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1 Introduction

The understanding of strongly correlated physical systems such as light-matter

systems, ultracold atoms confined in optical lattices, high-temperature supercon-

ductors or magnetic materials opens the way for the development of new high-tech

applications. These applications might be located in the field of quantum infor-

mation processing, quantum optics, material sciences, energy sciences, or health

sciences.

The above mentioned strongly correlated manybody systems can be mathemati-

cally described by means of quantum mechanical model Hamiltonians, which focus

on the most important processes and properties of the systems. There exist dif-

ferent approaches to solve these problems.

In one approach the model Hamiltonians are mapped onto large scale eigenvalue

problems, which have to be solved with sophisticated and demanding numerical

methods. Another approach to tackle these strongly correlated many body systems

is by analytical techniques. In this Marshall Plan Scholarship Paper I will compare

those two approaches and demonstrate that the interplay of these two methods

allows for a deeper physical insight.

In particular, this Marshall Plan Scholarship Paper consists of a collection of

our recent publications and preprints. Part of the presented results are taken over

from my PhD thesis [1].

The first chapter “Clustered Wigner crystal phases of cold polar molecules in ar-
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1 Introduction

rays of one-dimensional tubes” is an extended presentation of the manuscript [2],

which is currently submitted to a journal. Latest details about the publication

of this work can be found under arxiv.org:1112.5662 (2011). The second chapter

“Nonequilibrium steady state for strongly-correlated many-body systems: varia-

tional cluster approach” is originally published in [3] and the third chapter “Ex-

tended self-energy functional approach for strongly-correlated lattice bosons in the

superfluid phase” in [4].
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2 Clustered Wigner crystal phases

of cold polar molecules in arrays

of one-dimensional tubes

Michael Knap Institute of Theoretical and Computational Physics, Graz Univer-
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We analyze theoretically polar molecules confined in planar arrays of one di-

mensional tubes. In the classical limit, if the number of tubes is finite, new types

of “clustered Wigner crystals” with increasingly many molecules per unit cell can

be stabilized by tuning the in-plane angle between the dipolar moments and the

tube direction. Quantum mechanically, these phases melt into distinct “clustered
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2 Clustered Wigner crystal phases

Luttinger liquids.” We map the phase diagram of the system and find that the re-

quirements for cluster formation are reachable in current experiments. We discuss

possible experimental signatures of clustered phases.

2.1 Introduction

Systems with competing long-range interactions often exhibit structures with emer-

gent large length scales. Some examples include the formation of bubble and stripe

domains in Langmuir-Blodgett films or in thin ferromagnetic layers [5,6], and the

chain formation of magnetic particles in three-dimensional ferrofluids [7]. Long-

range dipolar interactions in a back-gated two-dimensional electron gas (2DEG)

have been predicted [8, 9] to lead to the existence of “microemulsion” phases in-

tervening between the Fermi liquid and the Wigner crystal phase. Similar mi-

croemulsion phases may appear in 2DEGs subject to magnetic fields such that

several Landau levels are occupied [10–13].

Theoretically, quantum emulsion phases are challenging to analyze since they

involve structures at length scales ranging from the inter-particle distance to

mesoscopic scales which are embedded in manybody systems. In contrast, the

paradigms of manybody states are geared toward two particle correlations, such

as paired states, magnetism and charge density wave. Experimentally, quantum

emulsion phases are not easy to probe since transport measurements can only

provide indirect evidence about their existence. Realizing long-range interactions

with systems of cold polar molecules [14–19] can allow to explore emergent emul-

sion phases in a highly controllable setting. Moreover, in such systems few-body

bound states [20] and trimer liquid phases [21] have been predicted.

Here, we demonstrate that the anisotropic and long-range character of dipolar

interactions leads to new types of clustered crystal phases which appear at inter-
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Figure 2.1: (Color online) Proposed setup to observe cluster formation of polar

molecules (a). The classical phase diagram for two tubes as a function

of the tilting angle φ and the particle density ρ is shown in (b). Lobe

shaped phases consisting of clusters with q particles per tube emerge.

The phase separated regions are indicated by the shaded layer sur-

rounded with speckles. Inset: Optimized cluster configuration in one

unit cell for φ = 1.01, upper graph, and φ = 0.99, lower graph, at

ρ = 0.7, corresponding to q = 2 and q = 3, respectively.

mediate values of the interaction strength. Quantum mechanically, these phases

melt into distinct “clustered Luttinger liquids” characterized by the decay of their

density-density correlation functions. We calculate the phase diagram and study

the quantum melting of the clustered phases when tuning the orientation of the

dipoles. Our calculations indicate that the clustered phases can be explored under

current experimental conditions.
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Figure 2.2: (Color online) Phase diagram in the tilting angle φ and the particle

density ρ plane for (a) nT = 3, (b) nT = 4, and (c) nT = 8 tubes. The

phase separation regions are indicated by shaded layers surrounded by

speckles.

2.2 Experimental setup

We consider a setup in which polar molecules are confined to nT one-dimensional

parallel tubes [see Fig. 2.1 (a)], which can be realized by deep optical lattices, that

effectively suppress the inter-tube tunneling [22]. The dipolar moments are aligned

in the plane of the tubes at an angle φ with respect to the tube direction. The

inter-tube distance δ is used as unit of length throughout this work.

The interaction energy between two molecules with dipolar moment m is

V (rer) =
µ2 − 3(mer)

2

r3
, (2.1)

where rer is the inter-molecule displacement and m = µ(cosφ, sinφ, 0)T . For

tilting angles below the critical angle φc = arccos 1/
√

3, the interaction between

molecules in the same tube is attractive and the system is unstable. Thus, we

focus on dipolar orientations π/2 ≥ φ ≥ φc where the intra-tube interaction is

repulsive. Yet, molecules in different tubes attract when their displacement along

the tubes is not too large. It is precisely this interplay between attraction and

repulsion which leads to the formation of clusters.
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2.3 Classical limit

2.3 Classical limit

We first discuss the emergence of mesoscopic structures in the classical limit (~→

0).

When the dipoles are oriented perpendicular to the tubes (φ = π/2) the ground

state is a Wigner crystal with nT molecules per unit cell and periodicity ρ−1, where

ρ is the linear density of molecules. Upon tilting the direction of the dipoles toward

the critical angle φc, phases with an increasingly complex unit cell are formed,

before eventually becoming unstable to collapse at φ = φc. In these phases, the

unit cell consist of q particles per tube forming a superlattice with periodicity

qρ−1. For example, a phase with nT = 2 and q = 3 is illustrated schematically in

Fig. 2.1 (a).

We have derived the phase diagram as a function of the tilting angle φ and

the density ρ, by minimizing the classical ground state energy with respect to

the position of the molecules, allowing for arbitrary periodic structures with up

to q = 8 molecules per unit cell in each tube. The phase diagram for nT = 2

is shown in Fig. 2.1 (b). At small densities we observe transitions to phases with

monotonically increasing q when decreasing the tilt angle from π/2 toward φc.

Phases of a fixed value of q have a lobe like structure, which bends with increasing

density toward larger φ. Quite generally phases in Fig. 2.1 (b) terminate by phase

separated regions, indicated by a shaded layer surrounded with speckles. The phase

separated regions are determined by the Maxwell construction which is applicable

when the interfacial energy is positive [8]. It is possible that phases with q > 8,

not captured by our present calculation, are favorable in some parts of the phase

diagram. In particular, this is the case very close to φ = φc where we find that

q = 8 has the lowest energy.

The origin of the cluster formation can be easily understood by considering the

case φ = φc. Then, the intra-tube repulsion is precisely zero. In order to maximize

13



2 Clustered Wigner crystal phases

inter-tube attraction, it is favorable to form a single cluster with a macroscopic

number of particles, corresponding to a q → ∞ phase. As the angle is tuned

toward φc, there must be either an infinite sequence of transitions to increasingly

higher values of q, or a macroscopically phase separated region.

Next, we discuss systems with more than two tubes. Results for nT = 3, 4,

and 8 tubes are shown in Fig. 2.2. The phase diagrams for nT > 2 have a similar

lobe structure as in the nT = 2 case. The main difference is that with increasing

number of tubes the lobes extend to higher values of the tilting angle φ. Thus,

clustered phases might be easier to observe in systems with a larger number of

tubes. As in the nT = 2 case, phase separated regions appear between some of the

phases of different q.

A two-dimensional system which consists of an infinite number of tubes with

dipoles aligned in the plane exhibits similar physics to the case of a finite number

of tubes: the q = 1 Wigner crystal phase becomes locally unstable for an angle

φ > φc. However, in this case, trial configurations with an increasing q have mono-

tonically lower energy (we have tried structures with up to q = 128), indicating

that the ground state may be phase separated. In the low density limit, the dipoles

form infinitely long strings, which are mutually attractive, see appendix, and thus

one can show that the system is unstable to macroscopic phase separation. Note

that, for in-plane dipoles, the (logarithmically divergent) surface energy is is posi-

tive, see appendix, therefore macroscopic phase separation is possible (unlike the

out-of-plane case [8]).

2.4 Quantum mechanical analysis

In quantum mechanical systems with continuous translational symmetry, true

long-range crystalline order appears only in two dimensions or higher, even at

14



2.4 Quantum mechanical analysis

zero temperature. In one-dimensional systems, the density-density correlations

decay for large distances as a power law. Nevertheless, one can expect that upon

melting the clustered Wigner crystal phases by quantum fluctuations, these phases

will remain distinguishable from each other by the nature of their quasi-long range

correlations. We term the resulting phases “clustered Luttinger liquids.”

In a clustered Luttinger liquid phase, the slowest-decaying component of the

density-density correlations has a spatial period of λ = qρ−1. In a bosonized de-

scription, the fundamental harmonic of the density operator is therefore of the

form cos[2π(x + x0)ρ/q], where x0 is a uniform shift of the crystalline configura-

tion. In terms of the “counting field” φ(x) [23] defined relative to the crystalline

configuration we obtain for the bosonized density

ρ(x) = ρ− 1

π
∇φ(x) + ρ cos

[
2πρx

q
+

2φ(x)

q

]
+ . . . ,

where the dots represent higher harmonics. The factor of q−1 present in the cosine

alters the power law with which the density correlations decays:

〈ρ(x)ρ(0)〉 = ρ2 − K

2π2

1

x2
+
ρ2

2
cos

2πρx

q

(α
x

) 2K
q2

. (2.2)

Here, K is the Luttinger parameter. Microscopic considerations, see appendix,

suggest that K ∝ q. Therefore, the exponent with which the density-density

correlation function decays is proportional to 1/q. Phases with larger q thus have

a slower decay of the density-density correlation function, and are increasingly

“classical” in nature.

In order to make quantitative predictions about the phase diagram in the pres-

ence of quantum fluctuations, we have investigated a system of two tubes numer-

ically by means of density matrix renormalization group (DMRG) [24,25] simula-
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Figure 2.3: (Color online) Particle density ρ(x) in the lower (red squares) and the

upper (blue triangles) tube for dipolar strength γ = 8, left column, and

γ = 50, right column for a system of length L = 24δ, density ρ = 0.5δ−1

and lattice spacing a = δ/4. From top to bottom the tilt angle takes

the values φ = {1.02, 0.99, 0.98, 0.97, 0.96}. For γ = 50 pronounced

clusters with q = {1, 2, 3, 4, 6} are found. The data is obtained by

means of DMRG for systems with open boundary conditions.
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2.4 Quantum mechanical analysis

tions. To this end, we introduce the lattice Hamiltonian

Ĥ = −t
∑
α,i

[
c†α,icα,i+1 + c†α,i+1cα,i

]
+
µ2

δ3

∑′

i,j,α,β

Vd[(i− j)a/δ, α− β]n̂α,in̂β,j , (2.3)

where cα,i (c†α,i) destroys (creates) a particle at site i of tube α = 1, 2, and

n̂α,i = c†α,icα,i counts the number of particles. Due to the strong on-site repulsion

we treat the particles as hard-core, and therefore for the quantities we compute

here (e.g., density distributions and ground state energies), it does not matter

whether the particles are bosons or fermions. The discrete Hamiltonian can rep-

resent a continuous system by taking the lattice spacing a→ 0 while keeping the

product ta2 = 1/(2m) constant, where t is the hopping strength and m is the mass

of the particles in the continuum. The primed sum indicates that the singular con-

tribution where i = j and simultaneously α = β is omitted. The dipolar energy

Vd(x, y) is given by Eq. (2.1) with r = (x, y)T .

It is convenient to introduce the dimensionless quantity γ, which is the ratio

between the typical dipolar interaction energy Edip and the typical kinetic energy

Ekin. These energies can be estimated as Edip ∼ µ2ρ3 and Ekin ∼ ρ2/m, respec-

tively, and thus γ ∼ µ2ρm. In the limit of strong interactions, γ � 1, the system

is expected to be essentially classical, and the phase diagram is expected to be

similar to that of Fig. 2.1 with the Wigner crystalline phases replaced by clustered

Luttinger liquids. Conversely, for γ � 1, quantum fluctuations dominate, and we

expect only the q = 1 phase to survive.

The particle density ρ(x) evaluated with DMRG for the Hamiltonian (2.3) is

shown in Fig. 2.3. We consider a system of finite length L = 24δ with open

boundary conditions and particle density ρ = 0.5δ−1. The lattice constant is

a = δ/4; no significant change in the results was observed when a was decreased

to δ/6. The ratio between the interaction energy and the kinetic energy is γ = 8 in

17
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Figure 2.4: (Color online) Quantum phase diagram for a two tube system of length

L = 24δ, density ρ = 0.5δ−1, and lattice spacing a = δ/4, as a function

of the tilting angle φ and the ratio between the kinetic and the inter-

action energy 1/γ. Right to the asterisks connected by lines cluster

formation can be observed. To the left of this line, the ground state is

a q = 1 Luttinger liquid.

18



2.4 Quantum mechanical analysis

Table 2.1: Numerical values for the ratio between the dipolar and the kinetic en-

ergy γ for dipoles AB and the quantities which are necessary to estimate

this ratio. The dipole strength is denoted as µ and mA (mB) is the mass

of constituent A (B). We assume the linear density to be ρ = 104cm−1.

AB µ/De mA/u mB/u γ

KRb [26] 0.6 39.1 85.5 0.7

RbCs [27] 1.0 85.5 132.9 3.3

NaK [28] 2.7 23.0 39.1 6.8

NaCs [29] 4.6 23.0 132.9 49.4

LiCs [30] 5.5 6.9 132.9 63.3

the left and γ = 50 in the right column of the figure. For strong dipolar interactions

γ = 50 we find clear signatures of clustered phases. For γ = 8 clustering of particles

can be observed only for tilt angles which are very close to φc, see Fig. 2.3 (a.5).

Since the reflection symmetry about a plane perpendicular to the tube is broken for

any tilting angle except φ = π/2, the density of the upper ρu and the lower ρl tube

are slightly shifted. Additionally, we observe that the height of the peaks in the

density decreases toward the center of the trap, consistent with quasi-long range

order with density-density correlations that decay as a power law. Remarkably,

the rate of the decay decreases strongly with increasing q, as expected from from

the Luttinger liquid analysis, Eq. (2.2).

