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Abstract

In practice, a common way to cope with nonlinear problems is to make them linear,
but often without thinking about the adverse effects. These effects are negligible for
scenarios that are subject to specific constraints, e.g., limited scopes or unnatural
object motions. But for industrial partners it’s hard or even impossible to stick to
these constraints if they are interested in producing robust implementations and de-
vices, without tight limitations, that are simple to operate and flexible in application.
Thus, it is necessary to introduce a more accurate and reasonable solution that con-
siders realistic constraints but requires time-consuming and sophisticated derivations
and investigations. Since the beginning of the DIRHA (Distant-speech Interaction for
Robust Home Applications) project, a single planar acoustic sensor array mounted
on the ceiling has become more and more attractive for distant speech recognition.
Ignoring the nonlinear spatial sampling and spatial quantization properties of such a
sensor array causes—depending on the scenario—a decrease in (multi-)target local-
ization accuracy or a false prediction of (multi-)target transitions in case of tracking,
just to mention a few. This report is about the nonlinear properties of an arbitrary
planar acoustic sensor array used for localizing and tracking (multiple) moving targets
outside the array plane. It introduces a mathematical framework that describes the
nonlinearities and how to calculate the shapes and volumes of the nonlinear quanti-
zation cells to avoid linearization and, as a consequence, to increase a distant speech
recognition’s accuracy. Beside that, it shows how to generate a probability density
function based on a uniform distribution or a multi-variate Gaussian mixture model;
it is a prerequisite to compute the probability of target presence. Furthermore, the
report describes how to assign the probability of target presence to a nonuniform cell
depending on its size.

Keywords: spatial sampling, spatial quantization, planar acoustic sensor array, dis-
tant speech recognition, (multi-)target localization, (multi-)target tracking.
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Chapter 1

Introduction

In practice, a common way to cope with nonlinear problems is to make them linear,
but often without thinking about the adverse effects. These effects are negligible for
scenarios that are subject to specific constraints, e.g., limited scopes, unnatural object
motions, nonrealistic physical conditions, etc. But for industrial partners it’s hard
or even impossible to stick to these constraints if they are interested in producing
robust implementations and devices, without tight limitations, that are simple to op-
erate and flexible in application. Thus, it is necessary to introduce a more accurate,
reasonable, and economical solution that considers realistic constraints but requires
time-consuming, sophisticated, and challenging derivations and investigations.

Since the beginning of the DIRHA [1] (Distant-speech Interaction for Robust Home
Applications) project, a single planar acoustic sensor array mounted on the ceiling
has become more and more attractive for distant speech recognition. Ignoring the
nonlinear spatial sampling and spatial quantization properties of such a sensor array
causes—depending on the scenario—a decrease in (multi-)target localization accuracy
or a false prediction of (multi-)target transitions in case of tracking, just to mention a
few.

In this report, we focus on the nonlinear properties of an arbitrary planar acoustic sen-
sor array used for localizing and tracking (multiple) moving targets outside the array
plane. We introduce a mathematical framework that describes the nonlinearities and
how to calculate the shapes and volumes of the nonlinear quantization cells to avoid
linearization and, as a consequence, to increase a distant speech recognition’s accuracy
and to make it more robust. We especially focus on a realistic three-dimensional case
where the shape corresponds to an oblique pyramidal frustum. Beside that, we show
how to generate a probability density function based on a uniform distribution or a
multi-variate Gaussian mixture model; it is a prerequisite to compute the probability
of target presence. Furthermore, we describe how to assign the probability of target
presence to a nonuniform cell depending on its size.
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Chapter 2

Spatial Sampling

Let’s assume a spherical coordinate system with a fixed radius r and azimuth and
elevation angles {φ | 0 ≤ φ < 360, φ ∈ Z} and {θ | 0 ≤ θ ≤ 180, θ ∈ Z}, respectively,
that are finite in number, e.g., Nφ = 360 and Nθ = 181. Then, the permutation of
all angles that span a domain B yields a cardinality of |B| = Nφ,θ = 65 160. In other
words, B spans a grid on a spherical surface consisting of Nφ,θ = 65 160 grid points.
We will later refer to these elements as spatial sampling points. If the space of interest
is a grid on a hemispherical surface with angles

{(φ, θ) | 0 ≤ φ < 360, 90 ≤ θ ≤ 180, φ, θ ∈ Z}, (2.1)

than the number of elements reduces to Nφ,θ = 32 760 and, as a consequence, the
spatial sampling rate decreases. According to the definitions above, we can represent
these elements as unsigned 16-bit integer values that require less memory and process-
ing power than their alternatives with larger word-size. Considering the assumptions
mentioned before, the resulting total number of integer angles Nφ,θ in a spherical co-
ordinate system still covers the spatial resolution requirements for successful distant
and close-talking target direction detection [2]. A small number of angles or a small
word-size becomes even more important in case of resource-intensive target detection
and tracking, where the word-size particularly affects the computation time.

Example 1 (Sensor Array Positioning for Target Detection in R3).
In a real environment, a target detector based on a single acoustic sensor
array and the assumption of impinging plane waves cannot determine a tar-
get’s distance r but its direction (φ, θ). In case of an undefined distance
r, the detector spatially samples directions (φ, θ) defined in (2.1) instead of
points on a spherical grid (see Figure 2.1). Let’s assume that the center
of the planar acoustic sensor array lies in the center of the coordinate sys-
tem. A sampling element can be represented by an infinitesimal long ray
originating from the center of the coordinate system and going through the
grid points on a spherical grid with undefined distance r. If we place an
acoustic sensor array in the middle of a room, the detector needs to sample
Nφ,θ = 65 160 directions to cover all directions (φ, θ) in R3, whereas a sensor
array mounted on a ceiling needs to sample Nφ,θ = 32 760 directions only.
This requires less computational resources. Moreover, this avoids spatial
aliasing caused by the up- down–ambiguity of the planar sensor array. And
besides that, we can increase the spatial resolution on the lower hemisphere
without exceeding Nφ,θ = 65 160. �
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There is a growing attention in decreasing an algorithm’s computation time and in-
creasing a system’s performance by upgrading algorithms and implementations with-
out improving its hardware. Still, the system must be accurate, powerful, energy-
efficient, and reasonable in price—prerequisites for, e.g., (ambient) assisted living
environments [1], where old or disabled people cannot raise the financial means for
expensive hardware. Ways to fulfill these prerequisites are to use inexpensive hard-
ware, to improve the algorithms’ performances, or to find inconsistencies in algorithms
and implementations. One common inconsistency in three-dimensional target direc-
tion detection and tracking is to assume a constant target distance for all directions,
which causes wrong transition model steady-state–velocities for moving targets. The
steady-state–velocities play an important role in target prediction, especially by ap-
plying transition models (e.g., the Langevin model) when using equally spaced angles
and planar sensor arrays. This assumption is correct if targets are moving around the
planar acoustic sensor array, within the sensor array plane, and without changing the
distance [2] [3] [4]. However, in real scenarios targets are moving horizontally through
space, not on a (hemi)spherical surface.

