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Abstract

This thesis presents new ways of solving Boolean relations. Modern approaches to this
problem can be divided into those based on binary decision diagrams and those based on
satisfiability solving. In this work, both models are explored and enhancements implemented.
These enhancements aim at reducing the number of input variables which a function f ,
solving the relation, depends on. A lower amount of input variables serves the purpose
of reducing the size of the circuit implementing f , which in prior solutions has not been
satisfactory.

The first approach, based on binary decision diagrams, shows two ways for finding an
exact and globally optimal solution for eliminating input variables. Previous methods have
found locally optimal solutions only. The second approach is based on satisfiability solv-
ing and furthermore Craig interpolation. A particular, pre-existing interpolation system
is implemented which provides an efficient way to find the minimum solution for a given
resolution proof.

We describe these two approaches in detail and analyze our experimental results.





Kurzfassung

In dieser Arbeit werden neue Arten präsentiert um Boole’sche Relationen zu lösen. Mod-
erne Ansätze können in jene unterteilt werden, die auf Binären Entscheidungsdiagrammen
basieren und jene, die auf Satisfiability-Solvern beruhen. In dieser Arbeit werden beide Mod-
elle untersucht und Erweiterungen implementiert. Diese Erweiterungen zielen darauf ab, die
Anzahl der Variablen, von denen eine Funktion f , die die Relation löst, abhängt zu min-
imieren. Eine niedrigere Anzahl an Eingangsvariablen dient dazu die Größe der Schaltung,
die f implementiert, zu reduzieren—eine Eigenschaft, die in vorhergehenden Lösungen nicht
zufriedenstellend war.

Der erste Ansatz beruht auf Binären Entscheidungsdiagrammen: Es werden zwei Wege
präsentiert um eine exakte und global optimale Lösung für die Minimierung der Eingangsvari-
ablen zu finden. Der zweite Ansatz basiert auf Satisfiability-Solving und weiters Craig-
Interpolation. Ein spezielles, existierendes Interpolationssystem wurde implementiert, welch-
es die minimale Lösung für einen gegebenen Resolutionsbeweis effizient findet.

Wir beschreiben die beiden Ansätze im Detail und analysieren die Ergebnise unserer
Experimente.
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Chapter 1

Introduction

“ Begin at the beginning and go on till you come to the end; then stop. ”

[ Lewis Carroll, Alice in Wonderland ]

Over the last decade, computers have become increasingly ubiquitous. Every day, we all

are in contact with embedded computers in phones, cars, household appliances, etc. Com-

puters have enabled new venues for science and new business opportunities, but also changed

our leisure activities and the way we communicate. Programming computers correctly is not

an easy task; it has become harder because of increasing concurrency and more important

because of increasing ubiquity of computer systems. Bugs plague almost every implemen-

tation and the goal of computer science to become a well-founded engineering discipline is

still far from being reached.

The classical approach to correctness consists of massive testing. However, testing often

misses most of the faults. By testing, one is unable to say whether the software follows the

specification perfectly or not. Formal methods [Flo67, Hoa69, CES86, BCM+92, BCCZ99,

CGJ+00, VHB+03] are gaining importance, as evidenced by the 2007 ACM Turing Award for

Model Checking. In recent years there has been great progress towards practical usability of

software verification in particular. Microsoft, for example, uses a “push-button tool” [BR02]

1



2 1. Introduction

to find bugs in hardware drivers. Using this approach, one can be sure about the correctness

(respectively faultiness) of certain aspects of the software.

As of late, there has been a push away from seeing formal verification purely as a method

to validate programs after they have been written, including faults. A new paradigm is slowly

emerging that uses the techniques pioneered in the formal verification world to the problem

of a-priori assistance of the programmer in writing correct programs. Automatic synthesis,

or property synthesis [Chu62, PP06, SGF10, KMPS10, HB11] is a typical example of this

approach: it uses techniques from the model checking world to automatically construct

correct systems from their specifications. Synthesis, however, still has significant problems,

preventing it from being used in realistic situations.

One of them is solving Boolean relations. This is a classical problem that has been

addressed in the logic synthesis community [VOQ52, Mcc56, Law64, BS89, WB91, DM94,

HS96]. Logic synthesis should not be confused with property synthesis: The relationship

between the two is along the lines of logic synthesis providing solutions to a sub-problem

of property synthesis. Preliminary research has shown that the standard solutions from

logic synthesis, however, do not perform well in a property synthesis setting. An additional

shortcoming of existing techniques is that the produced systems are orders of magnitude

larger than manual implementations. As described below, novel techniques are applied to

these problems, in the hope of achieving efficient and more concise solutions.

One way of modelling the synthesis process, for example, is based on game theory [PP06].

This model will help to point out where and why relation determinization is necessary. The

approach is outlined taking the game-theoretic model as an example. A hardware controller

receives inputs and generates outputs. Furthermore, such a system has an internal state

(represented by memory registers) which is taken into account when computing the output

for a given input (through a combinational circuit).

The game-theoretic model serving as an example is defined as a two-player game between

the environment (which provides the inputs) and the system (which computes the outputs).

This approach tries to find a strategy for the system that follows the specification and fails

for no possible input. In terms of the game that means that for each move of the environment

the system can make an advantageous move in order to “win” eventually. This strategy is

represented by a Boolean relation allowing multiple choices for an output (a system move),



3

when given the same state of—and inputs to the system (the same game situation). It is

non-deterministic. The reason for this is that a specification can, and most often will, allow

multiple solutions for the eventual implementation. In order to build hardware however, one

solution has to be picked. In other words, the relation has to be determinized. The difficulty

here is that there is a huge number of possibilities and that it is crucial to find a mapping

which keeps the produced circuit small in the end. Current approaches do not scale well to

bigger problem instances as they are slow and yield systems which are orders of magnitude

larger than manual implementations.

Therefore the ideas pursued in this thesis target creating small circuits. The heuristic

employed to achieve this is as follows: Given a non-deterministic Boolean input-output

relation, it is solved such that its determinization depends on as few input variables as

possible. The hope is that a circuit depending on fewer inputs is also smaller. Two different

approaches have been tried with this heuristic in mind:

1. New ideas on top of an existing determinization algorithm, have been implemented.

This approach is based on binary decision diagrams (BDDs), The existing technique

already does some work to reduce the number of input variables. However, it ends up

finding a local optimum. Our new approaches allo usw to get an exact and globally

optimal solution. To achieve this we present two different approaches:

(a) An explicit search enumerating combinations of variables one by one.

(b) An implicit search, for which circuitry is added to the logic representing the

relation, in order to enumerate variable combinations.

We describe these approaches. Our experimental results show however that they are

practically infeasible. For the benchmarks which do not timeout, our solution finding

a global optimum furthermore seems to provide no improvements over the pre-existing

approach which finds a local optimum.

2. The relations are determinized via Craig interpolation [Cra57]. Craig’s interpolation

theorem states the following:

Given two Boolean formulas f and g, with f ∧ g unsatisfiable, there exists a Boolean

formula i referring only to the common variables of f and g such that f → i, and i∧ g
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is unsatisfiable.

Here, i is the interpolant of f and g. How to apply interpolation to the problem of

solving a relation has been shown by Jiang, Lin and Hung [JLH09]. Interpolants can

be obtained by annotating resolution refutations produced by Boolean satisfiability

(SAT) solvers. Therefore, advantage of the progress made in the development of SAT

solvers over the course of the last two decades can be taken.

While interpolation inherently only talks about the shared alphabet of f and g it is

possible to tweak the computation of the interpolant in such a way that it depends on

a minimum amount of variables for a given resolution refutation. In order to achieve

this a certain technique, described in [D’S10], was employed.

An additional upside of the interpolation approach is that it allows synthesis from more

expressive specifications. It is possible to use higher-order logics (for example the the-

ory of equality with uninterpreted functions) in the specification. Such satisfiability in-

stances can be solved by a satisfiability modulo theories (SMT) solver. SMT subsumes

propositional SAT. Our implementation was done within the OpenSMT [BPST10]

solver. Although the approach currently is specific to propositional logic this gives

more flexibility in future work.

We describe the idea behind the approach and how it was implemented within OpenSMT.

Finally we check how it compares to existing interpolation systems in practice.

1.1 Organization of this Thesis

The thesis is split into four major parts:

1. The theoretical foundations and general terminology is provided in Chapter 2. Topics

are Boolean functions and relations, logic represenations such as BDDs and normal

forms as well as satisfiability solving and interpolation.

2. Previous work concerned with logic minimization and determinization of Boolean re-

lations which are related to this thesis are discussed in Chapter 3.
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3. Two of these works serve as the basis for the experimental contributions of this thesis.

The BDD-based solutions are described in Chapter 4 while the approach based on

interpolation is explained in Chapter 5.

4. In Chapter 6, general developments in the field are analyzed and ways to improve

on the work presented in this thesis are presented. Finally, Chapter 7 concludes the

thesis.
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Chapter 2

Preliminaries

“ We are like dwarfs on the shoulders of giants, so that we can see more than

they, and things at a great distance, not by virtue of any sight on our part, or

any physical distinction, but because we are carried high and raised up by their

giant size. ”

[ Bernard of Chartres ]

This chapter introduces the necessary preliminaries and establishes notation to under-

stand the relation determinization problem and the presented solutions. This thesis cannot

be a complete treatise of all the subjects involved. The interested reader can find further

and more detailed information in the referenced works.

2.1 Boolean Logic

Boolean logic lies at the heart of computing as we know it. Digital circuits implement

Boolean functions referred to as combinational logic. Boolean logic is two-valued: These

two truth values are false and true, represented by the set B = {0, 1}. A Boolean variable

can be assigned either value of B. The Boolean space is spanned by n Boolean variables

7



8 2. Preliminaries

~x = {x1, . . . , xn} and written as Bn. The 2n members (vertices) of Bn are called minterms.

A minterm, in other words, is a total assignment of truth values to the n Boolean variables.

2.1.1 Boolean Functions

A completely specified Boolean single-output function f : Bn 7→ B maps the

minterms of the Boolean space to either 0 or 1. The domain Bn is referred to as the

input space and the co-domain as the output space, respectively.

Sometimes it is not necessary to completely specify a Boolean function. That is, it doesn’t

matter for some minterms whether they are mapped to 0 or 1. This condition is called don’t

care and represented by a dash “−”. A partial function is a function which does not define

a mapping for each member of the domain into the co-domain. The unmapped minterms

of a partial Boolean functions are treated as being mapped to −. Let B+ be the union of

B and −. An incompletely specified Boolean single-output function is then denoted

as f : Bn 7→ B+. A simple such function, in three input variables and an output variable, is

depicted as a coloring of minterm vertices in Figure 2.1a. Another way of representing such

a function is as a Karnaugh map [Kar53] as can be seen in Figure 2.1b.

2.1.2 Boolean Relations

A more expressive way to describe Boolean mappings are Boolean relations. A relation

can be seen as a set of ordered pairs (x, y), where x is a member of the domain and y is

a member of the co-domain. A Boolean relation R ⊆ X × Y (also written as R(X,Y )) is

represented by its characteristic function R : X × Y 7→ B, with X = Bn and Y = Bm.

The input space X is spanned by variables ~x = (x1, . . . , xn) and the output space Y by

~y = (y1, . . . , ym). The characteristic function is defined, such that (x, y) ∈ R if and only

if R(x, y) = 1 for x ∈ X and y ∈ Y . Notice that in general, the output space can be of

dimension m > 1. Most of the time the relations handled in this thesis have m = 1, though,

as reasoning about such single-output relations makes life easier. Section 2.3.1 presents

a scheme for handling multiple-output relations by breaking them down to single-output

relations.
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Notice also that with Boolean relations there is no need for the augmented set B+, since

relations—in contrast to functions—allow one-to-many mappings. A relation is said to be

total (in the input space), if and only if the set {x | ∃y. (x, y) ∈ R} = Bn. Otherwise it is

a partial relation.

A typical way of representing a Boolean relation graphically is shown in Figure 2.1c.

The set of input space minterms is on the left-hand-side and the output space on the right-

hand-side. If (x, y) ∈ R then x ∈ X and y ∈ Y are connected by an edge.

2.1.3 Terminology

Let f(x1, . . . , xn) be a completely specified Boolean single-output function andR(x1, . . . , xn, y)

a Boolean single-output relation. Then the set of minterms mapped to 0 is called the off-

set of f (and R respectively). The on-set is the set of minterms mapped to 1. The formal

definitions are as follows.

f0 = {x ∈ Bn | f(x) = 0}, f1 = {x ∈ Bn | f(x) = 1}}
R0 = {x ∈ Bn | R(x, 0) = 1}, R1 = {x ∈ Bn | R(x, 1) = 1}

For relations, there might be an overlap of the on-set and the off-set. Therefore, there is

another set defined which represents the minterms mapping to both 0 and 1. This set is the

dc-set and defined as R0 ∩ R1. If f1 = Bn then f is said to be a tautology or valid. If

f0 = Bn then f is unsatisfiable, otherwise f1 6= ∅ and f is satisfiable.

A literal is a variable or its complement, written as x or x, respectively. The positive

literal x represents a completely specificed logic function f , where f1 = {x | x = 1}. The

negative literal x represents a function g, where g1 = {x | x = 0}.
The negative and positive cofactors of f with respect to xi are defined as

fxi=0 = fxi = f(x1, . . . , xi−1, 0, xi+1, . . . , xn),

fxi=1 = fxi
= f(x1, . . . , xi−1, 1, xi+1, . . . , xn).

A function is positive unate in xi if fxi ⊇ fxi and negative unate in xi if fxi ⊇ fxi .
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A function is said to be unate if it is unate in all of its variables. A cube is a Boolean

sub-space with dimension k ≤ n. If k = n, the cube is a minterm. A substitution of a

variable xi in f by a function g is written as f |xi=g.

2.2 Boolean Function Representations

There are many ways to represent Boolean functions: For example truth tables, propositional

logic, disjunctive normal form, conjunctive normal form, circuit graphs, or binary decision

diagrams, to name just some. All representations have certain benefits and drawbacks and

their applicability depends on the particular use case. The representations can be converted

between each other. This might come at the cost of a jump in representation size, though.

The representations most interesting in the course of this thesis are propositional logic,

binary decision diagrams (BDDs) and conjunctive, as well as disjunctive normal form. They

will be described in this section.

2.2.1 Propositional Logic

Propositional logic is a formal system that lets us express propositions. A proposition is a

statement which might either be false or true, such as ‘the streets are wet”. Propositional

logic allows to formalize every Boolean function (and therefore every Boolean relation, since

relations can be represented by their characteristic functions).