The complete quantum phase diagram for the two tube system as a function of

the tilting angle φ and the ratio between the kinetic and the interaction energy

1/γ is shown in Fig. 2.4. For 1/γ = 0, the results were obtained by classical

minimization of the interaction energy. The DMRG simulations are used to extend

the results to 1/γ > 0. The phases are determined from the density distribution
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2 Clustered Wigner crystal phases

by calculating the number of particles localized within one cluster. The clustered

Luttinger liquid phases with q > 1 extent to considerably large values of 1/γ,

making the realization of clustered phases feasible in experiments with cold dipolar

molecules.

Experimental implications.—For typical densities of ρ = 104cm−1, γ ∼ 0.7 can

be achieved in experiments with KRb [26], γ ∼ 3.3 with RbCs [27], γ ∼ 6.8 with

NaK [28], γ ∼ 49.4 with NaCs [29], and γ ∼ 63.3 with LiCs [30]. The data used

to evaluate γ is summarized in Tab. 2.1.

The density regime which is most favorable for observing clustered phases is

ρ ∼ 0.5δ−1 − δ−1. For ρ ∼ 104cm−1, this corresponds to an inter-tube separation

of δ ∼ 5 · 10−5cm, easily attainable using an optical potential created by a laser

with wavelength ∼ 1µm.

NaCs and LiCs are thus the most promising candidates to realize clustered

phases, due to their large dipolar moments. In order to make the clustered phases

more robust, one can add a shallow periodic potential along the tubes. Such a

periodic potential quenches the kinetic energy, thus increasing the effective value

of γ. As a consequence cluster formation arises at much weaker dipolar moment

also attainable by KRb.

Other effects that can be important for experiments are (i) the incommensura-

bility of the particle number with the cluster size, (ii) the shallow trap potential

along the tube direction, (iii) the strong but finite transverse confinement, (iv)

quantum fluctuations in the orientation of the dipoles, and (v) finite tempera-

ture effects. Cluster formation is extremely stable with respect to (i) and (ii),

see appendix. Incommensurability leads to a slight rearrangement of clusters and

the consequence of the shallow trap along the tubes is merely that the distance

between the clusters is reduced. One-dimensional tubes are realized by a strong

transverse confinement potential (iii). Therefore, we take into account the inter-

20



2.5 Conclusions and Outlook

actions computed for molecules with transverse wavefunctions, corresponding to

a parabolic confinement, and compare them to the bare, one-dimensional interac-

tions. The renormalization of the interactions due to the transverse confinement

can be evaluated from a multipole expansion yielding ∆E⊥dip/Edip . σ2/δ2, where

we used the fact that the typical inter-molecule distance is δ and introduced σ

as the spread of the wave function in transverse direction, see appendix. Under

standard experimental conditions σ ∼ 25nm and thus ∆E⊥dip/Edip . 0.0025. This

ratio has to be compared with the relative energy difference between the clustered

q > 1 and the uniform q = 1 phase, which typically is 0.2 − 0.5 � ∆E⊥dip/Edip.

Therefore, the renormalization of the interaction energy due to the finite strength

of the transverse confinement is no obstacle for the observability of the clustered

phases. The quantum fluctuations of the dipoles around the orientation of the

electric field (iv) renormalize the dipolar potential by ∆Ee
dip/Edip . Re/δ ∼ 0.001,

where Re is the bond length of the molecule. Thus, this effect is small as well.

The temperature scale (v) below which we expect strong tendency toward clus-

ter formation is proportional to the dipolar energy Edip. In units of the Fermi

temperature TF ∼ Ekin the crossover temperature is Tcross = αγ, where the pro-

portionality constant α can be estimated from the relative energy difference of the

uniform and the clustered phases, i.e., α ∼ 0.2− 0.5. Depending on the molecule,

see Tab. 2.1, the crossover temperature is Tcross & TF .

2.5 Conclusions and Outlook

In summary, the formation of clustered phases of polar molecules is a distinct con-

sequence of the long-range and anisotropic nature of their interactions. We find

that the clustered phases can be explored under current experimental conditions.

A variety of techniques can be employed to observe the clustered phases, including
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2 Clustered Wigner crystal phases

elastic light scattering [31], noise correlations in time-of-flight images [32], and op-

tical quantum nondemolition detection [20,33]. Cluster formation should also con-

tribute additional dissociation resonances in lattice modulation experiments [34]

and RF spectroscopy [35–37].

A particular exciting direction for future research is to study excitations in this

system. In the case of a simple q = 1 crystalline phase, the unit cell consists of

a single particle per tube and thus only the acoustic mode exists. However, in

clustered crystal phases with q > 1, where the unit cell consists of more than one

particle per tube, also optical branches should exist in the excitation spectra.

2.6 Appendix

2.6.1 Incommensurability and longitudinal confinement

Here, we investigate in detail the effects of the particle number incommensurability

with the cluster size and of the shallow confining potential along the tube direction.

To demonstrate that the cluster formation is stable against the incommensura-

bility of the particle number with the cluster size, we evaluate the density distri-

bution for systems with N = 10, N = 12, and N = 14 polar molecules per tube,

respectively. The remaining system parameters are: ratio of interaction and the

kinetic energy γ = 2.4, tilt angle φ = 1, length L = 80δ, and lattice constant

a = δ. The cluster formation is commensurable with N = 12 particles, where four

clusters with q = 3 particles are found, see Fig. 2.5 (b). However, both N = 10

and N = 14 are incommensurable with the q = 3 phase. Regardless, we observe a

pronounced cluster formation, see Fig. 2.5 (a) and (c).

Next, we study the effects of the harmonic confining potential along the tube

direction, which we incorporated into the Hamiltonian by a variable on-site energy

εj = C(ja − L/2)2/L2. It turns out that the formation of clusters is also very
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Figure 2.5: (Color online) Particle density ρ(x) in the lower (red squares) and

in the upper (blue triangles) tube for the ratio of the interaction to

kinetic energy γ = 2.4, tilt angle φ = 1, length L = 80δ, and lattice

constant a = δ for systems with (a) N = 10, (b) N = 12, and (c)

N = 14 particles per tube. The cluster formation is insensitive as to

particle densities which are incommensurable with the cluster size.
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Figure 2.6: (Color online) Particle density ρ(x) for the same system as described

in the caption of Fig. 2.5 but with N = 12 throughout and a confining

potential of strength (a) C = 0.1t, (b) C = 1.0t, and (c) C = 4.0t. The

cluster formation is robust with respect to the trap potential. The

mere effect of the trap in the studied regime of the confining strength

is that the distance between the clusters is reduced.

insensitive to the confining potential. Results for the particle distribution are

shown in Fig. 2.6 for (a) C = 0.1t, (b) C = 1.0t, and (c) C = 4.0t. For the

considered values of C, the main effect of the harmonic confinement potential

is that the distance between clusters of particles is reduced as compared to the

uniform case shown in Fig. 2.5 (b).

2.6.2 Multipole expansion

The renormalization of the interactions due to the fluctuations of the dipoles

around the orientation of the applied electric field and due to the finite spread

of the transverse wavefunctions, can be evaluated from a multipole expansion of

the electric potential

φ(r) =
∑
lm

qlm
2l + 1

Ylm
rl+1

, (2.4)
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where qlm =
∫
Y ∗lmr

lρ(r)d3r with the charge distribution ρ(r) = ρ+(r−re)−ρ−(r+

re).

The largest effect of this renormalization concerns dipoles which are separated

roughly by δ. The electric field induced from one dipole at the location of the

second dipole is

E(δex) = ∇φ(δex) ,

and the potential energy is given by V = mE(δex). The leading order term is

clearly the dipole-dipole interaction E22 = mE2(δex).

The next order is the dipole-quadrupole interaction E42, induced from the fluc-

tuations of the dipoles around the electric field. This contribution is nonvanishing,

since heteronuclear polar molecules are considered. From the multipole expansion

(2.4) we infer the microscopic quadrupolar renormalization

E42

E22

= const.
Re

δ
,

with const. . 1 and Re the bond length of the molecule.

As the transverse confinement obeys rotational symmetry, there is no quadrupole

contribution from the transverse wavefunction. Therefore, the first non-vanishing

contribution due to the spread of the transverse wavefunction is of the dipole-

seipole (6 charges) form E62 = mE6(δex)

E62

E22

.
σ2

δ2
, (2.5)

where we used ρ+(r) = ρ−(r) = q/(πσ2) exp[−(y2 + z2)/σ2]δ(x) and thus qlm ∼

qReσ
l−1.

2.6.3 Local stability of clustered phases

One concern could be that the uniform q = 1 crystalline phase may be metastable,

and therefore the system might not be able to find its ground state on experimental
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2 Clustered Wigner crystal phases

timescales. Thus, it is useful to explicitly evaluate the stability of the uniform

q = 1 phase. A system is locally unstable if its compressibility κ is negative. The

compressibility can be evaluated from κ−1 = ∂2ε/∂(ρ−1)2, where ε is the energy

per particle and ρ the particle density. Thus it is useful to evaluate the spinodal

line, which separates the regions with positive and negative compressibility, see

asterisks connected by lines in Fig. 2.7 (a). On the right hand side of the spinodal

line, close to the critical angle φc, there is a large region where the uniform q = 1

phase is locally unstable. In fact, it can be shown that any clustered phase (with

an arbitrary q) must become locally unstable for a sufficiently large density and

sufficiently close to φ = φc.

Assume that φ = φc, such that the intra-tube interaction is zero. In the high

density limit, the energy per particle is proportional to the particle density times

the integrated inter-tube energy. Explicitly integrating the inter-tube interaction

gives e = −µ2ρ sin2(φ)/δ2. Therefore κ−1 < 0. As we move away from the critical

angle, the repulsive intra-tube interaction gives a contribution proportional to

(φ−φc)ρ3. Adding these two contributions and calculating the compressibility, we

get that the critical density ρ?(φ?) at which the phase becomes unstable satisfies

ρ? ∝ (φ? − φc)
1
2 .

This argument captures the main characteristics of the spinodal line at high

densities. Below a certain density, the spinodal line terminates and the phase

becomes locally stable, as can be seen in Fig. 2.7 (a) for q = 1. In Fig. 2.7 (b) we

show the calculated ground state energy of the q = 1 phase for φ = 0.99, showing

the region in which κ < 0. The relative extend and shape of the spinodal line for

systems with a larger but finite number of tubes, as shown in Fig. 2 in, see main

text, is similar to the case of two tubes.

At the critical angle φ = φc the ground state consists of dipoles which are

arbitrarily close to each other corresponding to a q = ∞ phase. From this and
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from the analysis of the compressibility follows that, there must be either an infinite

sequence of phases with increasing q, or a region of macroscopic phase separation

between a phase of finite q and vacuum upon approaching φ = φc.

2.6.4 Infinite number of tubes

Next, we study the phase diagram in the case of an infinite number of tubes. We

find that the q = 1 phase is locally unstable in a region π/2 > φ > φc. Our results

are consistent with macroscopic phase separation between the q = 1 phase and

vacuum. So unlike the case with a finite number of tubes, intermediate phases

with q > 1 are not realized.

The classical ground state energy of the two-dimensional system is evaluated

by Ewald summation techniques [38–40]. We allow for a unit cell containing q

particles. The unit cell is a parallelogram of length qρ−1, height δ, and an arbitrary

angle. In addition, for q > 1, we assume that the particles within a unit cell are

equally spaced. The angle and the intra-unit cell spacing are treated as variational

parameters. The same scheme was used to optimize the ground state energy in

the case of a finite number of tubes, and gave excellent results compared to a

full optimization with respect to the positions of all the particles in the unit cell

presented in, see main text [see also inset of Fig. 1 (b) in main text].

Fig. 2.8 shows the spinodal line for the q = 1 phase, at which the compressibility

is zero. To the right of this line, the compressibility is negative, and the q = 1 phase

is locally unstable. In the unstable regime, phases with q > 1 are lower in energy

than the q = 1 phase; however, the energy decreases monotonically with increasing

q, up to the largest q that we tried (q = 128), and is always higher than a phase

separated state with macroscopic regions of q = 1 and vacuum. In the low density

limit strings of polar molecules are formed, whose mutual interaction is attractive.

Therefore, at sufficiently low densities the system always phase separates.
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In two-dimensional systems with dipolar interactions, the surface tension be-

tween two phases of different density diverges logarithmically [8]. For dipoles

pointing out of the plane, the divergent term is negative, and hence macroscopic

phase separation is always unstable toward forming “microemulsion” phases with

emergent, mesoscopic structures. For in-plane dipoles, however, the divergent en-

ergy is positive, and therefore macroscopic phase separation is possible.

To demonstrate this, we consider a system with a linear domain wall between

two phases A and B. The dipolar contribution to the total energy is

E =
1

2

∫
dr

∫
dr′ρ(r)ρ(r′)V (r− r′) , (2.6)

where ρ(r) is the density at position r, which is ρA in phase A and ρB in phase B.

Alternatively, the energy can be written as

E = VAeA + VBeB + Eσ , (2.7)

where eA(eB) is the energy density of the homogeneous A(B) phase, VA(VB) is the

area of phase A(B), and Eσ the surface energy between the two phases. The bulk

contributions are defined as

VA(B)eA(B) =
1

2

∫
r∈ΩA(B)

dr

∫
dr′ρ2

A(B)V (r− r′) ,

where ΩA(B) defines the domain of phase A(B). The integral over r′ is taken over

the entire plane R2. Comparing Eqs. (2.6) and (2.7) yields the surface energy

Eσ = −1

2

∫
ΩA

dr

∫
ΩB

dr′(ρA − ρB)2V (r− r′) .

For dipolar interactions, Eσ/L (where L is the linear dimension of the system)

diverges as log(L) as L→∞. In the following, we determine the sign of Eσ for a

straight domain wall oriented along the y-direction. In order to make contact to

the results of Ref. [8] where the dipoles are pointing out of plane, we consider a
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Figure 2.7: (Color online) (a) Phase diagram of dipolar molecules confined in two

tubes as in Fig. 1 in the main text and spinodal line for the q = 1

phase, asterisks connected by lines, which separates regions of positive

and negative compressibility. (b) Ground state energy of the q = 1

phase for φ = 0.99. In the region between the dashed vertical lines the

curvature of the energy per particle is negative indicating the density

regime where the uniform phase is certainly unstable.

29



2 Clustered Wigner crystal phases

0.911.11.21.31.41.5
0

0.2

0.4

0.6

0.8

1

1.2

φ
ρ

unstable

q = 1

Figure 2.8: (Color online) Spinodal line for a system with infinitely many tubes,

which indicates the region of instability of the q = 1 Wigner crystal

phase.

general dipole orientation:

m = µ(cosφ cos θ, sinφ cos θ, sin θ)T ,

where the angle θ is measured from the plane. An explicit calculation reveals that

the surface energy vanishes at an angle θc given by

θc = arccos

√
1

1 + cos2 φ
.

For θ > θc, Eσ < 0, and macroscopic phase separation is impossible; for θ < θc,

Eσ > 0 and phase separation is allowed. In particular, for θ = π/2, Eσ < 0

(consistently with Ref. [8]), whereas for θ = 0, Eσ ≥ 0 for any value of φ.

