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Abstract High-altitude VBN for future Mars rotorcraft

Abstract

With its historical first flight in April 2021, the ”Ingenuity” Mars Helicopter demon-

strated the tremendous potential of using autonomous Unmanned Aerial Vehicles

(UAVs) for planetary exploration. A key challenge that the NASA Jet Propulsion

Laboratory (JPL) had to overcome to make this possible was finding a suitable nav-

igation algorithm; as Global Navigation Satellite Systems (GNSS) are not available

on Mars and most conventionally used navigation sensors are unpractical due to

Size, Weight and Power (SWaP) constraints or Mars’ unique geographic, geologic

and atmospheric conditions. As a result, Ingenuity relies on the only other viable

alternatives to date; visual, inertial, and range-based odometry (RVIO), to achieve

sufficiently robust and accurate state estimation for safe aerial exploration. While

Ingenuity’s enduring success at low ranges, speeds, and altitudes exemplifies the

viability of this approach, performance insights for the visual back-end of vision-

based navigation algorithms outside these operational conditions are lacking in the

existing literature. In particular, obtaining reliable and accurate state estimates

during long and high-altitude traverses, such as those required to access important

scientific targets in hazardous terrain and the planetary boundary layer, is expected

to be challenging for a variety of reasons that are not fully understood. This work

presents a survey of the performance, limitations and mitigation strategies for high-

altitude vision-based navigation (VBN) in the current literature; and an evaluation

of the performance and failure modes of the xVIO Range-Visual-Inertial Odometry

Framework developed by NASA JPL, both in simulation and the real world.
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1. Introduction High-altitude VBN for future Mars rotorcraft

1 Introduction

1.1 The Mars Science Helicopter

The 2020 Mars Helicopter Technology Demonstrator (MHTD), better known as

Ingenuity, was a huge milestone for aerial robotics that established autonomous,

solar-powered Unmanned Aerial Vehicles (UAVs) as capable Mars explorers [1, 2, 3,

4]. Before Ingenuity had even completed testing however, NASA was already laying

out plans for a larger and more capable successor; the Mars Science Helicopter

(MSH) concept, capable of deploying up to 5kg of science instruments in previously

inaccessible regions of Mars, such as the Valles Marineris canyon system and the

planetary boundary layer (lowest 10 km of the atmosphere) [5, 6, 7, 8].

While Ingenuity’s vision-based navigation algorithms have allowed it to operate well

past its design specifications, reaching ranges, velocities, and altitudes of up to 704m,

10m/s, and 24m respectively [9], its reliance on a global planar ground assumption

and the limited reach of its laser rangefinder have restricted its usage to relatively flat

terrains and low altitudes [7]. Significantly improving on its predecessor, the MSH

hexacopter aims to achieve traverses, cruise speeds and vertical profiles in excess

of 10km, 30m/s and 2km respectively while maintaining accurate self-localization,

thanks in part to the lower disk load of this design which will improve flight perfor-

mance and controllability, the addition of advanced navigation algorithms such as

Map-Based Localization (MBL) [10] and Range-Visual-Inertial Odometry (RVIO)

[11], and the upgrade to a long-range laser altimeter [5, 6].

Figure 1.1: Mars Science Helicopter concept hexacopter configuration [5].
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1.2 Motivations for high altitude navigation

High-altitude navigation capabilities are pivotal for Mars exploration, as they enable

the investigation of a wide array of critical scientific questions. At only 120m AGL,

a UAV can collect aerial imagery with comparable resolution to Mars rovers but at

scales previously obtainable only from HiRISE satellite imagery [12, 13] while at 1km

altitude, it can measure surface–atmosphere interactions in the Martian planetary

boundary layer such as the exchange of heat, momentum, dust, and water, which

are currently poorly understood and would revolutionize our understanding of the

Martian atmosphere. Furthermore, access to certain remote science targets requires

overflying complex terrain such as craters and canyon systems while maintaining

a constant elevation (geometric altitude) to maximize endurance, which leads to

significant variations in the altitude above ground level (AGL) [5, 6, 7].

However, flight at high altitudes AGL has direct implications for the accuracy of

vision-based navigation, which tracks the translation and rotation between succes-

sive camera images to estimate changes in the UAV’s pose. As the metric area

covered by individual camera pixels, called Ground Sampling Distance (GSD), in-

creases linearly with altitude AGL, so does the similarity between successive images

in the absence of rotation, until the frame-to-frame camera translation becomes un-

observable. Depending on the camera field-of-view (FOV), resolution, frequency, and

velocity, this typically means that the position drift accumulated from the noisy ac-

celerometer and gyroscope measurements becomes progressively harder to constrain

by visual data the further away the camera is from the ground.

Figure 1.2: Image area coverage and GSD for a 640x480 OV7251 camera [14].
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1.3 Research scope and outline

To fulfill the scientific and operational requirements mentioned above, a modular

state estimation algorithm was motivated in [6] and developed to a limited extent in

[7] at JPL for the Mars Science Helicopter. Leveraging laser altimeter measurements

to enable low-drift self-localization in GNSS-denied non-planar environments, the

xVIO range-visual-inertial odometry framework has shown promising results over

relatively flat terrain at low altitudes [15, 16, 11, 17]. While additional research has

been conducted to improve its initialization [18], heading estimation [16], and visual

frontend [19, 20], little is known of its performance at high altitudes.

As part of the ”Long Range Navigation and Autonomy” research task led by Dr.

Roland Brockers at the NASA Jet Propulsion Laboratory, this work focuses on the

evaluation and enhancement of xVIO’s all-terrain access capabilities at high altitude

over Martian terrain. In particular, we seek to evaluate xVIO’s performance during

autonomous system-in-the-loop (SITL) flights at 100m altitude using a monocular

camera, an IMU, and a long-range laser altimeter.

