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Abstract 

 Spruce bark beetles (Ips typographus), which have been a normal part of the ecosystem, 

have become a problem for the Austrian Alps in recent year due to warmer temperatures. They 

attack Norway Spruce (Picea abies) in greater numbers than in previous years, which kills the 

trees and creates a greater chance for avalanches and landslides. This threatens human 

settlements in the area. Early detection of bark beetles during their early “green stage attack” 

from May to July gives managers enough time to treat and save the trees. I compared spectral 

thresholding and a random forest machine learning model to detect the bark beetles using 

Sentinel-2 data with Planet Labs Planetscope data as reference. I was not able to create an 

accurate model for detection, but future research should focus on improved training data, random 

forest parameter selection, and more advanced models such as a convolution neural net.   
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Introduction 

Spruce bark beetles (Ips typographus) have been an increasing problem for Austrian 

forests. Years ago, they lived in the ecosystem and damaged an ecologically acceptable amount 

of trees, but with warming temperatures, they have been thriving and killing many more trees 

(Wermelinger, 2004). Along with climate change, extreme weather events cause increases in 

spruce bark beetle attacks (Wermelinger, 2004). The spruce bark beetles specifically target the 

Norway Spruce (Picea abies). Spruce bark beetles start to attack the Norway Spruce from May 

to July (Huo et al., 2021). This is considered early ‘green stage attack’ where mitigation is still 

possible. August to October is middle to late stage infection where the tree can no longer be 

saved. The trees will be green for one to two years before turning grey. This pest lives across 

central Europe and poses a problem to many of the forests there (Wermelinger, 1999).  

The Norway Spruce are vital to the people and ecosystem in the Alps. Besides providing 

habitat for wildlife, they protect the towns from landslides and avalanches. With increasing bark 

beetle attacks, some settlements, such as Mörtschach, will be in danger and may be forced to 

relocate to a safer location.  

In this study, I set out to determine if freely available Sentinel-2 imagery can be used to 

determine early stage bark beetle infestation. My research questions are: (1) Is Sentinel-2 

imagery capable of early stage bark beetle infestation detection? (2) Which method is optimal for 

early stage bark beetle infestation? In order to answer these questions, I use Sentinel-2 imagery 

as inputs to compare spectral thresholding to a random forest machine learning model to detect 

early stage bark beetle infestation.  

Literature Review 

Spectral Vegetation Index Thresholding 
 Spectral Vegetation Index thresholding is a simple yet powerful tool for helping the 

analyst determine what is on the ground. Certain phenomena of interest have a spectral 

vegetation index value above or below a certain threshold, so by setting the specified threshold, 

the phenomena reveal themselves. Unfortunately, those thresholds change depending on the 

ecosystem, thus making global products hard to produce (Laboda et al., 2007). Therefore, a 

threshold for a specific index and area has to be manually set. Even within a single ecosystem, 

there can be other effects that can change the threshold (Key, 2006). One of the largest 

drawbacks of spectral vegetation index thresholding is seasonal changes in the image. These 

seasonal changes are caused both by the time of year (difference in sun angle which changes the 

reflectance values on the ground) as well as the phenomena of interest (vegetation changes 

seasonally). Fortunately, for endeavors such as bark beetle tree mortality detection where the 

window of detection is a small time of the year, these seasonal changes are less of a concern. 

https://www.zotero.org/google-docs/?Pw8ptW
https://www.zotero.org/google-docs/?pRnjpx
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Hazy conditions are still a concern for comparing spectral vegetation index thresholds of 

different years, so it is important to obtain cloud free data.  

Non-parametric Models 

Machine Learning (ML) is a powerful method for classifying imagery quickly. Several 

methods exist including gradient boosted regression models (GBRM), random forests (RF), 

artificial neural networks (ANN), support vector machines (SVM), and classification & 

regression trees (CART), among others (Jensen, 2015). A possible drawback to ML is it requires 

accurate and abundant training data in order to work effectively.  

 Artificial neural network classifiers are powerful at classifying features and have been 

used in remote sensing applications (Jensen, 2015; Qiu and Jensen, 2004). This method does not 

make assumptions about the data and can use object based image analysis (OBIA), pixel, and/or 

ancillary data (Jensen, 2015; Qiu and Jensen, 2004). ANNs contain an input layer, hidden 

layer(s), and an output layer. The ANN learns through backpropagation and weights are applied 

to different connectors in the neuron. One downside to an ANN is there is a “black box” element 

to it; it is hard to know exactly why it works in a given circumstance. Qui and Jensen (2004) set 

out to try and “illuminate” some of the mysteries of the black box by merging it with a fuzzy 

expert system to make the decision rules clearer.  

Classification and decision trees are a very simple ML method. They work by running 

variables through various sets of decision trees to determine classes. CART is older and less 

robust compared to other ML algorithms, but it does serve as a basis for more powerful 

algorithms like RF and GBRM (Hawbaker et al., 2017).  Support vector machines are another 

useful classification method that transforms the data into higher and higher dimensions until a 

hyperplane can separate the data (Jensen, 2015). A benefit is they do not need a large training set 

and have been found to have similar results as an RF (Pal and Mather, 2005).  

Random Forests have been found to be a robust method for remotely sensed image 

classification (Collins et al., 2018). RFs work by creating many classification decision trees and 

the data is processed through decision trees with random variables at each node and each tree 

votes on how the pixel should be classified. The most votes determine the classification (Jensen, 

2015). Unlike SVM which works well with few data, RF needs a lot of data to work well, which 

is a good application for remote sensing since it inherently has a lot of data. Collins et al. (2018) 

found RF to be better than individual spectral indices when classifying satellite imagery in 

Australia.  

Gradient boosting regression models are similar to a CART in that its basis is a CART 

model where each observation is used to better fit the model depending on how big a residual is 

from the previous CART model. The bigger the residual, the smaller the weight is of the output. 

