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While the topic of organic molecular aggregates is at the border between physical

and organic chemistry, molecular and computational physics, a lot of this publication
is focussed on computer science-related problems. This is because writing reusable,
extensible, documented, modern and readable code with good performance necessary
for tackling larger systems was a key aspect of the research internship. The complete
code described here will be published once a satisfactory level is reached and is available
upon reasonable request until then.
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1. Introduction to squaraines

Organic semiconductors have been in active research for many decades. Among biosen-
sors, fluorescence markers and organic photovoltaic cells, organic light emitting diodes
have likely reached the most widespread use beyond research laboratories, being inte-
grated into televisions, internet-of-things devices (IoT) and smartphones. It is therefore
not surprising that, even today, new compounds are investigated to extend the range
of possible applications, to improve material properties and to better understand the
fundamental principles governing the behavior on a molecular level. The material class
under investigation, squaraines, is based on a central squaric acid moiety surrounded by
aniline rings where various side chains can be attached as described in ref. [1].

Figure 1: Zwitterionic chemical structure of anilino squaraines, ref [1]

Anilino squaraines (sec. 1) are particularly interesting because they enable the growth
of multiple polymorphs by modifying the side chains and thereby altering the molecular
stacking. Similar to solvatochromism, the following change in spectral properties cor-
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responds to a very strong intermolecular coupling as becomes visible by comparing the
spectra of isolated squaraines in a PMMA matrix [20] and the orthorhombic polymorph
investigated in this publication. A thorough investigation of all processes happening after
photoexcitation necessitates a theoretical model that covers the interacting molecules.
In particular, the essential states model discussed in this publication is capable of sim-
ulating higher excited states by allowing multiple monomers to be excited at the same
time. This is in contrast to the Kasha model where only single excitations are simulated.
As the transient absorption microscope (TAM) of the Koch group in Graz [13] is capa-
ble of observing higher excitations which are not single photon allowed from the ground
state via 2-photon absorption (2PA) and excited state absorption (ESA), a polarization-
resolved simulation technique for higher excitations is a quintessential counterpart for
experimental results.
In parallel aggregates of organic chromophores, the total intermolecular interaction

can be attractive or repulsive, resulting in a red-shifted absorption peak and superlu-
minescence (J aggregate) or blue-shifted absorption peak and suppressed photolumi-
nescence (H aggregate) of the excited states with respect to the monomer transitions
[6]. In elaborate theories involving vibronic transitions (combinations of electronic and
vibrational transitions), such as a Frenkel-Holstein Hamiltonian, H and J aggregates
are better characterized by the ratio of the first vibronic peaks 0-0 and 0-1. Cases of
non-parallel, identical monomers can induce both J and H peaks to occur, resulting in
a phenomenon called Davydov splitting of a single exciton into two peaks of mutually
orthogonal transition dipole moment. According to polarization-resolved spectroscopic
results, this Davydov splitting is particularly large in the aggregate investigated in this
publication. The upper Davydov band at 1.91 eV is 0.23 eV higher or 90 nm lower than
the lower Davydov band at 1.68 eV [1]. This large splitting, as well as the polarization
sensitivity, are advantageous to femtosecond transient absorption experiments where the
laser pulses are spectrally broader than 10 nm due to the Heisenberg uncertainty prin-
ciple. Additionally to polarization-resolved measurements, ellipsometry results indicate
two states contributing to the lower Davydov band, see ref. [3]. It is expected that
a strong intermolecular coupling also corresponds to a high rate of energy transfer as
observed in preliminary experimental measurements. Also, the crystalline nature of the
material allows different radiationless decay pathways such as energy transfer to lattice
phonons, resulting in short excited state lifetimes and the strict necessity of femtosecond
spectroscopy to investigate higher excitations (see fig. 4.)
Semi-empirical models such as the Kasha model, the Frenkel-Holstein Hamiltonian and

the essential states model are well established in systems of different organic semiconduc-
tors. [6] Our system of interest grows in an orthorhombic lattice with four non-parallel
monomers per unit cell [1] and is, therefore, theoretically allowed to exhibit more than
two split states. One reason for working with the essential states model is that there are
already recent results published on similar squaraines [21, 6]. The first goal therefore is
to extend the system from 2 to 4 interacting monomers, essentially forming a tetramer
in the gas phase. Naturally, the choice of these four monomers is not unique as integer
linear combinations of the lattice vectors can be added to each of them.
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2. Motivation: Experimental results

Fig. 2 shows a transient absorption microscope capable of performing femtosecond spec-
troscopy on solid samples. Both light sources can be independently tuned from 650 nm to
950 nm and 500 nm to 950 nm. Due to the medium repetition rate of 40 kHz of the Light
Conversion PHAROS laser, efficient second harmonics generation allows the extension
of pump and probe ranges into the ultraviolet range (325 nm and 250 nm, respectively.)
This and the option of inserting polarizing optics such as filters and retardation plates
into the pump and probe paths makes it possible to investigate the polarization-resolved
behavior of single and higher excited states on a spatial, temporal and wavelength-
resolved scale. Characterization measurements indicate a spatial resolution of 3 µm, a
temporal resolution of 80 fs and spectral widths of approximately 10 nm to 40 nm de-
pending on the central wavelength. The quantity measured is called transient absorbance
and is related to α in the Beer-Lambert law:

∆A = − log10
Ipump-probe

Iprobe only
(1)

