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Chapter 1

Geometry

1.1 Polyhedra and Polytopes

One of the earliest recorded uses of geometry as a counting tool is the notion of figurate
numbers 1. Ancient Greeks used pebbles (χαλίκι, where the word calculus comes from),
in order to do arithmetic. For example, an arrangement of pebbles as in Figure ?? would
be used to calculate triangular numbers. In general figurate numbers were popular in
ancient times. Unfortunately today we mostly care about squares and for some odd cases
(like pentagonal numbers in Euler’s celebrated theorem). Among the mathematicians
that were interested in figurate numbers was, of course, Diophantus. After an interesting
turn of events, one of the most prominent methods for the solution of linear Diophantine
systems relies on generalizing figurate numbers. We follow [4] which provides a complete
presentation of the topic.

Given a polytope in Rd we are interested in computing the lattice points in the
polytope. To make this sentence clear we first provide some definitions and terminology
from polyhedral geometry. Throughout this section, we fix d to be the dimension of the
ambient space Rd.

Most of the theory presented here is valid for arbitrary lattices, but for simplicity we
will always use the standard lattice Zd, except if another lattice is explicitly mentioned.

Our main goal is to investigate linear systems of equations/inequalities. An inequality
in d variables x1, x2, . . . , xd defines a halfspace in the Euclidean space Rd.

Definition 1.1.1 (Linear Half Space). A linear half space of Rd is a subset of Rd of the
form Hw,b = {v : v · w ≥ b} for some 0 6= w ∈ Rd and b ∈ R.

Given the inequality
d∑
i=1

aixi ≥ b, we have have the corresponding halfspace Ha,b.

Similarly, we have the definition of a hyperplane

Definition 1.1.2 ((Affine) Hyperplane). A hyperplane in Rd is a subspace of codimen-
sion 1. Like before we have Hw,b = {v : v · w = b} for some 0 6= w ∈ Rn and b ∈ R.

1polygonal numbers in Greek
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CHAPTER 1. GEOMETRY
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Figure 1.1: The first five triangular numbers.
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Figure 1.2: A hyperplane and a halfspace it defines.

We note that a hyperplane divides the Euclidean space in two half-spaces.
Since we want to deal with systems of inequalities, the next step is to consider

intersections of halfspaces. This leads to the definition of

Definition 1.1.3 (Polyhedron). A polyhedron is the intesection of finitely many linear
halfspaces in Rn.

More precisely, if A ∈ Zm×n and b ∈ Zm, then the polyhedron PA,b is the subset of
Rn defined as {x ∈ Rn : A · x ≥ b}.

We note that the restriction for finite intersections is naturally met in our setting,
since the number of inequalities in the system is always minite.

Although we will mostly deal with polyhedra, a very important object, especially
when it comes to lattice point enumeration, is the polytope.

Definition 1.1.4 (Polytope). A bounded polyhedron is called a polytope.
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CHAPTER 1. GEOMETRY

Figure 1.3: A polyhedron

Figure 1.4: A polytope

A second equivalent definition is the following:

Definition 1.1.5 (Polytope). A polytope is the convex hull of finitely many points in
Rn.

Polyhedra and polytopes are geometric objects with “flat” sides. The definitions
of supporting hyperplanes and faces makes this more formal and provide some useful
terminology.

Definition 1.1.6 (Supporting Hyperplane). A hyperplane H is said to support a set S
in Rd if:

• S is contained in one of the two closed half-spaces determined by H.
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CHAPTER 1. GEOMETRY

• ∃x ∈ S such that x ∈ H.

In other word, a supporting hyperplane H for the polyhedron P is a linear hyperplane
that intesects P and leaves P entirely in one side. We note that in the definition of
hyperplane we assumed that the codimension is 1, which is not a necessary condition for
the supporting hyperplanes of non full dimensional polyhedra.

(a) Supporting hyperplane intersecting a ver-
tex.

(b) Supporting hyperplane intersecting a
facet.

Figure 1.5

Definition 1.1.7 (Face, ray and facet). Let P be a polyhedron in Rd.
A face F of P is the intersection of P with a supporting hyperplane S.
The dimension of a face F is the dimension of the affine subspace spanned by F .
A face of dimension d is called a d-face.
In particular a 0-face is called vertex and a (d− 1)-face is called facet.

Figure 1.6: A facet, a 1-face and a vertex of a 3-polytope

Simplices are polytopes of very simple structure and are used as building blocks in
polyhedral geometry. We first define the standard simplex in dimension d.
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CHAPTER 1. GEOMETRY

Definition 1.1.8 (Standard Simplex). The standard d-simplex is the subset of Rd de-
fined by

∆d =

{
(x1, x2 . . . , xd) ∈ Rd+1|

d∑
i=1

xi ≤ 1 and xi ≥ 0 ∀i

}
Equivalently, The standard d-simplex ∆d is the convex hull of the d+ 1 points:

e0 = (0, 0, 0, . . . , 0), e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
...ed = (0, 0, 0 . . . , 1).

In general a simplex is defines as follows.

Definition 1.1.9 (Simplex). The d-simplex defined by the vertices v0, v1, . . . , vd is the
subset of Rd obtained by mapping the standard d-simplex by

(t0, . . . , td) 7→
d∑
i=0

tivi

In other words, a d-simplex is the convex hull of d + 1 points (in generic position,
linearly independent) in Rd.

Figure 1.7: The standard 3-simplex and the simplex defined by (3, 1, 0), (1, 2, 4), (0, 0, 2)
and the origin

1.2 Cones

Although the solution set of a linear Diophantine system is in general a polyhedron,
we will mostly work with polyhedral cones. Cones are polyhedra of a special type.
A (polyhedral) cone in Rd is the intersection of finitely many halfspaces in Rd, whose
bounding hyperplanes contain the origin. We choose the following definition that allows
more flexibility:
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CHAPTER 1. GEOMETRY

Definition 1.2.1 ((Polyhedral) Cone). Given a1, a2, . . . , ak, q ∈ Rd and an index set
I ⊆ [k], we define the cone generated by a1, a2, . . . , ak at q as

CIR(a1, a2, . . . , ak; q) = {x ∈ Rd : x = q +

k∑
i=1

`iai, `i ≥ 0, `i ∈ R, `j > 0 for j ∈ I}

If I = [k] then the cone is called open. If ∅ 6= I ⊂ [k] then the cone is called half-open.
If I = ∅ then the superscript will be omitted.

Figure 1.8: The cone generated by (5, 0) and (5, 5) and its lattice points

An object encoding all the information contained in a cone is the fundamental par-
allelepiped of the cone.

Definition 1.2.2 (Fundamental Parallelepiped). Given a cone C = CR(a1, a2, . . . , ad; q) ∈
Rd, we define its fundamental parallelepiped as

ΠR(C) =

{
d∑
i=1

kiai|ki ∈ [0, 1)

}

and
ΠZ(C) = ΠR(C) ∩ Zd

It is easy to see that a cone is spanned by copies of its fundamental parallelepiped.
Among cones there are two special types that have a central role in polyhedral

geometry. These are simplicial and unimodular cones.

Definition 1.2.3 (Simplicial Cone). A cone in Rd is called simplicial if it is generated
by linearly independent vectors in Rd.
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CHAPTER 1. GEOMETRY

(1, 0)

(1, 3)

+(1, 3)

+(1, 0)

Figure 1.9: The fundamental parallelepiped of the cone generated by (1, 0) and (1, 3).

Although usually the definition asserts d linearly independent generators, we do not
enforce this restriction. The reason is that often our cones, and polyhedra in general,
will not be full dimensional.

Definition 1.2.4 (Unimodular Cone). A cone C is called unimodular iff Π(C) = {0}.

Lemma 1.2.1. Let C = CR(r1, r2, . . . , rn) in Rm. If the matrix G =


r1

r2
...
rn

 contains a

unimodular maximal minor, then C is unimodular.

Proof. Let I be an index set such that [Gi]i∈I is unimodular and |I| = n, where Gi
is the i-th column of G. Wlog rearrange the coordinate system such that I are the
first n coordinates. Let Cn be the (orthogonal) projection of C into Rn. Then Cn is
unimodular. Since projection maps lattice points to lattice points, the only way that C
is not unimodular is that Π(C) contains lattice points that all project to the origin. In
that case, there would be a generator of the form (0, 0, . . . , 0, vn+1, vn+2, . . . , vm). Which
contradicts the assumption that [Gi]i∈I is unimodular.

Proposition 1.2.2. A pointed convex polyhedral cone is the convex hull of its (finitely
many) extreme rays.

Definition 1.2.5. If the set of generators of the cone C is {v1, v2, . . . , vk} then C is the
conic hull of {v1, v2, . . . , vk} and we denote it by C = co({v1, v2, . . . , vk})

An important tool in polyhedral geometry is the triangulation. A polyhedral object
with complicated geometry can be decomposed into simpler ones. The bulding block is
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CHAPTER 1. GEOMETRY

the simplex. Since we are interested mostly in cones, we present the definition for the
triangulation of a cone.

Definition 1.2.6 (Triangulation of a cone). A triangulation of a cone C is a finite
collection of simplicial cones Γ = {C1, C2, . . . , Ct} such that:

• ∪Ci = C,

• If C′ ∈ Γ then every face of C′ is in Γ.

• Ci ∩ Cj is a common face of Ci and Cj .

The following proposition says that we can triangulate a cone without introducing
new rays.

Proposition 1.2.3. A pointed convex polyhedral cone C admits a triangulation Γ, whose
1-dimensional cones are the extreme rays of C.
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Chapter 2

Semigroups

We start by fixing notation for different representations of subsets of Zn. Then we add
some structure on these subsets. The next step is to investigate the space where the
generating functions for such set live. Last we discuss how to change representation.

