i o n
15 curPos . y = Math . round (curPos . y) ; // Place i t on the grid in y

d i r e c t i o n
16 while (t rue)
17 {

3

Appendix A. Code parts

18 evPos = evaluatePos (curPos , i , 1) ; // Evaluate the p o s i t i o n
19 i f (evPos == curPos) // I f the current p o s i t i o n was free ,

stop evaluat ing
20 break ;
21 curPos = evPos ; // I f the current p o s i t i o n i s taken place the

dummy on the new c a l c u l a t e d p o s i t i o n and evaluate again
22 }
23 posDummies [i] . s e t P o s i t i o n (curPos) ; // Place the dummy on the

empty p o s i t i o n
24 }
25 f o r (i n t i =0 ; i < negDummies . length ; i ++) //Loop over a l l used

negat ive dummies
26 {
27 . . .
28 // Same code as f o r p o s i t i v e dummies
29 . . .
30 }
31 updateBoxes () ; // Update p o s i t i o n s in the HTML host f i l e
32 }

This function evaluates a position if it is free or if there is already a charge
placed. If the position is already taken the evaluated position is moved to plus
one in x direction. This new position is then evaluated again.

1 // Evaluates a dummy p o s i t i o n .
2 // Takes the p o s i t i o n which has to be v e r i f i e d , the dummy id and the

dummy charge .
3 // The dummy charge i s importand as the dummys are always created and

placed in the s imulat ion . Unused dummies are hidden and t h e i r
charge i s s e t to zero . I t i s p o s s i b l e to place a used dummy on an
unused hidden dummy!

4 // The charge of the dummy has no e f f e c t on the f i e l d ! I t i s only f o r
displaying the c o r r e c t c o l o r of the dummy!

5 p r i v a t e Vector3d evaluatePos (Vector3d newPos , i n t dummyId, i n t charge
)

6 {
7 f o r (i n t i = 0 ; i <5; i ++) // Loop over a l l p o s i t i v e dummies
8 {
9 i f (i == dummyId && charge > 0)

10 continue ; // This case would be a comparsion with i t s e l f
11 Vector3d posPos = posDummies [i] . g e t P o s i t i o n () ;
12 i f (newPos . x==posPos . x && newPos . y==posPos . y && posDummies [i] .

charge !=0)
13 newPos . x += 1 ; // Move charge one step to the r i g h t
14 }
15

16 f o r (i n t i = 0 ; i <5; i ++) // Loop over a l l negat ive dummies
17 {

4

Appendix A. Code parts

18 i f (i == dummyId && charge < 0)
19 continue ; // This case would be a comparsion with i t s e l f
20 Vector3d negPos = negDummies [i] . g e t P o s i t i o n () ;
21 i f (newPos . x==negPos . x && newPos . y==negPos . y && negDummies [i] .

charge !=0)
22 newPos . x += 1 ; // Move charge one step to the r i g h t
23 }
24 re turn newPos ;
25 }

A.3. Place and remove dummies

In this section we want to show the code of placing and removing dummies.
The important thing is that the dummies always exist and are always placed
somewhere in the simulation. By placing we just set them visible and by
removing we set them invisible. The reason for this implementation is, that
starting the simulation needs a little longer to load but when running it is faster
as it does not have to create the dummy charges any more.

The first code part we want to show is the initialization of the positive and
negative dummy elements.

1 . . .
2 // Create new point charges elements f o r the dummies
3 posDummies = new PointCharge [5] ;
4 negDummies = new PointCharge [5] ;
5 i n t psn count = 0 ; // Used f o r making dummies pickable f o r the mouse
6 ShapeNode [] psndpn = new ShapeNode [1 0] ;
7 f o r (i n t i =0 ; i < posDummies . length ; i ++)
8 {
9 posDummies [i] = new PointCharge () ;

10 posDummies [i] . radius = 0 . 4 ;
11 posDummies [i] . setMass (1 . 0) ;
12 posDummies [i] . shape = new SphereNode (posDummies [i] . radius , 20 ,

positiveChargeAppearance) ;
13

14 // At t h i s point we j u s t want to c r e a t e the elements , not place
them or make them v i s i b l e !