Now, let’s focus on the problematic of spatial sampling in target detection and tracking
with a single planar sensor array. Let’s assume that a spatial filter samples a space RN
in equidistant N -dimensional sampling intervals, which results in an N -dimensional
uniform grid with point lattices

B = (ε1Z)× · · · × (εnZ)× · · · × (εNZ) ⊂ RN ,

where εn is the mesh size of a grid B in the n-th direction [5] and constant for all
Z. An N -dimensional sampling interval is defined as the cartesian product of N one-
dimensional intervals

I = I1 × · · · × In × · · · × IN ⊂ RN ,

where an ≤ In ≤ an+ εn with an ∈ (εnZ). Similar to the interval I, an N -dimensional
quantization cell is defined as the cartesian product of N one-dimensional cells

C = C1 × · · · × Cn × · · · × CN ⊂ RN , (2.2)

ray

!=310,"=090

cell (spherical surfel)

sampling point

C

x

z

y

Figure 2.1: Sphere with equidistant sampling points (black dots) spanning a
grid (here: vertical grid segment) and surface elements representing cells C(i).
A ray going through a surface element represents possible sampling points for
a fixed set of angles (φ, θ) and varying radius r, i.e., it illustrates a direction.
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where an−εn/2 ≤ Cn ≤ an+εn/2 with an ∈ (εnZ). Thus, the N -dimensional intervals
∀i : I(i) ∈ I are equidistant, and the corresponding quantization cells C(i) ∈ C are
equal in size. Both I and C are sets. A direction with εn = 0 is defined as a continuous
one: (εnZ) = R and lim

εn→0
Cn = 0.

Now, let’s assume a spatial filter that samples a region D1 ∈ RN in a way that
its subregions introduced by sampling, i.e., N -dimensional cells of D1, are equal
in size. If D2 ⊂ RN is a nonlinearly distorted or transformed version of D1, i.e.,
f : D1 ⊂ RN → D2 ⊂ RN , where f(·) is a nonlinear function, then the same spatial
filter samples D2 in a nonlinear way, so that the N -dimensional cells are unequal in size.

Example 2 (Linear and Nonlinear Spatial Sampling of a Line Em-
bedded in R2). Let’s assume a spatial filter that samples an arc linearly
with elevation angles 120 ≤ θ ≤ 180 and step-size ∆θ = 10, a fixed azimuth
angle φ, and a radius r = h (see Figure 2.2). The black dots on the arc, it is
labeled as region D1 ∈ R embedded in R2, represent the sampling points after
sampling region D1. Each arc-segment between two sampling points has the
same size, i.e., each interval and cell (arc not labeled in figure) is equal in
size. This is due to the spatial sampling of the arc with radius r = h based on
a discrete set of equally-spaced elevation angles. Now, let’s transform D1 in
a way that we obtain the tangent D2 ∈ R of the arc at point (r = h, θ = 180).
We call this tangent the target axis. The same spatial filter samples D2 in a
nonlinear way, so that we obtain unequal intervals I(i) and cells C(i). The
smaller the angular difference θ̃θ, the larger its corresponding interval I(i)

and cell C(i). �

Example 3 (Linear and Nonlinear Spatial Sampling of a Disc Em-
bedded in R3). Let’s assume a spatial filter that samples a circle lin-
early with azimuth angles 0 ≤ φ < 360 and step-size ∆θ = 10, and a radius
r ∈ {r1, r2}. The radii {ri | ri = (−h) cos(θ)−1, θi = {140, 130}, i = {1, 2}}
point on a two-dimensional region D2, the target plane (see Figure 2.3). The
cells aligned on a circle for a fixed θ and varying φ are equal in size. This

sensor array axis/plane

-h

!~120
!~130

C1 C2≠C6

I6
!=120°

!=140°

!=180°

C2 C3 C4 C5 C6 C7

~ ~

target
axis
/

plane

D1

D2

r=h

x

z

y

Figure 2.2: Region D1 represents the arc, whereas D2 represents the target axis.
The black dots and circles on the arc and target axis, respectively, illustrate
sampling points that span a grid on both regions. Variable θ̃θ represents the
angular difference between the sensor array axis and an arbitrary elevation angle
θ. Variables C(i) and I(i) represent a cell and an interval related to a certain θ.
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is due to the linear sampling of a circle with linearly spaced azimuth angles
φ. However, if we consider both radii in D2, the cells’ size and interval on a
circle are constant but grow for increasing radii. This means that the spatial
filter samples a circle linearly, but a disc nonlinearly. �

x

y

z

!=020°
!=030°

!=040°

"=130°

"=135°

"=140°

"=145°

!=290°

!=310°
!=300°

r2

r1
cell (circular segment)

D2

sampling point

l6"
!l6

Figure 2.3: The black dot in the centroid of each circular segment illustrates a
sampling point that span a grid on region D2, which is the target plane. The
circular segments grow in size for an increasing radius.
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Chapter 3

Spatial Resolution

The resolution of a spatial filter depends the spatial sampling interval or cell size:
the smaller it is, the higher the spatial resolution. In practice, finite computational
resources limit the spatial resolution to an upper bound. However, the more computa-
tional resources are available, the smaller we can set the sampling intervals to obtain a
better spatial resolution—without loosing realtime performance. This enables a more
accurate position assignment of a detected target in space. The following example
illustrates the effect of a limited resolution in case of target detection.

Example 4 (Limited Spatial Sampling Resolution). A target
detector—a spatial filter—linearly samples a region D ⊂ RN , and splits it
into a set C of equally sized cells C. The centroid of each cell represents a
sampling point in D. In case of an infinite high resolution, the target detector
would be able to sample each point in D; thus, C would be infinitesimal small.
In case of a limited resolution, the target detector samples a finite number
of points in D, and VC > ε, where VC is the size or hyper-volume of C,
and ε is an infinitesimal small number. After sampling D with a limited
resolution, the target detector determines the activity but not the number of
targets in each cell. If there are two targets at different positions within C,
the filter would only detect a single target activity. To detect both targets,
the sampling resolution has to be increased until both targets are located in
different cells. �

In the remaining report, we will use a limited angular resolution as defined in (2.1).

10



Chapter 4

Nonlinear Spatial Sampling
of a Line Embedded in R2

Let’s start with a theoretical and simple scenario about sampling a one-dimensional
region, more specifically, a straight line embedded in R2. Our goal is to derive a math-
ematical expression for the radius that points on cells that split the straight line into
segments. We will need these segments later to set up a mask that provides informa-
tion about the probability of target presence.

For now, let’s assume a moving target on a straight line parallel to the sensor array axis
and call this line the target axis (see Figure 2.2). A sampling point is the intersection
point of the target axis and a straight line originating from the center of the coordinate
system, which is the center of the sensor array, and running in a direction φ. Thus,
we need to know the target’s height, which is given in case of, e.g., a wheelchair user.

Both, the sensor array and target axis, lie within a two-dimensional region defined as
D = {(x, y) | x ∈ R, y ∈ R<0}, where (x, y) are Cartesian coordinates. We convert
the Cartesian to polar coordinates (r, φ) according to

x = r cos(φ) (4.1)

y = r sin(φ) (4.2)

with {(r, φ) | r ∈ R≥0, 180 < φ < 360}. The sum of the squared cartesian coordinates
is

x2 + y2 y=(−h)
= x2 + (−h)2 = r2(cos2(φ) + sin2(φ)) = r2,

where

y = −h, h ≥ 0. (4.3)

Its square root yields the radius

r =
√
x2 + (−h)2 (4.4)

pointing to x = (x,−h)T . Variable h represents the Euclidean norm of vector h, which

is a vector perpendicular to the region D̃ = {(x, y) | x ∈ R, y = 0, D̃ ⊂ D}—the sensor
array axis—pointing to x = (x,−h)T . We combine (4.1) and (4.3) to form a vector

r = (r cos(φ),−h)T = (
√
x2 + (−h)2 cos(φ),−h)T .1 (4.5)
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Now, we define a parameter set P = {h, φ,∆φ} that comprises the azimuthal step
size ∆φ. Additionally, we define the azimuthal cell boundaries φp = φ + ∆φ/2 and
φm = φ − ∆φ/2 as well as cell C—it is an Euclidean distance measure at the same
time—