Some of the basic algebraic structures we need as underlying sets are

C The field of complex numbers

Z The ring of integer numbers

N The monoid of natural numbers

P The semigroup of positive integers

2.1 Representation

The main object of study in this thesis are subsets of Zn and in particular subsets of Nn.
We will use four representations for a subset of Zn. The first one is as a set of points
in Zn. The second one is the generating function of the set as a formal sum. The third
representation is the rational form of the generating function. The fourth representation
is as a geometric object living in some Euclidean space Rd.

As a trivial example consider [0,∞) ∩ Z:

1. [0,∞) ∩ Z

2.
∑∞

x=0 z
x

3. 1
1−x

4.

It is essential to fix notation in order to make clear which representation we consider
each time. In some cases it is even important for correctness. When discussing geometry
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CHAPTER 2. SEMIGROUPS

we will denote by x1, x2, . . . , xd the coordinates of Rd. The corresponding variables in
generating functions will be z1, z2, . . . , zd.

We will use the following conventions: Let S be a subset of Zn. The full generating
function of a set S is denoted by ΦS(z) =

∑
s∈S z

s (using multi-index notation) Its
rational form is denoted by ρS(z).

For the geometric representation we note that we do not assume our objects to be
full dimensional by considering the ambient space to be their affine span.

2.2 Semigroups

Definition 2.2.1 (Semigroup). A semigroup is a set S together with binary operation
·, such that

• For all a, b ∈ S we have a · b ∈ S.

• For all a, b, c ∈ S, we have (a · b) · c = a · (b · c).

We note that our semigroups, as well as all other algebraic structures we use, are
commutative. Moreover usually the semigroup operation will be called addition and will
be denoted by +.

Considering a homogeneous system of Diophantine equations, the solution set has a
semigroup structure. In particular it is a subsemigroup of the semigroup Nd. These sets
were the focus of Gordan and Hilbert in the context of invariant theory.

The following theorem shows the connection between cones and semigroups.

Theorem 2.2.1 (Gordan’s Lemma, [9]). If C ⊂ Rd is a rational cone, then C ∩A is an
affine semigroup for any subgroup A of Zd.

All semigroups under consideration in what follows are affine and they are defined
as

Definition 2.2.2 (Affine semigroup). A semigroup that is isomorphic to a subsemigroup
of Zd for some d is called affine.

In particular, Gordan gave a procedure to compute a minimal generating set of an
affine semigroup, while Hilbert proved that such a minimal generating set always exists
and is finite. In fact, Hilbert’s theorem is more general but the case we are interested in
is covered (and is explicit in the last page of his paper).

Definition 2.2.3. An affine semigroup A is called pointed if its only unit is 0, where a
unit is an element a ∈ A such that its additive inverse −a is in A.

In what follows we omit the characterization affine, since all of our semigroups are
affine (except if the contrary is explicitly stated).

Let’s see some semigroups that are relevant for our purposes.
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CHAPTER 2. SEMIGROUPS

(2, 0)

(1, 1)

Figure 2.1: The affine semigroup S.

Example 2.2.1. Let S be the semigroup generated by (1, 1) and (2, 0) (a semigroup
of N2). In the first figure we see the cone generated by (1, 1) and (2, 0) in R2 and its
fundamental parallelepiped. In the second figure we see the semigroup generated (the
filled points).

Example 2.2.2. Let C be the cone generated by (1, 4) and (2, 1) in R2. We define S
to be the semigroup obtained as the intersection C ∩ Z2. In the first figure is the cone
C, in the second figure we see the semigroup S.

Figure 2.2: The cone and the semigroup generated by (1, 4) and (2, 1).

It is easy to observe that following the procedure of the second example, we obtain
a semigroup that is not the semigroup generated by the generators of the cone. In
particular, there are elements of the semigroup that are not positive linear combinations
of the generators, such as the points (1, 1) and (2, 3).

12



CHAPTER 2. SEMIGROUPS

We extend the definition of a polyhedral cone and introduce notation to make this
distinction clear.

Definition 2.2.4. Given a1, a2, . . . , ak, q ∈ Rd and an index set I ⊆ [k], we define:

• the (real) cone generated by a1, a2, . . . , ak at q as

CIR(a1, a2, . . . , ak; q) = {x ∈ Rd : x = q +

k∑
i=1

`iai, `i ≥ 0, `i ∈ R, `j > 0 for j ∈ I}

• the semigroup cone generated by a1, a2, . . . , ak at q as

CIN(a1, a2, . . . , ak; q) = {x ∈ Rd : x = q +

k∑
i=1

`iai, `i ∈ N, `j > 0 for j ∈ I}

• the conic semigroup generated by a1, a2, . . . , ak at q as

CIZ(a1, a2, . . . , ak; q) = CIR(a1, a2, . . . , ak; q) ∩ Zd

As before, if I = [k] then the cone is called open and if ∅ 6= I ⊂ [k] then the cone is
called half-open.

(2, 0)

(1, 1)

Figure 2.3: CR(a1, a2), CN(a1, a2) and CZ(a1, a2) for a1 = (1, 1), a2 = (2, 0).

Then CIR(a1, a2, . . . , ak; q) is the cone generated by a1, a2, . . . , ak and translated at
q, CIN(a1, a2, . . . , ak; q) is the the semigroup generated by a1, a2, . . . , ak at q (as in Ex-
ample 2.2.1) and CIZ(a1, a2, . . . , ak; q) is the semigroup obtained as the intersection of
CIR(a1, a2, . . . , ak; q) with Zd (as in Example 2.2.2).

We note that CIN(a1, a2, . . . , an; q)⊕ΠI
(
CIN(a1, a2, . . . , an; q)

)
= CIZ(a1, a2, . . . , an; q).

Due to the nature of linear Diophantine systems, the semigroup we are interested in
is CIZ(a1, a2, . . . , ak). Thus, it is important to have a suitable notion of a basis for the
semigroup (since the generators are not necessarily enough).

13



CHAPTER 2. SEMIGROUPS

2.3 Hilbert Basis

The Hilbert basis is the unique minimal generating set of an conic semigroup, in the
sense that it does generate the semigroup but no subset of the Hilbert basis does.

Definition 2.3.1 (Hilbert basis for cones). A set of vectors {h1, h2, . . . , hn} is a Hilbert
basis of C = CR(h1, h2, . . . , hn) ⊂ Rd if CZ(h1, h2, . . . , hn) = CN(h1, h2, . . . , hn) and for
all i ∈ [n] we have that hi /∈ CN(h1, h2, . . . , hi−1, hi+1, . . . , hn).

Let HB (C) denote the Hilbert basis of the cone C. We illustrate the definition by
examples.

Example 2.3.1. Let C = CR ((1, 4), (2, 1)) ⊂ R2. Then HB (C) is the minimal generat-
ing set of CZ ((1, 4), (2, 1)).

Figure 2.4: The conic semigroup generated by (1, 4) and (2, 1). The red points are com-
binations of the generators and the green points are the lattice points in the fundamental
parallelepiped except for the origin.

Figure 2.5: If (1, 1), (1, 2), (1, 3) ∈ HB (C) then (2, 2), (2, 4), (2, 4) /∈ HB (C).

Since the lattice points of the fundamental parallelepiped are by definition not reach-
able by combinations of the generators, we definitely need to add some elements in the

14



CHAPTER 2. SEMIGROUPS

Hilbert basis. But not all of them as exhibited in Figure 2.5.

Example 2.3.2. Let C4 denote the set of all real solutions to the lecture hall inequalities,
i.e.

C4 =

{
λ ∈ R4 : 0 ≤ λ1

s1
≤ λ2

s2
≤ λ3

s3
≤ λ4

s4

}
Note that C4 is a cone. The Hilbert basis of C4 is given by the columns of

1 2 3 3 4 4 4 4
0 1 2 2 3 3 3 3
0 0 0 1 0 1 2 2
0 0 0 0 0 0 0 1

Note. The minimality of the Hilbert basis is interpreted differently by different author
in various contexts. Here we consider minimality with respect to inclusion. On the other
hand, given a grading or ordering, one can request that the elements in the basis are
minimal with respect to that grading.

2.3.1 Syzygies

(2, 1)

(1, 4)

Figure 2.6: The syzygy (1, 1) + (1, 3) + (1, 1) = (1, 4) + (2, 1)

Since a Hilbert basis is the set of generators with some extra elements, there is no
guarantee anymore that each element of the semigroup has a unique representation as a
combination of Hilbert basis elements. A relation between Hilbert basis elements is called
a syzygy. Continuing the previous example, we observe such a situation in Figure 2.6

Syzygies are important because they encode the elements of the semigroup that will
be counted more than once if we count the number of points generated by the Hilbert
basis elements.
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Chapter 3

Generating Functions

One of the most importnat tools in combinatorics and number theory, when dealing
with infinite sequences, is that of generating functions. The hope is that the generating
function, although encoding full information of an infinite object, has a short (or at least
finite) representation.

3.1 Univariate Generating Functions

We start by univariate (ordinary) generating functions. For a detailed introduction see
[7? ]. Given a set S ⊆ Z, we define the generating function ΦS(z) as

ΦS(z) =
∑
s∈S

zs

A better way to describe a countable set though, is though a function f : N 7→ S ∪ {0}.
This leads to the

Definition 3.1.1 (Univariate Generating Function). Let S ⊆ Z. Given a function
f : N 7→ S ∪ {0}, we define the generating function Φf (z) as

Φf (z) =
∑
n∈N

f(n)zn

When instead of a function f we use the name of a set S, we mean that the function
is the characteristic function

fS(x) =

{
1 : x ∈ S
0 : x /∈ S

The first example is of course the geometric series. Let S = N and then

ΦN(z) =
∑
i∈N

f(i)zi =
∑
i∈N

zi =
1

(1− z)

16



CHAPTER 3. GENERATING FUNCTIONS

Although it is easy to agree that the equations are “valid“, there are different ways
to interpret the last one, such as MacLaurin expansion or the multiplicative inverse of
1− z as a formal power series. Such questions will be our focus later.