Subsequently, this report is organized as follows: First, we review the current state-

of-the-art in high altitude vision-based navigation including performance insights,

limitations, and mitigation strategies. Next, we detail our research methodology,

development, and limitations. Finally, we discuss our results and conclude with a

brief recap and suggestions for future work.

For information regarding the notations and reference frames used in the following

chapters, we refer our reader to chapter 2 of the original xVIO paper [15], having

aligned our formulations with theirs wherever possible for consistency.
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2 Literature review

In this chapter, we review the state-of-the-art (SOTA) in high-altitude vision-based

navigation including suitable sensor suites, performance metrics and insights, key

causes of drift and filter inconsistency, and corresponding mitigation strategies.

2.1 High-altitude vision-based navigation

In the context of vision-based navigation, defining what constitutes a ”high altitude”

is a complex task, as it varies significantly across the literature, between 30m and

2000m Above Ground Level (AGL) depending on the application. In the case of

Range-VIO, high altitude could be considered as the upper quantile of the laser

altimeter’s maximum range, where we might expect a progressive degradation of

the signal-to-noise ratio. In [17] for example, 100m AGL is considered high altitude

given a 120m-range laser altimeter while in [21] it is 300m AGL given a 750m-range

radar altimeter. For the particular case of Stereo-VIO, high altitude can describe

the point at which it degrades to Mono-VIO, between 30-120m AGL according to

[22, 23, 24]. For standard Mono-VIO however, the general consensus seems to be

over 150m AGL for rotary UAVs [25, 26, 27], which corresponds to the minimum

flight altitude for aircraft operation in the US [28] and the EU [29], while fixed-wing

UAVs usually only receive that denomination past 2000m AGL [30, 26]. Taking

these into consideration, we define ”high altitude” as 100m AGL or higher for this

work.

2.1.1 Sensors

As the name indicates, vision-based navigation requires visual data to permit ac-

curate self-localization, in a process known as Visual Odometry (VO). This and

other useful data can be obtained from sensors; active or passive devices capable of

measuring physical phenomenons.
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Active sensors, which emit signals to observe the environment, typically do not

satisfy the Size, Weight and Power (SWaP) requirements for the MSH, which faces

an extremely thin atmosphere with limited battery capacity. For instance, while

Time-of-Flight (ToF) 3D LiDAR, ultrasound, radar and infrared sensors can measure

distance and generate 3D Digital Elevation Maps (DEMs) using self-generated light,

sound, radio and infrared waves respectively, they are too large, heavy, and power-

hungry for Mars rotorcraft [31, 32, 21, 33]. Additionally, certain sensors like infrared

depth cameras can be particularly vulnerable to solar radiation during daytime [16].

However, small and lightweight single-point LiDAR altimeters have proven to be

reliable and effective against scale drift in the SOTA [11, 17, 34, 35, 36] and are

therefore likely candidates for the MSH sensor suite.

Passive sensors, which measure naturally occurring phenomena, generally satisfy

SWaP requirements for UAVs but can encounter problems in Mars’ unique envi-

ronment [37, 5]. For example, magnetometers and barometers are common UAV

sensors on Earth but struggle to estimate absolute heading and elevation in Mars’

weak magnetic field and thin atmosphere [5, 31, 16]. Similarly, Sun-sensors can

reliably recover absolute orientation from the Sun position on Mars rovers [38, 39],

but their reliance on accurate Martian time makes them vulnerable to clock resets

at low temperatures without sufficient heating, as experienced by Ingenuity [40].

Inertial Measurement Units (IMU) are essential passive sensors for high-altitude nav-

igation because their performance is not affected by altitude or terrain topography.

Combining the linear acceleration measurements of an accelerometer with the angu-

lar rate measurements of a gyroscope, IMUs estimate the system’s 3D position and

orientation through (double-)integration, which makes errors accumulate, and the

estimates thereby ”drift” over time [31, 33]. While inclinometer pitch and roll data

can help mitigate this drifting behaviour by initializing the IMU biases before take-

off, cameras can both estimate inertial biases and constrain inertial drift throughout

the flight [38, 36]. In particular, single-lens monocular cameras are best suited for

this task as double-lens stereo cameras weigh more yet degrade to monocular setups

at high altitudes [34, 41, 16], while shutterless event cameras are underrepresented

in the literature and more complex to use [20].
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The sensor suite considered for the MSH in [7] combines an IMU, a monocular

camera and a laser altimeter; all with proven track-records on Mars [1] and at high

altitudes [2.1.3] thanks to their low cost, size, weight, and power-usage [33].

2.1.2 Metrics

Measuring the accuracy of odometry systems in an objective, standardized manner,

is important to understand their behavior and compare their performance. While

denominations and formulations varies widely accross the literature, most equate to

the popular ATE and RPE performance metrics.

The Absolute Trajectory Error (ATE), also called Absolute Pose Error (APE), is a

global metric that quantifies in a single scalar the overall consistency of an odometry

system across N filter propagations. Generally computed as the root mean square

error (RMSE) between the estimated pest and true positions ptrue; usages of the

mean, median and standard deviation also exist in the literature [21, 34, 37]. The

ATE is often expressed as a percentage of the trajectory distance to facilitate com-

parison [42, 43, 44, 45, 17], with 0.1-2% of flight distance as ATE being considered

the golden standard for VIO [46].

ATE =

√√√√ 1

N

N−1∑
i=0

∥pest,i − ptrue,i∥2 (2.1)

Conversely, the Relative Pose Error (RPE) is a local metric that can be computed

as the ATE for a specific time interval ∆ rather than the whole flight, which is useful

for isolating error peaks [43, 44, 42, 45, 47].

