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Kurzfassung 

Echsen verwenden für ihre Umorientierung in Luftmanövern, Torsos- und  

Schwanzkrümmungen. Obwohl solche Bewegungsabläufe auch in terrestrischen Manövern, 

wie dem Fluchverhalten gesehen werden kann, ist es möglich, dass der dabei entstehende 

Impulsmoment durch externe Impulse, wie Boden-Reaktionskräfte beeinflusst wird. 

Quantifizierungsmöglichkeiten des entstehenden Impulsmomenten-Austausches und 

externen Impulsen wurden bis jetzt nicht dokumentiert. Um das Verhalten von Echsen bei 

Drehung zu ergründen, wurden ein numerisches und ein analytisches Model entwickelt. 

Außerdem wurde ein Konzept eines dynamischen, terrestrischen, zwei-gliedriger Roboter mit 

aktivem Schwanz vorgeschlagen um das Gebiet der Lokomotionsbionik in der Robotik 

voranzutreiben.  

 

Um das Impulsmoment der Bewegung von Echsen zu berechnen wurden kinematische 

Daten und Approximationen für Körpereigenschaften, wie Masse, Massenmittelpunkt und 

Massenträgheitsmoment gebraucht. Die kinematischen Daten der Echsenmanöver wurden 

mittels Hochgeschwindigkeitsaufnahmen von durchgeführten Tierstudien, unter Verwendung 

von sieben Siedleragamen (Agama agama), extrahiert. Vor den Studien wurden 

morphologische Daten der Tiere aufgezeichnet und Markierungspunkte aufgetragen um eine 

Gliederung  in sechs Körpersegmente zu erhalten. Der Studien Aufbau bestand aus einem 

Positionierungsunterschlupf und einem Fluchtunterschlupf mit zueinander schauenden 

Ausgängen. Nachdem eine Fluch der Echse in den Positionierungsunterschlupf initiiert 

wurde um das Tier auszurichten, (gestreckter Torso und Schwanz, mit Frontalseite in 

gegenüberliegender Richtung zu dem Fluchtunterschlupf) wurde der Unterschlupf 

angehoben und ein frontaler Stimulus mit hoher Geschwindigkeit ausgeführt. Ähnlich wie im 

C-Start von Fischen zeigen typische Fluchtreaktionen von Echsen im ersten Schritt eine 

Körper- und Schwanzbiegung, mit gleichzeitiger Drehung um ihre Hinterbeine. Der zweite 

Schritt zeigt eine Beschleunigung in entgegengesetzter Richtung vom Stimulus. Der 

Fluchtunterschlupf hilft eine 180°-Drehung der Tiere im Fluchtverhalten zu initiieren.  

 

Nach der Objektverfolgung der Punktmarkierungen und der Extraktion der Daten, konnten 

die Approximationen für Masse, Massenmittelpunkt und Massenträgheitsmoment der 

Echsensegmente durchgeführt werden. Dabei wurden zwei verschiedene Systematiken zur 

Approximation für Körper- und Schwanzsegmente angewendet. Für die Körperapproximation 

wurde mittels Vermessungen von Echsen Kadavern, Skalierungsfaktoren ausfindig gemacht. 

Diese wurden über die morphologischen Daten, auf die lebenden Echsen übertragen. Die 

Approximationen des Schwanzes wurden mittels elliptischen Kegelstumpfes berechnet. 

 

Die beiden sechs-gliedrigen Modelle wurden verwendet um den Einfluss von 

Formänderungen und externen Impulsen auf die Drehung der Echse zu bestimmen. Dies 

wurde durch einen Vergleich der tatsächlichen Körperrotation der Echse mit einem starren 
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stab Model mit konstantem Trägheitsmoment, einem starren stab Model mit variierendem 

Trägheitsmoment der Echse und einem Null-Impulsmomenten Model durchgeführt. Die 

beiden starren stab Modelle zeigen Einfluss der externen Impulse an, das Null-

Impulsmomenten Model dagegen die Effekte der Formänderung. Im ersten Schritt des 

Bewegungsablaufes können 57.4% der Formänderung zugesprochen werden, wobei 70% 

davon auf die Bewegung des Schwanzes zurückzuführen ist. Der restliche Anteil wird durch 

die Körperkrümmung initiiert. Der zweite Schritt der Echse zeigt externe Impulse auf, welche 

der rückläufigen Bewegung des Echsenschwanzes entgegenwirkt, sodass die Echse nicht zu 

seiner ursprünglichen Position zurückdreht.  

 

Nach der Einschätzung der Bewegungsabläufe wurde ein zwei-gliedriger Rumpf eines 

dynamischen Roboters mit beweglichem Schwanz und minimaler Aktuatorenanzahl 

konstruiert. Dabei wurde eine neue Fabrikationsmethode namens Smart Composite 

Microstructures (SCM) verwendet. Zusätzlich wurde ein Konzept erstellt die 

Bewegungsphasen der Echse, durch passive Ansteuerung der Roboterbeine und 

Körperkrümmung, umzusetzen. Es wird erwartet, dass die Synchronisierung von Körper- und 

Schwanzkrümmung mit der Beinbewegung sowohl die Winkelgeschwindigkeit der Drehung 

erhöhen wird als auch die Regelbarkeit für terrestrische Manöver von mehrbeinigen 

Robotern stark verbessert wird. 

 

 

Schlagwörter: Trägheitsfortsatz, Echse, Fluchtverhalten, Roboter, Impulsmomenten-

Austausch 
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Abstract 

 

Lizards reorient in aerial maneuvers by torso bending and swinging of the tail. Although 

similar behavior in terrestrial maneuvers such as escape responses is seen, external 

impulses such as ground reaction forces may change the angular momentum. Methods of 

quantifying angular momentum exchange and external impulses have not yet been 

attempted. To investigate turning behavior in lizard locomotion a numeric and an analytic six-

link model were developed and a dynamic terrestrial two-link robot with attached active tail 

proposed to advance the field of locomotion bionics for mobile robotics. 

 

To calculate the angular momentum of lizard motion, kinematic data and approximations for 

body properties such as mass, center of mass (COM) and moment of inertia (MOI) were 

needed. The kinematic data of the lizard behavior was extracted using high-speed video 

footing of conducted animal trials with seven Red-headed Agamas (Agama Agama). Before 

the lizards were run, morphometric data measurements were recorded and tracking markers 

applied, subdividing the lizard in 6 segments. The trial setup consisted of a positioning and 

an escape shelter with exits pointing toward each other. After the lizards were chased into 

the positioning shelter to align them in the desired orientation (stretched body and tail, lizard 

pointed in the opposite direction of the escape shelter) the shelter was lifted and stimulus 

presented in rapid and frontal fashion. Typical escape responses in lizards show a curling of 

tail and body, pivoting about their hind legs in the first stride and acceleration away from the 

stimulus in the second stride, comparable to C-starts in fish. The escape shelter helped to 

initiate an escape response of 180° towards its opening. 

 

Following the tracking and extraction of 43 animal trials, approximations for mass, COM and 

MOI of the lizard segments, defined by the marker position could be conducted. the 

approximations could be divided into two different methods according to body parts and tail 

parts. The body approximation was accomplished by measuring lizard carcasses and 

extracting scaling factors to apply on morphometric data of the living lizards. The tail 

approximations were conducted using truncated elliptical cones (TEC). 

 

The two six-link models were used to extract two components of the lizard turn, revealing the 

extent to which shape change and impulsive force each contribute towards turning the lizard. 

To this end the extracted body turn angle of the lizard was compared with a “rigid stick” 

model with constant MOI, a “varying inertia stick” model with changing MOI according to the 

lizard trials and a zero angular momentum model. The rigid stick models revealed the 

influence of external impulses and the zero angular momentum model the effects of the 

shape change of the lizard. The first stride revealed 57.4% influence on the lizard turn by 

shape change of the lizard. Of which 70% was due to the tail of the lizard and the remaining 

fraction due to the body bending. The second stride of the lizard showed external impulses to 
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counteract the uncurling of the tail and body, preventing the lizards to rotate back to their 

initial position.  

 

After the assessment we began construction of a two-segmented torso for an minimally-

actuated dynamical legged robot with attached tail. By combining a novel manufacturing 

process named Smart Composite Microstructures (SCM) and by a proposed passive leg 

motion and body bending, the phases of the lizard motion sequence could be implemented. 

We contend that the synchronization of body bending, tail curling and leg impulse forces will 

enhance the rate of rotation of turning in the horizontal plane and increase the controllability 

of terrestrial maneuvers in legged robots. 

 

Keywords: Inertia appendage, lizard, escape response, robot, angular momentum 

exchange 
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1 Introduction 

This master thesis was conducted in partial fulfillment of the requirements for the degree of 

Master of Science in Engineering from the University of Applied Science Technikum-Wien. The 

research was conducted at the University of California at Berkeley, United States of America, at 

the Poly-PEDAL (Performance, Energetics, and Dynamics of Animal Locomotion) Laboratory 

and CiBER (Center for Integrative Biomechanics in Education and Research) of the Department 

of Integrative Biology. 

 

In the last 20 years the field of mobile robotics has experienced rapid development. Research in 

this field has moved importantly and significantly towards studying dynamic behavior in robots. 

Earlier in robotic development, it was sufficient to be able to control robots accurately. Now 

mobile robotic research projects stress maneuverability and stability, while upholding velocity. 

One way of advancing knowledge for locomotion behavior in robots is through looking at nature 

for inspiration. The defining aspect of nature is the evolution process through which a natural 

optimization can be achieved. This optimization leads to highly evolved and complex systems 

that can be used as models for technical applications by the field of mobile robotics. A 

representative example for such a system is the escape response of lizards. Lizards are 

hematocryal and as such dependent on long basking which exposes them to predators. To avoid 

falling prey to these predators, lizards are dependent on well-developed escape responses. The 

motion of lizards when escaping is influenced by external impulses such as ground reaction 

forces and muscular contractions and also by body and tail bending, which changes 

characteristics such as inertia and angular moment. Due to the extreme conditions in which 

these maneuvers have evolved, it is likely to have optimized mechanisms for the turn towards 

agility and quickness. 

 

The field of robotics is grappling with important research issues of mobility, balance and body 

bending, which are taken for granted in the natural world. Can robot maneuverability be 

improved by learning from a lizard’s agility, quickness and speed? In the conducted research it is 

found that learning from lizard motion can further maneuverability in robot dynamic motion in 

combination with inertial appendage and body bending by integrating certain motion sequences. 

 

1.1 Motivation 

The motivation for this master thesis is to map the motion sequence of lizards and understand 

why lizards move in particular ways in certain circumstances. Lizards move and turn in a very 

specific way and are able to maintain stability while upholding agility and velocity. Furthermore 

the fact is known that lizards use their tails to exchange angular momentum in aerial maneuvers 

(Libby et al., 2012; Jusufi, Kawano, Libby and Full, 2010). The motivation for this master thesis is 

to find out if lizards apply the same principle for terrestrial maneuvering, if tail and body bending 

is thereby the crucial factor and if there is a relation between body resp. tail movement and body 
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angle. Furthermore the research outcome and findings can have far reaching implications if 

applied to the field of mobile robotics. If an advantageous effect can be found, the stability, agility 

and maneuverability of robots or other vehicles can be drastically increased. Especially in 

extreme environments, environments with limited space or environments where obstacle 

avoidance is of essence these principles would be of advantage. 

 

1.2 Aims and Contribution 

Although research of aerial maneuverability concerning the tail movement has been conducted 

(Jusufi et al., 2010), the question of body and tail influence for terrestrial motion in particular 

escape responses is a novel one. The lateral swinging behavior of lizards is a known principle of 

lizard locomotion but until now it was not attempted to quantify its effectiveness for lateral 

motion.  Furthermore a method of separating forces due to ground reaction and forces due to the 

executed shape change of the lizard while turning has not yet been developed. Also the 

correlation between these forces and the turning motion of the lizard will be assessed for the first 

time.  

 

These new results will not only give further insight to the general locomotion of lizards but will 

greatly influence how we perceive the acting forces of a lizard turn. Further, the question of the 

tail influence for tuning in the transversal plane will affect the way of thinking about inertial 

appendages for technical applications. Combined with the findings of the influence of tails in the 

sagittal plane technical applications could be attempted which could control perturbation in any 

plane using angular momentum exchange. The results of the research may be used for search-

and-rescue robots but use for any aerial or terrestrial vehicles cannot be imposed. 

 

1.3 Synopsis 

The master thesis first outlines the background necessary to understand the thesis. These 

include a description of biomimetics, motion analysis the plum line and pendulum method and 

the methods used for approximation.  

 

The main part of the thesis can be divided into two categories: the biological studies and the 

technical implementation. The biological studies will describe basic knowledge about the animals 

and their habitat. Then the data acquisition will be described which was divided into the used 

equipment and arrangement of the trail setup as well as the trial procedure and the behavior of 

the animal during the trial. At the end of this section the acquisition of the morphological data will 

be described. The chapter of technical implementations will start with a description of the data 

tracking using ProAnalyst® (Xcitex, Inc.). Then the data approximation and the validation of the 

resulting values will be discussed, followed by a numeric and an analytic model which were used 

to calculate characteristics of the lizard turn. After the description of the models the robot design 

and construction process is presented.   
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The section is followed by the results and the conclusion of the thesis for both, biological and 

technical aspects. 

 

1.4 Hypothesis 

The hypotheses for this master thesis are shown below and describe the central questions to this 

project. The null hypothesis (H0) describes the opposing statement and is designed to be 

contradicted during the project. The following hypotheses (H1-H3) are related questions to be 

answered and will be discussed in the conclusion of the thesis  

 

H0: The shape change of the lizard during the turning motion doesn’t influence the turn. 

 

H1: The shape change of the lizard during the turning motion increases the final body angle.  

 

H2: The first stride and the aerial phase are influenced mainly by shape changes.  

 

H3: The second stride and areal phase are dominated by external impulses 
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2 State of the Art 

Due to its importance to surviving, predatory responses in animals are extremely refined and are 

vital for the understanding of locomotion behavior. Another reason escape responses are of 

importance in research is the fact that escape responses show clearly the limitations of a system 

due to the extreme conditions under which these systems evolved. 

 

Not only are fast-starts in fish considered to be model system for escape responses but may 

indicate also that escape responses were developed early in evolution due to similar motion 

sequences found in escape responses in lizards. As shown in Domenici and Blake (1997) fish 

fast-start responses consist of three different phases: the preparatory stroke (ipsilateral 

electromyographic activity), the propulsive stroke (contralateral electromyographic activity) and 

continuous swimming resp. coasting. In both fish and lizards the escape response is optimized 

for high predator-prey distance (Domenici and Blake, 1997; Cooper, Pérez-Mellado and 

Hawlena, 2007). Although the turning angles of fish vary between 0° and 180° to each side, in 

most fast-start cases a bimodal pattern of 180° and 130° for the escape angle can be 

distinguished (Domenici and Blake, 1997) which can also be seen in escape responses of lizards 

(Cooper, Pérez-Mellado and Hawlena, 2007). As described in Hall, Wardle and MacLennan 

(1986) these maxima in flight angles are due a compromise between maximal predator-prey 

distance and keeping the predator in view. The performance of escape responses is furthermore 

influenced by the motivation of the animal, referring to choosing an escape trajectory and the 

angle of prey in comparison to the angle of the predator which often lead to sub-maximal turning 

performance (Domenici and Blake, 1997; Domenici, 2002). The escape trajectory is influenced 

by the direction of refuge (Cooper, 1998) as well as the number and direction of the stimuli 

(Cooper, Pérez-Mellado and Hawlena, 2007).  

 

Another influencing factor for escape responses and general locomotion of lizards is the use of 

the tail. Tail loss will decrease in-air stability (Gillis, Bonvini and Irschick, 2009) and will reduce 

escape speeds and distance (Martin and Avery, 1998). However Brown, Taylor and Gist (1995) 

show that lizards previously subjected to caudal autotomy can learn how to compensate for the 

absence of a tail. Tails are also used for aerial righting maneuvers of geckos (Jusufi, Zeng, Full 

and Dudley, 2011) as well as active pitch control in lizards (Libby et al., 2012).  

According to Jusufi, Goldman, Revzen and Full (2008) an absence of ground forces in air 

righting behaviors lead to a total angular momentum of zero and follows the equation: 

 

  (
   
  
)    (

   
  
)    (1) 

 

Where    and    are the moment of inertias of lizard body and tail and     and     the angle 

change of body and tail of the lizard at a given time frame   . It enables the Lizard to rotate its 
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body from a supine (upside down) position to a prone (right-side up) position seen in Figure 1b 

by rotating its tail in a circular motion perpendicular to the longitudinal axis of the lizard body. The 

lizard reaches the prone position approximately 106 ± 6 ms after dislodging in less than two of its 

body lengths (Jusufi et al., 2008). Furthermore Jusufi shows that an increase in tail length- body 

length ration increases the degrees of body yaw (Jusufi et al., 2010) which leads to the 

possibility of decreasing the tail inclination relative to the body or a decrease of the tail side 

sweep angle (see Figure 1a). The exchange of angular momentum of tail and body was later 

successfully implemented in RiSE, Robot in Scansorial Environment (Autumn et al. 2005) and 

Stickybot (Kim et al., 2007). 

 

Jusufi et al. (2010) also claim that, contradictory to Mather and Yim (2009), tail-type inertia for 

righting of mobile robotics is advantageous due to its easy implementation of control algorithms, 

the reduced weight as well as the relative unimportance of the final position of the tail for the 

whole system 

 

As described in  Libby et al. (2012) lizards use exchange of angular momentum not only when 

dislodged from a foothold but also when transitioning between surfaces. This is especially 

important when lizards miss footholds, slip or face unanticipated aerial phases and therefore 

have no chance of generating planned ground reaction forces to control their body rotation. In 

these cases the tail is used through exchange of angular momentum (zero net angular 

momentum control) to reduce the body angular velocity enabling a stable landing behavior (Libby 

et al., 2012). The author describes a trial setup of a box-like vault with a vertical wall in lizard 

jumping distance. By reducing the friction of the surface of the vault a perturbation in the lizard’s 

movement is induced. The perturbation is defined as angular momentum (H) and is normalized 

by body moment of inertia (IB) about its center of mass (COM) and by the duration of the leap (t) 

to compare the perturbation magnitude between individuals. The tail effectiveness, as seen in 

Figure 1c, gives the amount of tailless body rotation a tail could stabilize per degree of tail 

rotation over the normalized perturbation (   ⁄ ) . The diagram shows the reciprocal of 

effectiveness, meaning sallower slopes stand for a more efficient tail. Libby et al. (2012) show 

that the bio-inspired robot (Chang-siu et al., 2011) was twice as effective as the lizards due to 

the mass distribution to the end of the tail. Chang-siu et al. (2011) demonstrate that a dynamic 

robot with inertial appendage could enable rapid reorientation, improve fall survivability, and 

increase mobility and stability over difficult terrain. The author states that a reorientation of 90° is 

possible in one body length of vertical fall.  
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Figure 1: Zero net angular momentum control a)Tail length to body length ratio and inclination on induced 

body roll(φ) at tail inclination angle of 0°,15°, 30°, 45° and 60°. The shaded area depicts the area in which 

a complete turn from supine to prone position is possible. The red cross depicts studies of the house 

gecko where the vertical line indicates the final position and the horizontal line the tail length to body 

length ratio of the measured house geckos.(Jusufi et al., 2010) b) Righting performance of average house 

gecko of analytical model from supine to prone position where the body angle (blue points) and the tail 

angle (red triangles) are depicted over time (Jusufi et al., 2010) c) Tail effectiveness of Lizards, 

Velociraptor model and robot where the required tail rotation (Φ) is see over normalized perturbation. 

Averages are depicted as dashed lines. (Libby et al., 2012) 

Recent research (Pullin, Kohut, Zarrouk and Fearing, 2010; Kohut, Haldane, Zarrouk and 

Fearing, 2012) show OctoRoACH and TAYLRoACH (Tail Actuated Yaw Locomotion RoACH) 

with integrated inertial appendage. Both robots are further developed versions of the Robotic, 

Autonomous, Crawling Hexapod, RoACH (Hoover, Steltz and Fearing, 2008). TAYLRAoCH is a 

45 gram robot, with six flexible legs where each side of the robot is separately actuated. The 

separately actuated tail consists of a carbon fiber rod and a weight attached to its end. The total 

weight of the tail is 4 grams and represents a moment of inertia of 5.3x10-5 kgm2 about its base 

(Kohut et al., 2012).  

 

 

Figure 2: TAYLRoACH with integrated tail excluding 

electronics and battery for better overview (Kohut et al., 

2012) 

a) 

b) c) 
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TAYLRoACH consists of two body components that stabilize the structure of the robot. These 

features are glued together, one from the bottom and one from the top. All other components are 

built onto this structure, enabling movement relative to this body part. The robot consists 

furthermore of two parts that are placed onto the front and the back of the robot to synchronize 

the pitch of the leg movement relative to the longitudinal axis of the robot. These parts are 

defined as synchronizers-front and -back. The front and back synchronizers are connected at 

their outer edge with the movable foot mounting and a stabilizing shaft at the center of the left 

and right section of the synchronizers. To achieve an asynchronous movement, meaning that at 

the time one set of feet are on the ground when the other set of feet are up, the leg mountings 

consist of three parts. The two leg mounting at the top and the bottom of the construction are 

non-movable mountings connected to the body structure. The middle part of the mounting, 

connected to the front and back stabilizer induces the movement of the legs. Every second leg at 

each side is connected to the top mounting on its top side and to the movable mounting on its 

bottom side. Every other leg is connected to the moving mounting on its top side and to the solid 

bottom mounting with their bottom sides.  

 

 

Figure 3: Design features TAYLRoACH a) Feet mounting, b) synchronizers and c) body parts 

By rotating the middle section in the vertical pane, parallel to the longitudinal axis of the robot the 

middle mounting connected to either the top or the bottom of the legs induces movement in the 

legs. The leg that is about to touch the surface will make a straight movement back, parallel to 

the longitudinal axis, then roll to the side at an angle of approx. 45 degree and move forward 

without surface contact. In the TAYLRoACH, with six legs, the front and back leg of one side and 

the middle leg of the opposing side are doing the same movement. The phase of the remaining 

three legs is shifted by 90° resulting in the asynchronous motion with saddle-like feet trajectory 

(Figure 4b). Although the actuation of the middle foot mounting is 2-dimensional, achieved 

trajectory is 3-dimensional due to constraints and flexures on the feet mountings. 