15 posDummies [i] . shape . s e t V i s i b l e (f a l s e) ;
16 bg . addChild (posDummies [i] . shape) ; //This adds the element to the

s imulat ions environment
17 psndpn [psn count] = posDummies [i] . shape ;
18 psn count ++;
19 }
20 f o r (i n t i =0 ; i < negDummies . length ; i ++)

5

Appendix A. Code parts

21 {
22 . . .
23 // Same code as above f o r p o s i t i v e dummies
24 . . .
25 }
26 . . .

With the following function we place a dummy. That means we set a positive or
negative dummy visible, set the charge and place it to the left or right border of
the simulation.

1 p r i v a t e void addDummy(double charge)
2 {
3 PointCharge dummyCharge ;
4 Point3d dummyPos = new Point3d () ;
5 dummyPos . z = 0 . 0 ; // z i s always zero
6

7 i f (charge > 0)
8 {
9 // I f f i v e or more p o s i t i v e dummies are placed do nothing

10 i f (numPosDummies >= 5)
11 re turn ;
12 dummyCharge = posDummies [numPosDummies] ;
13 dummyPos . x = 1 0 ; // Place the p o s i t i v e dummies on the r i g h t

border of the s imulat ion
14 dummyPos . y = −2 + numPosDummies ; // Place the dummies next to

each other
15 numPosDummies++;
16 }
17 e l s e
18 {
19 // I f f i v e or more negat ive dummies are placed do nothing
20 i f (numNegDummies >= 5)
21 re turn ;
22 dummyCharge = negDummies [numNegDummies] ;
23 dummyPos . x = −10; // Place the negat ive dummies on the l e f t

border of the s imulat ion
24 dummyPos . y = −2 + numNegDummies ; // Place the dummies next to

each other
25 numNegDummies++;
26 }
27

28 // Set the charge f o r c o r r e c t dummy c o l o r i n g
29 dummyCharge . charge = charge ;
30 // Set dummy p o s i t i o n
31 dummyCharge . s e t P o s i t i o n (new Vector3d (dummyPos)) ;
32 setChargeAppearance (dummyCharge) ;
33 // Set dummy charge v i s i b l e

6

Appendix A. Code parts

34 dummyCharge . shape . s e t V i s i b l e (t rue) ;
35 }

The next function deletes, or better hides, all dummies. It just go through all the
dummies and set them invisible. The dummy counters are set to zero. Finally
all invisible dummies are placed at the zero point of the simulation. This is of
course not necessary but especially for debugging it is always helpful to have a
cleaned up simulation. With this function we can also see why it is not possible
to delete individual dummies. The reason is that the dummies have no ID or
anything to identify theme selfs. So there is no system which would support
the selection of one dummy. The reason is again to keep the code small and the
simulation fast.

1 p r i v a t e void removeAllDummies ()
2 {
3 numPosDummies = 0 ; \\ Set p o s i t i v e dummy counter to zero
4 numNegDummies = 0 ; \\ Set negat ive dummy counter to zero
5 // Loop over a l l dummies . One loop f o r p o s i t i v e and negat ive

dummies .
6 f o r (i n t i = 0 ; i < 5 ; i ++)
7 {
8 posDummies [i] . shape . s e t V i s i b l e (f a l s e) ; // J u s t s e t the dummy

i n v i s i b l e
9 negDummies [i] . shape . s e t V i s i b l e (f a l s e) ; // J u s t s e t the dummy

i n v i s i b l e
10 }
11 clearDummyPositions () ; // This funct ion w i l l place the dummies to

the zero point of the s imulat ion .
12 }

7

Appendix B.

Used Software and Hardware

For our work we used the following software:

• VirtualBox 4.3.8
• Vagrant 1.5.1
• Python 2.7.6
• GWT 2.6.1
• Git 1.9.4
• Eclipse Kepler SR2

• Windows 7 x64

The following Hardware was used:

PC 1:

• CPU: Intel i7 4x 3,2GHz
• RAM: 8GB
• Graphics card: NVIDIA GT620

PC 2:

• CPU: Intel Core2Quad 4x 2,4 GHz
• RAM: 6GB
• Graphics card: NVIDIA GT610

8

Appendix C.

Setup of a local edX test server

For testing we had a test server set up on our local PC. The main reason was
the possibility of testing our code easier and faster. Additionally we were able
to modify some parts of the edX server for debugging. During our work we
had two versions of the edX server running. While our code worked well on
the newer server, we had to modify some files of the older server.