Already from this example, we see that it is possible (and sometimes useful) to think
of our sets as sequences. In the previous example we considered the sequence (1, 1, . . .).

A slight variation is the sequence (1, 0, 1, 0, 1 . . .). Namely, we just introduce a gap
pattern, omitting the odd numbers. Then we have

Φ2N(z) =
∑
i∈2N

zi =
∑
i∈N

z2i =
1

(1− z2)

Although these two examples look too simple, it is their multivariate versions that
cover the majority of the cases we are interested in.

A slightly more interesting example would be that of triangular numbers (1, 3, 6, 10, 15, 21, . . .).
The n-th term is the binomial coefficient

(
n+2

2

)
. We have that

∞∑
n=0

(
n+ 2

2

)
zn =

1

(1− z)3

3.1.1 Rational Univariate Generating Functions

One of the main reasons for using generating functions is the hope that one can encode
them as rational functions, which provides a compact representation.

Definition 3.1.2 (Rational Generating Function). Let

ρ(x) =
∑
n≥0

f(n)xn

such that there exist P (x), Q(x) ∈ C[x], with Q(0) 6= 0 and F (x) = P (x)Q(x)−1.

Theorem 3.1.1 (Fundamental Property[? ]). Let d ∈ N∗ and α1, α2, . . . , αd ∈ C, with
αd 6= 0 and f : N→ C. The following are equivalent:

1.
∑
n≥0

f(n)xn =
P (x)

Q(x)
where Q(x) = 1 + α1x + α2x

2 + . . . + αdx
d and P (x) ∈ C[x]

with deg(P (x)) < d.

2. For all n ∈ N,

f(n+ d) + α1f(n+ d− 1) + α2f(n+ d− 2) + . . .+ αdf(n) = 0 (3.1)

3. For all n ∈ N, f(n) =
k∑
i=1

Pi(n)γni , where
k∏
i=1

(1−γix)di = 1+α1x+α2x
2+. . .+αdx

d,

the γi’s are distinct and Pi(x) is a polynomial in n with deg(Pi(x)) < di.
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CHAPTER 3. GENERATING FUNCTIONS

Proposition 3.1.2. Let d ∈ N and α1, α2, . . . , αd ∈ C, with αd 6= 0.
Suppose f : Z→ C satisfies the reccurence

f(n+ d) + α1f(n+ d− 1) + α2f(n+ d− 2) + . . .+ αdf(n) = 0 (3.2)

for all n ∈ Z
Then F (x) =

∑
n≥0

f(n)xn and −F ( 1
x) =

∑
n≥1

f(−n)xn are rational functions.

Proof. Let F (x) =
P (x)

Q(x)
, whereQ(x) = 1+α1x+α2x

2+. . .+αdx
d. Moreover, let L be the

vector space of Laurent series over C. The map L Q−→ L defined as multiplication by Q is

a linear transformation. By hypothesis, we have that Q(x)
∑
n≥0

f(n)xn = 0. By linearity

we have that Q(x)
∑
n≥1

f(−n)x−n = −Q(x)
∑
n≥0

f(n)xn = −P (x). By substituting x by

1
x we get

∑
n≥1

f(−n)xn = −P (x)

Q(x)
= −F

(
1

x

)
.

Proposition 3.1.3 (Closure properties). Let F (x) and G(x) be rational power series in
C[[x]]. Then the following are true:

• aF (x) + bG(x) ∈ C[[x]] for a, b ∈ C

• If
F (x)

G(x)
∈ C[[x]], then

F (x)

G(x)
is rational.

• F (x) ∗G(x) is rational powerseries. (Hadamard product)

Definition 3.1.3 (quasipolynomial1). is a function N→ C of the form f(n) =
d∑
i=0

ci(n)ni,

where each ci(n) is a periodic function with integer period and cd(n) is not identically
zero.

Proposition 3.1.4 (Characterization of quasipolynomial). f is a quasipolynomial if
there exists an integer N > 0 (the common period of the ci(n)) and polynomials f0, f1, . . . , fN−1

such that f(n) ≡ fi(n) if n ≡ i(modN)

3.2 Multivariate Generating Functions

Although univariate generating functions are very useful in many domains of mathemat-
ics, for our purposes multivariate ones are essential.

1pseudopolynomial, polynomial on redidue classes
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CHAPTER 3. GENERATING FUNCTIONS

Definition 3.2.1 (Generating Function). Given a set S ⊂ Zd, we define the generating
function

σS =
∑
s∈S

zs

All the generating functions we will encounter in later chapters are generating func-
tions with 0− 1 coefficients. In other words they represent a set S ⊆ Zd as

ΦfS
(z) =

∑
i∈Zd

fS(i)zi

for

fS(x) =

{
1 : x ∈ S
0 : x /∈ S

3.3 Generating Functions of Semigroups

3.3.1 Semigroup Cone

Figure 3.1: CN ((1, 3), (1, 0))

We first compute the generating function of a semigroup cone S = CN ((1, 3), (1, 0))
of Figure 3.1 .

The generating function as a formal power series is

ΦS(z) =
∑

i∈{k(1,3)+`(1,0)|k,`∈N}

zi =
∑
k,`∈N

zk(1,3)+`(1,0) =

(∑
k∈N

zk(1,3)

)(∑
`∈N

z`(1,0)

)
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Thus by the geometric series expansion formula we have

ρS(z) =

(
1

1− z(1,3)

)(
1

1− z(1,0)

)
=

1(
1− z1z3

2

)
(1− z1)

In general it is easy to see that for a semigroup cone S = CZ (a1,a2, . . . ,an) we have

ρS(z) =
1

(1− za1) (1− za2) · · · (1− zan)

Figure 3.2: CN ((1, 3), (1, 0); (1, 1))

Observe (Figure 3.2) that if we translate the semigroup to a lattice point, then
the structure does not change at all. There is a bijection between CN ((1, 3), (1, 0)) and
CN ((1, 3), (1, 0); (1, 1)), given by f(s) = s+(1, 1). Translating this to generating function
we have that

ΦCN((1,3),(1,0);(1,1))(z) =
∑

i∈{k(1,3)+`(1,0)+(1,1)|k,`∈N}

zi

=
∑
k,`∈N

zk(1,3)+`(1,0)+(1,1)

= z(1,1)

(∑
k∈N

zk(1,3)

)(∑
`∈N

z`(1,0)

)

Now it should be clear that the rational generating function for CN ((1, 3), (1, 0); (1, 1))
is
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ρCN((1,3),(1,0);(1,1))(z) = z(1,1)

(
1

1− z(1,3)

)(
1

1− z(1,0)

)
=

z(1,1)(
1− z1z3

2

)
(1− z1)

In general for a semigroup cone S = CZ (a1,a2, . . . ,an; q) we have

ρS(z) =
zq

(1− za1) (1− za2) · · · (1− zan)

3.3.2 Conic Semigroup

Figure 3.3: CZ ((1, 3), (1, 0)) .

There are two ways to construct the generating function for a conic semigroup.
Let’s consider the conic semigroup S = CZ ((1, 3), (1, 0)) of Figure 3.3, and compute its
generating function

ΦS =
∑
s∈S

zs

We observe in Figure 3.4 that S can be partitioned in three sets. The blue points are
reachable starting form the origin and using only the cone generators. The red points
are reachable by using only the cone generators if we start from the point (1, 1). And
similarly for the green ones if we start from (1, 2).

We observe that we have a partitioning of CZ ((1, 3), (1, 0)) to CN ((1, 3), (1, 0)),
CN ((1, 3), (1, 0); (1, 1)) and CN ((1, 3), (1, 0); (1, 2)).

The generating function of the semigroup generated by {h1, h2, . . . , hn} is given by
p(z)∏n

i=1(1−zhi ) where p(z) is a Laurent polynomial. The role of p(z) is to encode the syzygies

among the Hilbert basis elements hi.
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Figure 3.4: The conic semigroup separated in three subsets.
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Chapter 4

Partition Analysis

Partition Analysis is a general methodology for the treatment of linear Diophantine
systems. There are different algorithmic (or non algorithmic) realizations of the general
idea. The methodology is commonly attributed to MacMahon[8], since he was the first
to apply it in a way very similar to the one used today. That is, using Partition Analysis
for the solution of combinatorial problems subject to linear Diophantine systems.

Nevertheless, it is important to note that Elliott[6] introduced the basics of the
methodology and used it to solve linear homogeneous Diophantine equations. In partic-
ular, Elliott’s method is of interest because it is algorithmic. Elliott himself, although
lacking modern terminology, is arguing on the termination of the procedure.

MacMahon in Combinatory Analysis [8] exhibited how to use such a method in
order to solve interesting combinatorial problems. Due to various historical reasons,
including the lack of interest for computational procedures in mathematics for most of the
20th century, MacMahon’s method did not become mainstream among mathematicians.
Towards the end of the last century the method was revived [? ] and with the turn of the
century Andrews, Paule and Riese[1] gave a completely algorithmic version of Partition
Analysis, named Omega after the Omega operator introduced by MacMahon. Partition
Analysis powered by Symbolic Computation is a method that can algorithmically treat
combinatorial problems, subject to linear Diophantine systems.

For this section, we restrict to the following (non-parametric) problem:

Problem 4.0.1. Given A ∈Mm×n(Z) and b ∈ Zm compute gA,b =
∑

x∈Nn,Ax≥b
zx.