C(P) = ‖r(φm)− r(φp)‖, (4.6)

where r(φp) and r(φm) are vectors pointing in different directions φp and φm, respec-
tively. Inserting (4.5) into (4.6) yields

C(P) =

∥∥∥∥∥
( √

x2
φm

+ (−h)2 cos(φm)

−h

)
−

( √
x2
φp

+ (−h)2 cos(φp)

−h

)∥∥∥∥∥ (4.7)

with xφp = r cos(φp) and xφm = r cos(φm). We omit the y-components in (4.7)—
their difference is always zero—due to simplicity. Therefore, we replace the Euclidean
distance ‖ · ‖ by the modulus | · |. Now, we substitute x in a way that C becomes
independent of variable x. Therefore, we assume y = (−h) = rφ sin(φ) and consider
(4.4) for a general θ to obtain

(−h) =
√
x2
φ + (−h)2 sin(φ), (4.8)

and solve (4.8) for xφ so that

xφ = (−h)
√

sin(φ)−2 − 1 = (−h)

√
1− sin(φ)2

sin(φ)

which yields

xφ = (−h) tan(φ)−1. (4.9)

The index in xφ refers to the dependency on φ. Now, we can rewrite r according to

r(h, φ) = (−h)
(
tan(φ)−1, 1

)T
. (4.10)

Inserting (4.9) into (4.7) and considering the modulus yields

C(P) = h

(√
sin−2(φm) cos(φm)−

√
sin−2(φp) cos(φp)

)
. (4.11)

After applying the trigonometric identities we get

C(P) = h
(
tan(φm)−1 − tan(φp)

−1) , (4.12)

which is a mathematical expression to calculate the cells on a straight line.

Another way to derive C is to solve a line integral over a uniform scalar field f(r(h, φ)) =
1, which will be necessary in the next section. Assume that the straight line S can be
partitioned into sub-lines ∆si. We can compute S by summing over all infinite small
sub-lines according to

S = lim
∆si→0

N∑
i=1

f(r(h, φ)) ·∆si = lim
∆si→0

N∑
i=1

∆si (4.13)

1We use r instead of x to represent a point in R2 in polar coordinates.
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where N is the total number of line segments. The distance between subsequent points
on the straight line is

∆si = |r(h, φi + ∆φ)− r(h, φi)| ≈
∣∣∣∣dr(h, φi)

dφi

∣∣∣∣∆φ. (4.14)

Substituting (4.14) into (4.13) yields

S = lim
∆si→0

N∑
i=1

∣∣∣∣dr(h, φi)

dφi

∣∣∣∣∆φ,
the Riemann sum for

S =

∫ ∣∣∣∣dr(h, φ)

dφ

∣∣∣∣dφ.
To calculate the length of a cell C, we need to set the limits of the integral according
to

C =

φp∫
φm

∣∣∣∣dr(h, φ)

dφ

∣∣∣∣ dφ. (4.15)

Inserting∣∣∣∣dr(h, φ)

dφ

∣∣∣∣ =

∣∣∣∣(−h)
d

dφ

(
cos(φ) sin(φ)−1

1

)∣∣∣∣
=

∣∣∣∣∣∣(−h)

 − sin(φ) sin(φ)− cos(φ) cos(φ)

sin(φ)2

0

∣∣∣∣∣∣
=

h

sin(φ)2

into (4.15) yields

C =

φp∫
φm

h

sin(φ)2
dφ = (−h) [cot(φp)− cot(φm)] ,

which results in

C = h
(
tan(φm)−1 − tan(φp)

−1) , (4.16)

and which is identical to (4.12).

Now, we can split the target axis into segments by applying (4.16), and with (4.10)
we are able to calculate the distance between the origin of the coordinate system and
each point on the target axis.
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Chapter 5

Nonlinear Spatial Sampling
of a Plane Embedded in R3

Now, let’s continue with a more realistic scenario. Our goal is to derive a mathematical
expression for the radius that points on cells that split the plane embedded in R3 into
segments.

Let’s assume a moving target on a plane—the target plane—that is parallel to the
sensor array plane. A sampling point is the intersection point of the target plane and
a straight line originating from the center of the coordinate system, which is the center
of the sensor array, and running in a direction (φ, θ). Once again, we need to know
the target’s height.

Let’s consider the centroid of a sensor array as the origin of the coordinate system.
We define a region D = {(x, y, z) | x ∈ R, y ∈ R, z ∈ R<0} and convert the cartesian
to spherical coordinates (r, φ, θ) according to

x = r sin(θ) cos(φ) (5.1)

y = r sin(θ) sin(φ) (5.2)

z = r cos(θ) (5.3)

with {(r, φ, θ) | r ∈ R≥0, 0 ≤ φ < 360, 90 < θ ≤ 180}. Taking into account that

z = −h, h ≥ 0 (5.4)

yields a radius according to

r =
√
x2 + y2 + (−h)2 (5.5)

pointing to x = (x, y,−h)T . Variable h represents the Euclidean norm of vector h,

which is a vector perpendicular to the region D̃ = {(x, y, z) | x ∈ R, y ∈ R, z =

0, D̃ ⊂ D}—the sensor array plane—pointing to x = (x, y, z)T . We combine (5.1),
(5.2), and (5.4) to form a vector:

r =

 r sin(θ) cos(φ)
r sin(θ) sin(φ)

−h

 =


√
x2 + y2 + (−h)2 sin(θ) cos(φ)√
x2 + y2 + (−h)2 sin(θ) sin(φ)

−h

 . (5.6)

Now, we define a parameter set P = {h, φ, θ,∆φ,∆θ} that comprises the azimuthal
and elevation step sizes ∆φ and ∆θ. Additionally, we define the angular cell boundaries
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θp = θ + ∆θ/2, θm = θ − ∆θ/2, φp = φ + ∆φ/2, and φm = φ − ∆φ/2. Instead of
defining an Euclidean distance measure, we have to use integrals to determine the size
of a two-dimensional cell C. First, we need calculate the norm of (5.6):

r(h, φ, θ) = ‖r(h, φ, θ)‖ =

∥∥∥∥∥∥

√
x2 + y2 + (−h)2 sin(θ) cos(φ)√
x2 + y2 + (−h)2 sin(θ) sin(φ)

−h

∥∥∥∥∥∥ . (5.7)

Let’s assume that z = (−h) = r cos(θ) and consider this in (5.5) to obtain

(−h) =
√
x2 + y2 + (−h)2 cos(θ)

or

(−h) cos(θ)−1 =
√
x2 + y2 + (−h)2 (5.8)

after multiplying cos(θ)−1 on both sides. Inserting (5.8) into (5.7) results in

r(h, φ, θ) =

∥∥∥∥∥∥
 (−h) cos(φ) cos−1(θ) sin(θ)

(−h) sin(φ) cos−1(θ) sin(θ)
−h

∥∥∥∥∥∥ =

∥∥∥∥∥∥
 (−h) cos(φ) tan(θ)

(−h) sin(φ) tan(θ)
−h

∥∥∥∥∥∥
=
√

(−h)2 cos(φ)2 tan(θ)2 + (−h)2 sin(φ)2 tan(θ)2 + (−h)2

=
√

(−h)2 (cos(φ)2 tan(θ)2 + sin(φ)2 tan(θ)2 + 1)

=
√

(−h)2 (tan(θ)2 + 1)

= (−h)
√

tan(θ)2 + 1

which yields

r(h, θ) = (−h) cos(θ)−1 (5.9)

that does not depend on φ anymore. Now, we have derived the distance between the
origin of the coordinate system and each point on the target plane. To obtain an
expression for the corresponding cells, we have to calculate the area

C(P) =

φp∫
φm

r(h,θm)∫
r(h,θp)

r(h, θ)drdφ

=

φp∫
φm

r(h, θm)2 − r(h, θp)2

2
dφ

= (φp − φm)
r(h, θm)2 − r(h, θp)2

2

= ∆φ
r(h, θm)2 − r(h, θp)2

2

=
∆φ

2

(
(−h)2 cos(φm)−2 − (−h)2 cos(φp)

−2)
=

∆φh2

2

(
cos(φm)−2 − cos(φp)

−2)
=

∆φh2

2

(
1 + tan(φm)2 −

(
1 + tan(φp)

2)) ,
(5.10)
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which results in the area of a cell

C(P) =
∆φh2

2

(
tan2(θm)− tan2(θp)

)
.