2.2.1.1 Syntax and Notation

Propositional statements are constructed from a set of propositional symbols (variables)

V = {x, x1, x2, . . . , xn, y, z}, the Boolean constants {0, 1} and logic connectives { , ·,+,→
,↔}. Sometimes, when it brings along better readability, the alternative connectives given

in Table 2.1 might be used. The following grammar in Backus-Naur Form provides the rules
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Name Notation Alternative Notation Read as
Negation x ¬x not x

Conjunction x · y x ∧ y x and y
Disjunction x+ y x ∨ y x or y
Implication x→ y x implies y

Bi-implication x↔ y x ≡ y x bi-implies y

Table 2.1: Name and notation of the logic connectives.

for stating well-formed propositional logic formulas (wffs):

〈wff〉 ::= (〈wff〉) | 〈wff〉 | 〈wff〉 · 〈wff〉 |
〈wff〉+ 〈wff〉 | 〈wff〉 → 〈wff〉 |
〈wff〉 ↔ 〈wff〉 | 〈atom〉

〈atom〉 ::= 〈constant〉 | 〈propositional symbol〉
〈constant〉 ::= 0 | 1

〈propositional symbol〉 ::= x | x1 | . . . | xn | y | z

The symbol ≡ is used to denote logical equivalence. Following this definition, a propositional

formula f might, for example, be f ≡ ((x1 + (x1) · x2)→ ((x3)→ x4)). For brevity the “·”
connective in between propositional symbols is sometimes dropped. The expression x1 · x2
would be shortened to x1x2.

However, the syntactic definition provided might be ambiguous when trying to evaluate

a formula. In the example it is unclear in which order (x1 + (x1) · x2) is to be evaluated.

As usual, parentheses may determine the evaluation order. Parentheses therefore would

be sufficient to overcome the problem. However, this approach reduces the readability of

propositional formulas immensely. Therefore the binding strength of the connectives is

defined. The following precedence rules for the logic connectives allow to keep the number

of parentheses low, while maintaining unambiguity:

Negation m Conjunction m Disjunction m Implication m Bi-implication

The rule a m b is read as “a has precedence over b”. Moreover, the binary connectives
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Op Function On-set Off-set
f ≡ g f1 = g0 f0 = g1

· f ≡ g · h f1 = g1 ∩ h1 f0 = g0 ∪ h0
+ f ≡ g + h f1 = g1 ∪ h1 f0 = g0 ∩ h0
→ f ≡ g → h f1 = g0 ∪ h1 f0 = g1 ∩ h0
↔ f ≡ g ↔ h f1 = (g0 ∪ h1) ∩ (g1 ∪ h0) f0 = (g1 ∩ h0) ∪ (g0 ∩ h1)

(a) Set representation.

x y x x · y x+ y x→ y x↔ y
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 0 0
1 1 0 1 1 1 1

(b) Truth table representation.

Table 2.2: Semantic of the logic connectives.

·,+,↔ are left-associative, while → is right-associative. The example can now be written,

for example, as f ≡ x1 + (x1 · x2)→ (x3 → x4). Notice, that parentheses might be kept, in

order to make formulas even more readable.

2.2.1.2 Semantics

To interpret a propositional statement, the semantics of the formalism must be defined.

The truth value of a formula f depends on its interpretation under some environment. An

environment is an assignment A : V 7→ B to the propositional symbols in f . The meaning

of the logic connectives can either be defined by operations on the on and off-sets of the

functions (Table 2.2a), or by the more typical means of a truth table (Table 2.2b).

2.2.1.3 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) provide syntactic additions to propositional logic. They

are used to formalize and solve certain problems arising with Boolean functions and rela-

tions. QBF is furthermore a central topic of computational complexity theory. Whereas

Boolean satisfiability (SAT) is the canonical problem of NP, QBF is the canonical problem
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Name Notation read as
Universal quantification ∀x. f(x) True if f(x) is true for all choices of x

Existential quantification ∃x. f(x) True if f(x) is true for at least one choice of x

Table 2.3: Name and notation of quantifiers.

of PSPACE. The syntax of QBF is propositional logic, augmented with the for all (∀) and

the exists (∃) quantifiers.

Definition 1. Let f(x, y) be a Boolean function, then the quantifiers are defined as

∀y. f(x, y) ≡ f(x, 0) · f(x, 1),

∃y. f(x, y) ≡ f(x, 0) + f(x, 1).

Quantified variables are called bound variables and unquantified variables are called free

variables. In both cases of Definition 1 y is bound, whereas x is free. It can be seen that

every QBF can be rewritten to an equivalent propositional formula by formula expansion.

2.2.2 Reduced Ordered Binary Decision Diagrams

An important data structure for representing Boolean formulas is the reduced ordered binary

decision diagram. It is a graph-based data structure and allows representation as well as

manipulation of Boolean functions. Typically its name is shortened to just binary decision

diagram, or BDD. The BDD data structure has been around since 1978 [Ake78], but gained

traction in 1986 when Bryant’s seminal paper “Graph-based algorithms for Boolean function

manipulation” [Bry86] was published. BDD-based approaches have been very successful,

especially in the field of logic synthesis and symbolic model checking. A section dedicated to

BDDs in Knuth’s “The Art Of Computer Programming” [Knu09] hints at the importance

and powerfulness of the data structure for combinatorial problems. It is easiest to think of

BDDs as a more compact representation of ordered binary decision trees.

In the following, ordered binary decision trees are defined and notation is established.

Subsequently, two reduction rules on these trees are presented, whose application leads

directly to the DAG-structure of BDDs. Subsection 2.2.2.3 shows how BDDs in practice are
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built in a more efficient manner. Subsection 2.2.2.4 provides information on how the logic

operations are implemented on the data structure.

2.2.2.1 Ordered binary decision trees

Let V be the set of propositional variables in the function that is to be represented by a

decision tree.

Definition 2 (Decision Tree). A decision tree is a rooted, directed graph with a set of vertices

V and a set of edges E. There are two different types of vertices in V .

1. A non-terminal vertex v is labelled with a propositional variable var(v) ∈ V and

possesses a corresponding index argument index(v) ∈ {1, . . . , |V|}. Moreover, every

non-terminal vertex has two children low(v) and high(v) ∈ V . The edge from v to

low(v) is labelled 0 and the edge to high(v) is labelled 1.

2. The second type of vertices are terminal vertices. A terminal vertex v is labelled with

a constant value val(v) ∈ B and given the index (|V |+ 1).

An ordering is imposed on the tree by the conditions index(v) < index(low(v)) and

index(v) < index(high(v)). Every path starting in the root and ending in a terminal vertex

must adhere to the same ordering. A variable order relation typically is written as x1 < x2,

meaning that for all v1 ∈ {v ∈ V | var(v) = x1} and v2 ∈ {v ∈ V | var(v) = x2}, the

condition index(v1) < index(v2) has to hold.

The semantic associated with this tree structure follows from Boole’s expansion [Boo54]

Theorem (also known as Shannon’s expansion [Sha49]).

Theorem 1 ([Boo54]). Let f(x1, . . . , xn) be a Boolean function, then

f(x1, . . . , xn) = (xi · fxi
) + (xi · fxi

).

The theorem allows to partition a function f into its subfunctions by cofactoring the

function. For a non-terminal vertex v, with var(v) = xi follows from the theorem that

the subtree rooted in low(v) represents the function fxi and the subtree rooted in high(v)
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xi

fxi
fxi

0 1 ≡

f

fxi fxi

xi 0 1

Figure 2.2: Equivalence of a BDD vertex and a 2-to-1 multiplexer.

represents fxi
. The tree rooted in v, therefore, represents f . This is written as a triple

f = (var(v), high(v), low(v)) = (xi, fxi
, fxi

). The triple is read as “if xi then fxi
else fxi

”,

or ite(xi, fxi
, fxi

) = xifxi
+xifxi

. Every such if-then-else triple (or node of the tree) can be

converted easily into a logically equivalent 2-to-1 multiplexer as is depicted in Figure 2.2.

The variable xi is the decision variable, hence the name of the representation. The tree

is constructed by recursive application of Theorem 1, until there are no more variables to

cofactor the function with. This procedure inherently leads to 2|V| paths starting in the root

node and ending in the terminal vertices. The value of a terminal vertex is determined by

cofactoring f with the cube of the decisions made along the corresponding path.

2.2.2.2 Reduced Ordered Binary Decision Diagrams

The compactness of BDDs comes from two reduction rules on ordered decision trees. They

allow for an efficient representation of Boolean functions and make it possible to cope with

the inherent exponential size. The tree becomes a directed acyclic graph due to these rules:

1. Node deletion: Nodes which don’t influence the outcome of the function are deleted.

These are nodes for which both outgoing edges point to the same subgraph. An

application of the rule can be seen in Figure 2.3a.

2. Node merging: Isomorphic subgraphs only need to appear once in the data structure.

The edges are “rewired” and may point to the same subgraph. The dangling node

causing the isomorphism finally gets removed. An application of the rule is depicted
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x

f

0 1

f

(a) Node deletion.

x x

f0 f1

0 10 1

x

f0 f1

0 1

(b) Node merging.

Figure 2.3: The two BDD reduction rules.

in Figure 2.3b.

BDDs are the result of maximally (i.e. until rule application is no longer possible) reducing

an ordered binary decision tree. An ordered decision tree and the corresponding BDD,

after maximal rule application, can be seen in Figure 2.4. BDDs are canonical due to the

two reduction rules. This means that for a fixed variable order, two BDDs representing the

same Boolean function are isomorphic. In an implementation this means that every function

needs to be in memory only once and logical equivalence checks are reduced to checking the

equivalence of two pointers.

An important addition to BDDs have been complement edges. The representation of a

BDD f and its complement ¬f are very similar. Therefore if f has been computed, but

¬f is needed, the edge pointing to f gets the complement property. The benefits are less

memory consumption, constant time complementation (and check for complementation) and

uncomplicated application of De Morgan’s laws. These benefits outweigh the drawbacks of

more complicated case analyses when operating on BDDs, appearing due to the complement

property. For canonicity, complemented edges only occur on low edges.

It should be noted however that in practice BDDs are not generated by reducing ordered

decision trees. They are rather built by combining smaller BDDs, starting from the basic

BDDs fi = xi for all variables xi ∈ V. The combination of two BDDs, let us say f and g, can
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Figure 2.4: Ordered binary decision tree and BDD for the function f ≡ x1 x2 x3 +
x1x2 + x2x3, with variable order x1 < x2 < x3.

be through any of the binary Boolean operations. Therefore, an algorithm able to compute

f〈op〉g for any 〈op〉 is sought. Such an algorithm is Apply [Bry86] which is described in the

next section.

2.2.2.3 Construction of Binary Decision Diagrams

This section adheres to the descriptions in [Som99]. As stated, BDDs are constructed via

combination of smaller BDDs through some Boolean operation 〈op〉. The goal is to use the

Apply algorithm which is able to compute this combination for every Boolean operation.

It recursively forms the combination of two BDDs with the same variable order. This

construction follows directly from Theorem 1:

f〈op〉g = (x · (fx〈op〉gx)) + (x · (fx〈op〉gx)). (2.1)

Both f and g must adhere to the same variable ordering, with x being the top variable.

The functions f and g are cofactored with respect to x and the two simpler problems are

then solved recursively. In each recursion step, a vertex v is created with var(v) = x. The

children of v are high(v) = fx〈op〉gx and low(v) = fx〈op〉gx.
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Operation ite form
0000 0 0
0001 f · g ite(f, g, 0)
0010 f · g ite(f, g, 0)
0011 f f

0100 f · g ite(f, 0, g)
0101 g g

0110 f ↔ g ite(f, g, g)
0111 f + g ite(f, 1, g)

1000 f · g ite(f, 0, g)
1001 f ↔ g ite(f, g, g)
1010 g ite(g, 0, 1)
1011 g → f ite(f, 1, g)

1100 f ite(f, 0, 1)
1101 f → g ite(f, g, 1)

1110 f + g ite(f, g, 1)
1111 1 1

Table 2.4: The ite operator.

The cofactor of a BDD with respect to the top variable x is the high child when computing

the positive cofactor and the low child when computing the negative cofactor.

The Apply algorithm is a prime example of dynamic programming. In order to achieve

efficient computation, Apply uses two data structures:

1. Unique table: This data structure is a dictionary of all BDD nodes of the program.

Two equivalent functions are represented by the same BDD node. Therefore, using

the unique table, equivalence checks are constant time operations. The table helps to

establish the canonicity of BDDs. It prevents nodes which would be deleted by the

merging rule from being created.

2. Computed table: The computed table is used to make the computation of Apply

more efficient. It is used as a cache of already computed functions and employed to pre-

vent repeated computations of the same function. Before each complex computation,

the table is queried to check whether the needed result has already been stored.

In order to compute the combination of two functions, the ite operator is used. The lattice
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of all Boolean two-argument operators expressed in their respective ite form is depicted in

Table 2.4. In the following, a recursion step of Equation 2.1, using the ite operator, is

illustrated. Again, x is the top-most variable.

ite(f, g, h) = f · g + f · h
= x · (f · g + f · h)x + x · (f · g + f · h)x

= x · (fx · gx + fx · hx) + x · (fx · gx + fx · hx)

= (x, ite(fx, gx, hx), ite(fx, gx, hx))

The recursion terminates in the cases ite(1, f, g) = ite(0, g, f) = f and ite(f, g, g) = g.

Algorithm 1 provides pseudo-code for Apply, without elaborating on FindOrAddUni-

queTable and InsertComputedTable.

Algorithm 1 Apply implementing the construction of a BDD from two BDDs for any
two-argument Boolean operator.

procedure Apply((f, g, h))
if Terminal case then

return result
else if Computed table has entry (f, g, h) then

return result
else

x← top variable((f, g, h))
f ′ ← ite(fx, gx, hx)
g′ ← ite(fx, gx, hx)
if f ′ = g′ then

return g′

end if
R← FindOrAddUniqueTable(x, f ′, g′)
InsertComputedTable((f, g, h), R)
return R

end if
end procedure
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2.2.2.4 Operations on Binary Decision Diagrams

In the previous subsection we showed how to combine two BDDs via the Apply algorithm

for any Boolean operator. In order to describe the algorithm, we described how to compute

the cofactor with respect to the top variable. If a BDD is cofactored with a cube, the

procedure is to compute the cofactor recursively starting in the root node. Then a case

distinction is made and if the function is cofactored with a node’s variable the incoming

edges are rewired to the children of that node. In case there is no need to cofactor, the

recursion proceeds along towards the leaves.

Apply and cofactoring can directly be used to compute the existential and universal

quantifications of a BDD with respect to a single variable, by formula expansion (cf. Sec-

tion 2.2.1.3):

∀y. f ≡ fy · fy,
∃y. f ≡ fy + fy.

Another important operation is functional composition. The goal is to compute

f |xi=g = f(x1, . . . , xi−1, g, xi+1, . . . , xn),

with g being a function. This can be done by applying Theorem 1 and subsequent substi-

tution of xi by g, resulting eventually in the computation of ite(g, fxi , fxi). The literature

describes an optimized algorithm for this computation of the functional composition of f

and g named Compose [Bry86, Som99]. A single satisfying assignment for the BDD can be

found with the GetSatAssignment algorithm. Finding a satisfying assignment is equiva-

lent to finding a path from root to the 1-sink with an even number of complemented edges.

