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Chapter 1

Introduction

Many models of the real world may be formulated as L1 regularization prob-
lems. Plasticity, image processing and the application in material sciences
are a few examples. Especially in the field of image processing the class of L1

regularization problems has received much attention recently. Nevertheless,
many L1− regularization problems remained difficult to solve and some of
them also require techniques that are very problem-specific.

In 2009 Tom Goldstein and Prof. Stanley Osher invented at UCLA a new
technique based on the Bregman iteration for solving a very broad class of
L1− regularized problems. Originally, it was invented to solve problems in
image processing. In the first article [8] it is applied, amongst others, to the
first order ROF-model from Rudin, Osher and Fatemi. The application to
higher order models have beed studied very little so far, although they quite
often appear in continuums mechanic, especially in plasticity.

1.1 Applications of image processing

In our present day life, images are omnipresent, no matter if we consider
mechanical engineering, remote sensing or everyday life. One the one hand
they are an easy, compact and widespread way, to represent the physical
world, on the other hand they are also a powerful and widely used medium
of communication. According to Aubert Gilles and Pierre Kornprobst [7], ’it
it very surprising indeed (maybe frightening) to realize just how much images
are omnipresent in our lives, and how much we rely upon them’. Digital
television, luggage surveillance at the airport, or medical images such as
radiograph and ultrasonography scan are example of images that constantly
surrounded us.

Image processing covers any digital technique for signal processing where
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CHAPTER 1. INTRODUCTION 2

the in- and output involves a matrix of gray values representing an image.
Since the early sixties image processing gain more and more importance. One
of the reasons is the development of computers powerful enough to cope with
the large dimensionality of image data and the algorithm of high complexity
to operate on them. Especially in astronomy and medicine, image processing
has a great importance, nevertheless it has its applications in nearly ever
science.

In medicine, image processing is extensively used form the earliest day.
Many devices used in medicine are based on ultrasounds, X-rays, scanners,
etc. The goal is to create images of the human body which can be read and
interpreted more easily by the doctors or are used in medical sciences, as
anatomy and physiology.

Another important application is remote sensing, as mentioned before. It
is about the analysis, measurement or interpretation of scenes at at distance.
Besides the defense and video surveillance and road traffic analysis, the ob-
servation of the earth’s resources are important parts of this domain. With
image processing one can keep an eye on and measure changes in forests, wa-
ter supplies, urbanization, pollution, etc. It also provides tools for weather
forecasting to analyze great amounts of data.

1.2 Overview of the Work

This work deals with the Split Bregman method and its application on differ-
ent partial differential equations. The method was first applied by Dr. Tom
Goldstein and Prof. Stanley Osher at a first order partial differential equa-
tion in image processing. The main focus of this work is in solving different
second order equations with its origin in physics.

In Chapter 2, we introduce the general theory for image processing. We
exemplify the rather new Split-Bregman method for solving one of the most
important functionals in image processing, the ROF-functional. Therefore we
will discuss the Bregman iteration and the augmented Lagrangian method.

Chapter 3 concerns the motivation for this work. There some insight into
the deformation of a thin film and into plasticity, will be given. The models
needed for the main chapter in this work represented by the fourth chapter
are derived in this chapter.

Chapter 4 deals with the implementation of the Split-Bregman method
on the higher order models discussed in Chapter 3, where also a discretization
of the differential operators via finite differences is given.



Chapter 2

Theory

2.1 The ROF-model

This first chapter is mainly based on [7, 11, 15, 10, 5].
In the last couple of years there has been a lot of improvement in the

field of image processing. These days, noise or blur in images is unavoidable.
No matter if it occurs at the image formation process, at image recording
or at image transmission. There are different types of noise such as white
noise, salt and pepper noise, Poisson noise or speckle noise [7]. The last one
appears in radar images and is described by the gamma distribution. The
most common one and the one that we will consider is noise with a Gaussian
distribution. In many cases regularization can be used for image restoration
tasks such as denoising and deblurring.

Let Ω ⊂ Rn be a bounded open subset. As we are speaking of pictures
it is most of the time a rectangle in R2. Suppose that the intensity function
f : Ω→ R describes the noisy image (the data), meaning that in each point
x, y ∈ Ω, f(x, y) is the pixel value of the observed image. Say u : Ω → R is
the original image (the unknown) to which a random Gaussian noise n(x, y)
has been added [11]:

f(x, y) = u(x, y) + n(x, y).

The goal to reconstruct u from our given data f is not an easy task,
because we only know the variance σ and the mean of the noise. Since n is
a random variable the following theory is developed using probability. The
maximum likelihood principle leads to a least squares (L2) fit. The first
ones, who used this framework in the one-dimensional case were Phillips [6],
Tikhonov [17] and later Twomey [13, 14]. In our two-dimensional case we can
find an approximation of our image u by solving a constrained minimization
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CHAPTER 2. THEORY 4

problem. The resulting problem is presented using some smoothing term
R(u) [15]:

min
u
R(u) (2.1)

s.t

∫
Ω

(u− f)2 = σ2.