Exhibiting the method we will follow the historical timeline starting from Elliott and
arriving to Omega2.

4.1 MacMahon’s Partition Analysis

MacMahon was interested in solving systems of linear Diophantine inequalities. We start
by the case of one inequality first.
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Problem 4.1.1 (Homogeneous Inequality). Let A ∈ Zn and b ∈ Z. Find all x ∈ Nn
satisfying Ax ≥ b.

The generating function of the solution set is

gAx≥0(z) =
∑
Ax≥0

zx

Partition Analysis suggest the introduction of an extra variable λ to encode the inequality
Ax ≥ 0. This would transform the generating function to∑

x∈Nn,Ax≥0

λAxzx

The λ variable is introduced to encode the inequalities, but the solutions we are
searching for live in one dimension less. The λ dimension is used to control that after
the decomposition we can filter out the solutions involving negative exponents.

In the same way, Partition Analysis can be used to treat systems of inequalities as
well as inhomogeneous problems.

Following this principle, MacMahon introduced the concept of the crude generating
function. But before that, we define the λ-generating function as an intermediate step,
both in order to increase clarity in this section and because it is essential when discussing
geometry later.

Definition 4.1.1 (λ Generating Function). Given A ∈Mm×n(Z) and b ∈ Zm we define
the λ generating function as

Φλ
A,b =

∑
x∈Nn

zx
m∏
i=1

λAix−bii

Based on the geometric series expansion formula

(1− z)−1 =
∑
x≥0

zx

we can transform the series into a rational function. The rational form of Φλ
A,b is denoted

by ρλA,b and it has the form

ρλA,b = λ−b
n∏
i=1

1(
1− ziλ(AT )i

)
The λ generating function is the main object of study in this thesis.

Let’s see three examples. The first two are homogeneous thus the numerator is 1.
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Example 4.1.1 (Homogeneous Inequality). Let A = [ 3 −1 ] and b = 0.

Then

Φλ
A,b(z1, z2) =

∑
x1,x2∈N

λ3x1−x2zx11 zx22

and

ρλA,b =
1

(1− z1λ3)(1− z2λ−1)

Example 4.1.2 (Homogeneous System). Let A =

[
3 −1
4 −3

]
and b = 0. Then

Φλ
A,b(z1, z2) =

∑
x1,x2∈N

λ3x1−x2
1 λ4x1−3x2

2 zx11 zx22

and

ρλA,b =
1

(1− z1λ3
1λ

4
2)(1− z2λ

−1
1 λ−3

2 )

Example 4.1.3 (Inhomogeneous System). Let A =

[
3 −1
4 −3

]
and b =

[
1
2

]
. Then

Φλ
A,b(z1, z2) =

∑
x1,x2∈N

λ3x1−x2−1
1 λ4x1−3x2−2

2 zx11 zx22

and

ρλA,b =
λ−1

1 λ−2
2

(1− z1λ3
1λ

4
2)(1− z2λ

−1
1 λ−3

2 )

The Ω≥ operator MacMahon introduced (see [8]) the Ω≥ operator for the solution
of linear Diophantine systems. We take the definition from [1]:

Definition 4.1.2. The Ω≥ operator is defined on functions with absolutely convergent
multisum expansions

∞∑
s1=−∞

∞∑
s2=−∞

· · ·
∞∑

sr=−∞
As1,s2,...,srλ

s1
1 λ

s2
2 · · ·λ

sr
r (4.1)

in an open neighborhood of the complex circles |λi| = 1. The action of Ω≥ is given by

Ω≥

∞∑
s1=−∞

∞∑
s2=−∞

· · ·
∞∑

sr=−∞
As1,s2,...,srλ

s1
1 λ

s2
2 · · ·λ

sr
r :=

∞∑
s1=0

∞∑
s2=0

· · ·
∞∑
sr=0

As1,s2,...,sr (4.2)

Note. Although the definition is concerned with convergence issues, in what follows we
will use Ω≥ acting on purely formal objects. Nevertheless, the convergence properties
will be important in their connection to the geometric understanding.
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Having defined the Ω≥ operator, we can define the Crude Generating Function. This
is the form of the generating function for the solution set of a linear Diophantine system
that MacMahon introduced based on Elliott’s method and the Ω≥ operator.

Definition 4.1.3 (Crude Generating Function). Given A ∈ Mm×n(Z) and b ∈ Zm we
define the crude generating function as

ΦΩ
A,b := Ω≥

∑
x∈Nn

zx
m∏
i=1

λAix−bii

We stress the fact that the assignment is meant formally, since it is easy to see that

Ω≥Φλ
A,b(z;λ) = gA,b(z)

as well as

ΦΩ
A,b(z;λ) =

∑
x∈Nn,Ax≥b

zx = gA,b(z)

This means that Ω≥
∑

x∈Nn z
x
∏m
i=1 λ

Aix−bi
i is the answer to the problem of solving

linear Diophantine system. Thus, it is expected that the computation of the action of
the Ω≥ operator is not computationally easy.

In order to compute the action of Ω≥ on such a crude generating function, we have
3 algorithmic alternatives. These are Elliott’s Algorithm[6], Omega1[1] and Omega2[2].
Nevertheless, we start by presenting part of MacMahon’s ad hoc rules for computing
Ω≥, which cannot solve all possible inputs but were powerful enough for him to attack
many interesting combinatorial problems.

4.2 Elliott

The problem Elliott considers is to find all non-negative solutions to the equation

m∑
i=1

aixi −
m+n∑
i=m+1

bixi = 0 for ai, bi ∈ N (4.3)

In other words, we consider one homogeneous equation.

Note. It is hard to resist noting that Elliott himself (as well as subsequent authors) ex-
pressed the equation in the form that Diophantus would prefer. Without using negative
coefficients.

4.2.1 The method

Elliott outlines his method[6]:
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The principle is that in the infinite expansion which is the formal product of the
infinite expansions
1 + ξ1u

a1 + ξ1u
2a1 + . . .

1 + ξ2u
a2 + ξ2u

2a2 + . . .
...
1 + ξmu

am + ξmu
2am + . . .

1 + ξm+1u
−bm+1 + ξm+1u

−2bm+1 + . . .
1 + ξm+2u

−bm+2 + ξm+2u
−2bm+2 + . . .

...
1 + ξm+nu

−bm+n + ξm+nu
−2bm+n + . . .

the terms free from u are of the form ξx1
1 ξx2

2 · · · ξxm
m ξ

xm+1

m+1 ξ
xm+2

m+2 · · · ξ
xm+n

m+n with 1
for numerical coefficient, where x1, x2, . . . , xm, xm+1, . . . , xm+n are a set of positive
integers (zero included), which satisfy our diophantine equation 4.3, and that there
is just one such term for each set of solutions.

In other words, the generating function for determining the sets of solutions, each
once, of 4.3, as sets of exponents of the ξi’s in its several terms, is the expression for
the part which is free from u of the expansion of

1

(1− ξ1ua1)(1− ξu2a2) · · · (1− ξmuam)(1− ξm+1uam+1) · · · (1− ξm+nuam+n)
(4.4)

in the positive powers of the ξi’s.

The problem is, in any case, to extract from 4.4, and to examine, this generating
function. The extraction may be effected by a finite number of easy steps as follows.

The principle presented here by Elliott is the basis of Partition Analysis. That is,
introducing an extra variable, denoted by u in Elliott, that is denoted by λ in modern
Partition Analysis. In the following sections, we will see that this principle can be gener-
alized by introducing one λ variable for each equation/inequality in a linear Diophantine
system.

Before proceeding with presenting (in modern language) Elliott’s Algorithm, it should
be highlighted that Elliott explicitly says that he has an algorithm, even using almost
modern terminology (“a finite succession of simple stages“).

The method of Elliot is an algorithm that computes a Partial Fraction Decomposition
of an expression

1
k∏
i

(1− qi)

where qi ∈ [z1, z2, . . . , zm+n, λ, λ
−1], into a sum of the form

∑
i

±1∏
j

(1− pij)
.

27



CHAPTER 4. PARTITION ANALYSIS

such that for each i either pij ∈ [z1, z2, . . . , zm+n, λ] or pij ∈ [z1, z2, . . . , zm+n, λ
−1] for

all j. 1.
The algorithm is based on the fact

1

(1− z1λs)(1− z2
λt )

=
1

1− z1z2λs−t

(
1

1− z1λs
+

1

1− z2
λt
− 1

)
which expanded gives:

1

(1− z1λs)(1− z2
λt )

=
1

(1− z1z2λs−t)(1− z1λs)
+

1

(1− z1z2λs−t)(1− z2
λt )
− 1

(1− z1z2λs−t)

Example 4.2.1. A very simple example, where applying once the identity we obtain
the desired PFD is

1

(1− xλ)(1− y
λ)

=
1

(1− xy)(1− xλ)
+

1

(1− xy)(1− y
λ)
− 1

(1− xy)

Each of the summands in
∑
i

±1∏
j

(1− pij)
can be expanded using the geometric series

expansion. It is easy to see that the summands contributing to the generating function
for the solution of Equation 4.3, are exactly the ones where in their expansion λ does not
appear. This happens only for the terms ±1∏

k

(1− pk)
, where all pk are λ-free. Summing

up only these terms we get the wanted generating function.