2.1.3 Benchmarks

Monocular high-altitude vision-based navigation is a recent and underrepresented

topic in the literature. While comparing algorithms across different systems and

environments is difficult, we find that most algorithms achieve less than 2.5 % of

flight distance as ATE at high altitudes over urban or rural terrain, with noticeable

improvements when using active ranging sensors [48].
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Year Paper Odometry ATE as % Altitude (m) Length (km) Terrain

2012 [48] VIO 2 500 0.5 urban

2012 [48] VIO 10 500 0.5 alpine

2012 [48] VIO 13 500 0.5 desert

2015 [21] VO 4.67 600 16.5 rural

2015 [21] Radar-VO 2.07 600 16.5 rural

2015 [34] RVIO 0.78-0.39 150-300 4.5-7.8 rural

2022 [17] VIO 1.4 100 0.5 urban

2022 [17] RVIO 1.2 100 0.5 urban

2022 [17] MSCKF-RVIO 1.02 100 0.5 urban

2022 [30] VO 0.072-2 2530 78 rural

2023 [24] VIO 2.5 100 0.8 urban

Table 2.1: Accuracy of SOTA mono-VO algorithms at high altitudes

2.2 xVIO Range-Visual-Inertial Odometry

Based on the popular Extended Kalman Filter (EKF) [49], xVIO [15] estimates the

9 DoF (position, velocity, and orientation) of the nonlinear UAV system, the IMU

biases, and the filter’s confidence in these estimates, generally referred to as the

state uncertainty or covariance. Integrating inertial measurements over time, xVIO

predicts new estimates of the state at high frequency, then updates and corrects

these estimates at a lower frequency using visual data from a monocular navigation

camera and range data from a laser altimeter, in a process known as range-visual-

inertial odometry (RVIO).

xVIO performs visual updates using the FAST feature detector [50], the pyramidal

implementation of the Kanade-Lucas-Tomasi feature tracker (KLT) [51, 52], and 2

types of visual update paradigms; Simultaneous Localization And Mapping (SLAM)

and Multi-State Constraint Kalman Filtering (MSCKF) [53]. However, as MCSKF

cannot triangulate features with sub-pixel parallax at higher altitudes [19], we focus

on the SLAM paradigm in the remainder of this work.
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In its range update, xVIO leverages its existing SLAM features to perform a Delau-

nay triangulation [54] of the terrain, and makes a local planarity assumption for the

triangle currently intersected by the laser altimeter to approximate the inverse-depth

[55] of the 3 features that make up its corners, using the range measurement. This

allows the filter to recover 3D information from the 2D image and thus constrain

scale drift, a key problem in VIO [56].

Figure 2.1: Visualization of a xVIO range-

visual update in Gazebo. In green are 15

visual state SLAM features, in blue the

laser altimeter ray and the intersected De-

launay triangle, and in cyan/orange cur-

rently unused potential SLAM features.

2.3 Limitations & mitigation strategies

2.3.1 In extended Kalman filtering

Vision-based navigation systems are dynamic and highly nonlinear, due to the intri-

cate relationships between the system, the sensor measurements, the environment,

and time. Consequently, state estimation for such systems is sub-optimal, as we can

only approximate future states and their uncertainty. In EKFs, estimation is done

by analytically linearizing the dynamic and measurement models of these systems

around their Gaussian mean, at each point in time, using first-order Taylor series

expansions. While easier to model and least memory intensive, they assume local

linearity around the current state estimate and tend to be heuristic in nature, focus-

ing only on a few critical and well-defined relationships in the interest of efficiency.

This leads to linearization errors, making EKF state estimates only as accurate as

their models are comprehensive and locally linear. However, these errors can be

mitigated by using Iterative EKFs (IEKF), which iteratively refine state estimates

around which the linearization is performed, and Unscented KFs (UKF), which

bypass the local linearity assumption using statistical linearization [15, 49, 57, 58].
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Furthermore, EKFs are only consistent and therefore reliable, while their model er-

rors are fully characterizable by a Gaussian mean and an uncertainty, represented

by the estimated covariance matrix. In reality however, many VIO processes such

as feature tracking and nonlinear dynamics produce non-Gaussian error distribu-

tions, leading EKFs to frequently underestimate the true covariance matrix and

risk becoming inconsistent [59]. Once inconsistent, EKF estimates typically diverge

rapidly, forcing the UAV to perform an emergency landing in the absence of mid-air

initialization capabilities. This risk can be mitigated through covariance inflation

techniques like the addition of ”stabilizing noise” to the process or measurement

noises to better reflect the actual uncertainty in the system, or statistical filtering

methods like UKFs to circumvent risks associated with mismodelling, local nonlin-

earity and non-Gaussian noise [60].

For filter-based VIO methods such as xVIO, the initialization of the filter is the

first and most critical step, as this is where the initial estimates for the analytical

linearization process are defined or estimated. While errors in the initial x-y position

will only induce a constant position error, errors in the initial yaw will result in

uniform position drift over time, and errors in the initial pitch, roll, gravity vector, or

uncertainties may lead to rapid divergence. Accurately estimating these parameters

is a challenging task due to the number of variables and poor conditioning of the

system [37], that is typically done using calibrations and absolute localization data

before takeoff [15, 16, 38], or through self-initialization techniques such as closed-

form solutions [61, 62], spline-fitting [37, 63] and bundle-adjustment [18].

2.3.2 In inertial odometry

As mentionned in [2.1.1], inertial odometry is prone to drifting over time due to the

(double)-integration of inertial noise, which stems from various sources. While all

IMUs induce small quantization errors due to their limited floating-point precision,

low-cost COTS IMUs such as those used in current and planned Mars rotorcraft

typically have significant biases and noises due to manufacturing imperfections and

electromagnetic, cross-axis and temperature sensitivity. During flight however, tur-

bulence from backwash or strong winds and mechanical vibrations from the pro-
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peller(s) can become the main sources of inertial noise without proper dampening

or covariance inflation [64, 34]. These noises, and an other unmodelled perturbators

of the system dynamics, are ideally accounted for by the zero-mean process noise of

an EKF, which should be carefully balanced; too much process noise and outliers

will bias the estimates, too little and important inliers will be ignored [58].