∆A, given in transient change of optical magnitude ∆OD, indicates a transient increase
in opacity for positive values which is attributed to excited state absorption unless caused
by cross-correlation effects of pump and probe. This means that the probability of ab-
sorption by causing a second excitation from an already excited state exceeds other
effects. Neglecting cross-correlation effects when there is temporal overlap between the
pulses, negative values (a more transparent sample) indicate ground state depletion
and/or stimulated emission. Since ground state depletion occurs when a previous exci-
tation removed part of the ground-state population, it always occurs if the probe pulse
is resonant with a single excitation until all of the population fully decays back into
the ground state, making it the process with the longest lifetime in this resonant case.
Transient absorption microscopy, including possible processes, is explained in detail in
ref. [22].
In order to motivate the choice of model, preliminary results from excited state ab-

sorption experiments are reported here. As is also visible from the Jablonski diagram
in fig. 3, both the upper Davydov component UDC at 1.91 eV and the lower Davydov
component LDC at 1.68 eV have transitions to higher excitations at 2.34 eV and 2.21 eV
for light polarized along the upper Davydov component, correspondingly. It should
be noted that the growth direction (110) of the orthorhombic samples means that the
components LDC1 and LDC2 can not be excited independently as both the a and b
directions always have the same projection with respect to the beam polarization. It
is expected, but still investigated at the time of this work, that higher excitations also
exhibit Davydov splitting. Two results from theoretical simulations are also included:
(1) a linearly fitted dark state from the essential states model shown in fig. 10 at 1.79 eV
and (2) a second possible dark state produced by the periodic Kasha model at 2.34 eV
as shown in ref. [5].

Fig. 4 shows the underlying experimental data from the author’s Master thesis [12].
While population analysis by fitting exponential functions is difficult for many of these
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Figure 2: Transient absorption microscope used by the Koch group at TU Graz [13].
Two nonconlinear optic parametrical amplifiers (NOPAs) act as independently
tuneable light sources for pump and probe. A chopper is used to block every
odd pump pulse to compare the transmission of the previously excited sample
with one in its electronic ground state. The result is recorded on a PicoScope
and evaluated on a PC.

small contrast levels, the direction of the rising (falling) edge indicates if the sample be-
comes more opaque (transparent) upon photoexcitation by the pump pulse. This behav-
ior changes at 530 nm central wavelength from pumping the upper Davydov component
UDC and 560 nm central wavelength from pumping the lower Davydov component. This
result is reflected in the Jablonski figure 3 under two conditions: (1) it is assumed that
there is little population transfer to lower-energy states before ESA which would decrease
the total energy of the higher excitations and (2) that the exact spectral position of the
higher excited states is not readily available due to the presence of underlying ground
state depletion (GSD) signals. Better characterization of higher excited states and an
extension into the UV-B and UV-C ranges is ongoing work at the Transient Absorption
Microscope in Graz at the time of writing this publication.
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Figure 3: Jablonski diagram from experiments and some of the ESM and Kasha model
results. ESA1 can be further excited from UDC by probing with energies with
at least 2.34 eV and polarization along the unit cell axis c, ESA2 from the
LDC1 by probing with energies of at least 2.21 eV and UDB polarization.
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(a) Upper Davydov component excitation: ESA transition at 530 nm

(b) Lower Davydov component 1 excitation: ESA transition at 560 nm

Figure 4: Transient absorption delay scan results showing the appearance of excited
state absorption (ESA) transitions. The transient absorptivity ∆A indicates
how much more opaque a sample becomes upon photoexcitation. It can be
seen that higher excitations become dominant at 530 nm=2.34 eV for UDC
pump and 560 nm=2.21 eV for LDC pump.
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3. Programming

Prof. Spano’s code, which was used in ref. [21], is written in Fortran 77 using the ISML
library for linear algebra calculations. Different versions of Fortran are widely used in
the field of theoretical chemistry due to their high execution speed, their integrated
syntax for complex and multidimensional arrays and available libraries for scientific and
high-performance computing. However, the absence of array-wise functions and the lim-
itations of original Fortran compilers led to the choice of the more modern Python 3 pro-
gramming language [11]. To facilitate fast and accurate numerical calculations, NumPy
[4], SciPy [19], CuPy [9] and SymPy [8] are used and rapid plotting is realized using
the 2D and 3D interfaces of matplotlib. All matrices are set up using object-oriented
Python code and functional programming. These choices are motivated by numerous
considerations:

• Python and numpy have a wide variety of fast array-/matrix-wise operations which
reduce the potential for programming mistakes.

• Object-oriented programming allows an inherited class structure, allowing the in-
clusion of additional effects such as the embedding in a mean-field crystal environ-
ment by overriding Coulomb interaction calculations.

• Lambda expressions and function pointers, two techniques often applied in func-
tional programming, reduce the number of nested loops in the code for interaction
calculations and avoid writing duplicate code. A potential downside is the increase
in run time due to the increased use of the stack when compared to simple for loops.

• Python is available on all modern operating systems, particularly including Win-
dows and Linux. It provides versatile packages for argument parsing (argparse),
data storage (JSON, MATLAB data support, potentially HDF5 and netlib)

• matplotlib provides interactive graphical user interfaces (GUI) for plotting.

The code is set up in a git repository to keep track of all changes and developed in
the Visual Studio Code IDE for syntax highlighting, code completion, versatile debug-
ging functions and its ease-of-use. Interactive interfaces can be coded using Jupyter
notebooks.