4.2.2 Elliott for Inequalities

In a very similar way, one can use Elliott’s algorithm to solve inequalities (as mentioned

in [2]). In particular, after obtaining the partial fraction decomposition
∑
i

±1∏
j

(1− pij)
,

we observe that terms ±1∏
j

(1− pij)
contributing to the generating function of the solution

set of the homogeneous inequality

m∑
i=1

aixi −
m+n∑
i=m+1

bixi ≥ 0 for ai, bi ∈ N (4.5)

are exactly the ones that contain no negative exponents of λ in their pij ’s. This is because
of the separation to summands containing in their denominators products either only
from [z1, z2, . . . , zm+n, λ] or only from [z1, z2, . . . , zm+n, λ

−1]. Obviously, a summand
containing only non-positive products in the denominator cannot have in its expansion
a term with positive λ exponent.

Thus, summing up the terms where λ appears only in non-negative powers (including
the λ-free terms) we get the wanted generating function for the solution of Inequality 4.5.

1We change from ξ and u to z and λ in order to conform with more modern notational conventions.
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4.2.3 Elliott for Systems

It is important to note that Elliott’s method relies on the fact that the numerators in
all the expressions involved are equal to 1. Of course after bringing all the terms the
algorithm returns under common denominator, there is no guarantee that the numerator
will be 1. But for each term returned the condition is preserved. Thus it is possible to
iteratively apply the algorithm to eliminate λ’s in order to solve systems of equations
or inequalities. We note that Elliott proves that the numerators will always be ±1. No
repetitions occur in the computed expression.

Example 4.2.2. The system of linear homogeneous inequalities {7a−b ≥ 0, a−3b ≥ 0}
can be solved by Elliot, resulting to 1

(1−x)(1−x3y)
, if the inequality “a−3b ≥ 0“ is treated

first. If the order is reversed then the intermediate expression
−1− xy6

λ17
− xy5

λ14
− xy4

λ11
− xy3

λ8
− xy2

λ5
− xy

λ2

(1− xλ)(1− xy7

λ20
)

is violating the condition that numerators are equal to 1.

We observe that the second inequality ”covers“ the first one. Thus, choosing the
right order, the intermediate expression 1

(1−xλ7)(1−x3yλ20)
is behaving well.

We could still apply Elliott’s method if we did not bring the intermediate expression
under common denominator.

4.3 MacMahon

Here we present nine of the rules MacMahon (taken from [1]) used for the evaluation of
the Ω≥ operator. The proofs are usually easy, so we restrict to some observations.

Lemma 4.3.1 (MacMahon Rule 1).

Ω≥
1

(1− λx)
(
1− y

λs

) =
1

(1− x) (1− xsy)

Lemma 4.3.2 (MacMahon Rule 2).

Ω≥
1

(1− λsx)
(
1− y

λ

) =
1 + xy 1−ys−1

1−y
(1− x) (1− xys)

Note. The first two rules are about evaluating Ω≥
1

(1−λx)(1− y
λs )

and Ω≥
1

(1−λsx)(1− y
λ)

.

There is an apparent symmetry in the input, but elimination results in structurally

different numerators, i.e. 1 versus 1 + xy 1−ys−1

1−y .

Lemma 4.3.3 (MacMahon Rule 3).

Ω≥
1

(1− λx)
(
1− y

λ

) (
1− z

λ

) =
1

(1− x) (1− xy) (1− xz)
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Lemma 4.3.4 (MacMahon Rule 4).

Ω≥
1

(1− λx) (1− λy)
(
1− z

λ

) =
1− xyz

(1− x) (1− y) (1− xz) (1− yz)

Note. Although the rational function on which Ω≥ acts has three factors in the denom-
inator, the resulting rational generating function has four factors in the denominator.

Lemma 4.3.5 (MacMahon Rule 5).

Ω≥
1

(1− λx) (1− λy)
(
1− z

λ2

) =
1 + xyz − x2yz − xy2z

(1− x) (1− y) (1− x2z) (1− y2z)

Lemma 4.3.6 (MacMahon Rule 6).

Ω≥
1

(1− λ2x)
(
1− y

λ

) (
1− z

λ

) =
1 + xy + xz + xyz

(1− x) (1− xy2) (1− xz2)

Lemma 4.3.7 (MacMahon Rule 7).

Ω≥
1

(1− λ2x) (1− λy)
(
1− z

λ

) =
1 + xz − xyz − xyz2

(1− x) (1− y) (1− yz) (1− xz2)

Lemma 4.3.8 (MacMahon Rule 8).

Ω≥
1

(1− λx) (1− λy) (1− λz)
(
1− w

λ

) =
1− xyw − xzw − yzw + xyzw + xyzw2

(1− x) (1− y) (1− z) (1− xw) (1− yw) (1− zw)

Lemma 4.3.9 (MacMahon Rule 9).

Ω≥
1

(1− λx) (1− λy)
(
1− z

λ

) (
1− w

λ

) =
1− xyz − xyw − xyzw + xy2zw + x2yzw

(1− x) (1− y) (1− xz) (1− xw) (1− yz) (1− yw)

Note. For the rules for which the resulting rational function has more factors in the
denominator than what the original rational function, we observe that the numerator
has terms with both positive and negative signs.

Although these rules are not comprehensive, in the sense that they cannot cover all
cases needed to treat linear Diophantine system, they are useful and can solve certain
combinatorial problems. In what follows we present algorithmic approaches that can
attack any input of the linear Diophantine problem.

4.4 Andrews-Paule-Riese

4.4.1 Omega1

In [1], Andrews et al. present an algorithmic version of Partition Analysis combined with
the power of Symbolic Computation. The main tool is the Fundamental Recurrence for
the Omega operator. Iterative application of this recurrence is enough for computing
the action of the Omega operator.
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Lemma 4.4.1 (Theorem 2.1 in [1]).

Ω≥
λa

(1− x1λ) · · · (1− xnλ)(1− y1
λ ) · · · (1− ym

λ )
=
Pn,m,a(x1, x2, . . . , xn; y1, y2, . . . , ym)∏n

i=1(1− xi)
∏n
i=1

∏m
j=1(1− xiyj)

(4.6)
where for n > 1

Pn,m,a(x1, x2, . . . , xn; y1, y2, . . . , ym) =

1

xn − xn−1

xn(1− xn−1)

m∏
j=1

(1− xn−1yj)Pn−1,m,a(x1, x2, . . . , xn−2, xn; y1, y2, . . . , ym)

−xn−1(1− xn)

m∏
j=1

(1− xnyj)Pn−1,m,a(x1, x2, . . . , xn−2, xn−1; y1, y2, . . . , ym)


and for n = 1

P1,m,a(x1; y1, y2, . . . , ym) =


x−a1 if a ≤ 0

x−a1 +

m∏
j=1

(1− x1yj)

a∑
j=0

hj(y1, y2, . . . , ym)(1− xj−a1 ) if a > 0

The base cases for the recurrence are when either all the terms have positive λ
exponents or all the terms have negative λ exponents. For the two base cases we need to
define the Complete Homogeneous Symmetric Polynomials and some notational sugar
mostly to be used later.

Definition 4.4.1 (Complete Homogeneous Symmetric Polynomials, [2]). We define
hi(z1, z2, . . . , zn) through the generating function

∞∑
i=0

hi(z1, z2, . . . , zn)ti =
1

(1− z1t)(1− z2t) · · · (1− znt)

Definition 4.4.2. We denote by Ha(z1, z2, . . . , zn) the sum
a∑
i=0

hi(z1, z2, . . . , zn).

Lemma 4.4.2 (Lemma 2.1 in [1]). For any integer a,

Ω≥
λα

(1− x1λ)(1− x2λ) . . . (1− xnλ)
= Ω≥

∞∑
j=0

hj(x1, x2, . . . , xn)λa+j

= 1
(1−x1)(1−x2)...(1−xn) −H−a−1(x1, x2, . . . , xn)

Lemma 4.4.3 (Lemma 2.2 in [1]). For any integer a,

Ω≥
λα

(1− y1
λ )(1− y2

λ ) . . . (1− ym
λ )

= Ω≥

∞∑
j=0

hj(y1, y2, . . . , ym)λa−j

= Ha(x1, x2, . . . , xn)

The fundamental recurrence assumes that the exponents of λ are ±1. This is not a
strong assumption since we can always employ the following decomposition.
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Note (Roots of unity decomposition). The recurrence assumes that all powers of λ in
the denominator are ±1. As noted in [1], this can be achieved by the following transfor-
mations:

(1− xλr) =

r−1∏
j=0

(1− ρjx
1
rλ) (4.7)

(1− y

λs
) =

s−1∏
j=0

(1− σjy
1
s

λ
) (4.8)

where ρ = e
2πi
r and σ = e

2πi
s .

The obvious drawback of this approach is that we introduce complex coefficients
instead of ±1. This motivates the need for a better recurrence, which the same authors
provide in [2].

4.4.2 Omega2

In [2] the authors introduce an improved partial fraction decomposition method, given
by the recurrence of Theorem 4.4.4

Theorem 4.4.4 (Generalized PFD [2]). Let α ≥ β ≥ 1 and gcd(α, β) = 1. Then

1

(1− z1zα3 )(1− z2z
β
3 )

=
1

(zα2 − z
β
1 )

(
P̄ (z3)

(1− z1zα3 )
+

Q̄(z3)

(1− z2z
β
3 )

)
(4.9)

where P̄ (z3) :=
α−1∑
i=0

āiz
i
3 and āi =

−zβ1 z
i
β

2 , if β|i or i = 0

−zrmd((α−1 mod β)i,β)
1 z

rmd((β−1 mod α)i,α)
2 , otherwise

while Q̄(z3) :=

β−1∑
i=0

b̄iz
i
3 and b̄i =

{
zα2 , if i = 0

z
rmd((α−1 mod β)i,β)
1 z

rmd((β−1 mod α)i,α)
2 , otherwise

Moreover, two new base cases are introduced. As before, we define some notation
for homogeneous polynomials.