With sufficient excitation and a well-defined process noise, an EKF will drift mini-

mally. If certain axes are not or insufficiently excited however, they become unob-

servable for the filter, which is incapable of differentiating noise from near-constant

measurements. While hovering or during traverses at constant velocity for instance,

IO consequently drifts in global position, velocity, and orientation, but remains ob-

servable in pitch and roll thanks to their relative orientation to the gravity vector

[65, 37, 66]. Nevertheless, unobservability in the x-y position axes, velocity and

attitude can be mitigated using visual data, and in the z position axis using range

data [11].

2.3.3 In visual odometry

Cheap and versatile, visual odometry is an essential part of most robotic explo-

ration systems whose performance depends on 4 key components; quantization er-

ror, tracking error, measurement noise, and observability; which respectively define

the precision, accuracy, weight and informativeness of visual updates.

2.3.3.1 Quantization error

Quantization refers to the discrete pixel-precision at which features can be tracked,

and by extension the metric-precision of the visual update, represented by the

Ground Sampling Distance (GSD) in meters per pixel. From the formulations of

the GSD in [67, 68, 69], we intuitively observe a linear relationship between the

altitude AGL and the feature tracking precision, whereby for a given height AGL

and level of process noise, increasing the camera resolution should decrease the posi-

tion error and uncertainty by improving the precision with which the visual update

corrects the prediction. Conversely, increasing height AGL for a given camera res-

olution should increase the quantization error and by extension also the position

14
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error and uncertainty, although this couldn’t be proven by [24] within the scope of

their high-altitude mono-VIO experiments.

GSD =
altitude AGL · sensor size
focal length · image size

(2.2)

To mitigate the loss of precision resulting from high altitudes and poor camera reso-

lutions, image enhancement techniques such as Super-Resolution (SR) are popular,

since larger camera sensors typically come at the cost of more pixel noise. While

Single Image SR (SISR) techniques, which upscale individual low-resolution images

have been successfully applied to VIO [70], their generative nature can be seen as

an unnecessary additional source of uncertainty and tracking error. Multi-Image

SR (MISR) solves this problem by combining multiple low-res images into a single

high-res output that ensures reliable pixel registration [71, 72].

2.3.3.2 Tracking error

The tracking error represents the feature tracker’s ability to accurately track features

across consecutive images up to a given precision. For indirect, descriptor-based fea-

ture trackers such as SIFT, SURF, and ORB, which are relatively robust to changes

in scale, rotation, and lighting; this mostly depends on the quality of the feature

descripors and matching methods used. Direct, intensity-based feature trackers on

the other hand, such as the Kanade-Lucas-Tomasi tracker (KLT), are faster and

more robust to scene homogeneity, but sensitive to a wider variety of parameters.

Here, we focus on the limitations of the pyramidal KLT used in xVIO.

To begin with, the KLT algorithm assumes feature motions to be locally linear and

”spatially coherent”, as it finds feature correspondences in consecutive images by

perform gradient descent on the pixel intensities around predicted feature positions

[73]. This makes KLT vulnerable to feature displacements that exceed the frame

and tracking rate, such as extreme accelerations and pure rotations, which place

predictions outside the image and thus make correspondence impossible, forcing the

filter to linearize between fewer matches [37]. However, this risk can be mitigated by

increasing the image rate or using gyro-based derotation to overcome large attitude
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motion [74]. Another limitation of this assumption is that because predicted feature

positions are always computed from priors, inherent errors in the prediction due to

imperfect camera calibrations and distortion models accumulate and induce position

drift over time, albeit less than IMUs. Nevertheless, these prediction errors can be

minimized through rigorous calibration and the use of appropriate distortion models,

such as the FOV model [75] for wide-angle monocular cameras, while the inevitable

drift can be attenuated by using inertial data in the prediction step to improve the

accuracy of the priors and reduce computation time [66].

Next, since KLT prioritizes which features to track based on their quality, more

features does not necessarily guarantee better results [66]. While most natural

landscapes exhibit fractal properties, such that the quantity and quality of features

are invariant with scale [76], researchers have observed a relationship between scale

and image blur which decreases the size and number of feature points at higher

altitudes [70, 77]. To combat this effect, the pyramidal implementation of the KLT

can track at lower resolutions to facilitate convergence at every scale [51].

Then, because KLT uses the gradients of image intensities to estimate motion, it’s

performance depends on the ambient illuminance and the terrain albedo. For in-

stance, while flying in overly or insufficiently bright environments, in poor visibil-

ity conditions, over homogeneous terrain, or over terrain with overly low or high

reflectance, pixel intensities tend to me homogeneous across the image, making

features more ambiguous and convergence more difficult, as gradient descent faces

smoother pixel intensity slopes and more local minima [46, 48, 24]. To mitigate

this, [74] used an autoexposure algorithm on the Mars Helicopter to optimize image

intensity for feature tracking across different terrains and weather conditions.

Lastly, while the ISO analog gain and exposure time settings of monocular cameras

can be minimized to limit image noise and motion blur, and a maximum exposure

level can be enforced to satisfy the constant brightness assumption of the KLT’s

gradient-descent algorithm [74], limitations remain for the velocity, turn rate, and

altitude AGL, to keep motion blur below a tolerance level of a couple of pixels and

ensure sufficient image overlap for feature correspondence [78, 65, 79, 21].
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2.3.3.3 Measurement noise

The visual measurement noise is the zero-mean pixel-variance that encompasses both

the tracking and quantization errors, which combined typically range between 0.33

[16] and 1 pixel σ [80] for Mono-VIO. Set too high, the filter won’t trust the visual

measurements and will face unconstrained inertial drift. Set too low, and the filter

might become overconfident, allowing outlier measurements to corrupt the state

and lead it to diverge, or end up in ”lockout” if the state estimates are sufficiently

perturbed for good visual measurements to become indefinitely rejected [36].