Now, we can split the target plane into segments by applying (5.10), and with (5.9)
we are able to calculate the distance between the origin of the coordinate system and
each point on the target plane.
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Chapter 6

Probability of Target
Presence

Many target trackers are based on a (recursive) Bayesian filter [6]. Their performance
depends on transition models and likelihood functions, among others. In the previous
chapters, we derived expressions that enable us to improve the transition model’s pre-
diction step by properly assigning a distance between the sensor array and a point on
a target plane.

To improve the quality of the likelihood function, we introduce a probability of target
presence, which can be used to reduce clutter or any other inferences occurring at
places with a low probability density of target presence, e.g., places with non-removable
furniture or parts of a room that are not or hardly accessible; no one can go through
a pillar or wall, or walk on a conference room table or a bookshelf, just to name but
a few. Moreover, a target does not move (close) along the wall or tend to stay at
corners. Thus, the probability density of target presence at such places is low. It is
higher at frequently visited places, e.g., a chair next to an office desk, or a toilette,
a window, etc. We can model the probability density by a Gaussian mixture model,
which simplifies calculations and yields closed-form solutions when we split the region
of interest into cells and assign a probability1to each pair of angles (φ, θ).

Figure 6.1 depicts the probability of target presence modeled by weighted Gaussian
kernels or a uniform distribution. The uniform distribution enables us to precisely
set the boundaries of the region of interest—the probability density becomes zero at
specified regions, e.g., walls and obstacles—, but we cannot define different probability
densities within this region. By contrast, the Gaussian mixture distribution enables
us to define non-uniform probability densities within this region, but, due to the def-
inition of the Gaussian function, we are not able to set precise boundaries where the
probability becomes zero if they are exceeded. However, we can model an abrupt
decrease of probability density, but then we need to use a high number of Gaussian
kernels.

In the upcoming chapters, we will focus on the Gaussian mixture distribution. Still, for
the sake of completeness, we derive the closed-form solution for a uniform distribution.

1We assign a probability to each cell, but we compile a probability density describing the
probability of target presence in a room.
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Figure 6.1: A Gaussian mixture distribution and a uniform distribution model
the probability of target presence.

The probability distribution of a recursive Bayesian filtering update [6] is

p(xk|zk) =
p(zk|xk)p(xk|zk−1)

p(zk|zk−1)
,

where x and z represents the state and the measurement vector, respectively, and p(·)
is a probability distribution. Without going into detail, let’s focus on the likelihood
function p(zk|xk) only. A sensor array measures the target position or direction and
provides this information as a measurement distorted by sensor noise and other inter-
ferences. Both, the sensor noise and the interferences, can be modeled by likelihood
functions that faithfully reflect the measurement and transition models in a probabilis-
tic way. One way to fuse the likelihood function and the probability of target presence
is to multiply both functions together and consider the result in the Bayesian filtering
update [6]

p(xk|zk) =
p(zk|xk)p̃(zk|xk)p(xk|zk−1)

p(zk|zk−1)
,

where p̃(zk|xk) represents the probability of target presence.

Our main goal is to compute the probability of target presence for each cell and, thus,
for each set of angles (φ, θ). To do so, we have to split the region of interest into
cells, and we need to integrate the probability density over each cell to obtain its
probability.
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Chapter 7

Probability of Target
Presence of a Linear Cell
Embedded in R2

Let’s start with a simple scenario: a target is moving on a straight line, which is
split into several cells. Eq. (4.12) represents a one-dimensional cell C for a set of
parameters P without including the probability of target presence. Thus, we have to
rewrite (4.15) as follows:

p(P) =

∫
S⊂R1

fX(x;λ)dx =

φp∫
φm

fΦ(Ψ;λ)

∣∣∣∣dr(h, φ)

dφ

∣∣∣∣dφ (7.1)

where fX(x;λ) is a probability density function in Cartesian coordinates and fφ(Ψ;λ)
in polar coordinates depending on Ψ = (r(h, φ) cos(φ), r(h, φ) sin(φ))T . Set λ contains
the mean µ and variance σ.

7.1 Uniform Distribution

In case of a uniform probability of target presence, we set λ = {CΣ} and f(Ψ;λ) =

1/CΣ, where CΣ is the sum of all cell lengths {C(i)}Nφ,θi=1 , i.e., the length of the target
axis. Inserting the uniform density function in (7.1) and solving

p(P) =

φp∫
φm

fΦ(Ψ;λ)

∣∣∣∣dr(h, φ)

dφ

∣∣∣∣ dφ =

φp∫
φm

1

CΣ

∣∣∣∣dr(h, φ)

dφ

∣∣∣∣ dφ =
1

CΣ

φp∫
φm

h

sin(φ)2
dφ

yields

p(P) =
h

CΣ

(
tan(φm)−1 − tan(φp)

−1) ,
the probability of target presence of a cell, i.e., a line segment with parameters P.
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7.2 Gaussian Mixture Distribution

In case of a Gaussian mixture distribution, we set λ = {µi, σi, wi}Mi=1, where M is
the number of Gaussian kernels, µi and σi represents the mean and the variance of
the Gaussian kernel with index i, respectively. The parameter wi is its corresponding
weight. Let

fX(x;λ) =

M∑
i=1

wi · N (x;µi, σi), (7.2)

be a one-dimensional Gaussian mixture probability density function. The Gaussian
distribution in Cartesian coordinates is defined as

N (x;µi, σi) =
1√

2πσ2
i

e
− (x− µi)2

2σ2
i . (7.3)

Replacing x with xφ defined in (4.9) we get

p(P) =

φp∫
φm

fΦ(Ψ;λ)

∣∣∣∣dr(h, φ)

dφ

∣∣∣∣ dφ
=

φp∫
φm

(
M∑
i=1

wi · N (xφ;µi, σi)

)∣∣∣∣dr(h, φ)

dφ

∣∣∣∣ dφ
=

M∑
i=1

wi

φp∫
φm

(N (xφ;µi, σi))

∣∣∣∣dr(h, φ)

dφ

∣∣∣∣dφ

=

M∑
i=1

1√
2πσ2

i

φp∫
φm

e
− (xφ − µi)2

2σ2
i

∣∣∣∣dr(h, φ)

dφ

∣∣∣∣ dφ

=

M∑
i=1

1√
2πσ2

i

φp∫
φm

e
−
(
(−h) tan(φ)−1 − µi

)2
2σ2

i
h

sin(φ)2
dφ.