2.2.2.5 Variable Ordering

The variable order has a major influence on the size (the number of vertices) of a BDD.

The problem of finding an ordering such that the number of BDD vertices is bounded, was

proven to be NP-hard [BW96]. In practice, the problem is tackled by applying heuristics



22 2. Preliminaries

such as presented in [Rud93, FMK91, ISY91, PS95, PSP96].

BDD reordering can either be applied at fixed positions in the program or dynamically.

In dynamic reordering, a reordering algorithm is applied as soon as the size of a BDD exceeds

a certain threshold.

Even though there are many ways to decrease the memory consumption of BDDs, ex-

cessive memory consumption is the primary problem when dealing with BDDs. Reordering

algorithms may have trouble dealing with large instances. In [HB11], for example, the au-

thors, describe how finding a good variable order takes up the major amount of work in

their computations.

2.2.3 Conjunctive Normal Form

Conjunctive normal form, or CNF, is a syntactic restriction of propositional logic with

the useful property of being susceptible to the resolution calculus. CNF, therefore, is the

representation used by SAT and QBF solvers.

The syntax of conjunctive normal form is a restriction of propositional logic to a con-

junction of disjunctions (“and of ors”) of literals. The following BNF defines it.

〈cnf〉 ::= (〈clause〉) · 〈cnf〉 | (〈clause〉)
〈clause〉 ::= 〈literal〉+ 〈clause〉 | 〈literal〉
〈literal〉 ::= 〈propositional symbol〉 | 〈propositional symbol〉

〈propositional symbol〉 ::= x1 | . . . | xn | . . .

The disjunctions are referred to as clauses. Clauses might also be referred to as sets of

literals. Let us assume that clauses are non-tautological—that is they do not contain a

literal in both of its phases.

2.2.3.1 Tseitin’s Transformation

Every arbitrary propositional formula can be transformed into an equivalent CNF formula,

purely by application of syntactical rewrite rules. This might however lead to an exponential
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blowup of the size of the formula. Usually (i.e. when applying a SAT or QBF solver) it is

sufficient to have an equi-satisfiable CNF formula. The transformation from an arbitrary

propositional formula to an equi-satisfiable one can be achieved by Tseitin’s transformation

[Tse68]. The advantage of this method is that the formula size only grows polynomially.

The transformation of an arbitrary propositional formula F proceeds in two steps:

1. Every sub-formula F1 � F2, with � ∈ {·,+,→,↔}, of F (sub-formula F1 in the unary

case) is recursively replaced by a fresh variable x. For every such replacement, a

conjunct (x↔ F1 � F2) ((x↔ F1) in the unary case) is added to the new formula F ′.

2. Every conjunct of F ′ can be rewritten into CNF using a set of rules. These rules

are provided in Table 2.5 (Page 34). The final formula is a conjunction of CNF-sub-

formulas and therefore also in CNF.

2.2.4 Disjunctive Normal Form

Disjunctive normal form (DNF) is similar to CNF. It is the “or of ands” of literals. Its

BNF is the same as the one for CNF, but with all appearances of · and + swapped. Cubes

therefore take the place of clauses. A formula in DNF can be considered a set of cubes.

One reason for the usefulness of DNF is that it provides a straight-forward way to

represent the cover of a Boolean function. Covering a function is the problem of finding

cubes, such that the on-set minterms of a Boolean function are covered by the cubes. Solving

this problem is an essential task in logic minimization and has been extensively studied

throughout the years. An algorithm for finding a cover from a DNF will be presented in the

related work (Chapter 3).

2.3 Determinization of Boolean Relations

Determinization of Boolean relations is the problem of finding a functional implementation
~f = (f1, . . . , fm) with fi : Bn 7→ B of a Boolean relation R ⊆ Bn × Bm. Every fi is

an unambiguous mapping from input variables ~x = (x1, . . . , xn) to output variables ~y =
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(y1, . . . , ym), such that

D =

m∧
i=1

(yi ≡ fi(~x))

characterizes a subset of R (if (x, y) ∈ D then (x, y) ∈ R, but not the other way round).

Therefore, D implies R. D is a deterministic relation compatible with the non-deterministic

relation R. In other words, this means that D is the relation after resolving all the ambiguity

(i.e. one-to-many mappings) of R. For each one-to-many mapping one choice is picked—in

turn the relation is determinized.

To compute each fi the multiple-output case is reduced to the single-output case. One

scheme accomplishing this is presented in the next section.

2.3.1 A Scheme for the Determinization of Multiple-output Relations

There exist multiple different schemes for the determinization of multiple-output relations

R ⊆ Bn × Bm. We will describe the method from [JLH09, Section 3.2.1]. The proce-

dure is reminiscent of Gaussian elimination and similarly proceeds in two steps: Forward

elimination and Back substitution. Let FI(y,R) be a functional implementation of a

single-output total relation R with output y. Ways to compute FI(y,R) will be the topic

of Chapter 3 (presenting existing work) as well as Chapters 4 and 5 (presenting new work).

1. Forward elimination: Let R(i) stand for ∃ym · · · ∃yi. R, for 2 ≤ i ≤ m. The scheme

first reduces the number of outputs by iterative existential quantification and saves all

the intermediate results:

R(m) = ∃ym. R
...

R(i) = ∃yi. R(i+1)

...

R(2) = ∃y2. R(3)
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2. Back substitution: Thereafter, for each output yi, the functional implementation

fi is computed and the result re-substituted for yi.

f1 = FI(y1, R
(2))

...

fi = FI(yi, R|(i+1)
y1=f1,...,yi−1=fi−1

)

...

fm = FI(ym, R|y1=f1,...,ym−1=fm−1
)

Compared to the procedure used in [BGJ+07], which needs O(m2) quantifications, this

procedure gets by with O(m) quantifications by saving the intermediate results. Single-

output relations are considered to be embedded in such a scheme throughout the thesis.

The reduction from multiple outputs to a single one makes it easier to analyze the cases

when trying to find a functional implementation.

The presented scheme takes care of reducing the number of outputs in order to compute

FI(y,R), but another precondition which says that R must be total is not necessarily given.

However, a single-output partial relation R(~x, y) can be totalized—by treating the unmapped

inputs as don’t cares—as follows ([JLH09, Formula 2]):

T (~x, y) = R(~x, y) + ∀y. R(~x, y)

2.4 Satisfiability Solving and Interpolation

Boolean satisfiability, or short SAT, is the problem of determining if there is a satisfying

assignement to the variables making a propositional logic formula F true. It is the canonical

problem of NP and therefore also interesting from a more theoretical standpoint. The focus

here will be on practical applications of SAT.

The SAT problem for general propositional logic is usually reduced to the problem of

determining whether a CNF formula is satisfiable or not. An equi-satisfiable CNF form
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is the result of applying Tseitin’s transformation (cf. Section 2.2.3.1). The reason for the

reduction is that CNF allows to apply the resolution calculus to the problem.

2.4.1 Resolution Calculus

In the following, let C be a set of clauses and (C + x) and (D + x) be members of that set.

The resolution calculus or resolution principle consists of a simple rule which states that

if (C + x) and (D + x) have a satisfying assignment, then so does (C + D). (C + x) and

(D + x) are called antecedents. Furthermore, x is called pivot variable and (C + D) is

called resolvent. The pivot variable must be the only variable appearing in opposed phases

between the two antecedents.

The resolution rule Res(C,D, x) is written formally as

C + x D + x

C +D
[Res]

Resolution can be regarded as existential quantification of the pivot variable in the

conjunction of the antecedents.

∃x. ((C + x) · (D + x))

≡ ((C + x) · (D + x))x + ((C + x) · (D + x))x

≡ (1 ·D) + (C · 1)

≡ C +D

Repeated application of the resolution rule yields a resolution proof.

Definition 3 (Resolution proof). A resolution proof is a directed acyclic graph (VR, ER, cla, piv, s).

VR represents the proof vertices. ER ⊆ VR × VR is the set of edges. The clause function

cla : VR 7→ C maps vertices to clauses, and the pivot function piv : VR 7→ V maps vertices

to variables. s ∈ VR is the single node of the proof with out-degree 0 and is called the sink.

Furthermore, an initial vertex is a vertex with in-degree 0, every other vertex is internal.
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Figure 2.5: Resolution refutation of Equation 2.2.

Let v, v1, v2 ∈ VR, then the edges (v1, v) and (v2, v) represent

cla(v) = Res(cla(v1), cla(v2), piv(v)).

For a node v1 ∈ VR with an edge (v1, v), let us write v+ if v1 contains the pivot in

positive phase and v− if it contains the pivot in negative phase.

A refutation is a resolution proof with cla(s) ≡ 0. This is usually expressed by the 2

symbol representing the empty clause. If every initial vertex of a proof is labelled with a

clause of F , and it is a refutation, then the proof is said to be a refutation of F . Resolution is

refutation-complete which means that the empty clause can always be derived if the formula

is unsatisfiable.

Example 1. Figure 2.5 shows an example of the refutation of

F ≡ (x1)(x1 + x2)(x1 + x2)(x1) (2.2)

This example and the accompanying figure are taken from [DKPW10].

2.4.2 Satisfiability Solving

SAT solvers use a complete search algorithm to establish the satisfiability of a formula F .

The search space is a decision tree spanned by the variables in F . By assigning truth values

to the variables, the tree is explored. If for every leaf of the tree there it is impossible to find

a valid assignment, the instance is unsatisfiable (unsat). If for at least a single one there is

a valid assignment it is said to be satisfiable (sat).
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Since SAT is a highly generic problem and therefore appearing in many domains, much fo-

cus has been on finding an efficient solving algorithm. A first step was made in 1960 with the

Davis-Putnam [DP60] procedure (DP). Subsequently there have been various optimizations

of the algorithm. The first improvement was the Davis-Putnam-Logeman-Loveland [DLL62]

procedure (DPLL) in 1962. Further important enhancements came only decades later in the

late 1990s, resulting in the GRASP [SS96] and Chaff [MMZ+01] SAT solvers, which im-

proved the size (usually measured by the number of variables) of the solvable instances by

orders of magnitude.

The following is a list of the developments. These have become standard features imple-

mented in contemporary SAT solvers.

� DP:

– 1-literal rule: If F contains the unit clause (x), then x is set to 1. All occurrences

of x are removed from the formula and all clauses containing x are discarded.

The rule is commonly called unit propagation.

– Affirmative-negative rule: If x occurs only complemented or uncomplemented all

clauses containing x are removed.

� DPLL:

– Breadth-first search with backtracking: In DPLL the case split of Shannon’s

expansion was utilized. The search proceeds recursively. A recursion step is

the assignment of a truth value to a decision variable x. In case that a guessed

decision makes the formula evaluate to false the procedure backtracks and the

other value is tried in a forced (or implied) decision. In order to establish unsat

the instance has to be searched exhaustively, whereas for sat the solver can stop

after finding a single satisfying assignment.

� Grasp:

– Implication graph and conflict-driven clause learning: An implication graph stores

all the guessed assignments to variables and the implied decisions. The assign-

ments and implied decisions are nodes of the graph. The edges are directed from
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the node representing the reason of the implication to the node representing the

forced decision. It might happen that the forced decisions lead to a conflict such

as a variable y should be assigned to 0 as well as to 1. Such a conflict results in

the generation of a conflict clause which is added to the original formula F . The

conflict clause is the negation of the conjunction of the assignments leading to the

conflict. The purpose of such a clause is to suppress repeating guessed decisions

leading to the same conflict. This is an effective way of pruning the search space.

– Non-chronological backtracking: For the application of conflict clauses to make

sense it is necessary to backtrack further than just a single variable assignment.

By analyzing the implication graph it is possible to determine how far the back-

tracking should be. This is done by cutting the implication graph and thereby

separating the implied and guessed decisions.

– Restarts: Restarts allow to abandon a search tree which requires too much work

to be explored. All the conflict clauses remain in the instance, thus leading to

more available information after the restart of the procedure.

� Chaff:

– Unique implication point: This is a strategy for learning conflict clauses which

are succinct enough to represent a conflict while making the computation more

efficient. A unique implication point is a node in the implication graph which

lies on all paths from the decision node to the conflict. The novelty in Chaff is

that a conflict clause is only learned at the closest unique implication point to

the conflict rather than at every unique implication point.

– 2-literal-watching: A major contribution of Chaff was the improvement in han-

dling the 1-literal rule. In order for a clause of n literals to become unit, n − 1

literals must be assigned 0. It is therefore possible to ignore the first n−2 assign-

ments completely, and just “watch” any 2 literals of the clause. When a watched

literal is assigned 0 one of the remaining unwatched literals becomes watched in

that clause, If there is no such literal remaining, then the second watched literal

is implied and a forced decision is made. This is implemented by pointers from

the literals to the clauses in which they are watched.
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– Activity-based decision heuristics: The most critical impact on the search tree

probably comes from the decisions when guessing variable assignments. There-

fore, having good heuristics matters. One such heuristic is Variable State Inde-

pendent Decaying Sum (VSIDS). Variables are ranked by their number of ap-

pearances in the formula. High ranking variables are chosen first for guessed

decisions. Whenever a conflict clause is added, the variable count is incremented

for all variables in the conflict clause. Periodically the counts get divided by a

constant. This decay causes a bias of the rank of a variable towards recently

added clauses. The effect is that more variables are common between the clauses.

This in turn makes it possible to cover the search space more efficiently.

� Further improvements stem from clause subsumption and clause substitution. In [EB05]

it is shown that subsumed clauses (that is a clause implied by another one) can be

discarded in a preprocessing step. Furthermore, after a resolution step one of the

antecedents might be implied by the resolvent and can be strengthened by so-called

self-subsumption. Another preprocessing step involves Tseitin’s transformation. When

applying the transformation, additional variables are introduced together with their

respective definitions. The preprocessing step substitutes the variables with their re-

spective definitions, hence eliminating the variable.

The tree resulting from the exploration of the state space can be seen as a dual to a resolution

proof. Every node corresponds to a resolution step. The children of the node become the

antecedents.

2.4.3 Craig Interpolation

Modern SAT solvers can be used to compute a Craig interpolant. Such an interpolant is

described by Craig’s interpolation theorem.

Theorem 2 ([Cra57]). Given two Boolean formulas A and B, with A ∧ B unsatisfiable,

there exists a Boolean formula I referring only to the common variables of A and B such

that A→ I, and I ∧B is unsatisfiable.
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Given a conjunction of A and B which is unsatisfiable, the steps involved in the compu-

tation of the interpolant are as follows.

1. The SAT instance A∧B is solved. If necessary it is transformed into CNF first. Since

A∧B is unsat, a resolution refutation is the result. The initial vertices of the resolution

refutation are labelled with clauses from A and B.

2. An interpolation system is employed and each vertex is mapped to a propositional

formula called a partial interpolant.

3. Next, these annotations of the initial interpolant are propagated towards the sink node

(the empty clause) by employing rules defined by the interpolation system (see below).