 

a) b) c) 
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Figure 4: Feet trajectory a) Side view of feet trajectory showing upper, middle and lower feet mounting 

(Hoover and Fearing, 2008) b) 3D foot trajectories of robot where green and blue trajectories move in 

phase (Hoover et al., 2010) 

N. J. Kohut et al. (2012) demonstrate that TAYLRoACH is capable of producing net turns of 90° 

at 300°sec-1. The author furthermore points out that, due to missing sensory feedback and 

controlling abilities, limited to three separate actuators without phase looking, a high variation of 

performance was seen. Figure 5 shows an induced turn at a defined time of zero after a steady 

walk. Although it can be seen that the angular velocity is constant the final yaw position of the 

robot varies from approx. 150° to -50°. Kohut et al. (2012) state that varying factors for the turn 

might be friction and constraint forces as well as dynamics and mechanical constrains of the tail 

as well as impact forces at the end of the swing. 

 

 

Figure 5: Body jaw versus time. Trails (n=14) normalized so that 

actuation of tail occurs at time and yaw rate of zero. (Kohut et al., 2012) 

TAYLRoACH shows advantages in comparison to similar robots (Birkmeyer, Peterson and 

Fearing, 2009; Pullin et al., 2010; Kohut et al., 2011) due to both, a rigid structure and 

independently actuated feet rows. The rigid structure is important to withstand forces, generated 

when inertial appendages are actuated. The independently actuated feet rows give the 

advantage that it is possible to choose the foot constellation when the turn is induced. 

 

Recent research (Chang-siu et al., 2011; Kohut et al., 2012; Lewis, Bunting, Salemi and 

Hoffmann, 2011) state that dynamic behavior in robots is feasible and although highly complex 

a) b) 



 

16 

mechanisms have to be taken into account it increases maneuverability, stability and velocity. 

Further work showing dynamic ultra-high speed locomotion (Boston Dynamics Inc., 2012) 

implies that dynamic body bending for mobile robots in sagittal plane is implementable and 

successful for high speed control of velocities up to 45 km/h. 

 

The state of the art shows the recent research necessary for the thesis and suggests that an 

implementation of dynamic tail and body bending behavior inspired by animals may increase 

maneuverability of mobile robots.  
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3 Background 

After describing current research, this chapter demonstrates fundamental knowledge and basic 

principles important for the thesis. These include specifically biomimetics, motion analysis, vital 

information about calculation methods of the thesis and Smart Composite Microstructure (SCM), 

a novel fabrication process for robotic solutions.  

 

3.1 Biomimetics 

As a combination of engineering and biology this master thesis is part of the currently fast 

growing research area of biomimetics. Although the terms biomimetics, bionics, biomimicry and 

biomimesis have difference in historical origin, they are all derived from the Greek word bios, 

meaning life and mimesis meaning to imitate. Bionics, the first term to be added in the Merriam-

Webster Dictionary (1960) is defined as: 

 

“a science concerned with the application of data about the functioning of biological systems to 

the solution of engineering problems” 

 

Even though biomimetics experienced a rapid development in the last 40-50 years, it has been 

used for centuries.  

 

3.1.1 History 

Due to extensive documentation Leonardo da Vinci (1452-1519) is seen as the first person who 

used bionics while studying the possibility of human flight (da Vinci, 1505). In the history of 

aviation many (Lilienthal, 1889; Tobin, 2004; Lüneberg, 2003) looked for inspiration in nature. 

Furthermore bionics was used in naval architecture (Baker, 1590 cited in Nachtigall, 2002, 

p.105), for agricultural purposes (Kelly, 1868) or for fasteners (de Mestral, 1955).  

 

Since then biomimetics was a valuable research area and found even more popularity at the 

invention of the electron microscope. In the area of material science the self-cleaning Lotus-

Effect® (Barthlott and Ehler, 1977) as well as drag reduction mechanisms using sharks skin 

(Bechert, Bartenwerfer, Hoppe and Reif, 1986) are known examples of biomimicry. The 

reduction of drag using shark skin is accomplished by micrometer-sized scales with riblets in 

stream wise direction and is used for high-performance swimsuits. The Lotus-Effect® is used for 

wall paint, roofing shingles and rim polishing agents and takes advantage of hydrophobic 

nanometer-sized wax structures which reduce the friction of the surface allowing the water to 

collect dirt while pearling of. Another bio-inspired material is the dry adhesive derived from the 

surface found on gecko feet. They consist of setae on uniform arrays of lamellar pads at a 

density of 14,400 per mm². The tip of each setae branches into 200 nanometer thick hair 

(Spatulae) which generate Van-der-Waals forces, to the substrate (Autumn et al., 2000). Dry 
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adhesives are self-cleaning (Hansen and Autumn, 2005), reusable and don’t use chemicals for 

their adhesive property. 

 

 

Figure 6: Scanning electron microscope (SEM) images of the a) wax structures of the lotus surface 

(Stratakis, Zorba and Barberoglou, 2009) b) scales an riblets of the shark skin (Lindsay, 2011) and c) the 

branching end of gecko setae (Autumn, Florance and Full, 2000) 

Design optimization such as the CAO (Computer Aided Optimization) and SKO (Soft Kill Option) 

method by Claus Mattheck (1998) used by Adam Opel GmbH (Harzheim, 2008), Daimler AG 

(Daimler AG, 2008) as well as the Fin Ray Effect® (Bannasch and Kniese, 2011) used by Festo 

AG & Co. KG are examples for construction bionics. Biomimicry is used for passively self-

regulating temperature control in buildings (Turner and Soar, 2008) and is used for a wide variety 

of sensors such as sonar (Rasmussen and Miller, 2004; Whiteley et al., 2010), electrical sensors 

(Schwarz, Hofmann and Von Der Emde, 2002) and fire detectors(Schmitz and Schuetz, 2000; 

Bleckmann, Mürtz and Schmitz, 1997). 

 

 

Figure 7: a) CAO Mercedes-Benz Bionic-Car (Mercedes-Benz Classic, 2008) b) Fin Ray Effect
®
 

(Wegener, 2007) c) Passive cooling Eastgate Center (Arquitetogeek, 2009) 

The previous examples show that biomimetics has been in use for a long time and continues to 

gain importance for design and innovation processes. Even through these limited examples it 

can already be seen how diverse bio-inspired applications can be.  

 

a) b) c) 

a) b) c) 



 

19 

3.1.2 Overview of Subfields 

Although nature was used as inspiration for centuries, biomimetics was established as an 

independent research area as recently as the 1950’s. Since then an effort to define needed 

subcategories was made. A common way of classification by Werner Nachtigall is “structural-“, 

“procedural-“ and “informational” bionics (Nachtigall, 2002) and can be further differentiated into 

the following categories: 

 

Category Description 

Structures bionics (Material 

bionics): 

Biological structural elements, materials and surfaces 

Device bionics: Development of usable overall constructions 

Structural bionics: Biological constructions, closely related to above structural and 

device bionics 

Anthropobionics (bionic 

robotics, bionic prosthetics):  

Issues of human / machine interaction, ergonomics 

Construction bionics:  Light constructions occurring in nature, cable constructions, 

membranes and shells, transformable constructions, leaf 

overlays, use of surfaces, etc. 

Climate bionics:  Passive ventilation concepts, cooling and heating 

Sensory bionics:  Detection and processing of physical and chemical stimulation, 

location and orientation within an environment 

Locomotion bionics:  Walking, swimming and flying as primary forms of movement. 

Interaction with the surrounding medium 

Neurobionics:  Data analysis and information processing 

Evolutionary bionics:  Evolution techniques and evolution strategies, made useful for 

technology 

Process bionics:  Photosynthesis, hydrogen technology, recycling 

Organizational bionics:  Complex relationships of biological systems 

Table 1: Subcategories of biomimetics (Gruber, 2011) 

As a study of locomotion behavior of animals and its implementation in mobile robotics this 

master thesis falls into the category locomotion bionics. 
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3.2 Motion Analysis 

A fundamental part of bionic research in locomotion behavior is the motion analysis. It can be 

divided in two categories: recording data and extracting data. For the recording aspect the 

biological trials the camera settings and software HiSpec Control Software (Fastec Imaging 

Corp.) and will be described. The data extraction is accomplished via the tracking software 

ProAnalyst (Xcitex, Inc.). 

 

3.2.1 Data Recording 

The camera model HiSpec 1 (specifications found in the appendix) from Fastec Imaging Corp. 

combined with a 25mm lens (Navistar, Inc.) was used to record the trials. The camera has an 

analog focus and aperture, a power cable with integrated trigger and is connected via Ethernet 

cable to a computer running the HiSpec Control Software. The Software GUI is separated into 

four sections as seen in Figure 8: the settings panel (1), the adjusted camera parameters panel 

(2), the video screen (3) and the recording controls (4).  

 

 

Figure 8: HiSpec Control Software GUI with setting panel (1), parameters panel (2), video screen (3) 

and recording controls (4) 

The settings panel (1) can be divided into the camera connection field, which shows the 

connected cameras and the camera settings, which are used to define camera specific 

preferences. The camera settings include camera input and output preferences, where 

synchronization and triggers can be set as well as advanced camera setting. The settings panel 

also includes the record settings to define how the images are saved on the physical memory 

1 4 

3 

2 
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and which images are used in relation to the trigger. The program settings are manly video 

display and playback preferences as well as preferences of information displayed in the video 

description seen in the white line at the bottom of the video. Table 2 shows the important 

preferences for the project including their description: 

 

Preference Description 

Frame Rate Frequency at which consecutive images are produced (0-506) 

Shutter-speed Length of exposure time (2-1970 resp. 2-99994 in “low light” mode) 

Frame dimensions Dimensions of image (max. 1280x1024 changeable  in “Adjust ROI”)  

Blacklevel Brightness of darkest part of image 

Digital gain Gain of video signal 

Record Mode Defines continuous recording where the oldest frame is overwritten by the newest 

frame, Record-On-Command (ROC)  at the time of a user provided signal or Slip 

Sync. which operates with a frame rate defined by an external input signal (e.g. 

synchronized to tachometer)  

Record Size Defines the number of frames of the recording loop when record mode is set to 

continuous recording (max. 1636 frames) 

Table 2: HiSpec Control Software: Main preferences 

The adjusted camera parameter panel (2) in Figure 8 displays the current parameter and helps 

keep an over-view of different cameras and different camera profiles used. The video panel (3) 

shows the video in live mode, recording mode or video mode. A panel at the top of the video 

screen allows simple video interaction, such as zooming, rotating, flipping, changing gamma 

settings, adding comments to the info line, showing the histogram and many others. The 

recording controls (4) are used to switch display modes and interact with the recorded video 

such as cropping and saving.  

 

When recording a trigger or other predefined input signal is used to stop the camera from 

recording. The video raw data is then sent from the physical memory of the camera to the 

HiSpec Control Software where the video can be reviewed, cropped and saved. If more than one 

interesting feature per video is recorded either two separate videos can be saved after being 

cropped or both cropped segments saved as one video file. The software provides an automatic 

labeling feature which includes date and time stamp in the video name.  

 

3.2.2 Data Extraction 

After the data acquisition is completed the data has to be extracted. To this end the tracking 

software ProAnalyst® by the company Xcitex, Inc., program specifically for tracking and video 

analysis in 2D or 3D space, is used. The GUI, as seen in Figure 9, consist of the toolbar panel 

(1) (Main Toolbar, Sync Play Toolbar, Annotations Draw Toolbar, Annotations Visibility Toolbar, 

Play All Toolbar), the video panel (2), the controls panel (3) and the play controls panel (4). The  
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Toolbars contain general functions to open, save, and print as well as functions to view or hide 

additional control and processing features such as graphs, calculations, histograms, timelines 

and various zoom options. The video panel shows the currently processed video. Additional 

features like rulers and showing the reticle can be applied. The controls panel features tabs for 

Image Processing, Image Filtering, Multi-Plane Calibration, Display Layers, Notes, Annotations, 

Line Tracking, Feature Tracking, Stabilization, Contour Tracking, Graph Configuration and gives 

the option to Save All Associated Toolkits.  

 

 

Figure 9: ProAnalyst GUI 1) Toolbar panel 2) Video panel 3) 

Controls panel 4) Play control panel 

Before a video can be analyzed and saved correctly, a 2D resp. 3D calibration is necessary 

(Figure 10 - Multi-Plane Calibration). Next video manipulations can be realized by configuring the 

brightness, contrast, gamma correction as well as nonlinear input/output mapping. In Figure 10 

the settings widow for Image Processing can be seen with the used image preferences for a 

specific trail. The Image Filtering Tab allows the user to apply many different filtering masks. The 

filtering features are categorized into Arithmetic, Common, Convolve, Histogram, LUT (lookup 

table), Morphology, Neighborhood and Lens filtering operations.  

 

The general concept of the tracking software is the search for the previously defined image 

areas in every frame. The settings panel for feature tracking, seen in Figure 10 consists of basic 

controls as well as the currently defined parts of the lizard that should be tracked. The 

1 

2 

4 

3 
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preferences for these points can be seen in Table 3. Depending on the tracking mode “Manual”, 

“Automatic” or “Delete”, further control options are enabled seen in Figure 10. The lower section 

of the panel enables export of acquired data.  

 

 

Figure 10: Setting panels for the Control Tabs of ProAnalyst
®
: Imaging Filtering, Image Processing, Multi-

Plane Calibration and Feature Tracking for Manual and Automatic mode 

To decrease tracking time while guaranteeing retrieval of defined tracking areas, following 

preferences can be set: 

 

Preferences Description 

Search Region Multiplier (%) Defines the region in which the data point should be searched for. 

Value is defined in percent where 100% is the same size as the 

defined tracking point. 

Threshold Tolerance (0.0-1.0) Defines the similarity between found region and predefined tracking 

point. At a value of 1 the program searches for identical regions. 

Special Target Types Defines if the tracking point is of constant shape. (e.g. white circular 

point on black background, 4-cell black and white chessboard pattern) 

Feature 

Rotation 

Angular Range (deg) In case of a rotating region, this field defines the angle range the 

program will rotate the predefined tracking point to search for similar 

regions 

Step Size (deg) Defines the step size of the rotation of the predefined tracking points to 

find similar regions. 

Table 3: Feature tracking preferences 



 

24 

After defining all regions that should be tracked and their feature preferences the video data can 

be tracked. Depending on the tracking mode a manual or automated search for the following 

regions has to be conducted. If the automated tracking doesn’t find similar regions or diverges 

from the tracking point, the original tracking point has to be redefined. If tracking points are 

temporarily covered or leave the image range an interpolation can be applied using the manual 

tracking setting. After completing the feature tracking the tracked data can be exported. 

 

3.3 Inertia Measurement 

When calculating dynamic properties of a given system, not only the data extracted from video 

recording is necessary but also physical attributes such as mass, center of mass (COM) and 

moment of inertia (MOI). The master thesis used measurements from cadavers to approximate 

these attribute for living animals. 

 

The center of mass (COM) was measured using the plumb line method (Blackmail, 1925). This 

method, as seen in Figure 11 uses a plumb-line, a string with an attached weight, to generate a 

perfectly vertical line. By pinning the string to a location (P) on the segment the string shows a 

line that must pass the COM. The object is pinned in this way to two different locations, P1 

shown as a blue dotted line and P2, depicted as black line. The intersection point of the resulting 

lines is the center of mass (red).  

 

 

Figure 11: Diagram of the plumb line method 

 

After the COM is obtained the measurement of the moment of inertia can be conducted. This 

measurement was realized using the pendulum method (Dowling, Durkin and Andrews, 2006) 

seen in Figure 12. The author shows that the precision of moment of inertia measurements is 

mainly influenced by the distance D between the axis of rotation and the center of mass. Dowling 

et al. (2006) state, that an iterative convergence of D toward the radius of gyration increases the 

kg 

P1 

P2 

COM 
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precision of the MOI. The author describes how an object of any shape, of mass m, length l and 

radius r, can be hung at an axis with distance D to the center of mass and oscillated to calculate 

the moment of inertia. The initial value D is approximated and lies roughly at half distance 

between center of mass and either end of the object. By calculating the MOI and the associated 

ROG, a new distance D of the value of ROG can be achieved by repositioning the axis of 

rotation.  

 

 

Figure 12: Pendulum method for measuring the moment of inertia 

According to Dowling et al. (2006) the calculation of the inertia follows Formula (2) where ICM 

represents the moment of inertia about the center of mass (kg*m^2), t the period of the 

oscillation in seconds, m equals the mass of the segment (kg), g represents the gravity (9.81 

m*s^-2) and the distance D from the axis of rotation to the center of mass in meters. 

 

     
     

   
     (2) 

 

Following the radius of gyration is calculated by: 

 

    √
   

 
       (3) 

 

 

3.4 Truncated Elliptical Cone 

Measurements on cadavers are not the only way to approximate attributes such as center of 

mass and moment of inertia. Another method of approximation is the calculation of known 

geometries similar to the approximated objects. 
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An often used approximation of the human body is the truncated elliptical cone (Kwon, 1998). A 

truncated elliptical cone is described by two elliptical spheres with differing major and minor 

axes, which shape the base and top of a converging solid. Figure 13 shows the top major and 

minor axis as b1 and a1 and the base major and minor axis as b0 and a0. The height is depicted 

as L. Due to the similar shape of the lizard tail segments the truncated elliptical cone can be 

used as an approximation. 

 

 

Figure 13: Truncated elliptical cone 

(Kwon, 1998) 

According to Kwon (1998) the mass, COM-distance and MOI of the truncated elliptical cone can 

be derived by:  

 

         (   ) (4) 

   
   (   )

   (   )
  (5) 

    
 

 
      (       )     

     (   )     
  (6) 

 

where   is the density of the solid, the mass  ,    the distance front the center of mass to the 

base of the elliptical frustum and     the inertia around the x-axis of the center of mass. The 

replacement terms G20, G21, G22 and G40 can be reviewed in the appendix. The replacement 

functions are functions of a, the height of the lizard and b, the width of the lizard signifying 

relation to height and width of the bottom and top, a0, a1 and b0, b1 of the solid.  These formulas 

were used to approximate the needed segments of the lizards.  
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3.5 Smart Composite Microstructures 

The final section of the background gives a short overview of a novel fabrication method known 

as smart composite microstructure (SCM) as well as describes its advantages. This fabrication 

method was used to build physical demonstrators and robots being central to the design circle of 

the thesis. 

 

A simple way to prove principles such as zero net angular momentum control (Libby et al., 2012) 

is by designing robots using the smart composite microstructures (SCM) fabrication method 

developed by Wood et al. (2008). The fabrication method combines a quick manufacturing 

process with easy methods of joint integration through a laser micromachining and lamination 

process. This fabrication method uses either carbon fiber or S-glass reinforced plastics in 

combination with compatible polymers to achieve millimeter-scale robots (Avadhanula, Wood, 

Campolo and Fearing, 2002). Further development of this fabrication method (Hoover and 

Fearing, 2008) enabled the use of SCM for macro-robotics using poster board and a 

polyethylene terephalate (PET) film. The fabrication process consists of five steps, which are 

depicted, in Figure 14. In the first step two poster board sheets (black) are layered above each 

other (1). Next the two sheets of poster board are laser-cut at the position of the predefined 

flexures (2). In the following step the two poster board sheets are coated one-sidedly with an 

adhesive polymer. The flexural polymer (PET) with high melting point is placed between the 

adhesives (3). The resulting layer assembly is then rolled through heat rollers to bond the 

individual layers (4). The final step of the fabrication (5) is the cutting of the outlines of the part to 

separate it from the sheet.  

 

 

Figure 14: Step by step fabrication process smart composite microstructure 

(SCM) (Hoover and Fearing, 2008) 

The resulting 2-dimensional robot parts are able to flex at the sections where both poster board 

sheets are removed while the polymer in combination with the adhesive sheets is intact. The 

flexure angle can be influenced by the thickness of the notch. To complete the robot the parts 

have to be folded and glued into place, leaving either rigid structures where flexures have been 

constrained or structures with movable flexures.  
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Figure 15: Robots using SCM a) RoACH (Hoover and Fearing, 2008) b) DASH (Birkmeyer, Peterson and 

Fearing, 2009) and c) DynaRoACH (Hoover et al., 2010) 

This technique is used for many different types of robots as seen in Figure 15 including RoACH 

(Robotic, Autonomous, Crawling Hexapod) (Hoover, Steltz and Fearing, 2008; Hoover and 

Fearing, 2008; Wood et al., 2008), DASH (Dynamic Autonomous Sprawled Hexapod) 

(Birkmeyer, Peterson and Fearing, 2009)  and DynaRoACH (Hoover et al., 2010) seen in the 

figure above. 

 

Compared to other rapid fabrication processes used in mobile robotics such as rapid prototyping, 

SCM is a low cost solution combining cheap materials and integrated joints. Stability of the 

material can be increased or decreased via design solutions such as reinforcements or 

recesses. Furthermore the material and the integrated flexing solutions reduce weight of mobile 

applications  Although this fabrication process require construction drawings in 2D which reduce 

the visualization, the rapid fabrication and construction increase effectiveness of the design circle 

(Hoover and Fearing, 2008).  

a) b) c) 
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4 Biological Studies 

After introducing the thesis topic, presentation of the state of the art and giving an overview of 

fundamental principles, the biological aspects of the master thesis are described. The chapter 

describes the data acquisition concerning used equipment and procedure.    

 

4.1 Animals and Habitat 

The animals used in this research project are of the species Agama Agama also called Red 

Head Agamas. This lizard species can be distinguished by the reddish head and tail tip and the 

blue body of the males in mating season. The females and males when not in mating season 

have a brown body color. They can be found in Central Africa, the Ivory Coast as well as in 

Tanzania and Angola and southern parts of the United States of America. They can grow up to 

41 cm and live in stony-sandy environments of 30-40°C at daytime and 24-30°C at nighttime. 

They eat mainly insects, worms and spiders. Males are very territorial (Madsen and Loman, 

1987). The species was chosen due to their availability in California due to their compatibility 

with the climate as well as their survivability in captivity. The insect and small vertebrate facility at 

UC Berkeley at the Valley Life Sciences Addition – Basement (LSAB) held seven specimens. 

The population held two small lizards weighing up to 40g, four medium sized lizards between 40 

and 80g and one big lizard weighing above 80g. The lizards were numbered from one to seven 

and marked with whiteout to be able to identify them for the trials.  

 
The habitats of the lizards at the animal facility consisted of two smaller tanks of a capacity of 

500 liters holding up to two Lizards and one big tank (1000 liters) holding up to five lizards. The 

separation of Lizards was established due to the territorial behavior of the animals. The tanks 

were fitted with a sand substrate as well as stones and pottery pieces for basking and a watering 

place and shelter. The room was heated to approx. 27°C, had a humidity of 10 - 20% and was 

fitted with full spectrum lighting (UV radiation) promoting calcium metabolism by vitamin D 

production (Coates, 2009, pp.69–71). The animals were fed crickets twice a week. 