The energy method now follows by introducing a Lagrange multiplier µ.
One can write (2.1) as an unconstrained problem by minimizing the following
functional:

J(u) = R(u) +
µ

2

∫
Ω

(u− f)2dx.

R(u) can be chosen in various ways. For instance, Tikhonov and Arsenin
[17] in 1977 used the L2-norm of the gradient of the unknown image.

JT (u) :=

∫
Ω

|∇u|2dx+
µ

2

∫
Ω

(u− f)2dx =

= ‖∇u‖2
L2︸ ︷︷ ︸

regularity term

+
µ

2
‖u− f‖2

L2︸ ︷︷ ︸
fidelity term

.

The first term is called regularization or penalty term. The second term,
the data fidelity term, measures the fidelity to the given data. By minimizing
this functional we want the resulting image u to be as close as possible to the
given image f but without the noise. The regularization term is responsible
for removing noise. By keeping the gradient low, this term penalizes high
oscillations and points of discontinuity. Therefore, the new function u will be
smoother than f . The positive regularization parameter µ weights the two
parts. If the parameter is big, the similarity of the noisy image f and u is
more important and otherwise the main focus is to get a smooth result.

But this method has its disadvantages as it is described in [7] and [10]. In
the study of this problem one can see, that the space of the solution, where
both terms are well defined, is the Sobolev space H1.

The Lp norm with p = 2 of the gradient allows us to remove the noise.
Unfortunately the derivative of u is an element of the H1-space and an over-
smoothing of the solution follows. Moreover, lines of discontinuity which
describe the edges can not exist in this space. This is a disadvantage because
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the edges are the most important part for the brain to understand and per-
ceive the picture. It follows that the previous method simply smoothes too
much and the resulting picture is too blurry.

Therefore, we are searching for a norm that on the one hand is not too
strong and it should allow regions of discontinuity. On the other hand it
should not be too weak, because we want to get rid of the noise. Rudin,
Osher and Fatemi [11] were the first who recently and successfully proposed
to decrease p in order to preserve the edges as much as possible. A good
compromise to balance the two aims is the space of functions of the bounded
variation:

Definition 2.1 (BV-seminorm) Let Ω ⊂ Rn be a given domain and let u
be a function in L1(Ω), then the BV-seminorm is defined as:

|u|BV :=

∫
Ω

|Du| = sup
ϕ ∈ C1

0(Ω)n,
‖ϕ‖L∞(Ω) ≤ 1

∫
Ω

udivϕ dx.

This norm is basically the L1 norm of the gradient but it also contains
a sufficient amount of discontinuous functions. Therefore a very successful
edge-preserving image restoration method is to minimize the ROF (Rudin
Osher Fatemi) - functional:

JROF := |u|BV +
µ

2
‖u− f‖2

L2 . (2.2)

2.2 The Bregman method

The Bregman method is an iterative algorithm originated in functional anal-
ysis for solving problems in convex programming. It is a concept for finding
extrema of convex functionals.

Recently the Bregman method became also important in image processing
because its basic idea is used in a new method to solve the ROF model faster.

2.2.1 The Bregman distance

In 1967, L.M. Bregman introduced in [4] the concept of the Bregman distance.
In order to define it for convex, not necessary differentiable functionals, we
need a general notation of derivatives. In the following we introduce the
definition of sub-differentiable (c.f [16, 5]):
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Definition 2.2 (sub-differentiable) LetX∗ be the dual space of a Banachspace
X. A convex functional J : X → R is said to be sub-differentiable at u ∈ X
if there exists a p ∈ X∗ such that

J(v) ≥ J(u) + 〈p, v − u〉 , ∀v ∈ X.

The general derivative p is then called the sub-gradient of J at the position
u. The set of all sub-gradients at u

∂J(u) := {p ∈ X∗ : J(v) ≥ J(u) + 〈p, v − u〉 , ∀v ∈ X} ⊆ X∗

is called the sub-differential of J at the point u.

For continuously differentiable functionals the sub-gradient is unique.
As we set the foundation we can begin with the concept of the Bregman-

distance, see ([8, 5, 4]):

Definition 2.3 (Bregman distance) Let J : X ⊆ Rn → R be a convex func-
tional and ∂J(u) the non-empty sub-differential. Then the Bregman distance
at a point u ∈ X is defined as:

Dp
J(u, v) := J(u)− J(v)− 〈p, u− v〉

where p ∈ ∂J(u) is a subgradient.

As for continuously differentiable functionals only one sub-gradient exists,
therefore also the Bregman distance is unique. In this case this distance
is nothing else but the difference at a point u from J(·) to its first order
approximation at a point v. Even for continuously differentiable functionals
one can see that the Bregman distance is not a distance in the usual way
since it is not symmetric and the triangle inequality does not hold. However,
it is a measure for closeness in the sense, that Dp

J(u, v) ≥ 0 and Dp
J(u, v) = 0

if u = v.