4. Eventually, the annotation of the sink node is the final interpolant I.

As can be seen, interpolation depends on the respective interpolation system. Basically

there exist three systems for computing the interpolant from a resolution refutation:

1. The symmetric system [Hua95, Kra97, Pud97],

2. McMillan’s system (regular and inverse) [McM03], and

3. the labelled interpolation system [DKPW10].

Since the latter system is a generalization subsuming the former two, it is the only system

which is described here.

2.4.3.1 Labelled Interpolation System

The description of the labelled interpolation system follows the one in [DKPW10] closely.

The authors first define a labelling function mapping the literals of the resolution proof,

denoted by Lit, to labels.

Definition 4 (Labelling function). Let S = {a, b, ab,⊥} be a set of labels, partially ordered

as defined by the Hasse diagram (S,<,t) depicted below. A labelling function L : VR×Lit 7→
S maps all literals of a resolution proof R to a label from S. For a literal l ∈ Lit and a

vertex v ∈ VR, L must satisfy
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L(v, l) =

⊥, if l 6∈ cla(v).

L(v+, l) t L(v−, l), if v is internal and l ∈ cla(v).

ab

a b

⊥

A variable var(l) is called A-local if it appears only in vars(A) \ vars(B), B-local if it

appears only in vars(B) \ vars(A) and shared otherwise. A labelling function is supposed

to preserve locality, meaning that l has to be labelled a if var(l) is A-local and l must be

labelled b if var(l) is B-local. For shared variables, any label is allowed.

Given a resolution proof and a labelling function, the labelled interpolation system is

defined inductively. Remember that we use a set of literals to represent a disjunction of the

literals (a clause).

Definition 5 (Labelled interpolation system). The following inference rules show how the

labelling function is used to map vertices of the resolution proof to partial interpolants (in

brackets).

Case 1. Initial vertex v with cla(v) = C:

C [{l ∈ C | L(v, l) = b}]
if C ∈ A,

C [¬{l ∈ C | L(v, l) = a}]
if C ∈ B

Case 2. Internal vertex v with cla(v) = C1 + C2, cla(v+) = C1 + x and cla(v−) = C2 + x:

C1 + x [I1] C2 + x [I2]

C1 + C2 [I3]

if L(v+, x) t L(v−, x) = a, I3 = I1 + I2,

if L(v+, x) t L(v−, x) = ab, I3 = (x+ I1) · (x+ I2),

if L(v+, x) t L(v−, x) = b, I3 = I1 · I2

The partial interpolant at the sink node is called the final interpolant. Notice, that for

internal nodes only the first and third case introduces a literal into the interpolant. This

will be of particular interest in Chapter 5.
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x1
a [0]

xa
1x2

a [0] x1
bxab

2 [1] xb
1 [1]

xab
2 [1]

xa
1 [x2]
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Figure 2.6: Labelled resolution proof annotated with partial interpolants.

Example 2. Let us continue Example 1 by applying the labelled interpolation system to the

resolution proof. F is split into A ≡ (x1)(x1 +x2) and B ≡ (x1 +x2)(x1). According to this

partitioning the literals are labelled by a locality-preserving labelling function. By annotation

of the initial vertices with partial interpolants and propagation according to the rules from

Definition 5 the result is the resolution proof depicted in Figure 2.61. In the figure, the

labels of the literals are their respective superscripts. The final interpolant I corresponds to

x2. It can easily be seen that it is a valid interpolant by checking that A → I and I ∧ B is

unsatisfiable.

1Figure adapted from a slide by Georg Weissenbacher.
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Negation:
x↔ y ≡ (x→ y) · (y → x)

≡ (x+ y) · (y + x)

Disjunction:
x↔ (y + z) ≡ (y → x) · (z → x) · (x→ (y + z))

≡ (y + x) · (z + x) · (x+ y + z)

Conjunction:
x↔ (y · z) ≡ (x→ y) · (x→ z) · ((y · z)→ x)

≡ (x+ y) · (x+ z) · ((y · z) + x)
≡ (x+ y) · (x+ z) · (y + z + x)

Implication:
x↔ (y → z) ≡ (x→ (y → z)) · ((y → z)→ x)

≡ (x+ (y → z) · ((y → z) + x)

≡ (x+ y + z) · ((y + z) + x)
≡ (x+ y + z) · ((y · z) + x)
≡ (x+ y + z) · (x+ y) · (x+ z)

Bi-implication:
x↔ (y ↔ z) ≡ (x→ (y ↔ z)) · ((y ↔ z)→ x)

≡ (x→ ((y → z) · (z → y)) · ((y ↔ z)→ x)
≡ (x→ (y → z)) · (x→ (z → y)) · ((y ↔ z)→ x)
≡ (x+ y + z) · (x+ z + y) · ((y ↔ z)→ x)
≡ (x+ y + z) · (x+ z + y) · (((y · z) + (y · z))→ x)
≡ (x+ y + z) · (x+ z + y) · ((y · z)→ x) · ((y · z)→ x)
≡ (x+ y + z) · (x+ z + y) · (y + z + x) · (y + z + x)

Table 2.5: Tseitin’s transformation [Tse68] for each logic connective (table taken from
[WM11])



Chapter 3

Related Work

“ The complexity for minimum component costs has increased at a rate of roughly

a factor of two per year. . . Certainly over the short term this rate can be expected

to continue, if not to increase. Over the longer term, the rate of increase is a bit

more uncertain, although there is no reason to believe it will not remain nearly

constant for at least 10 years. That means by 1975, the number of components

per integrated circuit for minimum cost will be 65000. I believe that such a large

circuit can be built on a single wafer. ”

[ Gordon E. Moore ]

This chapter aims at introducing existing techniques related to our work. We begin with

the well-studied subject of combinational logic minimization in Section 3.1. The section

presents classic minimization algorithms which tried to find an exact minimum implementa-

tion of an incomplete Boolean function. It furthermore gives a short insight into approaches

to gain performance by neglecting exactness when applying heuristic algorithms. While

Section 3.1 focuses on how to minimize incompletely specified Boolean functions, work ex-

tending the solutions to Boolean relations exists and is referenced.

Sections 3.2, 3.3 and 3.4 present more recent approaches for finding functional imple-
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mentations from relations. The most obvious difference between the classic and modern

approaches is the representation of the logic. While the classic algorithms are limited to

more simple representations, the recent approaches can take advantage of developments such

as binary decision diagrams, and satisfiability solving combined with interpolation.

The approaches as presented in the original publications take multiple output variables

into account. The subsequent sections (with Section 3.2 being an exception) assume a single

output variable—a condition which always can be achieved as was shown in Section 2.3.1.

3.1 Combinational Logic Minimization

This section briefly describes classic approaches to combinational logic minimization, follow-

ing in part the presentation of [DM94, Chapter 7]. Without loss of generality it is assumed

that the circuit is presented in disjunctive normal form. Due to the structure of DNF, logic

minimization is commonly referred to as two-level logic minimization. An extension which

generalizes the algorithms to more levels exists [Law64].

The goals of two-level logic minimization are to minimize the literals and product terms

(the focus might be on one or the other) of the circuit and in turn to minimize circuit

area. The first solutions [VOQ52, Mcc56] to the problem provided exact minimizations.

These approaches have some success in practical scenarios. In general, though, finding an

exact solution is computationally difficult. Therefore the focus of later work changed to

finding heuristic solutions which yield an approximate minimization. One standard tool

implementing these minimization algorithms is the Espresso logic minimizer.

The solutions initially only applied to incompletely specified Boolean functions. Inter-

esting in the scope of this thesis is that very similar techniques can be applied to the more

general case of Boolean relations as well: How to perform exact minimization was shown

in [BS89] and heuristic minimization was shown in [WB91]. In the following description, we

consider minimizing incompletely specified Boolean single-output functions (f : Bn 7→ B+).
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3.1.1 Definitions

Logic minimization revolves around covering the minterms of a Boolean function by impli-

cants. Some definitions are in order:

Definition 6 (Implicant). An implicant of f is a cube c contained in f .

Definition 7 (Cover). A cover of f is a set of cubes that represents f .

Definition 8 (Minimum Cover). A minimum cover is a cover with minimum cardinality.

Definition 9 (Prime Implicant). A prime implicant is an implicant which is not contained

by another implicant of f .

Definition 10 (Essential Implicant). A prime implicant is essential if it is the only prime

implicant covering a specific minterm.

Definition 11 (Prime Cover). A prime cover is a cover consisting only of prime implicants.

Let us look at an example in order to make the definitions clearer.

Example 3. Assume we are given an incompletely specified function

f ≡ x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y.

The function is depicted as a coloring of minterms in Figures 3.1a and 3.1b. In Figure 3.1a

f is covered by three implicants α, β and γ where β and γ are prime since they are not

contained by another implicant of f . Looking at α however, it can be seen that there is an

implicant covering the minterms x1x2x3 and x1x2x3 which subsumes α. In Figure 3.1b α is

then prime as well.

In the first two figures α and γ are essential, while β may be discarded because the only

on-set minterm covered by β is already covered by γ (in Figure 3.1b also by α). Both these

covers are therefore not minimum.

In Figure 3.1c the example is changed slightly. Including the don’t care minterm in

the cover allows to find a single implicant covering the depicted function. This cover is

minimum.
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α

β

γ

(a)

α

β

γ

(b)

α

(c)

Figure 3.1: Example of covers and implicants. (→: x1, ↑: x2,↗: x3)

3.1.2 Exact Minimization

The original algorithm for exact minimization of logic circuits is called Quine-McCluskey

algorithm because of the concerted effort in finding the solution. The starting point was

Quine’s Theorem:

Theorem 3 ([VOQ52, Theorem 1]). There exists a minimum cover for f that is prime.

Proof. A minimum cover which is not prime contains non-prime implicants. All such im-

plicants can be replaced by the prime implicants containing them without changing the

minimality property of the cover.

The benefit of Quine’s theorem is that it reduces the search for a minimum cover to the

search for a minimum prime cover. Quine then proposed a prime implicant table to solve the

covering problem. A means for computing all prime implicants is the IteratedConsensus

procedure (based on the consensus operation), which will not be described here.

Definition 12 (Prime Implicant Table). A prime implicant table is a two-valued matrix

whose columns represent the prime implicants of the function and the rows represent the

minterms of the function. An entry aij of the matrix is 1 if the ith minterm is covered by

the jth prime implicant.
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After setting up a prime implicant table it can be reduced by removing dominated rows

and columns. Note that essential implicants must remain in the cover. The reduction may

lead to a so-called cyclic core, which does not change by applying the reduction rules. In

order to solve the cyclic core, a solution was proposed by McCluskey [Mcc56] which explores

the cost of all possibilities. A better approach is to use branch and bound (Petrick’s method)

in order to prune some of the possibilities early by evaluating the cost of a subset of primes

with a lower bound before computing the exact cost. If the evaluated cost is too high, the

computation can be spared.

The major problem of this solution is the construction of the prime implicant table

which might be exponential in size (both in the number of minterms and prime implicants).

Therefore, it might be impossible to set up the table to begin with. Furthermore, the table

covering problem is NP-complete.

By exploiting specific properties, such as unateness and complemented covers—moreover

divide and conquer strategies and again smart pruning—it is possible to make the exact

minimization approach practical to some extent.

3.1.3 Heuristic Minimization

In practice, heuristic approaches are typically used. Those provide a way to get close to

the minimum cardinality cover, but with feasible computational effort. Heuristic approaches

avoid computing the prime implicant table and start with a cover of the function as provided

by the represented formula. This cover is then iteratively improved by applying operations

on the cover. The common operators used are

� Expand: This operation expands each implicant by replacing it with the prime im-

plicant containing it.

� Reduce replaces prime implicants with non-prime implicants. The update must result

in a cover again.

� Reshape looks at pairs of implicants. One implicant is expanded and one is reduced

in such a way that the updated cover is valid.

� Irredundant removes redundant implicants from the cover.
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Different tools may use the operators in different orders or use only a subset of them.

Espresso uses only Expand, Reduce and Irredundant (in that order). Furthermore,

implementation details of the operators may differ since they are based on heuristics.

3.2 Building Circuits from Relations

Kukula and Shiple [KS00] present a way of coping with the potential non-determinism of a

multi-output relation R(~x, ~y) and are able to construct a circuit from such a relation. They

do so by adding parametric variables, which have the purpose of breaking up don’t care

conditions. The final result is a circuit representing RC(~x, ~p, ~y, ). They assume that the

input relation is represented by a free BDD. A free BDD is a BDD which allows different

variable orderings on different paths, thereby being more general than the definition of BDDs

presented in Section 2.2.2. Let us from now on just refer to BDDs.

On a high level, their approach constructs a circuit which adheres to the structure of the

BDD. For each BDD node representing an input variable xi, an input module is built and

for each node representing an output variable yi, an output module is built, respectively.

There is a 1-to-1 correspondence between BDD nodes and circuit modules. Every edge of

the BDD corresponds to two wires in the circuit: one incoming and one outgoing signal

connecting the modules corresponding to the nodes connected by the edge. On top of that,

additional circuitry is added, but without going into too much construction detail, let us

describe their solution. The approach consists of three phases.

1. In the first phase, information about whether there is a path to the 1 leaf for the

current assignment to the input variables, is gathered. This information is represented

by the auxiliary output v. This is done by propagating signals from the 1 sink towards

the root of the DAG.

2. In the second phase, the signals propagate the other way from the root towards the

leafs and activate a single path toward the 1 leaf, if possible. At an input module,

the corresponding input variable is responsible for steering the path. At an output

module, a parametric input pi is responsible. At each module, the information from
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Phase 1 is used to make a valid decision. If an outgoing signal becomes active, the

module connected to that signal becomes active as well.

3. In the third phase, information along output modules corresponding to the same output

variable yi is collected. If any module chooses 1 for yi, the final output should be 1—0

otherwise. If none of the modules representing yi is active, the value is determined by

the parametric input pi. For this choice a 2-to-1 multiplexer (one per output variable)

is used, with the activation signals from Phase 2 acting as selectors.

The authors prove the correctness of their construction [KS00, Theorem 1], showing that

R(~x, ~y)↔ RC(~x, ~p, ~y, 1).

This however is more general than is necessary for many applications, such as synthesis.

As was described in Section 2.3, for a functional implementation it would be sufficient, if

RC(~x, ~p, ~y, 1)→ R(~x, ~y).

3.3 Extracting Circuits from Relations

This section presents the algorithm given in Figures 2 and 3 of [BGJ+07] with the aforemen-

tioned change that it does only take into account a single-output relation. The determiniza-

tion approach assumes that the relation is given as a BDD. The algorithm was proposed

to find a circuit implementation of a strategy for a GR(1) game. The algorithm takes a

relation R ⊆ Bn × B, the set of input variables ~x = {x1, . . . , xn} and the output variable

y as arguments. Algorithm 2 first computes both the positive and the negative cofactors

of R with respect to y. It then computes the strict cofactors R′1 and R′0. If the relation is

total in the input space, these expressions could be simplified to R′1 ← R0 and R′0 ← R1,

respectively.