3.1. Computational limits

While the essential states model is adequate for squaraines and accurately involves the
calculation of multiple excitations, its major downside is the steep increase in com-
puting power needed for larger systems and effects such as vibrational transitions and
intermolecular charge transfer. As an example, the typical size for a tetramer is the
diagonalization of a 34 = 81 × 81 matrix which can be done in milliseconds. However,
including a single vibrational excitation per monomer with a maximum of five quanta
of a harmonic oscillator drives this number to (3 ∗ 5)4 = 50625 basis states and memory
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requirements of a few GB in dense matrix storage. Explicitly treating a 3x3x3 supercell
to approximate periodic behavior increases the size to 327 ≈ 7.6× 1012 which is impossi-
ble to store in the memory or to solve in a useful run-time. It is therefore clear that the
system size and the number of effects that can be considered are severely limited and
that approximate solutions, such as embedding into a mean-field environment outlined
in sec. 4.4, are necessary.

4. Essential States Model

The essential states model was originally devised by Anna Painelli and co-workers [17,
15, 14]. In its most basic form for calculating a D-A-D monomer, two parameters η
and t are fit from optical spectroscopy experiments or an ab-initio calculation of a the
monomer spectra. A neutral basis state |N⟩ = DAD with energy 0 is coupled to two
diabatic basis states |Z1⟩ and |Z2⟩, each with energy η, via the coupling constant t.
The model assumes that these constants contain all intramolecular couplings within the
D-A-D monomer. This results in the following Hamiltonian of diabatic states:

Ĥmonomer =

|N⟩ |Z1⟩ |Z2⟩( )|N⟩ 0 t t
|Z1⟩ t η 0
|Z2⟩ t 0 η

(2)

Diagonalizing this matrix, in other words, finding the physical adiabatic transitions of
the model, results in three different states |g⟩, |c⟩ and |e⟩ [16]. Since the g → c transition
is one-photon allowed and g → e is two-photon allowed, a knowledge of the monomer
one- and two-photon absorption peaks from experiment or ab-initio calculations allows
an exact determination of the constants η and t by solving a linear system of euqations.
These results can then be used to form molecular aggregates based on physical informa-
tion. In case of this orthorhombic iso-butyl squaraine (SQIB), the information is readily
available from XRD [1].
The one-photon cross section from the ground state is proportional to the square of

the transition dipole moment or oscillator strength µt [18]:

A⃗ ∝ |µ⃗l,adiabatic|2 (3)

µ⃗k,diabatic =
∑
ij

qi∆r⃗i (4)

µ⃗l,adiabatic =
∑
k

µ⃗k,diabaticx0,kxl,k (5)

where µ⃗l,adiabatic is a transition dipole moment of transition l, µ⃗k,diabatic is the sum of
dipole moments of the monomers q∆r⃗ in diabatic state k, i is the charge center index
of a tetramer (1-12 for four D-A-D chromophores), x0,k is the ground state eigenvector
and xl,k is the excited state eigenvector of the desired transition l.
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To calculate absorption spectra for arbitrary polarizations along the growth plane
(110) [1], the following equations are used with the unit vector p and the angle between
the crystal directions [1 -1 0] and [0 0 1]:

A(r⃗) = (µ⃗adiabatic · p⃗)2 (6)

p⃗(α) =

 sin(α)/
√
2

− sin(α)/
√
2

cos(α)

 (7)

4.1. Dimer Hamiltonian

Molecular aggregation in the essential states model begins with at least two molecules or
monomers with a known relative geometry. The diabatic basis consists of the uncharged
state |NN⟩, single charge transfer excitations |Z1N⟩ , |Z2N⟩ , |NZ1⟩ , |NZ2⟩ and double
charge transfer excitation |Z1Z1⟩ , |Z1Z2⟩ , |Z2Z1⟩ , |Z2Z2⟩. Coupling is enabled for excit-
ing a single monomer, e.g. |NZ1⟩ ↔ |Z2Z1⟩ while |Z1N⟩ ↔ |Z2N⟩ or |Z1N⟩ ↔ |NZ1⟩
are not directly coupled. Intermolecular interaction is modeled by calculating Coulomb
terms between two excited monomers and adding them to the corresponding diagonal
terms; assume the positions r⃗00, r⃗01, r⃗02 correspond to D1, A and D2 coordinates of the
first monomer, r⃗10 . . . correspond to the second monomer, q are the corresponding unit
charges and the state is |Z1Z2⟩, the interaction term is:

VC =
1

4πϵ

[
q00q11

|r⃗11 − r⃗00|
+

q00q12
|r⃗12 − r⃗00|

+
q01q11

|r⃗11 − r⃗01|
+

q01q12
|r⃗12 − r⃗01|

]
(8)

ϵ can be assumed to be ϵ0 in small, gaseous systems or include a relative dielectric
constant ϵR based on experimental results or ab-initio calculations. Of course, all other
combinations are similar. This results in the total block Hamiltonian:

Ĥdimer =

|NN⟩ |Z1N⟩ . . . |Z1Z1⟩ . . .( )|NN⟩ 0 t 0
|Z1N⟩ . . . t ηdiag tsingle change

|Z1Z1⟩ . . . 0 tsingle change 2ηdiag

(9)

4.2. Tetramer Hamiltonian

A consequent extension of the electronic essential states model to four monomers (tetramer)
leads to the following basis elements:

• 1 neutral state of all monomers |NNNN⟩

• 8 single excited states |Z1NNN⟩ . . . |NNNZ2⟩

• 24 double excited states |Z1Z1NN⟩ . . . |NNZ2Z2⟩

• 32 triple excited states |Z1Z1Z1N⟩ . . . |NZ2Z2Z2⟩
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• 16 quadruple excited states |Z1Z1Z1Z1⟩ . . . |Z2Z2Z2Z2⟩