 

Due to inefficiency of former trial procedures conducted in the CiBER laboratory caused by 

distressed animals, the animal trials were conducted in the living habitat of the lizards. This 

approach was an attempt to standardize animal trials in their living habitat and was to be 

designed so that following trials could be done in the same way. 

 

First the position of the cages was changed in such a way that all cages were on ground floor so 

that lighting and filming as well as the conducting of the trials resp. various stimuli could be easily 

performed. Second, as described in Chapter 4.2 the lighting and camera settings were adjusted 

according to the new environment. The habitat itself was changed initially that the agamas had to 

run trials on wooden slabs which were covered with sandpaper. Although this would guaranty a 

stone-sand like friction the idea proved unsuccessful due to bad cleaning properties of wood and 
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sandpaper. Consequently the conditions for a suitable substrate were defined as washable or 

disposable, sufficient friction for enough foothold while not changing its form as e.g. sand. 

Furthermore it was deemed necessary to be easily removable from the cages and if possible 

unreflective to guaranty good video recording background. After investigating different anti-

sliding-mats as well as anti-sliding-tapes used mainly for stairs, an ethylene-vinyl acetate (EVA) 

foam gym-matt (We Sell Mats) was chosen which fulfilled these properties. Preliminary test 

resulted in very good trial characteristics, giving good foothold and a good background for video 

analysis. After more mats were ordered and fitted to the tanks of the animals, the trials described 

in Chapter 4.2.4 were conducted. Later during the research period it became apparent that the 

mats out of natural caoutchouc were eaten or chewed on by the live food of the lizards, 

endangering the health of the animals. This resulted in removal of the mats which were 

consequently placed into the cages temporarily at trial phases.  

 

As shelters for the animals, stone piles as well as pottery shards and plastic housing with one or 

more openings, depending on their size were used. As described in Chapter 4.2.3 the housings 

had to be changed in size, form and position. To this end cardboard tubes were cut lengthwise 

leaving on side open as an entrance and the other side closed ensuring no escape of the 

animals via the wrong side. These shelters were then used as escape holes for the lizards 

positioning then according to the trail procedure. 

 

The habitat was changed at least one week prior to the trail to the arrangement necessary for the 

procedure. This way the animals could get accustomed to the new environment and could react 

fast to threatening stimuli. To be able to test individual animals the cages were divided using a 

cardboard sheet separating needed animals. 

 

Additionally a habitat-change to accommodate two high speed cameras for 3-dimentional data 

acquisition was discarded due to the complex implementation and the fact that the conducted 

research aimed primarily on the capturing of the lateral movement of the animals. This reasoning 

lead to the conclusion, that an overhead high-speed camera, without the integration of a side-

view window for additional recording was sufficient.  

 

4.2 Data Acquisition 

Following the adjustments of the habitat the data acquisition could be conducted. Necessary 

steps to for the recording of locomotion behavior of animals are the clarification which equipment 

is used, the arrangement of the used equipment and the trail procedure. 

 

4.2.1 Equipment 

The used equipment shown in Figure 16 consisted of lighting equipment, a high-speed camera 

and a computer with the necessary camera software provided by the camera manufacturer. Due 

to the high resolution and high-speeds at which the camera has to operate to capture the rapid 
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movements of the lizards, the lighting of the trial setup has to be very bright and uniform. 

Additionally the light would have to be moved to the living habitat of the lizards and rearranged 

for different trial setups. To achieve these requirements 3 halogen lamps of the company Cooper 

Lighting (Cooper Industries plc.), two 250 Watt (PQS2504IN1) and one 500 Watt (SQS505QD) 

with UV filters, available in the laboratory were used. Previous animal trials (Mongeau et al., 

2012; Libby et al., 2012) using these lighting solution proved successful. Due to their high power 

and the resulting heat generation the lamps had to be handled with caution these factors taken 

into account when arranging the equipment. As described in the background, the camera model 

HiSpec 1 (specifications found in the appendix) from Fastec Imaging Corp. combined with a 

25mm lens (Navitar Inc.) was used to record the trials. The camera was mounted on a tripod for 

over-head view as seen in the arrangement section in Figure 16. After defining the Local Area 

Connection IPv4 as 192.168.3.1 and connecting the HiSpec camera via Ethernet cable the 

preferences of the HiSpec Control Software (Fastec Imaging Corp.) seen in Table 4 were set. A 

description of these features can be seen in Chapter 0. 

 

Preference Value 

Frame Rate 500 fps 

Shutter-speed approx. 600 μs 

Frame dimensions 1280x1024 (default) 

Blacklevel 128 (default) 

Digital gain 1 (default) 

Record Mode Ring (continuous) 

Record Size 1636 frames (predefined) 

Table 4: Fastec Camera - HiSpec Control Software Preferences 

A frame rate was chosen to enable easy controllability of generated time-steps. The shutter 

speed was chosen depending on lighting condition and resulted in approx. 600 μs for the 

conducted trials. The frame size was set to maximum dimensions reducing the distance to the 

camera resulting in higher resolution. Continuous recording was enabled with maximum 

recording size resulting in 3.27 seconds of recorded video. An external trigger which reacted at 

the falling edge was used to stop the video stream after a locomotion behavior was observed.  

The pre-trigger frame function enabled the saving of the frames prior to the induced stop by the 

trigger. The chosen format for the video trials was the AVI (Audio Video Interleave) video format 

using Xvid codec compressing it to 90% of the original quality. This shrinks the raw video from 

up to 2GB down to under 20MB for each trial and guaranties a high resolution combined with fast 

video imaging and processing. All trials were saved in the following format:  

RecordingDate\AnimalNo_TrialNo_FolderDate_FolderTime\AnimalNo_TrialNo_VideoDate_Vide

oTime_FolderDate_FolderTime.avi  

Where folder resp. video date and time depict the date and time of creation resp. saving.  
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4.2.2 Arrangement 

The equipment was arrangement according to uniformity of light in the area of the trial setup in 

the cage, to enable a sufficient range of camera view and also to allow for induction of stimuli. 

Additionally the equipment had to be arranged in a way that the stimulus could be induced 

without interfering with the behavior of the animal and the video recording of the trail.  

 

There were two main setup models: free-standing cage and cage in scaffold. The scaffold posed 

a further influencing factor for the arrangement by preventing overhead accessibility. Figure 16 

shows the two different arrangement settings.  

 

 

Figure 16: Equipment Arrangement a) free-standing cage b) cage in scaffold with spotlights (1), camera 

(2), trigger (3) and computer with HiSpec Control Software (4) 

The choice of the arrangement was dependent on which cage held the lizard that had to be used 

for current trials. The first arrangement (Figure 16a) shows that the lights were directed towards 

the walls of the tank to reduce reflections in the video and to illuminate the trail setup uniformly. 

The 500 Watt light was mounted on the frontal side of the tank and directed towards the wall. 

The two smaller 250 Watt lamps were then fixed to the side of the tank pointing towards the tank 

wall to cancel out any shadows created by the bigger lamp and to illuminate the trial setup 

collinear with the lizard’s movement. The cables of the lamps were wrapped around the lamp 

mounting to avoid cable burn. Due to its slow frequency, the regularly used full-spectrum UV light 

was unfavorable for the light quality of the video resulting in oscillating brightness. Despite this 

disadvantage it was kept in place due to the importance of ultraviolet light for the lizards. Also the 

alignment of the three halogen lights reduced this effect. The camera was mounted on a tripod 

with extension and was positioned on the side of the tank so that the camera would be 

suspended above of the trial setup. The stimulus was then induced by reaching over the 500 

Watt lamp and would prompt the Agama to run in lengthwise direction of the recorded video as 

shown in Chapter 4.2.3. 

 

The second arrangement as seen in Figure 16b incorporated the carrier scaffold of the tank in a 

way that the lamps were mounted onto the overhead beams. This arrangement as well used the 

1 

2 

4 

1 
2 

3 

4 
a) b) 



 

33 

500 Watt lamp at the front side of the tank and the smaller lamps on the side to reduce the 

shadows. The lamps in this layout also looked at the tank wall resp. the room wall. The camera 

was positioned between the overhead beams and the tank. Stimuli were induced via the corner 

of the tank between the 500 Watt lamp and the camera tripod. In both arrangement settings the 

camera was arranged approx. 1 m above the tank substrate guaranteeing a big enough video 

frame while centering solely on the turn of the lizard. The position of the equipment was marked 

to decrease the preparation time and to make sure that the videos of each day were similar.  

 

4.2.3 Trial Setup 

Using the above mentioned equipment arrangements two sets of data collection were 

conducted. The first at the beginning of the project using full frictional substrate, the second after 

the first trials were analyzed, using a low friction underground.   

 

The trial setup for the first trial-set consisted of two different types of shelters, named positioning 

shelter (1) and escape shelter (2), with openings pointing toward each other. The positioning 

shelter, aligned directly underneath the camera differed from the escape shelter by a pipe which 

was fixed in such a way that it would induce a certain position of the lizards in the shelter. This 

was important since early in the trials it was found that in a normal shelter the lizards would curl 

up in a corner which in turn wasn’t a good initial position for the escape response. To avoid this 

position, as described in Chapter 4.1 a cardboard tube (3) was cut lengthwise and placed into 

the positioning shelter. The tube was small enough as to fit into the shelter and to make sure that 

the lizard would be aligned in a straight position, but not small enough to be uncomfortable for 

the animals. The second shelter, escape shelter (2), was used as a shelter that the lizards would 

recognize as a refuge and would escape into. The escape shelter was used to give direction to 

the escape response of the lizards towards a flight angle of 180°. 

 

 

Figure 17: Cage arrangement for trial setup 

including positioning shelter (1) and escape 

shelter (2) 

1 2 

3 
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The second trial-set was conducted using an oil coated metal sheet to minimize the friction of the 

substrate. The metal sheet was placed underneath the camera position. Although the positioning 

shelter was not used at this set of trials the escape shelter was used to give the lizards a 

destination angle.  

 

4.2.4 Trial Procedure 

As mentioned before the first step of conducting the trails was the calibration of the high-speed 

camera. This was done using a ruler and taking a photo using the camera. When the videos are 

tracked as described in Chapter 5.1, the ruler will be used to define the coordinate system for the 

video. 

 

The general systematic of the trail was to present a stimulus, inducing an escape response in the 

lizards. The optimal escape would entail a 180° turn and a following run towards the escape 

shelter. To achieve this motion the lizard was initially scared into the positioning shelter aligning 

the lizard with straight body and tail, looking in the opposite direction of the escape shelter. After 

a short pause to calm the animal the positioning shelter is lifted carefully so that the lizard stays 

in the aligned position. The lizard will watch the shelter lift of and out of sight, which will rotate its 

head into an upwards position. This position is necessary for the lizard to see firstly the escape 

shelter and secondly the stimulus. After a short pause that the Agama needs to orientate and 

evaluate the opening of the escape shelter as a possible hideout, the stimulus can be induced. 

 

How the stimulus is induced is an essential part of the escape behavior. If the stimulus is 

induced to early the lizard will not escape towards to escape shelter, resulting in less than 180° 

of flight angle. If the pause before the stimulus is induced is to long the lizard will turn on its own 

accord to run into the shelter using motion which would not be defined as an escape response.  

The stimulus was conducted via gloved hand moving first slow towards the lizard, to capture the 

lizards attention and shortly before the lizard’s head accelerated into a grabbing motion. 

According to Hall et al. 1986 and Cooper et al. (2007) slow stimuli induce a turn of approx. 90° 

due to the fact that the lizard wants to keep the predator in its view. Faster induced stimuli 

provoke the agamas to escape directly away to increase the predator-prey distance (Domenici 

and Blake, 1997; Cooper, Pérez-Mellado and Hawlena, 2007). 

 

After the stimulus is induced the escape response, described in Chapter 4.2.5 towards the 

escape shelter can be seen. A diagram seen in the appendix visualizes the trial procedure.  

 

The resting of the animals throughout the animal testing had great significance for the conducted 

trials. It was deemed imperative that the animals didn’t get used to the stimuli which is why the 

animals were periodically left by themselves to return to their initial at-ease state thereby 

increasing the fear of being handled. An agama would be exposed to up to five trials in a row, 

depending on its reaction to the stimuli, and then left without physical presence for half an hour. 
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The number of trials to be conducted in a row depended on their level of escape response. A 

slower reaction to a stimuli was, due to the standardize stimuli process, interpreted as getting 

used to being handled. In this case a pause of approx. 30 min was initiated to increase their 

escape response. To further heighten their escape response behavior a period of 3 days testing 

was followed by 7 days of resting period. During the trials it was seen that the lizards, if scared 

too much would lose much of their orientation in the cage. This is why enough time had to be 

given to the lizards to orient and know their surroundings. The best way of chasing the agama 

into the positioning shelter was to scare them around the cage until the lizard was in a position in 

which he would see the opening of the positioning shelter. After a short orientation break, in 

which the lizard recognizes the opening and identifies it as an escape option a short stimulus 

would initiate an escape into the shelter. In general this method of handling the lizards would 

ensure good results. 

 

As mentioned in Chapter 4.1 the behavior of the animals varied significantly if the environment in 

the cages changed shortly before the trials were conducted. The lizards would be confused and 

would not identify the shelters as escape possibilities. This is why the caoutchouc mats 

combined with the positioning and escape shelter had to be place at least two days prior to the 

execution of the trials. This method guaranteed an escape of the lizards towards the known 

hideout places. 

 

4.2.5 Animal Motion 

After inducing the stimulus the desired reaction of the agama is firstly bending its head, followed 

by an outwards push of the outer front foot, combined with a forward push of the hind legs as 

seen in Figure 18. Due to the push of the front foot the body starts bending. At the same moment 

the tail starts swinging in a planar trajectory towards the bending direction resulting in a trough-

form of the body and tail. Next the front feet lift of the ground starting the aerial-phase of the front 

feet. The lizard uses tail and body motion to swig around using its hind feet as rotational center. 

At dropdown the tail and body will have already started their uncurling motion. In the optimal 

case the lizard then accelerates the tail towards its other side to using the stored up energy of its 

first curling motion to finalize its movement. Combined with a forceful stride of its outer hind leg, 

the lizard propels in the opposite direction of the stimulus. 

 

The trials with reduced friction followed the same motion sequence. The reduction of the friction 

was used to minimize the ground reaction forces thereby maximizing the influence of the tail and 

body motion on the turning behavior of the animals. Under absolute absence of friction and the 

hypothesis that there is an exchange of angular momentum between tail and body as well as a 

total angular momentum of zero, the agama should curl und uncurl and regain its initial position. 

Reduced effects show the low friction trial sequence in Figure 18 when comparing body angle 

change of normal and low friction trial. 
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Figure 18: Trial Sequence a) Normal Friction b) Low Friction with start of move (1), pushing-phase (2), 

aerial-phase (3), curling-phase (5) and counter-swing-phase (6) 

A complete Excel Spreadsheet (Microsoft Office) describes the phases of each trial. The phases 

can be categorized as follows: 

 

 Start of movement (1) 

 Curling-Phase  

o Pushing-Phase (2) 

o Aerial-Phase (3) 

 Curling maximum (4) 

 Uncurling-Phase (5) 

 Counter-Swing-Phase (6) 

 Running-Phase 

 

Each phase was documented describing the time in the video recording. Furthermore as shown 

in Table 5 the body rotations are noted in degrees. Similar rotation angles and times can be 

extracted using this Spreadsheet to find comparable trials. The complete Excel Spreadsheet can 

be found in Appendix D. 

 

Day Animal Trial 

rotation outer front foot 

curling start uncurling end body tail start lift-of touch-down 

24 1 1 90 -30 0.092 0.128 0.18 0.106 0.248 

24 1 4 100 -15 0.052 0.072 0.134 0.068 0.204 

25 1 2 -70 -45 0.034 0.054 NA 0.04 0.164 

25 1 3 90 -15 0.032 0.056 0.142 0.042 0.166 

25 1 5 90 -60 0.028 0.054 0.146 0.04 0.186 

17 2 1 -135 10 0.064 0.086 0.14 0.092 0.188 

18 2 1 -135 90 0.058 0.088 0.171 0.066 0.196 

18 2 4 -125 50 0.056 0.094 0.15 0.1 0.26 

18 2 9 -100 -30 0.158 0.182 0.236 0.184 0.258 

Table 5: Phasing of Motion Sequence for all trials (Section) 

a) 

b) 

1 2 3 5 6 4 
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Furthermore a rating of all trials was implemented to assess the quality of the trial and to filter out 

the trials which showed the needed motion for this study. These five indicators were as followed: 

 

1. Tail influences the turn 

2. Initially curled tail 

3. Tail transverses to sagittal plane 

4. Running after turn 

5. All markers in view 

 

For the analysis only the trials were used where an active tail motion could be detected. Of the 

111 trials with normal friction, 40 trials and of the low friction trials, all 15 showed this behavior. 

The indicator of an initially curled tail could be found just once in the resulting 40 trials with 

friction. This indicates a relation between the influence of a turn and the initial state of the tail, 

since most of the trials (21 of 111) with initially curled tail were excluded with the first indicator. 

The indicator 3 describes if the tail motion is just planar or if the tail is swung in vertical direction 

as well. These trails, 19 of 40, were not sorted out since although there are also vertical forces 

acting on the lizard body the lateral forces still apply. The fourth indicator, running after the turn 

is completed, is optional for the trial quality and is correlated to a high level of stimulus reaction. 

The indicator number five was extracted using programing algorithms explained in Chapter 5.3.  

 

4.3 Morphological Data 

The morphometric data of the animals was important for the calculations of inertia, angular 

momentum and correct positions of the animals on the video recording. Due to the fact that the 

animals were depicted as a six segment system, tracking points necessary for the tracking 

software were painted on the lizard seen in Figure 19 to be able to define position and 

orientation of each segment at all times. The tracking points were painted with whiteout ensuring 

good adhesion properties as well as a good contrast for the tracking program. The marking-

points were positioned on the center of the head at the amount of the lizard number. Further 

points were placed on the shoulder blades, the feet, the center of the lizard body as well as on 

the left and right side of the hip. The tail was marked with 4 point where the anterior point was 

placed at the transition of the bulge to the thinner part of the tail. The remaining points were 

painted in regular distance on the tail. Due to the method of calculation of the computer model, it 

was not necessary define exact position for the points on the animals. The attributes such as 

inertia and angular momentum were calculated for each lizard using their associated 

morphometric data set and the associated tracking data. 

 



 

38 

 

Figure 19: Agama Tracking Point Position subdividing the lizard into 6 segments, starting at tail tip 

ending at head. 

After marking the lizards, the morphometric data of all points were measured specifically the 

width and the height of the animal using a caliber (Craftsman, Sears Holding Corp.). Furthermore 

the total mass was measured using a scale of Sartorius AG with an accuracy of 10^-2 g. The 

problem of measuring the morphological data from the living animals was that the animals when 

still alive would move as well as gain weight, width and height thereby making the measurement 

difficult. This is the reason why the living animals were measured more than once to ensure 

accurate values.  

 

Morph Data [mm] 

Lizard 1 

mass[kg]: 0.0794 Width incl Legs     

Length Length incl. Cut Width 90° 0° Height Diff 

Snout 0   5.42     0.28   

Segment 6c   83.87   75.15 38.86   19.43 

Head 19.43   16.53     8.32   

Segment 6b             26.51 

Shoulders 45.94   16.72     12.52   

Segment 6a             39.86 

Body 85.8   25.08     12.98   

Segment 5   44.83   88.05 45.56   42.51 

Hip 128.31   11.84     8.93   

Segment 4             39.97 

Tail 4 168.28   11.37     12.4   

Segment 3             53.97 

Tail 3 222.25   6.23     9.27   

Segment 2             58.55 

Tail 2 280.8   4.9     5.66   

Segment 1             62 

Tail1 342.8   1.91     1.95   

Table 6: Morphological data of living agamas (section) 

1 2 3 4 
5 6 
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The approximation for the living lizards to calculate their segment inertia described in Chapter 

5.2, was implemented by measuring seven dead lizards. The dead lizards were labeled after the 

date of death. They were used to approximate the two body segments of the living lizards, 

described as “Front”, for head to the center of the body and “Hind”, for body-center to hip. Due to 

the problem of changing inertia at different foot positions the lizards were measured in the 

following left/right foot constellations: 0°/0°; 90°/90°; 0°/90°; 0°/180°, where the angle describes 

the angle between lower and upper arm. At 0° the arm is pressed against the body and bent so 

that the foot is near the shoulder and the elbow lies flat to the lizard’s body. 180° describes the 

position where the arm is completely extended in perpendicular direction to the longitudinal axis 

of the body. 

 

Lizard 

length Width 

Front Hind 
0°/0° 90°/90° 0°/90° 0°/180° 

Front Hind Front Hind Front Hind Front Hind 

08-26-11 72.0 40.9 31.6 43.5 61.6 69.9 45.1 51.7 58.8 72.4 

09-25-11 87.2 48.7 45.9 49.8 77.2 85.2 52.8 59.0 71.8 84.7 

09-15-11 88.6 55.0 52.3 44.7 76.4 87.9 56.1 67.8 70.2 91.3 

04-20-12 80.1 42.9 44.7 51.2 73.2 81.8 52.0 56.7 62.2 81.5 

09-14-10 81.4 47.4 37.9 49.9 74.6 82.8 51.3 58.6 68.5 79.3 

06-25-11 66.9 30.5 27.9 32.4 60.3 69.8 42.4 48.7 57.5 68.9 

06-04-12 75.1 38.2 35.2 48.0 66.2 77.0 48.7 55.3 58.5 77.2 

Table 7: Morphological data of dead agamas for length and width in front feet postures (left/right) of 0°/0°, 

90°/90°, 0°/90° and 0°/180°, degree from forearm to upper arm 

The dead lizards were defrosted and pinned up at a certain position and refrozen. The lizards 

were then cut in their frozen state at the marker points of body, hip and tail segments, using a 

scalpel to achieve a clean cut and not to deform the lizard while cutting. The technical 

implementations will go into more detail which studies were done using these body parts. 
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5 Technical Implementation 

After the conclusion of the biological aspects the technical implementation was conducted. The 

recorded data could be analyzed and the analytical results could be processed to develop a 

biological proposition for a technical application. 

 

5.1 Data Tracking 

After completing the trial-sets and the first preliminary analysis, stating which trails comply with 

the research’s standards, data tracking was conducted. As described in Chapter 4.3 the lizards 

were marked with tracking points using whiteout. These markers could then be tracked using 

ProAnalyst® (Xcitex, Inc.) described in Motion Analysis of the Background. 