2.3.3.4 Observability

Firstly, the true scale of the scene is unobservable in Mono-VO without motion

constrains or prior knowledge of the environment as 2D images provide no depth

information, such that fast motions at high altitude cannot be distinguished from

slow motions at low altitude. Consequently, VO depth and pose estimates are

only accurate up to an unknown scale factor, which drifts over time [30, 33, 34,

81, 82]. Fast vertical motions at low altitudes and slow horizontal motions and

high-altitude are especially likely to induce scale drift, as even the estimated scale

factor becomes unobservable in excessive [21] and sub-pixel [22] feature translations.

This is particularly dangerous for EKFs, as nonlinear visual measurement models

are sensitive to noise and may converge to local minima and therefore inconsistent

solutions during takeoff, landing, or at high altitudes [53]. To this end, a real-

time scale drift estimation algorithm was recently developed by [83] to help UAV

autonomy algorithms monitor and incorporate this risk in their decision-making.

Another problem with scale unobservability is that the depth of features is un-

known at the time of their initialization. In the absence of MSCKF or to improve

the stability of MSCKF triangulation when baselines are insufficient, xVIO initial-

izes the depth of new SLAM features using a constant inverse-depth ρ̂0 = 1
2dmin

and uncertainty ρ̂0 = 1
4dmin

that are defined before filter initialization based on

a parametrizable dmin minimal depth that defines a 95 % acceptance region for

depths between dmin and ∞ [15]. The inverse-depth parametrization is used here,

since visual features could theoretically have infinite depth [55]. As poor initial
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feature depth estimates can lead to unconstrained scale drift however, alternative

approaches were explored in [17] to initialize the depth and depth covariance of

SLAM features using a laser altimeter range measurement, which account for the

pixel-wise distance to the LRF intersection point and the range measurement noise.

VO techniques exist to mitigate scale drift, such as Simultaneous Localization and

Mapping (SLAM) or Structure from Motion (SfM) algorithms which estimate scale

over time through triangulation, or deep learning scale estimation networks [84, 56,

30], but these are memory-intensive and challenging to tune for performance [56,

81]. Flat world assumptions are a common alternative that work well for flights with

low topography-altitude ratios, but are incompatible with Mars’s rough landscape

and the MSH’s comparatively low flight altitudes [77, 66, 33]. Consequently, VIO

is often used to recover the true scale of the scene [37], but fails to do so when

hovering or flying at uniform velocity [16, 85], and degrades in situations with larger

inertial-visual excitation ratios as visual measurements become less informative due

to insufficient parallax and ergo cannot constrain inertial drift, especially if the

measurements are noisy and the filter is not consistent enough to extract all the

information it needs from the image [17, 37, 41].

At high altitude, it has been highlighted by [66, 81, 21] that translations becomes

paradoxically more difficult to estimate because while feature tracks get longer and

features ergo have more time to be triangulated, parallax decreases and translations

therefore become more difficult to observe. In their experiments at different speeds

and high altitudes however, [48] did not find these effects to be significant. When

dealing with VIO specifically, [37, 63] also find that visual odometry’s requirement

for sufficient parallax at high altitudes result in excessive amounts of mostly un-

informative IMU measurements and thus significant drift due to long periods of

unexcited inertial integration and bias unobservability.

Secondly, Mono-VIO cannot observe global heading about the local gravity vector

in the absence of rotation [15, 86, 16, 87]. This is a significant problem for naviga-

tion because small heading errors can result in significant position drift over long

distances, often making them the primary source of position error, as was the case

for Ingenuity’s first flights [88]. Visual compass algorithms can help mitigate this
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problem by indirectly recovering the system’s yaw from the position of the sun by

tracking the UAV’s [89] or the scene’s [90, 91, 92] shadows, or by estimating changes

in heading relative to the geomtry of the terrain [93, 65, 94].

Finally, [66] observed an ”attitude coupling problem” in mono-VIO while hovering,

whereby drift in pitch resulting from gyroscope noise is interpreted as a translation

by the filter due to the use of attitude in the visual measurement equation. In par-

ticular, they found the resulting error to have an oscillatory behavior that increases

linearly with altitude and results in divergence above 700 meters.

2.3.4 In range-visual odometry

To overcome the scale ambiguity problem in VIO, the fusion of range measurements

from a laser altimeter was proposed in [11] and further explored in [17], demonstrat-

ing reductions in scale drift up to a factor of 5 and in position error up to a factor of

9 at low altitudes, with a certain level of tolerance to terrain roughness. The range

update’s ability to recover the scale of the scene depends on several key factors:

First, the Signal-to-Noise-Ratio (SNR) of the laser altimeter measurement defines

the accuracy of the metric depth information VIO needs to observe its scale. Ac-

cording to [95, 96], a laser rangefinder’s SNR linearly depends on a variety of factors

such as the distance travelled by the signal, the signal beam divergence angle, and

the terrain’s reflectance and slope, all of which should be minimized, save for the

reflectance, to maximize the SNR and thus the measurement’s accuracy. [97] seper-

ates these factors into range-independent noise, such as potential sensor biases due

to manufacturing defects, and range-dependent noise, such as errors from averaging

over larger spot areas due to beam divergence over long distances.