In summary, in the case of a two-dimensional array of tubes, it seems that the

q = 1 phase terminates at a first-order transition to vacuum, and no higher q

phases exist.

Luttinger parameter K.—In order to reveal the dependence of the Luttinger

parameter K of the clustered system on q, we relate it to the Luttinger parameter

K0 of the uniform (q = 1) system. The low-energy properties of a q = 1 liquid of
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polar molecules in one-dimensional tubes are described by [23,41]

Hq=1 =

∫
dxρ0

(∇Θ)2

2m
+
µ2ρ2

0

π2
(∇φ)2

=
u0

2π

∫
dx[K0(∇Θ)2 +

1

K0

(∇φ)2] ,

where we introduced the microscopic Luttinger parameters K0 and u0 in the second

line. The potential energy contribution is given by the particle density ρ times the

dipolar energy per particle ∼ µ2ρ3. This gives in total the contribution ∼ µ2ρ4 to

the energy density. Expanding the density using ρ = ρ0 + δρ up to second order

in δρ gives ρ4 ∼ ρ2
0δρ

2 = ρ2
0(∇φ/π)2. The clustered state of polar molecules has

the same kinetic energy but a reduced potential energy

Hq =

∫
dxρ0

(∇Θ)2

2m
+
µ2ρ2

0

π2q2
(∇φ)2

=
u

2π

∫
dx[uK(∇Θ)2 +

u

K
(∇φ)2] ,

as the potential energy is now given by the density of clusters ρ/q times the

interaction energy of a single cluster (qµ)2/(q/ρ)3. This gives rise to the additional

factor 1/q2. Comparing the Luttinger parameters in the q = 1 and q > 1 cases

gives

u0K0 = uK and
1

q2

u0

K0

=
u

K
,

leading to

K = qK0 and u = u0/q .

Therefore the Luttinger parameter K of the clustered Luttinger liquid is propor-

tional to q and the decay exponent of the density-density correlation function is

effectively suppressed by 1/q, see discussion below Eq. (2) in the main text.
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A numerical approach is presented that allows to compute nonequilibrium steady

state properties of strongly correlated quantum many-body systems. The method

is imbedded in the Keldysh Green’s function formalism and is based upon the idea

of the variational cluster approach as far as the treatment of strong correlations

is concerned. It appears that the variational aspect is crucial as it allows for a

suitable optimization of a “reference” system to the nonequilibrium target state.

The approach is neither perturbative in the many-body interaction nor in the field,
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that drives the system out of equilibrium, and it allows to study strong pertur-

bations and nonlinear responses of systems in which also the correlated region

is spatially extended. We apply the presented approach to non-linear transport

across a strongly correlated quantum wire described by the fermionic Hubbard

model.

3.1 Introduction

The theoretical understanding of the nonequilibrium behavior of strongly corre-

lated quantum many-body systems is a long standing challenge, which has be-

come increasingly relevant with the progress made in the fields of quantum optics

and quantum simulation, semiconductor, quantum, and magnetic heterostructures,

nanotechnology, or spintronics. In the field of quantum optics and quantum simu-

lation recent advances in experiments with ultracold gases in optical lattices shed

new light on strongly-correlated many body systems and their nonequilibrium

properties. In these experiments, specific lattice Hamiltonians can be engineered

and studied with a remarkable high level of control, making strong correlations

observable on a macroscopic scale. [42–44] In this field another very promising

experimental setup to study correlation effects are coupled cavity quantum elec-

trodynamic systems which contain some form of optical nonlinearity resulting from

the interaction of light with atomic levels. [45, 46] These coupled cavity systems

are inherently out of equilibrium, since they are driven by external lasers and sus-

ceptible to dissipation. Semiconductor, quantum, and magnetic heterostructures

subject to a bias voltage also display nonequilibrium physics, where strong cor-

relations play a decisive role. Experiments which study transport in molecular

junctions demonstrate that many-body effects, also in combination with vibra-

tional modes are crucial, see, e.g., Refs. [47, 48]. Another class of material struc-
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tures with remarkable nonequilibrium properties are (multi-well) heterostructures

of diluted magnetic semiconductors (DMSs) and superlattices embedded in nor-

mal metals. These systems are of great interest as they open the possibility to

tailor electronic and spintronic devices for computing and communications based

on their unique interplay of spin and electronic degrees of freedom. Moreover,

they display a pronounced nonlinear transport behavior. [49–55] The source of

nonlinearity is also related to the strong interaction between charge carriers, ex-

citations and vibrational modes. In addition, spin degrees of freedom clearly play

a major role in their transport properties. In order to fabricate technologically

useful structures the theoretical understanding of these highly correlated quantum

many-body systems is indispensable.

A typical nonequilibrium situation in all these systems is conveniently described

theoretically by switching on a perturbation at a certain time τ = τ0, for example,

a bias voltage, which is then kept constant after a short switching time. For this

problem one may, on the one hand be interested in transient properties at short

times after switching on the perturbation, for example in ultrafast pump-probe

spectroscopy. [56] In this case, the properties of the system depend on the initial

state, as well as on the line shape of the switch-on pulse. For longer times away

from τ0, quite generally one expects the system to reach a steady state, whose prop-

erties do not depend on details of the initial state. Nonequilibrium steady states

are relevant, for example, in quantum electronic transport across heterostructures,

quantum dots, molecules (see, e.g., Refs. [57–62]) or in driven-dissipative ultracold

atomic systems. [63–68] Intriguingly, it was shown in Ref. [69] that nonequilib-

rium noise, which is present for instance in Josephson junctions, trapped ultracold

polar molecules or trapped ions, still preserves the critical nonequilibrium steady

states thus being a marginal perturbation as opposed to the temperature. Among

the methods to treat strongly correlated systems out of equilibrium, one should
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mention density-matrix renormalization group and related matrix-product state

methods, [70–74] continuum-time quantum Monte-Carlo, [75] different numeri-

cal and semi-analytical renormalization-group approaches, [62,76,77] equation-of-

motion methods, [57, 60], dynamical mean-field theory, [78–81] scattering Bethe

Ansatz, [82, 83] and the dual-fermion approach. [84] Recently, Balzer and Pot-

thoff [85] have presented a generalization of cluster-perturbation theory (CPT)

to the Keldysh contour, which allows for the treatment of time-dependent phe-

nomena. Their results show that CPT describes quite accurately the short and

medium-time dynamics of a Hubbard chain. A detailed study of the short-time

dynamics of weakly correlated electrons in quantum transport based on the time

evolution of the nonequilibrium Kadanoff-Baym equations, where correlations are

treated in Hartree-Fock-, second Born-, and GW-approximation has been given

in Ref. [86]. These approximations are restricted to moderate correlations but on

the other hand they allow to study rather complex models and geometries. As far

as the steady-state behavior is concerned, the nonequilibrium (Keldysh) Green’s

function approach has been widely used on an ab-initio or tight-binding level,

where correlations are treated in mean-field approximation. Since the effective

particles are non-interacting, the Meir-Wingreen expression [59] for the current

can be applied, which relates the current to the retarded Green’s functions of the

scattering with a self-energy that is renormalized due to the presence of the leads.

Representative applications for nano-structured materials and molecular devices

are given in Refs. [87–89] and in the review article Ref. [61].

Here we aim at strongly correlated many-body systems, and we propose a vari-

ational cluster method, that allows to study steady-state properties.

The paper is organized as follows: In Sec. 3.2 we present the variational cluster

method to treat correlated systems out of equilibrium. After an introductory

discussion as well as relation to previous work, we present the general method in
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Sec. 3.2.1. We discuss the self-consistency condition in Sec. 3.2.2. In Sec. 3.3 we

introduce two specific models describing a strongly correlated Hubbard chain and

a strongly correlated Hubbard ladder, respectively, which are embedded between

left and right uncorrelated reservoirs with different chemical potentials and on-site

energies. This results in a voltage bias which is applied to the system. Results for

the steady-state current density are discussed in Sec. 3.4. Finally, in Sec. 3.5 we

present our conclusions and outlook.

3.2 Method

In order to study nonequilibrium properties of strongly correlated systems one

typically considers a model consisting of two leads with uncorrelated particles,

and a central correlated region. The three regions are initially decoupled. At a

certain time τ0 a coupling V between the three regions is switched on. A natural

approach is to treat V via strong-coupling perturbation theory, which at the lowest

order essentially corresponds to cluster-perturbation theory (CPT). In Ref. [85] it

has been shown that the short time behavior can be well described within CPT.

This can be understood from the observation that switching on the inter-cluster

hopping V for a certain time ∆τ produces a perturbation of order V ∆τ , which

is accounted for at first order in CPT. Therefore, we expect the result to be

accurate for small ∆τ . When addressing the steady state it is, thus, essential to

improve the long-time behavior. Here, we suggest that nonequilibrium CPT can

be systematically improved by minimizing some suitable “difference” between the

unperturbed (“reference”) state which enters CPT and the target steady state.

The strategy presented here to achieve this goal consists in exploiting the fact

that the decomposition of the Hamiltonian into an “unperturbed part” and a “per-

turbation” is not unique. Prompted by the variational cluster approach (VCA),
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one can actually add “auxiliary” single particle terms to the unperturbed Hamil-

tonian and subtract them again within CPT. This freedom can be exploited in

order to “optimize” the results of the perturbative calculation. As discussed in

detail in Refs. [90, 91], in equilibrium this is an alternative way to motivate the

introduction of variational parameters in VCA. The idea discussed here, thus, pro-

vides the natural extension of VCA to treat a nonequilibrium steady state. There

remains to define a criterion for the “difference” between initial and final state.

(Cluster) Dynamical Mean-Field Theory [81, 92–94] (DMFT) provides a natural

solution, requiring the cluster-projected Green’s functions of the initial and final

state to coincide. Of course, this self-consistency condition requires an infinite

number of variational parameters, as well as the solution of a (cluster) impurity

problem, which is computationally very expensive and whose accuracy is limited,

especially in real time. In equilibrium, the self-energy functional approach [95,96]

(SFA) provides one possible generalization of DMFT if one wants to restrict to

a finite number of variational parameters. In this case, the requirement for the

“difference” is provided by the Euler equation (see, e.g., Eq. (7) in Ref. [95]).

In the present paper, we explore an alternative criterion, represented by (3.13),

which, upon including an infinite number of bath sites, becomes equivalent to

(cluster)-DMFT (see App. 3.6.1), similarly to SFA. [95] Without bath sites this

corresponds to requiring that, for a given set of variational parameters p, their con-

jugate operators, i.e., dh/dp, h being the Hamiltonian, have the same expectation

value in the unperturbed and in the final target state. This criterion is numerically

easier to implement than the SFA, since in this case it is not necessary to search for

a saddle point, which is well known to be numerically expensive. [97] In addition,

inclusion of bath sites provides self consistency conditions for dynamic correlation

functions as well.

The freedom discussed above can be additionally exploited by including the
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hybridization between correlated regions and the leads as well as part of the leads

themselves into the unperturbed Hamiltonian which is solved exactly by Lanczos

exact diagonalization. In this way, CPT is then used to treat hopping terms further

away from the correlated region. [98] This partly accounts for the influence of the

leads onto the self-energy of the correlated region.

Finally, let us mention that the method is probably most suited to deal with

models for which the correlated region is spatially extended (see Fig. 3.1). In this

case, this region must be partitioned into clusters which can be solved exactly,

while the intercluster terms are included into the perturbative part.

3.2.1 Variational cluster approach for nonequilibrium steady

state

The physical model of interest consists of a “left” and “right” noninteracting lead,

as well as a correlated region described by the Hamiltonians h̄l, h̄r, and h̄c, re-

spectively, see Fig. 3.1. h̄c contains local (Hubbard-type) interactions, as well as

arbitrary single-particle terms. For τ < τ0, the three regions are in equilibrium

with three reservoirs at different chemical potentials, µl, µr, and µc respectively.

The correlated region is much smaller in size than the leads, so that the latter

act as relaxation baths. At τ = τ0, the single particle (i.e., hopping) Hamiltonian

terms V̂lc and V̂rc are switched on. These connect the left and right reservoir,

respectively, with the correlated region. The total time-dependent Hamiltonian is,

thus, given by

H(τ) = h̄+ θ(τ − τ0) ˆ̄T , (3.1)

where h̄ = h̄c + h̄l + h̄r, and ˆ̄T = V̂lc + V̂rc. We consider here the fermionic case,

although many concepts can be easily extended to bosons. After a time ∆τ long

enough for relaxation to take place, the system reaches a nonequilibrium steady-
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Figure 3.1: Generic scheme of the model studied here: full (empty) circles indi-

cate correlated (uncorrelated) lattice sites. Correlated sites define the

correlated region (c), and are characterized by an on-site Hubbard in-

teraction U , an on-site energy εc, and by hopping elements tx and ty

in the x and y direction, respectively. The physical leads (l,r), indi-

cated by the two shaded areas, consist of half-infinite planes described

by uncorrelated tight-binding models with hopping tL, on-site energies

εl and εr, and chemical potentials µl and µr, respectively. The cor-

related region is connected to the leads via hoppings V . The width

(number of sites in the x direction) of the correlated region is L̄cx.

The height of the whole system in the y direction is infinite. In this

work, we study two cases, a strongly correlated chain (L̄cx = 1) and a

strongly correlated two-leg ladder (L̄cx = 2), both perpendicular to the

applied bias. In the variational cluster calculation the central region

described by the unperturbed Hamiltonian h can differ from the phys-

ical one. The latter coincides with the correlated sites (white area in

the figure). [98] On the other hand, the former consists of disconnected

clusters aligned along the y direction, one of them being represented by

the dash-dotted rectangle in the figure. The corresponding equilibrium

Green’s function is determined by Lanczos exact diagonalization.
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state, with a particle current flowing from left to right for µl > µr and from right

to left for µl < µr.

As discussed above, the total τ > τ0 Hamiltonian H ≡ H(τ > τ0) is decomposed

into an unperturbed part h and a perturbation T̂ :

H = h+ T̂ . (3.2)

In the simplest CPT approach for a “small” correlated region one can take h = h̄,

and T̂ = ˆ̄T . However, when the correlated region is extended, as in Fig. 3.1, it

has to be further decomposed into smaller clusters that can be solved by exact

diagonalization. [99] In this case, the intercluster hopping is subtracted from h

and must be included in T̂ . In addition, one can include part of the leads into

the clusters (dashed lines in Fig. 3.1), so that V̂lc + V̂rc are incorporated into h,

while the leads intercluster hoppings (e.g. tbic in the figure) are included [98] in

T̂ . Finally, in the spirit of VCA, arbitrary intracluster terms ∆h can be added to

the unperturbed Hamiltonian and subtracted perturbatively within T̂ . In other

words, calling hcl the Hamiltonian describing the physical cluster partition, and

T̂cl the one describing the intercluster hoppings (dashed lines in Fig. 3.1), we write

h = hcl+∆h, and T̂ = T̂cl−∆h so that the total Hamiltonian remains unchanged:

H = hcl + T̂cl = h+ T̂ . (3.3)

The arbitrariness in the choice of ∆h can be exploited to optimize the unperturbed

state, as discussed in Ref. [91] for the equilibrium case. Here, we will adopt

a different optimization criterion, see discussion below. Being a single-particle

term, T̂ is described by its hopping matrix T . This matrix has a block structure

according to the three regions discussed above and shall be denoted by Tlc, Trc and

Tcc, respectively.