 

To extract data from the recorded videos the tracking software is calibrated using a calibration 

image. For the discussed trials an image of a ruler was taken und used to define the coordinate 

system of the tracking software. To increase the visibility of the white markers on the animal, 

image processing and filtering was applied. Mostly used in the given trials were the Morphology-

operations: Erode; Dilate; Close Connections and Break Connections. When applying filtering 

masks the order is very important. The erode filter causes the disappearance of noise or in 

regard to the trials, little sand corns on the mats. Combined with a following dilate operation, big 

enough white sections stay the same size whereas small white sections disappear as seen in 

Figure 20. 

 

 

Figure 20: Image processing and filtering a) Original frame b) Frame after Image Processing c) Frame 

after image processing and filtering 

After all filtering options are applied and the markers on the agama are clearly seen the tracking 

points were defined. Table 8 shows a list of defined tracking points including tracking 

preferences described in Chapter 20. 

 

 

 

 

a) b) c) 
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Feature Search Region 

Multiplier (%) 

Threshold 

Tolerance 

(0.0-1.0) 

Special 

Target 

Types 

Feature Rotation 

Angular Range 

(deg) 

Step Size (deg) 

Tail1 350-550 0.65 No 10-15 2 

Tail2 300-400 0.65 No 7-13 2 

Tail3 350 0.65 No 10 2 

Tail4 350 0.65 No 10 2 

HipR 350 0.65 No(Yes) 10 2 

HipL 350 0.65 No(Yes) 10 2 

FootHR 350-400 0.65 No 10 2 

FootHL 350-400 0.65 No 10 2 

Body 350 0.65 Yes (10) (2) 

ShouldersR 350 0.65 No 15 2 

ShouldersL 350 0.65 No 15 2 

FootFR 350-400 0.65 No 10 2 

FootFL 350-400 0.65 No 10 2 

Head 350 0.65 No 10-20 2 

Table 8: Feature tracking preferences 

Due to the fast motion of the lizards the values of the Search Region Multiplier are compared to 

the default of 250, increased. The threshold to find the correct tracking point was lowered from 

0.75 to 0.65 because the points were drawn on a compliant material, the skin of the lizards, 

which would distort the points during motion. The target types where solely used in case the 

tracking point was an optimal circle. Parts of the body that rotate much have a higher rotational 

range. The step size was used in its default setting. Feature rotation is disabled when a circular 

target type is chosen symbolized by the brackets.  

 

At the beginning of the data tracking the feet were also tracked. This was deemed later irrelevant 

for this early stage of research. To standardize the tracking template and to be able to integrate 

the leg tracking at a later phase of the research, the feet features FootHR, FootHL, FootFR and 

FootFL were left in the template but weren’t tracked.  

 

After the tracked data is controlled it can be exported. For this research project the units of cm 

and file type .txt were chosen. This generates a txt-file with all tracked features described in 

coordinates (X/Y) for all frames. The text files of the 40 normal friction trials and of 3 low friction 

trials were then used for generating accurate model data. 

 

5.2 Data Approximation and Validation 

To be able to calculate angular momentum exchange of lizards, tracked data is used in 

combination with body attributes such as mass, center of mass and moment of inertia. To avoid 

measurements of the live lizards approximation methods are used. As described in Chapter 5.3 
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each lizard was defined as a six segment system correlating with the six lizard segments defined 

by the marker positions for the video tracking. The mentioned attributes have to be calculated for 

each of these segments. The lizard approximations can be separated into two general sections, 

the approximations for the lizard body and the approximations for the lizard tail. This 

categorization was applied due to the fact that contrary to the body the tail can be roughly 

assumed as a truncated elliptical cone. With this assumption in mind and the fact that the tail, in 

its form, stay generally very constant makes it easily calculable. A further discretization was not 

feasible due to the preliminary character and scope of the research done. The body segments on 

the other hand with varying limb constellations and irregular geometrical forms are more complex 

and have to be approximated using measurements of dead lizards to translate mass, COM and 

MOI.  

 

Due to the high variance in behavior of the animals during the trials and the thereby resulting 

error for general statements, an error of 10% for the approximations of the attributes was 

deemed acceptable. Furthermore an additional error estimate can be concluded when 

considering the formula for the angular momentum, Equation (17). When judging the influences 

of these two terms on the total angular momentum, it becomes apparent that the     -term is just 

influential if the center of mass of the specified lizard segment (segment COM) is close to the 

system center of mass (system COM) of the whole lizard. Therefore the second term        

         increases its influence at increased distance (  ) between the segment COM and 

system COM. This leads to the conclusion that, for example errors of distance   , mass    and 

velocity    are less influential for the hind body segment due to its proximity to the system center 

of mass. Table 9 shows 38.84% influence of the      term to the total angular momentum. It also 

shows little influence of errors resulting in the approximation for the inertial    for segments with 

large distance to the system COM (tail segments) showing fractions of 0.77% to 3.01% of the 

total angular momentum. Although Table 9 shows values for a simplified case of lizard rotation a 

general tendency in the trials toward these fractions can be seen. 

 

Lizard 2              Fraction 

Segment 1 6.33E-07 8.19E-05 0.77% 

Segment 2 2.57E-06 1.84E-04 1.38% 

Segment 3 7.63E-06 2.46E-04 3.01% 

Segment 4 3.16E-06 1.52E-04 2.03% 

Segment 5 1.61E-05 2.53E-05 38.84% 

Segment 6 9.79E-05 5.40E-04 15.36% 

Table 9: Fraction of Iiωi-component of angular momentum, in case of constant rotation around the hip of 

the lizard without body bending 
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5.2.1 Body Approximation 

The approximation of mass, center of mass and moment of inertia, for the hind and font 

segments of the lizard body are used for the calculation of angular momentum. The general 

principle in approximating the body parts of the living lizards was to conduct morphological 

measurements of seven lizard carcasses and to find scaling factors. These scaling factors where 

applied on morphometric data measured from the living lizards to generate the needed body 

properties.  

 

Body mass: 

The mass approximation was implemented using the mass fraction of the body segments to the 

total mass of the dead lizards. The mass fraction can be calculated by dividing the actual body 

segment mass by the total mass of the lizard. Due to the fact that the total mass of the living 

lizards is known this approximation is applicable. Table 10 shows the result for the mass 

approximation. The masses for the body segments, front and hind as well as the total mass can 

be seen in the first data section. Then the fraction is calculated for hind and front body segments 

of all lizards. The average mass fraction (41.46% front, 37.78 hind) is then taken to calculate the 

approximated mass of the lizard segments. The resulting errors are shown in the last two 

columns, resulting in an average absolute error of 3.38%±4.50% for the front segment and 

5.11%±8.57% error for the hind segment of the lizard body, falling below of the maximum error of 

10%. 

 

Lizard 
mass Fraction of Mass Aprproximation Error 

Front Hind Total Front Hind Front Hind Front Hind 

08-26-11 0.0126 0.0131 0.0326 38.70% 40.32% 0.0135 0.0123 -7.12% 6.30% 

09-25-11 0.0286 0.0276 0.0701 40.88% 39.45% 0.0291 0.0265 -1.41% 4.22% 

09-15-11 0.0352 0.0312 0.0831 42.33% 37.61% 0.0344 0.0314 2.06% -0.46% 

04-20-12 0.0210 0.0197 0.0518 40.42% 38.02% 0.0215 0.0196 -2.58% 0.61% 

09-14-10 0.0188 0.0167 0.0445 42.25% 37.65% 0.0184 0.0168 1.86% -0.36% 

06-25-11 0.0102 0.0073 0.0229 44.72% 31.75% 0.0095 0.0086 7.29% -19.01% 

06-04-12 0.0125 0.0122 0.0306 40.92% 39.69% 0.0127 0.0116 -1.32% 4.81% 

Average 0.0198 0.0183 0.0479 41.46% 37.78% 0.0199 0.0181 3.38% 5.11% 

STDev 0.0092 0.0086 0.0221 1.88% 2.87% 0.0091 0.0083 4.50% 8.57% 

Table 10: Body mass approximation by average mass fraction and calculated error to original value 

Body COM: 

The distance to the center of mass (COM) was calculated using the same method as in the mass 

approximation. The distance to the COM was measured in the dead lizards using the plumb line 

method (Blackmail, 1925) described as part of the Background. Table 11 shows the 

approximation for the COM distance. The first two data columns show the length of the front and 

hind segment of each animal. The second two columns show the distance between center of 

mass and the anterior end of the agama. After dividing the COM-distance by the length of the 
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segments an average factor can be calculated. This average factor is used to calculate the 

approximation by multiplying it with the lengths of the lizard segments. The approximation 

method can be applied since the lengths of the body segments of the living lizards are known. 

The error of this approximation can be seen in the last two columns and result in an absolute 

average error of 8.32%±12.65% for the front segment and 16.19%±23.58% for the hind 

segment. Although the error of the hind segment exceeds the maximum error of 10% it was 

considered sufficient due to the proximity of the hind center of mass to the center of mass of the 

whole lizard. Additionally the average is influence significantly by a single lizard (08-26-11) with 

an error of -49.72%.  

 

Lizard 
Length COM-Distance COM-D/Length Approximation Error 

Front Hind Front Hind Front Hind Front Hind Front Hind 

08-26-11 71.97 40.89 43.21 14.86 0.60 0.36 40.74 22.25 5.72% -49.72% 

09-25-11 87.22 48.66 51.46 23.9 0.59 0.49 49.37 26.48 4.06% -10.78% 

09-15-11 88.6 55.02 53.2 31.2 0.60 0.57 50.15 29.94 5.73% 4.05% 

04-20-12 80.08 42.88 45.4 23.89 0.57 0.56 45.33 23.33 0.16% 2.34% 

09-14-10 81.37 47.43 50.61 32.2 0.62 0.68 46.06 25.81 9.00% 19.86% 

06-25-11 66.87 30.49 30.22 15.03 0.45 0.49 37.85 16.59 -25.25% -10.38% 

06-04-12 75.06 38.19 39.82 25.13 0.53 0.66 42.49 20.78 -6.69% 17.31% 

Average 78.74 43.37 44.85 23.74 0.57 0.54 44.57 23.59 8.32% 16.19% 

STDev 7.94 7.95 8.05 6.88 0.06 0.10 4.49 4.33 12.65% 23.58% 

Table 11: Body COM-distance approximation by segment length fraction with calculated error of original 

value 

Body moment of inertia: 

For the approximation of the Moment of Inertia (MOI) about the center of mass of the two body 

segments, different methods for calculation were conducted. Through analyzing the different 

approximation methods, shown in the following tables the method for the least error was chosen. 

As seen in the following section the approximation factor have to relate to the unit of the moment 

of inertia (kg*m^2). Due to the fact that length scales proportionally to mass as length^3, the 

inertia can be written proportionally scaling to length^5 or mass^(5/3). 

 

For approximation of moment of inertia of the living lizards, the inertia of the dead animals has to 

be measured to generate scaling factors using the morphometric data. the inertia was measured 

using the pendulum method (Dowling, Durkin and Andrews, 2006) described in the Background. 

To achieve an accurate measurement of the radius of gyration the period of the oscillation was 

measured in three trials per ROG calculation after which it was possible to calculate an average 

of the resulting inertia, giving an accurate ROG estimation. The new ROG is then used to 

calculate the new Inertia. After several iterations the exact moment of inertia can be calculated. 

The following table shows two iteration of this process. Since the error of the inertia decreases 

drastically if the distance from center of mass to the axis of rotation converging to the ROG 
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(Dowling, Durkin and Andrews, 2006) an error of 10% between the old and the new ROG was 

deemed sufficiently small.  

 

Left= 0°  Right= 0°         

  mass 0.012           

  Seconds Oscillations Periode D Inertia RoG  Error 

Trial 1 12.27 30 0.4090 0.02355 5.274E-06 0.02060   

Trial 2 12.26 30 0.4087 0.02355 5.254E-06 0.02056   

Trial 3 12.27 30 0.4090 0.02355 5.274E-06 0.02060   

Average     0.4089 0.02355 5.268E-06 0.02059 -14% 

                

  Seconds Oscillations Periode D Inertia RoG  Error 

Trial 1 11.98 30 0.399333 0.02061 4.872E-06 0.01980   

Trial 2 12.01 30 0.400333 0.02061 4.922E-06 0.01990   

Trial 3 12.03 30 0.401 0.02061 4.956E-06 0.01997   

Average     0.400222 0.02061 4.917E-06 0.01989 -4% 

Table 12: Iteration process of inertia measurement for leg constellation 0°/0° until error <10% 

After a precise moment of inertia was calculated different methods of approximation could be 

implemented. For the first method the simplest case of approximation was used, which was 

implemented by dividing the inertia by the segment length to the power of five. The average is 

used to approximate the new inertia. The error section shows that this method is too inaccurate 

with average absolute error values of 30.52%±36.75% for the front segment and 27.5%±33.89% 

for the hind segment exceeding the maximum error of 10%.  

 

Lizard 
Length MOI (0°/0°) I/L^5 Approximation Error 

Front Hind Front Hind Front Hind Front Hind Front Hind 

08-26-11 72.0 40.9 3.9E-06 3.4E-06 2.0 29.9 5.1E-06 4.4E-06 -29% -28% 

09-25-11 87.2 48.7 1.4E-05 9.9E-06 2.7 36.2 1.3E-05 1.0E-05 3% -6% 

09-15-11 88.6 55.0 2.0E-05 1.2E-05 3.7 24.7 1.4E-05 1.9E-05 28% -55% 

04-20-12 80.1 42.9 1.1E-05 6.7E-06 3.2 45.9 8.7E-06 5.5E-06 18% 17% 

09-14-10 81.4 47.4 7.9E-06 5.9E-06 2.2 24.7 9.4E-06 9.2E-06 -20% -55% 

06-25-11 66.9 30.5 3.4E-06 1.7E-06 2.6 62.8 3.5E-06 1.0E-06 -3% 39% 

06-04-12 75.1 38.2 4.9E-06 3.5E-06 2.1 43.7 6.3E-06 3.1E-06 -28% 12% 

Average 78.7 43.4 9.2E-06 6.2E-06 2.6 38.3 8.7E-06 7.6E-06 19% 30% 

STDev 7.9 8.0 6.1E-06 3.8E-06 0.6 13.7 4.1E-06 6.1E-06 23% 36% 

Table 13: Body inertia approximation – length^5 with calculated error of original value 

The second approximation with increased precision was a method using the segment mass to 

the power of 5/3. As mentioned before the inertia scales proportionally to length^5. Since the 

mass scales proportionally to the length^3 the length scales proportionally to mass^(1/3), 

resulting in a proportional scaling factor of the Inertia at mass^(5/3). The average of the inertia 

divided by mass^(5/3) is multiplied with the mass of the respective segment mass^(5/3). Since 

the segment masses of the living lizards are already approximated with an error of 3-5% this 

approximation is also not optimal. As seen in Table 14 the errors for this method exceed the 
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maximum error at values of 11.93%±14.02% and 14.02%±17.01 without taking the 

approximation error of the segment mass into account. The combined error of mass 

approximation and inertia approximation amounts to 13.17%±17.24% and 12.18%±14.65%, 

showing just a slight increase of error average and standard deviation for the front and even a 

decrease of error for the hind segment. 

  

Lizard 
Mass MOI (0°/0°) I/m^(5/3) Approximation Error 

Front Hind Front Hind Front Hind Front Hind Front Hind 

08-26-11 0.01 0.01 3.9E-06 3.4E-06 0.006 0.005 4.2E-06 3.6E-06 -7% -5% 

09-25-11 0.03 0.03 1.4E-05 9.9E-06 0.005 0.004 1.7E-05 1.2E-05 -20% -25% 

09-15-11 0.04 0.03 2.0E-05 1.2E-05 0.005 0.004 2.3E-05 1.5E-05 -16% -22% 

04-20-12 0.02 0.02 1.1E-05 6.7E-06 0.007 0.005 9.8E-06 7.0E-06 7% -6% 

09-14-10 0.02 0.02 7.9E-06 5.9E-06 0.006 0.005 8.2E-06 5.4E-06 -4% 10% 

06-25-11 0.01 0.01 3.4E-06 1.7E-06 0.007 0.006 3.0E-06 1.3E-06 13% 20% 

06-04-12 0.01 0.01 4.9E-06 3.5E-06 0.007 0.006 4.2E-06 3.1E-06 15% 11% 

Average 0.02 0.02 9.2E-06 6.2E-06 0.006 0.005 9.9E-06 6.9E-06 12% 14% 

STDev 0.01 0.01 6.1E-06 3.8E-06 0.001 0.001 7.5E-06 5.1E-06 14% 17% 

Table 14: Body inertia approximation - mass^(5/3) with calculated error of original value 

The next inertia approximation method used a combination of the length of the segment and the 

mass of the segment. Here the average of all the results of dividing the inertia by the mass times 

the length to the power of two of all segments was multiplied by the mass and length^2 of the 

segments. When calculating the error average, Table 15 shows results for the front of 

14.32%±18.96% and for the hind segment of 15.26%±19.31% which made it more accurate than 

the length^5 method but less accurate than the previous approximation method using just the 

mass. The error, including the mass approximation results in an average for front and hind 

segment of 15.76%±20.80% and 12.54%±16.06%. This shows a decrease of error for the front 

and an increase of the hind error.  

 

Lizard 
MOI (0°/0°) I/(m*l̂ 2) Approximation Error 

Front Hind Front Hind Front Hind Front Hind 

08-26-11 3.95E-06 3.42E-06 0.061 0.156 4.68E-06 4.20E-06 -18.46% -22.81% 

09-25-11 1.38E-05 9.87E-06 0.063 0.151 1.56E-05 1.25E-05 -13.37% -26.77% 

09-15-11 2.01E-05 1.24E-05 0.073 0.132 1.98E-05 1.81E-05 1.51% -45.33% 

04-20-12 1.06E-05 6.65E-06 0.079 0.184 9.63E-06 6.93E-06 9.45% -4.19% 

09-14-10 7.85E-06 5.93E-06 0.063 0.158 8.91E-06 7.20E-06 -13.48% -21.39% 

06-25-11 3.43E-06 1.65E-06 0.075 0.245 3.28E-06 1.29E-06 4.59% 22.03% 

06-04-12 4.92E-06 3.55E-06 0.088 0.314 4.01E-06 2.16E-06 18.35% 39.12% 

Average 9.24E-06 6.22E-06 0.072 0.191 9.42E-06 7.48E-06 11.32% 25.95% 

STDev 6.09E-06 3.83E-06 0.010 0.065 6.27E-06 6.00E-06 13.74% 29.66% 

Table 15: Body inertia approximation mass*length^2 with calculated error of original value 
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The last body moment of inertia approximation was implemented using unconstrained nonlinear 

optimization to find the minimum of a scalar function with the variable alpha and beta. The used 

function can be written as 

              (7) 

where ICM is the inertia (kg*m^2), m the mass (kg) and  the length l and width w in meters, of the 

segment including the legs. Alpha and beta are two factors that describe the quantifier of each 

term. Using the fminsearch function in MATLAB® by MathWorks, Inc. alpha (x(1)) and beta(x(2)) 

could be calculated. Fminsearch opens the Matlab function (equ) which contains mass (m), 

length (l), width (w) and MOI (Icm) of the dead lizards. The scalar function e is then solved for all 

lizards and the average error (F) minimized by varying alpha (x(1)) and beta (x(2)). 

 

for i=1:length(Icm) 
    e(i)=x(1)*m(i)*l1(i)^2+x(2)*m(i)*l2(i)^2-Icm(i); 
end 
F=mean(abs(e./Icm)); 

 

 

As seen in Table 16 formula (7) was used to calculate the inertia approximation which results in 

an error of 6.98%±9.26% for the front segment and 6.99%±13.30% for the hind body segment. 

Combined with the mass approximation the average error calculates as 9.09%±11.84% and 

6.37%±7.80%. The resulting error is the minimal error of all the approximation methods with a 

value of less than 10% satisfying the error limit. 

 

Lizard 
Width (0°/0°) MOI (0°/0°) Approximation Error 

Front Hind Front Hind Front Hind Front Hind 

alpha         0.0474 0.068     

beta         0.0729 0.0811     

08-26-11 31.60 43.47 3.95E-06 3.42E-06 4.01E-06 3.50E-06 -1.56% -2.53% 

09-25-11 45.87 49.83 1.38E-05 9.87E-06 1.47E-05 1.00E-05 -6.87% -1.45% 

09-15-11 52.30 44.67 2.01E-05 1.24E-05 2.01E-05 1.15E-05 -0.04% 7.70% 

04-20-12 44.73 51.20 1.06E-05 6.65E-06 9.42E-06 6.65E-06 11.39% -0.04% 

09-14-10 37.88 49.86 7.85E-06 5.93E-06 7.86E-06 5.93E-06 -0.06% -0.05% 

06-25-11 27.92 32.36 3.43E-06 1.65E-06 2.75E-06 1.08E-06 19.99% 35.04% 

06-04-12 35.22 47.96 4.92E-06 3.55E-06 4.48E-06 3.47E-06 8.94% 2.16% 

Average 39.36 45.62 9.24E-06 6.22E-06 9.05E-06 6.02E-06 6.98% 6.99% 

STDev 8.65 6.50 6.09E-06 3.83E-06 6.35E-06 3.73E-06 9.26% 13.30% 

Table 16: Body inertia approximation alpha*mass*length^2+beta*mass*width^2 with calculated error of 

original value 

After developing an approximation that would yield values of sufficient precision, measurements 

of the inertia of the dead lizards as well as the approximations for the inertia were conducted for 

all leg constellations. As described in Chapter 4.3 the width incl. the legs for all dead agamas 
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using positioning of the legs (left/right) at  0°/0° 90°/90° 0°/90° 0°/180° was taken, followed by 

measuring the inertia of all dead lizards. This was necessary since the inertia of the agamas 

would change depending on the position of their feet. The pendulum method combined with the 

plumb line method to find the center of mass (Chapter 24), were used. Each foot combination 

was measured for all available dead agamas, followed by the calculation of alpha and beta and 

the approximation of the inertia. Table 17 shows the obtained alpha and beta values as well as 

the errors of approximation for each feet position including the mass approximation error.   