All matrix elements with a difference of a single excitation (for example |NNZ1N⟩ ↔
|Z2NZ1N⟩) have the same coupling strength t as in the monomer case while all other
non-diagonal elements are 0 in lack of coupling. The total Hamiltonian for a tetramer
in open boundary conditions is therefore:

Ĥ =

|NNNN⟩ |Z1NNN⟩ . . . |Z1Z1NN⟩ . . . |Z1Z1Z1N⟩ . . . |Z1Z1Z1Z1⟩ . . .


|NNNN⟩ 0 t 0 0 0
|Z1NNN⟩ . . . t ηdiag tsingle change 0 0
|Z1Z1NN⟩ . . . 0 tsingle change 2ηdiag + VC tsingle change 0
|Z1Z1Z1N⟩ . . . 0 0 tsingle change 3ηdiag + VC tsingle change

|Z1Z1Z1Z1⟩ . . . 0 0 0 tsingle change 4ηdiag + VC

(10)

While the diagonalization results in 81 eigenvectors or 80 transitions (Eexcited−Eground state),
only very few of them show a non-zero transition dipole moment from the ground state
µadiabatic = ⟨g|µ̂|e⟩. All of the transitions can play a role in two-photon absorption and
excited state absorption (ESA) calculations, but these are beyond the scope of this work
and will be investigated in the future.

4.3. Diabatic embedding

While the tetramer in section 4.2 already uses the correct arrangements of the monomers
according to XRD measurements, there is not yet any interaction beyond a single unit
cell. Due to computational limitations as outlined in 3.1, approximate solutions for the
treatment of a periodic crystal have to be found. In its simplest case, this is done on
the level of the basis set without any knowledge of the physical system:

1. The 81 diabatic states are copied to all neighboring unit cells.

2. All Coulomb interaction terms VC are extended to include interactions with the
newly added unit cells. This includes single excitations as, for example, the single
excitation Z1 in the diabatic state |Z1NNN⟩ now also interacts with the charge
centers of the corresponding state in all neighboring unit cells.

As can be seen, this does not increase the basis set size from 81×81, so only the building
of the Hamiltonian takes longer due to the added interaction terms. However, this also
means that each of the diabatic basis states is assumed to be interacting with a different
electronic configuration. Due to the lack of coupling between the diabatic states, this
does not reproduce the real physical system accurately and is actually farther away from
the experiment than the system with open boundary conditions. Some nice graphics
here
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4.4. Adiabatic embedding

Another approach suggested by Davide Giavazzi is similar to other mean-field theories.
Here, instead of using the diabatic states to embed the explicitly treated system, the
charges of neighboring unit cells assigned in a self-consistent calculation. Starting from
an elementary charge matrix of the form:

q̂diabatic =


0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0

...

 (11)

and orthonormal eigenvectors x⃗i from the diagonalization of previous calculations, the
charges can be calculated by base transformation:

q⃗i,adiabatic =
∑
j

x20,j q̂ji,diabatic (12)

Here, x0,j is the j-th element of the ground state eigenvector 0 and i are the position
indices of donors and acceptors (D, A, D)×4. Even in the femtosecond transient absorp-
tion microscopy, only a small percentage of the molecules in the order of less than 1%
is simultaneously excited to prevent photodamage, justifying the ground state charge
distribution in this semi-empirical model.
Then the same procedure of adding additional Coulomb terms to the diagonal elements

of all diabatic states except the neutral one as outlined in 4.3 are applied. Typically, this
procedure is repeated 15 to 20 times until convergence of

∑
i |qi,adiabatic,n−qi,adiabatic,n-1|,

with n and n − 1 being the self-consistent steps, is achieved. The diagonalized ground
state is used for calculating the embedding as even the very strong laser pulses used in
femtosecond transient absorption microscopy are not expected to excite a majority of
the population. In some cases, a mixing parameter β ∈ (0, 1] is necessary to prevent
oscillating behavior. Then, the new charges are

qi,adiabatic,n = βq̃i,adiabatic,n + (1− β)qi,adiabatic,n-1 (13)

with actually used charges q and the newly computed charges q̃.
The adiabatic embedding approach can be compared to a mean-field approach as

the embedding is the same for all diabatic states and all of the charges are derived
from a converged ground state calculation. In multiple simulation attempts, adiabatic
embedding, although computationally more costly, gives the result that best matches
the ellipsometry experiment [3] to the date of this publication.

4.5. Explicit treatment of multiple unit cells

Using reasonable limits for computational power, up to three unit cells can be calculated
explicitely. This is done by adding the same monomers shifted by the lattice vectors. A
3×1×1 unit cell results in a base of 531441 elements. In dense format, this would result
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in more than 1TB of memory requirements, therefore, sparse matrix algebra has to be
employed. Using the sparse routines of CuPy, the calculation takes less than 30min on
a NVIDIA GeForce GTX 980 Ti and less than 45 minute by using SciPy’s single core
CPU routine on an AMD Ryzen 9 5950X.