Second, the LRF orientation and x-y translation w.r.t the camera define which image

pixel, and therefore which Delaunay triangles the LRF will intersect. Because xVIO

assumes no LRF-camera translation however, any offset in z directly translate to

error in the range measurement, then in the state estimates [11]. Offsets in x or

y can on the other hand be neglected at high altitudes, as their impact become

sub-pixel due to the GSD. To mitigate this and changes to the calibration during

flight, [17] perform online extrinsic calibrations for the LRF and camera.
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Next, the range update makes the assumption that the terrain within Delaunay tri-

angles is locally planar, since most visual features mark depth discontinuities and

the area between them is typically smooth [11]. Extending this work, [17] include

the features of co-planar neighboring triangles to the range update to further disam-

biguate the scale at high altitudes, and use the distance measurement to initialize the

inverse-depth and covariance of features that are co-planar with the base triangle,

based on their distance to the LRF intersection point and the range measurement

noise. While [11, 17] demonstrated in their experiments that the 19 triangular facets

produced by 15 SLAM features could efficiently capture the structure of 3D scenes

up to 110m, common terrain features on Mars such as craters and canyons, and

the increased facet area at high altitudes, are likely to stress these assumptions.

Observing these pitfalls at very high altitudes, Ivan Alberico (2023) adapted xVIO

to prioritize features passing through the LRF intersect pixel above other potential

SLAM features with higher FAST scores, such that through the cross-correlations of

the state matrix, the depth of all features become observable from the known metric

depth of this new feature.

Then, the measurement noise of the range update is the zero-mean meter-variance

that encompasses both the altimeter’s SNR, calibration errors, errors in the feature

depth estimates, and violations of the local planarity assumption. Used in the

Mahalanobis distance test to reject outliers, this filter is difficult to tune for rough

terrain and high altitudes because at the levels required to avoid outliers from the

aforementioned effects, the update’s weight becomes negligible. To circumvent this

problem, [36] individually tune the covariance of their different axes to optimize the

informativeness of their measurements, while [98] use an improved adaptive EKF

(AEKF) to adapt the measurement covariance in real time.

Finally, for the scale to be observable in the absence of excitation, RVIO also re-

quires translation motions to be observable such that feature depths are known and

correlated. Similar constraints are found in the work of [21] on Radar-VO. However,

this parallax requirement is not satisfied while hovering or at high altitudes [15].
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3 Methodology

The following chapter details how this research was conducted starting with the

overall design, before diving deeper into how the data was collected, analyzed and

visualized, and concludes with a reflection on the limitations of these methods.

3.1 Research Design

Considering that this research aims to evaluate the performance and failure modes

of xVIO, and the viability of potential mitigation strategies, this work adopts an

experimental research design [99] to evaluate the impact of various parameters and

mitigation strategies identified in the literature review, on the xVIO state error and

uncertainty. The hypotheses we define for each independent variable are tested in

Monte Carlo simulations to ensure the statistical significance of the results; both in

a realistic robotics simulator to obtain results as close as possible to reality using

a graphics engine, physics engine, and flight controller, and in a custom heuristic

simulator free of tracking errors from the feature tracker or graphics engine, and

integration errors from the physics engine or flight controller. Finally, we conduct

high-altitude outdoor flights to evaluate the performance of xVIO in the field.

3.2 Data Collection

3.2.1 Heuristic Monte Carlo simulations

To begin with, a heuristic simulation framework using simplified control and sensor

models was required to test our hypotheses in a controlled environment, free of the

uncertainty that surrounds graphics and physics engines, and tracking and control

algorithms. While the purely analytical MATLAB-based range-visual-inertial simu-

lation environment developed by JPL and used by [82] fulfilled these requirements,

its slow runtime, high memory usage and poor integration with the data analysis
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software made it ill-suited to run our numerous Monte Carlos. Consequently, we

developed a new heuristic simulation framework written entirely in C++. Capa-

ble of generating RVIO sensor measurements and ground truth data more than 32

times faster than its predecessor when multithreading, xSIM-Cpp also features an

improved trajectory interpolation algorithm, 3D-terrain compatibility for both vi-

sual and range measurements, automatic LRF calibration, and lossless recording to

the rosbag format. The simulation framework was validated with xVIO using zero-

noise runs, resulting in only floating-point errors across kilometer-long trajectories

as seen in figure 3.1b, and the sample size for each trajectory was determined by the

convergence point of the position error mean and variance, which roughly happens

around 300 iterations in figure 3.1c.

(a) Visualization of an xVIO update us-

ing SIM-Cpp sensor data

(b) x position error across a zero-noise 1km

traverse at 100m AGL

(c) Position error mean and variance stabilization with sample size

Figure 3.1: xSIM-Cpp methodological considerations
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3.2.2 Realistic Monte Carlo simulations

Next, a realistic simulation framework was required to evaluate the impact of track-

ing and control algorithms as well as real 3D terrain models on our hypotheses. We

first considered AirSim [100], ETH flightmare [101] and VINS Eval [102]; popular

open-source 3D robotics simulators built on the Unreal and Unity game engines and

capable of rendering highly realistic environments, but ultimately decided against

due to their unpredictable rendering artifacts and high memory usage which made

simulations unstable. JPL’s proprietary Darts/Dshell multibody simulation frame-

work was also considered, having being previously used to study Ingenuity’s flight

dynamics [2], but its steep learning curve, outdated graphics engine and lack of ROS

and PX4 integration made it unsuitable. Consequently, we opted for the latest ver-

sion of Open Robotics’ popular and lightweight open-source 3D robotics simulator

”Gazebo” [103, 104]. Offering native ROS and PX4 integration, numerous sensors

and physics engines, long-term support, and photorealistic environments, this sim-

ulator was recently used at JPL by [105] to perform RVIO System-In-The-Loop

(SITL) simulations with a quadcopter in Mars lava tube environments.