 

Lizard 
MOI (0°/0°) MOI (90°/90°) MOI (0°/90°) MOI (0°/180°) 

Front Hind Front Hind Front Hind Front Hind 

alpha 0.0474 0.0680 -0.0099 0.0185 -0.0270 0.0225 0.1124 -0.1137 

beta 0.0729 0.0811 0.1151 0.0970 0.2618 0.1171 -0.0519 0.1193 

08-26-11 -8.80% 3.93% -7.28% -5.29% -14.84% 6.29% -12.85% 1.99% 

09-25-11 -8.38% 2.83% -11.85% -2.40% -1.35% -8.21% -8.09% 4.24% 

09-15-11 2.02% 7.28% 5.92% 4.97% 2.00% -20.21% 1.98% 4.47% 

04-20-12 9.10% 0.58% -2.51% -0.33% -1.87% 9.48% 8.22% -6.53% 

09-14-10 1.81% -0.41% -15.33% 8.17% -8.97% 0.32% 1.79% 7.98% 

06-25-11 25.82% 22.69% 7.50% 9.33% 14.44% -20.78% 23.24% -8.82% 

06-04-12 7.73% 6.87% 9.79% 4.82% -1.27% 18.69% 6.46% 4.84% 

Average 9.09% 6.37% 8.60% 5.05% 6.39% 12.00% 8.95% 5.55% 

STDev 11.84% 7.80% 9.96% 5.52% 9.13% 15.04% 11.73% 6.32% 

Table 17: Errors of moment of inertia approximation for all feet positions 

The table shows that the approximations for the moment of inertia of the two body segments 

using the unconstrained nonlinear optimization are accurate for all feet constellations with an 

overall error of 7.75%±6.24%. 

 

5.2.2 Tail Approximation 

 

After describing the approximations for the lizard body, this section of the chapter will address 

the tail approximations. As for the body, the mass, distance of the center of mass to the anterior 

end of the body and the inertia will be described. The method for approximating the tail 

segments was accomplished by calculating an elliptical truncated cone (TEC) described in 

Chapter 3.4. The width and height of the living agamas (see Table 6) as well as the density of all 

segments were needed to calculate the mass, COM-distance and MOI (about COM) of each 

particular tail segment.  

 

Due to uncertainty of validity of the formula used for the approximation by Kwon (1998) the 

formulas were verified by calculating the limits of the elliptical truncated cone. Firstly geometrical 

shapes possible by manipulating the minor and major axis values were calculated independently 

and verified using the actual truncated elliptical cone calculation and SolidWorks® (Dassault 
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Systèmes SolidWorks Corp.) to verify the findings. Table shows the achievable shapes with the 

a0, a1, b0, b1 and L values. 

 

Geometrical shape a0 a1 b0 b1 L 

Cylinder 1 1 1 1 3 

Cone 1 0 1 0 3 

Elliptical Cylinder 1 1 2 2 3 

Truncated circular cone 3 1 5 2 3 

Table 18: Achievable geometrical shapes by values for the minor and major axes of base (a0, b0) and top 

(a1, b1) 

These shapes were then calculated using their original formulas as well as modeled in 

SolidWorks and compared to the calculations by the truncated elliptical cone formula.  

 

Table 19: Validation of geometric shapes for mass and moment of inertia using specific formula 

(Calculation), TEC method and SolidWorks 

The table shows the calculated mass and MOI for the geometric specific formula (Calc), by the 

truncated elliptical cone formula (TEC) and SolidWorks. The used formulas for the specific 

geometric shapes can be seen in Appendix B. 

 

Since the calculation didn’t state if the major and minor axes as well as the Base and the top of 

the elliptical frustum are interchangeable, a function was written to avoid the problematic cases. 

A frustum was handled as a problematic case if the major (b0) and minor (a0) axes of the base 

and major (b1) and minor (a1) axes of the top were perpendicular to each other, resulting in 

a0>b0 and a1<b1 or a0<b0 and a1>b1. Cases of these constellations show at a certain distance 

(x) of the height (h) a circular cross-section where a(x)=b(x)=r. Using this approach the following 

calculations can be conducted. Figure 21 shows a diagram of the calculated case in side view. 

 

 

 

 

 

 

 

Moment of Inertia  Mass MOI around COM (Ixx) 

  Calculation TEC SolidWorks Calculation TEC SolidWorks 

Cylinder 9424.778 9424.778 9424.780 9424.778 9424.778 9424.780 

Cone 3141.593 3141.593 3141.480 1531.526 1531.526 1531.360 

Elliptical Cylinder 18849.556 18849.556 18850.070 32986.723 32986.723 32990.010 

Truncated Circular Cone 21991.200 21991.149 21990.840 29300.961 29300.961 29298.870 
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Figure 21: Diagram of truncated elliptical 

cone in side view 

The distance x to the circular cross-section with radius r can be calculated by the method of 

proportional triangles for the minor axes as 

 

 

     
 
   

    
 (8) 

and for the major axes as 

 

     
 
   

    
 (9) 

 

By expressing r for each axis and equating the two terms, r and x can be expressed as 

 

  
         

           
 (10) 

  
(     ) 

           
 (11) 

 

The program would then split the segment in two parts, calculate the mass, COM-distance and 

inertia of these truncated elliptical cones with either circular base or top. After this calculation it 

would combine the resulting values. At a comparison of these parameters with the normal 

truncated elliptical cone calculation and SolidWorks it was found that the TEC calculation 

accounted for all possible cases and the corrected frustum function was not necessary seen in 

Table 20. Furthermore this comparison was used to assess the cases where a0,b0<a1,b1.  
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Values Normal Calculation Corrected Frustum SolidWorks 

a0 b0 a1 b1 m Ixx m Ixx m Ixx 

3 5 1 2 7.07E+04 3.27E+05 7.07E+04 3.27E+05 7.07E+04 3.27E+05 

1 2 3 5 7.07E+04 3.27E+05 7.07E+04 3.27E+05 6.98E+04 3.21E+05 

5 3 2 1 7.07E+04 1.40E+05 7.07E+04 1.40E+05 6.89E+04 1.35E+05 

2 1 5 3 7.07E+04 1.40E+05 7.07E+04 1.40E+05 7.05E+04 1.39E+05 

3 5 2 1 7.38E+04 2.97E+05 7.38E+04 2.97E+05 7.20E+04 2.89E+05 

1 2 5 3 7.38E+04 1.74E+05 7.38E+04 1.74E+05 7.32E+04 1.72E+05 

5 3 1 2 7.38E+04 1.74E+05 7.38E+04 1.74E+05 7.26E+04 1.69E+05 

2 1 3 5 7.38E+04 2.97E+05 7.38E+04 2.97E+05 7.08E+04 2.84E+05 

Table 20: Validation of parameter dimensions 

After the formula was assessed to be correct, the dead lizard tails were calculated using their 

morphometric and compared with measured data to assess this method of approximation. Table 

21 shows the measured and approximated values for mass and Inertia. The lizard segments are 

numbered from one to four where one is the segment from tail tip to the first tail marker and 

segment six is the segment from the body center to the snout. This way of numbering the 

segments was implemented to have a standardized method for tracking as well as the 

morphometric data. The table shows a maximum mass-error of 44.64% and a maximum inertia-

error of 35.13% for Lizard 2 (06/04/12), making the described approximation method not 

accurate enough. Segment five and six, body front and hind segments, seen in the table below 

are already calculated with the approximations of the previous section resulting in a minimal 

error. 

 

Lizard 2 
Mass [kg] MOI [kg*m²] 

Measured  Approximated Error Measured  Approximated Error 

Segment 1 0.00025 0.000287019 -14.81% 7.0985E-08 9.0038E-08 -26.84% 

Segment 2 0.00101 0.000951448 5.80% 2.4277E-07 2.3977E-07 1.24% 

Segment 3 0.00217 0.002945037 -35.72% 5.3956E-07 7.2909E-07 -35.13% 

Segment 4 0.00269 0.003890776 -44.64% 2.3877E-07 2.4367E-07 -2.05% 

Table 21: Tail mass and inertia approximation 

Since the error of approximation was unreasonably high a density check was conducted using 

the liquid displacement method to decrease the obtained error. This method uses a measuring 

vial with milliliter makings. The vial is filled with water to a certain point. After the object that is 

measured is lowered into the water the new water level is recorded. To increase the accuracy 

the water displacement was measured by a caliber, using a scaling factor to calculate millimeter 

to milliliter. By submerging the object in the water the water displacement equals the volume of 

the object. The density can be calculated by dividing mass through volume. Table 22 shows the 

density calculation for two lizards.  
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Scaling factor 30 ml = 94.69 mm   

Lizards Segments mass [g] water displacement [mm] V [ml] rho [kg/m³] 

06/04/12 

Segment 1 0.25 0.95 0.300982 830.614035 

Segment 2 0.99 2.63 0.833245 1188.12548 

Segment 3 2.13 5.57 1.764706 1207 

Segment 4 2.64 8.02 2.540923 1038.99252 

04/20/12 

Segment 1 0.51 2.06 0.652656 781.42233 

Segment 2 1.12 2.78 0.880769 1271.61631 

Segment 3 1.95 5.16 1.634808 1192.80039 

Segment 4 6.86 20.59 6.523392 1051.60013 

Table 22: Tail density check 

The average of the density of each segment was then used for calculating the new mass and 

inertia values for the agama tail approximation. The results in Table 23 show an increase in 

approximation error to a maximum error of 62.85% and an absolute average error of 34.34% for 

the mass of the tail segments and a maximum error of 62.14% for the moment of inertia. 

 

Lizard 2 

Mass [kg] MOI [kg*m²] 

Measured  Approximated Error Measured  Approximated Error 

Segment 1 0.00025 0.00023134 7.46% 7.0985E-08 7.2573E-08 -2.24% 

Segment 2 0.00101 0.00117016 -15.86% 2.4277E-07 2.9489E-07 -21.47% 

Segment 3 0.00217 0.00353375 -62.85% 5.3956E-07 8.7484E-07 -62.14% 

Segment 4 0.00269 0.00406701 -51.19% 2.3877E-07 2.5471E-07 -6.68% 

Table 23: Tail mass and inertia approximation including measured density average 

The reason for the increased error and the bad approximation of the lizard tails were speculated 

to be connected to the fact that the shape of lizard tail has skin extensions at the dorsal side, and 

resembles more a teardrop than an ellipse. After new morphometric measurements concerning 

the weight, height and width of all segments excluding the dorsal ridge of the body were taken, a 

new estimation could be calculated. The estimate shows a maximum error of 26.47% for the 

mass and a 36.37% error for the Inertia. 

 

Lizard 2 
Mass [kg] MOI [kg*m²] 

Measured  Approximated Error Measured  Approximated Error 

Segment 1 0.00020 0.00015 26.47% 7.0985E-08 4.5169E-08 36.37% 

Segment 2 0.00097 0.00077 20.88% 2.4277E-07 2.0890E-07 13.95% 

Segment 3 0.00200 0.00182 8.99% 5.3956E-07 4.2643E-07 20.97% 

Segment 4 0.00234 0.00227 3.20% 2.3877E-07 1.5468E-07 35.22% 

Table 24: Tail mass approximation with density and new morphometric measurements excluding dorsal 

ridge 
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The previous tables demonstrate that the error of the frustum formula is highly sensitive for 

morphometric measurement errors. Furthermore the error of the two posterior segments could 

be reduced by taking the new measured morphometric data including the ridge to a mass-error 

of 4.17% and 5.48%. The approximation for the inertia was deemed sufficient for our purposes in 

light of the limited influence on the angular momentum described in Chapter 5.2.  

 

5.3 Model 

As shown in previous research (Jusufi et al., 2010; Libby et al., 2012) angular momentum 

exchange is used in aerial maneuvers of lizards for pitch control and dynamic self-righting. The 

generated models aim to prove that this kind of exchange has effects on terrestrial turning 

behaviors as well. Therefore the angular momentum, Equation (17) has to be calculated. After 

discussing the data acquisition, the morphometric data, the data tracking and the lizard 

approximations all needed information is available to implement the trial calculations in MATLAB 

(MathWorks, Inc.).  

 

There are two models, one numeric and one analytic model, which will be explained in the 

following section. The models are interlinked by a cell array called agama_data including, among 

others, values such as certain morphometric data, angle data, the angular momentum for all 

segments over time, velocity and all distances from system COM to segment COMs (ri). 

Although the two models can both calculate generated angular momentum of the lizard motion, 

the first model does this to show differences between tail and body influence. Furthermore the 

numeric model shows the difference to two specific cases of the movement of the lizard motion 

the “rigid stick” and the “varying inertia stick” model explained in the following Chapter. The 

second model focuses on the different effects of the two different components of the angular 

momentum. These components are effects due to body and tail bending (shape change) of the 

lizard and effects due to external impulses such as ground reaction forces.    

 

The models are constructed as 6-link models in relation to the six lizard segments due to the 

number of markers on the lizard. The segment convention was chosen as segment 1 to 6 from 

tail tip to head due to the order of features extracted by the tracking program. 

 

5.3.1 Numeric Model 

The general principle of the numeric model is to analyze the lizard movement based on the 

kinematics extracted from the video analysis to calculate angular momentum of the lizard 

behavior. The general idea of this principle was generated to assess the tail swing of an Iguana 

(Iguana Iguana) with a two-link model (T. Libby, unpublished data) and was further developed 

(N. Kohut, unpublished data) for preliminary analysis on multi-link models. Due to different 

tracking data format, novel approximation methods and increase in level of detail and 

functionality, the calculation program was rewritten.  
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The model, depicted in Figure 22 calculates the angular momentum, Equation (17) using the 

extracted data of the animal trials and compares the resulting data with two special cases of the 

model. These two sub-models, named “Rigid Stick” and “Varying Inertia Stick” model are 

generated to point out the difference of the achieved rotation angle by the real lizard compared 

to a rigid stick (without shape change) with constant inertia and a rigid stick with varying Inertia. 

These sub-models will be described after the general process of the model is depicted.  

 

 

Figure 22: Numeric model – segment 

conventions 

The coordinate system used for the numeric model was defined by the tracking software as a left 

handed coordinate system in the top left corner of the recorded images. This coordinate system 

was then changes to a right handed coordinate system in the computer program and is depicted 

here as the unit vectors E1 and E2. Furthermore the segments of the lizard are defined from one 

to six, starting at the tail of the lizard. 

 

The angular momentum of a system can be attained by calculating the position of the center of 

mass    of segment   

           (12) 

where the position vector of each segment   , the approximated distance to the center of mass 

of said segment   , and the unit vector of the segment    are used. This can be applied for  

     
∑     
 
   

∑   
 
   

 (13) 
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calculating the position of the COM of the total system (system COM) where    depicts the mass 

of segment   and   the total number of segments. The distance between system COM and 

segment COM is calculated by 

               (14) 

and is used to calculate the velocity relative to the system COM       ( ) for each time frame  , 

taking two time steps    for stabilizing effects into account. 

      ( )  
      (   )        (   )

   
 (15) 

After the angle is calculated using the atan2 function (E1 unit vector as 0°) on the position vectors 

the angular velocity can be calculated in the same manner.  

  ( )  
  (   )    (   )

   
 (16) 

The resulting values are now used to calculate the angular momentum around the system COM  

     ∑                    

 

   

 (17) 

where    is the inertia of each segment around its segment COM. The angular momentum 

calculation consists of two separate terms. The term      takes the angular momentum of the 

specific segment into account, the second term the angular momentum of said segment about 

the center of mass of the system. This entails that a segment with low weight has little influence 

on the whole system unless it either has high angular velocity or a large distance to the system 

COM. 

 

To quantify what effect the shape change component of the calculated angular momentum had, 

two rigid stick, single-segment models were established. The effect was shown by comparing 

resulting body angles of the lizard turn of all three models. The first model assumes that the 

lizard is a rigid stick, constraining shape change, resulting in simple calculation of the system 

inertia       using segment inertia   , mass    and distance between segment COM and 

system COM         for all body segments   

                  
  (18) 

      ∑      

 

   

 (19) 

The angle of the rigid model can then be calculated by taking the first term of Equation (17), 

expressing    and taking the time derivative resulting in   
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∫    ( )       (20) 

The angle of the first model shows which amount of degrees would have been possible to turn if 

the lizard would not change in shape.  

 

The second model is calculated similarly, differentiating by using the calculated inertia of the 

lizard while changing its shape during the turn      ( ).  

         ∫
    ( )    

     ( )
   (21) 

The changing inertia of the lizard is calculated as part of the numeric model and is passed to the 

varying rigid stick model for use. The resulting angle          shows the angle that can be 

achieved by a turning lizard with rigid body but varying MOI. It is comparable with a turning one-

segment rod that can vary its length. 

 

The described calculations were integrated in a program which would extract the needed 

tracking data and would generate all needed data for the analytical program. The code of the 

program can be seen in Appendix F. 

 

The program folder contains eight function-files, combined with one main file and a folder 

containing the txt-files of the tracking software as well as an Excel (Microsoft Office) worksheet 

showing the trial phases as described in Table 5. The following listing shows the file-structure of 

the numeric model. 

 

 Trials 

o animal1_trial1_20120424_162300_20120424_162859.txt 

o … 

o tracking_phases.xls 

 Agama.m 

 AnLizardData.m 

 calcSegMOI.m 

 getFilename.m 

 getTrials.m 

 LizardMorphData.m 

 main.m 

 MOI_calc.m 

 search_File.m 
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When the main file of the program is started, the pathname of the folder that contains the txt-files 

of the tracking software has to be defined. This name is used to extract the file names of all 

tracking files. Following this operation, the name and path of the Excel Worksheet containing the 

trial phases is defined the data is extracted. 

The next step of the program is the definition of the model configuration. To better assess the 

calculated data the program was written in a way that would allow for a definition of used 

segments. This means that if it becomes necessary to define the model as two segments, body 

and tail, instead of six, it can be implemented using this model configuration. This method makes 

it necessary to define a new term describing these configurations. Besides the term system 

which stands for the whole system and Segments which stand for a certain section of the lizard, 

the term subsystem was now defined to stand for combined segments. The definition of this 

model configuration is implemented as a cell array, by the name of ‘Segments’, where the cell is 

the system, the arrays are the subsystems and the segment numbers, 1 to 6, are the segments. 

To achieve a six-segment system the cell array is written as follows: 

 

Segments = {[1 1],[2 2],[3 3],[4 4],[5 5],[6 6]}; 

 

The following cell arrays show a three segment model (two tail segments, one body segment), a 

two segment mode (one tail segment, one body segment) and a one segment model (one 

segment – rigid stick). 

 

Segments = {[1 2],[3 4],[5 6]}; 

Segments = {[1 4],[5 6]}; 
Segments = {[1 6]}; 

 

After defining the above mentioned parameters the main file starts an iterative loop (for loop) 

with for all tracking data filenames, opening and passing the parameters filename of the tracking 

file, tracking phase data and the segment constellation to the function Agama. 

     

The Agama function then uses the transferred filename to extract the data of the txt-files. Next 

the agama function extracts the lizard number from the filename and passes it together with the 

segment configuration to the calcSegMOI function. This function is used to extract the 

morphological data from the LizardMorphData function and to calculate the approximation of the 

mass, center of mass (COM) and the moment of inertia (MOI) of the sub-systems. Furthermore 

the function calcSegMOI is used to calculate the “rigid stick” model and the “varying inertia stick” 

model (referred in the code as magic_sick) if the array of the segment constellation is a string. 

This case will be discussed later in the description of the program. 

 

The next step of the program is the extraction of the morphological data of the lizard which ran 

currently processed trial. The morphometric data consists of a height and width vector of 7 

elements, a length and rho vector of 6 elements and an integer value of the total lizard mass. 

The height and width are halved to receive the major and minor axis of the base (a0, a1) and top 
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(b0, b1) needed for the truncated elliptical cone method, as described in Chapter 3.4. These 

parameters, the length (L) and rho for each segment are passed to the function MOI_clac which 

calculates each segment inertia (I), mass (m) and distance to com (g) from the posterior end of 

the segment (the base of the frustum) while calculating from tail tip to head. The MOI_calc 

function was written to be able to calculate the Inertia about the base or the center of mass for all 

three axes (Ix, Iy, Ixx, Iyy, Iz=Izz).  

 

The resulting parameters are used for the tail approximations. The next section will concentrate 

on the body approximations, described in Chapter 5.2.1. The mass approximation uses the 

fraction of the front (6) and hind (5) segment of the lizard in comparison to the whole body. It is 

implemented by multiplying the fraction with the whole body mass (mass_tot) received from 

LizardMorphData. The distance to the center of mass is approximated by the average distance 

from the anterior end to the COM of the dead lizards. The inertia approximation of the body 

segments is calculated by the formula (7) and needs the defined alpha and beta for the front and 

the hind segment as well as the mass, the length and the width to calculate the MOI of the body 

parts of the lizard. 

 

I(6)=front_alpha*m(6)*L(6)^2+front_beta*m(6)*b(6)^2; 
I(5)=hind_alpha*m(5)*L(5)^2+hind_beta*m(5)*b(5)^2; 

 

After concluding the segment approximation, calcSegMOI calculates mass, COM and MOI in 

light of the segment configuration. Due to the fact that the sub-systems themselves are rigid 

entities, the Inertia of each sub-system can be calculated using Equation (18) and (19) of the 

rigid stick model. The center of mass is calculated by Equation (13) and the masses are summed 

and all values are passed back to the agama function. There phase data values for the current 

trial are extracted and the calculation of the angular momentum is started by calling the 

AnLizardData-function. 

 

AnLizardData manipulates the data array of the tracking txt-file to be able to calculate the 

angular momentum. The tracking file is a matrix of values where the columns are x/y coordiantes 

for the tracking features such as head, hipR or tail2. The rows of the matrix are the time steps of 

the tracking. After the tarcking data is converted into a right-handed coordinate system, two 

different procedures for both columns and rows are realized to manipulate amount or order of the 

data. 

 

Columns: 

 Arranging order of tracking features 

 Integrating sub-system configuration 

Rows: 

 Including tracking phases 

 Excluding not fully tracked data sections  
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The columns are first rearranged according to the model convention where the posterior tail 

segment is segment 1 and the anterior body segment is segment 6. The second manipulation is 

the arrangement due to the segment constellation. This would order the tracked data according 

to the defined sub-systems. If the lizard was defined as one sub-system, a 1-link model, the 

tracking data of the tail tip and the shoulder would be positioned sequentially and the remaining 

data discarded. The rows, coordinates for each time steps of the trial, are cropped to a specified 

data range using the data of the trail phases. This could e.g. be implemented for the time of the 

“curling start” to the “uncurling end”. Next the data is controlled for any untracked data points, 

shown as -1 in the tracking data. Since the total angular momentum can just be calculated if all 

segments are available, sections where a part of the lizard left the camera view cannot be used.  

 

The next step of the program is the calculation of the angular momentum, and can be seen in the 

source code in Appendix F, following the Equations (12) to (17). The angular momentum for tail 

and body are calculated by summing the angular momentum of the separate segments. In light 

of the variety of sub-system constellations the convention was made that all sub-systems that 

are posterior or include the segment form hip to tail 4 (segment 4) are added to the tail angular 

momentum. This would solely affect systems such as {[1 3] [4 5] [6 6]}. After the function 

AnLizardData passes the calculated values, as seen in the source code, back to the Agama 

function, the rigid stick models can be calculated.  