Substituting (−h) cot(φ)− µi = ui where

dui
dφ

= (−h)
d cot(φ)

dφ

= (−h)
(− sin(φ) sin(φ)− cos(φ) cos(φ))

sin(φ)2

= h
(sin(φ)2 + cos(φ)2)

sin(φ)2

=
h

sin(φ)2

yields the normalized Gaussian mixture functions

p(P) =

M∑
i=1

1√
2πσ2

i

u
(i)
p∫

u
(i)
m

e
− u2

i

2σ2
i dui
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with integral boundaries

u(i)
p = (−h) cot(φp)− µi
u(i)
m = (−h) cot(φm)− µi

Now, we can compute each cell’s probability and use it as a probability of target
presence to improve Bayesian filtering.
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Chapter 8

Probability of Target
Presence of a Planar Cell
Embedded in R3

Now, let’s assume a moving target on a plane embedded in R3. The plane is split into
two-dimensional cells C. To compute a cell’s probability, we need to calculate

p(P) =

∫∫
S⊂R2

fX,Y (x;λ)dx =

φp∫
φm

r(h,θm)∫
r(h,θp)

fΦ,Θ(Ψ;λ)r(h, θ)drdφ (8.1)

where fΦ,Θ(Ψ;λ) is a probability density function in Cartesian coordinates depending
on Ψ = (x = r cos(φ), y = r sin(φ))T . Set λ contains the mean vector µ and covariance
matrix Σ.

8.1 Uniform Distribution

In case of a uniform probability of target presence, we set λ = {CΣ} and f(Ψ;λ) =

1/CΣ, where CΣ is the sum of all cell areas {C(i)}Nφ,θi=1 , i.e., the area of the target
plane. Inserting the uniform density function in (8.1) results in

p(P) =

φp∫
φm

r(h,θm)∫
r(h,θp)

1

CΣ
r(h, θ)drdΦ =

∆φh2

2CΣ

(
tan(θm)2 − tan(θp)

2) ,
the probability of target presence of a cell, i.e., a plane segment with parameters P.

8.2 Gaussian Mixture Distribution

In case of a Gaussian mixture distribution, we set λ = {µi,Σi, wi}Mi=1, where M is
the number of Gaussian kernels, µi and Σi represents the mean and the variance of
the Gaussian kernel with index i, respectively. The parameter wi is its corresponding
weight. Let

fX,Y (x;λ) =

M∑
i=1

wi · N (x;µi,Σi), (8.2)
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be a two-dimensional Gaussian mixture probability density function. The multivariate
(here: bivariate) Gaussian distribution in Cartesian coordinates is defined as

N (x;µi,Σi) =
1

2π|Σi|1/2
e
−1

2
(x− µi)TΣ−1

i (x− µi)
(8.3)

with x = (x, y)T . We simplify the calculations by converting the given distribution
into polar coordinates and normalizing it. Before doing so, we factorize the covariance
matrix Σi, which simplifies the forthcoming coordinate transform from Cartesian to
polar coordinates.

8.2.1 Covariance Factorization

Let us assume a factorable and invertible covariance matrix

Σ = UΛUT = UΛ
1
2︸ ︷︷ ︸

A

(UΛ
1
2 )T = AAT

and Σ−1 = A−TA−1 for some invertible matrix A, where

Σ = {AAT | A ∈ R2×2, A = AT , xTAx > 0, x ∈ R2, x 6= 0},

which yields

N (x;µi,Σi) =
1

2π|AiAT
i |1/2

e
−1

2
(x− µi)TA−Ti A−1

i (x− µi)
.

By choosing the eigendecomposition as a factorization criterion, the columns of U are
unit eigenvectors and Λ is a diagonal matrix of eigenvalues. Combining the Cartesian
version of (8.1), as well as (8.2) and (8.3) yields

p(P) =

∫∫
S⊂R2

(
M∑
i=1

wi · N (x;µi,AiA
T
i )

)
dxdy

=

M∑
i=1

wi

∫∫
S⊂R2

(
N (x;µi,AiA

T
i )
)

dxdy

=

M∑
i=1

wi
2π|AiAT

i |1/2

∫∫
S⊂R2

e
−1

2
(x− µi)TA−Ti A−1

i (x− µi)
dxdy, (8.4)

where x = (x, y)T .

8.2.2 Conversion to Polar Coordinates

Now, we convert (8.4) to polar coordinates by substituting

x = r(h, θ) cos(φ)

y = r(h, θ) sin(φ),

To change the variables, we need to calculate the Jacobian matrix of x with its first-
order partial derivatives

J =

(
∂x

∂r(h,θ)
∂x
∂φ

∂y
∂r(h,θ)

∂y
∂φ

)
=

(
cos(φ) −r(h, θ) sin(φ)
sin(φ) r(h, θ) cos(φ)

)
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and its determinant

|det(J)| = | cos(φ)r(h, θ) cos(φ)− (−r(h, θ)) sin(φ) sin(φ)|

= r(h, θ)
∣∣cos(φ)2 + sin(φ)2

∣∣
= r(h, θ)

which yields | det(J)|drdφ = r(h, θ)drdφ = dxdy. After applying the substitution due
to the coordinate transform we get

p(P) =

M∑
i=1

wi
2π|AiAT

i |1/2

φp∫
φm

r(h,θm)∫
r(h,θp)

r(h, θ)× . . .

. . .× e

−1

2

(
r(h, θ) cos(φ)− µ(i)

x

r(h, θ) sin(φ)− µ(i)
y

)T
A−Ti A−1

i

(
r(h, θ) cos(φ)− µ(i)

x

r(h, θ) sin(φ)− µ(i)
y

)
drdφ.
(8.5)

8.2.3 Mean Adjusting

Now, we consider mean adjusting [7] in (8.5) by substituting ui = A−1
i (r(h, θ) − µi)

with r(h, θ) = (r(h, θ) cos(φ), r sin(φ))T and µi =
(
µ

(i)
x , µ

(i)
y

)T
, where

ui =

(
u

(i)
1

u
(i)
2

)
= A−1

i

(
r(h, θ) cos(φ)− µ(i)

x

r(h, θ) sin(φ)− µ(i)
y

)
= Bi

(
r(h, θ) cos(φ)− µ(i)

x

r(h, θ) sin(φ)− µ(i)
y

)

=

(
b
(i)
11 (r(h, θ) cos(φ)− µ(i)

x ) + b
(i)
12 (r(h, θ) sin(φ)− µ(i)

y )

b
(i)
21 (r(h, θ) cos(φ)− µ(i)

x ) + b
(i)
22 (r(h, θ) sin(φ)− µ(i)

y )

)

with

Bi = A−1
i =

1

|Ai|

(
a

(i)
22 −a(i)

12

−a(i)
21 a

(i)
11

)
,

which is the inverse of Ai. The Jacobian matrix of ui is defined as

Ji =

 ∂u
(i)
1

∂r(h,θ)
∂u

(i)
1

∂φ

∂u
(i)
2

∂r(h,θ)
∂u

(i)
2

∂φ

 =

(
b
(i)
11 cos(φ) + b

(i)
12 sin(φ) −b(i)11 r(h, θ) sin(φ) + b

(i)
12 r(h, θ) cos(φ)

b
(i)
21 cos(φ) + b

(i)
22 sin(φ) −b(i)21 r(h, θ) sin(φ) + b

(i)
22 r(h, θ) cos(φ)

)

with its determinant

| det(Ji)| = r(h, θ) ·
∣∣∣b(i)11 b

(i)
22 − b

(i)
12 b

(i)
21

∣∣∣ = r(h, θ) · |Bi| = r(h, θ) · |A−1
i | = r(h, θ) · |Ai|−1,

which yields

du
(i)
1 du

(i)
2 = | det(Ji)|drdφ = r(h, θ) · |Ai|−1drdφ =

r(h, θ)

|AiAT
i |1/2

drdφ.
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8.2.4 A Cell’s Probability

After applying the substitution and considering a single Gaussian kernel for reasons
of clarity and comprehensibility, we get

p̃(P) =
1

2π

ζ1,1∫
ζ1,0

ζ2,1∫
ζ2,0

e
−1

2
uTu

du1du2

=
1

2π

ζ1,1∫
ζ1,0

ζ2,1∫
ζ2,0

e
−1

2

(
u2

1 + u2
2

)
du1du2

=
1

2π

ζ1,1∫
ζ1,0

e
−1

2
(u2

1 + ζ2
2,1)