(a) Aerial map

(b) Digital twins

(c) Procedurally generated canyon

Figure 3.2: Gazebo visual models
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To replicate our real outdoor flights in Gazebo using the recorded flight plans, digital

twins of the UAV and flight environments as seen in figure 3.2b were created to scale

using aerial 3D terrain reconstructions as illustrated in figure 3.2a, and CAD models

of the UAV frame and sensors. Similarly, digital twins of actual Martian terrain were

created using HiRise Digital Elevation Models (DEMs) and aerial imagery [12]. For

hypotheses requiring rougher terrain however, we procedurally generated Mars-like

terrains with craters and canyons using Blender, as illustrated in figure 3.2c. Because

we used the same PX4 flight controller for this simulation framework as for our

outdoor flights, the GZPX4-MC autonomy algorithm also had to be developed to

synchronize PX4 with the Gazebo simulator and the xVIO state estimator via ROS,

such that Monte Carlos could be run autonomously.

For results from the Gazebo simulation to be comparable with those from xSIM-

Cpp, we replaced Gazebo’s IMU noise model with our simplified model detailed in

Appendix A, and replaced Gazebo’s radial image distortion model with an imple-

mentation of the FOV distortion model [75], which can be found in Appendix B and

is visualized in figure 3.3 using the OGRE NEXT graphics engine.

Figure 3.3: Distortion of a raw Gazebo image (left) using the FOV model (right)

To ensure its validity, this simulation framework was sanity-checked and had its

trajectory sample sizes defined in the same manner as xSIM-Cpp. However, due to

the added uncertainty of the feature tracker, PX4 controller, ODE physics engine and

3D terrain, a small position error is inevitable even in the absence of measurement

noise, and the required sample size was subsequently much larger.
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3.2.3 Outdoor closed-loop flights

Finally, outdoor closed-loop flights were required to evaluate xVIO’s high-altitude

performance in practice. To this end, a ModalAI Sentinel quadcopter equipped with

a VOXL2 autopilot, a TDK ICM-42688-P 6DoF IMU, and a nadir-pointed Omnivi-

sion OV7251 wide-angle global-shutter 640x480 monocular navigation camera, was

augmented with a nadir-pointed Lightware SF30D 200m-range laser altimeter to

match the sensor suite considered in [7] for the MSH. Additionally, the Sentinel’s in-

tegrated magnetometer and GNSS antenna were preserved to provide ground truth

outdoors, and the UAV frame was augmented with 6 reflective sensors to enable

initial SITL tests indoors using a VICON motion-capture system which we set up

for this purpose. For SITL to be possible however, an additional Pixhawk4 Mini

autopilot had to be installed, as the EKF2 estimator of VOXL2’s integrated PX4

version could not fuse external pose estimates from xVIO. Also, a UART- and USB-

compatible ROS driver had to be developped for the SF30D laser altimeter due to its

novelty, and was later upgraded with self-reinitialization capabilities to counteract

occasional signal cut-offs due to vibrations during flight.

After passing initial manual SITL tests with xVIO inside the JPL micro aerial ve-

hicule laboratory, autonomous waypoint-following SITL tests were performed using

PX4 at low altitude in the JPL Mars Drone Yard seen in figure 3.4a, then at higher

altitudes in the Arroyo Secco creek shown in figure 3.2a.

(a) JPL drone yard (b) Camera with bandpass filter
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(c) Sentinel bottom view (d) Sentinel top view

Figure 3.4: Experimental setup

During testing, we discovered serious over-exposure problems with the camera when

flying at noon with a clear sky over the mostly sandy and rocky terrain of the Arroyo

Secco creek, both with autoexposure enabled and manually setting the exposure

time to its minimum value of 4ms. Consequently, we used an IR-cutoff filter or a

Bandpass colored-glass filter depending on the lighting conditions to mitigate this

problem, and developed custom removable mounts as seen in figure 3.4b for these

that minimally obstruct the camera.

(a) Default (b) With IR-cutoff filter (c) With bandpass filter

Figure 3.5: Image saturation with autoexposure in the JPL Mars Yard at noon

Before each flight, the IMU and camera intrinsics and extrinsics were calibrated

using the Kalibr visual-inertial calibration toolbox [106] and a calibration board,

and the LRF intersect pixel point was defined from an image of a 10m-distant flat

surface. The LRF intrinsics (noises and biases) were calibrated once for all flights,

and are explained in more detail in the next chapter.
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3.3 Data Analysis

The sensor data we collected was evaluated in real-time by xVIO using a custom

C++ ROS wrapper, whose state estimate outputs where then compared to the

ground truth (from the simulator or GPS) using various MATLAB scripts which also

analyzed other factors such as update residuals. While most VIO literature expresses

state estimation accurary solely in terms of ATE or RPE, our evaluations consider

4 different variations of the underlying Root Mean Square metric to measure the

representativity of our samples (RMSE), the effective pose uncertainty (RMS3D),

the estimated pose uncertainty (RMScov) and the effective measurement uncertainty

(RMSgamma).

Let us assume an inertial state without biases xI , its covariance δxI , and their

diagonals xdiag
I and δxdiag

I :

xI =
[
piw

T
viw

T
θiw

T
]T

(3.1)

δxI =
[
δpiw

T
δviw

T
δθiw

T
δbg

T δba
T
]T

(3.2)

xdiag
I =

[
pixw piyw pizw vixw viyw vizw θixw θiyw θizw

]
∈ R1×3

+ (3.3)

δxdiag
I =

[
δpixw δpiyw δpizw δvixw δviyw δvizw δθixw δθiyw δθizw

]
∈ R1×3

+ (3.4)

The error between the estimated and actual inertial state can be written as :

∆xdiag
I = xdiag

I,est,i − xdiag
I,true,i (3.5)

For N inertial propagations across a trajectory, and M iterations of this trajectory

in a Monte Carlo sequence, the performance metrics can therefore be written as :

RMSE(N,M) =

√√√√ 1

N

N−1∑
i=0

∥∥∥∥∥ 1

M

M−1∑
i=0

∆xdiag
I,i

∥∥∥∥∥
2

(3.6)

for the Root Mean Square Error, which measures the population sample bias and
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therefore converges for all states of a consistent filter towards 0 as M increases.