 

As described previously there are two different rigid stick models, one evaluating a rigid stick 

with constant segment inertia using the angular momentum to calculate the angle change, 

Equation (20). The second model describes a stick model with varying inertia about the center of 

mass as seen in Equation (21). The implementation in the program of these functions is 

achieved by overloading the getSegMOI function and was done because large parts of the same 

data are calculated for both functions. To override the normal function getSegMOI the segment 

cell array has to be exchanged for a string stating either “stick”, for the rigid model or 

‘magic_stick’ for the model using the varying lizard inertia. Furthermore input arguments for the 

length of a time step (dt), the angular momentum (H) and the inertia relative to the system center 

of mass have to be passed to the function. In comparison to the rigid stick, where the constant 

inertia of a rigid lizard is used, the “varying inertia stick” model uses the MOI generated by the 

lizard during the trial (sum of I_rel_com) for each time step. Equation (20) and (21) calculate the 

angle of each specific time step (angle change). Continuous summation of these values reveals 

the achieved body rotation over time.  

 

As last step the Agama function saves the calculated variables into a cell array named 

agama_data. Agama_data is used as a connection between the numeric and the analytic model 

and consists of the variables: 

 Mass (m) 
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 Anterior COM-distance (d) 

 Length of the segments (L) 

 Inertia of the segments around their COM (I) 

 Segment angles (A) 

 Angular momentum of all segments (H) 

 Distance between the segment COM and the system COM (R_rel_com) 

 Velocity of segment COM relative to system COM (V_rel_com) 

 Segment Inertia at COM relative to system COM (I_rel_com) 

 MOI of the rigid stick model (I_stick) 

 Index of tracking start (start_idx) 

 

The program then returns to the main file and calculates these values for all existing trials, 

saving all received values into a cell array. There the agama_data file, consisting of all 

information for all trials, is saved and can be used for the analytical model. The main file then 

displays the partial results. 

 

To verify the validity of the model a program was written to generate a set of tracked test data of 

a lizard rotating with constant velocity around a selectable axis. In this case the angular 

momentum has to be constant where the angular momentum of body and tail are in defined 

relations. As a second verification of the program the second model was used to analytically 

calculate the angular momentum and was compared to the numeric model showing matching 

results.  

 

5.3.2 Analytic Model 

The analytical chain model was written (T. Libby, unpublished data) to combine the results of the 

numeric model with a zero angular momentum model. The zero angular momentum model 

revealed body rotation of the trial if the lizard would have no external impulses such as ground 

reaction forces. Furthermore the analytical model was able to calculate the angular momentum 

for the lizard trial by receiving the segment angles of the numeric model and was able to verify 

the results. It furthermore extended the functionality as well as the visualization possibilities of 

the results. Due to the simultaneous development of the two models and the fact that the 

previously described model acts as a foundation to this model, the model is described as part of 

the master thesis and not as part of the background. Due to the fact that there was only partial 

involvement of the author of this master thesis in the developing process of this model, the basic 

design and functionality alone will be described. The general principle of the program is deriving 

the analytical expressions for the angular momentum using the center of mass of the system as 

coordinate system origin. The terms are calculated by expressing the vector term for all 

distances from segment COM and system COM (ri) and insert these terms into the term of the 

assumption that distance from system center of mass to the origin (dc) is zero. This generates a 

term that is only dependent on the segment angles ( ), segment velocities ( ̇) and known 
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constants. It is then possible to express the angular momentum formula in a form where the 

angular momentum is the sum of all segment scalar terms (ai) multiplied by the angular velocities 

(  ̇) of the segments by fracturing out the angular velocity. The angular velocities are then written 

as shape angle velocities, so velocities relative to the velocity of the first angle. The formula can 

be transformed to show the resulting angle of the first segment, dependent on all other segment 

angles. The following figure shows the six segment model and the needed vectors and angles. 

As seen in the figure the convention for the segment constellation is first segment starting at the 

head to the 6 segment being the last segment of the tail. Furthermore the model was designed to 

be able to compute the model with a variable segment number. 

 

 

Figure 23: Analytical chain model - segment 

conventions 

The figure shows that    is the vector from the center of mass of the system to the anterior end 

of the first segment, si are the vectors from the anterior end of the segment to the segment COM 

and li the lengths of the segments. The unit vectors     and     are the Cartesian basis vectors 

   and    turned by the angle of  . According to T. Libby (unpublished data) the calculation of 

the vector    can now be described as  

                  (22) 

This leads to the general term of describing the vectors from the system center of mass to each 

segment center of mass (  ) as 

      ∑     

   

   

       (23) 
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When describing the center of mass of a system, it can be described as the sum of all masses 

with the distance    from the origin of the coordinate system equaling the sum of masses (  ) 

with the COM-system to COM-segment distance of   . 

(∑  

 

   

)   ∑    

 

   

 (24) 

When defining the COM as the origin of the coordinate system     , and inserting    of 

equation (23) into the formula of the center of mass, the term 

 

  ∑(  (   ∑      

   

   

)       )

 

   

 (25) 

is obtained (T. Libby, unpublished data). Now it is possible to write the formula defining    which 

can then be inserted to equation (23) to define    

 

(∑  
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       (27) 

The velocity can be written in the same manner, exchanging the unit-vector     for its derivative 

 

  
(   )    ̇    due to following calculation.  

                    (28) 

 

  
(   )     ̇          ̇         (29) 

 

  
(   )    ̇(                )    ̇    (30) 

 

The velocities    can then be written as 

Now all needed terms to calculate the angular momentum 

   
∑   
 
   (    ̇    ∑     ̇   

   
   )

∑   
 
   

 ∑    ̇   

   

   

     ̇    (31) 
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are defined. After expressing these terms symbolically, the unpublished data by T. Libby shows 

that  ̇  can be factored out giving the term  

  ∑   ̇ 

 

   

 (33) 

where    is a function of    to   . When defining the shape angles and velocities as being the 

angles or velocities of all segments in relation to the first angle or velocity,  

 ̇   ̇   ̇  (34) 

the angular momentum can be written as a function of  ̇  and the shape angle velocities  ̇  

where    is a function of     to   . 

     ̇  ∑   ̇ 

 

   

 (35) 

According to T. Libby, Equation (35) shows that in the case of a rigid stick  ̇    the second 

term of the equation equals zero, leaving    to be the Inertia of the stick (  ) and  ̇  its angular 

velocity. It is now possible to calculate angle    by integrating the angular velocity. The two terms 

describe now also the different components of the angle change. The first being the angle 

change due to impulse to the system (so the angle change the “varying inertia stick” model is 

calculating), the second term is the angle change due to the shape change of the lizard. This 

means that the second term is the angle change in zero angular momentum conditions. 

   ∫
 ( )

  
   ∫∑

  
  
 ̇ ( )  

 

   

 (36) 

The formula was described in such a way, to calculate the effects of all body angles changes on 

the first body segment. This means that the effects of the segment angle changes show in the 

first angle   . This can be depicted either for the angle changes due to impulse generated from 

ground-reaction forces, the first component of the calculation, or for angle changes due to shape 

changes of the body itself. In Chapter 6.2 the results will show which angle changes due to 

which forces are most prominent at every phase of the trial, stating how important shape change 

are for escape responses of lizards.  

 

Following the description of the principle of the chain model a short overview of the programming 

structure is given. The full code was deemed too long to integrate in the master thesis and can 

be viewed in the code folder contained in the electronic version of the master thesis hand in. The 

code structure is as follows. 

    ∑  ̇ 

 

   

 ∑       

 

   

 (32) 
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 agama_data.mat  

 H_models.mat 

 AngMo_snake.m 

 AnimateChain.m 

 Chain_H.m 

 draw_chain.m 

 Eval_H_poly.m 

 EvalModels.m 

 SimulateChain.m 

 

To run the program, agama_data from the numeric model has to be present in the program 

folder. The next step of executing the model is the symbolic derivation of the analytical 

expression for the angular momentum seen in Equation (32) using Equation (27) and (31). This 

part of the program is executed by AngMo_snake and the results saved as H_models.mat. With 

agama_data and H_models it is possible to start the function EvalModels which is responsible to 

evaluate the model and acts as a main function. After defining the variables, path names and 

Excel phase data. Then the function will call Eval_H_poly where the symbolic formulas of the 

angular momentum are exchanged for numeric values. To start the chain simulation the function 

SimulateChain is called. It calls Chain_H which passes back the angular velocity  ̇  and 

integrates it to receive the resulting first angle of the body   . After the angle is passed back the 

AnimateChain function is called, which together with the draw_chain function animate the model. 

Results of the program will be shown in the results section of this master thesis. 

 

5.4 Robot Design 

To prove the model results and to be able to design and construct a robot in reasonable time, the 

Smart Composite Microstructure (SCM) fabrication method developed by Wood et al. (2008) was 

used as described in the background. To fabricate a robot based on this method, the robot has 

to be designed in 2D space, which on one hand makes the designing process harder due to a 

lack of visualization of the end product itself, on the other hand the robot can be built in short 

time, during the design process. Due to these characteristics the design was conducted by using 

an iterative process. The aim of the design process was not only the feature redesign but also 

the reduction of the motors and to rely on passively moved legs and body motion. The design 

process was divided into six design steps which can be categorized into morphological changes 

and movement changes: 

 

 Morphology: 

o Reducing robot size 

o Reduce foot number 
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o Connect two segments 

 Movement: 

o Including tail motion 

o Passive motion of segments  

o Feet motion 

o Passive motion of feet 

 

The design steps were each seen as separate version of the robot and were built to be able to 

visualize the next design step and to detect possible designs errors. 

As a basis for the robot a new version of RoACH (Robotic, Autonomous, Crawling Hexapod) 

(Hoover, Steltz and Fearing, 2008), the TAYLRoACH (Tail Actuated Yaw Locomotion RoACH) 

(Kohut et al., 2012) was used to implement changes in relation to the results found in this master 

thesis.  

 

 

Figure 24: TAYLRoACH Robot excluding baterie and electronics for better overview 

(Kohut et al., 2012)  

The robot was chosen due to its stability and the fact that the left and right sets of legs are 

actuated separately. Although this separation would have to be redesigned so that the feet move 

relative to each other, the independent movement was necessary to start out without constraints. 

A further advantage of this robot version was the fact that a possible tail connection was already 

designed and implemented in the robot. 

 

For designing the robot, AutoCAD® by Autodesk, Inc. was used, due to the good 2D capabilities. 

To construct 2D models for the SCM fabrication method in AutoCAD, three different line types 

can be differentiated. The black lines depict the outer lines of the features, which will be cut in 

the last step of the fabrication process. The red lines describe the flexures, so the lines which will 

be cut before the PET is merged with the cardboard. The lines are cut into both cardboard 

sheets which are then merged with the PET sheet in between. The third line type (yellow) is 
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construction lines, which are used to define feature centers and limits. This line type will have no 

effect on the fabrication process and are only for design purposes. 

 

5.4.1 Morphology 

In comparison to previously designed robot models of this kind, the new design would 

incorporate two separate sections, connected by a rotational joint. To implement lateral body 

bending in the robot, it had to consist of two separate sections. Since the two separate sections 

had to be fully functional the robot TAYLRoACH had to be decreased in size to act as a single 

segment of the new design. Together with its decrease in size less legs had to be implemented. 

After the successful implementation of these two features, two body segments of the same 

structure were combined using a rotational joint flexure. 

 

The first design change to the TAYLRoACH was a change of size combined with a change of leg 

number. The total length of approx. 100 mm was reduced to 63.8 mm. To change the overall 

length of the robot, all lengths of features parallel to the longitudinal axis of the robot had to be 

shortened the same distance. As seen in Figure 25 this includes the main body parts, the feet 

mountings and the stabilizing shafts of the synchronizer. The features perpendicular to the 

longitudinal body axis, such as the synchronizers themselves parts for supporting the foot 

mounting could be left in the same configuration. 

 

 

Figure 25: Upper main body part, upper leg mounting, middle leg mounting of 

TAYLRoACH in comparison to frist version of new design 

While changing the size of the whole body size the feet number was reduced. The new back-

bending model was designed to have two feet for each segment. This means the reduction of 

from three feet for each side, of the old model, to one foot, in the new model. The feet were 

designed in such a way that a connection of the left and right side of the foot would result in an 

asynchronous movement, meaning that the mounting on each side had to be different, one 

connecting to the bottom mounting one to the top mounting.  With the change of the feet number 

and positions the mounting had to be changed accordingly.  
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The next change in the design was the connection of two robot bodies as segments with a 

rotational joint. Different methods of rotational joint were assessed, including methods similar to 

hinges using bearings to connect the two segments with each other. This method was assessed 

as not advantageous due to the weight increase at a position of the robot that was assessed to 

be already under stress due to torques acting perpendicular to the joint in latitudinal direction of 

the body. Furthermore the fabrication process was extra designed for stiff lightweight solutions 

combined with the possibility of flexures as joints. The final solution was the implementation of a 

flexure in vertical direction at the middle line of the robot segments. The body segments were 

extended at the main body parts and reinforced with plates to uphold the stiffness. Then a part 

was constructed that would extend to both main body parts with a flexure vertically to robot 

allowing for yaw movement. Figure 22 shows a comparison of the first version to the second 

version of the new robot including the stiffness plate (4) and the connection flexure (5) with the 

joint. The build robots can be seen in Figure 37 in Chapter 6.2. 

 

 

Figure 26: Version 1 in comparison to version 2 of new design upper main body part (2), lower main body 

part (2), stiffening plate (3), segment connection (4) and synchronizers (5) with additional synchronizer of 

robot version 3. 

5.4.2 Movement 

The second set of proposed design modification addresses the implementation of the movement 

for the robot. The three proposed changes concern the movement of the tail, body bending and 

the legs. As described in the results section the process of assessing various methods of 

implementing the body movement for the lizard robot could not be completed. 

 

Due to the fact that the robot design was based on the results of the master thesis the reasoning 

for many of the possible implementations will be described in length in the result section of the 

master thesis. 

 

To understand the principles, involved in lizard motion, the movements of the lizards in the trials 

as well as the results have to be studied. The following section of the design chapter will give a 

short overview of the motions-sequence for normal gait of the lizard and for the escape 

response. 

 

1 

2 

3 

5 

4 
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The first observation was the feet position of the lizards during their gait. At full bending of the 

lizard body during a step, the outer front leg extends as far forward as possible while the hind leg 

is extended backwards. The inner legs are pointing toward each other, front leg in backwards 

direction, and hind leg in forward direction. At the next step the lizard moves its inner front foot 

and outer hind foot forwards bending in the other direction.  

 

When dealing with escape responses in lizards the front feet push in outwards direction of the 

bending while the tail accelerates towards the bending direction. The front feet of the lizards 

leave the ground, coupled with an induction of torque by the hind feet and in some cases with a 

traversal of the tail into the sagittal plane. The tail stops curling inwards and starts curling in the 

opposite direction. After the lizard touches down the first step of the running phase is initiated 

finalizing the turn. When comparing the feet movement of the normal lizard gait and the escape 

response the same movement of hind feet can be seen. The front feet differ in their movement. 

Where the feet movement of hind and front of the gait is asynchronous the feet movement of the 

escape response is unrelated to each other. 

 

 

Figure 27: Lizard feet movement during a) Running gait b) Escape response 

Tail 

As described in the results of the thesis the tail motion concerning its role as lift off help in the 

aerial phase of the lizard turn has yet to be assessed. What can be said is that there is an aerial 

phase of the lizards when turning, giving them one center of rotation, their hind legs. There are 

two possibilities of including the tail into the lizard. Firstly the tail is connected as in 

TAYLRoACH, in plane with the body. In this configuration the robot relies on the feet movement 

to execute the necessary ground interaction for a possible turn. The feet are moved 

perpendicular to the longitudinal axis of the body, away from the robot to initiate the turn. The 

second possibility is to mount the tail at an angle to the robot, enabling a traversal of the tail into 

the sagittal plane. When positioning the tail mounting at an angle of 0° to 90° seen from the 

longitudinal axis upwards, the tail swing in a circular motion from one side to the other. In this 

case, the tail moves from the transversal plane of one side, over the sagittal plane at a 

displacement specified by the angle, to the traversal plane of the other side. It is believed that 

trough this exchange of angular momentum between tail and body, the friction forces for the front 

segment of the lizard will be reduced, thereby enabling the turn.  

b) a) 
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Segments 

By implementing the tail in the robot, the included motor can be used to passively move the body 

motion. Using an eccentric wheel, a shaft is used to translate the rotary movement into linear 

movement. This linear movement is then used to steer the body rotation of the front segment. A 

possible solution for the implementation of the passive segment movement is seen as top view in 

Figure 28. On the right side of the figure the tail motor block is seen in light grey. As in the 

TAYLRoACH the motor block consists of several gears, shown in blue to achieve the necessary 

tail angels and velocities. The robot segments are depicted in middle gray. Due to the fact that 

the two possibilities, of a planar motor section and a tilted motor section persist, the gears 

consist of an additional gear on the robot itself. This gear (6) is used to influence the amount of 

linear motion and, in the case of a tilted motor solution to be able to translate the rotary 

movement from the tilted plane to a horizontal plane using a bevel gear. The gear, connected to 

the robot body is driving a rod (5), which trough an eccentric mounting on the gear and 

supporters in longitudinal direction (4), translates the rotational movement into a linear 

movement. The rod is connected to a lever (3) which is connected by a rotary link to the robot. 

The lever translates via another rod the motion of the tail to the frontal segment of the robot. This 

enables a relative motion of the frontal segment to the hind segment and results in the desired 

back bending motion. The rods are connected by either free moving rotational joints, depicted as 

empty white circles (2), or stationary rotational joints connected to the robot, with rotation axis 

outward of the figure plane. 

 

 

Figure 28: Top view of proposal for passive front segment motion by rotational joint connected to the 

robot (1), rotary joint not connected to robot (2), lever (3), supporters (4), connection rod (5) and 

(bevel) gear with eccentric mounting (6) 

 

Feet motion 

The feet motion can be divided into three different constraints. Firstly the relative motion of the 

feet pair on one segment, secondly the connection of the feet motion of the two segments and 

thirdly the aspect of passive feet motion. This motion constrains have to be considered for two 

different movement types. The movement the robot executes when moving forwards and the 

motion the robot needs to execute at the escape response. 

6 
4 

3 

2 
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The asynchronous motion of the feet pair for one segment was implemented using different leg 

mountings on both sides of the robot. This made a connection between the two movable 

sections of the synchronizers possible, while upholding the asynchronous movement 

characteristic of the feet. The left and right side of the synchronizers were connected above and 

below the horizontal cut as seen in the upper right corner of Figure 26, enabling synchronized 

movement of the middle leg mounting.  

 

To combine the gait motion of the feet as well as the escape response movement, the front feet 

have to be able to move in a lateral direction. When thinking about the lateral movement of the 

front feet one has to consider that at any moment just two feet of the whole robot are in contact 

with the surface. This leads to two obvious effects. On one hand the robot itself is unstable when 

walking on the other hand to achieve lateral movement just one leg has to be actuated. These 

effects give rise to either let the tilting behavior of the robot account for the lateral movement 

while turning, or to the possibility of including an actuated longitudinal flexure in the lower body 

parts that are connected to the bottom foot mounting. An actuation of this flexure would tilt the 

leg in contact with the surface in lateral direction, accounting for the necessary movement. 

Furthermore due to the relative low weight of the front segment and the partly tail-induced aerial 

phase the possibility of inducing a lateral movement of the front feet by shifting the phase for the 

front feet motion was considered. This movement would help turn the robot into the right 

direction. The movement of the hind legs during the aerial phase of the lizard turn can be 

accomplished by inducing a step during the turning behavior. To achieve the necessary motion 

the outer hind foot pushes backward while the inner hind foot pushes forward. This induced 

torque helps the lizard to uphold positive impulse throughout the aerial phase of the turn. The 

tilting behavior of the robot plays in this case a vital role to guarantee a tripod stance of the robot, 

where the two hind legs, due to the higher weight of the hind segment and one front leg are on 

the ground.  

 

As with the motion of the robot segments the feet motion was tried to be implemented as 

passively driven components. This was assessed for front and hind legs. When transmitting 

motion to the hind feet of the robot a simple gearing solution can be implemented, connecting 

the tail motion to the leg motion. A more difficult part is the translation to the front feet set. A 

solution for implementing a passive motion as it was done with the hind legs was researched. In 

the case of a gearing solution that would connect the hind feet with the front feet it would be hard 

to separate the body bending behavior from the leg movement. Bevel gears are used to divert 

the motion into the sagittal plane and are connected to a gearing solution defining the needed 

ratio. This can then be used to drive the middle feet mounting, depicted red in Figure 29. For the 

front segment of the robot the rotary linkage to the segment can be changed to a gear. The 

relative motion of the connecting beam to the segment can be used to drive the gears turning the 

foot mounting. Different gear ratios can be used to achieve the relative motion of front and hind 

legs.  
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Figure 29: Side view of proposal for passive front and hind feet movement with bevel gear for 

motion translation to sagittal plane for front and back (1, 4), ratio gears front and back (2, 5) and 

rotary middle mounting for the feet (3, 6)  

Another possibility for designing the leg movement is to drive the front feet with a cable that 

would translate body movement independent motion by exposing the cable to torsion. The 

easiest way of implementing frontal leg movement is the implementation of a motor on the front 

segment of the body with the disadvantage of weight increase.  

 
5.5 Robot Construction 

As soon as one design step, as described in the previous chapter was finalized, the robot was 

printed. To be able to apply the used fabrication process correctly it was necessary to follow the 

conventions of the laser printing software. The software is designed to differentiate between 

different layers resp. colors of a 2D SolidWorks or AutoCAD drawing. Since the flexures and the 

outlines are laser-cut at different steps of the fabrication process they were drawn in different 

layers. 

 

The first step of fabrication was the rough cut of the sheets of poster board in the dimensions of 

230x200 mm. The rough-cut differentiated by 20mm for height and width to the original 

dimensions of 210x180mm to pin the sheet down with weight to avoid displacement during the 

cutting process. As soon as the sheets were cut an adhesive sheet was attached to the 

cardboard. This compound was then fed into a lamination machine to guaranty a solid 

connection. The sheets were then fitted after each other into the laser cutter (VersaLaser VL200) 

and were pinned down with weights to cut the first layer of the drawing, the flexures. The 

cardboard sheets would be stuck together adhesive sheets facing each other, which is why the 

compound had to be cut one with the adhesive sheet facing up and once with the sheet facing 

downwards. After all flexures were cut, seen in Figure 30a the protective foil of the adhesive 

sheets could be removed. One of the cardboard sheets was then attached to a 1μm thick layer of 

PET. After aligning the sheets perfectly using the newly cut dimensions and alignment holes the 

two cardboard sheets with one layer of PET in the middle were stuck together. After the resulting 

layers of cardboard-adhesion-PET-adhesion-cardboard were merged using the laminate 

machine the compound was fitted of the finalizing cut into the laser cutter. After ensuring that the 

sheet was fitted the right way and weighing down, the outlines of the robot parts were cut. 