Nonequilibrium properties, in general, and nonlinear transport in particular

can quite generally be determined in the frame of the Keldysh Green’s function
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approach. [57,58,100–102] Here, we adopt the notation of Ref. [58], for which the

2× 2 Keldysh Green’s function matrix is expressed as

G(r, r′|τ, τ ′) =

 GR GK

0 GA

 , (3.4)

where the retarded (GR), advanced (GA), and Keldysh (GK) Green’s functions

depend in general on two lattice sites (r, r′) and two times (τ, τ ′). However, both

for τ < τ0 as well as in steady state, time translation invariance holds, so that

Green’s functions depend only on the time difference τ − τ ′, and we can Fourier

transform to frequency space ω.

We use uppercase letters G to denote Green’s functions of the full Hamiltonian

H, and lowercase g for the ones of the unperturbed Hamiltonian h. The advantage

of using the Keldysh Green’s function matrix representation is that one can express

Dyson’s equation in the same form as in equilibrium. [57, 58] In our case, we can

express it in the form

G = g + g (T + ∆Σ) G , (3.5)

where g = diag
(
gll, gcc, grr

)
is block diagonal, and the products have to be con-

sidered as matrix multiplications. [103] In (3.5), ∆Σ = Σ − Σh is the difference

between the (unknown) self-energy Σ of the total Hamiltonian H, including the

coupling to the leads, and the self-energy Σh associated with the unperturbed

Hamiltonian h.

The CPT approximation [104] precisely amounts to neglecting ∆Σ. As pointed

out in Ref. [85] this corresponds to neglecting irreducible diagrams containing

interactions and one or more T terms. It should, however, be stressed that the

self-energy of the isolated clusters is exactly included in gcc, which is obtained by

Lanczos exact diagonalization.

In this approximation, (3.5) can be used to obtain an equation for the Green’s

function Gcc projected onto the central region, which is still a matrix in the lattice
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sites of the central region and in Keldysh space [105] (this is a straightforward

generalization of, e.g., the treatment in Ref. [57]):

Gcc = gcc + gcc
(
Tcc Gcc +

∈{l,r}∑
α

Tcα Gαc

)
(3.6)

and for the lead-central region Green’s functions:

Gαc = gαα Tαc Gcc , with α ∈ {l, r}. (3.7)

It is noteworthy that Eq. (3.7) is exact and not based on the CPT approximation,

as the leads contain non-interacting particles. Insertion of (3.7) into (3.6) yields

Gcc = gcc + gcc
(
Tcc + Σ̃cc

)
Gcc (3.8)

with the lead-induced self-energy renormalization

Σ̃cc =

∈{l,r}∑
α

Tcα gαα Tαc . (3.9)

Here gαα stands for the Green’s function of the isolated lead α. One finally obtains

a Dyson form for the steady state Green’s function of the coupled system at the

central region

G−1
cc = g−1

cc − Tcc − Σ̃cc . (3.10)

Different from the usual Dyson equation, gcc is the Green’s function for the isolated

clusters, which contains all many-body effects inside the cluster.

For the evaluation of the current from, say, the left lead to the central re-

gion [98] one needs the Glc Green’s function, which is readily obtained by combin-

ing (3.7) with (3.10). This leads to the generalized Kadanoff-Baym equation (see

e.g. Refs. [57,59]), along with the fact that the central region is finite in x direction

and the leads are infinite, one can rewrite the current into a Büttiker-Landauer

43



3 Nonequilibrium steady state

type of formula

j =

∫
dε

2π

[
fF (ε− µr)− fF (ε− µl)

]
× Tr

[
GR
cc (ε)Γl(ε) GA

cc (ε)Γr(ε)
]
. (3.11)

where G
R/A
cc is the retarded/advanced part of the Green’s function Gcc, and the

trace, as well as matrix products run over site indices in c. Γα describes the inelastic

broadening owing to the coupling to lead α, which in CPT is given by [106]

Γα = 2 Im
{
Tcαg

A
ααTαc

}
,

which represents the contribution of lead α to the imaginary part of Σ̃A
cc. In-

terestingly, the expression for the current in CPT has the same structure as the

Meir-Wingreen formula [59] for non-interacting particles, which is the basis for

nonequilibrium ab-initio-calculations. [88] Here, however, the Green’s function

contains the many-body interactions of the correlated region. An advantage of

this expression is that it yields an explicit connection to the Green function G
R/A
cc

of the scattering region and the influence of the itinerant electrons in the leads.

A similar expression can be derived for the one-particle density matrix between

two sites with the same y coordinate, which is required for the self-consistency

condition discussed below.

As it is well known, all retarded and advanced Green’s functions are evaluated

without chemical potentials. The latter enter through the Keldysh Green’s func-

tion or rather via the Fermi functions. While the chemical potential of the central

region is wiped out in the steady state due to its small size in comparison to the size

of the leads, the chemical potentials of the leads explicitly enter the expressions for

the current and the density matrix, see Eq. (3.11). In the case investigated here,

the central region is translation invariant in y direction and is split into identical

clusters. In the end, as far as the main numerical task is concerned, one has to
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solve many-body problems for clusters of size L = Lcx×Lcy, invert matrices of the

same size, and sum over wave vectors qy belonging to the Brillouin zone associated

with the cluster supercell.

3.2.2 Self-consistency condition

Equation (3.10) is the expression for the Green’s function of the central region

within the CPT approximation. As discussed above, one would like to optimize

the initial state in some appropriate way by suitably adjusting the parameters

∆h of the unperturbed Hamiltonian h. The inclusion of additional terms ∆h

adds flexibility to the self-energy Σh which is included within this approximation.

Obviously, it makes no difference in the case of non-interacting particles as the

selfenergy vanishes exactly, independently of ∆h. This freedom can be exploited

in order to improve the approximation systematically. A similar discussion on this

issue has been given in Refs. [90,91]), and is at the basis of the VCA idea [95].

As discussed above, we need a variational condition associated with a “minimiza-

tion” of the difference between unperturbed and perturbed state. In (cluster)-

DMFT one requires the cluster projected Green’s function to be equal to the

unperturbed one

gcc = P(Gcc) , (3.12)

where P projects the Green’s function onto the cluster, i.e., it sets all its interclus-

ter matrix elements to zero. [107] Since here we have a finite number of variational

parameters p that can be adjusted, we cannot satisfy (3.12). We, thus, propose a

“weaker” condition, namely that the expectation values of operators coupled to the

variational parameters contained in ∆h (i.e., d∆h/dp) be equal in the unperturbed

and in the perturbed state. More specifically, we impose the condition∫
dω

2π
tr τ̂1

∂ (g0cc)
−1

∂p
(gcc −Gcc) = 0 , (3.13)
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where τ̂1 is a Pauli matrix in Keldysh space, [108] and g0cc is the Green’s function

associated with the noninteracting part of h. It is interesting to note (see appendix

3.6.1) that by including into ∆h a coupling to an infinite number of bath sites, the

present method, with the self-consistence condition (3.13) whereby p are the bath

parameters (hopping and on-site energies), becomes equivalent to nonequilibrium

cluster DMFT. Generalization of the SFA condition to nonequilibrium should be,

in principle, obtained by replacing g0cc with Σh in (3.13).

A second systematic improvement of this nonequilibrium VCA approach consists

in increasing the cluster size Lc. This can be done in two ways: (i) by extending the

boundaries of the central region in y direction and thus treating more correlated

sites exactly [98] and (ii) by extending the boundaries in x direction to include an

increasing number of uncorrelated lattice sites, i.e., taking Lcx > L̄cx, cf. Fig. 3.1.

This amounts to taking into account to some degree the V -induced renormalization

of the self-energy.

3.3 Model

Next, we present an application of the nonequilibrium VCA method described in

Sec. 3.2. Specifically, we study nonlinear transport properties across an extended

correlated region (denoted as c in Fig.3.1), which we take to be a Hubbard chain

(L̄cx = 1) or a Hubbard ladder (L̄cx = 2) with nearest-neighbor hoppings tx and

ty, on-site interaction U , on-site energy εc, and chemical potential µc

h̄c =
∑
〈i,j〉, σ

tijc
†
iσcjσ + U

∑
i

n̂i↑n̂i↓ + (εc − µc)
∑
i,σ

n̂iσ ,

in usual notation, and where tij = tx (tij = ty) for i and j being nearest neighbors

in x direction (y direction). The leads (shaded regions in Fig. 3.1) are described by

two-dimensional semi-infinite tight-binding models with nearest-neighbor hopping
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Figure 3.2: (Color online) Steady-state current density jx versus bias voltage Vb for

a correlated two-leg ladder (L̄cx = 2). First row shows jx normalized

by V 2 as function of Vb evaluated for different values of V and of

the interaction (a) U = 2.0, (b) U = 4.0, and (c) U = 6.0. Second

row shows the U dependence of the current for different values of the

hopping V = Vlc = Vrc from the leads to the correlated region (d)

V = 1.0, (e) V = 0.5, and (f) V = 0.1. Solid (dashed) lines represent

results for the current between the left lead and the central region

(between two in x direction adjacent sites inside the central region),

i.e., evaluated with GK
lc (GK

cc), see text for details. Results are obtained

by using a reference Hamiltonian h consisting of disconnected clusters

of size Lc = Lcx × Lcy = 2× 6.
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tL, on-site energies εl and εr, and chemical potentials µl and µr for the left and right

lead, respectively. We apply a bias voltage Vb to the leads by setting µr = εr = Vb/2

and restrict to the particle-hole symmetric case where εc = −U/2, µc = 0, εr = −εl,

and µl = −µr. For simplicity, we neglect the long-range part of the Coulomb

interaction. Under some conditions, this can be absorbed within the single-particle

parameters of the Hamiltonian, in a mean-field sense. [57]

As discussed above, the unperturbed Hamiltonian h does not necessarily coincide

with the physical partition into leads and correlated region. h is obtained by tiling

the total system into small clusters as illustrated in Fig. 3.1, as well as by adding

an intracluster variational term ∆h.

In the present work ∆h describes a correction ∆tx to the intra-ladder hopping.

Further options could include, for instance, a site-dependent change in the on-

site energy ∆εc(x). Particle-hole symmetry can be preserved by constraining this

change to be antisymmetric: ∆εc(x) = −∆εc(−x). In this paper, whose goal is to

carry out a first test of the method, we restrict, for simplicity, to a single variational

parameter. The choice of ∆tx as a variational parameter is motivated by the fact

that this term is important for the current flowing in x direction. According to the

prescription discussed above, we require the expectation value of the one-particle

density matrix for nearest-neighbor indices in x direction to be the same for the

unperturbed h and for the full H, i.e. evaluated with gcc and with Gcc.

One comment about the chemical potential. In principle, when including some

of the sites of the leads in h, i.e., when Lcx > L̄cx, then these additional sites have

a chemical potential µc which differs from the one they would have if Lcx = L̄cx

(i.e., µl or µr). However, the chemical potential, of these sites does not affect

the steady state, as their volume-to-surface ratio is finite. Of course, their on-site

energies (εr and εl) are important.

Due to translation invariance by a cluster length Lcy in the y direction, it is
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convenient, as in usual VCA, to carry out a Fourier transformation in y direction,

with associated momenta qy. The Green’s functions gcc and Gcc, as well as T

become now functions of two momenta qy +Qy and qy +Q′y, where Qy and Q′y are

reciprocal superlattice vectors of which there are only Lcy inequivalent ones. In

order to evaluate the nonequilibrium steady state, one only needs the equilibrium

Green’s function g(xbα|qy|z) of the isolated leads at the contact edge to the central

region, with x coordinate equal to xbα (α ∈ {l, r}), and Fourier transformed in

the y directions, where qy is the corresponding momentum and z the complex

frequency. For a semiinfinite nearest-neighbor tight-binding plane with hopping

tL, and on-site energy εα, this can be expressed as

g(xbα|qy|z) = gc,loc(z − 2tL cos qy − εα) , (3.14)

where gc,loc(z) is the local Green’s function of a tight binding chain with open

boundary conditions and with zero on-site energy. The latter can be determined

analytically along the lines discussed in Ref. [109].

The model studied here, is motivated by the interest in transport across semicon-

ductor heterostructures (see, e.g. [54,55,110,111]). However, it is well known that

in this case charging effects are important, also near the boundaries between the

leads and the central region. Here, scattering effects produce charge density waves,

which, when taking into account the long-range part of the Coulomb interaction,

even in mean-field, produce a modification of the single-particle potential. In order

to treat realistic structures, these effects should be included at the Hartree-Fock

level at least. All these generalizations can be straightforwardly treated with the

presented variational cluster method, however, in this work we focus on a first

proof of concept study and application containing the essential ingredients for the

investigation of the nonequilibrium steady state of strongly correlated many-body

systems.
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Figure 3.3: (Color online) Steady-state current density jx as in Fig. 3.2 but for

the correlated chain (L̄cx = 1). The current density is evaluated for

different values of the lead to correlated region hopping (a) V = 1.0,

(b) V = 0.5, and (c) V = 0.1, and of the interaction U , see legend.

Results are obtained for reference clusters of size Lc = Lcx×Lcy = 3×4.

3.4 Results

We have evaluated the steady-state current density jx of the models discussed in

Sec. 3.3 as a function of the bias Vb ≡ εr−εl between the leads at zero temperature.

Simultaneously the chemical potential is adjusted to the on-site energy µα = εα,

which corresponds to a rigid shift of the density of states in both leads in opposite

directions.

In Fig. 3.2 we display results for the two-leg ladder (L̄cx = 2), for different

values of the interaction strength U = {0, 2, 4, 6} and lead-to-system hopping

V = {1.0, 0.75, 0.5, 0.25, 0.1}. We use ~ = 1 and tL = 1 which sets the unity of

energy. Moreover, we take the lattice constant a = 1. The hopping is uniform in

the whole system, meaning that tx, ty in the correlated region and tL of the leads

are equal. The on-site energy of the correlated region is εc = −U/2 corresponding

to half-filling, whereas the on-site energy of the left (right) lead is equal to its

chemical potential µl (µr). The unperturbed hamiltonian h describes the central

50



3.4 Results

region decomposed into clusters of size Lc = 2 × 6. The corresponding Green’s

function gcc is determined exactly by Lanczos diagonalization. All results are

determined self-consistently using ∆tx as variational parameter, see Sec. 3.3.

Using the Meir-Wingreen expression, Eq. (3.11), the general trend of the results

for the steady-state current jx can be discussed conveniently. At zero temperature

there are only contributions to the current for min(µl, µr) < ω < max(µl, µr) due

to the difference of the Fermi distribution functions. In particular this leads as

expected to zero current for zero bias voltage Vb. With increasing bias voltage Vb

the modulus of jx initially increases. For large values of Vb it decreases again, as

the overlap of the local density of states of the two leads enters the expression,

which is zero if Vb is greater than the band width of the leads. Hence the local

density of states of the leads along with the Fermi function act as a filter that

averages the electronic excitations of the central region within a certain energy

window.