In this chapter we do not want to give a whole installation manual as they are
available online. Instead we want to describe the important steps which are
necessary for running our simulations.

C.1. Setup of the edX test server - Version 2013

For this server we were using the mitxvm-edx-platform-02sep13a.box file. The
manual can be found online at [1]. This server is used till today allthough it is
old because it needs less RAM and so could run on older machines too.

With this server had some problems with the set state function. The reason was
that within this version the jsinput method was also older and not so well tested.
Referring to the comments of the jsinput code it was tested only with a small
example application since there were simply no courses using it at the time
it was written. The problem we had was that jsinput was trying to call our
set state function which was, compared to the set state function of the example
application, way bigger and therefor needed longer to respond. So jsinput ran
into a timeout and reported an error saying set state is not working.

9

Appendix C. Setup of a local edX test server

For fixing this problem we had to modify these three files of the edX server:

/edx-platform/common/static/js/capa/src/jsinput.js

/staticfiles/js/capa/src/jsinput.js

/staticfiles/xmodule js/common static/js/capa/src/jsinput.js

These files are all placed on the edX virtual machine in /home/vagrant/edx all/.

The code line we changed:

$(document).ready(setTimeout(walkDOM, 300));

We changed the 300 to 3000.

Remark: Making this change locally on the test server the code wont run any
more on an other edX server! We made this change just for debugging to see
where the error is. We did not change our code to run on an unmodified edX
server since this problem was solved with the newer edX versions. But as we
described, on older PCs this version is preferred and that is the reason we gave
this description here.

C.2. Setup of the edX test server - Version 2014

For the new version of the edX server we were using the 20140908-mitx-kifli-
fullstack.box file. The manual for this course can be found online at [2].

With this version we had a problem of the structure of our course. In this newer
version the edX courses which are created by edX studio had another structure
then our handwritten course. This resulted in errors including files as edX could
not find them. This happened only locally on our test server.

10

Appendix C. Setup of a local edX test server

For solving this problem we had to run the following lines in the console:

vagrant ssh – sudo disable mongo static

vagrant ssh – sudo restart web loloadx

vagrant reload

For more details on this changes please see above linked manual.

11

Bibliography

[1] Quick Start to working with the edX Platform.

[2] Running edX Locally.

[3] Tacy Adam, Hanson Robert, Essington Jason, and Anne Tökke. GWT in
Action. Manning Publications Co., 2 edition, 2013.

[4] Stephen Brown. Back to the future with moocs. ICICTE 2013. Proceedings,
pages 237–246, 2013.

[5] Govinda Clayton and Gizelis Theodora-Ismene. Learning through Simu-
lation or Simulated Learning? An Investigation into the Effectiveness of
Simulations as a Teaching Tool in Higher Education.

[6] Danny Crooltall, David and Oxford, Rebecca and Saunders. Towards a
reconceptualization of Simulation: From Representation to Reality. Simula-
tion/Games for Learning : The journal of Sagset, 17(4):147–171, 1987.

[7] Yehudit Judy Dori and John Belcher. How Does Technology-Enabled
Active Learning Affect Undergraduate Students’ Understanding of Elec-
tromagnetism Concepts? Journal of the Learning Sciences, 14(2):243–279,
2005.

[8] EdX. Building and Running an edX Course. edX documentation, 2014.

[9] A. S. Gibbons, P. G. Fairweather, and T. A. Anderson. Simulation and
Computer-Based Instruction: A Future View. In Instructional Development
Paradigms, chapter 43, pages 769—-801. 1997.

[10] Henry Jenkins, Eric Klopfer, Kurt Squire, and Philip Tan. Entering the
Education Arcade. Computers in Entertainment (CIE), 1(1):8:1–8:11, October
2003.

[11] Cristina Ioana Muntean. Raising engagement in e-learning through gamifi-
cation. In Proc. 6th International Conference on Virtual Learning ICVL, pages
323–329, 2011.

12

Bibliography

[12] Saif Rayyan and Chester Chu. Spring 2014 8.02 MITx Mid-Semester Survey.
Technical report, Massachusetts Institute of Technology, 2014.

[13] Pim van de Pavoordt. Gamification of education. 2012.

[14] Dongsong Zhang and JayF. Nunamaker. Powering e-learning in the new
millennium: An overview of e-learning and enabling technology. Informa-
tion Systems Frontiers, 5(2):207–218, 2003.

13