Definition 4.4.3 (Weighted Complete Homogeneous Symmetric Polynomials, [2]). We
define hi(z1, z2, . . . , zn; ζ1, ζ2, . . . , ζn) through the generating function

∞∑
i=0

hi(z1, z2, . . . , zn; ζ1, ζ2, . . . , ζn)ti =
1

(1− z1tζ1)(1− z2tζ2) · · · (1− zntζn)

Definition 4.4.4. We denote by Ha(z1, z2, . . . , zn; ζ1, ζ2, . . . , ζn) the sum

a∑
i=0

hi(z1, z2, . . . , zn; ζ1, ζ2, . . . , ζn)
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Lemma 4.4.5 (Case m = 0, Section 2 in [2]). For any integer a,

Ω≥
λa

(1−x1λj1 )(1−x2λj2 )...(1−xnλjn )
= Ω≥

∞∑
j=0

hj(x1, x2, . . . , xn; j1, j2, . . . , jn)λa+j

= 1
(1−x1)(1−x2)...(1−xn)−H−a−1(x1, x2, . . . , xn; j1, j2, . . . , jn)

Lemma 4.4.6 (Case n = 0, Section 2 in [2]). For any integer a,

Ω≥
λa

(1− y1

λj1
)(1− y2

λj2
)...(1− ym

λjm
)

= Ω≥

∞∑
j=0

hj(x1, x2, . . . , xn; j1, j2, . . . , jn)λa−j

= Ha(x1, x2, . . . , xn; j1, j2, . . . , jn)

Lemma 4.4.7 (Case m = 1, Section 2 in [2]). For any integer a > −k,
Ω≥

λa

(1−x1λj1 )(1−x2λj2 )...(1−xnλjn )(1−yλ−k)

= 1
(1−x1)(1−x2)...(1−xn)(1−y) −

∑k−1
τ1,τ2,...,τn=0

∏
x
τi
i y

⌊∑
jiτi+a
k

⌋
+1

(1−xk1yj1 )(1−xk2yj2 )...(1−xknyjn )(1−y)

Lemma 4.4.8 (Case n = 1, Section 2 in [2]). For any integer a > −k,

Ω≥
λa

(1−xλj)(1−y1λ−k1 )(1−y2λ−k2 )...(1−ymλ−km )
=

∑j−1
τ1,τ2,...,τn=0

∏
y
τi
i x

⌈∑
kiτi−a
j

⌉

(1−x)(1−xk1yj1)(1−xk2yj2)...(1−xkmyjm)
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Chapter 5

Linear Diophantine Systems

Diophantus in Arithmetica dealt with the solution of equations. But in the time of
Diophantus, a couple of things were essentially different than in modern mathematics:

• No notion of zero existed.

• Fractions were not treated as numbers (Diophantus was the first to do so).

• There was no notation for arithmetic.

Arithmetica consisted of 13 books, out of which only six survive and possibly another
four through arab translations survive, dealing with the solution of 130 equations. On
one hand his work is important because it is the oldest account we have for indefinite
equations (equations with more than one solutions). More importantly though, Dio-
phantus introduced a primitive notational system for (what later was called) algebra.

For our purposes, the essential part of his work is his view on what is the solution of
an equation. He considered equations with positive rational coefficients whose solutions
are positive rationals. Following this path, we consider a Diophantine problem to have
integer coefficients and non-negative integer solutions.

In 1463 the German mathematician Regiomontanus wrote that “No one has yet
translated from Greek into Latin the thirteen books of Diophantus, in which the very
flower of the whole of arithmetic lies hidden”, indicating that Arithmetica was recognized
as an important source.

Although the most famous marginal note to be found in a copy of Arithmetica
is by Fermat (his last theorem), there is another one which is very interesting. The
Byzantine scholar Chortasmenos notes “Thy soul, Diophantus, be with Satan because
of the difficulty of your problems” (funnily enough next to Fermat’s last theorem).

This last comment, combined with the note that Diophantus did not have a gen-
eral method (after solving the 100th problem, you still have no clue how to attack the
101st) is important for us. Of course, for non-linear Diophantine problems one cannot
expect a general method due to the negative answer to Hilbert’s 10th problem. But
we present algorithmic solutions for linear Diophantine systems (developed last century)
and examine their connections.
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We first define what a linear Diophantine system is

Definition 5.0.5. Given A ∈ Zm×n and b ∈ Z[t1, t2, . . . , tk]
m find all x ∈ Nn satisfying

Ax3b. The triple (A, b,3) is called a linear Diophantine system.

As the name suggests we have a linear system of equations/inequalities (thus 3 ∈
{≥,=}). From linear algebra, the standard representation of linear systems is in matrix
notation. Since we respect Diophantus viewpoint, our matrices will always be in Zm×n.
In addition, there is the restriction that the solutions are non-negative integers.

We note that the right hand side of the system is considered to live in Z[t1, t2, . . . , tk]
m.

This is essential for the understanding of a certain category of problems, but for most
cases one can restrict to having constant right hand side, i.e. b ∈ Zm.

Given a linear Diophantine system, one can ask two questions:

• How many solutions are there?

• What are the solutions?

The first is called the Counting problem, while the second is the Listing problem.
We are interested in solving these two problems in an efficient way. The listing of the
solutions may be exponentially big in comparison to the input (or even infinite), thus
we need a representation of the answer that encodes the solutions in an efficient way.

We resort to the use of generating functions for that reason. More precisely (using
terminology that will be clear later), the solution to the Listing Problem is the full
(or multivariate) generating function, while for the Counting problem is the counting
generating function.

In the literature, depending on the motivation of each author, the problem specifi-
cation is (sometimes silently) altered. In order to tackle the problem in an algorithmic
way, we have to first resolve the specification issue. The formal definitions we use for
the two problems we are interested in are

Definition 5.0.6 (Listing Linear Diophantine Problem). Given a linear Diophantine
system (A, b,3) ∈ Zm×n × Z[t1, t2, . . . , tk]

m × {=,≥}, denote by S(t) the solution set
of the system (depending on t = (t1, t2, . . . , tk)). Compute the generating function

LA,b,3(z, t) =
∑
s∈S(t)

zsqt.

Definition 5.0.7 (Counting Linear Diophantine Problem). Given a linear Diophantine
system (A, b,3) ∈ Zm×n × Z[t1, t2, . . . , tk]

m × {=,≥}, denote by S(t) the solution set
of the system (depending on t = (t1, t2, . . . , tk)). Compute the generating function
CA,b,3(t) = |S(t)|qt.

5.0.3 Parametric vs Non-Parametric

The answer to all the problems we are interested in is the generating function of some
quantity. This implies that there is always (at least) one parameter involved, such as
the z variables. The interesting set of parameters though is that of t-variables .
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For the most of what follows we will consider the case where t1 = t2 = · · · = tk = 0.
This corresponds to the case b ∈ Zm and is the most studied case. A second case that
is encountered mostly in combinatorial problems (such as magic squares) and Ehrhart
theory (as the dilation parameter) is when b ∈ [t]m (the additive monoid generated by
t). That means that b contains monomials in one variable t.

This distinction is better expressed by introducing some terminology. When referring
to a parametric problem, we consider a problem where the choice of different parameter
values changes essentially the structure of the problem. From a geometric point of view,
this means that the parameter choice changes the geometry of the object at hand, in a
way different than just dilating it.

For example, the problem (of symmetric 3× 3 Latin squares) 1 1 1 0 0 0
0 1 0 1 1 0
0 0 1 0 1 1

 ,

 r
r
r

 ,=


is not considered a parametric problem, since the (positive integer) parameter r does
not change the geometry of the problem (the right hand side has elements from [r]). In
other words, we can consider the linear Diophantine system 1 1 1 0 0 0

0 1 0 1 1 0
0 0 1 0 1 1

 ,

 1
1
1

 ,=


and then r is the dilation parameter (usually referred to as t in Ehrhart Theory).

On the other hand, the (vector partition function) problem((
1 2 1 0
1 1 0 1

)
,

(
b1
b2

)
,=

)
is parametric, since the right hand side contains (honest) elements of [b1, b2]. The

choice of b1 and b2 can change considerably the geometry of the problem.

5.0.4 Bounded vs Unbounded

A fundamental property of a problem is whether it is bounded or not, i.e. if the car-
dinality of S(t) is finite. For counting problems, unbounded ones make no sense. For
enumeration problems, both cases are interesting.

One can easily see that the counting problem can be reduced to the listing problem,
since knowing the solutions provides enough knowledge about how many solutions there
are. Nevertheless, it is not always trivial to count the number of elements of a given set.
At least not computationally trivial.

Note. The case x ∈ Zn is easier than x ∈ Nn, since the solution set S forms a subgroup
of Zm, the rank of which is equal to the nullity of A and we can express the generators
of the subgroup explicitly.

On the other hand, in the case x ∈ Nn, the solution set S forms a commutative
monoid.
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Linear
Diophantine

Systems

Counting Listing

UnboundedBounded Bounded Unbounded

Figure 5.1: Linear Diophantine Problems
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Chapter 6

Geometry of Partition Analysis

In what follows we examine how the Partition Analysis methods can be interpreted in
the Polyhedral Geometry world. As we have seen, both methods rely on partial frac-
tion decompositions. On the other hand, the rational functions appearing on Partition
Analysis look very much like the rational generating functions of cones. These two ob-
servations lead naturally to an attempt to interpret the geometry of the two methods as
cone decompositions.