2.2.2 The Bregman iteration

With the Bregman iteration, a wide variety of convex optimization problems
can be solved. For showing the general formulation of this technique we
consider the following minimization problem:

(P ) min
u
E(u) + λH(u).

where E and H are two convex energy functionals and H is differentiable.
Then the Bregman iteration for solving this unconstrained problem (P )

has the following form:
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Algorithm 2.4 (Bregman iteration)
Let u0 = 0 and p0 = 0. For k = 0, 1, 2, . . . compute

uk+1 = min
u
Dp
E(u, uk) + λH(u) = (2.3)

= min
u
E(u)− 〈p, u− uk〉+ λH(u) (2.4)

pk+1 = pk − λH(uk+1) (2.5)

with p ∈ ∂E(uk).

The equality from (2.3) to (2.4) can be easily observed by inserting the
definition of the Bregman distance and considering that we minimize over
u. The update rule of the dual variables, which are represented by the sub-
gradients, derives from the first order optimality condition of the minimizer
(2.4), which reads as following:

0 = (pk+1 − pk) + λH(u).

2.3 The augmented Lagrangian

The augmented Lagrangian method was first used in 1969 by Hestenes and
Powell who called it the ’method of multipliers’. The algorithm has many
advantages over penalty methods. The augmented Lagrangian method is
used for solving constrained optimization problems mostly of the form

min
u∈X

J(u) such that Ku = f,

where J : X → R is a functional and K : X → Y is a linear operator between
Banach spaces X and Y .

To solve this problem, we will convert it into an unconstrained problem.
We want to approach the augmented Lagrangian method by first applying
the classical penalty method. Therefore we add a quadratic penalty function:

Lλ(u; p) = J(u) +
λ

2
‖Ku− f‖2

2.

But for small λ the penalty function does not accurately enforce the
constraint. For that reason the conventional solution is to let λ tends to
infinity. But this causes numerical instabilities. The goal of the augmented
Lagrangian method is that one can obtain an exact solution although having
the value of λ remain constant. Therefore we introduce a Lagrange multiplier
p for the constraint. More precisely we define the Lagrangian by
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Lλ(u; p) = J(u) + 〈p, f −Ku〉+
λ

2
‖Ku− f‖2

2.

Adding the term 〈p, f −Ku〉 helped us to make the method numerically
more stable.

As the Lagrange multiplier appears as an extra unknown we formulate a
saddle point problem, for which (u, p) is a solution.

min
u

max
p
Lλ(u; p)

We obtain the augmented Lagrangian method, by applying the standard
Uzawa algorithm:

Algorithm 2.5 (Augmented Lagrangian Method)
Let u0 = 0 and p0 = 0. For k = 0, 1, 2, . . . compute

uk+1 = min
u
Lλ(u; pk) =

= min
u
J(u) + 〈pk, f −Ku〉+

λ

2
‖Ku− f‖2

2

pk+1 = pk + λ(f −Kuk+1).

2.4 The Split-Bregman method

In this section, we are introducing the from the Bregman iteration and from
the Augmented Lagrangian method resulting Split-Bregman method, which
is a method to solve L1-regularized optimization problems of the form:

min
u
|Φ(u)|1 +G(u).

The key idea of the method is to decouple the L1 and the L2 parts of the
problem. Therefore we begin by introducing a new variable d to represent
the L1 term. This generates a clearly equivalent constrained problem:

min
u,d
|d|1 +G(u) such that d = Φ(u).

By setting J = |d|1 + G(u) and K = Φ it is easy to see that this is a
constrained optimization problem of the form (2.3) so that we can apply the
augmented Lagrangian method.

As before we will convert this problem this into an unconstrained problem
by adding the quadratic penalty function:
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min
u,d
|d|1 +G(u) +

λk
2
‖d− Φ(u)‖2

2. (2.6)

And again, we do not want to make λk tend to infinity so we apply the
augmented Lagrangian method by adding a Lagrange multiplier p for the
constraint:

(uk+1, dk+1) = min
u,d
|d|1 +G(u) + 〈p, d− Φ(u)〉+

λ

2
‖d− Φ(u)‖2

2

pk+1 = pk + λ(d− Φ(u)).