The next step of the algorithm is an optional extension. This extension (the for-loop

from Line 6 to 13) provides an optimization of the relation. Optimization in these cases

means that output y might not depend on all the input variables and elimination of these

inputs simplifies the relation. In other words, the inputs which y does not depend on, do not
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Algorithm 2 Extraction of a function from a relation.

1: procedure ExtractFunctionFromBDD(R, ~x, y)
2: R1 ← Ry
3: R0 ← Ry
4: R′1 ← R1 ·R0

5: R′0 ← R0 ·R1

6: for all x ∈ ~x do
7: R′′1 ← ∃x. R′1
8: R′′0 ← ∃x. R′0
9: if R′′1 ·R′′0 = 0 then

10: R′1 ← R′′1
11: R′0 ← R′′0
12: end if
13: end for
14: f ← R′1
15: return f
16: end procedure

influence the output and should therefore not appear in a functional implementation of R.

To find these inputs, the algorithm iterates over the set of input variables and existentially

quantifies the input x of the current iteration in the strict cofactors R′1 and R′0. The resulting

expressions represent the sets where x has full freedom. It then checks if these sets overlap.

If they do, the input has influence on y and cannot be eliminated. Otherwise, the algorithm

updates R′1 and R′0 and effectively eliminates x from the relation.

The functional implementation FI(y,R) (see Section 2.3) is finally the strict positive

cofactor of R with respect to y.

3.4 Interpolating Functions from Large Boolean Relations

Jiang, Lin and Hung present a different approach [JLH09] to the determinization of Boolean

relations, namely using interpolation (cf. Section 2.4.3). They show that a single-output to-

tal relation R(~x, y) can be split into two parts (R(~x, 0) and R(~x, 1)) and that the conjunction

of these parts is unsatisfiable. An unsatisfiable formula in CNF is a necessary precondition

for generating a resultation refutation using a SAT solver. Such a proof is then annotated
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R(~x, 0) R(~x, 1)R(~x, 1) ·R(~x, 0)

R(~x, 1)

R(~x, 0)

Figure 3.2: The set representation of a single-output total relation R(~x, y) split into
its cofactors.

and used to generate an interpolant (Section 2.4.3). It is shown that the interpolant is a

functional implementation of the relation.

Figure 3.2 illustrates a single-output total relation as it appears throughout this section.

When cofactoring R with respect to y three disjoint sets are distinguished:

1. SA is the set characterized by R(~x, 0)

2. SB is the set characterized by R(~x, 1)

3. The don’t care set is the conjunction of R(~x, 0) and R(~x, 1).

The authors of [JLH09] make use of the following proposition.

Proposition 1. A relation R(~x, y) is total if and only if the conjunction of R(~x, 0) and

R(~x, 1) is unsatisfiable.

The main result of their work is the following theorem and proof thereof. The proof

of the theorem immediately shows, how the interpolant maps the members of the three

involved sets to either 0 or 1 and thereby determinizes the relation.
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Theorem 4 ([JLH09, Theorem 2]). Given a single-output total relation R(~x, y), the inter-

polant I of the refutation of

R(~x, 0) ·R(~x, 1) (3.1)

with A = R(~x, 0) and B = R(~x, 1), corresponds to a functional implementation of R.

The interpolant maps every element of SA to 1, every element of SB to 0, and every other

element to either 0 or 1. Furthermore, let f be (y ≡ I). Then f → R and is a functional

implementation (FI(y,R)).

The interpolant, and therefore the mapping of the elements not in SA ∪ SB , depends on

the the resolution proof found by the SAT solver on the one hand and on the used inter-

polation system on the other hand. There are two trivial interpolants satisfying Theorem 4

which can be obtained without interpolation, however. These are R(~x, 1) and R(~x, 0) (used

by the algorithm presented in the previous section). The former is the weakest interpolant

and characterizes the largest set. The latter is the strongest interpolant and characterizes

the smallest set, as is depicted in Figure 3.2. The authors of [JLH09] claim that the triv-

ial interpolants often lead to a more complex circuit than the functional implementations

computed from a refutation proof.

3.4.1 Interpolant Optimization

An optimization, similar as in Section 3.3 is made implicitly by Craig interpolation. The

interpolant I only depends on variables in the shared alphabet of A and B.

Minimizing the number of variables in the interpolant further, requires modification

of the resolution refutation, combined with an interpolation system allowing for elimina-

tion of variables. There is previous work on proof post-processing. Bar-Ilan et al. show

in [BIFH+11] how resolution proofs can be reduced in time linear in the size of the proof.

They present two approaches for rewriting a proof:

1. Recycle-Units: For every unit clause U (that is a clause consisting of a single literal)

the algorithm checks if a clause C in the proof has the unit clause as a pivot. If it

does, C gets replaced by U . Therefore, the resolutions for elimination of the literals in
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C, besides the pivot, can be spared. The SAT solver may have learned the unit clause

after making the “bad” decision, which can be corrected in the post-processing step,

now that the unit clause is known.

2. Recycle-Pivots: This algorithm is based on the observation [Urq95] that in a res-

olution proof there has to be only one resolution on the same pivot on every path

from root to sink. Therefore the paths are analyzed from sink to root and a list L of

the pivots is kept. As soon as a second resolution on a pivot p already in L is found

the resolution step is eliminated. The decision, which of the two clauses is removed

depends on the path chosen from the first insertion of p. If the path containing the

negative literal was chosen, the clause containing the positive literal is discarded, and

vice-versa.

This algorithm assumes that the proof is a tree. In general however, a resolution

proof can be a DAG. In [BIFH+11] two solutions are proposed: Firstly, stopping the

algorithm as soon as a node with two or more outgoing edges is found. This is the

approach the authors chose. Secondly, they propose a more complicated approach

which involves an analysis of all paths going through the branching node.

Both Recycle-Units and Recycle-Pivots are part of a two-step process. First the proof

is reduced by applying the described techniques and then the proof has to be corrected,

such that it is a valid resolution refutation again. Taking Recycle-Units as an example,

the proof has to be corrected, since the resolutions on the eliminated literals coming from

the subsumed clause C are still existent. After replacement of the subsumed clause these

resolutions are superfluous and in fact cannot be made because the pivot is only available in

one phase. All the clauses taking part in such resolutions are removed as well and the proof

becomes valid again. The algorithm performing these corrections is called Reconstruct-

Proof in [BIFH+11].

All these modifications of resolution proofs do not consider interpolation systems at all.

A smaller proof, that is one with less resolutions, is still preferable for receiving a smaller

interpolant and in turn a simpler functional implementation. The intuition is that less

resolutions, lead to a smaller interpolant, since there are less opportunities to introduce

variables into the interpolant.
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3.5 ABC

ABC [BM10] is a tool unifying synthesis and verification of combinational and sequential1

circuits. ABC offers a broad set of functions: For sequential logic synthesis it is necessary to

support functionality such as mapping of a circuit to standard cells, placement of these and

retiming of the circuit. On the verification side, techniques such as bounded model checking

and satisfiability solving are provided among others. For a complete list of all functionality

we refer to www.eecs.berkeley.edu/~alanmi/abc/.

Internally ABC uses and-inverter-graphs graphs (AIGs) to represent circuits (combi-

national and with an extension also sequential ones) and implements various means for

operating on the representation. Operations like reduction, rewriting, restructuring and

balancing of the graph are available in ABC. In our case, these operations are helpful to

estimate the gate count and area of the circuit in a more realistic way when benchmarking

minimization techniques.

1A sequential circuit is like a combinational circuit, but has memory. Typically these circuits are syn-
chronous following a clock.

www.eecs.berkeley.edu/~alanmi/abc/


Chapter 4

Determinization of Boolean Rela-

tions Using BDDs

“ After a good dinner one can forgive anybody, even one’s own relations. ”

[ Oscar Wilde ]

This chapter presents a contribution of the thesis to the problem of Boolean relation

determinization. First, the problem is revisited and the main idea behind our approach is

described in the following section. It is then shown that the size of the circuits (functions)

computed by Algorithm 2 depends on the order in which the variables are picked by the

“optimization loop” (Lines 6-13). Let us in the following refer to this order as variable

sequence, not to be confused with the variable order of a BDD. A small example shows

two different outcomes for two different variable sequences. As a result of that observation

we present two solutions for finding the function depending on the minimum number of

variables, independent of the variable sequence. Whereas Algorithm 2 computes a locally

optimal solution, the new approaches search for the global optimum.

The first approach employs an explicit search (by enumerating variable subsets) and is

described in Section 4.3. The second approach (Section 4.4) adds some logic to the circuit
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representing the relation and thereby finds the solution by an implicit search.

Finally, the implementations are evaluated on benchmarks from the field of GR(1) syn-

thesis (cf. Appendix A). The results show, surprisingly, that the local optimum equals the

global optimum in these benchmarks. Moreover, as had to be expected, does the search

result in a performance penalty compared to Algorithm 2. So far it was only possible to test

our methods on small examples, as larger ones result in timeouts.

4.1 Problem Statement

As seen in the previous chapter, there exist various solutions for solving relations. A central

problem remains however: Namely, the size of the resulting combinational circuit is unsat-

isfying. A metric for the circuit size is the number of logic gates. The goal set therefore was

to find a determinization that minimizes the eventual number of gates.

The approach for attacking this problem assumes that a relation R ⊆ Bn × B is given

in BDD form. The sought-after functional implementation f : Bm 7→ B, with m ≤ n, of R

then is also in BDD form. Such a function can be converted to a circuit, by replacing each

BDD vertex with a 2-to-1 multiplexer.

The circuit size, thus, is directly connected to the BDD size. The BDD size depends on

the following two parameters.

1. The variable order of the BDD, and

2. the represented function f , itself.

Finding a good variable order is a central problem for BDDs. It has been studied intensely

and there exist various heuristics for finding a good variable order (cf. Section 2.2.2.5).

As the problem of finding a good order can be considered solved (heuristically) the focus

of this thesis lies on the second parameter: the represented function. In many applications,

the function is fixed and therefore this parameter cannot be tweaked. In the case of relation

determinization, however, the freedom of relations can be exploited to extract a function

that may have a smaller BDD representation. The metric that is employed for measuring
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the size of a function is the number of variables the function depends on. These variables

are called support variables.

The following section illustrates that the extraction algorithm of [BGJ+07], which was

presented in Chapter 3 does, in general, not reduce the number of support variables perfectly.

This is demonstrated by providing a small example which shows that the result of two

runs with different variable sequences differs, where one function is smaller than the other.

Subsequently, two extraction algorithms are presented which find an optimal solution.

4.2 Cofactor Optimization is Sequence-Dependent

This section presents an example that illustrates that the analysis of dependent variables

(the loop from Line 6 to 13 in Algorithm 2) only finds a locally optimal solution. It applies

the algorithm with two different variable sequences. The result are two different functional

implementations of the relation. One depending on two variables and another depending on

a single variable only. The example is depicted in Figure 4.1 with the variable elimination

step simplified to universal quantification.

Example 4. Let R ⊆ Bn × B, with input variables ~x = {x1, x2, x3} and output variable y,

be a relation with characteristic function

R(~x, y) ≡x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y+

x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y+

x1x2x3y + x1x2x3y + x1x2x3y + x1x2x3y

When applying Algorithm 2 on R, ~x and y, the positive cofactor of R with respect to y, R1,

is initialized to

R1 ≡ x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 ≡ x1 + x1x2x3.



50 4. Determinization of Boolean Relations Using BDDs

The negative cofactor of R with respect to y is R0. It is initialized to

R0 ≡x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

≡x1 + x1x2 + x1x2x3.

In subsequent steps R′1 is set to x1x2x3 and R′0 to x1x2 + x1x2x3.

The for-loop may iterate over the input variables in different sequences. Firstly the

example proceeds with an assumed sequence x1 before x2 and finally x3:

Iteration 1. In the first loop iteration x = x1. R′′1 is computed as ∃x1. R′1 ≡ x2x3 and R′′0
is set to ∃x1. R′0 ≡ x2 +x2x3. As can be seen, the conjunction of R′′1 and R′′0 is unsatisfiable

and Line 9 of the algorithm evaluates to true. Therefore, R′1 and R′0 are updated and x1 is

effectively eliminated from the relation.

Iteration 2. In the second iteration x = x2. R′′1 is assigned ∃x2. R′1 ≡ x3 and R′′0 is

assigned ∃x2. R′0 ≡ 1. The conjunction yields x3 and is satisfiable, therefore Line 9 evaluates

to false and no update is made.

Iteration 3. The final iteration has x = x3 and R′′1 is ∃x3. R′1 ≡ x1x2. R′′0 is set to

∃x3. R′0 ≡ 1. The conjunction of R′′1 and R′′0 is x1x2 and therefore satisfiable. Again, no

update is made and the loop is exited.

To summarize, the execution of the loop managed to eliminate one input variable—that is

x1—from the relation. The procedure yields a function f ≡ x2x3, which implements the rela-

tion. A corresponding circuit, if converted from a BDD, consists of two 2-to-1 multiplexers.

This loop execution is now compared to an execution with reversed sequence of the input

variables, that is x3 first, followed by x2 and x1.

Iteration 1. The first iteration has x = x3. R′′1 is set to ∃x3. R′1 ≡ x1x2. R′′0 is set to

∃x3 R′0 ≡ x1. As R′′0 · R′′1 ≡ 0, the if statement is satisfied and the relations are updated.

Input variable x3 is eliminated.

Iteration 2. In the second iteration x = x2. R′′1 is assigned ∃x2. R′1 ≡ x1. R′′0 is set to

∃x2. R′0 ≡ x1. Again, the conjunction of R′′1 and R′′0 evaluates to 0 and Line 8 evaluates to

true. Therefore x2 is eliminated as well.
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Figure 4.1: Example 4 in pictures.

Iteration 3. In the final iteration x = x1. R′′1 is the result of ∃x1. R′1 ≡ 1 and R′′0 of

∃x1. R′0 ≡ 1. Therefore the if block is not entered and no further update is made.

This run of the loop eliminated both x2 and x3 from the relation. Finally, extracting the

function, yields f ≡ x1, which can be implemented as a single 2-to-1 multiplexer when

converting the BDD.

In the second run, the two variables x2 and x3 have been eliminated from R, as opposed

to just x1 in the first run. This example illustrates that Algorithm 2 depends on the sequence

in which the input variables are quantified and eliminated from the relation. The example

also shows that eliminating more variables might lead to a smaller circuit implementation

of the extracted function f and might therefore be desirable.

4.2.1 Independency of Variables

An important notion used in the following approaches for determinizing the relation with

the minimum number of support variables is the independency of a relation from a certain

set of variables. Proposition 2 states what it means for a relation to be independent of a set

of input variables. A similar condition, was applied in [BGJ+07] (Algorithm 2).

Proposition 2. A single-output total relation R(~x, y) is independent of a set of variables

{x0, . . . , xl} ⊆ ~x, if and only if ∃y ∀x0 · · · ∀xl. R(~x, y) is valid.

The set of variables ~xind = {x0, . . . , xl}, for which Proposition 2 is valid, is said to be
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R-independent. Otherwise, it is R-dependent. The set representing the R-dependent

variables is ~xdep = ~x \ ~xind.