In the system we are studying, the leads are modeled by semi-infinite tight

binding planes. Alternatively, instead of using (3.14) one could simply put a

model Green’s function “by hand,” as for example one which describes a Lorentzian

shaped density of states. Such an unbound density of states generally leads to a

finite value of the current for arbitrary bias.

The leads have a further effect on the result as they provide an inelastic broad-

ening of the energy spectrum of the central region entering Σeff, see Eq. (3.10),

which smears out details of the excitation spectrum. As far as the lead-correlated

region coupling V is concerned, there are two competing effects: on the one hand,

the current increases with increasing V due to the stronger coupling between the

correlated region and the leads. On the other hand, details of the electronic excita-

tions are smeared out with increasing V leading to a reduced resolution. Therefore,

in order to detect the effects of strong correlations, particularly the gap, a small
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Figure 3.4: (Color online) Convergence of the steady-state current density jx with

reference cluster size Lc = Lcx × Lcy for the correlated two-leg ladder

with V = 0.5. Results in (a), (b) are obtained by a variational ad-

justment of the intra-cluster hopping tx as discussed in the text, while

those of (c), (d) are obtained without modification of tx. The values

for the Hubbard interaction are U = 2 in [(a), (c)] and U = 4 in [(b),

(d)].
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value for V is required.

The details of the V dependence of jx for small V can be deduced from (3.11).

Here, the expression for the current has a prefactor proportional to V 4 (at least

in the Lcx = L̄cx case), due to the two Γ terms. On the other hand, for a gapless

system, there is a V 2 term in the denominator of |GR
cc|2. For a gapped system, this

is cut off by the energy gap Eg, so that in this case jx ∼ V 4/E2
g , while jx ∼ V 2

for a gapless spectrum. These aspects are clearly observable in Fig. 3.2 (a)–(c),

which shows the scaled current density jx/V
2 for fixed interaction strength U but

varying V . The envelope has a rotated S-like structrue due to the combined effects

of the lead density of states and of the Fermi functions. The overall size of the

structures deceases with increasing Hubbard interaction U and the gap becomes

more pronounced with decreasing V .

Next we will analyze a bit more in detail the results for the current across the

Hubbard ladder in Fig. 3.2. Increasing the interaction strength U in the correlated

region leads to a suppression of the current and the opening of a gap, which is

best oberserved in (c). For U = 4 the maximum of the current density is roughly

reduced by a factor of two as compared to the noninteracting case, whereas for

U = 6 the current is almost one order of magnitude smaller as compared to the

noninteracting system, see Fig. 3.2 (d)–(f).

Finally, we want to address the the difference between the solid lines and dashed

lines in the the panels (a)–(c) of Fig. 3.2, which represent the current density

evaluated on a bond connecting the leads to the central region, or on a bond

within the two-leg ladder. Due to the stationary condition, the two results should

coincide. However, our calculations shows a slight discrepancy between them,

which is due to the fact that the method is not completely conserving and, thus,

the continuity equation is not completely fulfilled. However, from our results we

see that the deviation from the continuity equation is quite small. We expect this
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discrepancy to be reduced upon improving the optimization with the introduction

of additional variational parameters.

In Fig. 3.3 we show the steady-state current density jx across the correlated

chain (L̄cx = 1) as a function of the bias voltage. The parameters are the same as

in the case of the two-leg ladder, however, the central region is decomposed into

clusters of size Lc = 3 × 4, where also sites of the leads are taken into account

to improve the results. The half-filled Hubbard chain is gapped as well. As for

the two-leg ladder, the gap behavior can be better seen in the current-voltage

characteristics for smaller values of V , in our case for V = 0.1. In contrast, for

strong coupling V = 1.0, (a), no gap behavior can be seen in the current due to

the strong hybridization with the leads.

For strong values of the coupling V between leads and correlated region (V =

1.0), (a), the current is significant for all values of the interaction U . However,

with decreasing V , (b)–(c), the current is strongly suppressed for large interaction

U . Importantly, for the correlated chain the continuity equation is always strictly

fulfilled. In other words, there is no difference between jx evaluated on a inter-

cluster bond between the leads and the cluster, or on an intracluster bond. This

is due to the absence of vertex corrections at the uncorrelated sites.

Next, we study the convergence of our results with the size of the cluster, as well

as the effect of the self-consistency condition for the two-leg ladder and V = 0.5.

Results are depicted in Fig. 3.4 for two different values of the Hubbard interaction,

namely U = 2 [(a), (c)] and U = 4 [(b), (d)]. We do not plot results of the conver-

gence analysis for U = 6, since for this large U the current is already rather small,

as can be seen in Fig. 3.2 (d)–(f). Results in (a) and (b), first row, are obtained

by adjusting ∆tx self-consistently, as described in Sec. 3.3, whereas (c) and (d),

second row, shows results without self-consistency, i.e., with ∆tx = 0. Results

show that the self-consistency procedure improves the results, as the convergence
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Figure 3.5: (Color online) Convergence of the steady-state current density jx with

reference cluster size Lc = Lcx × Lcy for the correlated chain. Results

in (a) fulfill the self-consistency condition (3.13), whereas results in (b)

do not. The parameters are U = 2 and V = 0.5.

for jx is faster with increasing cluster size as compared to the case without self-

consistency. Generally, we observe pronounced finite size effects for very small

clusters up to 2× 4, and convergence seems to be reached for the 2× 6 cluster.

We now repeat the same analysis for the correlated chain. The corresponding

current densities for the parameters U = 2 and V = 0.5 are shown in Fig. 3.5

for different cluster sizes. Results shown in (a) are with self-consistency procedure

(3.13), whereas the results shown in (b) are without. In the present case, where we

consider transport across a strongly correlated chain, convergence is achieved very

quickly with increasing cluster size. Therefore, there is no sensible difference be-
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tween results obtained with or without self-consistency, apart for the pathological

case Lc = 3× 1 (see below).

Results obtained for the two-leg ladder and for the chain show that cluster

geometries with Lcy = 1 provide results far from convergence, even with self-

consistency. For the chain this is probably due to the degeneracy of the cluster

ground state. For the ladder, it seems that using as starting point the 2× 1 dimer

exaggerates the gap. But besides these data obtained from admittedly very small

clusters, results converge quickly as a function of cluster sizes, especially when the

hopping in x direction is used as a variational parameter.

3.5 Conclusions

In this paper we have presented a novel approach to treat strongly correlated

systems in the nonequilibrium steady state. The idea is based on the variational

cluster approach extended to the Keldysh formalism. For the present approach the

expression for the current resembles the corresponding Meir-Wingreen formulas.

As in the original Meir-Wingreen approach, which is also the basis for nonequi-

librium density-functional based calculations, we directly address the steady state

behavior of a device coupled to infinite leads. The latter is necessary for the system

to reach a well-defined steady state.

The present nonequilibrium extension is in a similar spirit to the equilibrium self-

energy functional approach, in which one “adds” single-particle terms to the cluster

Hamiltonian which is then solved exactly, and “subtract” them perturbatively. [90,

91] The values of the parameters are determined by an appropiate requirement

which in the end amounts to optimizing the unperturbed state with respect to the

perturbed one.

There is a certain freedom in choosing the most appropriate self-consistency
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criterion. Here we have required the operators associated with the variational pa-

rameters to have the same expectation values in the unperturbed and in perturbed

state. Certainly, an interesting alternative would be to generalize the variational

criterion provided by the self-energy functional approach [95] to the nonequilibrium

case. This will be obtained by a suitable generalization of the Euler equation (Eq.

(7) of Ref. [95]) to the Keldysh contour, i.e., by replacing g0cc with the self-energy

Σh in (3.13) Work along these lines is in progress.

The advantage of the present variational condition (3.13) is that it is computa-

tionally less demanding, as one just needs to evaluate cluster single-particle Green’s

functions. Which one of the two conditions gives more accurate results cannot be

stated a priori and should be explicitly checked.

In any case, both methods, the self-energy functional approach and the present

one, become equivalent to (cluster) dynamical mean-field theory in the case in

which an infinite number of variational parameters is suitably taken (see Ap-

pendix 3.6.1).

In general, we expect results to improve when more variational parameters are

taken into account. In particular, when evaluating the current across the central

region, it would be useful if a current was already flowing in the cluster. This can

be achieved by adding a complex variational hopping between the end points of

the cluster, and of course remove it perturbatively. The corresponding variational

condition would contain the interesting requirement that the current flow in this

modified cluster be the same as in steady state.

The model studied here, is motivated by the interest in transport across semi-

conductor heterostructures (see, e.g. [54, 55, 110, 111]). However, it is well known

that in this case charging effects are important, also near the boundaries between

the leads and the correlated region. Here, scattering effects produce charge den-

sity waves, which, when taking into account the long-range part of the Coulomb
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interaction, even in mean-field, produce a modification of the single-particle po-

tential. In order to treat realistic structures, these effects should be included at

the Hartree-Fock level at least. All these generalizations can be straightforwardly

treated with the presented variational cluster method, however, in this work we

focus on a first proof of concept study and application containing the essential

ingredients for the investigation of the nonequilibrium steady state of strongly

correlated many-body systems.

3.6 Appendix

3.6.1 Connection to (cluster) Dynamical Mean-Field Theory

Here, we show that the self-consistent condition (3.13) provides a bridge to (cluster)

DMFT, when an increasing number of noninteracting bath sites is included in

the cluster Hamiltonian. Notice that these are “auxiliary” baths and are not

related to the leads. Concretely, the “auxiliary” Hamiltonian δh contains a set of

hoppings with amplitudes vn connecting the central region with a corresponding set

of uncorrelated bath sites. Therefore, the couplings vn to the bath sites are included

in the reference (unperturbed) Hamiltonian h, but are “subtracted perturbatively,”

so that they are absent from the target Hamiltonian H.

Now, since g0cc is cluster-local, a solution to (3.13) is obviously given by (3.12).

However, this solution can generally not be obtained with a finite number of pa-

rameters. As in usual equilibrium (cluster) DMFT, [93] (3.12) can thus be solved

via an iterative procedure defined by

g−1
0cc,new = (P(Gcc))

−1 + Σh

Σh = g−1
0cc,old − g

−1
cc . (3.15)

It is, thus, sufficient to show that an arbitrary g0cc,new can be obtained by coupling
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the cluster to a noninteracting bath with suitably chosen bath parameters. For

the retarded and advanced Green’s functions, the procedure is the same as in

equilibrium. The Keldysh part is slightly more complicated. In order to show that

an aribrary g0cc,new can be realized, one introduces the hybridization function

∆(ω) =

 ∆R(ω) ∆K(ω)

0 ∆A(ω)

 , (3.16)

where the ∆R, ∆A, and ∆K are matrices in the cluster sites. Similarly to equilib-

rium DMFT g0cc,new is expressed as

g−1
0cc,new = g−1

0cc,0 −∆(ω) . (3.17)

Here, g−1
0cc,0 is the “bare” noninteracting cluster Green’s function, i.e., the one with

neither baths nor variational parameters.

One then introduces a bath of noninteracting and initially decoupled sites with

energies εn and occupation probabilities pn. A generic nonequilibrium ∆(ω) is

produced by switching on the corresponding hybridizations vn (each one is a vector

in cluster sites) at a certain time in the past, and waiting for the onset of the

steady state. The bath parameters have a one-to-one correspondence with the

bath spectral function (matrix)

Abath(ω) =
∑
n

vnv
†
nδ(ω − εn) (3.18)

and with its distribution function sbath(ω) defined as

Abath(ω) sbath(ω) =
∑
n

vnv
†
nδ(ω − εn)(1− 2 pn) . (3.19)

In order to produce a given ∆(ω) these two functions must be fixed by the condi-

tions

− 2iπ Abath(ω) =
(
∆R(ω)−∆A(ω)

)
(3.20)
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and

− 2iπ Abath(ω) sbath(ω) = ∆K(ω) . (3.21)

which can be easily seen to lead to (3.16)
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Among the various numerical techniques to study the physics of strongly corre-

lated quantum many-body systems, the self-energy functional approach (SFA) has

become increasingly important. In its previous form, however, SFA is not appli-

cable to Bose-Einstein condensation or superfluidity. In this paper we show how

to overcome this shortcoming. To this end we identify an appropriate quantity,

which we term D, that represents the correlation correction of the condensate or-

der parameter, as it does the self-energy for the Green’s function. An appropriate

61



4 Extended self-energy functional approach

functional is derived, which is stationary at the exact physical realizations of D and

of the self-energy. Its derivation is based on a functional-integral representation of

the grand potential followed by an appropriate sequence of Legendre transforma-

tions. The approach is not perturbative and therefore applicable to a wide range

of models with local interactions. We show that the variational cluster approach

based on the extended self-energy functional is equivalent to the “pseudoparticle”

approach introduced in Chap. 2. We present results for the superfluid density

in the two-dimensional Bose-Hubbard model, which show a remarkable agreement

with those of Quantum-Monte-Carlo calculations.

4.1 Introduction

Seminal experiments with ultracold gases of atoms trapped in optical lattices shed

new light on strongly-correlated many body systems. [42–44] In these experiments

specific lattice Hamiltonians can be engineered and investigated with a remarkable

high level of control, making quantum mechanical interference effects observable

on a macroscopic scale. Most important as well as fundamental is the quantum

phase transition of strongly correlated lattice bosons from the localized Mott phase

to the delocalized superfluid phase. In the superfluid phase a macroscopic frac-

tion of the particles condenses into one quantum mechanical state, thus, forming

a Bose-Einstein condensate, where the number of particles in the condensate is

not necessarily equal to the number of superfluid particles. In experiments with

ultracold gases of atoms trapped in optical lattices, the condensate density can

be extracted from time-of-flight images, [43] which are related to the momentum

distribution of the confined particles. Importantly, the finite expansion time of

the particle cloud has to be taken into account when drawing the connection be-

tween these time-of-flight images and the true momentum distribution. [112–115]
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However, it is probably even more challenging to measure the superfluid density

itself, as it is not a ground state property but rather related to the response of the

system to a phase twisting field. [116] Interestingly, only very recently for Bose

gases without the periodic lattice potential an optical method has been proposed

to extract the superfluid density. This experiment creates a vector potential, that

imposes angular momentum on normal fluid particles, while superfluid particles

stay at rest. [117]

In a previous work, we extended the variational cluster approach (VCA), which

is capable to deal with strongly-correlated many body systems without broken

symmetry to the superfluid phase of lattice bosons. [91] Originally, VCA has been

formulated for the normal Mott phase of lattice bosons in Ref. [118] within the

so-called self-energy functional approach (SFA), which was previously introduced

for interacting fermionic systems. [119,120] Our extension to the superfluid phase

in Ref. [91] follows a different path, and is based on the so-called “pseudoparticle”

formalism. Within this approach we obtained the expressions for the superfluid

order parameter, the anomalous Green’s function, and the grand potential, which

is the starting point for the variational principle, see Eq. (1), (33), and (2) in this

reference.

It should be pointed out that, while the pseudoparticle formalism is equivalent

to VCA in the normal phase of both bosonic [91] and fermionic [121] systems, it

lacks the rigorous theroretical framework provided by SFA. In particular, there is

no genuine variational principle explaining why one should look for a saddle point

in the grand potential. The goal of the present paper is to put the results obtained

within the pseudoparticle approach into a rigorous framework by developing an

extended self-energy functional approach, which is capable to deal with the bosonic

superfluid phase.