The GBRM model is more accurate than a regular CART and even a random forest when it 

comes to binary decisions, plus it has extensive use in remote sensing applications (Hawbaker et 

al., 2017). The algorithm does not assume independence among its predictors and can handle 

correlated predictors (Hawbaker et al., 2020). However, more variables, especially correlated 
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ones, may not improve the accuracy (Hawbaker et al., 2020). Hawbaker et al. (2020) model 

wanted to reduce computation time from useless predictors so they selected the variables that 

would not correlate as much.  

Alternative Methods 

There are several methods for detecting a change in a time series of remotely sensed 

images. Some of the popular ones that have been used for detecting bark beetle infestations are 

Continuous Change Detection and Classification (CCDC) and Landsat-based detection of Trends 

in Disturbance and Recovery (LandTrendr). Others have been used for change detection, but 

have not been applied specifically to bark beetle infestation detection such as Breaks For 

Additive Season and Trend (BFAST) and Bayesian Estimator of Abrupt change, Seasonal 

change, and Trend (BEAST). 

 Continuous Change Detection and Classification is a useful method for detecting change 

using a time series, at any point in the time series (Zhu et al., 2012; Zhu & Woodcock, 2014). 

This is useful for detecting recent changes. The algorithm works by first removing noise, such as 

clouds, then uses a threshold derived from all the input bands to detect change (Zhu & 

Woodcock, 2014). When the pixel exceeds the threshold three consecutive times, a change is 

registered. Studies utilizing continuous change detection have been used for detecting bark beetle 

infection (Grabska et al., 2020). The algorithm proved useful in determining bark beetle 

infestation. However, this algorithm has been used more often to monitor past change rather than 

current change. Other researchers have used their own algorithms that are based on similar 

designs to detect bark beetles, and have found success (Ye et al., 2021). The upside is 

theoretically, this algorithm, and those like it, can quickly detect change in a forest. The 

downside is in order to reduce the chances of false positives, three passes are needed. So for 

Sentinel-2 data, it would take 15 days minimum from when the change started to when it could 

be detected. If Landsat is used, or if there are clouds, the minimum amount of time would be 

increased.  

Landsat-based detection of Trends in Disturbance and Recovery is as the name implies a 

Landsat approach to detecting trends, and specifically disturbances, in a time series of data for 

the same area. The algorithm takes a time series of images and applies a temporal segmentation 

on it using a band or a spectral vegetation index. This creates a model where change can be 

detected. Each temporal segmentation has a start, end, duration, magnitude, and speed of change. 

(Kennedy et al., 2010). The algorithm recognizes that change is not just a difference between two 

points in time but rather a continual process. LandTrendr has been found to be useful for 

detecting bark beetle infested areas (Bright et al., 2014; Senf et al., 2015). However, it has 

mostly been used for long term trends and late stage detection of bark beetles. Though it can be 

used to distinguish bark beetle attacks from other types of disturbances, it has not been widely 

used for early stage bark beetle detection (Senf et al., 2015). It is useful since it accesses the 

Landsat archive, which has useful data going back to 1984, but it has a 30 m ground sample 

https://www.zotero.org/google-docs/?EEAg82
https://www.zotero.org/google-docs/?VoRdw1
https://www.zotero.org/google-docs/?VoRdw1
https://www.zotero.org/google-docs/?ONa7hQ
https://www.zotero.org/google-docs/?g2Voke
https://www.zotero.org/google-docs/?E2yTeA
https://www.zotero.org/google-docs/?VLTJs2
https://www.zotero.org/google-docs/?xvYGPM
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resolution which is wide for detecting early stage infection. Lastly, the algorithm is easy to 

implement with Google Earth Engine and ESRI products.  

The Breaks for Additive Season and Trend algorithm and Bayesian estimator of abrupt 

change, seasonal change, and trend algorithms have shone promise in forest change detection, 

but have yet to be applied to bark beetle infestation detection. The BFAST family of change 

detectors (BFAST, BFAST monitor, and BFAST lite) detect the change by decomposing a time 

series into trend, seasonal, and remainder components, and uses that to determine the change 

from seasonal trends(Masiliūnas et al., 2021; Verbesselt et al., 2010). The changes are 

characterized by change and direction. This provides another tool for detecting bark beetle 

infestations, and separates seasonal change from unexplained change. The BEAST algorithm is 

an ensemble that works by quantifying the relative usefulness of other decomposition models 

(Zhao et al., 2019). Ensemble models can be powerful because they bring together other models 

to yield a more accurate result. This has been used in many remote sensing applications for forest 

change detection (Giannetti et al., 2021; Hu et al., 2021). The algorithm has been used with 

programs such as Google Earth Engine, which makes it easy to implement to other areas. There 

are many different algorithms for change detection, but these could prove to be useful ones for 

early stage bark beetle detection.  

Methods for Bark Beetle Detection 

Traditional methods of determining if a tree is infected with bark beetles involves 

physically going to trees and manually checking for signs of the beetle. Though this method is 

considered the most robust for determining infection, it is very time consuming and can let a 

single person reach a small number of trees in a given period of time. That is why remote sensing 

is crucial to determining bark beetle infestations. Much more area will be able to be reached in a 

given amount of time. There are many different methods of remote sensing, each with their own 

benefits and drawbacks. Unpiloted areal vehicles (UAV), also known as “drones,” are a common 

method used for smaller areas. Though the sensors vary, they usually are able to detect a smaller 

ground sample resolution, or “pixel size,” often from 5 cm to 2 m. The drawback is they cover a 

smaller area than other remote sensing platforms. They also come with a cost, though UAVs and 

the subsequent equipment are not unobtainable priced.  Aerial imagery generally provides a 

greater swath width than UAVs, but usually at a smaller ground sample resolution, often from 50 

cm to 10 m. Also, they can be expensive to operate, especially for continuous monitoring. Lastly, 

satellites are often used. Moderate ground sample resolution imagery from governments tend to 

be freely available with a long backlog of data for the same area, but at a much lower ground 

sample resolution from 10 m to 30 m depending on the band and satellite used. Along with 

having a long backlog of data, government satellite data often has a high frequency interval of 

five to seven days, depending on the satellite constellation. Two governmental satellites often 

used for bark beetle detection are the Landsat constellation and the Sentinel-2 constellation. 