4.2.2 Determinization

The subsequent sections describe methods to find the maximum R-independent set ~xind.

When such a set is found, the relation can be determinized, such that it depends on the

minimum number of support variables. The functional implementation of R, which depends

on the minimum number of input variables can be found by first quantifying out the set of

independent variables ~xind = {x1, . . . , xl} universally from the cofactors Ry and Ry. This

yields the following relations:

R0 = ∀x0 · · · ∀xl. R(~x, 0),

R1 = ∀x0 · · · ∀xl. R(~x, 1).

The functional implementations of R, with the minimum and maximum on-set, respec-

tively, are fmax ≡ R1 and fmin ≡ R0. The minimality and respectively maximality proper-

ties of these functions can be seen in Figure 3.2 (Page 43).

Example 5. Let R ⊆ ~x × y be a relation over a set of input variables ~x = {x1, x2} and a

single output variable y with characteristic function

R(~x, y) ≡ x1x2y + x1x2y + x1x2y + x1x2y + x1x2y

According to Section 4.2.1, {x1} is an R-independent subset of ~x (∃y∀x1. R(~x, y) ≡ 1). It is

maximum, since for the subset with higher cardinality (i.e. {x1, x2}) Proposition 2 evaluates

to false (∀x1, x2. R(~x, y) ≡ yy ≡ 0) In the second step, after having determined that {x1}
is the maximum R-independent subset, the relation can be determinized as described above.
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The computation of fmin proceeds as follows.

R0 ≡ ∀x1. R(~x, 0)

≡ ∀x1. (x1x2 + x1x2)

≡ x2

The resulting function fmin ≡ R0 ≡ x2. Let us now also compute fmax:

R1 ≡ ∀x1. R(~x, 1)

≡ ∀x1. (x1x2 + x1x2 + x1x2)

≡ x2

We can see that fmax ≡ fmin ≡ x2 for this simple relation. The example is depicted in

Figures 4.2a and 4.2b. Without analyzing for variable independency first,

fmax ≡ R(~x, 1) ≡ x1 + x2

would be a functional implementation depending on more variables and demand a more

complex circuit to implement it.

4.3 Explicit Solution

The first of two ways, presented in this thesis, to find a maximum R-independent subset, is

an explicit exhaustive search. The algorithm enumerates all the subsets of the set of input

variables of R. For each subset it tests Proposition 2 until the maximum set, satisfying the

condition, is found.

The feasibility of this approach heavily depends on the nature of the relation, as a set

of size n has
(
n
k

)
= n!

(n−k)!k! subsets of size k (called k-combinations). Therefore, there are∑n
k=1

(
n
k

)
= 2n − 1 subsets in total.
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Figure 4.2: The relation R of Example 5 and after universal quantification of x1.

A relatively straight-forward approach is to incrementally increase the size k of the

subsets starting with k = 1 and decrease the input space whenever a variable is determined

to be R-dependent. That is, a variable which is in none of the R-independent subsets of a

particular size. The hope for this approach is that there are many R-dependent variables.

This would lead to the number of candidate variables n decreasing and approaching the size

k of the subsets which are checked. In turn this would result in a pruning of the search space.

As soon as k ≥ n the algorithm has found at least one maximum subset. This algorithm

is called Explicit and Algorithm 3 provides pseudo-code. IndependentCombinations

prunes the R-dependent variables and also returns a maximum R-independent combination

for the current k.

With the information of the maximum R-independent set, the relation R can be deter-

minized such that its functional implementation depends on the minimum number of input

variables as was described above.

4.4 Logically Encoded Solution

In this approach the goal was to encode the selection of the variable combinations as a

combinational circuit. This circuit is capable of generating all combinations of its first k
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Algorithm 3 Approach for the incremental computation of the maximum set of R-
independent variables.

procedure Explicit(R, ~x)
candidates = ~x
n← |candidates|
k = 1
while k ≤ n do

(candidates, ~xind)← IndependentCombinations(candidates, k,R)
k ← k + 1
n← |candidates|

end while
return ~xind

end procedure

inputs at its outputs. It is subsequently called a combination network.

The purpose of the combination network is to act as a proxy between the inputs and

the combinational circuit representing the characteristic function of the relation which is

to be determinized. The combination network and the relation circuit are connected via

functional composition and this new logic circuit can be embedded in an argument for

variable independency, similar to the one presented in Proposition 2.

4.4.1 Combination Network

A combination network CN is a circuit with n primary inputs CN.in[0], . . . , CN.in[n− 1], and

n primary outputs CN.out[0], . . . , CN.out[n− 1]. Furthermore it employs selection inputs

CN.sel which encode a particular mapping from inputs to outputs. There is enough freedom

in the network in order to generate all combinations of its first k inputs CN.in1 at its outputs.

The network is comprised of several smaller building blocks, which are called selection cells.

The selection cells, again, consist of a decoder and so-called swap cells. These blocks will

be described in the subsequent sections.
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Figure 4.3: Components of a combination network (flow from in to out).

4.4.1.1 Selection Cell

A selection cell is a circuit with an equal number of inputs and outputs. The notation SCm

is used for a selection cell with m inputs (SCm.in) and outputs (SCm.out). If unnecessary in

the current context, the subscript may be dropped.

A selection cell furthermore utilizes dlog2me selector inputs SCm.sel. These selector bits

are interpreted as the binary representation of an index 0 ≤ i ≤ m− 1. The functionality of

a selection cell can be split into two cases:

Case 1. The input with index i, selected by SC.sel, is propagated to the output with

index 0, that is SC.out[0]← SC.in[i]. The input with index 0 then takes i’s place and gets

propagated to output position i: SC.out[i]← SC.in[0].

Case 2. All other inputs with indices j 6= i and j 6= 0 are propagated from SC.in[j] to

SC.out[j].

The inner workings of SC are as follows. The circuit uses m − 1 swap cells SW0, . . . , SWm−2,

each with two inputs (SW.in[0] and SW.in[1]) and two outputs (SW.out[0] and SW.out[1]) and
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a decision input (SW.dec).1 The swap cells are connected in the following way:

Case 1. Swap cell SW0 has inputs SC.in[0] and SC.in[1].

Case 2. The inputs to the ith swap cell SWi, for 1 ≤ i ≤ m−2, are SWi.in[0]← SWi−1.out[0]

and SWi.in[1]← SC.in[i + 1].

The outputs of the selection circuit are defined as SC.out[i + 1]← SWi.out[1] for 0 ≤ i ≤
m− 2 and SC.out[0]← SWm−2.out[0].

Finally, the m− 1 decision signals—that is one per swap cell—are outputs of a dlog2me-
to-m decoder. These signals, therefore, are one-hot encoded: Swap cell SWi is activated if the

(i+1)st output of the decoder is active (index 0 is left unused, as no swap has to be performed,

when the input with index 0 is selected). The input to the decoder are the SC.sel signals.

A 2-to-4 decoder with inputs SC.sel[0] and SC.sel[1] and outputs SW1.dec, . . . , SW3.dec, for

example, has the following minterms:

SW1.dec ≡ SC.sel[1] · SC.sel[0],

SW2.dec ≡ SC.sel[1] · SC.sel[0],

SW3.dec ≡ SC.sel[1] · SC.sel[0].

A selection cell as described, comprised of a decoder and swap cells, is depicted in Figure 4.3b.

Example 6 is supposed to provide a feel for how a selection cell with 4 inputs and outputs

operates.

Example 6. The selection signal of SC4 is 2 bits wide and allows the choices 0, 1, 2 and

3. Case 0 maps input SC.in[0] (abbreviated as 0i) to output SC.out[0] (abbreviated as 0o).

Case 1 maps 0i to 1o (and 1i to 0o), and so on. There is a choice for the selection signal

to map the first input 0i to any of the outputs. Table 4.1 shows the input-output mappings

for all assignments of SC4.sel.
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SC4.sel
0 1 2 3

0o 0i 1i 2i 3i
1o 1i 0i 1i 1i
2o 2i 2i 0i 2i
3o 3i 3i 3i 0i

Table 4.1: Example 6.
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Figure 4.4: A combination network CN.
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4.4.1.2 Construction of the Combination Network

Now, that the components of the combination network are defined, they will be used in the

construction of the network.

Every selection cell can, simply put, push the first input (SC.in[0]) to either of its outputs.

The basic idea is now to employ k selection cells of increasing size connected in series, so that

the first k inputs of CN can be shifted to either output of CN. The specific way of connecting

the selection cells is subsequently described and followed by an example illustrating the

behavior of the circuit.

Case 1. The first selection cell (in direction of the information flow) is SCn−k+1. This cell

gets inputs

SCn−k+1.in[0]← CN.in[k− 1],

...

SCn−k+1.in[n− k]← CN.in[n− 1].

Case 2. The inputs to the selection cells in the subsequent stages with 2 ≤ i ≤ k are defined

as follows.

SCn−k+i.in[0]← CN.in[k− i],

SCn−k+i.in[1]← SCn−k+i−1.out[0],

...

SCn−k+i.in[n− k + i− 1]← SCn−k+i−1.out[n− k + i− 2].

Each selection cell has the necessary selection signals (cf. Section 4.4.1.1), which results in

M =

n∑
m=n−k+1

dlog2me

1A swap cell can simply be constructed from two 2-to-1 multiplexers and an inverter. Such a circuit can
be seen in Figure 4.3a
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Figure 4.5: Example 7.

selection signals in total for the combination network. M is of the order O(k log n).

Finally, the outputs of CN are defined as CN.out[i]← SCn.out[i], for 0 ≤ i ≤ n−1. Every

output signal CN.out[i] is a Boolean function and the whole combination network is defined

by a vector of functions (CN.out[0], . . . , CN.out[n− 1]). A combination network as described

above is depicted in Figure 4.4.

4.4.1.3 Mechanics of a Combination Network

The mechanics of a combination network are as follows. A selection cell SCi is responsible

for the output position of input CN.in[n− i]. The values for the selection signals of the

selection cells define a mapping from input indices to output indices of the combination

network. The following example demonstrates how a combination network with n = 4 and

k = 2 works.

Example 7. The combination network with 4 inputs and k = 2 consists of 2 selection cells:

SC3 and SC4. The functionality of the network is to map the first pair (due to k = 2) of inputs

(i.e. (CN.in[0], CN.in[1]), which is abbreviated as (0i, 1i)) to any pair of outputs. Analogous
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to the inputs written with a subscript i, the outputs are sub-scripted with o. The
(
4
2

)
= 6

pairs, the network should be able to produce, are: (0o, 1o), (0o, 2o), (0o, 3o), (1o, 2o), (1o, 3o)

and (2o, 3o). Figure 4.5 shows the respective choices for the selection signals SC3.sel and

SC4.sel and the resulting positions of the input signals 0i and 1i after application of the

combination network with two stages. Looking at the case with SC3.sel = 2 and SC4.sel = 2,

first SC3 pushes 1i to SC4.in[3]. Then SC4 propagates SC4.in[3] to 3o and input 0i to 2o.

This results in (0i, 1i) ending up at positions (2o, 3o).

The network, however, provides more freedom than necessary: SC3.sel = 0, SC4.sel = 1

would, for example, generate (0o, 1o) as well—if permuted. There are 3 · 4 = 12 possible

assignments to SC3.sel and SC4.sel for just 6 pairs.

4.4.1.4 Remark on the Symmetry of Choosing Elements

The combination network, as described in the previous sections, is not optimal because it

does not take advantage of the symmetry of the binomial coefficient: “Choosing k of n

elements” can also be regarded as “not choosing (n − k) elements”. Therefore, as soon

as k > bn/2c elements are to be picked, that should be regarded as not picking (n − k)

elements. Effectively, this means a combination network should consist of no more than

bn/2c selection cells. This observation will find application in the following section, when

using a combination network for cofactor optimization. Figure 4.6 shows the symmetry in a

combination network with n = 4 inputs when either picking k = 1 elements or not picking

(n− k) = 3 elements.

4.4.1.5 Optimization of the Cofactors Using a Combination Network

This subsection explains, how a described combination network can be used to optimize the

cofactors of a relation R.

Given a combinational circuit representing the characteristic function of a relation R(~x, y)

with ~x = {x0, . . . , xn−1}, first a combination network CN with k = bn/2c stages is con-

structed. When taking into consideration the remark of the previous subsection, such

a network is generic and capable of producing all combinations of size smaller n. CN is

then connected to R via functional composition. Therefore, first the characteristic func-
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Figure 4.7: Relation R′ = ∃x0 · · · ∃xn−1.(χCN ·R).

tion χCN =
∧n−1
i=0 CN.out[i] ↔ xi of CN is computed. One way of computing the functional

composition of R and χCN is

R′ = ∃x0 · · · ∃xn−1.(χCN ·R).

R′(CN.in, CN.sel, y) is a relation in input variables CN.in, selector variables CN.sel and an

output variable y. Figure 4.7 shows the construction of R′. After constructing R′, the

approach for finding the maximum R′-independent set of input variables consists of two

steps:

1. A criterion, similar to Proposition 2, which says whether a subset of CN.in of size k is

R′-independent, is defined.
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2. The maximum subset, satisfying the independency criterion, is searched for with binary

search.

The criterion for R′-independency of a subset of input variables is as follows.

Proposition 3. A single-output total relation, augmented with a combination network,

R′(CN.in, CN.sel, y), is independent of a set of k input variables, if either formula of the

following case distinction is valid.

Case 1. k ≤ bn/2c

∃CN.sel[0] · · · ∃CN.sel[M − 1]

∀CN.in[k] · · · ∀CN.in[n− 1]

∃y
∀CN.in[0] · · · ∀CN.in[k− 1].R′(CN.in, CN.sel, y)

Case 2. k > bn/2c

∃CN.sel[0] · · · ∃CN.sel[M − 1]

∀CN.in[0] · · · ∀CN.in[k− 1]

∃y
∀CN.in[k] · · · ∀CN.in[n− 1].R′(CN.in, CN.sel, y)

Either case of Proposition 3 is very similar to Proposition 2. The main difference is

the inclusion of the selector signals in the criterion. The existential quantification of the

CN.sel signals allows for the necessary freedom in the mapping from inputs to outputs

in the combination network. Since all the adjustments in the combination network solely

depend on the selection signals, the existential quantification implicitly generates all the

k-combinations.

The first case corresponds to choosing k elements and the second case to not choosing

(n − k) elements. The case distinction depends on the value of k. The difference between
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the cases lies in the order of quantification over the CN.in signals. The innermost universal

quantification is over the signals checked for independency.

Now that the criterion is defined, the goal is to find the maximum k for which Propo-

sition 3 is valid. This is done by binary search. Let the function GetSatAssignment(f)

(cf. Section 2.2.2.4) return an assignment to all the variables in f , such that the assignment

makes f true. Then Algorithm 4 finds the maximum k and a satisfying assignment CN.sel0

to CN.sel which makes Proposition 3 valid.