From the present work it will become clear, that this extension is not straightfor-
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ward, as it involves a precise sequence of Legendre transformations with suitably

chosen variables. In the search for the appropriate set of transformations the

knowledge of the final results provided by pseudoparticle formalism proves to be

useful. This fact emphasizes the advantage of the heuristic, yet straightforward,

pseudoparticle approach to formulate extensions of VCA. [91]

The extended SFA formulated in the present paper yields the same expressions

for the superfluid order parameter, for the Nambu Green’s function, and for the

grand potential, as obtained from the pseudoparticle approach. While this might

not seem to be surprising, since we were guided by the very results of the pseu-

doparticle approach, we argue below, that our SFA extension presented here is

unambiguous. The most important step in this SFA extension is to find a quan-

tity, which we call D, which is the companion of the self-energy in the superfluid

phase. Correspondingly, one has to find an appropriate universal functional of this

quantity and of the self-energy, which generates the superfluid order parameter and

the Green’s function.

As an application, we present an evaluation of the superfluid density within this

extended VCA, by the usual method of introducing a phase twisting field, which

is equivalent to the helicity modulus [122] and to winding numbers in quantum

Monte Carlo (QMC) algorithms. [123, 124] We evaluate the superfluid density

for the two-dimensional Bose-Hubbard (BH) model [125] and find a remarkably

excellent agreement with QMC results.

This article is organized as follows. In Sec. 4.2 we extend SFA to the superfluid

phase and obtain the corresponding extended self-energy functional, along with

the appropriate variable describing superfluidity. The evaluation of the superfluid

density within this extended VCA is presented in Sec. 4.3 and applied to the BH

model in two dimensions. The VCA results are compared with unbiased QMC

results showing excellent agreement. Finally, we conclude and summarize our
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findings in Sec. 4.4.

4.2 Self-energy functional approach

Let us recall the key idea of SFA due to M. Potthoff. [119] The starting point is

an appropriate functional

Ω̂[Σ, G−1
0 , HU ] ≡ F̂ [Σ, HU ] + Ê [Σ, G−1

0 ] , (4.1)

which consists of a functional F̂ of the self-energy, the Legendre transform of the

Luttinger-Ward functional, which is universal in the sense that it depends on the

interaction part (HU) of the Hamiltonian but not on the single particle part. The

latter enters via the free Green’s function G−1
0 in the second functional, which is

explicitly known

Ê [Σ, G−1
0 ] ≡ −β tr ln(Σ−G−1

0 )

The functional Ω̂[Σ, G−1
0 , HU ] has three key features, which are crucial for VCA.

a) The non-universal part Ê enters additively in form of a known functional and

the many-body aspects are described by a universal functional independent

of the single particle Hamiltonian, or, equivalently, independent of G−1
0 .

b) The self-energy of the physical system, characterized by HU and G−1
0 is a

stationary point of the functional Ω̂ with respect to Σ.

c) The value of Ω̂ at the stationary point is equal to the thermodynamic grand

potential.

Given these properties, one can construct a parametric family of Hamilton op-

erators based on the same interaction part (reference systems), for which the ther-
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modynamic grand potential, the Green’s function and the self-energy can be de-

termined exactly. This allows to determine the exact self-energy functional for

self-energies accessible by the reference systems. In this very subspace, the self-

energy functional in Eq. (4.1) for the physical system is replaced by that of the ref-

erence system. The stationarity condition in turn allows to determine the Green’s

function and self-energy of the physical system.

Our goal is to generalize this approach to the superfluid phase as well. Besides

the self-energy, which is the interaction correction of the inverse Green’s function,

we need the corresponding companion that describes the interaction correction to

the order parameter, which we call D.

Once the appropriate form of D has been determined, we need a functional

Ω̂s[Σ, D, F,G
−1
0 , HU ] ≡ F̂ [Σ, D,HU ] + Ê [Σ, D,G−1

0 , F ] ,

in the self-energy Σ and D with the following features.

a) F̂ is again a universal functional, now in Σ and D. The non-universal part

Ê is explicitly known and carries the dependence on G−1
0 and the symmetry

breaking source-field F .

b) The functional is again stationary at the exact self-energy Σ and the exact

D of the physical system, characterized by HU , G−1
0 and F .

c) The value of Ω̂s at the stationary point is equal to the thermodynamic grand

potential.

The sought-for functional Ω̂s, to be derived in this section, will turn out to be

(see below for a definition of the quantities)

2βΩ̂s[Σ, D,G
−1
0 , F ] = F̂ [Σ, D] + Ê [Σ, D,G−1

0 , F ] (4.2)

Ê [Σ, D,G−1
0 , F ] ≡ β Tr ln[(G−1

0 − Σ) G∞]

+ (D̄ − F̄ )(G−1
0 − Σ)−1(D − F ) . (4.3)
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In the normal phase, it is identical to the functional introduced by Potthoff. The

additional factor 2 is due to the Nambu Green’s functions. Moreover, the expres-

sion for the grand potential obtained with the help of a so-called reference system,

see Eq. 4.30 below, is identical to the one obtained within the pseudoparticle ap-

proach. [91]

4.2.1 Derivation of the grand potential functional

We start out from the partition function Z of a bosonic many-body system, which

in a functional integral representation reads

Z =

∫
DA e−S , (4.4)

where S is the action, which in general can be written as [126]

S =− 1

2

∫
dτ

∫
dτ ′ Ā(τ ′)G−1

0 (τ ′, τ)A(τ)

−
∫
dτ
[
F̄ (τ)A(τ)−HU(A(τ))

]
. (4.5)

In view of treating the superfluid phase we have adopted a Nambu notation in

which the bosonic fields are expressed in a vector representation

A(τ) ≡



a1(τ)
...

aN(τ)

ā1(τ)
...

āN(τ)


. (4.6)

The indices 1 through N denote the corresponding single-particle orbitals (for

example, lattice sites) where the boson operators act, and ai(τ) (āi(τ)) are the
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fields associated with the annihilation (creation) of a boson in the orbital i. The

adjoint field is defined as

Ā(τ) ≡ (ā1(τ), · · · , āN(τ), a1(τ), · · · , aN(τ)) . (4.7)

It can be expressed in terms of A(τ) with the help of the matrix T , which exchanges

the first N entries of a vector with the last N ones:

Ā(τ) = A(τ)TT . (4.8)

The operator T has the properties T 2 = 1, and T = T T . The action in Eq. (4.5)

also contains the source fields

F̄ ≡
(
f1, · · · fN , f̄1, · · · , f̄N

)
and F = T F̄ T ,

which are zero for the physical system of interest, the boson interaction described

by HU , as well as the 2N × 2N noninteracting Green’s function matrix G0(τ ′, τ).

Eq. (4.4) with Eq. (4.5) defines the corresponding grand potential as a functional

of G−1
0 and F

ˆ̃
Ωs[G

−1
0 , F ] ≡ − 1

β
ln Ẑ , (4.9)

where β is the inverse temperature. Here and in the following, we mark functionals

with a hat “ ˆ ”, and omit their arguments whenever they are obvious. The

noninteracting Green’s function has the matrix structure (see App. 4.5.1)

G−1
0 (τ ′, τ) = −δ(τ − τ ′)

 ∂τ + t 0

0 −∂τ + t

 , (4.10)

where t is the single-particle Hamiltonian matrix.

In the following, we carry out a sequence of Legendre transformations starting

from
ˆ̃
Ωs, ultimately leading to a universal functional F̂ [Σ, D] of the self-energy Σ

and of a suitable quantity D defined in Eq. (4.21a). The functional F̂ is the gen-

eralization of the self-energy functional [118–120] to the superfluid phase, where a
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nonvanishing expectation value A(τ)≡〈A(τ)〉 of the boson operators A exists. The

functional F̂ has the properties, see Eq. (4.23), that its functional derivatives with

respect to Σ and D yield the disconnected Green’s function, and the expectation

value A, respectively. This procedure is inspired by Ref. [127] and extends that

approach to the treatment of the superfluid phase.

We first determine the conjugate variables to G−1
0 and to the source fields F .

The functional derivative of
ˆ̃
Ωs with respect to the noninteracting Green’s function

yields [126] (see App. 4.5.1)

2β
δ

ˆ̃
Ωs

δG−1
0 ji(τ

′, τ)
= − 2

Ẑ

δ

δG−1
0 ji(τ

′, τ)

∫
DA×

× exp
{1

2

∫
dτ̃

∫
dτ̃ ′Āl(τ̃)G−1

0 ll′(τ̃ , τ̃
′)Al′(τ̃

′)

+

∫
dτ̃ [F̄l(τ̃)Al (τ̃)−HU(ā, a)]

}
= − 1

Ẑ

∫
DA Āj(τ ′)Ai (τ) exp [−S]

≡ Ĝdisc,ij(τ, τ
′) .

Here Ĝdisc,ij(τ, τ
′) is the disconnected interacting time-ordered Green’s function.

Along with the definition of the connected Green’s function Ĝ[G−1
0 , F ] we obtain

2β
δ

ˆ̃
Ωs[G

−1
0 , F ]

δG−1
0

= Ĝdisc ≡ Ĝ− Â ˆ̄A . (4.11a)

For the functional derivative with respect to F we obtain similarly

2β
δ

ˆ̃
Ωs[G

−1
0 , F ]

δF̄
= −2Â[G−1

0 , F ] . (4.11b)

The two functionals Ĝ[G−1
0 , F ] and Â[G−1

0 , F ] defined in Eq. (4.11) provide the

exact Green’s function G and order parameter A for a given noninteracting Green’s

function G−1
0 and source field F of the system. The first step toward the universal
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functional consists in a Legendre transformation replacing the variables F with A.

To this end, we invert [128] the relation Eq. (4.11) making F a functional F̂ [G−1
0 ,A]

and introduce

Ξ̂[G−1
0 , A] = 2β

ˆ̃
Ωs + 2 ˆ̄FA , (4.12)

where, as usually in Legendre transformations, the functional dependence on F has

been eliminated in favor of A by using the inverse function. It is straightforward

to show that the corresponding functional derivatives give

δΞ̂

δ2A
= ˆ̄F [G−1

0 , A] ,
δΞ̂

δG−1
0

= Ĝdisc[G
−1
0 , A] .

Next, we modify the functional in the following way

ˆ̃
Ξ[G−1

0 , A] = Ξ̂ + ĀG−1
0 A , (4.13)

such that we obtain the connected Green’s function from the functional derivative

with respect to G−1
0 . In total we have

δ
ˆ̃
Ξ

δ2A
= ˆ̄F [G−1

0 , A] + ĀG−1
0 , (4.14)

δ
ˆ̃
Ξ

δG−1
0

= Ĝdisc +AĀ = Ĝ[G−1
0 , A] . (4.15)

The second step is a Legendre transformation replacing the variable G−1
0 with G

Π̂[G, A] =
ˆ̃
Ξ− β Tr(GĜ−1

0 − 1) , (4.16)

where we have expressed Ĝ−1
0 as a functional of G and A, by inverting Eq. (4.15).

[126,128] We subtract an “infinite” constant β Tr1 in order to keep Π̂[G, A] finite.

The functional derivatives of the new functional are

δΠ̂

δ2A
= ˆ̄F + ĀĜ−1

0 ,
δΠ̂

δG
= −Ĝ−1

0 .

Now, we modify the functional such that we get the self-energy from the functional

derivative (see App. 4.5.1)

ˆ̃
Π[G, A] = Π̂ + β Tr ln (G/G∞) . (4.17)
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This gives

δ
ˆ̃
Π

δ2A
= ˆ̄F + ĀĜ−1

0 ,
δ

ˆ̃
Π

δG
= Σ̂ (4.18a)

Σ̂ ≡ G−1 − Ĝ−1
0 . (4.18b)

Here we have used the Dyson equation as defining equation for the self-energy.

Furthermore, we carry out a third Legendre transformation replacing G with Σ in

the usual way. Thus we introduce

P̂ [Σ, A] =
ˆ̃
Π + β Tr Σ Ĝ (4.19)

with the properties
δP̂

δ2A
= ˆ̄F + ĀĜ−1

0 ,
δP̂

δΣ
= Ĝ .

We modify this functional once more so that its derivative yields a new function

D, which will be the companion of the self-energy in our extended self-energy

approach

ˆ̃
P [Σ, A] = P̂ − ĀΣA . (4.20)

The functional derivatives yield

δ
ˆ̃
P

δ2A
= ˆ̄F + ĀĜ−1

0 − ĀΣ = ˆ̄F + ĀĜ−1 ≡ ˆ̄D , (4.21a)

δ
ˆ̃
P

δΣ
= Ĝ−AĀ = Ĝdisc . (4.21b)

Before proceeding, let us discuss the meaning of the function D introduced

in Eq. (4.21a). When extending SFA to the superfluid phase one is looking for

a quantity, which is related to the condensed order parameter and which plays

a similar role as the self-energy, in that it describes the deviation between the

interacting and non-interacting case. Thus, this quantity should vanish in the

noninteracting case (HU = 0). The reason is that SFA will eventually amount

to an approximation for Σ and D, and we require this approximation to become
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exact for HU = 0. Finally, D must obviously vanish in the normal phase. The

expression in Eq. (4.21a) has precisely these features, since Ā0 = −F̄G0, which is

straightforwardly determined from the Gaussian integral for HU = 0 in Eq. (4.5).

Interestingly, the pseudoparticle approach, presented in Ref. [91], and which is

based on an intuitive, yet heuristic approximation, provides the same form of D

as given in Eq. (4.21a).

The final Legendre transformation replacing A with D yields the desired func-

tional of the self-energy and D. It represents the generalization of the self-energy

functional (F [Σ] of Refs. [119] and [118]) to the superfluid phase

F̂ [Σ, D] =
ˆ̃
P − 2D̄Â (4.22)

and has the properties

δF̂
δD̄

= −2Â[Σ, D] ,
δF̂
δΣ

= Ĝdisc[Σ, D] . (4.23)

Similarly to F [Σ] from Refs. [119] and [118], F̂ is (for fixed HU) a universal

functional of Σ and D only, from which the disconnected Green’s function and the

order parameter are obtained by functional derivative, see Eq. (4.23).

Given Σ and D we can compute by Eq. (4.23) the corresponding values for A

and Gdisc. On the other hand, for a specific physical system, uniquely defined by

G−1
0 , F and HU , the definitions of the self-energy Σ, Eq. (4.18b), and the modified

order parameter D, Eq. (4.21a), provide another set of equations, which uniquely

fix Σ and D via the equations

Ĝdisc[Σ, D]
!

= (G−1
0 − Σ)−1+ (4.24a)

(G−1
0 − Σ)−1(D − F )(D̄ − F̄ )(G−1

0 − Σ)−1 ,

and

−2Ā[Σ, D]
!

= −2(D̄ − F̄ )(G−1
0 − Σ)−1 . (4.24b)
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As for the (original) self-energy functional approach, we seek now a functional,

which becomes stationary at the exact Σ and D for specific G−1
0 and F , and which

consists of the universal functional F̂ plus a non-universal explicit functional of

the form

2βΩ̂s[Σ, D,G
−1
0 , F,HU ] = F̂ [Σ, D,HU ] + Ê [Σ, D,G−1

0 , F ] .