4.6. Choice of monomers for OBC calculations

There are two goals which can be pursued by modifying which unit cell the four monomers
are located in:

1. The symmetry of the system should be preserved as good as possible when com-
pared to the periodic system

2. Explicitly treated chromophores should have the maximum amount of total inter-
action energy because embedding is always an approximation

The crystal information file of orthorhombic SQIB in [1] consists of the asymmetric
unit of SQIB which is half a molecule. To generate the total unit cell, first the inversion
transformation x̃ = −x, ỹ = −y, z̃ = −z is applied, followed by the three other unique
transformations of space group 60 also defined in the crystal information file:

• x̃ = −x+ 1
2 , ỹ = −y + 1

2 , z̃ = z + 1
2

• x̃ = −x, ỹ = y, z̃ = −z + 1
2

• x̃ = x+ 1
2 , ỹ = −y + 1

2 , z̃ = −z

First attempts were made by manually moving the chromophores to fit closer into the
first unit cell, a⃗, b⃗ and c⃗ are the lattice vectors:

• Monomer 1 (centered in the unit cell): No change

• Monomer 2: −c⃗

• Monomer 3: +a⃗

• Monomer 4: −a⃗+ b⃗+ c⃗

This choice is physically justified because 1) it moves the monomers closer together,
resulting in a higher intermolecular interaction and 2) the polarization symmetry deter-
mined by ellipsometry [3] is well-reproduced.

5. Results

All results are compared to the ellipsometry result in ref. [3], fig. 6. Unless explicitly
stated, the parameters are always set to the following:

• η =0.737 eV
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(a) Original ESM charge geometry from
symmetry operations

(b) Adjusted ESM charge geometry to
move monomers towards the inside of
the unit cell

Figure 5: Charge centers used to model the D-A-D monomers in a unit cell. Crystal
geometry from ref. [1], charges are placed on nitrogen atoms and in the center
of the squaryllium moiety.

• t=−1.05 eV

• ϵR =2.0

• σ =30nm in wavelength plots or σ =0.07 eV in energy plots

• 5x5x5 supercell for embedding

• Convergence (12-20 steps) for adiabatic, self-consistent calculations

• 0.05 e2nm2 of lower cutoff for bright transitions

η and t are taken from a similar squaraine in ref. [7] and η is modified to match the
one-photon transition at 653 nm of 1% SQIB mixed with PMMA, a similar sample to
ref. [20]. With further 2PA measurements, there may be further adjustments to better
replicate the experiment. The relative dielectric constant ϵR is set to 2.0 as it resulted
in a relatively good match, but this will also be adjusted based on other experiments.
For bright transitions, a physical cutoff is chosen in favor of a purely numerical one as
the missing periodic boundary conditions and their approximation often account for a
slight increase of otherwise dark transitions not present in the crystal.
Fig. 7 and 8 are results calculated using the DADMultimer code. Interestingly, the

extended tetramer in fig. 8 shows inhomogeneous broadening which results on nearly
overlapping transitions resulting in peak broadening. Also, it should be noted that the
result is extensive with system size and not normalized to a unit cell, resulting in the
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≈ 3-fold increase in oscillator strength. While the resulting spectrum looks valid, this
approximation of the periodic system does not provide a better description than the
open boundary condition tetramer due to the multitude of broadened peaks.

Figure 6: Experimentally determined states from Mueller Imaging Ellipsometry in ref [3]

The diabatic embedding result in fig. 9 looks like a compelling approximation of the
experimental result at first glance. However, the peak positions do not match up with
experiment very well and the embedding into a diabatic environment means that the
diabatic states all experience different charges without coupling, making the result non-
physical. As a result, the mean-field, adiabatic embedding approach is given preference.
In contrast, the adiabatic embedding surrounds each state with the same, self-consistently

calculated electronic ground state charge distribution. Remarkably, the three bright
states form a line which makes associating the peaks with experiment and linearly
moving the dark state feasible (see the Jablonski diagram in fig. 3). This results in
a dark state position of 1.79 eV or 692 nm. While, again, there is a clear difference
between experimental positions and the result of the essential states model, this is a
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(a) Transitions and dark state positions

(b) Projected result onto the (110) plane

Figure 7: Tetramer in open boundary conditions, first 30 states calculated using Lanczos
algorithm. Bright states appear at 1.74 eV, 1.81 eV, 1.86 eV and 1.98 eV, the
state at 1.86 eV is below the chosen brightness cutoff of 0.05 eV2nm2 and only
visible as a shoulder in the orange y curve.
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(a) Geometry. Colors of the charge centers indicate sign (red positive, blue nega-
tive) and their size the magnitude of the resulting adiabatic charges.

(b) Transitions and dark state positions

Figure 8: Tetramer with two neighboring unit cells along the z axis. 30 states calculated
using Lanczos algorithm. Bright states appear at 1.65 eV, 1.69 eV, 1.70 eV,
1.75 eV, 1.78 eV, 1.79 eV, 1.84 eV and 1.99 eV while the low dark states 1.64 eV,
1.82 eV, 1.88 eV and 1.95 eV are below the chosen cutoff.
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Figure 9: Diabatic embedding spectrum. Bright states appear at 1.77 eV, 1.85 eV and
2.01 eV and a low dark state at 1.85 eV.

more promising result and the description is qualitatively correct. The fit result is
Eexperiment = −0.43 + 1.38 ∗ EESM, indicating that both the transition spacing and a
constant offset are adjusted, the second of which can be attributed to a missing crystal
shift occurring between open boundary conditions and periodic boundary conditions.
This result most clearly resembles the close proximity of the states LDC1 and LDC2 in
the experimental result [3] in fig. 6 and further improvements are expected by inserting
an experimentally determined dielectric constant ϵR.
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(a) Adiabatic embedding result projected onto the (110) plane.