4.4.1.6 Determinization of R

In addition to the maximum number of R′-independent variables kmax, Algorithm 4 yields

a satisfying assignment to the selector variables of the combination network of R′. These

pieces of information can be used to determinize R, such that R depends on the minimum

number of input variables.

Plugging in CN.sel0 into R′ yields a circuit with inputs CN.in and output y. The mapping

from CN.in to the inputs of R becomes fixed. As kmax is known, it is also known which

inputs R′ does (or does not) depend on. The R′-independent inputs can be universally

quantified out, as in Section 4.2.2.

The functional implementations of R finally can be computed. The optimized cofactors,

depending on the value of kmax, are as follows:

Case 1. kmax ≤ bn/2c

R0 = ∀CN.in[0] · · · ∀CN.in[kmax − 1].R′(CN.in, CN.sel0, 0)

R1 = ∀CN.in[0] · · · ∀CN.in[kmax − 1].R′(CN.in, CN.sel0, 1)

Case 2. kmax > bn/2c

R0 = ∀CN.in[kmax] · · · ∀CN.in[n− 1].R′(CN.in, CN.sel0, 0)

R1 = ∀CN.in[kmax] · · · ∀CN.in[n− 1].R′(CN.in, CN.sel0, 1)

Both fmin ≡ R0 and fmax ≡ R1 are functional implementations, with the minimum and
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Algorithm 4 Binary search for the maximal k and a satisfying assignment to CN.sel.

procedure BinarySearch(R′, CN.in, CN.sel, y)
kmax ← 0
upper ← n
lower ← 0
while lower ≤ upper do

k ← b(upper + lower)/2c
qbf ← R′

I1 ← I2 ← {}
if k ≤ bn/2c then

I1 ← {CN.in[0], . . . ,CN.in[k− 1]}
I2 ← {CN.in[k], . . . ,CN.in[n− 1]}

else
I1 ← {CN.in[k], . . . ,CN.in[n− 1]}
I2 ← {CN.in[0], . . . ,CN.in[k− 1]}

end if

for all x ∈ I1 do
qbf ← ∀x.qbf

end for
qbf ← ∃y.qbf
for all x ∈ I2 do

qbf ← ∀x.qbf
end for
qbf ′ ← qbf
for all x ∈ CN.sel do

qbf ← ∃x.qbf
end for

if qbf = 1 then
CN.sel0 ← GetSatAssignment(qbf ′)
kmax ← k
lower ← k + 1

else
upper ← k − 1

end if
end while
return (kmax, CN.sel0)

end procedure
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maximum on-sets, respectively, of R.

4.5 Experimental Results

The algorithms were implemented as additions to the Marduk synthesis tool, which is part of

Ratsy [BCG+10]. The tool is able to synthesize combinational logic circuits from temporal

logic specifications given as GR(1) formulas (cf. Appendix A). Marduk itself is written in

Python and uses the CUDD library (for BDD operations) which is implemented efficiently

in C.

Both methods seem to be infeasible in practice. Besides toy examples, only the explicit

method is able to synthesize tiny industrial examples: It was possible to synthesize the

Genbuf01, Genbuf02 and Genbuf03 benchmarks2 The implicit method timed out when com-

puting the characteristic function of the combination network. Different reordering methods,

with and without dynamic reordering enabled, have been tried to no avail.

The working Genbuf benchmarks have a significant time penalty compared to the greedy

method which was described in Section 3.3. This additional runtime had to be expected

to some extent. The early pruning of the search space by elimination of the dependent

variables, however, did not happen as was hoped for.

Furthermore it was observed in our experiments that the heuristic search does not elimi-

nate less variables than our exact methods; at least for the set of GR(1) benchmarks we used.

This was not expected and is an interesting result. We do not have a thorough explanation

why this happens at the moment.

2Genbuf is a buffer connected to 2 receivers and a variable number of senders—1, 2 and 3 in this case.
Certain constraints must be satisfied in order to adhere to the specification. An example is that every request
must be granted eventually (liveness).



Chapter 5

Determinization of Boolean Rela-

tions Using Interpolants

This chapter presents the second contribution of this thesis. In Section 3.4 it was presented

how circuits can be built from relations via interpolation. Various SAT solvers are readily

available for this application. Furthermore [D’S10] shows how, given a resolution refutation,

the labelled interpolation system (cf. Section 2.4.3.1) can be used to compute an inter-

polant while introducing a minimum amount of variables into the interpolant. Therefore we

implemented this system and used the particular labelling. This labelling is described in

Section 5.1.

Many SAT solvers could be used for our implementation. As there is a trend towards the

usage of more expressive logics in areas such as model checking or test case generation, but

also synthesis, we decided to use a satisfiability modulo theories (SMT) solver. In particular

the choice was OpenSMT [BPST10]. SMT solvers provide a superset of the functionality

of SAT solvers (hence propositional instances are handled as well). These solvers usually

employ a DPLL-style search, but with additional knowledge of the supported theories (this

extended algorithm is called DPLL-T ). One example of a theory supported by most SMT

solvers is the quantifier-free theory of uninterpreted functions and equality (QF UF). In this
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theory, functions are not evaluated. Functional consistency (i.e. if x = y then f(x) = f(y))

is checked, though. A problem instance might look like

(x = y) ∧ ¬(y = z) ∧ (f(x) = f(z)).

In the example every conjunct is a literal. The example is unsat, since by transitivity and

the functional consistency constraint f(x) cannot equal f(z). After this short detour into

SMT solving, let us now return and only consider propositional resolution proofs again.

OpenSMT so far has the ability to compute a resolution proof and interpolate using the

symmetric and McMillan’s systems. Building on the existing implementation, the labelled

interpolation system was added. The labelled interpolation system can be enabled by setting

proof set inter algo to 3 in OpenSMT’s configuration file.

5.1 Minimum-variable Labelling

Previously a reference was made to a labelling resulting in an interpolant with minimum

amount of variables. This particular labelling function was described in [D’S10, Section 5.2]

and is based on the results of [DKPW10].

Let us consider a refutation of a CNF partitioned in A∧B. Remember from Section 2.4.3

that a labelling is completely defined by labelling the initial vertices of the proof. According

to the labelled interpolation system, every literal l with var(l) A-local (B-local) has to be

labelled a (b). Therefore the only literals for which there is freedom of choice between a,

b and ab are the ones where the corresponding variable appears in both partitions. The

minimum-variable labelling results from the labelling function mapping a shared literal l to

a for all occurrences of l in clauses of A and to b for all occurrences in clauses of B.

The proof of [D’S10, Lemma 4] shows that this labelling is indeed minimal. It is along

the lines of showing that every variable added to the interpolant by this labelling would be

added by any other labelling as well.
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5.2 Implementation

This section documents the implementation of the labelled interpolation system within

OpenSMT. As OpenSMT is a vast software, only a small portion of the code had to be

touched. Subsequently the parts of OpenSMT relevant to our work such as proof generation

and interpolation, are discussed. Afterwards our additions to the code are explained. It is

hoped that this will make the entry hurdle for newbies, who want to make changes in this

area, smaller.

So far, the previously explained labelling is hard-coded and it might be interesting to

allow flexibility to support every valid labelling function. There are some difficulties, though.

The final SAT instance is only known at runtime, since it might need to be transformed into

CNF first. The best bet might be to apply Tseitin’s transformation before starting the

solver and define an additional input format which specifies the labelling function.

5.2.1 OpenSMT and Interpolant Generation

OpenSMT is a modern open source SMT solver, implementing DPLL-T . It is written in

C++ and based on miniSAT 2.0 [ES03]. More information can be found at http://verify.

inf.unisi.ch/opensmt or in [BPST10]. Important for us was that OpenSMT supports proof

generation and interpolation which gave us a foundation to build on. Furthermore SMT-

LIB 2 support was a criterion for our choice. We are unaware of other open source SMT

solvers satisfying these requirements.

The following describes briefly what happens internally when generating an interpolant.

After parsing the instance and building the internal Egraph data structure representing

it, the proof is generated by executing the DPLL-T procedure. Two classes are involved

primarily in proof construction:

� CoreSMTSolver implements the DPLL-T procedure.

� Proof provides methods and a data structure for storing the proof.

This data structure is called ProofDer. It is a compacted representation of the proof which

http://verify.inf.unisi.ch/opensmt
http://verify.inf.unisi.ch/opensmt


70 5. Determinization of Boolean Relations Using Interpolants

does not store intermediate resolvents, but stores a chain of pivots and the initial clauses

instead. This information suffices to infer an internal clause.

From this data structure the proof graph is generated. It is stored in the class ProofGraph

as a vector of ProofNodes. ProofGraph provides a variety of functionality related to

proof computation and interpolation. It is constructed in ProofGraph::buildProofGraph.

OpenSMT differentiates between four types of clauses when building the proof graph:

1. CLA ORIG are initial clauses of the proof in A ∧B.

2. Deduced clauses are internal clauses of A ∧B.

3. CLA LEARNT are clauses which are derived from an implication graph during the exe-

cution of DPLL-T .

4. CLA THEORY are clauses which provide an explanation from a theory solver.

The former three types are of interest to us. For a node of one of these types, clause, pivot

and (if applicable) antecedents are saved in a ProofNode object. For CLA ORIG clauses,

information of partition affiliation is stored as well. In the next step the proof graph is

topologically sorted such that antecedents appear before resolvents, in order to facilitate

iterative computation of the interpolant.

The existing interpolation systems differ from the labelled system: The partial inter-

polant at initial vertices (base case) depends only on the partition affiliation of the clause

(and of course the clause itself). No information of the partition affiliation of variables is

necessary.

For internal vertices, the essential information is global as well, as opposed to the labelled

system: The case distinction is made on the partition affiliation of the pivot variable, whereas

in the labelled system the computation depends on the label resulting from the join of the

pivot’s labels. This global information can be retrieved from the Egraph. Central procedures

involved in the generation of interpolants are ProofGraph::produceSequenceInterpolants

and ProofGraph::setPartialInterp. The eventual computation of the partial interpolants

is done in the ProofGraph::setInterp(Pudlak | McMillan | McMillanPrime)(Leaf |

NonLeaf) methods.



5.3. Experimental Results 71

5.2.2 Our Additions

In order to add the labelled interpolation system, changes were made in the ProofGraph

and ProofNode code sections, primarily. The lattice of labels (cf. Section 2.4.3.1) was

added, with a class LabelColor taking care of the lattice operations. Furthermore, as

mentioned, previously no local label information was needed. A map from clause lit-

erals to members of the lattice was implemented in ProofNode to serve this purpose.

In ProofGraph::buildProofGraph initial vertices are labelled. Currently, the labelling

is hard-coded as to follow the minimum-variable labelling which was described earlier.

After the complete proof graph is built, the labels are propagated down the proof in

ProofGraph::colorProofLiterals. Finally, given the whole labelling, it is possible to com-

pute the partial interpolants. Analogous to the existing interpolation systems this is done

in ProofGraph::setInterpLabelledLeaf and ProofGraph::setInterpLabelledNonLeaf.

5.3 Experimental Results

To see how much better the minimum-variable labelling performs in practice compared to

the other three interpolation systems (McMillan, McMillan inverse, Symmetric), in terms of

number of variables in the final interpolant, some experiments were performed. The bench-

marks were taken from http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html. The unsat instances

which were used in the experiments are from the AIM and JNH benchmark sets. These

are easy artificial benchmarks, which can be solved quickly with proofs of reasonable size.

The partitioning into A and B was done such that no interpolant is 0: The size of the A

partition was set to be 5% of the clauses for the AIM benchmarks and 20% of the clauses

for the JNH benchmarks.

The results are provided numerically in Table 5.2 and graphically in Figure 5.1. The

numeric values from top to bottom are represented from left to right in the figure. It

is observed that in the JNH benchmark set, the McMillan interpolation system performs

comparably to the labelled system. In the AIM benchmarks, it is the inverse McMillan

system which introduces a similar number of variables. The symmetric system performs

considerably worse in both cases.

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
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mcmillan inv mcmillan symmetric
JNH 0.59 0.97 0.60
AIM 0.85 0.28 0.33

Table 5.1: Average percentage of variables introduced into the final interpolant by
the labelled system comparing it to the other interpolation systems for
both benchmarks.

Table 5.1 provides a percentage comparison of the labelled interpolation system to all the

other systems. The figures in the table show the average percentage of variables introduced

into the final interpolant by the labelled system with minimum-variable labelling compared

to the other systems for each set of benchmarks.
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S1 S2 S3 S4
jnh10 37 76 40 74
jnh11 60 87 63 89
jnh13 30 69 30 68
jnh14 28 55 30 55
jnh15 70 93 71 92
jnh18 76 98 76 96
jnh19 59 89 59 86
jnh202 33 66 33 62
jnh203 48 89 49 88
jnh206 74 96 74 96
jnh208 64 95 64 94
jnh20 48 71 48 70
jnh211 40 81 40 75
jnh214 65 85 66 84
jnh215 53 80 53 78
jnh216 74 97 75 97
jnh219 61 93 62 92
jnh2 25 49 27 47
jnh302 10 20 14 23
jnh303 56 84 56 78
jnh304 13 26 15 27
jnh305 32 75 36 75
jnh307 29 51 29 49
jnh308 36 67 37 63
jnh309 25 45 27 47
jnh310 7 12 7 10
jnh3 76 97 76 96
jnh4 62 91 62 87
jnh5 58 89 58 89
jnh6 64 91 65 86
jnh8 35 78 36 76
jnh9 63 79 64 79

(a) JNH

S1 S2 S3 S4
aim-100-1 6-no-1 7 7 11 10
aim-100-1 6-no-2 6 6 9 7
aim-100-1 6-no-3 4 5 9 7
aim-100-1 6-no-4 3 4 8 7
aim-100-2 0-no-1 1 1 9 6
aim-100-2 0-no-2 5 5 10 8
aim-100-2 0-no-3 7 7 12 11
aim-100-2 0-no-4 4 4 11 8
aim-200-1 6-no-1 4 4 14 13
aim-200-1 6-no-2 6 7 16 16
aim-200-1 6-no-3 4 6 11 10
aim-200-1 6-no-4 4 6 13 12
aim-200-2 0-no-1 2 2 17 13
aim-200-2 0-no-2 1 2 19 17
aim-200-2 0-no-3 5 5 18 16
aim-200-2 0-no-4 4 5 19 14
aim-50-1 6-no-1 3 3 5 4
aim-50-1 6-no-2 5 5 7 6
aim-50-1 6-no-3 2 2 5 5
aim-50-1 6-no-4 2 2 5 4
aim-50-2 0-no-1 7 7 8 8
aim-50-2 0-no-2 3 5 5 5
aim-50-2 0-no-3 6 6 8 8
aim-50-2 0-no-4 4 6 6 5

(b) AIM

Table 5.2: # of variables in the final interpolant for each benchmark.
S1=labels, S2=mcmillan inv, S3=mcmillan, S4=symmetric
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Figure 5.1: # of variables in the final interpolant (y) for each benchmark (x).