In order to yield the correct stationary point, the functional Ê has to fulfill accord-

ing to Eq. (4.24) the equations

δÊ
δΣ

=− (G−1
0 − Σ)−1 (4.25a)

− (G−1
0 − Σ)−1(D − F )(D̄ − F̄ )(G−1

0 − Σ)−1 ,

δÊ
δD

= 2(D̄ − F̄ )(G−1
0 − Σ)−1 . (4.25b)

With these ingredients we can now express the sought-for functional Ω̂s as

2βΩ̂s[Σ, D,G
−1
0 , F ] = F̂ [Σ, D] + β Tr ln[(G−1

0 − Σ) G∞]

+ (D̄ − F̄ )(G−1
0 − Σ)−1(D − F ) , (4.26)

which obviously fulfills Eq. (4.25). It remains to show that, whenever evaluated at

the exact Σ and D the functional Ω̂s corresponds, possibly apart from a constant,

to the thermodynamic grand potential Ω̃s of the system. To this end we add up

all the terms used to construct the functional. At the exact values of Σ and D we

have

2βΩ̂s

∣∣
exact

= 2βΩ̃s + 2F̄A+ ĀG−1
0 A− β Tr

(
GG−1

0 − 1
)

+β Tr ln (G/G∞) + β Tr ΣG− ĀΣA− 2D̄A

−β Tr ln (G/G∞) + ĀG−1A

= 2βΩ̃s − 2 (D̄ − F̄ )︸ ︷︷ ︸
ĀG−1

A+ 2ĀG−1A

= 2βΩ̃s
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4 Extended self-energy functional approach

We can now proceed as in Refs. [119] and [129] and construct a reference system,

which can be solved (almost) exactly. [130] The reference system is described by a

Hamiltonian H ′, which shares the same interaction HU as the physical system, but

consists of different noninteracting Green’s function G′0 and source fields F ′. The

point is the following: Due to the fact that F is a universal functional, it cancels

out from the difference between Ω̂s for the physical and the reference system, with

the same values of Σ and D. In particular, this gives

2βΩ̂s[Σ, D,G
−1
0 , F ]− 2βΩ̂s[Σ, D,G

′−1
0 , F ′]

= β Tr ln
(
(G−1

0 − Σ)G∞
)
− β Tr ln

(
(G′−1

0 − Σ)G∞
)

+ (D̄ − F̄ )(G−1
0 − Σ)−1(D − F )

− (D̄ − F̄ ′)(G′−1
0 − Σ)−1(D − F ′) , (4.27)

which allows to evaluate the functional Ω̂s exactly for the physical system as well,

however, in a restricted subspace of Σ and D, representable by the parametric

family of reference systems. By construction, the optimal values for Σ and D

for the physical system are those of the reference system for the set of optimal

variational parameters.

The variational procedure then follows and generalizes Ref. [119]: First a class of

exactly solvable reference systems Ĥ ′ with the same interaction as the physical sys-

tem characterized by a continuum of single-particle parameters t′ and source fields

F ′ is identified. In VCA this class is obtained by dividing the original lattice into

disconnected clusters with varying single-particle energies and hopping strengths.

A larger subspace can be reached by adding bath sites. [120] Then the (connected)

Green’s function G′, the order parameter A′, and the grand potential Ω′s of the

reference system is evaluated. With the help of Dyson’s equation Eq. (4.18b) the

self-energy Σ′, and with the help of Eq. (4.21a) D′ is determined. By varying t′

and F ′ the subspace of self-energies and Ds is spanned, which is accessible to the
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4.2 Self-energy functional approach

reference system and to which these objects for the physical system are restricted.

Within this subspace the functional Ω̂s can be evaluated exactly for arbitrary G0

and F of the physical system. For the relevant case F = 0 we obtain [131] from

Eq. (4.27)

2βΩs = 2βΩ′s + β Tr ln
(
−(G−1

0 − Σ′)
)

− β Tr ln
(
−(G′−1

0 − Σ′)
)

+ D̄(G−1
0 − Σ′)−1D

− Ā′G′−1A , (4.28)

which is now a function of t′ and F ′. The infinite physical system can break

the symmetry spontaneously, while in the reference systems of disconnected finite

clusters, a non-vanishing order parameter can only be achieved by an additional

source field F ′. This explains, why a finite F ′ is required although F = 0 in the

physical system. The SFA approximation consists in finding a stationary point of

Ω̂s within this subspace of self-energies and D-s. This corresponds, quite generally,

to finding a stationary point with respect to t′ and F ′ of Eq. (4.28), i.e. to the

equations

∂Ω

∂t′
= 0

∂Ω

∂F ′
= 0 . (4.29)

Here, we have replaced Ωs with Ω ≡ Ωs − 1
2

tr t which differs just by a t′- and F ′-

independent constant and thus does not change the saddle-point equations. The

quantity Ω is the grand potential obtained from the normal-ordered Hamiltonian

(see App. 4.5.1). We also introduce the grand-potential of the normal-ordered

reference system Ω′ ≡ Ω′s − 1
2

tr t′. This term is also present in the pseudoparticle

approach, [91] where its origin is easily seen. Moreover, for τ -independent fields

and Hamiltonian, the expectation values A(τ) are τ -independent as well, and the

Green’s functions depend on the time difference only. In this way, we can rewrite
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4 Extended self-energy functional approach

Eq. (4.28) as

Ω = Ω′ − 1

2
tr(t− t′)− 1

2
Tr ln (−G) +

1

2
Tr ln (−G′)

+
1

2
ĀG−1(ωn = 0)A− 1

2
Ā′G′−1(ωn = 0)A′ , (4.30)

where G(ωn) ≡
∫
d τ G(τ, 0)eiτωn is the Green’s function in Matsubara space.

The expression for Ω given in Eq. (4.30) is our main result. As can be seen, this

expression is the same as Eq. (1) in Ref. [91], except for a different normalization

factor, which is the number of clusters Nc. Notice that Nch in Ref. [91] is equal

to t− t′ in the present paper. We thus proved that the result obtained within the

pseudoparticle approach in Ref. [91] can be equivalently obtained within a more

rigorous “generalized” self-energy functional approach. While the pseudoparticle

approach is quite intuitive, the present self-energy approach provides a rigorous

variational principle, explaining why the grand-potential Ω has to be optimized

with respect to the cluster parameters t′ and F ′. In addition, as in SFA for the

normal phase, it suggests more general approximations in which bath sites are

used to enlarge the space of possible self-energies. [120,132,133]

4.3 Superfluid density

In this section we discuss the evaluation of the superfluid density ρs within our

extended SFA/VCA theory and present results for the two-dimensional BH model.

The superfluid density is related to the response of the system to a phase-

twisting field, [122,134] leading to twisted boundary conditions (BC) in one spatial

direction, which we choose to be the ex-direction, and periodic BC in the others.

The many-body wave function |Ψ〉 has to obey these BC and thus

T̂ (Nx ex) |Ψ〉 = eiΘ |Ψ〉 ,
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Figure 4.1: (Color online) Superfluid density ρs (a) evaluated for constant hop-

ping strength t/U = 0.02 as a function of the chemical potential µ/U .

VCA results for reference systems of size L = 1 × 1, L = 2 × 1, and

L = 2× 2 and for essentially infinitely large physical systems are com-

pared to QMC results for physical systems of size 32× 32 and inverse

temperature U/T = 128. Comparison of the superfluid density ρs and

condensed density ρc (b) for reference systems of size L = 1 × 1 and

essentially infinitely large physical systems, cf. Ref. [91].
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where the operator T̂ (r) translates the particles by the vector r, Nx is the lattice

extension in ex-direction, and Θ is the phase twist applied to to the system. The

twisted BC can be mapped by a unitary transformation onto the lattice Hamil-

tonian, leading to complex-valued hopping integrals. [116, 135, 136] The resulting

Hamiltonian can be interpreted as a cylinder rolled up along the x-direction, which

is threaded by an effective magnetic field with total flux Θ. When a particle is

translated by Nx in the ex-direction a phase exp[−iΘ] is picked up. [137] Due to

gauge invariance, one is free to choose where the phase is collected when the par-

ticle propagates across the lattice. The usual choice is that each hopping process

in the ex direction, i.e., from site r′ = (rx − 1, ry) to r = (rx, ry), is multiplied by

a phase factor exp[−iA], where the associated vector potential is

A = Θ/Nx . (4.31)

When choosing the phase in that way, the reference system Ĥ ′ also depends on

the vector potential A and the intra-cluster hopping terms become complex-valued

along the ex-direction. For a Hamiltonian with nearest-neighbor hopping t, the

superfluid density is determined from [137]

ρs =
1

t

1

NxNy

∂2 ΩΘ

∂ A2
, (4.32)

where NxNy is the total number of lattice sites of the physical system, and ΩΘ is

the grand potential of the physical system, subject to a phase twist Θ, as discussed

above. Plugging in the vector potential of Eq. (4.31) yields

ρs =
1

t

Nx

Ny

∂2 ΩΘ

∂Θ2
. (4.33)

In practice, the grand potential ΩΘ is evaluated at the stationary point of Eq. (4.30),

and is determined self-consistently for several values of Θ. From this data the cur-

vature of ΩΘ with respect to Θ is extracted from a fit. Using the curvature, the

superfluid density is evaluated according to Eq. (4.33). Note that a finite cluster
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Figure 4.2: (Color online) Superfluid density ρs (a) and superfluid fraction ρs/n (b)

ranging deep in the superfluid phase evaluated for constant chemical

potential µ/U = 0.4 as a function of the hopping strength t/U . Results

obtained by means of VCA for reference systems of size L = 1 × 1

and essentially infinitely large physical systems are compared to QMC

results for physical systems of size 32 × 32 and inverse temperature

U/T = 128.
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is embedded in an essentially infinitely large system and thus the limits are taken

in the correct order to obtain the superfluid density. [137]

In the following, we apply this procedure to the two-dimensional BH model [125]

Ĥ =
∑
〈i, j〉

tij a
†
i aj +

U

2

∑
i

n̂i (n̂i − 1)− µ
∑
i

n̂i ,

where a†i (ai ) creates (destroys) a bosonic particle on site i, and n̂i = a†i ai is the

occupation number operator. The hopping integrals tij are nonzero for nearest

neighbors only, as indicated by the the angle brackets. Specifically, tij = −t

for hopping processes along the ey-direction and tij = −t exp[i A (ri − rj)ex] for

hopping processes along the ex-direction. The chemical potential, termed µ,

controls the particle number and U is the repulsive on-site interaction, which

subsequently will be used as unit of energy. The reference system Ĥ ′ consists of

a cluster decomposition of the physical system Ĥ plus a U(1) symmetry breaking

source term

Ĥ ′ =
∑
R

[ ∑
〈α, β〉

t′αβa
†
α,R aβ,R +

U

2

∑
α

n̂α,R (n̂α,R − 1)

− µ′
∑
α

n̂α,R −
∑
α

(a†α,R fα + f ∗α aα,R)
]

,

where the lattice site indices i have been decomposed into an index R, that spec-

ifies the cluster and into an index α, that specifies the lattice sites within a clus-

ter. [91,138] Analogously to the physical system, the hoping integrals are t′αβ = −t′

and t′αβ = −t′ exp[i A (rRα− rRβ)ex] for nearest-neighbor hopping processes along

the ey- and the ex-direction, respectively, and zero otherwise. In our calculation,

we use the chemical potential µ′ and the source coupling strength fα of the refer-

ence system as variational parameters in the optimization prescription. Since the

reference system is complex valued, the source coupling strength fα is complex

valued too, i.e., fα = |fα| exp[φα]. Thus, in general, 2L variational parameters
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have to be considered, where L is the number of cluster sites. However, for differ-

ent cluster sites α the source coupling strengths fα are interrelated, as can be seen

from mean field arguments, leading effectively to two variational parameters |f |

and φ, which we use—in addition to the chemical potential µ′—to treat complex

valued reference systems.

In Fig. 4.1 we present the superfluid density ρs for different sizes of the reference

system ranging from L = 1 × 1, over L = 2 × 1, to L = 2 × 2 and essentially

infinitely large physical systems. For the largest cluster we restrict the variational

search space to real valued order parameters, i.e., we set φα = 0. Figure 4.1 (a)

demonstrates that this choice leads to comparable results as obtained with the

full variational space. Yet, for the restricted variational space the computational

effort as well as the numerical complexity is reduced, since the reference system

remains real valued. Figure 4.1 (a) shows the superfluid density ρs, as a function of

the chemical potential µ/U evaluated for fixed hopping strength t/U = 0.02. The

chemical potential ranges from µ/U = 0 to µ/U = 3. As the hopping strength is

small, three regions with ρs = 0 are present, corresponding to the Mott insulating

phase. In between these regions, we observe a finite superfluid density ρs indicating

the occurrence of the superfluid phase. In addition to the VCA results, we show

QMC results with errorbars (barely visible) for physical systems of size 32 × 32

and inverse temperature U/T = 128. The QMC calculations were performed with

the ALPS library [139] and the ALPS applications. [140] Particularly, we use the

stochastic series expansion representation of the partition function with directed

loop updates, [141–143] where the superfluid density is evaluated via the winding

number. [123,124] The superfluid density ρs obtained from VCA agrees remarkable

well with the QMC results. Furthermore, VCA results are almost independent of

the size L of the reference system, signaling convergence to the correct results

even for L = 1 × 1 site clusters. The superfluid density ρs is compared to the
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condensate density ρc = 〈ai〉 in Fig. 4.1 (b), cf. Ref. [91]. It can be observed

that the superfluid density is always larger than the density of the Bose-Einstein

condensate. However, the difference between the two densities is rather small,

since a very dilute Bose gas is investigated.

In Fig. 4.2 we evaluate (a) the superfluid density ρs and (b) the superfluid

fraction ρs/n (n is the particle density) for fixed chemical potential µ/U = 0.4

as a function of the hopping strength t/U . The hopping strength ranges from

t/U = 0 to t/U = 1, which is already very deep in the superfluid phase. For

µ/U = 0.4 the phase boundary between the Mott and the superfluid phase is

located at t/U ≈ 0.06. In the superfluid phase close to the phase boundary the

superfluid density rises quickly from zero developing an almost linear behavior for

t/U & 0.2. In the latter parameter regime the superfluid fraction is larger than

90% signaling that already a very large amount of the lattice bosons is superfluid.

As emphasized in Ref. [144], a relatively sharp crossover from a strongly-correlated

superfluid, characterized by a superfluid fraction which is well below 1, to a weakly-

correlated superfluid, where the superfluid fraction is almost 1, can be observed,

see Fig. 4.2 (b). In addition to the VCA results evaluated for reference systems

of size L = 1 × 1 and essentially infinitely large physical systems, we show QMC

results for physical systems of size 32 × 32 and inverse temperature U/T = 128,

which again exhibit perfect agreement.