Useful Landsat data dates back from 1984 to the present across five different satellites. The 

return interval per satellite is 14 to 16 days, but with multiple satellites often operating at the 

https://www.zotero.org/google-docs/?hsgXof
https://www.zotero.org/google-docs/?04dQx0
https://www.zotero.org/google-docs/?5654yo
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same time, it is more often around seven days. The ground sample resolution is 30 m for the 

optical and 60 to 90 for the thermal band. Sentinel-2 is a constellation of two satellites that 

launched in 2015. Its data is 10 m for the visible light and near infrared bands, 20 m for the red 

edge and shortwave infrared bands, and 60 m for the water vapor bands. Each satellite returns 

over a given area every 10 days, with a five day return interval between the two satellites. Both 

Landsat and Sentinel-2 data comes preprocessed for atmospheric correction and ground 

alignment. Private satellites can provide much higher spatial resolution as well as temporal 

resolution than government satellites. For example, Planet data covers the same area every day 

and is 7 m to sub-meter data. However, this data is rarely free and can be quite expensive. They 

also do not have as long as a data archive as some of the government satellites.  

Unpiloted areal vehicles can be variable in terms of the sensors, so it can be difficult to 

directly compare studies since different sensors are usually used. However, this allows 

researchers to compare different techniques to remote sensing. Kloucek, (et al., 2019) used a cost 

effective optical camera using the visible bands red, green, and blue plus the near infrared to 

monitor Ips typographus disturbances in Spruce forests.  They were able to find changes in the 

infected trees, but not before August, which is when it is still possible to mitigate the spread of 

bark beetles (Klouček et al., 2019). In another study, Lausch (et al., 2013), used a hyperspectral 

camera with ground sample resolutions at 4 m and 7 m to determine early stage infection. They 

found that the 4 m was more robust than the 7 m, but the most accurate they were was 64%, 

which is better than a coin toss but is “insufficient in forestry practices” (Lausch et al., 2013). 

Though the lower spatial resolution was more robust, it was not found to be obsolete.  

Governmental satellites have lower spatial resolutions than UAV mounted sensors, but 

they generally have increased temporal passes which can help increase the chances of early stage 

infection detection. Ye (et al ., 2021) used Landsat for continuous monitoring of forests in 

Colorado, USA for mountain pine and spruce disturbances. Their algorithm had an F1 score of 

0.73 with a 30 m ground sample resolution for spruce trees infected for two years (Ye et al., 

2021). This study scores the difficulty in detecting bark beetle attacks with a greater ground 

sample resolution. Bright (et al., 2015) used Landsat and lidar data as inputs to a random forest 

model, and had “low to moderate” spearman correlations, meaning their model was not 

incredibly accurate at detecting defoliation, underscoring the difficulty of larger ground sample 

resolution (Bright et al., 2014). Grabska (et al., 2020) used Sentinel-2 to map disturbances in 

Scott’s Pine and was 75% accurate in doing so using spectral trajectories (Grabska et al., 2020). 

The higher spatial resolution of 10 m to 20 m with the spectral trajectories is about as accurate as 

previous studies using 30 m Landsat and machine learning. This shows how a less computational 

approach can be as accurate as long as a lower resolution is used. Fernandez-Carillo (et al., 2020) 

used a change detection approach with Sentinel-2 data and achieved above 80% accuracy for late 

stage infections but was lower for early stage infections. They masked out areas that were not 

trees and clear cuts which helped focus on areas that mattered. Some researchers used a 

combination of sensors. Bright (et al., 2015) used Landsat and lidar. The Landsat was better at 

determining dead trees whereas the lidar was better at determining the healthy ones. The data 

https://www.zotero.org/google-docs/?QcSVWs
https://www.zotero.org/google-docs/?ADwbvj
https://www.zotero.org/google-docs/?QqRUgO
https://www.zotero.org/google-docs/?QqRUgO
https://www.zotero.org/google-docs/?xvIAT5
https://www.zotero.org/google-docs/?j2yKLv
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helped balance each other. Huo (et al., 2021) used Sentinel-2 optical and Sentinel-1 Synthetic 

Apatuar Radar (SAR) data to detect green stage bark beetle infestations in Norway Spruce. The 

different data was inputted into a random forest model. They determined that very little detection 

could be done during the green stage, but that after a storm event, many trees became damaged 

and that these damaged trees were much more likely to become hosts for the bark beetles. Huo 

(et al., 2021) looked at stressed trees as a proxy for green stage attack. By detecting the proxy of 

stress during the months green stage attack happens, they found the red and short wave infrared 

bands were the most prevalent and achieved an 80% to 88% accuracy. They were able to detect 

middle and late stage infections with 81% to 91% accuracy. With the low accuracies of the other 

studies, looking at a proxy, such as tree stress, can be a very important method to determining 

bark beetle infestation. Another study found that auxiliary data such as a storm event is 

significant to detecting disturbance (Oeser et al., 2017). Many bark beetles attack after a storm 

event in Europe so it works for bark beetles as well as general disturbances.  