6.1 The geometry of Elliott’s Algorithm

Elliott’s method relies on the partial fraction decomposition

1

(1− xλα)(1− y
λβ

)
=

1

1− xyλα−β

(
1

1− xλα
+

1

1− y
λβ
− 1

)
=

1

(1− xyλα−β)(1− xλα)
+

1

(1− xyλα−β)(1− y
λβ

)
− 1

(1− xyλα−β)

In order to translate this ratinal function identity to an identity about cones we first
observe that

1

(1− xλα)(1− y
λβ

)

is the generating function of the 2-dimensional cone C generated by (1, 0, α) and (1, 0,−β).
Lemma 1.2.1 guarantees that the numerator in the generating function of C is indeed 1.

The point (1, 1, α− β) is in the interior of the cone C.

This means that the cones

A = R+ ((1, 0, α), (1, 1, α− β))B = R+ ((1, 0,−β), (1, 1, α− β))

subdivide cone C. Their intersection is exactly the ray starting from the origin and
passing through (1, 1, α− β).
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x

y

z

x

y

z

(0, 1,−5)

(1, 0, 3)

(1, 1,−2)

(2, 1, 1)

x

y

z
(1, 0, 3)

(1, 1,−2)

Figure 6.1: Two iterations of Elliott’s algorithm.
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By a simple inclusion-exclusion argument we have the signed decomposition C =
A + B − (A ∩ B). This decomposition translated to the generating functions level is
exactly the partial fraction decomposition employed by Elliott.

The Algorithm

It is easy to see that, after a finite number of steps, we end up with a sum of cones of
three types:

1. the generators contain only zero λ-coordinate

2. the generators contain only non-negative (but not all zero) λ-coordinate

3. the generators contain only non-positive (but not all zero) λ-coordinate

Note that all the cones involved are unimodular according to Lemma 1.2.1
At this point we intersect each cone with the non-negative λ halfspace. This means

that we discard the cones of the 3rd type. Then we (orthogonally) project wrt the
λ-coordinate.

6.2 Geometry of Omega2

The main step in the algorithm is given by the theorem 4.4.4:

Theorem. Let α ≥ β ≥ 1 and gcd(α, β) = 1. Then

1

(1− z1zα3 )(1− z2z
β
3 )

=
1

(zα2 − z
β
1 )

(
P̄ (z3)

(1− z1zα3 )
+

Q̄(z3)

(1− z2z
β
3 )

)
(6.1)

where P̄ (z3) :=
α−1∑
i=0

āiz
i
3 and āi =

−zβ1 z
i
β

2 , if β|i or i = 0

−zrmd((α−1 mod β)i,β)
1 z

rmd((β−1 mod α)i,α)
2 , otherwise

while Q̄(z3) :=

β−1∑
i=0

b̄iz
i
3 and b̄i =

{
zα2 , if i = 0

z
rmd((α−1 mod β)i,β)
1 z

rmd((β−1 mod α)i,α)
2 , otherwise

We first rewrite Equation 6.1, by pulling out −zβ1 from the denominator of 1

(zα2 −z
β
1 )

1

(1− z1zα3 )(1− z2z
β
3 )

=
−z−β1 P̄ (z3)

(1− z−β1 zα2 )(1− z1zα3 )
− z−β1 Q̄(z3)

(1− z−β1 zα2 )(1− z2z
β
3 )

(6.2)

which motivates

Definition 6.2.1. We define Pα,β and Qα,β as

• Pα,β := −z−β1 P̄ (z3) =

α−1∑
i=0

aiz
i
3
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• Qα,β := z−β1 Q̄(z3) =

β−1∑
i=0

biz
i
3

where

• ai =

z
i
β

2 , if β|i or i = 0

z
rmd((α−1 mod β)i,β)−β
1 z

rmd((β−1 mod α)i,α)
2 , otherwise

• bi =

{
z−β1 zα2 , if i = 0

z
rmd((α−1 mod β)i,β)−β
1 z

rmd((β−1 mod α)i,α)
2 , otherwise

x

y

z

(1, 0, 3)

(0, 1, 5)

x

y

z

(−5, 3, 0)

(1, 0, 3)
(0, 1, 5)
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x

y

z

(1, 0, 3)

(−5, 3, 0)

(0, 1, 5)

x

y

z

(1, 0, 3)

(−5, 3, 0)

(0, 1, 5)

The main goal of this section is to prove the following theorem

Theorem 6.2.1. Application of the Generalized Partial Fraction Decomposition

1

(1− z1zα3 )(1− z2z
β
3 )

=
Pα,β

(1− z−β1 zα2 )(1− z1zα3 )
−

Qα,β

(1− z−β1 zα2 )(1− z2z
β
3 )

(6.3)

on σC induces a signed cone decomposition of the cone C = R+{(1, 0, α), (0, 1, β)}.

Proof Strategy:

• Determine the structure of the fundamental parallelepiped of the cones co ((−β, α, 0), (1, 0, α))
and co ((−β, α, 0), (0, 1, β))

• Prove that the numerator polynomials in the GPFD are the generating functions
of these fundamental parallelepipeds.
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Denote byA the cone co ((−β, α, 0), (1, 0, α)) and byB the cone co ((−β, α, 0), (0, 1, β)).
In what follows we assume gcd(α, β) = 1 as indicated in Theorem 4.4.4.

Funadamental Parallelepipeds

We define Φζ to be the set Π(B) ∩ (Z2 × {ζ}), analogously to Πζ . As before we have

(with a completely analogous proof) that Φζ = {(x1, x2, ζ) ∈ Z3|x2 = ζ−x1α
β , x1 ∈

{−β + 1,−β + 2, . . . , 0}} and |Φζ | ≤ 1.

Definition 6.2.2. We define Πζ to be the set Π(A) ∩ (Z2 × {ζ}).

The following lemma says that there is at most one lattice point in Π(A) at any given
height (x3-value).

Lemma 6.2.2. Πζ = {(x1, x2, ζ) ∈ Z3|x1 = ζ−x2β
α , x2 ∈ {0, 1, . . . , α − 1}} . Moreover

|Πζ | ≤ 1.

Proof. Let (x1, x2, x3) ∈ Π(A)∩Z3. Then there exist k, l ∈ [0, 1) such that k(−β, α, 0) +

l(1, 0, α) = (x1, x2, x3) ∈ Z3.


x1 = l − kβ
x2 = kα

x3 = lα

→


x1 = ζ

α − kβ
x2 ∈ [0, α) ∩ Z
l = x3

α

→


x1 = x3−x2β

α

x2 ∈ {0, 1, . . . , α− 1}
x3 ∈ {0, 1, . . . , α− 1}

Fix x3 = ζ ∈ {0, 1, . . . , α − 1}. Assume |Πζ | > 1 and let (x′1, x
′
2, ζ), (x′′1, x

′′
2, ζ) ∈ Πζ .

Then

{
α|ζ − x′2β
α|ζ − x′′2β

→ α|x′2β − x′′2β →

{
α|β(x′2 − x′′2)

gcd(α, β) = 1
→ α|x′2 − x′′2

Since |x′2 − x′′2| < α we have a contradiction. Thus |Πζ | ≤ 1.

Definition 6.2.3. We define Φζ to be the set Π(B) ∩ (Z2 × {ζ}).

The following lemma says that there is at most one lattice point in Φ(B) at any given
height (z-value).

Lemma 6.2.3. Φζ = {(x, y, ζ) ∈ Z3|y = ζ−xα
β , x ∈ {−β + 1,−β + 2, . . . , 0}} . Moreover

|Φζ | ≤ 1.

Proof. Let (x, y, z) ∈ Π(B) ∩ Z3. Then there exist k, l ∈ [0, 1) such that k(−β, α, 0) +

l(0, 1, β) = (x, y, z) ∈ Z3.


x = −kβ
y = l + kα

z = lβ

→


x ∈ (−β, 0] ∩ Z
y = ζ

β − kα
l = z

β

→


x ∈ {−β + 1,−β + 2, . . . , 0}
y = ζ

β − kα
l ∈ {0, 1, . . . , β − 1}

Fix z = ζ ∈ {0, 1, . . . , β − 1}. Assume |Φζ | > 1 and let (x1, y1, ζ), (x2, y2, ζ) ∈ Φζ .

Then

{
β|ζ − x1α

β|ζ − x2α
→ β|x1α− x2α→

{
β|α(x1 − x2)

gcd(α, β) = 1
→ β|x1 − x2

Since |x1 − x2| < β we have a contradiction. Thus |Φζ | ≤ 1.
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The first summand

Our goal is to show that σA =
Pα,β

(1−z−β1 zα2 )(1−z1zα3 )
.

Proposition 6.2.4. σΠ(A) = Pα,β.

Proof. Given that for (x, y, z) ∈ Π(A) we have α > z ∈ N, we need to prove the following
three statements (since Πζ = ∅ for ζ ≥ α)

1. If ζ = 0 then σΠζ = 1 = a0.

2. Let ζ ∈ {1, 2, . . . , α− 1} such that β|ζ. Then σΠζ = z
λ
β

2 z
ζ
3 = aζz

ζ
3 .

3. Let ζ ∈ {1, 2, . . . , α− 1} such that β - ζ. Then σΠζ = aζz
ζ
3 .

Proof of statement 1.

Using the equations from the proof of Lemma 6.2.2 we have
x1 = l − kβ
x2 = kα

0 = lα

l=0−−→

{
kβ ∈ Z
kα ∈ Z

∃n∈N−−−→

{
kβ ∈ Z
k = n

α

−→

{
nβ
α ∈ Z
k = n

α

−→

{
α|n or α|β
k = n

α

gcd(α,β)=1−−−−−−−→

{
α|n
n
α = k ∈ [0, 1)

Thus k = 0, x = y = λ = 0 and σΠ0 = 1.

By the definition of a0 we have that a0 = 1.

of statement 1.

Proof of statement 2.