1 

3 
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Thereafter the parts could be extracted from the rest material. The parts were then fitted and 

glued together in the designed for way.  

 

Figure 30 shows one of the two poster board sheets after the flexures have been cut out to the 

left. In the middle the resulting parts of the first version can be seen and to the right the 

constructed robot of version 2.  

 

 

Figure 30: Construction steps a)Cardboard sheet with cut flexures – version 1 (left) b) final 

laser-cut parts – version 1 (middle) c) complete robot – version 2 (right) 

After the current version is built the robot is assessed and used as a visualization help for further 

design steps.  

 

Due to the early stage of the design process the tail had not been fitted to the current model. The 

tail addition would include the motor. Battery and microcontroller would be placed at the hind 

segment of the robot.  

 

  

a) b) c) 
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6 Results 

Following the successful data acquisition, extraction and implementation, the results can be 

discussed. They will be divided into the same subcategories as the previous chapters, biological 

and technical to enable a clear overview. Due to the novel character of this research topic, much 

of the research time was invested in the biological aspect of the research and the evaluation of 

the morphometric and approximated values. It is also clear that further studies are needed to 

assess implications of the results of this thesis. 

 

6.1 Biological 

The results for the biological aspects are shown below and discuss the data acquisition. Many of 

the described results such as animal behavior are derived from observations of the author. To be 

able to generalize these behavioral characteristics further studies are needed.   

 

6.1.1 Habitat and Standardization  

The habitat was, as described in Chapter 4.1 rearranged and equipped to be able to conduct 

animal trials. For this reason three high power spotlights were positioned to reflect against the 

walls of the lizard cages. The housing was furthermore fitted with caoutchouc mats to act as a 

non-reflective background for the high speed cameras while upholding the surface friction for the 

lizards.  These mats had to be removed again due to the fact that the natural rubber was eaten 

by the crickets which were provided as food for the lizards and might have caused digestion 

problems for the lizards. The camera was arranged so that videos could be taken from an 

overhead view. The equipment was left in the room that the lizards would be not distressed by 

the overhanging lights and camera when taking trails. Furthermore the shelters of the lizard 

housing tank were arranged in a way that the trials could be conducted. It was deemed important 

that the shelters would be put into place a week before the trials to make sure that the lizards 

would know where to escape to. Two shelters, the positioning shelter and the escape shelter 

were positioned in a way that the entrances would point towards each other. The positioning 

shelter was place under the camera, the escape shelter outside of the field of view. The 

arrangement of the equipment for the trials proved to be advantageous since it was possible to 

shine out the whole trial area, while upholding accessibility. The camera position was deemed to 

near to the trail setup. The negative effect can be seen in many trials where a part of the lizard 

leaves the field of view. Furthermore a negative aspect of handling and arrangement of the 

equipment for the trials is the distance of the animal facility from the laboratory as well as the 

small premises of the lizard facility. When evaluating the new method of conducting trials in their 

living environment, it can be said that it was possible to increase the trial rate drastically. The 

assumption that the lizards would be more receptible to stimuli in an environment they are 

familiar with could be confirmed. Furthermore a change in lizard behavior over the course of the 

trials could be identified, where the lizards after several trials were unwilling to go back into the 

shelters. As described in Chapter 4.2.4 the lizards were chased into the shelters to position them 
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in respect to the camera. After the lizard went successfully into the shelter the shelter was lifted 

to be able to induce the escape response via the stimuli. It was noticed that the lizards would 

take longer each trail to return to the shelter. In some cases the lizards were unwilling to go back 

into the shelter after numerous trials. This behavior would suggest a learning behavior that could 

interfere with a standardized trial setup. Another disadvantage to a standardized trial is the 

problem of the lizards getting accustomed to a certain type of stimulus, while using different 

stimuli could interfere with the scientific validity of a general statement about the movement of 

lizards. In the conducted trails the stimulus was presented as a slow hand motion at the 

beginning, to catch the lizard’s attention and an acceleration combined with a grabbing motion 

when coming closer to the lizard. The stimulus was presented from the front to achieve escape 

responses of high angles. 

 

6.1.2 Animal Behavior 

During the trial the lizard motion sequence varied in small degrees from the expectations. It 

could be seen that when a stimuli was induced to early that it was more likely that the lizard 

would turn less than 135° to either keep the predator in view or due to lack of orientation after the 

shelter was lifted. For this reason the positioning shelter was rotated to enable a sight of line 

from the lizard to the escape shelter. Additionally the time between the removal of the shelter 

and the presentation of the stimuli was lengthened to accommodate the lizard to the new 

surroundings. Another dominating aspect of the lizard motion was a traversal of the tail into the 

sagittal plane at the lizard turn after the stimulus was presented. This motion was considered to 

be executed due to a possible reduction of ground reaction forces for the front feet of the lizard 

enabling an easier lift of for the aerial phase. Another possibility why this behavior was executed 

was the fact that the stimuli had to be presented from the top of the lizard tank downwards due to 

the shape of the habitat. The reaction could be interpreted as a defense mechanism against the 

stimuli. A combination of these two possible advantages might be the reasons for this behavior. 

In many of the conducted trials the lizard, although executing the turn would stay at the position 

of the touch down after the areal phase. This behavior can be possibly ascribed to an adaption to 

the stimulus, a high degree of distress or a lack of orientation. Trails with this behavior could only 

be used for evaluating the turn phase, but had to be excluded from evaluations of the running 

phase.  

 

The trials with reduced friction increased the insight of the forces acting at the lizard turn. The 

most prominent aspect of the lizard movement when analyzing the low-friction trials was the 

great displacement of hind legs. At the start of the turn the outer hind leg pushes outward 

laterally and the inner hind leg pushes forwards generating a torque in direction of the turn, about 

the hind legs. This behavior could not be seen in the normal friction trials which suggest that the 

back legs play a great role for the turning behavior of the lizard. 
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The overall number of trails conducted is 126 where 111 where conducted with normal friction 

and 15 with low friction. The trials showed an average turning angle of 112° showing that either 

the lizards were too familiar with the trial situation and thereby showed a decreased escape 

response or the animals were still to unfamiliar with the environment. Another possibility of such 

a small turning angle could be to short resting phases for the animals. 

 

6.2 Technical 

Although many biological aspects had to be addressed, due to the novelty of the research topic, 

the technical aspects were planned to be the significant part of the research and combine data 

extraction and implementation. 

 

6.2.1 Tracking 

Of the 126 trials 40 trials with normal friction and 3 trials with low friction were tracked. Below a 

sequence of figures, extracted from the tracking software are seen. Resulting text files with 

exacted coordinates of the tracked markers were then used in the numeric model.  

 

 

Figure 31: Sequence of tracked video a) movement start b) curling phase – aerial phase c) curling 

maximum d) uncurling phase 

The tracking was conducted mainly by automatic tracking. After the automated tracking had 

stopped, the consistency of the tracking was controlled. Sequences that were too far from the 

marked point on the lizard, or sequences where the point was completely lost were done 

manually. Due to the high value of the search area multiplier and the low threshold the tracking 

was quite stable but increased the time in tracking. 

 

6.2.2 Approximation 

The approximations of the living lizards were conducted separately for the body of the lizard and 

the tail. The body approximations for mass and the center of mass distance were calculated 

using the average fraction of seven dead lizards. This resulted in average mass-errors lower 

than 10% and COM-distance errors of 8.32% for the front and 16.19% for the hind segment of 

the body. The inertia for the body was calculated using unconstrained nonlinear optimization for 

a) c) b) d) 
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equation 4. This resulted in an average error lower than 7%. The methods used for the body 

approximations proved to be accurate enough for our trials. Although the center of mass 

distance had a higher error than we hoped for, a reduction of influence, as described in chapter 

5.2.1 could be proven. 

 

The mass, COM-distance and Inertia of the tails of the living lizards was approximated using a 

truncated elliptical cone method. After validating the formula to be correct and usable for all 

cases the results showed significant error for mass and inertia of approx. 60%. After excluding 

the dorsal ridge from the morphometric measurements the maximum error could be reduced to 

approx. 30%. Furthermore the case was made that the inertia for the posterior segments of the 

tail were of little influence for the total angular momentum resulting in fraction of 0.77% to 2.03%. 

It was also made the case that the total error of the model is less influential than the variations of 

the individual trials. 

 

6.2.3 Numeric and Analytic Model 

The numeric model was verified using simplified model data which was generated by rotating a 

rigid body around a specified position. The angular momentum in this case is constant and was 

verified by independent calculation. Furthermore the data of the numeric model was transferred 

to the analytical model and recalculated, showing equal results thereby validating the numeric 

model. The analytical model was then used to simulate and extract results from the data 

generated by the numeric model. The results will be presented by explaining two different trials, 

Trial-A with no running phase after the turn and Trial-B where a running phase was executed.  

 

Tail influence 

The first achieved result was a comparison between the actual executed body rotation and the 

body rotation that would have been achieved if no external torques are acting on the system 

(total angular momentum is zero). It can be stated that the angle achieved is solely a result of 

shape changes without any external impulses. Furthermore the effect of the tail segments on this 

zero-angular-momentum model was plotted to show how the length of the tail would influence 

the body rotation. In the following figure the actual body angle is depicted as blue line showing a 

single slope for Trial-A. For Trial-B the beginning of the oscillatory effect of the running gait on 

the lizard’s body angle can be seen. From the green line to the ochre line zero-angular-

momentum models are depicted with decreasing segment size from 6 to 2, starting the reduction 

of the segments at the posterior end of the lizard. 
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Figure 32: Angular change of actual body angle and body angles of reduced zero-angular-

momentum models 

The figure shows clearly that the initial angle change of the actual trial and the zero-H model are 

very similar in magnitude. At approx. 65 degree for Trail-A and 50 degree for Trial-B the zero-H 

model starts to turn back. The reductions of the first three tail segments have a high impact on 

the achieved angle which is remarkable considering that the tail has 20% of the total lizard mass. 

If all tail segments are remove and the shape change of the two body segments are the only 

inputs for the turn the body angle decreases to 20°(Trial-A) or 10° (Trial-B). This shows the high 

importance of the tail during the turn of the lizard. 

 

Body angle 

The next comparison shows the actual body angle (blue), zero angular momentum body angle 

(cyan), the body angle achieved by the rigid stick model (green) and the body angle achieved by 

the varying inertia stick model (red). The stick model depicts the angular change of a rigid object 

with the same morphometric data and angular momentum of the lizard excluding the inertia 

change. The varying inertia stick is the model that depicts the angular change including the 

change of inertia over time. Due to the fact that the segments themselves don’t change position 

in relation to each other these two models show the body angle change excluding the shape 

change of the lizard. The figure also shows the phases of the trial. The phases are categorized 

by outer foot contact (dark blue) and the phase when the outer front foot is in the air (light blue). 

The dark red – light red bar at the bottom of the graph show the tail curling behavior from start, to 

maximum, to uncurling end of the motion  

 

It can be clearly seen that in the initial phase, where the lizard’s front feet are still in contact with 

the floor, the angle changes due to shape change dominate. In the second phase, where the 

front feet of the lizards are lifted off of the ground, the forces due to impulse gain importance. 

These two effects where surprising at first, since the lizard seems to be pushing in the first phase 

(generating impulse forces) and shape changing in the second phase (generating forces by 
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exchange of angular momentum). An explanation for the data could be found when looking at 

the frictionless trails. As explained before an exaggerated movement of the hind feet during the 

initial phase could be seen generating a torque about the body’s hind section. Combined with the 

fact that the front feet seem to just follow the movement of the displacement passively the data is 

plausible. In this phase, after the lizard has touched down again the forces due to external 

impulses keep the lizard from rotating backwards. 

 

 

Figure 33: Angular change in comparison of actual body angle (blue) to zero-angular-

momentum (cyan), stick model (green) and varying inertia stick model (red) angle change 

The figure shows the body rotation due to shape change and body rotation due to external 

impulses very clearly and how these two influence the total body angle. Another clearly seen 

feature is how both body angle aspects play a vital role for the total body angle change. What 

can also be seen is that as soon as the body angle would go backwards due to the uncurling of 

the tail, the body angle change due to impulse forces gain importance and keeps the total body 

angle from decreasing.  

 

Body velocity 

A clearer picture of the involved forces is shown by Figure 34 which shows velocities of all the 

models from the previous figure: Actual model (blue); Zero-angular-momentum model (cyan); 

Stick model (green); Varying inertia stick model (red). 

 

The generated torques equal the slopes of the graphs and when compared to the Figure 33 have 

to be applied before any change of angle can be seen. As expected this show a rapid incline of 

the graph depicting the zero-H model in the initial phase. Due to the regular slope of the 

velocities of the models depicting the external impulses, it can be said that the resulting 

generated torque about COM is constant during the first phase and reaches into the second 

phase. As explained before the difference between the stick model and the varying inertia stick 

model is the changing of the moment of inertia around the center of mass. As seen in the figure 

the red line extends further than the line depicting the stick model. This means that although the 
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velocity due to the angular momentum falls of, the velocity of the varying inertia stick can be 

increased by decreasing the moment of inertia with the curling behavior. This shows the well-

known effect of a rotating figure skater pulling his arms in to increase the angular velocity. In the 

second phase of the turn, where the front legs of the lizard are in the air, a decrease of the 

velocity due to the shape change can be seen. This decrease is counteracted by an increase of 

velocity due to external impulses. This is the reason why the total velocity can be seen as a 

relative constant coasting behavior during the second phase of the turn.  

 

 

Figure 34: Angular velocity of actual trial (blue), zero-angular-momentum (cyan), stick model 

(green) and varying inertia stick model (red) 

 

Rotation fraction 

The previously seen figures were evaluated for all trials. To quantify the results for all trials a plot 

was generated to show the relation of the body angle components for all trials for each phase. 

Figure 35 shows the first two phases of the turn for all shape change influenced angle change 

(blue circles) and for all impulse influenced angle change (red circles). The plots show the 

components of the angle change in relation to the actual shape change. In the first phase, the 

phase, where the front feet are on the ground, an average of  68.8% of actual angular change 

are due to forces generated by shape change. In the second phase these forces are still slightly 

dominant with 57.4%. Another interesting fact in the following plot is that in the first two phases 

the values can be linearized and are both in the positive area of the plot. This means that firstly 

the fraction of the components are not related to the turn. This implies that no matter which angle 

is achieved by the turn the fractions of the angle components shape change and impulsive are 

the same. Secondly the positive value speaks for a contribution of both values towards the 

swing.  
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Figure 35: Components of the angle change (shape change - 

blue; impulse - red) in relation to the actual shape change for 

phase 1 and phase 2 of the turn 

The third and fourth phase show opposing angles due to the fact that rotational effects caused 

by the shape change and those caused by external impulses mostly chancel each other out.  

 

 

Figure 36: Components of the angle change (shape change - 

blue; impulse - red) in relation to the actual shape change for 

phase 1 and phase 2 of the turn 

 

6.2.4 Robot Proposal 

The results for the concerning the proposal for the robot implementation of the found biological 

principles combine the first two built versions of the robot and sketches for the implementation of 

the motion implementation. The robot seen in Figure 37 was built as a segmented version of 

TAYLRoACH with the capability of body bending using the smart composite microstructure 

(SCM) fabrication method.  
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Figure 37: Robot built as part of the biological inspired robot proposal 

(version 2) 

The synchronized motion of the leg pairs on each segment was proposed to be implemented by 

connecting the synchronizers of the robot. The tail of the robot was proposed to be connected to 

the robot at an angle to enable an aerial phase of the front feet. Furthermore the hind feet motion 

and bending motion was proposed to be connected to the motor moving the tail of the robot. The 

motion of the front feet was proposed either to be implemented connected to the body motion or 

to be actuated by a separate motor. Due to the phase shift of the feet motion when looking at the 

normal gait and the turning behavior, the motor implementation is seen as a more likely 

implementation to succeed. When looking at the results of the models it can be seen that the 

robot has to firstly make a step at the lizard’s first stride of the turning behavior. Secondly the 

robot has to move its tail at the first phase of the turn.  

 

The results in light of the hypothesis of the master thesis contradict the null hypothesis. Shape 

change during the lizard motion does influence the turning behavior of the lizard. It could be 

proven that the shape change of the lizard increases the body angle by 68.6% in the first phase 

and 57.4% in the second phase of the turn. The second stride is dominated by external impulses 

to counteract the back swing of the tail proving hypothesis three.  
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7 Conclusion 

The goal of the thesis was to conclude if the shape changes in lizard escape responses 

influence the velocity and angle of the turn and to propose a robot design which would 

incorporate this movement. Escape responses are vital for the survival of a species which is why 

the motion sequence is a highly refined and optimized process. Due to previous research that 

showed that lizards use exchange of angular momentum for aerial maneuvers it was deemed 

adequate to presume a similar exchange for terrestrial maneuvers. To prove this hypothesis, 

trials on living lizards of the species Agama Agama was conducted. In the trials the agama was 

presented frontally with a stimulus to induce an escape response. To increase the trail number 

and reduce the time necessary for conducting the trials, they were conducted in the lizard facility 

using their housing tanks as research setup. The trial setup consisted of two shelters, the escape 

shelter and the positioning shelter. The lizard would be chased into the positioning shelter, which 

would guarantee a stretched position of the lizard. After the shelter was lifted off and the stimulus 

presented, the lizard would execute an escape response into the escape shelter. The escape 

response consists of several phases of which the first one is an outward pushing of the front feet 

combined with a curling of body and tail towards the escape direction. The next phase consists 

of the lift-off of the front feet to generate a rotational axis around the hind legs which at this point 

push forward and outward to generate a torque that would help to increase the total turning 

angle. Approximately halfway through the turn the tail starts to uncurl. At the touch down of the 

first stride the lizard initiates the running phase in the second stride the tail uncurls fully. The 

trials were recorded with a high speed camera, were assessed, tracked and exported as text 

files. Of the 126 conducted trials 40 normal friction trials and 3 trials with low friction could be 

used to input into the generated models and be processed. The models consisted of a numeric 

model, which calculated the inertia, angular velocity and angular momentum. To be able to 

calculate the angular momentum the living lizards had to be approximated. For the 

approximation of the front and hind body segment of the lizards, 7 dead lizards were measured 

and an average fraction used to specify the mass and the distance to the COM of the lizard 

segments. The body moment of inertia was approximated using unconstrained nonlinear 

optimization resulting in an average error of less than 10%. The tail was approximated using a 

truncated elliptical cone which was found to be sensitive to measurement errors. After the 

angular momentum was calculated the analytical model could calculate the zero-angular-

momentum case and could compare it to the rigid stick model and the rigid stick model with 

changing inertia. This then was used to show angle and velocity for each component of the 

actual behavior where the zero-angular-momentum case depicted the component for changes 

due to shape changes and the stick models changes due to external impulses. The robot 

proposal could be concluded with a segmented robot with a flexible joint and proposals for the 

implementation of actuation solutions.  
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The thesis can be concluded as successful since all goals were achieved. The results of the 

trials could show that 68.8% to 57.4% of the first stride of the lizard turn was due to shape 

change as well as be implemented in the proposal of the robot.  

 

The results of the master thesis will built the basis for research in the coming years. Further 

projects could include force platforms to evaluate ground reaction forces, and 3D laser scans for 

calculating the morphometric data. Lizard housing, possibly with integrated light and cameras 

could help to increase the trial number. For future trials two stimuli at 45° could increase the 

escape response. Also trials for escape responses while the lizards are running would further the 

understanding of the roles of the feet while turning. Furthermore trials with more camera views 

should be conducted to be able to calculate tail swings into the sagittal plane. For future work the 

models could include different inertia at different foot stances and could be expanded for 3D data 

information.  