Private satellites have been shown to be robust at detecting bark beetle infestation. Ortiz 

(et al., 2013) used RapidEye and TerraSAR-X data along with three models: generalized linear 

models, maximum entropy, and random forest. The minimum mapping unit was 78.5 m2 

between the two satellite datasets. Using both satellites, they were able to achieve a green stage 

classification accuracy of 74% (Ortiz et al., 2013). They found that the maximum entropy model 

was more accurate than the random forest and general linear models. Immitzer (et al., 2014) used 

WorldView-2 data with a ground sample resolution of 0.46 m and compared a random forest and 

a logistic regression model to classify the images as “healthy,” “green stage,” and “dead” 

(Immitzer & Atzberger, 2014). They found that the random forest model was the most accurate, 

with an accuracy of 75% for the three classes. Both studies that used private satellites for early 

green stage infection detection achieved a similar result using wildly different minimum 

mapping sizes of 78.5 m2 and 0.1764 m2. However, one study utilized SAR data whereas the 

other used only optical data. Though a lower spatial resolution can be helpful, it is not needed to 

make a more accurate model.  

Both optical and radar sensors have been used for detecting bark beetle infestations. 

Though radar has been able to help, it is not as efficient as optical sensors at detecting 

infestations and does not need to be used (Hollaus & Vreugdenhil, 2019; Huo et al., 2021; Ortiz 

et al., 2013). In terms of optical sensors, there is a debate about which wavelengths are more 

sensitive to bark beetles for green stage infestation detection. The Huo (et al., 2021) study found 

that the red and short wave infrared 1 wavelengths are optimal for detecting green stage 

infestation. Grabska (et al., 2020) also agree that the short wave infrared 1 wavelength is optimal 

for detection. However, the Lausch (et al., 2013) study found that visible to near infrared (450 

nm to 890 nm) was optimal, whereas short wave infrared 1 (1400 nm to 1800 nm) was 

inefficient. The Ye (et al., 2021) study found spectral vegetation Indices tuned to wetness to be 

the most useful in early stage detection, which include the near infrared, showtwave infrared 1 & 

2, and various Kaut-Thomas transformations. Other studies found the K-T transformations to be 

prominent predictors (Senf et al., 2015). It should be noted the first three studies used Sentinel-2 

https://www.zotero.org/google-docs/?UjcWzO
https://www.zotero.org/google-docs/?CVbn0j
https://www.zotero.org/google-docs/?XBdPpi
https://www.zotero.org/google-docs/?FoefCJ
https://www.zotero.org/google-docs/?FoefCJ
https://www.zotero.org/google-docs/?l5Sf8m
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whereas the last one used Landsat. There are slight differences in the spectral windows for the 

bands between the two constellations. Different studies, either with the same sensors or different 

sensors, have found different wavelengths to be optimal for green stage infection, so there is not 

a consensus yet on which is the best (Huo et al., 2021). 

Methods 

Study Site 

The study site is located in northwestern Carinthia, Austria’s southernmost state, and is 

5,427.29 hectares in area (Figure 1).  The local avalanche and torrent control district provided 

polygons where known bark beetle attacks occurred, and a subset of the polygons was used 

around the town of Mörtschach. These polygons were drawn and it provided a rough outline of 

where some of the infections were, but the outlines were not perfect. This subset was chosen for 

ease of processing and a field visit occurred here. It is near where the avalanche and torrent 

control District office is located, so they are more familiar with the area. The vegetation of the 

site is composed of Norway Spruce trees, grasses, and some forbs. The terrain of the site is very 

extreme with a valley in the center and steep mountains on either side. The steep terrain makes 

the area prone to avalanches. The steep terrain also creates issues for remote sensing due to 

distortions in the imagery as well as creating shadows. The elevation ranges from 909 m to 2,589 

m above sea level. The maximum slope is 75.25 degrees computed from 30 m SRTM data (Farr 

et al., 2007). Vegetation can be seen without snow from late March to early May, depending on 

the year, until Winter. 

Data Used 

Multispectral imagery captured by Sentinel-2A and Sentinel-2B was used to map the 

location and distribution of Norway Spruce infected by bark beetles for the study area and study 

period. Sentinel-2A data dates back to 2015 and Sentinel-2B data dates back to 2017. I used level 

2A data, which is the highest level of corrected imagery that provides the bottom of atmosphere 

correction. The reflectance imagery is derived from the level 1C data products and it removes the 

top of atmosphere cloud haze. The data was retrieved from Google Earth Engine, so the data 

available on the platform was from 28-03-2017 to the present. The ground sample resolution is 

10 m to 60 m depending on the spectral band used. There are 13 different spectral bands ranging 

from 443.9 nm to 2202.4nm with minimal differences between Sentinel-2A and Sentinel-2B 

sensors for each band. The band descriptions can be found in Table 1. The temporal resolution is 

a 10 day repeat pass time for each satellite, and 5 days for the combined constellation revisit.  

  

https://www.zotero.org/google-docs/?K20B5a
https://www.zotero.org/google-docs/?IvorCn
https://www.zotero.org/google-docs/?IvorCn


13 
 

 
Figure 1: Location of the study site in northwestern Carinthia.  

Imagery from Planet Labs was used as reference data for the random forest and 

thresholding processes. I used Planetscope data which ranges from 3 m to 7 m depending on the 

image acquired. There are three generations of Planetscope data with different spectral 

specifications. The first generation had blue, red, green, and near-infrared bands and was 

launched in June of 2016. The second generation imagery was available in March of 2019 and 

has the same spectral bands, but an improved method of collection. The third generation imagery 

availability started in March of 2020 and has eight spectral bands of coastal blue, blue, green 1, 

green, red, yellow, red edge, and near-infrared. Planetscope data is available daily with a spectral 

resolution of 12 bits. I downloaded one scene from the months of April and May of 2020, one for 

each month from April to September of 2021, and one for each month from April to June of 

2022. I downloaded these scenes because I wanted to see the spectral change in the Norway 

Spruce from these time periods and I wanted reference data for each month in the infestation 

window of April to September. The scenes from 2020 are there to set a baseline for the early 

stage infestation scenes.  