In Fig. 4.3 we focus on the quantum critical region close to the tip of the first

Mott lobe, which is the most challenging one. In particular, we evaluate the

particle density n, the condenstate density ρc, and superfluid density ρs. In the

first row we show results for fixed chemical potential µ/U = 0.4 as a function of

the hopping strength t/U , whereas in the second row we keep hopping strength

fixed at t/U = 0.05 and vary the chemical potential µ/U . We compare VCA

results with QMC and mean-field (MF). The most important observation is that
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Figure 4.3: (Color online) Particle density n (left), condensate density ρc (middle),

and superfluid density ρs (right) evaluated around the quantum critical

region close to the tip of the first Mott lobe. Comparison of the data

obtained by means of VCA (for essentially infinitely large physical

systems and reference systems as stated in the legends), QMC (for

physical systems of size 32× 32 and inverse temperatures U/T = 128),

and mean-field. The first row (a.∗) shows results for fixed chemical

potential µ/U = 0.4 as a function of the hopping strength t/U , whereas

the second row (b.∗) shows results for fixed hopping strength t/U =

0.05 as a function of the chemical potential µ/U .
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MF is far off QMC and VCA. For µ/U = 0.4 MF predicts the phase transition to

be at a much smaller value of t/U than QMC and VCA. This leads to significant

deviations in both the density and condensate density as compared to QMC and

VCA. For fixed t/U = 0.05 MF does not enter the Mott region and thus does not

predict a plateau in the density. For both investigated situations (fixed µ/U and

fixed t/U) the results obtained by means of VCA and QMC agree quite well. For

the QMC simulations we used lattices of size 32× 32 and inverse temperatures of

U/T = 128. The VCA results are obtained at zero temperature for clusters of size

1 × 1 and 2 × 1, respectively, and essentially infinitely large physical systems. In

this challenging regime small differences between VCA and QMC are observable

for the condensate density. For the reference system sizes considered here, results

are almost identical. Larger reference systems might still reduce the difference

between VCA and QMC. However, close to the phase transition finite size and

finite temperature effects might still be important for the QMC results, and thus a

proper finite size scaling of these data might also reduce the discrepancy between

the two approaches. Note that for fixed hopping t/U = 0.05 there is a very small

region at µ/U ≈ 0.85, where it is difficult to numerically determine the stationary

point of the grand potential. Such a region is also present between the first and

the second and between the second and the third Mott lobe in Fig. 4.1. However,

there it is barely visible since the spacing between two consecutive µ datapoints

is larger than this gap. This failure appears to be related to the fact that two

solutions adiabatically connected to two sectors with different particle numbers, i.

e. the two neighboring Mott regions, meet and try to avoid each other. However,

we want to emphasize that this affects only a tiny region of the phase diagram.

When keeping the chemical potential fixed at µ/U = 0.4 solutions can be easily

found for all values of the hopping strength.

Finally, we want to emphasize that the VCA results are obtained with very mod-
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est computational effort and that excellent agreement with QMC can be observed,

even for very small reference systems.

4.4 Conclusions

In the present work, we extend the self-energy functional approach to the U(1)

symmetry broken, superfluid phase of correlated lattice bosons. A crucial point of

this extension is the identification of a quantity, termed D, which is the compan-

ion of the self-energy Σ in the superfluid phase. We also identify the appropriate

(nonuniversal) functional Ω̂s which is stationary at the physical values of the self-

energy Σ and of D. In analogy to the self-energy, which is the difference of the

interacting and non-interacting Green’s function, the quantity D is related to the

difference of the order parameter of the interacting and non-interacting systems.

Thus, D is zero in the normal phase and for U = 0. From these relations also

follows that both Σ as well as D vanish in the non-interacting case. Importantly,

when the functional Ω̂s is evaluated at the exact values of Σ and D it corresponds

to the grand potential of the physical Hamiltonian. To evaluate the functional, we

proceed as in the original self-energy functional approach, [119] and introduce a

reference system, which is a cluster decomposition of the physical system. Impor-

tantly, the reference system shares its two-particle interaction with the physical

system, and can be exactly solved by numerical methods. By comparison of the

functionals, the universal part of Ω̂s, denoted as F̂ , can be eliminated, which al-

lows to evaluate Ω̂s exactly on the subspace of Σ and D, spanned by the possible

sets of reference systems. The results presented are shown to be equivalent to the

ones obtained by a more heuristic method, the pseudoparticle approach introduced

in Ref. [91], and thus provide rigorous variational grounds for that approach. In

addition, the extended self-energy functional approach introduced here allows to
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envision more general reference systems, in which bath sites are incorporated to

enlarge the space of possible self-energies Σ, and possibly bridge over to (Cluster)

Dynamical Mean Field Theory (DMFT). [93, 119] For future research it would be

interesting to verify whether in the limit of an infinite number of bath sites and for

a single correlated site as a reference system, our superfluid SFA becomes equiv-

alent to DMFT for superfluid bosons, [145, 146] as it is the case in the normal

phase. [119] For a finite number of bath sites this is certainly not the case, since

the order parameter in the reference system differs from the physical one.

We also presented how the superfluid density can be evaluated by means of this

extended variational cluster approach. To this end we applied a phase twisting field

to the system. We evaluated the superfluid density for the two-dimensional Bose-

Hubbard model and compared the extended variational cluster approach results

with unbiased quantum Monte Carlo results, yielding remarkable agreement. We

want to emphasize that the extended self-energy functional approach is not only

applicable to the Bose-Hubbard model but to a large class of lattice models, which

exhibit a condensed phase. This includes experimentally interesting systems such

as disordered bosons, multicomponent systems (Bose-Bose mixtures or Bose-Fermi

mixtures) and light matter systems. [45,147] In principle, the method cannot treat

long-range interactions, such as dipolar ones, exactly. [148,149] However, the long-

range part can be incorporated on a mean-field level. [150] Basically, the present

approach can be applied to systems with broken translational invariance as well,

and, for example, can consider the effect of a confining magnetic trap. However, in

this case one has to abandon the Fourier transform in the cluster vectors and work

in real space and thus work with larger matrices and a larger number of variational

parameters. A convenient, numerically less expensive alternative, is to adopt the

so-called local density approximation. [151]
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4.5 Appendix

4.5.1 Notation and conventions

Matrix notation

General: In order to simplify our notation we omit time arguments, whenever

this does not cause ambiguities. Therefore, two-point functions such as Green’s

functions, self-energies, etc. are interpreted as matrices in Nambu, orbital, and τ

space. One-point objects such as A (Ā) are interpreted as column (row) vectors

in the same space. Matrix-matrix and vector-matrix products are understood

throughout, whereby internal τ variables are considered to be integrated over.

In addition, the transposing operator “T” also acts on time variables. Traces

Tr contain an integral over τ and a trace tr over orbital indices, i.e., TrM ≡

tr
∫ β

0
dτM(τ, τ + 0+), where the 0+ leads to the well known convergence factor

eiωn0+ in Matsubara space.

(Functional) derivatives with respect to matrices are defined “transposed”:(
δX̂

δM

)
ij

(τ, τ ′) ≡ δX̂

δMji(τ ′, τ)
.

Finally, there are two types of products between row (in the form v̄) and column

(u) vectors, depending on the order: On the one hand the product v̄u produces a

scalar (all indices are summed/integrated over). On the other hand, inverting the

order, as in uv̄ gives a matrix, as indices are “external” and, thus, not summed

over.

Trace in τ and in Matsubara space: In τ space we have

TrM = β−1tr

∫ β

0

dτ M(τ, τ + 0+) .
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The transformation of M(τ, τ ′) to Matsubara space is defined as

M(τ, τ ′) ≡ β−1
∑
n,n′

M(ωn, ω
′
n)e−iωnτ+iω′nτ

′
.

The inverse transformation reads

M(ωn, ω
′
n) = β−1

∫
dτdτ ′M(τ, τ ′)eiωnτ−iω′nτ ′ .

Combining the equations above, the trace becomes

TrM = tr

∫ β

0

dτβ−2
∑
n,n′

M(ωn, ω
′
n)e−i(ωn−ω′n)τ+iω′n0+

= β−1
∑
n

trM(ωn, ωn)eiωn0+ .

Logarithm: There are some subtle points concerning logarithms of two-point

functions. Although these issues are immaterial for the final result, we prefer to

specify them in detail.

The logarithm of G considered as a matrix in the continuum variable τ is defined

up to an infinite constant which depends on the the discretization step δ (see

below). In addition, the trace of the logarithm carried out in Matsubara space

diverges as well (despite the convergence factor eiωn0+). The usual result presented

in the literature (see, for instance Ref. [152]) implicitly assumes that an infinite

constant has been subtracted. In order to avoid these undetermined infinite terms,

we subtract them explicitly at the outset with the help of the “infinite energy”

Green’s function

G∞(τ, τ ′) = β−1
∑
n

G∞(ωn)e−iωn(τ−τ ′)

G∞(ωn) = 1
1

iωn − E
,

where it is understood that the E → +∞ limit is taken at the end of the calcula-

tion. This choice guarantees, for example, that Tr lnG/G∞, where G is the Green’s
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function in normal (i.e. not Nambu) notation, vanishes in the limit µ → −∞,

where µ is the chemical potential.

The Fourier transform defined in App. 4.5.1 allows to define the logarithm of G

in τ space, apart from an infinite multiplicative constant, which originates from

the fact that the Fourier transformation is not and cannot be normalized in the

continuum limit. In particular,

[ln(−G)](τ, τ ′) = β−1
∑
n,n′

[ln(−G)](ωn, ω
′
n)e−iωnτ+iω′nτ

′

= β−1
∑
n

ln [−G(ωn)] e−iωn(τ−τ ′) ,

Symmetry of Green’s functions and other two-point functions

The action in Eq. (4.5) is invariant under the transformation G0 → (T GT
0 T ),

where the transposing operator “T” also acts on time variables and T is defined

in Eq. (4.8). This is due to the fact that

Ā(τ ′)G−1
0 (τ ′, τ)A(τ) = A(τ ′)TT G−1

0 (τ ′, τ)T Ā(τ)T

= Ā(τ)(T G−1
0 (τ ′, τ)TT )A(τ ′) .

Therefore, we choose G0 to obey the symmetry

G0 = (T GT
0 T ) . (4.34)

The same symmetry is obeyed by other two-point functions, such as the interacting

Green’s function G, the self-energy Σ, and their inverse.

In principle, this redundancy renders relations such as Eq. (4.15) non invertible.

In order to avoid this, we adopt the convention that functional inversions are car-

ried out within the subspace of two-point functions obeying the relation Eq. (4.34).

In addition, we adopt the following convention for functional derivatives of an ar-

89



4 Extended self-energy functional approach

bitrary functional Ξ̂ with respect to a two-point function X:

δΞ̂

δX
→ 1

2

(
δΞ̂

δX
+

δΞ̂

δT XTT

)
.

Continuum limit of the functional integral

In principle, the expression Eq. (4.10) should be understood such that adjoint fields

ā are evaluated at a later imaginary time τ + δ, whereby δ is the width of the dis-

cretization mesh of the interval (0, β). The continuum limit δ → 0 should be taken

after having carried out the functional integration, see, e.g. Ref. [153]. Taking this

limit at the outset amounts to neglecting the so-called “contribution from infin-

ity”. [154, 155] This can be achieved by effectively replacing the normal-ordered

Hamiltonian with a “symmetrically ordered” one, which is suitably symmetrized

among possible permutation of creation and annihilation operators. [156] In partic-

ular, for the noninteracting part, this amounts to replacing the operator expression

a†a by 1
2
(a†a+ aa†) = a†a+ 1

2
. Therefore, we should keep in mind that the grand-

potential Ω̃s corresponds to such a symmetrized Hamiltonian.
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[40] Grzybowski, A., Gwóźdź, E. & Bródka, A. Ewald summation of electrostatic

interactions in molecular dynamics of a three-dimensional system with peri-

odicity in two directions. Phys. Rev. B 61, 6706–6712 (2000).

[41] Kollath, C., Meyer, J. S. & Giamarchi, T. Dipolar bosons in a planar array

of One-Dimensional tubes. Phys. Rev. Lett. 100, 130403 (2008).

[42] Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C. W. & Zoller, P. Cold

bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998).

[43] Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W. & Bloch, I. Quantum
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transport in mn-doped semiconductor heterostructures. In Computational

Electronics (IWCE), 2010 14th International Workshop on, 1–4 (2010).

[56] Sokolowski-Tinten, K. et al. Femtosecond x-ray measurement of coherent

lattice vibrations near the lindemann stability limit. Nature 422, 287–289

(2003).

[57] Haug, H. & Jauho, A.-P. Quantum Kinetics in Transport and Optics of

Semiconductors (Springer, Heidelberg, 1998).

[58] Rammer, J. & Smith, H. Quantum field-theoretical methods in transport

theory of metals. Rev. Mod. Phys. 58, 323–359 (1986).

98



Bibliography

[59] Meir, Y. & Wingreen, N. S. Landauer formula for the current through an

interacting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992).

[60] Meir, Y., Wingreen, N. S. & Lee, P. A. Low-temperature transport through

a quantum dot: The anderson model out of equilibrium. Phys. Rev. Lett.

70, 2601–2604 (1993).

[61] Ryndyk, D. A., Gutierrez, R., Song, B. & Cuniberti, G. Green function

techniques in the treatment of quantum transport at the molecular scale.

In Castleman, A. W. et al. (eds.) Energy Transfer Dynamics in Biomaterial

Systems, vol. 93 of Springer Series in Chemical Physics, 213–335 (Springer

Berlin Heidelberg, 2009).

[62] Schoeller, H. A perturbative nonequilibrium renormalization group method

for dissipative quantum mechanics. Eur. Phys. J. Special Topics 168, 179–

266 (2009).

[63] Diehl, S. et al. Quantum states and phases in driven open quantum systems

with cold atoms. Nat. Phys. 4, 878 – 883 (2008).

[64] Kraus, B. et al. Preparation of entangled states by quantum markov pro-

cesses. Phys. Rev. A 78, 042307 (2008).

[65] Diehl, S., Tomadin, A., Micheli, A., Fazio, R. & Zoller, P. Dynamical phase

transitions and instabilities in open atomic many-body systems. Phys. Rev.

Lett. 105, 015702 (2010).

[66] Pichler, H., Daley, A. J. & Zoller, P. Nonequilibrium dynamics of bosonic

atoms in optical lattices: Decoherence of many-body states due to sponta-

neous emission. Phys. Rev. A 82, 063605 (2010).

99



Bibliography

[67] Tomadin, A., Diehl, S. & Zoller, P. Nonequilibrium phase diagram of a

driven and dissipative many-body system. Phys. Rev. A 83, 013611 (2011).

[68] Barmettler, P. & Kollath, C. Dynamical response of a bosonic quantum gas

to local one-body losses. arXiv:1012.0422 (2010).

[69] Dalla Torre, E. G., Demler, E., Giamarchi, T. & Altman, E. Quantum

critical states and phase transitions in the presence of non-equilibrium noise.

Nat. Phys. 6, 806–810 (2010).

[70] White, S. R. & Feiguin, A. E. Real-time evolution using the density matrix

renormalization group. Phys. Rev. Lett. 93, 076401 (2004).

[71] Daley, A. J., Kollath, C., Schollwöck, U. & Vidal, G. Time-dependent
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