By taking the derivative with respect to u we can see that:

min
u,d

〈pk, d− Φ(u)〉+ λ
2
‖Φ(u)− d‖2

2 ⇔

min
u,d

λ
2
‖d− Φ(u)− 1

λ
pk‖2

2

And by setting bk = 1
λ
pk we obtain the algorithm:

Algorithm 2.6 (Split Bregman)
Let u0 = 0 and b0 = 0. For k = 0, 1, 2, . . . compute

(uk+1, dk+1) = min
u
|d|1 +G(u) +

λ

2
‖d− Φ(u)− bk‖2

2 (2.7)

bk+1 = bk + (Φ(uk+1)− dk+1). (2.8)
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At the end of this chapter we want to show some results. The Split-
Bregman method has been implemented numerically in Matlab. The first
image is a picture where we added some noise and the second one shows the
result of our algorithm:

Figure 2.1: The Split Bregman method



Chapter 3

Higher order regularization
models

The Split-Bregman method was first invented to solve mainly L1-regularized
problems in image processing. The aim of this work is to apply this algo-
rithm to higher order regularization models arising in image processing and
continuums mechanics. The motivation to do so came from the article by
Pavel Belik and Mitchell Luskin [2], which will be described in the following
section. The motivation for my thesis and research area was the BV model
in this article.

3.1 The thin film model of Belik and Luskin

This section deals with the mathematical model of the deformation of a thin
film. As the motivation for my work we will introduce the Belik-Luskin paper
[2]. Fist shortly an application area is mentioned as well as the definition
of the BV-space for this problem. The main part will be to introduce and
understand the model of the thin film.

3.1.1 The motivation

One application area where we can model a physical process by the defor-
mation of a thin film is in crystals. More specific the microstructure of
martensitic and ferromagnetic ones is modeled in this section.

Let us consider the phase transition of a crystal, which is the trans-
formation from one region of space where all the physical parameters are
homogenous to another region. During this procedure, the microstructure

11
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of the crystal is deformed. The change from one of this piecewise constant
variant phase to another piecewise constant variant phase unleashes a surface
energy. This transformation is modeled as a deformation of a thin film.

We are interested in computing energy-minimizing deformations. In 1999
Bhottachara and James [3] derived a variational principle where the surface
energy is modeled by

κ

∫
Ωh

|∇2u|2dx.

In this chapter let κ be a small positive constant, Ωh be the reference con-
figuration of the crystal with thickness h. The integral

∫
Ωh
|∇2u|2dx denotes

the square of the L2-norm of the matrix of all the second derivatives of the
deformation u : Ωh → R3. Unless the constant κ is equal to zero we cannot
have sharp interfaces between two compatible variants.

Belik and Luskin [1] avoided this drawback in 2002 by modeling the in-
terfacial energy with the total variation instead of the L2 norm:

κ

∫
Ωh

|D(∇u)|dx.

As
∫

Ωh
|D(∇u)|dx denotes the total variation of the gradient of u, this

term can again be interpreted as a second derivative. This special norm
allows deformations of finite energy to have sharp interfaces.

With this fitting norm Belik and Luskin found a good model for the
martensitic phase transform of the microstructure from a crystal. In this
model the energy is given by the sum of the surface energy and the elastic
energy. Since we are interested in computing energy-minimizing deformations
we want to find the deformation u : Ωh → R3 that minimizes the following
functional:

E(u) = κ

∫
Ωh

|D(∇u)|︸ ︷︷ ︸
surface energy

+

∫
Ωh

Φ(∇u, θ)︸ ︷︷ ︸
elastic energy

(3.1)

again for a fixed κ > 0. The function Φ(∇u, θ) denotes the energy density
for martensitic crystals. The second argument of the density function is a
fixed temperature θ.

3.1.2 The model

In this subsection we want to explain in detail the model, described in the
previous subsection. It is mainly based on [1].
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In this subsection we denote by S ⊂ R2 an open and connected domain
with a Lipschitz continuous boundary. Let Ωh be the reference configuration
of a thin film of martensitic material with thickness 0 < h ≤ 1:

Ωh = S × (−h/2, h/2).

We are interested in functions u with the domain Ωh and the range R3

and whose gradient ∇u belongs to R3×3. Let us define the total variation
again for functions of those dimensions. Furthermore, we require for our
function u that

∫
Ωh
|Du| <∞ , with

∫
Ω

|Dw| : = sup

{
m∑
i=1

∫
Ω

wi(x)div(ψi)(x)dx : (3.2)

ψ ∈ C1
c (Ω;Rm×n), |ψ(x)| ≤ 1 for all x ∈ Ω

}
.

We assume that the thin film adheres to a rigid material on its edges

Γh = ∂S × (−h/2, h/2).

Let us now define the space A of all admissible deformations of the thin
film:

Ah = {u ∈ W 1,p(Ωh;R3) : ∇u ∈ BV (Ωh), u = u0 on Γh}

where u0 ∈ W 1,p(Ωh;R3) such that ∇u0 ∈ BV (S).
With this information we can understand and interpret the definition of

the energy-functional better:

E(u) = κ

∫
Ωh

|D(∇u)|︸ ︷︷ ︸
surface energy

+

∫
Ωh

Φ(∇u, θ)︸ ︷︷ ︸
elastic energy

= (3.3)

= κ|∇u|BV + ‖φ(∇u, θ)‖2
L2 . (3.4)

At this point it remains to mention a property of the energy density func-
tion Φ and the temperature θ. In the article [2] and therefore also at this
point we consider the temperature as a fixed measured variable and we will
not explicitly denote the dependency of the energy E(u) on the temperature.
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For the energy density Φ : R3×3 × R → [0,∞) which is a continuous
function the following growth condition is assumed:

c1(|F |p − 1) ≤ Φ(F, θ) ≤ c2(|F |p + 1) for all F ∈ R3×3 and θ ∈ R, (3.5)

where c1 and c2 are fixed positive constants. To ensure that deformations
with finite energy are uniformly continuous we will assume that p > 3.