−ζ2,1
− e
−1

2
(u2

1 + ζ2
2,0)

−ζ2,0

du1

=
1

2π


e
−1

2
(ζ2

1,1 + ζ2
2,1)

(−ζ1,1)(−ζ2,1)
− e
−1

2
(ζ2

1,0 + ζ2
2,1)

(−ζ1,0)(−ζ2,1)

−
e
−1

2
(ζ2

1,1 + ζ2
2,0)

(−ζ1,1)(−ζ2,0)
− e
−1

2
(ζ2

1,0 + ζ2
2,0)

(−ζ1,0)(−ζ2,0)




=
1

2π

e
−1

2
(ζ2

1,1 + ζ2
2,1)

ζ1,1 · ζ2,1
− e
−1

2
(ζ2

1,0 + ζ2
2,1)

ζ1,0 · ζ2,1
− e
−1

2
(ζ2

1,1 + ζ2
2,0)

ζ1,1 · ζ2,0
+

e
−1

2
(ζ2

1,0 + ζ2
2,0)

ζ1,0 · ζ2,0



=
1

2π

∑
0≤j1,j2≤1

(−1)j1+j2 e
−1

2
(ζ2

1,j1 + ζ2
2,j2)

ζ1,j1 · ζ2,j2
.

Considering all kernels yields

p(P) =

M∑
i=1

wi
2π

∑
0≤j1,j2≤1

(−1)j1+j2 e
−1

2

(
ζ

(i) 2
1,j1

+ ζ
(i) 2
2,j2

)
ζ

(i)
1,j1
· ζ(i)

2,j2

with jn ∈ {0, 1},

ζ
(i)
n,0 = b

(i)
n,1

(
r(h,Θp) cos(Φm)− µ(i)

x

)
+ b

(i)
n,2

(
r(h,Θp) sin(Φm)− µ(i)

y

)
and

ζ
(i)
n,1 = b

(i)
n,1

(
r(h,Θm) cos(Φp)− µ(i)

x

)
+ b

(i)
n,2

(
r(h,Θm) sin(Φp)− µ(i)

y

)
.

Now, we can compute each cell’s probability and use it as a probability of target
presence to improve Bayesian filtering.
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Chapter 9

Probability of Target
Presence of a
Frustum-Shaped Cell
Embedded in R3

Now, let’s focus on a realistic scenario: a target is moving within a cuboid spanning
a region S, which is split into several cells. To calculate the probability of target
presence for a three-dimensional cell C, we have to solve

p(C|S;P) =

∫∫∫
S⊂R3

fX,Y,Z(x;λ)dx (9.1)

=

φp∫
φm

θp∫
θm

r(h+∆h,θ)∫
r(h−∆h,θ)

fH,Φ,Θ(Ψ;λ)r(h, θ)2 sin(θ)drdφdθ (9.2)

where fH,Φ,Θ(Ψ;λ) is a probability density function in spherical coordinates depend-
ing on Ψ = (r(h, θ) sin(θ) cos(φ), r(h, θ) sin(θ) sin(φ), r(h, θ) cos(θ))T . Set λ contains
the mean vector µ and covariance matrix Σ. But this time, we need to specify the
covariance matrix

Σ =

 σ11 σ12 0
σ21 σ22 0
0 0 σ33

 ,

if we assume that fX,Y,Z(Ψ;λ) = fX,Y (Ψ;λ1) · fZ(Ψ;λ2), i.e., the random variable Z
is independent of X and Y . Thus, fZ(Ψ;λ2) is constant on a plane that is parallel
to the array plane. It is noteworthy to mention that we consider a finite region—the
cuboid—in R3 only; but the Gaussian mixture distribution is defined everywhere on
R3. However, we assume that the target moves within a certain region S. Thus, we
have to calculate the conditional probability p(C|S) = p(C ∩ S)/p(S), where region
S ⊂ R3 represents the cuboid, C is an oblique pyramidal frustum-shaped cell and a
subregion of S (see Figure 9.1). We will use this notation when we apply the Gaussian
mixture distribution.
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9.1 Uniform Distribution

In case of a uniform probability of target presence, we set λ = {CΣ} and f(Ψ;λ) =

1/CΣ, where CΣ is the sum of all cell volumes {C(i)}Nφ,θi=1 , i.e., the cuboid. Thus,

p(C;P) =

φp∫
φm

θp∫
θm

r(h+∆h,θ)∫
r(h−∆h,θ)

1

CΣ
r2(h, θ) sin(θ)drdφdθ

=
1

CΣ

φp∫
φm

θp∫
θm

r(h+ ∆h, θ)3 − r(h−∆h, θ)3

3
sin(θ)dφdθ

=
(−1)

CΣ

φp∫
φm

θp∫
θm

(
(h+ ∆h)3 cos(θ)−3 − (h−∆h)3 cos(θ)−3) sin(θ)

3
dφdθ

=
(h+ ∆h)3 − (h−∆h)3

3CΣ

φp∫
φm

θp∫
θm

sin(θ)

− cos(θ)−3
dφdθ.

x

z
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Substituting u = cos(θ) with dθ = −du/ sin(θ) results in

p(C;P) =
(h+ ∆h)3 − (h−∆h)3

3CΣ

φp∫
φm

υp∫
υm

1

u3
dφdθ

=
(h+ ∆h)3 − (h−∆h)3

6CΣ

φp∫
φm

(
1

υ2
m

− 1

υ2
p

)
dφdφdθ

=
∆φ

(
(h+ ∆h)3 − (h−∆h)3

)
6CΣ

(
1

υ2
m

− 1

υ2
p

)
.

Considering u = cos(θ) leads to

p(C;P) =
∆φ

(
(h+ ∆h)3 − (h−∆h)3

)
6CΣ

(
1

cos(θm)2
− 1

cos(θp)2

)
=

∆φ
(
(h+ ∆h)3 − (h−∆h)3

)
6CΣ

(
sec(θm)2 − sec(θp)

2)
with

p(C;P) =
∆φ

(
(h+ ∆h)3 − (h−∆h)3

)
6CΣ

(
tan(θm)2 − tan(θp)

2)
as the final result.

9.2 Gaussian Mixture Distribution

In case of a Gaussian mixture distribution, the parameter set λ = {µi,Σi, wi}Mi=1,
where M is the number of Gaussian kernels, µi and Σi represents the mean vector
and the covariance matrix of the Gaussian kernel with index i, respectively. The
parameter wi is the corresponding weight for this kernel. Thus, let

f(x;λ) =

M∑
i=1

wi · N (x;µi,Σi), (9.3)

be a two-dimensional Gaussian mixture probability density function. The multivariate
(here: bivariate) Gaussian distribution in Cartesian coordinates is defined as

N (x;µi,Σi) =
1

(2π)3/2|Σi|1/2
e
−1

2
(x− µi)TΣ−1

i (x− µi)
(9.4)

with x = (x, y, z)T . We can simplify the calculations by converting the given distribu-
tion into polar coordinates and normalizing it. Before doing so, we can factorize the
covariance matrix Σ, which simplifies the forthcoming substitution.

9.2.1 Covariance Factorization

Let us assume a factorable and invertible covariance matrix

Σ = UΛUT = UΛ
1
2︸ ︷︷ ︸

A

(UΛ
1
2 )T = AAT

and Σ−1 = A−TA−1 for some invertible matrix A, where

Σ = {AAT | A ∈ R3×3, A = AT , xTAx > 0, x ∈ R3, x 6= 0},
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which yields

N (x;µi,Σi) =
1

(2π)3/2|AiAT
i |1/2

e
−1

2
(x− µi)TA−Ti A−1

i (x− µi)
.