I used vector polygons generated by the local Avalanche and Torrent Control Agency 

that marked the areas that have been recently attacked by bark beetles. Unfortunately, I did not 

have metadata on the polygons, so I didn’t know when the areas in the polygons were first 

infected, nor the level of infection within each polygon, nor if the polygons were the only 

infected areas in the study period, but it was helpful to have confirmed areas of attack. I went 
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into the area with members from the Avalanche and Torrent Control Agency and my advisors 

and took pictures of trees infested with bark beetles along with areas not infested. These photos 

acted as a “ground truth” for infected and noninfected areas, along with the polygons and 

Planetscope imagery.  

 

Table 1: Sentinel-2 Band Descriptions 

Band Name Wavelength (nm) Description 

1 433 - 453 Coastal Aerosol 

2 458 - 552 Blue 

3 543 - 557 Green 

4 650 - 680 Red 

5 698 - 712 Vegetation Red Edge 1 

6 733 - 747 Vegetation Red Edge 2 

7 773 - 793 Vegetation Red Edge 3 

8 785 - 889 Near Infrared  

8A 855 - 875 Narrow Near Infrared  

9 935 - 955 Water Vapor 

10 1360 - 1390 Short Wave Infrared - Cirrus 

11 1565 - 1655 Short Wave Infrared 1  

12 2100 - 2280 Short Wave Infrared 2  

 

 Processing for the project was conducted in Google Earth Engine (GEE). I chose GEE 

over other image processing software because it has the ability to quickly process large amounts 

of data both temporally and spatially, with just an internet connection. A computer with quick 

processing speeds and large storage is not needed. Google Earth Engine also has a large catalog 

of data which includes the Sentinel-2 level 2A imagery. This saves considerable time not 

downloading data from the European Space Agency. It is easy to create plots and perform 

spectral thresholding as well as machine learning with GEE.  
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Implementation 

The goal of this research is to create a tool that is easy to use for the Avalanch and 

Torrent Control Agency in order to be able to detect early stage infestation of bark beetles in 

order to curb their spread. With this goal in mind, I tried spectral vegetation index thresholding 

since that is easy to implement in Google Earth Engine. For spectral vegetation index 

thresholding, I compared the Disease Water Stress Index (DSWI), Canopy Chlorophyll Content 

Index (CCCI), Chlorophyll Vegetation Index (CVI), Modified Soil Adjusted Vegetation Index 

(MSAVI), Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), Normalized Difference Moisture Index (NDMI), 

Ratio Drought Index (RDI), and Red Green Index (RGI) spectral vegetation indices. Each of the 

spectral vegetation indices are described in Table 2. These were chosen because they have been 

found to be helpful in bark beetle detection (Huo et al., 2021). I created spectral plots of each of 

the spectral vegetation indices in Google Earth Engine from April of 2017 to June of 2022. In 

order to create spectral plots I applied a cloud mask to the Sentinel-2 imagery to remove clouds 

and cloud shadow. The cloud mask was not perfect, but it removed a great majority of the clouds 

and cloud shadow. This is important for the spectral plots because clouds and cloud shadow will 

produce extreme values for the spectral vegetation indices and misrepresent the phenomena on 

the ground in the plots.  

I initially performed an exploratory data analysis with the Sentinel-2 data and the Bark 

Beetle polygons. In order to do this, I placed 30 points across several polygons and 30 points 

outside of the polygons. Then I averaged the values and placed them in the plot. After I acquired 

the high resolution Planetscope data and images from the ground, I found areas with high 

likelihood of being infected by bark beetles and areas with a high likelihood of having not been 

infected by bark beetles. I created 60 sample points for the healthy and infected classes and 

created the spectral plots for each of the spectral vegetation indices for the Sentinel-2 data.  

Once the plots were created for the high spatial resolution informed plot-point Sentinel-2 

data, I marked where the view window is optimal from April to July. I visually inspected the 

plots for signs of differences between the infected and noninfected areas. After looking at the 

initial plots and the high spatial resolution informed plots, I determined that a simple spectral 

vegetation index thresholding approach was not going to work for the early detection of bark 

beetles, so I decided to move to a more robust non-parametric method for early stage bark beetle 

infestation detection.  

After the thresholding approach was attempted, I decided to implore a machine learning method, 

random forests, in order to classify the early stage bark beetle infested trees. I explored 

classification methods for the early stage infestation of Norway Spruce in the Spring of 2021 

since a storm hit the area in the Winter of 2020 - 2021, leaving many damaged trees. Machine 

learning is able to pick up on many trends that humans cannot recognize on our own. The 

random forests model is an ensemble approach that can recognize little trends through its tree 

based majority vote approach, whereas a spectral vegetation index thresholding approach uses 

less information to achieve the same result. In order to implement the random forest model I 

https://www.zotero.org/google-docs/?X8rJ8o
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used Google Earth Engine’s smileRandomForest package. In order to train the data, I compared 

two different training sets for two different scenes. The first training set used a Sentinel-2 image 

median composite from May 1st, 2021 to May 15th, 2021. The Planetscope imagery used to 

inform the training of the Sentinel-2 data was from May 10th, 2021, June 15th, 2021, and June 

4th, 2022. The second training set used a Sentinel-2 image median composite from May 20th, 

2021 to May 30th, 2021. These dates were chosen to be when the bark beetles attacked. Two 

were chosen for a comparison of different scene quality. The same Planetscope data was used. 

For both of the training sets, I compared points and polygons for each of the classes to compare 

if the slight change in training data would make a difference in classification accuracy. For each 

of the classes that used points, I ensured that at least 30 points were used. Also, I placed the 

points a distance away from each other to reduce spatial autocorrelation. I used a class imbalance 

method where certain classes received more training than other points if they were more 

prevalent. This is to help ensure that classes with small areas are not overrepresented in the final 

classification. The classes for the two training sets are similar but slightly different. The first 

training set from mid-May used the classes of snow, shadow, bare ground, dead trees that 

remained dead trees a year later, green trees that remained green, and lastly green trees that 

turned brown a year later. The same classes were used for the second late May training set except 

for the inclusion of a cloud class. The first image did not have clouds to train on, so the cloud 

class was omitted. In order to create the training areas for the classes, I looked at areas that 

appeared to be infected by bark beetles in June of 2022, and compared the areas that didn’t 

appear to be infected by bark beetles in early 2021. Then, I placed the points or polygons in areas 

over the Sentinel-2 imagery that corresponded to the Planetscope data.  