 

The conducted proposal of the robot could be implemented and assessed to prove if similar 

values for the components of shape change and external impulses could be achieved.  
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A: HiSpec 1 – Fastec Imaging Corp. 
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B: Truncated elliptical cone – (Kwon, 2008)  
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C: Trial Procedure Diagram  
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D: Trial Phases 
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E: Geometric Formulas  
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F: Matlab code – Numeric model  
% Master Thesis Project: "AgamaTurning", 2012 
% Written by Viktor Gudenus 

 

% Main ----------------------------------------------------------------------- 

  

clear 
clc 
close all 

  
% Files for analysis 
folder_name='Trials'; 
filename = getFilename(folder_name); 
filename = sort(filename); 

  

% Define Excel-Worksheet Phases Name and Path (same path as trials!) & Read  
filename_xls='Trials/tracking_phases.xls'; % Path/filename.xls 
xls_data=struct; 
[xls_data.num,xls_data.text,xls_data.all] = xlsread(filename_xls); 

  

% SubSystem description {[Seg1 Seg2]} from Seg1 to Seg2 of subsystem 
% where:  1=Tail1-Tail2; 2=Tail2-Tail3; 3=Tail3-Tail4; 
%         4=Tail4-Hip; 5=Hip-Body; 6=Body-Head 

  
Segments = {[1 1],[2 2],[3 3],[4 4],[5 5],[6 6]}; % Six-Segemnt Model 
% Segments = {[1 2],[3 4],[5 6]}; % Three-Segment Model 
% Segments = {[1 4],[5 6]}; % Two-Segment Model 
% Segments = {[1 6]}; % One-Segment Model 
% Segments = {[1 1],[2 2],[3 3],[4 4],[5 5]}; %without front body :) perfect 

  

  
 for i = 1:length(filename) 
    % Outputs time, Angular momentum, MOI of links about system center of 
    % mass, etc 
    [time{i}, H_tot{i}, I_rel_com{i}, body_angle{i}, magic_angle{i}, 

stick_angle{i}, I_tot{i}, H_tot_body{i}, H_tot_tail{i}, R_com{i}, 

R_rel_com{i}, R{i}, A{i}, H{i}, omega{i},agama_data{i},H_fraction{i}] = 

Agama(filename{i},xls_data,Segments); 
    % Total MOI about system COM 
    I_overall{i} = sum(I_rel_com{i}')'; 
    max_I(i) = max(I_overall{i}); 
    min_I(i) = min(I_overall{i}); 
    I_ratio(i) = min(I_overall{i})/max(I_overall{i}); 
 end 

  

mean(I_ratio); 
std(I_ratio);  

 

% Calculate influence of I*omega term on angular momentum Fraction 
h_frac_tmp={[] [] [] [] [] [] []}; 
for i=1:length(H_fraction) 
    h_frac_tmp{eval(filename{i}(14))}=[h_frac_tmp{eval(filename{i}(14))}(:,:); 

H_fraction{i}]; 
end 
clear H_fraction 
H_fraction=[]; 
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for i=1:length(h_frac_tmp) 
    h_frac_tmp{i}=mean(h_frac_tmp{i},1); 
    H_fraction=[H_fraction(:,:);h_frac_tmp{i}]; 
end 
H_fraction=mean(H_fraction,1); 

  

  

save('ChainModel\agama_data.mat','agama_data'); 

  
%% Plot output from one file 
Day=25; 
Animal=5; 
Trial=8; 
ind=search_Trial(filename,Day,Animal,Trial); 
fprintf('Displayed file:\n%s\n',filename{ind}) 

  
figure 
plot(time{ind}, H_tot{ind}, 'r', 'Linewidth', 3) 
hold on 
plot(time{ind}, H_tot_body{ind}, 'b--', 'Linewidth', 3) 
hold on 
plot(time{ind}, H_tot_tail{ind}, 'g-*', 'Linewidth', 3, 'MarkerSize', 7) 
title(filename{ind}) 
legend('Total Angular Momentum', 'Angular Momentum of Body', 'Angular Momentum 

of Tail', 'Location', 'Best') 
xlabel('Time, sec') 
ylabel('Angular Momentum, kg-m^2/sec') 
 

color=['g*';'r*';'b*';'c*';'k*';'y*'];  
figure 
G = axes; 
set(G, 'FontSize', 12) 
for i=1:size(A{ind},2) 
    plot(time{ind},(180/pi)*(A{ind}(:,i)-A{ind}(1,i)),color(i,:),'MarkerSize', 

7) 
    hold on 
end 

  
legend('Segment 1', 'Segment 2', 'Segment 3', 'Segment 4', 'Segment 5', 

'Segment 6') 
xlabel('Time, sec') 
ylabel('Angle, deg') 

 
% Main end ------------------------------------------------------------------- 
% Agama ---------------------------------------------------------------------- 
  

 

function [time, H_tot, I_rel_com,  body_angle, magic_angle, stick_angle, 

I_tot, H_tot_body, H_tot_tail, R_com, R_rel_com, R,  A, H, omega, 

agama_data,H_fraction] = Agama(filename,xls_data,Segments) 

  

%script for calculating angular momentum 

 
% Extract data from text file: 
data=importdata(filename); 
if data.data(1,2)==0 
    fprintf('Wrong time line tracking in file:\n%s\n',filename) 
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end 

  

% Strip path from filename: 
[p,filename]=fileparts(filename); 

  
%Determines which lizard to pull morphometric data for 
%number of letters of Folder + 1 (/) + 7 (Animal) + 1 (wanted value) 
lizardnum = eval(filename(7)); 

  
%calculation of Inertia(I), Mass(m), distance to com from posterior-(g) and 
%anterior(d) end, length(L) and density(rho) (all values are tail-to-head 
%direction) 
[I,m,g,d,L,rho,L_act]=calcSegMOI(lizardnum, Segments); 

  

  
%% Excel-worksheet phase data 
% ['filenname','Day','Animal','Trial','Controlled','Body Rotation', 
% 'relative Tail angle','start move','start outer front foot move', 
% 'outer front foot lift-of','outer front foot touch-down','curling start', 
% 'curling max','uncurling end', 
% 'outer front foot moves before inner front foot','notes'] 
xls_phase_data=[]; 
for i=2:size(xls_data.all,1) 
    if strcmpi(filename,xls_data.text{i,1}) 
        xls_phase_data=xls_data.num(i-1,5:end); 
    end 
end 
%for cases where no phases data is available (dummydata) 
if isempty(xls_phase_data)  
    xls_phase_data=[360 0 0 0 0 1000 0 0 1000]; 
end 
%for cases where phase data is incomplete 
if sum(isnan(xls_phase_data))~=0 
    tmp_data=[360 0 0 0 0 1000 0 0 1000]; 
    col=find(isnan(xls_phase_data)); 
    xls_phase_data(col)=tmp_data(col); 
end 

  
%% 
 dt = 1/500; %1/frame rate 
 % Outputs: Angular momentum of each link, Inertia relative to system 
 % center of mass of each link, position of each link relative to system  
 % center of mass, position of each link relative to origin 
[time, H_tot, I_rel_com, body_angle, H_tot_body, H_tot_tail, R_com, R_rel_com, 

R,  A, H, omega,V_rel_com,start_idx,H_fraction] = 

AnLizardData(filename,data.data,xls_phase_data,I,m,dt,g,Segments); 

  
% Determines the inertia of the lizard when it is fully extended 
%Outputs the angle of a rigid stick subjected to the same angular momentum 
[I_stick,z,x,y,w,u,v,stick_angle]=calcSegMOI(lizardnum,'stick', dt, H_tot); 

  

% Outputs the angle of a stick which varies its inertia similarly to the 
% lizard, and is subjected to the same angular momentum 
[I_tot,z,x,y,w,u,v,magic_angle]=calcSegMOI(lizardnum,'magic_stick', dt, H_tot, 

I_rel_com); 
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agama_data={filename,'','','','','','','','','','',''; 
            

'm','d','L_act','I','omega','A','H','R_rel_com','V_rel_com','I_rel_com','I_sti

ck','start_idx'; 
            

m,d,L_act,I,omega,A,H,R_rel_com,V_rel_com,I_rel_com,I_stick,start_idx}; 

  

  
if sum(max(isnan(agama_data{3,6}(:,:))))~=0 
    fprintf('Nan in trial:\n%s\n',filename) 
end 

  
% Agama end ------------------------------------------------------------------ 

% calcSegMOI ----------------------------------------------------------------- 

 

function 

[I_seg_array,m_seg_array,g_seg_array,d_seg_array,L,rho,L_act,stick_angle]=calc

SegMOI(lizardnum, Segments, dt, H, I_rel_com) 
% input:  
% SubSystem description {[Seg1 Seg2]} from Seg1 to Seg2 of subsystem 
% where:  1=Tail1-Tail2; 2=Tail2-Tail3; 3=Tail3-Tail4; 
%         4=Tail4-Hip; 5=Hip-Body; 6=Body-Head 
% Segments = {[1 1],[2 2],[3 3],[4 4],[5 5],[6 6]}; % Six-Segemnt Model (Tail-

Head) 
% lizardnum=1; %Lizardnumber 
% output: 
% I_seg_array = Inertia for each subsystem (from tail tip to head) 
% m_seg_array = Mass for each subsystem (from tail tip to head) 
% g_seg_array = distance to COM measured from posterior end for each subsystem 

(from tail tip to head) 
% d_seg_array = distance to COM measured from anterior end for each 
% subsystem (from tail tip to head) 

  
% for rigid stick calculation 
stk=0; 
if ischar(Segments) 
    if strcmp(Segments,'stick') 
        Segments={[1 6]}; 
        stk=1; 
    elseif strcmp(Segments,'magic_stick') 
        Segments={[1 6]}; 
        stk=2; 
    else  
        fprintf('for stick or magic_stick overload function:\n define Segments 

as `stick` or `magic_stick`') 
    end 
end 

  
%% morphometric data 
% Gives height(a), width(b), length(L), total mass(mass_tot) and  
% density(rho) of Lizard Markers  
% (tail1 tail2 tail3 tail4 hip body head) [m] 
% lizardnum=2; 
[a, b, L, dc, mass_tot, rho,L_act] = LizardMorphData(lizardnum); 
% rho=ones(1,length(L))*1000; 

  

%% calculate MOI of tail segments using ellipsoid solid 
% a0 = radius of major base axis 
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% a1 = radius of major top axis 
% b0 = radius of minor base axis 
% b1 = radius of minor top axis 
% ------ 
% I = moment of inertia of segment [kg*m^2] 
% m = mass of segment [kg] 
% g = center of mass [m] measured from base of frustum (Posterior) 
for i=1:length(L); 
    a0= a(i)/2;  
    a1= a(i+1)/2; 
    b0= b(i)/2;  
    b1= b(i+1)/2; 
    l=L(i); 
    [I(i) m(i) g(i)]=MOI_calc(a0,a1,b0,b1,l,rho(i)); 
end 
d=L-g; %COM distance from anterior 

  

%% Approximate Body Inertia, mass and anterior resp. posterior distance to 
% segment COM 

  
% Mass Approx:  
    % Mass fraction for body segments (incl. head & cut): 

  
    front_av_fraction=0.414587922;       
    hind_av_fraction=0.377828418; 
    % Estimate mass from total: 
    m(6)=mass_tot*front_av_fraction; 
    m(5)=mass_tot*hind_av_fraction; 

  
% Inertia Approx:  
    % Estimate MOI from alpha*m*length^2+beta*m*width^2 approximation (incl. 
    % head and cut) 
    front_alpha=0.0474; 
    front_beta=0.0729; 
    hind_alpha=0.068; 
    hind_beta=0.0811; 
    % Estimate MOI from optimized values 
    %L(5) with cut without?-> how does the intertia react..?? 
    I(6)=front_alpha*m(6)*L(6)^2+front_beta*m(6)*b(6)^2; 
    I(5)=hind_alpha*m(5)*L(5)^2+hind_beta*m(5)*b(5)^2; 

  

% COM to post- (g) and anterior (d) end Approx:  
    % COM offset average (normalized to segement length, inc. head) 
    front_av_d=0.571945203;%average zeta=Gz/length 
    hind_av_d=0.525103941;%average zeta=Gz/length 
    % Estimate COM (measured from anterior tip) from length: 
    d(6)=L(6)*front_av_d; 
    d(5)=L(5)*hind_av_d; 
    % Estimate COM (measured from posterior tip) from length incl. Head: 
    g=L-d; 

     

    g(5)=g(5)-dc; 

  
%% Sub-system specific calculation 

  
SegNum=length(Segments); 
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%for each sub-system: 
for i=1:SegNum 

     
    % Distance from origin(first of segments) to center of mass of each 

segment:     
    Lc_seg{i}=cumsum(L(Segments{i}(1,1):Segments{i}(1,2))); %cumulated sum of 

segemnt lengths 
    Lc_seg_array(i)=Lc_seg{i}(end); %for total length of segment 
    r_seg{i}(1)=g(Segments{i}(1,1)); 
    for j=(Segments{i}(1,1)+1):Segments{i}(1,2) 
        % r is the distance from fist segment to COM of ith segment 
        r_seg{i}(j-Segments{i}(1,1)+1)=g(j)+Lc_seg{i}(j-Segments{i}(1,1)); 
    end 

     
    % SubSystem COM distance from beginning of segment for each segment 
    sum_mr_seg{i}=sum(m(Segments{i}(1,1):Segments{i}(1,2)).*r_seg{i}); 
    sum_m_seg{i}=sum(m(Segments{i}(1,1):Segments{i}(1,2))); 
    COM_seg{i}=sum_mr_seg{i}/sum_m_seg{i}; 

     
    %distance from segment COM to SubSystem COM 
    dcom_seg{i}(Segments{i}(1,1):Segments{i}(1,2))=COM_seg{i}-r_seg{i};    % 

Positive for segments anterior to COM 

  
    %Inertia about COM for SubSystems 
    Ipa_seg{i} = 

m(Segments{i}(1,1):Segments{i}(1,2)).*dcom_seg{i}(Segments{i}(1,1):Segments{i}

(1,2)).^2; 
    Icomp_seg{i} = Ipa_seg{i}+I(Segments{i}(1,1):Segments{i}(1,2)); 

     
    I_seg{i} = sum(Icomp_seg{i}); 
    I_seg_array(i) = I_seg{i}(end); 
    m_seg{i} = sum(m(Segments{i}(1,1):Segments{i}(1,2))); 
    m_seg_array(i) = m_seg{i}(end); 
    g_seg{i} = COM_seg{i}; 
    g_seg_array(i) = g_seg{i}(end); 
    d_seg{i} = Lc_seg{i}(end)-g_seg{i}; 
    d_seg_array(i) = d_seg{i}(end); 
end 

  
% calculations for Stick-model with constant Inertia 
if stk==1 
    if ~exist('I_rel_com','var')&&exist('dt','var')&&exist('H','var') 
        stick_angle = zeros(size(H)); 
        stick_angle(1) = 0; 
        I_stick=I_seg_array; 

  

        for i = 2:size(H,1) 
            angle_change = H(i)*dt*(1/I_stick); 
            if angle_change == NaN 
                angle_change = 0; 
            end 
            stick_angle(i) = stick_angle(i-1)+angle_change; 
        end 
    else 
        fprintf('wrong variables for Stick_calculation:\n 

lizardnum,`magic_stick`, dt, H_tot\n') 
    end 
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end 

  

% calculations for Stick-model with varying inertia 
if stk==2 
    if exist('dt','var')&&exist('H','var')&&exist('I_rel_com','var') 
        magic_angle = zeros(size(H)); 
        I_tot = zeros(size(H)); 
        magic_angle(1) = 0; 
        for i = 2:size(H,1) 
           I_tot(i) = sum(I_rel_com(i,:)); 
            magic_angle(i) = magic_angle(i-1) + H(i)*dt/I_tot(i); 
        end  
        stick_angle=magic_angle; 
        I_seg_array=I_tot; 
    else 
        fprintf('wrong variables for Magic_Stick_calculation:\n 

lizardnum,`stick`, dt, H_tot,I_rel_com\n') 
    end 
end 

 
% calcSegMOI end ------------------------------------------------------------- 

% AnLizardData --------------------------------------------------------------- 
  

function [time,H_tot,I_rel_com, body_angle, H_tot_body, H_tot_tail, R_com, 

R_rel_com, R, A, H, omega,V_rel_com,start_idx,H_fraction] = 

AnLizardData(filename,pdata,xls_phase_data,I,m,dt,l_com,Segments) 
% I, M, and l_com are mx1 vectors of MOI, mass, and length to COM (from 
% posterior end) for each segement. 
% pdata is Nx2*(m+1) (x-y pairs), where m is number of segments and N is 
% number of frames  
% dt is time between samples (scalar)  
% Expects kinematics in following order: 
% [tail1, tail2, tail3, tail4, hipR, hipL, footHR, footHL, body, shoulderR, 

shoulderL, footFR, footFL, head] 
% WARNING: expects pdata in left-handed coordinate system! (origin at upper 
% left of video).  The data are converted to a right-handed system 

  

% Extract Kinematics 
rev = repmat([1 -1],length(pdata(:,2)),1);  % Define vector for flipping y-

axis 
tail1 = pdata(:, 3:4).*rev; 
tail2 = pdata(:, 5:6).*rev; 
tail3 = pdata(:, 7:8).*rev; 
tail4 = pdata(:, 9:10).*rev; 
hipR = pdata(:, 11:12).*rev; 
hipL = pdata(:, 13:14).*rev; 
% footHR = pdata(:, 15:16).*rev; 
% footHL = pdata(:, 17:18).*rev; 
body = pdata(:, 19:20).*rev; 
shoulderR = pdata(:, 21:22).*rev; 
shoulderL = pdata(:, 23:24).*rev; 
% footFR = pdata(:, 25:26).*rev; 
% footFL = pdata(:, 27:28).*rev; 
% head = pdata(:, 29:30).*rev; 

  
%Arrange all Segments of position data we want, converts cm to m 
pdata_corrected = [tail1, tail2, tail3, tail4, (hipR+hipL)/2, body, 

(shoulderR+shoulderL)/2]/100; 
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% Number of Segments 
SegNum = length(Segments); 

  
%Arrange Data to SubSystem-Specific model 
idx_c=0; 
pdata_tmp=[]; 
for i=1:SegNum 
    idx_a=Segments{i}(1,1); % front of segment 
    idx_b=Segments{i}(1,2)+1; % end of segment (Segment number +1) 
    if idx_c~=idx_a % first Point of next Segment = last Point of previous 

Segment?  
        pdata_tmp=[pdata_tmp,pdata_corrected(:,2*idx_a-1:2*idx_a)]; 
    end 
    pdata_tmp=[pdata_tmp,pdata_corrected(:,2*idx_b-1:2*idx_b)]; 
    idx_c=idx_b; 
end 
pdata_corrected=pdata_tmp; 

  
% extract relevant phases of trial (using trial_phases.xls) 
time = pdata(1:length(pdata_corrected(:,1)),2); 
time = time-time(1); 
% from curl beginn to uncurl end 
start_time=roundn(xls_phase_data(7),-4); 
end_time=roundn(xls_phase_data(9),-4); 
start_idx=1; 
end_idx=time(end); 

  
for i=1:length(time) 
    if start_time==roundn(time(i,1),-4) 
        start_idx=i; 
    end 
    if end_time==roundn(time(i,1),-4) 
        end_idx=i; 
    end 
end 
pdata_corrected=pdata_corrected(start_idx:end_idx,:); 
clear start_idx end_idx 

  
%extracting usable data (=not tracked sections) from data sheet 
x=sum(abs([pdata_corrected(:,:)])==0.01,2);%editme 
start_idx=1; 
end_idx=length(x); 
si=0; 
ei=0; 

  

if min(x)==0 
    for i=1:length(x) 
        if x(i)==0 && si~=1 
            start_idx=i; 
            si=1; 
        end 
        if x(length(x)-(i-1))==0 && ei~=1 
            end_idx=length(x)-(i-1); 
            ei=1; 
        end 
    end 
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    start_time=roundn(xls_phase_data(4),-4); 
    if start_time*500+1<start_idx 
        fprintf('tracking data starts after moving_start:\n%s\n',filename) 
    end 

     
    pdata_corrected=pdata_corrected(start_idx:end_idx,:); 
else  
    fprintf('No time where all DataPoints are tracked in this TimtSequence for 

file:\n%s\n',filename) 
end 

  
if max(x(start_idx:end_idx))~=0 
    fprintf('Some DataPoints are not tracked in this TimtSequence for 

file:\n%s\n',filename) 
end 

  

% Time, starts from zero 
time = pdata(start_idx:end_idx,2); 
time = time-time(1); 

  
% Define anonymous function for first order centered difference: 
cdiff = @(yplus, yminus, h)  (yplus - yminus)/(2*h);  

  
% Extract position vector for each point 
k = length(I);      % Num segments 
for i = 1:k+1 
    % position data for each pair of points (m+1 x n) 
    P{i} = pdata_corrected(:,2*i-1:2*i); 
end 

  

for i = 1:k 
    % vectors from ith point to i+1 point 
    u = P{i+1}-P{i}; 
    % Unit vector from ith point to i+1 point 
    U{i} = [u(:,1)./sqrt(sum(u.^2,2)) u(:,2)./sqrt(sum(u.^2,2))]; 
    % Position of the COM of each link 
    R{i} = P{i}+U{i}*l_com(i); 
end 

  

  

% Center of mass location 
R_com_gross = zeros(size(R{1})); 
for i = 1:k 
    R_com_gross = m(i)*R{i}+R_com_gross; 
end 
R_com = R_com_gross/sum(m); 

  
% position relative to the center of mass 
for i = 1:k 
    R_rel_com{i} = R{i}-R_com; 
    dist_com(:,i) = sqrt(R_rel_com{i}(:,1).^2+R_rel_com{i}(:,2).^2); 

     
    % Inertia of a link relative to the system center of mass 
    I_rel_com(:,i) = I(i)+m(i)*dist_com(:,i).^2; 
end 
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% Calculate velocity relative to the center of mass, total H 
n = size(pdata_corrected,1);  % Num samples 
for i = 1:k 
     % Calculate velocities: angular, from origin, from reference O 
     V{i} = zeros(n,2); 
     V_rel_com{i} = zeros(n,2); 
     omega{i} = zeros(n,1); 

      
    % Get angle of ith segment: 
    A{i} = atan2(U{i}(:,2),U{i}(:,1));    % Angle of body segment wrt global 

horizontal 

  
    % Convert angle from +- radians to 0-2*pi 
    A{i}(A{i}<0) = A{i}(A{i}<0) + 2*pi; 

  
    % Make angle continuous (prevent wrap from 0 to 2pi) 
    A{i} = unwrap(A{i});    

     

     
    % Calculate velocities with centered difference: 
    for j = 2:n-1 
        % Velocity of ith segment COM: 
        V_rel_com{i}(j,:) = cdiff(R_rel_com{i}(j+1,:),R_rel_com{i}(j-1,:),dt); 

         
        % Angular velocity ith segment: 
        omega{i}(j,:) = cdiff(A{i}(j+1,:),A{i}(j-1,:),dt);             
    end 

     

     
    % Angular Momentum 
    z = zeros(n,1); % Define zero vector for cross product (z-axis data) 
    H(:,i) = I(i) * omega{i} + cross([R_rel_com{i} z],m(i)*[V_rel_com{i} 

z])*[0 0 1]'; 
    Hdb{i} = [I(i) * omega{i}   cross([R_rel_com{i} z],m(i)*[V_rel_com{i} 

z])*[0 0 1]']; 
    Hdb{i} = Hdb{i}(~sum(Hdb{i}==0,2),:); 
    H_fraction{i}=Hdb{i}(10:29,1)./sum(Hdb{i}(10:29,:),2); 
    H_fraction{i} = H_fraction{i}(~isnan(H_fraction{i}(:,1)),:); 
    H_frac_tmp(i)=mean(abs(H_fraction{i})); 
end 

  
% H_fraction = H_fraction(~isnan(H_fraction(:,1)),:); 
% H_fraction=mean(H_fraction,1); 
H_fraction=H_frac_tmp; 

  
%% Prepare outputs: 

  
% Define Last Segment as body angle (normally shoulders to body)  
body_angle = A{SegNum}; 
body_angle = body_angle - body_angle(1); 

  

  
% Angular momentum 
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H_tot = sum(H,2); 
H_tot_body = zeros(length(pdata_corrected(:,1)),1); 
H_tot_tail = zeros(length(pdata_corrected(:,1)),1); 
A_dbl=[]; 
omega_dbl=[]; 
for i=1:SegNum 
   if Segments{i}(1,1)<=4 || Segments{i}(1,2)<=4 
       H_tot_tail = H_tot_tail(:,1)+H(:,i); 
   else 
       H_tot_body = H_tot_body(:,1)+H(:,i); 
   end 
   A_dbl = [A_dbl A{i}];  
   omega_dbl = [omega_dbl omega{i}]; 
end 
A = A_dbl; 
omega=omega_dbl; 
end 

 

% AnLizardData end ----------------------------------------------------------- 
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