From Lemma 6.2.2 we know that |Πζ | ≤ 1 and if equality holds the lattice point

is of the form ( ζ−yβα , y, ζ) for some y ∈ {0, 1, . . . , α− 1}.

Let x2 = ζ
β . Since ζ < α we have that y ∈ {0, 1, . . . , α − 1}. Moreover x1 =

ζ−x2β
α =

ζ−λ
β
β

α = 0 ∈ Z, which means that (0, ζβ , ζ) ∈ Πζ .

Then σΠζ = z
ζ
β

2 z
ζ
3 , which by definition is aζz

ζ
3 .

of statement 2.

Proof of statement 3.

We will proceed in two steps. First show that rmd((β−1 mod α)ζ, α) is the x2-
coordinate of a lattice point in Πζ and then that rmd((α−1 mod β)ζ, β)−β is the

x1-coordinate of a lattice point in Πζ . Since |Πζ | ≤ 1, we have that σΠζ = aζz
ζ
3 .

• In order to prove that rmd((β−1 mod α)ζ, α) is the x2-coordinate of a lattice
point in Πζ we have to show that
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(a) rmd((β−1 mod α)ζ, α) ∈ {0, 1, . . . , α− 1}

(b)
ζ−(rmd((β−1 mod α)ζ,α))β

α ∈ Z
Let y = rmd((β−1 mod α)ζ, α). By the definition of division by α, the
remainder x2 is in {0, 1, . . . , α− 1}.
By the definitions of remainder and modular inverse we have

x2 = rζ − αm for some m ∈ Z and r such that rβ = αn+ 1 for some n ∈ Z.

Then x2 = rζ − αm ⇔ βx2 = βrζ − αβm ⇔ βx2 = (αn + 1)ζ − αβm ⇔
βx2 = αnζ + ζ − αβm⇔ ζ − βx2 = α(βm− nζ)⇔ ζ−βx2

α = βm− nζ ∈ Z
• In order to prove that rmd((α−1 mod β)ζ, β) − β is the x1-coordinate of a

lattice point in Πζ we have to show that there exist x2 ∈ {0, 1, . . . , α − 1}
such that rmd((α−1 mod β)ζ, β)− β = ζ−x2β

α .

By definition ρ = rζ − βm for some m ∈ Z and r such that αr = βn+ 1 for
some n ∈ Z. Then we want to prove that ρ− β = ζ−x2β

α which means

rζ − βm− β = ζ−x2β
α . We have

rζ−βm−β = ζ−x2β
α ⇔ αrζ−αβm−αβ = ζ−x2β ⇔ βnζ+ζ−αβm−αβ =

ζ − x2β ⇔ βnζ + ζ − αβm− αβ = ζ − x2β ⇔ x2 = α(m+ 1)− nζ.

(a) x2 ∈ Z

(b) By the definition of division m+ 1 > rζ
β ⇒ m > rζ

β − 1⇒ m >
(βn+1

α )ζ
β −

1⇒ m > βnζ+ζ
αβ − 1⇒ m > βnζ

αβ − 1⇒ m > nζ
α − 1⇒ α(m+ 1) > nζ ⇒

α(m+ 1)− nζ > 0

(c) Since β - ζ we have 0 6= ρ = rζ −mβ. Moreover ζ < α. Thus ζ < αρ⇒
ζ
α < ρ ⇒ 0 < ρ − ζ

α ⇒ mβ < mβ + ρ − ζ
α ⇒ mβ < rζ − ζ

α ⇒ mβ <
(nβ+1)ζ

α − ζ
α ⇒ mβ < nβζ

α ⇒ m < nζ
α ⇒ αm < nζ ⇒ αm+α < nζ +α⇒

α(m+ 1)− nζ < α

of statement 3.

Corollary 6.2.5. From Proposition 6.2.4 and Lemma ?? we have that σA =
Pα,β

(1−z−β1 zα2 )(1−z1zα3 )
.

The second summand

Our goal is to show that σB =
Qα,β+1−z−β1 zα2

(1−z−β1 zα2 )(1−z1zα3 )
.

Proposition 6.2.6. σΠ(B) = Qα,β + 1− z−β1 zα2 .

Proof. Given that for (x, y, z) ∈ Π(A) we have α > z ∈ N, w We need to prove the
following two statements (since Φζ = ∅ for ζ ≥ β)

1. σΦ0 = 1 and b0 = z−β1 zα2 .
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2. If ζ ∈ {1, 2, . . . , β − 1}, then σΦζ = aζz
ζ
3 .

Proof of statement 1.

The proof is analogous to that of Proposition 6.2.4
x1 = −kβ
x2 = l + kα

0 = lβ

l=0−−→

{
kβ ∈ Z
kα ∈ Z

∃n∈N−−−→

{
kβ ∈ Z
k = n

α

−→

{
nβ
α ∈ Z
k = n

α

−→

{
α|n or α|β
k = n

α

gcd(α,β)=1−−−−−−−→

{
α|n
n
α = k ∈ [0, 1)

Thus k = 0, x1 = x2 = λ = 0 and σΦ0 = 1.

By the definition of b0 we have that b0 = z−β1 zα2 .

of statement 1.

Proof of statement 2.

We need to show that Π(A) = Φ(B) for ζ ∈ {1, 2, . . . , β − 1}.

From the analysis in the proof of Proposition 6.2.4, we know that (rmd((α−1

mod β)ζ, β) − β, rmd((β−1 mod α)ζ, α), ζ) is in Πζ for ζ ∈ {0, 1, . . . , β − 1} ⊂
{0, 1, . . . , α− 1} .

The proof follows from the fact that x1 = ζ−x2β
α ⇔ x2 = ζ−x1α

β .

of statement 2.

Note. The statement σΠ(B) = Qα,β + 1 − z−β1 zα2 means that
Qα,β

(1−z−β1 zα2 )(1−z2zβ3 )
is the

generating function of the cone B, ignoring the lattice points with x-coordinate equal to
0.

For this we observe that there are no lattice points on the ray generated by (−β, α, 0).
Thus the cone B is half-open.

Proof. of Theorem 6.2.1

The proof follows from Proposition 6.2.4, Proposition 6.2.6, Note 6.2 and considering
the signs in the two summands of Equation 6.3.

Note. One can see the full signed decomposition in the generating function level as
follows:

σC = σA − σB + σco((0,1,β))

According to the previous analysis σA =
Pα,β

(1−z−β1 zα2 )(1−z1zα3 )
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Since σco((0,1,β)) = 1

(1−z2zβ3 )
we have−σB+σco((0,1,β)) = − Qα,β+1−z−β1 zα2

(1−z−β1 zα2 )(1−z2zβ3 )
+ 1

(1−z2zβ3
=

− Qα,β

(1−z−β1 zα2 )(1−z2zβ3 )
which gives

1

(1− z1zα3 )(1− z2z
β
3 )

=
Pα,β

(1− z−β1 zα2 )(1− z1zα3 )
−

Qα,β

(1− z−β1 zα2 )(1− z2z
β
3 )

(6.4)

In other words, Qα,β encodes the inclusion-exclusion step for the cone co((0, 1, β)).
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Further Directions

During my visit at San Francisco State University, supported by the Austrian Marshall
Plan Foundation, the following directions of research were explored:

• Algorithmic improvements by use of Brion’s theorem and explicit geometric com-
putations.

• Extensions of Partition Analysis for the simultaneous elimination of multiple λ’s
through the use of geometric arguments.

• Geometry based investigation of questions concerning Lecture Hall Partitions.

• Exploiting the structure of Hilbert basis for particular families of cones arising in
the context of Lecture Hall Partitions.

• Connections of the APR decomposition with Dedekind-Carlitz polynomials

7.1 New Algorithms for Partition Analysis

Two new algorithms are available for partition analysis. One performs elimination of a
single λ, which is suitable for recursive application for the efficient algorithmic solution of
Linear Diophantine Systems. The algorithm follows traditional ideas employing though
tools from polyhedral geometry.

The second algorithm performs simultaneous elimination of multiple λ’s. It is still
under development but first indications show that it is efficient. We note that it is the
first algorithm in literature for the computation of the Ω operator applying multiple
elimination.

7.2 Lecture Hall Partitions

In 1997, Bousquet-Mélou and Eriksson [5] initiated the study of lecture hall partitions, a
fascinating family of partitions that yield a finite version of Euler’s celebrated odd/dis-
tinct partition theorem. In subsequent work on s-lecture hall partitions, they considered
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the self-reciprocal property for various associated generating functions, with the goal
of characterizing those sequences s which give rise to generating functions of the form
((1− qe1)(1− qe2) · · · (1− qen))−1.

We continue this line of investigation, connecting their work to the more general
context of Gorenstein cones. We focus on the Gorenstein condition for s-lecture hall
cones when s is a positive integer sequence generated by a second order homogeneous
linear recurrence with initial values 0 and 1. Among such sequences s, we prove that
the n-dimensional s-lecture hall cone is Gorenstein for all n ≥ 1 if and only if s is
an `-sequence. One consequence is that among such sequences s, unless s is an `-
sequence, the generating function for the s-lecture hall partitions can have the form
((1− qe1)(1− qe2) · · · (1− qen))−1 for at most finitely many n.

We also establish several conjectures by Pensyl and Savage regarding the symmetry
of h∗-vectors for s-lecture hall polytopes.

7.3 Partial Fraction Decompositions and Geometry

The geometric interpretation of different types of partial fraction decompositions is a
recurring question. On the other hand, partial fraction decomposition having specific
properties induced by their geometry were also a goal. In particular the partial fraction
decomposition method appearing in [3] along with the ones presented earlier in that
report, were investigated.

A different line of research was that of constructing decompositions suitable for the
Ω≥ operator, while preserving structure, i.e. symmetry.
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