(b) Linear fit of the ESM dark state to the experimental results

Figure 10: Adiabatic embedding of the SQIB tetramer. Bright states appear at 1.55 eV,
1.57 eV and 1.71 eV, a dark state at 1.63 eV.
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6. Summary and outlook

After initially porting the essential states model for D-A-D chromophores from For-
tran 77 to Python 3.10, the system is extended to a tetramer with open boundary con-
ditions. While this result already resembles the experimentally determined spectrum,
further improvements are made by embedding the system in its adiabatic ground state
which approximates the periodic crystal with Coulomb interactions with a mean-field,
almost crystalline environment.
Further ideas to extend the essential state model in orthorhombic squaraine molecular

crystals is to (1) implement adiabatic embedding in DADMultimer, allowing for the
exchange of explicitly treated monomers and those in a mean field embedding, (2) the
experimental determination of the dielectric constant at optical frequencies to improve
the Coulomb interaction agreement and (3) the implementation of simulated two-photon
absorption to determine further experiments.
It is planned to look for dark states which can not be directly excited using continu-

ous wave (CW) light sources using transient absorption microscopy; in particular, this
involves comparing dark states in the ultraviolet regions with essential state model sim-
ulations. It is expected that the essential states model results give insight into further
experiments, leading to a more thorough understanding of the light-matter interaction
of the squaraine system. In the farther future, there are also plans to calculate transition
rates in order to simulate transient absorption delay scans.
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A. Tetramer code documentation

This section describes the capabilities, functions and parameters used to calculate es-
sential state model results in all of the classes. It also shows the inheritance structure
for possible and realized extensions such as the embedding approaches.

A.1. Crystal Information File readout and JSON storage

As a well-established format readable by computers and humans alike, JSON is used to
store cartesian charge center coordinates and the transform matrix. These properties are
calculated from the Crystal Information File provided in the CCDC in entry 1567104
[1] using the PyCIFRW package [10]. Symmetry operations are then applied to the
assymetric cell from the symmetry operations listed in this file, given by space group
60. From the lattice vectors and angles, the transform matrix is calculated according to
ref. [2], theoretically allowing for the handling of non-orthogonal systems.

• x, y, z: Coordinates of the monomers in (D1,1, A1, D2,1, D1,2, A2, D2,2 . . .) format

• M: Transform matrix for unit cells. r⃗cartesian = M · r⃗crystal, lattice vectors a⃗, b⃗ and
c⃗ are the columns of this matrix

A.2. SpectrumGenerator

Abstract base class for Hamiltonian problems including diagonalization, absorption spec-
trum calculation and plotting functions.

• Inherits ABC: Can not be used directly

• function diagonalizeH: Full diagonalization of the Hamiltonian matrix using numpy.linalg.eigh.
By default, sets self.eval to the eigenvalues and self.evec to the corresponding
eigenvectors.

• function calculateAbsorptionSpectrum: Abstract. Should calculate the absorption
spectrum.

• function plotAbsorptionSpectrum: Abstract. Should plot the absorption spectrum
in its most basic form.

The class is not very useful as most of the functions used by inherited classes go much
beyond its capabilities, so it was not used for the later code DADMultimer.py.

A.3. DADTetramer

Main class for open boundary conditions calculations of D-A-D tetramers such as anilino
squaraines. Starting from coordinates, energies η and t, a relative dielectric constant ϵR
to take effective charge shielding into account, this class is capable of calculating the
Hamiltonian of four aggregated monomers in the gas phase. Its forAll functions call
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energy calculations and coupling functions for all relevant combinations of excitations,
following a functional programmign paradigm. Unlike the newer class DADMultimer,
this class uses dense matrices and is therefore limited by memory size, but calculates all
of the possible excited states.

• Inherits SpectrumGenerator. Energies are in 1400 cm−1 (1 assumed vibrational
quanta) due to compatibility with the DAD dimer code of Prof. Spano (vibration
is not considered in this code), distances are in nm.

• nnCT, tCT: η and t energies of the essential states model.

• epsilonR: Relative dielectric constant.

• x, y, z: Coordinates of the monomers in the same format as in the JSON file in
sec. A.1

• ux, uy, uz: Dipole moments in the diabatic basis in 1400 nmcm−1

• cf: Conversion factor 1
4πϵ0

for Coulomb interaction

• charges: qD1, qA, qD2 = [1,−1, 1] by default, for calculating Coulomb interactions.

• linewidth: σ in A(E) =
∑

i exp
(
− (E−Ei)

2

σ2

)
for peak plotting

• setGeometry, setMonomerEnergy, setCouplingStrength, setLinewidth, setDielec-
tricConstant: Wrappers for setting the corresponding variables directly (more
readable)

• setGeometryFromJson: Using the format in sec. A.1, read self.x, self.y and self.z
from the provided JSON filename.

• setDipoleMoment: Calculate diabatic dipole moments from coordinates and charges

• calculateCoulombTerm: combination is two indices of the interacting monomers
(e.g. [1, 3] would be monomers 2 and 4 in zero-based notation), chargePosition1 and
chargePosition2 are [0, 1] for |Z1⟩ states and [1, 2] for |Z2⟩ states (relative indexing
of charges and coordinate index.) Returns Coulomb term without multiplication
of 1

4πϵ .

• calculateDoubleCoulomb: doubleExcitation1 and doubleExcitation2 are 1 for |Z1⟩
and 2 for |Z2⟩ state, combination the same as in calculateCoulombTerm. Returns
the Coulomb potential of the four interacting charge combinations.