By choosing the eigendecomposition as a factorization criterion, the columns of U are
unit eigenvectors and Λ is a diagonal matrix of eigenvalues. Combining (9.1), (9.3),
and (9.4) yields

p(C|S;P) =
1

p(S)

∫∫∫
C⊂R3

(
M∑
i=1

wi · N (x;µi,AiA
T
i )

)
dxdy

=
1

p(S)

M∑
i=1

wi

∫∫∫
C⊂R3

(
N (x;µi,AiA

T
i )
)

dxdy

=
1

p(S)

M∑
i=1

wi
(2π)3/2|AiAT

i |1/2

∫∫∫
C⊂R3

e
−1

2
(x− µi)TA−Ti A−1

i (x− µi)
dxdy,

(9.5)

with

p(S) =

M∑
i=1

wi
(2π)3/2|AiAT

i |1/2

∫∫∫
S⊂R3

e
−1

2
(x− µi)TA−Ti A−1

i (x− µi)
dxdy,

where x = (x, y, z)T

9.2.2 Conversion to Spherical Coordinates

Now, we convert (9.5) to spherical coordinates by substituting

x = r(h, θ) sin(θ) cos(φ)

y = r(h, θ) sin(θ) sin(φ)

z = r(h, θ) cos(θ)

where r =
√
x2 + y2 + (−h)2, φ = arctan (y/x), and θ = arccos (−h/r(h, θ)). To

change the variables, we need to calculate the Jacobian matrix with its first-order
partial derivatives

J =


∂x

∂r(h,θ)
∂x
∂φ

∂x
∂θ

∂y
∂r(h,θ)

∂y
∂φ

∂y
∂θ

∂z
∂r(h,θ)

∂z
∂φ

∂z
∂θ


=

 sin(θ) cos(φ) −r(h, θ) sin(θ) sin(φ) r(h, θ) cos(θ) cos(φ)
sin(θ) sin(φ) r(h, θ) sin(θ) cos(θ) r(h, θ) cos(θ) sin(φ)

cos(θ) 0 −r(h, θ) sin(θ)


and its determinant

|det(J)| = r(h, θ)2 sin(θ),
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which yields | det(J)|drdφdθ = r(h, θ)2 sin(θ)drdφdθ = dxdy. After applying the
substitution we get

p(C|S;P) =
1

p(S)

M∑
i=1

wi
(2π)3/2|AiAT

i |1/2

φp∫
φm

θp∫
θm

r(h+∆h,θ)∫
r(h−∆h,θ)

r(h, θ)2 sin(θ)× . . .

. . .× e

−1

2

 r(h, θ) sin(θ) cos(φ)− µ(i)
x

r(h, θ) sin(θ) sin(φ)− µ(i)
y

r(h, θ) cos(θ)− µ(i)
z


T

A−Ti A−1
i

 r(h, θ) sin(θ) cos(φ)− µ(i)
x

r(h, θ) sin(θ) sin(φ)− µ(i)
y

r(h, θ) cos(θ)− µ(i)
z


drdφdθ

(9.6)

9.2.3 Mean Adjusting

Now, we consider mean adjusting [7] by substituting ui = A−1
i (r(h, θ) − µi) with

r(h, θ) = (r(h, θ) sin(θ) cos(φ), r(h, θ) sin(θ) sin(φ), r(h, θ) cos(θ))T and µi =
(
µ

(i)
x , µ

(i)
y , µ

(i)
y

)T
in (9.6), where

ui =

 u
(i)
1

u
(i)
2

u
(i)
3

 = A−1
i

 r(h, θ) sin(θ) cos(φ)− µ(i)
x

r(h, θ) sin(θ) sin(φ)− µ(i)
y

r(h, θ) cos(θ)− µ(i)
z

 = Bi

 r(h, θ) sin(θ) cos(φ)− µ(i)
x

r(h, θ) sin(θ) sin(φ)− µ(i)
y

r(h, θ) cos(θ)− µ(i)
z


=

 b
(i)
11 (r(h, θ) sin(θ) cos(φ)− µ(i)

x ) + b
(i)
12 (r(h, θ) sin(θ) sin(φ)− µ(i)

y ) + b
(i)
13 (r(h, θ) cos(θ)− µ(i)

z ))

b
(i)
21 (r(h, θ) sin(θ) cos(φ)− µ(i)

x ) + b
(i)
22 (r(h, θ) sin(θ) sin(φ)− µ(i)

y ) + b
(i)
23 (r(h, θ) cos(θ)− µ(i)

z )

b
(i)
31 (r(h, θ) sin(θ) cos(φ)− µ(i)

x ) + b
(i)
32 (r(h, θ) sin(θ) sin(φ)− µ(i)

y ) + b
(i)
33 (r(h, θ) cos(θ)− µ(i)

z )


with Bi = A−1

i , which is the inverse of Ai. The Jacobian matrix is defined as

J =


∂x

∂r(h,θ)
∂x
∂φ

∂x
∂θ

∂y
∂r(h,θ)

∂y
∂φ

∂y
∂θ

∂z
∂r(h,θ)

∂z
∂φ

∂z
∂θ

,
and the absolute value of the determinant is

|det(Ji)| = |Bi|r(h, θ)2 sin(θ),

which yields

du
(i)
1 du

(i)
2 du

(i)
3 = | det(Ji)|drdφdθ = |Bi|r(h, θ)2 sin(θ)drdφdθ =

r(h, θ)2 sin(θ)

|AiAT
i |1/2

drdφdθ.
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9.2.4 A Cell’s Probability

After applying the substitution and considering a single kernel and focussing on the
intersection of C ∩ S for reasons of clarity and comprehensibility, we get

p(C ∩ S) =
1

(2π)3/2

ζ1,1∫
ζ1,0

ζ2,1∫
ζ2,0

ζ3,1∫
ζ3,0

e
−1

2
uTu

du1du2du3

=
1

(2π)3/2

ζ1,1∫
ζ1,0

ζ2,1∫
ζ2,0

ζ3,1∫
ζ3,0

e
−1

2

(
u2

1 + u2
2 + u3

3

)
du1du2du3

=
1

(2π)3/2

ζ1,1∫
ζ1,0

ζ2,1∫
ζ2,0

e
−1

2
(u2

1 + u2
2 + ζ2

3,1)

−ζ3,1
− e
−1

2
(u2

1 + u2
2 + ζ2

3,0)

−ζ3,0

 du1du2

=
1

(2π)3/2

ζ1,1∫
ζ1,0

e
−1

2
(u2

1 + ζ2
2,1 + ζ2

3,1)

(−ζ2,1)(−ζ3,1)
− e
−1

2
(u2

1 + ζ2
2,0 + ζ2

3,1)

(−ζ2,0)(−ζ3,1)
− . . .

. . .− e
−1

2
(u2

1 + ζ2
2,1 + ζ2

3,0)

(−ζ2,1)(−ζ3,0)
+

e
−1

2
(u2

1 + ζ2
2,0 + ζ2

3,0)

(−ζ2,0)(−ζ3,0)

 du1

=
1

(2π)3/2

e
−1

2
(ζ2

1,1 + ζ2
2,1 + ζ2

3,1)

(−ζ1,1)(−ζ2,1)(−ζ3,1)
− e
−1

2
(ζ2

1,0 + ζ2
2,1 + ζ2

3,1)

(−ζ1,0)(−ζ2,1)(−ζ3,1)
− e
−1

2
ζ2
1,1 + ζ2

2,0 + ζ2
3,1)

(−ζ1,1)(−ζ2,0)(−ζ3,1)
+ . . .