Remark 3.1 [1, Remark 2.1] Note that due to the growth condition (3.5),
we have

Ah = {u : Ωh → R3 : Eh(u) < +∞, u = u0 on Γh.}

Since we chose p > 3 it follows from the Sobolev embedding theorem that
Ah ⊂ C(Ωh) and therefore we can ensure that there is no tear in the deformed
configurations u(Ωh) for u ∈ A.

3.2 Our models

In this section we present the higher order toy models which we use in the
main part of this work, represented in the next chapter. Originally, the Split-
Bregman method, introduced in the previous chapter, was invented to solve
problems in image processing. It is known to be a very fast and successful
method on the first order ROF-functional. The main focus of attention is to
expand this technique to different mathematical areas as material sciences
and continuums mechanics.

The intention for my work was to apply the Split-Bregman method to
the Belik-Luskin model for martensitic crystals. The motivation was that it
is a higher order functional with a similar structure. Inspired by that Belik-
Luskin functional we tried to create a similar but simpler model. To avoid
a detailed modeling of the elastic behavior of the thin films and in view of
the similarity with the ROF-model, we modeled the second term in (3.3) and
defined:

Model 3.2 The Belik-Luskin toy model
Let f be a given function from R2 → R2 and let u denote the wanted function
from R2 → R:

min
u
‖∆u‖1 +

µ

2
‖∇u− f‖2

2. (3.6)
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3.2.1 The plasticity model

Further interested was aroused by the book of Roger Teman [16]. The domain
of plasticity was another motivation for this work. Also in plasticity we
got similar structured problems which we also tried to solve with the Split-
Bregman method.

The word ’plastic’ originates from the Greek and means ’to shape’ [12].
Plasticity is the property of solid materials that its shape can be changed and
retained upon removal of the forces. The irreversible deformation is initiated
through the application of appropriate directed and intensified forces. It
must be of sufficient intensity, at times the object has to be softened by the
application of heat in order to be worked. For the object to attain a useful
value it sometimes need to be hardened for example through exposure to air.

On the contrary an elastic material would recapture its original form. A
brittle one would immediately break. Typical plastic materials are ductile
metals, clay and putty and more daily used ones are toothpaste, mayonnaise
and butter. The plastic deformation behavior depends amongst other things
on the state of stress, the temperature, the nature of load and the rate of
loading.

One of the pioneers in plasticity was Heinrich Hencky. The Hencky model
is a static model from the 1920s, see [16]. It has no memory taking prior
deformations into account. Although it has more in common with a model
of nonlinear elasticity with threshold and does not represent the phenomena
involved in plasticity very well one can think of it as one of the simplest
plasticity model. Some of the research and techniques developed on this
model represents an indispensable first step for the study of more complex
ones. Inspired by this model we consider the following one:

Model 3.3 The plasticity toy model
Let f be a given function from R2 → R, u the wanted function from R2 → R
and let H denote the hessian:

min
u
‖H(u)‖L1 − 1

µ

∫
f.u dx dy. (3.7)



Chapter 4

Numerical Implementation

In the previous chapter, toy examples based on models from material sciences
and plasticity have been formulated. The goal of this chapter, which is the
main part of this thesis, is to give a brief overview of how one could implement
the Split-Bregman method on those toy examples given in section 3.2. The
guideline for this chapter was [8].

By applying the Split-Bregman method to our toy examples we will derive
the second order functional F . As the minimum is demanded the first aim
in section 4.1.2 will be to find its optimality condition. In order to apply the
Jacobi-method to solve this condition the reader will be presented with the
discretization of the fourth order derivative ∆∆.

4.1 Implementation of the thin film toy model

In this section, we will show how the Split-Bregman method is applied on
the model (3.2) introduced in section 3.2. The toy model of a thin film
for crystal microstructure is the starting point of this section. We will not
only illustrate how to use the Split-Bregman framework on this problem, but
also show how one could numerically discretize the equation. After applying
the Split-Bregman method we have to minimize a functional with respect to
two variables. The second one can be easily solved with a general shrinkage
formula, which makes the algorithm very fast. At the end of this section we
will apply the Jacobi method to solve the optimality condition with respect
to the first variable. Let us begin by recalling the Model (3.2)

min
u
‖∆u‖1 +

µ

2
‖∇u− f‖2

2.