Chapter 6

Outlook

“ Prediction is very difficult, especially if it’s about the future. ”

[ Niels Bohr ]

This chapter gives a brief overview of general trends in the field. Furthermore it highlights

ways of improving upon the approaches presented in this thesis.

6.1 General Trends

The most obvious trend in the field is certainly the change from classical Boolean logic to

higher-order logics. Beginning with the improvements in propositional SAT solving around

the turn of the century [SS96, MMZ+01], as well as a rising number of decision proce-

dures for higher-order logics, satisfiability modulo theories (SMT) has gained in importance.

These expressive logics simplify the modeling of certain problems and advanced tools like

z3 [dMB08] add to the usefulness of these logics. Therefore SMT has found entrance into

practical tools concerned with software correctness. [BM09] provides an overview of the op-

portunities and future challenges for applications of SMT: The list of applications includes

symbolic execution, model checking and static analysis of programs.
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SMT also facilitates modelling synthesis problems. [HB11] presents an approach of syn-

thesizing a pipeline controller from a specification in the quantifier-free theory of arrays.

The approach eventually leads to a non-deterministic relation and in order to compute the

system’s implementation it has to be determinized. Applying [JLH09, Theorem 2] is also

possible when the relation is in a more expressive logic. Therefore the determinization

technique of Jiang, Lin and Hung can be used here as well.

6.2 Ideas for Future Work

There are various ways which might improve our results.

� The implicit search presented in Section 4.4 might be improved by modelling it as a

QBF instance. There is a possibility that a QBF solver can solve such an instance

more efficiently. There are a couple of steps needed for making such a solution work.

The combination network and the relation, which are present as BDDs have to be

converted into an appropriate format. Furthermore, the conversion should entail the

transformation into CNF via Tseitin’s transformation. It might be possible to use

ABC in the process to some extent as it supports reading BLIF and writing DIMACS.

Additionally, the necessary quantifications must be added.

� Regarding the interpolation-based approach, the ground work was done for future

improvements in this area. It might be of use to support any labelling function instead

of the current approach of fixing one particular labelling.

� In order to decrease the number of variables in the final interpolant further, the goal

is to try rewriting the resolution proofs such that more local resolutions are possible

(cases where no variable is introduced). The idea is to rewrite the proof similar as

in [BIFH+11] (described in Section 3.4.1). Instead of decreasing the overall proof size

the goal is to decrease the number of introduced variables when using the minimum-

variable labelling.

� Furthermore, for QF UF a method exists to rewrite the proof of the theory solver

(the decision procedure is described in [FGG+09]) into a propositional proof. This is
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described briefly in [Mcm08]. After rewriting, the minimum-variable labelling can be

applied to a larger portion of the proof. Theory proofs of QF UF which would need

to be considered separately for variable minimization (or not at all) can be brought

into the framework of propositional interpolation.
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Chapter 7

Concluding Remarks

“ Finally, in conclusion, let me say just this. ”

[ Peter Sellers ]

In this thesis various different approaches for the determinization of Boolean relations

have been presented. The theoretical foundations, such as terminology of Boolean logic,

BDD and normal form representations and SAT solving together with interpolation were

discussed. Various different existing techniques for logic minimization and determinization

have been introduced—classical as well as contemporary approaches. Building upon this

work, three approaches were implemented, with the goal to improve circuit size. Two ap-

proaches are based on BDDs and are able to compute the determinization with minimum

amount of variables. From our experiments it was observed that these exact approaches

are computationally infeasible. Furthermore, the benchmarks that did not time out did not

provide better solutions than the existing approach.

We also implemented an approach based on interpolation which uses a specific labelling

function. This approach provides the minimum-variable solution for a given resolution

proof. The interpolation system we implemented was compared to the existing interpolation

systems.
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The implementation lays groundwork for improvements that are to be implemented in

the future. On the one hand, the goal is to include theory proofs into the propositional

part of the proof. On the other hand, it might be possible to rewrite the proofs with the

particular interpolation system in mind, such that even less variables are introduced into

the interpolant and therefore into the functional implementation.



Appendix A

Generalized Reactivity(1) Synthesis

In the appendix we try to put relation determinization into context and introduce General-

ized Reactivity(1) (GR(1) for short) synthesis. The benchmarks for the BDD based solutions

in Chapter 4 come from GR(1) synthesis.

Property synthesis, in general, is a paradigm for constructing correct systems. The idea

is to synthesize a system’s implementation directly from the specification, rather than to

write a program that adheres to the specification separately and to later verify it against

the specficiation. Synthesis allows to get rid of caring about implementation details, that

is how a system satisfies the specification, and rather allows to just care about what a

system’s properties must be in the end. GR(1) synthesis is concerned with the synthesis

of reactive systems. These systems can be seen as automata with Boolean input variables

I and Boolean output variables O. At every discrete time step an environment provides

inputs (i.e. values for I) and the system reacts by computing the output values.

Approaches to synthesizing reactive systems from temporal specifications have been dis-

couraging at first, since LTL synthesis is 2EXPTIME-complete [PR90]. Therefore, in [PP06]

the authors suggest to use only a subset of LTL—that is GR(1)—which can be solved in

time cubic in the size of the state space. It is claimed that this syntactic restriction of LTL

is sufficient to specify most systems (i.e. systems which are compassion-free [PP06]).
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GR(1) specifications are of the form ϕ ≡ ϕe → ϕs. Each ϕα, where α ∈ {e, s}, is a

conjunction of:

� ϕiα: A propositional formula which represents the initial states of the system/environ-

ment.

� ϕtα: A formula which represents the possible transitions of the system/environment. It

is of the form
∧
i G(Bi), where each Bi is a Boolean combination of variables (I ∪ O)

and next state variables expressed as X(v). If α = e, then v ∈ I, otherwise v ∈ (I ∪ O).

� ϕgα: A formula which characterizes the winning condition for the system/environment.

It is of the form
∧
i GF(Bi), where each Bi is a Boolean combination of variables from

(I ∪ O).

Solving GR(1) is modelled as deciding the winner of a 2-player game. ϕiα, ϕ
t
α, ϕ

g
α are

used to construct a game structure (GS). The following definition of the GS sticks to the

one provided in [PP06] closely.

Definition 13 (Game structure). A game structure is a 6-tuple (I,O,Θ, ρe, ρs, ϕ). I and O
are sets of Boolean input and respectively output variables of the game structure. The input

variables are controlled by the environment, whereas the output variables are controlled by the

system. Every minterm of the space spanned by (I ∪ O), is a state of the game structure.

The set of all states is denoted by Q. A state is written as (i, o), where i ∈ AI is an

assignment to the input and o ∈ AO is an assignment to the output variables. AI and

AO are the sets representing all possible assignments to I and O, respectively. The initial

states of the game structure are characterized by Θ ≡ ϕie ∧ ϕis. ρe(I,O, I ′) is the transition

relation of the environment. It relates a state q ∈ Q to possible next input values i′—that is

an assignment i′ ∈ AI . The primed variables are next state variables. Every occurrence of

X(v) is replaced by v′ for v ∈ (I ∪ O). The sets representing these next state variables are

I ′ and O′, respectively. ρs(I,O, I ′,O′) is the transition relation of the system. It relates a

state q ∈ Q and a next input i′ to all possible next outputs o′, where o′ ∈ AO. The transition

relations for the environment and system are given by ϕtα. The winning condition of the

game structure is defined as ϕ ≡ ϕge → ϕgs.
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For such a game structure, a play σ is defined as a maximal sequence of states q0, q1, . . .

such that q0 satisfies Θ and each state qk is a successor of qk−1 (for k > 0). For a pair of

states (qk−1, qk), qk is a successor of qk−1 if (qk−1, qk) ∈ ρe ∧ ρs (that is, there is an edge

from qk−1 to qk in the joint transition relation). The game is played as follows: The game

starts in an initial state. From there the environment moves by providing a next state input

i′. The system reacts to the move by providing a next state output o′. Both moves are

supposed to be according to the respective transition relations ρα. This procedure advances

the play into the next state and the next round begins.

A play σ is winning for the system if it is infinite and every state of σ satisfies the winning

condition ϕ. Otherwise, a play is winning for the environment. The goal of the system is

to choose outputs, such that a play is winning for the system. It does so by adhering to its

strategy. The strategy is a partial Boolean function f : Q+ ×AI 7→ AO, mapping a finite

sequence of states q0, . . . , qk, with k ≥ 0, and an input, provided by the environment, to an

output o′. For (qk, i
′) ∈ ρe the strategy provides o′, where f(q0, . . . , qk, i

′) = o′, such that

(qk, i
′, o′) ∈ ρs.

If a strategy makes all the plays starting in initial states of the GS winning for the

system, then it is called a winning strategy. If there exists a winning strategy, then

the game is winning for the system and the system is realizable—the strategy is a working

implementation of the system. Otherwise the environment is winning and the system is

unrealizable.

A.0.1 µ-Calculus

The algorithm [PP06] for extracting a strategy from a game structure is given as a µ-calculus

[Koz83] formula. The µ-calculus is employed to iteratively compute the set of states from

which there exists a winning strategy. The intermediate values of this computation can be

used to form a winning strategy.

The µ-calculus over game structures is defined as follows. Let v ∈ (I ∪ O) be a Boolean

variable and V = {X,Y, Z1, Z2, . . .} a set of relational variables. A relational variable X ∈ V
can be assigned a set of states P ⊆ Q. The BNF defining the syntax of µ-calculus formulas
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is as follows:

〈ϕ〉 ::= v | ¬v | 〈ϕ〉 ∨ 〈ϕ〉 | 〈ϕ〉 ∧ 〈ϕ〉 | µX〈ϕ〉 | νX〈ϕ〉 | MX 〈ϕ〉.

A µ-calculus formula ϕ is interpreted as the set of states, written as [[ϕ]] ⊆ Q, where ϕ is

true. Formally, the semantic of µ-calculus formulas is as follows:

[[v]] = {q ∈ Q | v |= q}
[[¬v]] = {q ∈ Q | v 6|= q}
[[X]] = X ⊆ Q

[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]]

[[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]].

Let X be a free variable in ϕ. The notation for assigning a set of states P to X in ϕ is

[[ϕ]]X←P . Then the two fixpoint operators µ (least fixpoint) and ν (greatest fixpoint) are

defined as

[[µXϕ]] =
⋃
i

Qi, where Q0 = ∅ and Qi+1 = [[ϕ]]X←Qi

[[νXϕ]] =
⋂
i

Qi, where Q0 = Q and Qi+1 = [[ϕ]]X←Qi .

Finally, the authors of [PP06] add a non-standard operator for computation on game struc-

tures: The mixed-preimage operator MX. The formal definition of this operator is

[[MX ϕ]] = {q ∈ Q | ∀i′. (q, i′) ∈ ρe → ∃o′. (q, i′, o′) ∈ ρs and (i′, o′) ∈ [[ϕ]]}.

Informally, the interpretation of this operator is that all states q, for which the system can

force the play into [[ϕ]] by choice of o′ after the environment has moved by choosing i′, are

included in [[MX ϕ]]. Such states can be considered system-controlled.
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A.0.2 Computation of the Strategy

A µ-calculus formula to solve GR(1) games, that is used compute a strategy, is given in

[PP06]. The formula characterizes all states from which there exists a winning strategy

for the system, when the winning condition is given as ϕ ≡ ∧m
i=1 GFJAi →

∧n
j=1 GFJGj .

Simplified, this condition means: “As long as the environment satisfies the environment

assumptions (JAi ), the system has to fulfill the system guarantees (JGj )”. The set of states

from which there exists a winning strategy is called the winning region, or short Win.

Win = νZ

n∧
j=1

µY

(
m∨
i=1

νX
((
JGj ∧MX Z

)
∨ (MX Y ) ∨

(
¬JAi ∧MX X

)))

Notice that the square brackets were dropped for better readability. When implemented,

every fixpoint corresponds to a loop. All the intermediate values for X,Y, Z from the loop

iterations, are saved and the information is used to construct the strategy.

� X: These are the states, where the environment violates an assumption and the play

stays in an X state.

� Y : These are the states, where the system can get closer to satisfying a guarantee.

� Z: These are the states, where a guarantee approach is completed, and the next

guarantee to approach is selected.

There are different ways to construct the strategy from these intermediate results: The

original approach [PP06] suggests creating three sub-strategies ρ3, ρ2 and ρ1, corresponding

to X,Y and Z, respectively. Each sub-strategy is a transition relation containing the valid

moves when in a particular state. However, multiple moves might be possible.

In order to compute the final implementation of the circuit the strategy has to be de-

terminized at some point. Determinizing the strategy means that whenever multiple moves

for the system are possible, one has to be picked. That is, computing the functional im-

plementation of a Boolean relation, which then can be converted to a combinational circuit

(usually a circuit of 2-to-1 multiplexers, see Figure 2.2).
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Ground interpolation for the theory of equality. In Proceedings of the 15th

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems: Held as Part of the Joint European Conferences on Theory

and Practice of Software, ETAPS 2009,, TACAS ’09, pages 413–427, Berlin,

Heidelberg, 2009. Springer-Verlag. (Cited on page 76.)

[Flo67] R W Floyd. Assigning meanings to programs. Mathematical aspects of computer

science, 19(19-32):19–32, 1967. (Cited on page 1.)

[FMK91] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering of binary de-

cision diagrams for the application of multi-level logic synthesis. In Design

Automation. EDAC., Proceedings of the European Conference on, pages 50 –54,

feb 1991. (Cited on page 22.)

[HB11] Georg Hofferek and Roderick Paul Bloem. Controller synthesis for pipelined cir-

cuits using uninterpreted functions. In IEEE, editor, Ninth ACM/IEEE Inter-

national Conference on Formal Methods and Models for Codesign (MemoCODE

2011), pages 31 – 42. IEEE, 2011. (Cited on pages 2, 22 and 76.)

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, October 1969. (Cited on page 1.)

[HS96] G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.

Kluwer Academic Publishers, 1996. (Cited on page 2.)

[Hua95] Guoxiang Huang. Constructing craig interpolation formulas. In Proceedings of

the First Annual International Conference on Computing and Combinatorics,

COCOON ’95, pages 181–190, London, UK, UK, 1995. Springer-Verlag. (Cited

on page 31.)

[ISY91] N. Ishiura, H. Sawada, and S. Yajima. Minimization of binary decision diagrams

based on exchanges of variables. In Computer-Aided Design, 1991. ICCAD-91.



Bibliography 91

Digest of Technical Papers., 1991 IEEE International Conference on, pages 472

–475, nov 1991. (Cited on page 22.)

[JLH09] Jie-Hong R. Jiang, Hsuan-Po Lin, and Wei-Lun Hung. Interpolating functions

from large boolean relations. In Proceedings of the 2009 International Confer-

ence on Computer-Aided Design, ICCAD ’09, pages 779–784, New York, NY,

USA, 2009. ACM. (Cited on pages 4, 24, 25, 42, 43, 44 and 76.)

[Kar53] M. Karnaugh. The map method for synthesis of combinational logic circuits.

1953. (Cited on page 8.)
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