. . .+
e
−1

2
ζ2
1,0 + ζ2

2,0 + ζ2
3,1)

(−ζ1,0)(−ζ2,0)(−ζ3,1)
− e
−1

2
(ζ2

1,1 + ζ2
2,1 + ζ2

3,0)

(−ζ1,1)(−ζ2,1)(−ζ3,0)
+

e
−1

2
(ζ2

1,0 + ζ2
2,1 + ζ2

3,0)

(−ζ1,0)(−ζ2,1)(−ζ3,0)
+ . . .

. . .+
e
−1

2
(ζ2

1,1 + ζ2
2,0 + ζ2

3,0)

(−ζ1,1)(−ζ2,0)(−ζ3,0)
− e
−1

2
(ζ2

1,0 + ζ2
2,0 + ζ2

3,0)

(−ζ1,0)(−ζ2,0)(−ζ3,0)



=
1

(2π)3/2

−e
−1

2
(ζ2

1,1 + ζ2
2,1 + ζ2

3,1)

ζ1,1ζ2,1ζ3,1
+

e
−1

2
(ζ2

1,0 + ζ2
2,1 + ζ2

3,1)

ζ1,0 · ζ2,1 · ζ3,1
+

e
−1

2
ζ2
1,1 + ζ2

2,0 + ζ2
3,1)

ζ1,1 · ζ2,0 · ζ3,1
− . . .

. . .− e
−1

2
ζ2
1,0 + ζ2

2,0 + ζ2
3,1)

ζ1,0 · ζ2,0 · ζ3,1
+

e
−1

2
(ζ2

1,1 + ζ2
2,1 + ζ2

3,0)

ζ1,1 · ζ2,1 · ζ3,0
− e
−1

2
(ζ2

1,0 + ζ2
2,1 + ζ2

3,0)

ζ1,0 · ζ2,1 · ζ3,0
− . . .

. . .− e
−1

2
(ζ2

1,1 + ζ2
2,0 + ζ2

3,0)

ζ1,1 · ζ2,0 · ζ3,0
+

e
−1

2
(ζ2

1,0 + ζ2
2,0 + ζ2

3,0)

ζ1,0 · ζ2,0 · ζ3,0



=
1

(2π)3/2

∑
0≤j1,j2,j3≤1

(−1)j1+j2+j3 e
−1

2
(ζ2

1,j1 + ζ2
2,j2 + ζ2

3,j3)

ζ1,j1 · ζ2,j2 · ζ3,j3
.
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Considering all kernels and the conditional probability yields

p(C|S;P) =
1

p(S)

M∑
i=1

wi
(2π)3/2

∑
0≤j1,j2,j3≤1

(−1)j1+j2+j3 e
−1

2

(
ζ

(i) 2
1,j1

+ ζ
(i) 2
2,j2

+ ζ
(i) 2
3,j3

)
ζ

(i)
1,j1
· ζ(i)

2,j2
· ζ(i)

3,j3

with jn ∈ {0, 1},

ζ
(i)
n,0 = b

(i)
n,1

(
r(h−∆h, θ) sin(θm) cos(φm)− µ(i)

x

)
+ b

(i)
n,2

(
r(h−∆h, θ) sin(θm) sin(φm)− µ(i)

y

)
+ b

(i)
n,3

(
r(h−∆h, θ) cos(θm)− µ(i)

z

)
and

ζ
(i)
n,1 = b

(i)
n,1

(
r(h+ ∆h, θ) sin(θp) cos(φp)− µ(i)

x

)
+ b

(i)
n,2

(
r(h+ ∆h, θ) sin(θp) sin(φp)− µ(i)

y

)
+ b

(i)
n,3

(
r(h+ ∆h, θ) cos(θp)− µ(i)

z

)
,

and with

p(S;P) =

M∑
i=1

wi
(2π)3/2

∑
0≤j1,j2,j3≤1

(−1)j1+j2+j3 e
−1

2

(
ζ

(i) 2
1,j1

+ ζ
(i) 2
2,j2

+ ζ
(i) 2
3,j3

)
ζ

(i)
1,j1
· ζ(i)

2,j2
· ζ(i)

3,j3

with jn ∈ {0, 1},

ζ
(i)
n,0 = b

(i)
n,1

(
r(h−∆h, θ)− µ(i)

x

)
+ b

(i)
n,2

(
−µ(i)

y

)
+ b

(i)
n,3

(
−µ(i)

z

)
and

ζ
(i)
n,1 = b

(i)
n,1

(
−µ(i)

x

)
+ b

(i)
n,2

(
−µ(i)

y

)
+ b

(i)
n,3

(
r(h+ ∆h, θ)− µ(i)

z

)
.

Now, we can compute the cell’s probability and use it in many different ways, e.g., as
a confidence measure in target detection and tracking.
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Chapter 10

Probability of Target
Presence in RN

Just for completeness, a more general solution for an N dimensional multivariate
Gaussian mixture distribution with hyper-spherical coordinates

u1 = r sin(φ1) sin(φ2) · · · sin(φN−2) cos(φN−1)

u2 = r sin(φ1) sin(φ2) · · · sin(φN−2) sin(φN−1)

...

uN−2 = r sin(φ1) sin(φ2) cos(φ3)

uN−1 = r sin(φ1) cos(φ2)

uN = r cos(φ1)

with

r =

√√√√ N∑
n=1

u2
n, φ1 = cos−1

 u1√
N∑
n=1

u2
n

 , · · · , φN−1 = cos−1

 uN−1√
N∑

n=N−1

u2
n


is

p(C|S;P) =
1

p(S)

M∑
i=1

wi
(2π)N/2

∑
0≤j1,j2,...,jN≤1

(−1)j1+...+jN e
−1

2

(
N∑
n=1

ζ
(i) 2
n,jn

)
N∏
n=1

ζ
(i)
n,jn

.

with jn ∈ {0, 1},

ζ
(i)
n,0 =

N∑
k=1

b
(i)
n,k

(
uk(φm)− µ(i)

k

)
and

ζ
(i)
n,1 =

N∑
k=1

b
(i)
n,k

(
uk(φp)− µ(i)

k

)
.
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The scaling factor p(S;P) is analogous to the scaling factor in the previous section
except that we have to consider the higher-dimensional extension and its corresponding
angles. However, the use of a four- or higher-dimensional solution goes beyond the
scope of this report.
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Chapter 11

Conclusion & Outlook

We introduced a mathematical framework that describes the nonlinear spatial sam-
pling and quantization properties of a single planar acoustic sensor array mounted on
the ceiling of a room. Furthermore, we answered the question how to calculate the
shapes and volumes of the nonuniform spatial quantization cells to avoid assuming false
linear physical conditions and, as a consequence, to increase a distant speech recog-
nition system’s accuracy. Beside that, we show how to generate a probability density
function based on a uniform distribution or a multi-variate Gaussian mixture model; it
is a prerequisite to compute the probability of target presence. Moreover, we describe
how to assign the probability of target presence to a nonuniform cell depending on
its size. Considering the nonlinearities can improve a target tracker’s performance by
assigning the correct distance- or cell-dependent steady-state velocity to a transition
model. The use of probability of target presence, which is assigned to each nonuniform
cell, can improve the tracking performance due to a modified more accurate likelihood
function. In case of a target localizer, we can reject measured clutter in cells featuring
a probability of target presence lower then a given threshold.

In our upcoming publications we want to show the increase in performance of a target
localizer and tracker by considering these nonlinearities in theoretical and real-world
experiments. In addition, we want to generate a general framework for different sensor
arrays—one-, two-, and three-dimensional—and different scenarios.
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