16
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4.1.1 Apply Split-Bregman

The first step solving the Problem (3.2) is to apply the Split-Bregman method.
Following the description of this technique in Section 2.4 we should first re-
place ∆ by d. We get the equivalent constrained problem

min
u
‖d‖1 +

µ

2
‖∇u− f‖2

2 , s.t d = ∆u.

In order to obtain again an unconstraint problem we will first weakly and
then strictly enforce the constraint. First weakly enforcing the constraint by
adding a quadratic penalty function as it was done in (2.6), yields

min
u,d
‖d‖1 +

µ

2
‖∇u− f‖2

2 +
λ

2
‖d−∆u‖2

2.

In order to finally getting an unconstrained problem we strictly enforce
the constraint by applying a Bregman iteration, therefore we get:

(uk+1, dk+1) = min
u,d
‖d‖1 +

µ

2
‖∇u− f‖2

2 +
λ

2
‖d−∆u− bk‖2

2

bk+1 = bk + (∆uk+1 − dk+1).

The way how to chose proper values of bk was described in the Bregman
iteration 2.5. As a result of ”splitting” the L1 and the L2 components of the
functional, we are able to minimize with respect to u and d separately. In
order to get a solution for the original problem we have to solve the following
3 subproblems.

Step 1: uk+1 = min
u

µ

2
‖∇u− f‖2

2 +
λ

2
‖d−∆u− bk‖2

2 (4.1)

Step 2: dk+1 = min
d
‖d‖1 +

λ

2
‖d−∆u− bk‖2

2 (4.2)

Step 3: bk+1 = bk + (∆uk+1 − dk+1). (4.3)

Note that because u is now ”decoupled” from the L1−term, the optimiza-
tion problem for uk is differentiable. Therefore, the computation of the first
step can be done by using one of the standard iterative methods such as the
Gauss-Seidel or the conjugated gradient algorithm for solving a system of
linear equations. It will turn out that due to the structure of the matrix, we
will chose an additive decomposition for our matrix as in the article [8]. We
chose to use the Jacobi-method.
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One of the great advantages of this method is that the second step can be
calculated extremely fast, with only a few operations per element. As there
is no coupling between the elements of d we can use shrinkage operators for
solving this equation.

dk+1
j = shrink((∆u)j + bkj ,

1

λ
)

where
shrink(x, γ) =

x

|x|
∗max(|x| − γ, 0).

4.1.2 Numerics of the thin film toy model

In the previous subsection we applied the Split-Bregman method to our toy
model of a thin film for crystal microstructures. As a result, we obtained
three subproblems. The aim of this section is to describe how to solve the first
equation numerically. At the starting point we want to find the optimality
condition for that minimization problem. Then we want to discretize the
resulting fourth order equation by using finite differences. Finally, we want
to apply the Jacobi method on the discretized equation.

In order to find the optimality condition we will take the derivative of the
functional we derived in the first step (4.1)

F(u) :=
µ

2
‖∇u− f‖2

2 +
λ

2
‖d−∆u− bk‖2

2

and set it equal to zero

µ∇.f − µ∆u+ λ∆∆u− λ∆(dk − bk) = 0. (4.4)

For the purpose of finding our minimal deformation u we will rearrange
and discretize this optimality condition. One way of how the discretization
can be done is given later.

(µ∆− λ∆∆)︸ ︷︷ ︸
A

uk+1︸︷︷︸
x

= µ∇.f − λ∆(dk − bk)︸ ︷︷ ︸
b

. (4.5)

Note that to calculate uk+1 the matrix A in general has to be inverted.
In our case the matrix A is a band matrix. This encourage us to use the
iterative Jacobi-method. A short description of the method follows.

For an invertible matrix in Rn×n, there are matrices L and D in Rn×n,
where L is a lower triangular with zeros in the diagonal and D is a diagonal
matrix, such that
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A = L+D + U.

As it can be found in countless books, e.g [9, Chapter 5, Section 2] the
Jacobi method has the following form:

xk+1 = D−1(b− (L+ U)xk).

Discretization of the differential operators

As mentioned before in order to be able to apply the Jacobi method one has
to discretize Equation (4.4). In this part we want to talk about the numerical
approximation of the differential operators ∇., ∆ and ∆∆. One possibility
of discretizing the differential operators is to approximate the derivatives by
the finite differences.

At the starting point we will discretize the simplest version of our toy Ex-
ample (3.2) where u and f are functions from R→ R. Therefore derivatives
in one direction are needed. We will first discretize the differential operator
∇. Note, that in the one dimensional case there is no difference between the
gradient and the divergence. The first derivative with respect to only one
variable can be approximated by the forward difference quotient

∇+
x v :=

1

h
(vi+1 − vi).

In order to be able to understand the connection with the Jacobi-method,
the discrete gradient can be written in a matrix form. Note that one can in-
terpret the discrete gradient of the function u as matrix-vector multiplication
where the matrix has the following form:

∇x =
1

h


−1 1 0

0 −1
. . .

. . . . . . 1
0 0 −1

 .