In addition to trying training data for a single image time, I also created training data for the two 

training sets (mid-May, 2021 and late May, 2021) for differenced spectral vegetation index data. 

I wanted to see if the addition of a time change would help the prediction of early stage bark 

beetle infestation classification. To create the training data, I subtracted a composite image from 

mid-may, 2020 from the mid-May, 2021 composite. The same was done for the late May 

composites. I used the same training points and polygons for the differenced spectral vegetation 

index trained approach. 

Before running the classification, first I masked the Sentinel-2 data with a cloud mask. 

The cloud mask was not perfect, but it reduce most of the clouds. Then I applied a mask than 

ensured only trees were present in the final image. This classification mask was not perfect, but it 

removed most of the other vegetation classes. This mask was derived from an 11 class land 

classification product made from 10 m Sentinel-2 data (Zanga et al., 2021). Once I had 

predominantly tree data, I calculated the spectral vegetation indices of DSWI, CCCI, CVI, 

MSAVI, NBR, NDVI, NDWI, NDMI, RDI, and RGI whose formulas are listed in Table 2. I also 

calculated the differenced spectral vegetation indices from the imagery from a year prior. Then I 

applied the points or polygons for training. Once the training points were set, I inputted all of the 

spectral vegetation indices. I also compared only using the DSWI, RDI, NDVI, NBR, and NDMI 

spectral vegetation indices. I chose these because they appeared to have a greater separation in 
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the spectral charts of the healthy trees and non-healthy trees compared to the ones not used. I 

used 80% of the training data for training and 20% for validation. For the inputs of the model, I 

used: 500 trees, 3 variables per tree split, a minimum leaf population of 1, a bag fraction of 0.5, 

and no limit for the maximum number of nodes. I used these parameters for each of the 

implementations. 

 

Table 2: Vegetation indices used in the random forest model. 

Index Formula 

Disease Water Stress Index 

(DSWI) 

(Band 8 + Band 3) / (Band 4 + Band 11) 

Canopy Chlorophyll Content 

Index (CCCI) 

((Band 8 - Band 6) / (Band 8 + Band 6)) / ((Band 8 - Band 4) / 

(Band 8 + Band 4))  

Chlorophyll Vegetation Index 

(CVI) 

(Band 8A + Band 5) / (Band 3 * Band 3) 

Modified Soil Adjusted 

Vegetation Index (MSAVI) 

(2 * Band 8 + 1 - sqrt((2 * Band 8 + 1)2 - 8 * (Band 8 - Band 

4))) / 2 

Normalized Burn Ratio 

(NBR) 

(Band 8A - Band 12) / (Band 8A + Band 12) 

Normalized Difference 

Vegetation Index (NDVI) 

(Band 8A - Band 4) / (Band 8A + Band 4) 

Normalized Difference Water 

Index (NDWI) 

(Band 3 - Band 8A) / (Band 3 + Band 8A) 

Normalized Difference 

Moisture Index (NDMI) 

(Band 8 - Band 11) / (Band 8 + Band 11) 

Ratio Drought Index (RDI) Band 12 / Band 8A 

Red Green Index (RGI) Band 4 / Band 3 

Results 

Neither the thresholding approach nor the random forest approaches were able to detect 

early stage bark beetle infestation. For the thresholding approaches, I looked for spectral 

separation for the DSWI, CCCI, CVI, MSAVI, NBR, NDVI, NDWI, NDMI, RDI, and RGI 
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spectral vegetation indices during the green stage attack time period of mid-April to June. There 

are no spectral vegetation indices with a clear value to threshold to determine early stage 

infection. However, five of the spectral vegetation indices showed some change: DSWI, RDI, 

NDVI, NDMI, and NBR. The others showed no separation at all during the early stage infection 

period. Figure 2 shows the spectral response plot for healthy and infected trees for the CCCI 

spectral vegetation index where there is little separation between healthy and unhealthy trees. 

Figure 3 shows the spectral response plot for healthy and unhealthy trees for NDMI, where there 

is more separation during the early stage infection window. Though five of the spectral 

vegetation indices showed a little separation, it was not enough to create an accurate model for 

early stage infection.  

Neither the thresholding approach nor the random forest approaches were able to detect 

early stage bark beetle infestation. For the thresholding approaches, I looked for spectral 

separation for the DSWI, CCCI, CVI, MSAVI, NBR, NDVI, NDWI, NDMI, RDI, and RGI 

spectral vegetation indices during the green stage attack time period of mid-April to June. There 

are no spectral vegetation indices with a clear value to threshold to determine early stage 

infection. However, five of the spectral vegetation indices showed some change: DSWI, RDI, 

NDVI, NDMI, and NBR. The others showed no separation at all during the early stage infection 

period. Figure 2 shows the spectral response plot for healthy and infected trees for the CCCI 

spectral vegetation index where there is little separation between healthy and unhealthy trees. 

Figure 3 shows the spectral response plot for healthy and unhealthy trees for NDMI, where there 

is more separation during the early stage infection window. Though five of the spectral 

vegetation indices showed a little separation, it was not enough to create an accurate model for 

early stage infection.  

 

 
Figure 2: The spectral response plot for the CCCI spectral vegetation index for healthy (blue) 

and diseased (orange) trees. The trees are believed to have become infected in 2020. This plot 

highlights the difficulty of separating healthy from unhealthy trees. The boxes are when early 

stage infection detection should take place. The red box is when the infection is believed to have 

occurred.  
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Figure 3: The spectral response plot for the NDMI spectral vegetation index for healthy (blue) 

and diseased (orange) trees. The trees are believed to have become infected in 2020. This plot 

highlights the difficulty of separating healthy from unhealthy trees. The boxes are when early 

stage infection detection should take place. The red box is when the infection is believed to have 

occurred.  