• calculateTripleCoulomb: tripleExcitation1-3 are similar to calculateDoubleCoulomb,
neutralPosition indicates the neutral index (neutralIndex= 1 means state [triple-
Excitation1, 0, tripleExcitation2, tripleExcitation3].

• calculateQuadrupleCoulomb: Sums and returns the potential of all combinations
of all four excited, diabatic monomers
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• forAllSingles, forAllDoubles, forAllTriples, forAllQuadruples: Takes a function fcn
and runs it for every possible combination of single, double, triple and quadruple
excitations in the syntax of singleDiagonal to quadrupleDiagonal

• singleDiagonal, doubleDiagonal, tripleDiagonal, quadrupleDiagonal: Set the self.cur-
rentElement diagonal entry in self.H to n∗η+VC , n being the number of diabatically
excited monomers, using the same syntax as calculateDoubleCoulomb and other
Coulomb functions. Also set self.nes1-4 to the index of the current element to look
up in the non-diagonal entries later on.

• coupleNeutralSingle, coupleSingleDouble, coupleDoubleTriple, coupleTripleQuadru-
ple: Take a lower and a higher excited diabatic state and set the corresponding
non-diagonal element to the Essential States Model energy t. Vibronic coupling
would consider the Frank-Condon overlap here, but this was not done in this first
version as it would increase the system size in this tetramer too much.

• Helper functions strSingle, strDouble, numTriple, numQuadruple, strTriple, str-
Quadruple: Convert a specific combination to a number or string, can help with
determining if a combination of diabatic excitations is coupled or not

• compileTetraH: Main filling function for the Hamiltonian. Fills all of the upper
diagonal elements of the Hamiltonian matrix self.H according to sec. 4.2.

• diagonalizeH: Same as in the base class SpectrumGenerator

• addSingleOs, addDoubleOs, addTripleOs, addQuadrupleOs: Calculate transition
dipole moment oscillator strengths by doing a base transformation into the adia-
batic base according to eq. (5)

• neutralU, singleU, doubleU, tripleU, quadrupleU: Returns the diabatic dipoles for
the corresponding excitation in a tuple with the excitation index nes: [nes, ux, uy,
uz]. This is done by summing up the diabatic dipole moments according to the
combinations.

• calculateAllTdm: Returns a matrix with all transition dipole moments in the
adiabatic base. The calculation is the same as in neutralU etc., but in a matrix
form which can then be used for two-photon absorption codes.

• calculateAbsorptionSpectrum: self.energies, self.absX, self.absY and self.absZ are
set to a range of energies and the corresponding sum of transition peaks.

• plotAbsorptionSpectrum: Use matplotlib.pyplot.subplots() to generate a figure
axis combination and plot the simulation result. matplotlib.pyplot.show() can be
used afterwards to show it. Most of the simulation results are plotted using external
routines.

• projectOscillatorStrengths: Calculate the projection of the oscillator strengths
self.osxx, self.osyy and self.oszz to the specified 3-d vector. Useful for plotting
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the simulation result along non-cartesian coordinates, such as the in-plane direc-
tions of the experiment as outlined in sec. 2.

A typical calculation would initialize a default instance of DADTetramer() followed
by setting all of the parameters, compileTetraH, diagonalizeH, calculateAbsorptionSpec-
trum and then either the integrated plotting routine or similar external routines.

A.4. DADTetramerEmbedded

Another abstract base class ABC, this includes reading the unit cell matrix M from
JSON, the unit cell vectors a, b and c as variables and multiple cutoff to define the
range of neighboring unit cells to include. It should be minded that, at the time of
this publication, the code can only handle orthogonal systems, but minor changes to
functions using self.a, self.b and self.c can change that.

• a, b, c: Lattice vectors in nm

• aRange, bRange, cRange: Range of unit cells to be considered in the calculation
(e.g. [-2, 2] for a 5x5x5 supercell)

• setGeometryFromJson: Read lattice vectors as well as the underlying coordinates.
They are assumed to be in Angstrom in the M matrix as per Crystal Information
File standards.

• setUnitCell, setMultipleCutoff: Wrapper functions for a, b, c, aRange, bRange and
cRange

A.5. DADTetramerDiabaticEmbedded

This class inherits DADTetramerEmbedded and extends some of its Coulomb calculation
to include copies of the internal diabatic states in neighboring unit cells.

• selfInteraction: Calculate the Coulomb interaction between an excited monomer
and its own copies; singleIndex is 0-based for the monomer and excitation is 1 for
|Z1⟩ and 2 for |Z2⟩

• singleDiagonal, doubleDiagonal, tripleDiagonal, quadrupleDiagonal: These func-
tions are overridden to automatically add Coulomb interaction to neighboring unit
cells to all diagonal elements apart from the neutral state |NNNN⟩

A.6. DADTetramerAdiabaticEmbedded

This class also inherits DADTetramerEmbedded, but instead of using the diabatic state
copied to neighboring unit cells, the adiabatic ground state charges are calculated ac-
cording to eq. (12) in a self-consistent manner.

• mixingBeta: Mix new and old charge distributions according to eq. (13)
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• referenceState: In theory, it would be possible to perform adiabatic embedding in
excited charge distributions. However, even in transient absorption experiments,
only a minority of monomers is excited according to transient absorption experi-
ments, so using the ground state referenceState = 0 is justified.

• calculateChargeMatrix: Calculate all charges in the diabatic basis qdiabatic,i,j with
i the diabatic state index and j the charge center’s coordinate index. Return this
matrix.