Now we want to discuss the discretization of the second order Laplace
operator which is also needed in Equation (4.4). It is a linear differential
operator. Therefore we will need the similar backward difference quotient

∇−x v :=
1

h
(vi − vi−1).

Higher derivatives can be approximated analogously. We will apply the
backward difference quotient on the forward difference quotient . Therefore,
we get the second order central difference quotient
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∆cv =
1

h2
(vi+1 − 2vi + vi−1). (4.6)

For Equation (4.5) we can rewrite the discrete second order Laplacian
once again as a matrix

∆ =
1

h2


−2 1 0

1 −2
. . .

. . . . . . 1
0 1 −2


Finally we want to introduce the discretization of the fourth order opera-

tor ∆∆. Therefore we will apply the discrete second order operator on itself.
As a result we get

∆∆cv =
1

h4
(vi+2 − 4vi+1 + 6vi − 4vi−1 + vi−2) (4.7)

and therefore

∆∆ =
1

h4



6 −4 1 0

−4 6 −4
. . .

1 −4 6
. . . . . .

. . . . . . . . . −4 1
. . . −4 6 −4

0 1 −4 6


.

As we discretized all the operation needed we can plug in the obtained
matrices into Equation (4.5). By simple algebraic matrix calculations we get
our matrix A and our left hand side vector b. We will chose h often as 1
and therefore we will substitute the constants µ1 = µ

h2
, λ1 = λ

h4
, µ2 = µ

h
and

λ2 = λ
h2

. Now it can be easily seen that applying the Jacobi algorithm leads
to the iteration

uk+1
i = − 1

2µ1 + 6λ1

[
µ2(−fi + fi+1)−

− λ2

(
(dk − bk)i−1 − 2(dk − bk)i + (dk − bk)i+1

)
+

+ λ1ui−2 − (µ1 + 4λ1)ui−1 − (µ1 + 4λ1)ui+1 + λ1ui+2

]
.
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The 2D case:

Previously we assumed that the function in Problem (3.2) are from R→
R. In order to approach the model form article [2] we will review the problem
with the given function f from R2 → R2 and the wanted function u : R2 → R.
We want to show one way of discretizing the differential operators in the 2D
case. Starting again with the divergence for the vector field f : R2 → R2 on
the right hand side. As we know that the divergence is just the sum of the
first component differentiated with respect to x and the second component
differentiated with respect to y

∇.f = ∇xf1 +∇yf2

where ∇y has an equivalent form ∇x. Therefore all the information needed
were already derived before.

In this part we want to talk about the Laplace operator for our given
function u from R2 → R. As we know the Laplacian is the sum of the second
derivatives with respect to x and y. Therefore we only have to sum up the
central difference quotient from the first part of (4.6) for x and for y and we
get

∆cv =
1

h2
(ui+1,j + ui−1,j − 4ui,j + ui,j−1 + ui,j+1). (4.8)

As we have now mixed derivatives of a function this discretization in
2D is a bit more of a challenge. In the previous paragraph the discretized
function u was a vector and therefore the discretization of the Laplacian was
easily described as a matrix. In this case the discrete function u is a matrix
ui,j ∈ Rm×n and the operator would have the form of a cuboid. To bring this
in a mathematical structure with which one can do basic algebraic operations
we will convert the Laplacian cuboid into a matrix. Therefore we will create
a new index k which will be a combination of the indices i, j. The matrix
ui,j will be rewritten into a vector uk of the size m.n where each column is
below the other. We will not explain this conversion in detail because of the
way we did the implementation we only need to know how the discretization
stencil looks

∆ =
1

h2

 0 1 0
1 −4 1
0 1 0

 .
We will continue with the discretization of the two dimensional fourth
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order operator again for our wanted function u : R2 → R2. Therefore we
have to apply the Laplace operator on itself which lead us to

∆∆ = ∆xx∆xx + 2∆xy∆xy + ∆yy∆yy

The fist part and the last part, the fourth order derivatives with respect
to one variable where already discussed earlier in this section. One has to
sum up (4.7) once with respect to variable x and once again with respect
to variable y. The mixed derivative can also be easily derived by applying
formula (4.6) on itself but with respect to the other index j. Therefore we
get

∆∆ =
1

h4
(ui+2,j + ui−2,j − 8ui+1,j − 8ui−1,j + 20ui,j −

−8ui,j+1 − 8ui,j−1 + ui,j+2 + ui,j−2).

which gives us the fourth order stencil

∆∆ =
1

h4


0 0 1 0 0
0 2 −8 2 0
1 −8 20 −8 1
0 2 −8 2 0
0 0 1 0 0

 .
Putting all the things together and again substituting some constants

µ1 = µ
h2

, λ1 = λ
h4

, µ2 = µ
h

and λ2 = λ
h2

, the Jacobi iteration has the following
form:

uk+1
i = − 1

4µ1 + 16λ1

[
µ2(fi−1 − 2fi + fi+1)−

− λ2

(
(dk − bk)i−2 + (dk − bk)i−1 − 4(dk − bk)i +

+ (dk − bk)i+1 + (dk − bk)i+2

)
+

+ λ1ui−6 + λ1ui−5 + λ1ui−4 + λ1ui−3 −
− (µ1 + 6λ1)ui−2 − (µ1 + 6λ1)ui−1 − (µ1 + 6λ1)ui+1 − (µ1 + 6λ1)ui+2 +