The random forest methods also did not come with a definitive way to determine early 

stage bark beetle infestation. I compared points vs polygons as training, differenced spectral 

vegetation indices vs single time spectral vegetation indices, early may vs late May, and all 

spectral vegetation indices as inputs, vs selected ones. Early on, I recognized that polygons 

provided much more training data for the random forest model than points, so I opted to use 

polygons. After some early testing, I determined that the difference spectral vegetation index 

data as an input did not appear to be useful, so I only used the single temporal spectral vegetation 

index. This left a comparison for the selected inputs and the early vs late May input composite 

scenes. Table 3 has a list of the accuracies and F1 scores of the models. Though the validation 

accuracies are high, the F1 scores are low indicating a poor model. The random forest models 

which used all of the spectral vegetation indices as an input had a higher validation accuracy and 

F1 score than the selected spectral vegetation indices did. Also, for both selected and non-

selected spectral vegetation indices, the late May image composite had a higher accuracy. The 

error matrices for the random forest models with the different inputs are found in Table 4 

through Figure 8. In order to calculate the F1 score, which needs a binary value, I combined the 

noninfected trees into a single class to compare to the infected trees class.  
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Table 3: Accuracies of the random forest models. 

Random Forest 

Inputs 

Training 

Overall 

Accuracy 

Validation 

Accuracy 

F1 

Score 

Infected Trees 

Omission Error 

Infected Trees 

Commission 

Error 

Early May Data All 

Spectral Vegetation 

Indices 

99.92% 93.95% 0.6373 21.01% 14.20% 

Late May Data All 

Spectral Vegetation 

Indices 

99.96% 97.16% 0.6581 15.38% 46.15% 

Early May Data 

Selected Spectral 

Vegetation Indices 

99.86% 93.68% 0.6016 19.79% 51.88% 

Late May Data 

Selected Spectral 

Vegetation Indices 

99.95% 94.02% 0.5185 38.46% 55.20% 

 

Table 4: Validation error matrix for the early May Sentinel-2 data with all of the spectral 

vegetation indices as inputs. 

 Snow Shadow Healthy 

Trees 

Infected 

Trees 

Bare 

Ground 

Dead Trees 

Snow 986 0 1 0 0 0 

Shadow 0 72 0 0 0 0 

Healthy 

Trees 

5 0 851 15 0 0 

Infected 

Trees 

0 0 77 94 4 1 

Bare 

Ground 

0 0 0 6 11 0 

Dead Trees 13 0 4 4 0 7 
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Table 5: Validation error matrix for the late May Sentinel-2 data with all of the spectral 

vegetation indices as inputs. 

 Snow Shadow Healthy 

Trees 

Infected 

Trees 

Bare 

Ground 

Cloud 

Snow 626 0 0 0 1 15 

Shadow 0 562 4 0 0 0 

Healthy 

Trees 

0 3 1101 14 1 0 

Infected 

Trees 

0 0 63 77 3 0 

Bare 

Ground 

2 0 0 0 114 0 

Cloud 0 0 0 0 0 1148 

 

Table 6: Validation error matrix for the early May Sentinel-2 data with the spectral vegetation 

indices that showed some separation during the early stage infection window as inputs. 

 Snow Shadow Healthy 

Trees 

Infected 

Trees 

Bare 

Ground 

Dead Trees 

Snow 906 0 6 0 0 0 

Shadow 0 59 0 1 0 0 

Healthy 

Trees 

9 0 859 10 0 0 

Infected 

Trees 

0 0 82 77 1 0 

Bare 

Ground 

0 0 0 2 19 0 

Dead Trees 9 0 4 6 0 7 
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Table 7: Validation error matrix for the late May Sentinel-2 data with the spectral vegetation 

indices that showed some separation during the early stage infection window as inputs. 

 Snow Shadow Healthy 

Trees 

Infected 

Trees 

Bare 

Ground 

Cloud 

Snow 580 1 0 0 0 38 

Shadow 0 524 15 0 6 1 

Healthy 

Trees 

0 5 1029 32 2 0 

Infected 

Trees 

2 2 64 56 1 0 

Bare 

Ground 

1 2 15 3 111 0 

Cloud 25 0 0 0 0 1080 

Discussion 

The thresholding approach did not appear to have any significant results since there was 

little separation between the healthy and diseased tree spectral vegetation index values during the 

early stage infection window. The random forest model appeared to be an accurate model 

because the validation accuracies are in the low to mid 90’s. Though the accuracy may be high 

for all of the classes as a whole, the model is not accurate for the infected tree class, which is the 

most important class since it is the reason the model was created. The F1 scores ranged from 

0.5185 to 0.6581 (Table 3). F1 scores range from 0 to 1 where 0 is an inaccurate model and a 1 is 

a perfect model. The F1 score balances precision and recall. Precision measures the percentage 

of predictions that have been labeled as positive that is correct. Recall measures the percentage 

of correctly classified true positives out of everything that should be labeled as positive. Not only 

is the F1 score low, but the infected tree class has very high omission and commission errors. 

The omission errors range from 15.38% to 38.46%  with a mean of 23.66%. The commission 

errors range from 14.20% to 55.20% with a mean of 41.86%.  High omission errors mean that 

the model under maps infected areas that should be mapped, and high commission errors mean 

that the model over maps areas that should be infected. The random forest models appear to do 

both, however, it appears to over map much more than is under maps. This over mapping effect 

can be seen clearly in Figure 4 - Figure 7. Figure 4 depicts images on the ground taken of dead 

bark beetle infested trees taken on July 14th, 2022. Figures 10 and 11 are planet images during 

the early stage detection window of the study site in both true color and NDVI for 2021 and 
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2022. The boxes in the upper right correspond to the images in Figure 4. Figure 7 is a Sentinel-2 

composite image that is masked and the classified image. It is clear to see from the classified 

image that the infected trees (red) is greatly overrepresented in the final classification. The goal 

when creating the model is to help the local authorities to detect which trees are possibly 

experiencing early stage infection and for them to manually stop the spread. However, if the 

model over predicts the area infected, then the foresters would waste their limited time going to 

healthy trees. Plus, there are high omission errors, so some of the trees that they would go to may 

not even be infected.  