• embeddingStep: Compile tetramer Hamiltonian, diagonalize it, calculate charges
using calculateChargeMatrix, transform them into the adiabatic base using matrix
multiplication: q̂adiabatic = x⃗0 · q̂diabatic, set self.embeddingCharge to the result. If
this was already done at least once, the calculation is already performed using the
mean-field embedding approach.

• addSingleEmbeddedCoulomb: Calculate interaction between excited monomer given
by singleIndex (monomer index 0-3) and excitation (1 |Z1⟩, 2 |Z2⟩)

• singleDiagonal, doubleDiagonal, tripleDiagonal, quadrupleDiagonal: Are overrid-
den to include Coulomb terms with the neighboring unit cells

The workflow here changes from DADTetramer as adiabatic embedding is a self-
consistent process typically necessitating 12-20 cycles to achieve sufficient convergence.
A possible convergence criterion is to check the value of

∑
i |qi,n − qi,n−1| with charge

index i and self-consistent iteration n. Results lower than 1× 10−4 unit charges e typi-
cally do not change the spectrum and are sufficient due to the broad line widths involved.
One starts to set all parameters and then repeatedly calls embeddingStep, then proceeds
with calculateAbsorptionSpectrum as in DADTetramer.

A.7. DADMultimer and DADMonomer

At the time of this publication, the code in DADMultimer handles an arbitrary size of
D-A-D monomers in open boundary conditions. To facilitate larger systems, the Hamil-
tonian matrix is stored in SciPy’s dok array format, that is, its non-zero entries are stored
in a dictionary of keys. The code is also separated into two different classes, DADMul-
timer and DADMonomer, where the latter class handles coordinates and charges, can
return charge centers based on diabatic excited state |Z1⟩ or |Z2⟩ and calculate its own
interaction energy with another monomer and its dipole moment. In DADMultimer, the
aggregation itself is handled including the setup of the sparse Hamiltonian, CPU and
GPU-based sparse diagonalization and charge calculation as in the adiabatic embedding
class. All energies are in eV, all distances in nm.

DADMultimer class

• monomers: List of DADMonomer involved in the aggregation
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• monomer energy, interaction energy: η and t in the essential states model, respec-
tively

• coulomb factor: 1
4πϵ0

in the unit system

• hamiltonian: Sparse Hamiltonian matrix

• transform matrix: Transform matrix from crystal to cartesian coordinates

• eigenvalues, eigenvectors: Result of the diagonalization

• all excitations: Dictionary of excitations. Keys are, for example, [2, 1, 0, 1].to-
bytes(), values are a tuple of (excitation index, [2, 1, 0, 1]). This is used instead
of the n-dimensional arrays in DADTetramer to accommodate arbitrary lengths.

• load coordinates from json: Read coordinates and transform matrix in the JSON
format explained in sec. A.3

• copy along unit cell: Extend the system to cover multiple unit cells explicitly. For
a tetramer, three unit cells is a useful restriction to limit memory and computing
requirements.

• set all epsilon R: Since the relative dielectric constant is needed for Coulomb in-
teractions in the DADMonomers, this is a convenient way to set it for all of the
monomers.

• compile multi hamiltonian: Allocate the sparse Hamiltonian matrix, set all diago-
nal elements including diabatic monomer energy and Coulomb interaction and the
coupling, non-diagonal terms. Since sparse diagonalization routines are based on
matrix multiplication, the resulting, symmetric Hamiltonian matrix is stored in
full.

• for all excitations degree: Uses SymPy’s multiset permutations routine to run func-
tions for all diabatic states with the given number of excited monomers in degree.
max excitations can be used to limit the total number of excitations for approxi-
mations. All *args are treated as functions and run with one argument, an array
of monomer excitations, e.g. [2, 1, 0, 1].

• diagonalize sparse( gpu): Use SciPy’s or CuPy’s sparse eigsh routine to calculate
a number k of lowest eigenvalues and associated eigenvectors. If using the GPU, it
must be possible to locate a valid CUDA environment using CUDA PATH (CUDA
main directory) and LD LIBRARY PATH (CUDA math libraries and CUDA li-
braries) as CuPy is only imported within the diagonalization routine.

• calculate summed dipole moments: Sum the individual dipole moments of all monomers
for a given diabatic state, e.g. [2, 1, 0, 1].
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• calculate charges: Returns an array of DADMonomers with charges calculated
from the reference eigenvector, per default the ground state 0. This is useful for
plotting the geometry and will be used for adiabatic embedding in the future.

While, currently, the arbitrary addition of additional monomers to improve the periodic-
ity approximation has not yielded any success, it is planned to combine it with adiabatic
embedding, covering the most interacting monomers in the unit cell while treating its
environment in the mean-field manner described in sec. 4.4.

DADMonomer class

• coordinates: Coordinate matrix. charges[0] would be [x, y, z] of D1, charges[1] of
A.

• charges: Charge vector in [qD1, qA, qD2] format. In the diabatic basis, these are
assumed to be [1, -1, 1], but inherited classes could use this for adiabatic embedding
calculations.

• load from dict, get dict: Loading from and saving to dictionary (useful for JSON
exports and imports)

• get excited coordinates: returns a tuple with coordinates associated with charge
centers depending on the input state (diabatic states are, strictly speaking, not
physical excitations)

• get excited charges: returns a tuple with charges depending on the diabatic input
state

• calculate coulomb interaction: returns the interaction energy of this monomer with
another DADMonomer depending on its own and the other diabatic states

• calculate dipole moment: return the dipole moment
∑

i qi ∗ r⃗i with the reference
point in the middle of both charges
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