+ λ1ui+3 + λ1ui+4 + λ1ui+5 + λ1ui+6

]
.
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Figure 4.1: The Thin Film deformation in 2D

At the end of this chapter we want to show some outputs of the algorithm.
The first two picture represent the noisy- x and y components of the input
function f . After applying the Split-Bregman method as explained in 4.1.2
we get the following result shown in figure 4.1

4.2 Implementation of the plasticity toy model

In this section we want to talk about the implementation of the Split-
Bregman method on the plasticity toy model (3.3) we discussed in Section
3.2. As in Section 4.1.2 we are also going to discuss the discretization and the
computation of the solution via a numerical method. In this case, we have
to distinguish between the anisotropic and the isotropic case. Because this
model is from the area of plasticity it is more authentic to use the isotropic
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case. Therefore, first we are going to rewrite the problem

min
u
‖H(u)‖1 −

1

µ

∫∫
f.u dx dy

⇔ min
u

∫∫ √
∆xxu2 + 2∆xyu2 + ∆yyu2 dx dy − 1

µ

∫∫
f.u dx dy

As in the previous section our first step for solving the problem is to apply
the Split-Bregman method to our problem. In this isotropic case we will
substitute each derivative with respect to the directions separately. Replace
the second order derivative ∆xx by the variable dxx, analogously ∆xyu by dxy
and ∆yyu by dyy. Therefore, we get the following constrained problem:

min
u

∫∫ √
d2
xx + 2d2

xy + dyyu2 dx dy − 1

µ

∫∫
f.u dx dy

s.t dxx = ∆xxu

dxy = ∆xyu

dyy = ∆yyu.

As before we want to weakly and strongly enforce the constraints. This
is done again by adding a penalty function term and applying the Brgeman
iteration which leads us to the unconstrained problem

min
u,dxx,dxy ,dyy

∫∫ √
d2
xx + 2d2

xy + dyyu2 dx dy − 1

µ

∫∫
f.u dx dy +

+
λ

2
‖dxx −∆xxu− bkxx‖2

2 + λ‖dxy −∆xyu− bkxy‖2
2 +

+
λ

2
‖dyy −∆yyu− bkyy‖2

2. (4.9)

How to calculate the variables bxx, bxy and byy is again derived in (2.5)
from Chapter 2 and in details explained in the Split-Bregman algorithm 2.6:

bk+1
xx = bkxx + (∆xxu

k+1 − dk+1
xx )

bk+1
xy = bkxy + (∆xyu

k+1 − dk+1
xy )

bk+1
yy = bkyy + (∆yyu

k+1 − dk+1
yy ).

In order to solve the equation 4.9 from above and therefore the plasticity
toy model two steps must be performed. One has to minimize again with
respect to u and the variables dxx, dxy and dyy separately
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uk+1 = min
u
− 1

µ

∫∫
f.u dx dy +

+
λ

2
‖dxx −∆xxu− bkxx‖2

2 + λ‖dxy −∆xyu− bkxy‖2
2 +

+
λ

2
‖dyy −∆yyu− bkyy‖2

2. (4.10)

First we want to mention that the minimization over u can be solved
equivalently as in the case for the thin film model numerically with the Ja-
cobi method. Note that in this application the variables dxx, dxy and dyy
do not decouple as they did in the previous section 4.1. In order to apply
the iterative minimization procedure to this problem, we have to solve the
following subproblem

min
dxx,dxy ,dyy

∫∫ √
d2
xx + 2d2

xy + dyyu2 dx dy +

+
λ

2
‖dxx −∆xxu− bkxx‖2

2 + λ‖dxy −∆xyu− bkxy‖2
2 +

+
λ

2
‖dyy −∆yyu− bkyy‖2

2.

In this case minimizing over the variables dxx, dxy and dyy changes a bit
because they do not decouple. Despite this fact, we can still explicitly solve
the minimization problem using a generalized shrinkage formula [18]

dk+1
xx = max(sk − 1, 0)

∆xxu
k + bkxx
sk

)

dk+1
xy = max(sk − 1, 0)

∆xyu
k + bkxy
sk

)

dk+1
yy = max(sk − 1, 0)

∆yyu
k + bkyy
sk

)

where

sk =
√
|∆xxuk + bkxx|2 + 2|∆xyuk + bkxy|2 + |∆yyuk + bkyy|2.

The numerics of this section are analogue to the numerics in Section 4.1.2.
Therefore, we will not discuss them in this work.
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