This study had a few limitations that made the execution of the early stage bark beetle 

infestation detection challenging. The three challenges were the training data, validation data, 

and extreme slopes. In order to create an accurate machine learning model, a lot of training data 

is needed, and it needs to be of good quality. I created training data by manually labeling areas 

that had visible signs of grey/dead trees in 2022 but none in 2021. I used polygons for the final 

model, but polygons may suffer from spatial autocorrelation since the pixels in the polygon are 

next to each other. The tradeoff is to use points, but have fewer. A more robust study will use 

points from a bigger area in order to gain more data points but without the risk of spatial 

autocorrelation. I believe the labeled trees were attacked by bark beetles, but I do not know for 

certain if they were. So it is possible that the trees were dying from another cause. I would need 

ground validation data to know if they were attacked, and when. I had access to polygons that 

encircled areas that have been attacked by bark beetles from the local Avalanche and Torrent 

Control Agency, but it was uncertain when the trees in the polygons were attacked, and which 

trees in the polygons were infected. It appeared that the polygons were broadly drawn and had 

both infected and non-infected trees. Plus, trees that I marked as uninfected could have been 

infected but were still in the green phase. I did my best by looking at high resolution satellite 

imagery, but without highly detailed ground truth data, it is hard to make accurate training data.  

 

 

 
Figure 4: Pictures from the ground of tree mortality on July 14th, 2022 (photo credit Chandler 

Ross).  
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Figure 5: The left image shows a Planetscope true color image of the study site on June 15th, 

2021. The right image is a Planetscope true color image of the study site on June 4th, 2022. The 

boxes in the upper right correspond to the images in Figure 4. 

 
Figure 6: The left image shows a Planetscope NDVI image of the study site on June 15th, 2021. 

The right image is a Planetscope NDVI image of the study site on June 4th, 2022. The boxes in 

the upper right correspond to the images in Figure 4. 
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Figure 7: The image on the left is a masked Sentinel-2 composite image from May 1st to May 

15th. The image on the right is a classified image from a random forest model. Green is healthy 

trees, red is predicted infected trees, black is shadow, yellow is bare ground, grey is snow, and 

brown is dead trees. The boxes in the upper right correspond to the images in Figure 4. 

 The last challenge is the extreme slopes of the study site, The study site was located in a 

valley with elevations from 909 m to 2,589 m above sea level. The steep slopes create issues for 

remote sensing since the ground is distorted in the images from the terrain. The terrain also 

caused issues with shadows, especially with the Planetscope imagery. Since the Planet data was 

captured at different times, the shadows would change. Thus, the Planetscope imagery was used 

for visual interpretation rather than for spectral analysis. Fortunately, the Sentinel-2 imagery is 

captured at the same time so it can be more easily compared.  

Conclusion 

After trying to find appropriate spectral vegetation index thresholds and running the 

random forest models, I was not able to create an accurate model to detect early stage bark beetle 

infestation for the Norway Spruce in the southern Austrian Alps. There was no significant 

deviation between the spectral responses between the healthy and infected trees during the 

detection window. The random forest predicted areas that were infected, but the omission errors 

were high and the commission errors were even higher. The most accurate model, which used 

late May composited data with all spectral vegetation indices as an input, had a validation 

accuracy of  97.16%, an F1 score of 0.6581, an omission error of 15.38%, and a commission 

error of 46.15%. However, the model with the lowest omission and commission errors, was the 
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early May data with all the spectral vegetation indices as an input, with a validation accuracy of 

93.95%, F1 score of 0.6373, omission error of 21.01%, and a commission error of 14.20%. It is 

likely that the model did not do well because of a lack in quantity and quality of the training data. 

However, it is possible that the 10 m Sentinel-2 resolution was not high enough for early stage 

bark beetle detection. Further studies should be conducted to determine the cause of the 

misclassification.  

Future Work 

Though the random forest method in this paper did not work, it does not mean that it is 

completely useless. The random forest approach may still have potential. Future research should 

focus on creating more training data, and if possible using training data that has ground 

validation for when the trees have been infected by bark beetles. In this study, I compared 

different spectral vegetation indices and found that using all of them led to the most accurate 

results, however, I did not compare different input parameters. Google Earth Engine has six 

different input parameters: the number of trees, the number of variables per tree split, minimum 

leaf population size, a bag fraction size, and the number of the maximum number of nodes. By 

comparing different inputs for each, a more accurate result may be obtained.  

Moving beyond a random forest, a more robust machine learning model, such as a 

convolutional neural network could be used to detect early stage bark beetle infestation. 

However, this method is not available in Google Earth Engine, so the Sentinel-2 data would need 

to be downloaded and stored, plus the model would have to be run in python which could be 

more costly and complex for the Avalanche and Torrent Control Agency. However, these 

drawbacks could be worth it if it leads to a more accurate classification.  

An alternative method to machine learning would be a Continuous Change Detection 

Classification algorithm. This method is capable of detecting change with each new Sentinel-2 

scene inputted into the model. This could be useful for determining a change in bark beetle 

infestation since there is only a small window where change is possible. However, it may be 

more useful to use the algorithm for detecting tree stress before the green stage attack window 

since stressed trees are more susceptible to being attacked, plus stress is easier to detect than 

early stage infection. Whichever method is used in the future, the focus should be on detecting 

tree stress from January to June, especially after a major storm event, since it is the stressed trees 

that pose the greatest risk. 
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