RMS3D(N,M) = 3 ·

√√√√ 1

N

N−1∑
i=0

∥∥∥∥∥ 1

M

M−1∑
i=0

(
∆xdiag

I,i − 1

M

M−1∑
i=0

∆xdiag
I,i

)∥∥∥∥∥
2

(3.7)

for the Root Mean Square 3-Sigma variance, which measures the actual pose uncer-

tainty across the trajectory, such that each point of the RMS3D curve encompasses

99.7% of the errors encountered at that timestamp across all M Monte Carlos.

RMScov(N,M) =

√√√√ 1

N

N−1∑
i=0

∥∥∥∥∥ 1

M

M−1∑
i=0

δxdiag
I,i

∥∥∥∥∥
2

(3.8)

for the Root Mean Square Covariance, which measures the estimated pose uncer-

tainty of the Kalman filter across the trajectory, such that each point of the RMScov

curve represents average metric confidence of the filter in a given state at that times-

tamp, across M Monte Carlos.

Following the same logic, we also evaluate the estimated measurement uncertainty

(RMSgamma) for the visual and range updates, the average number of visual up-

dates that pass the outlier rejection test (RMS nb inliers), the average pixel residual

in the x (RMS x mean) and y (RMS y mean), and the average altitude of features in

the world frame for visual (RMS slam z mean) and range (RMS lrf z mean) updates

respectively.

Using these performance metrics, hypotheses are evaluated by comparing changes

in performance with our perturbations of the independent variables, using the ex-

periment configuration detailed in Appendix C as the reference point. Taking figure

3.1b as an example; the blue curve represents the RMSE, the red curves represent

the distribution of the RMS3D around the RMSE, and their metric value (y-axis)

across the trajectory duration (x-axis) are noted in the plot subtitle. For such a

plot and large Monte Carlos of realistic data, the distance of the blue line from the

x-axis would therefore represent the sample bias, the distance of the red lines from

the blue line would represent the metric state error, and the smoothness of both

serves as an indicator of the consistency of the filter.
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3.4 Limitations and considerations

We conclude this chapter with a discussion of the limitations of our methodology,

and certain considerations to account for when reviewing our results. First, the

results originating from our heuristic simulation framework can be considered as

inherently optimistic, as strong assumptions are made in how the data is generated

to isolate the effects of the independent variables we vary from those of the feature

tracker and flight controller. Next, due to the long computation times required to

run our complex simulations, especially those requiring memory-intensive graphics

and physics engines, the number and range of independent variables and mitiga-

tion strategies we evaluated, as well as their validation using Gazebo, was limited

by the time we had available to conduct this research and the computational ca-

pabilities at our disposal (20-core Intel i5 13600KF CPU, Nvidia RTX 4060 GPU,

32GB RAM). For this reason, our results mainly focus on the transient phase of the

nonlinear EKF system, as significant computational power is required to evaluate

the long-term steady state, particularly when perturbing the system with additional

sources of uncertainty such as high altitudes and 3D terrain. Additionally, because

we used Earth’s gravity for our simulations to match the parameters of our outdoor

flights, the flight dynamics generated by the PX4 controller in our Gazebo simula-

tions and outdoor experiments likely differ from those on Mars. Furthermore, the

number, complexity, duration, and altitude of our outdoor experiments were limited

by the capabilities of the UAV, the availability of drone pilots and observers, and

the budget of the research task. Also, because the ground truth for our outdoor

flights was provided by GPS, our results should only be considered accurate up to

the precision of our GPS, which we estimate to be around 2m in all axes. Finally,

it should be noted that the writing of this report was facilitated by the proofread-

ing and paraphrasing functionalities of the Grammarly 2.5 AI writing assistant and

ChatGPT 3.5 AI chatbot, of which the latter was also greatly helpful in bug- and

problem-solving at various stages of the software development.

29



4. Summary of results High-altitude VBN for future Mars rotorcraft

4 Summary of results

In this chapter, we summarize the outcomes of our analyses and experiments. We

refer the reader to the master thesis (Tanguy Gerniers, 2024) that follows this report

for the visualizations and in-depth discussions of our results.

4.1 Analyses in simulation

We begin with an analysis of the filter convergence properties, where we find that

xVIO goes through a 3-step transient phase following initialization before settling

into steady phase once the first tracked SLAM features leave the image, with uni-

form position error growth and cubic uncertainty growth driven primarily by scale

drift, since visual updates are only able to constrain position drift up to a drifting

scale factor. In the first step of the transient phase, unconstrained inertial drift

leads the pose error and uncertainty to grow exponentially as the inertial biases are

yet unknown. Once xVIO starts tracking SLAM features, the filter begins to ap-

proximate these inertial biases and thus constrain the inertial drift, which stabilizes

the pose error and covariance. Finally, the pose error and uncertainty decrease as

the filter converges on its best approximation of the inertial biases and recursively

corrects its state and covariance.

Here, we find that while the system always converges to a linear position drift in

the steady phase, both the filter convergence time in the transient phase and the

position drift rate in the steady phase increase with altitude, resulting in a radical

relationship between altitude and position error but a linear relationship between

altitude and position uncertainty. Furthermore, we find that flight velocity defines

how far along its transient or steady phase the system is able to go in a given

time without affecting its convergence properties, while also decreasing the slope

of the position drift in the steady phase. Contrary to the intuition that motion

alongst the longer camera width helps reduce position error and uncertainty by
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maximizing the length of SLAM feature tracks, we also uncover a linear relationship

between position error and the FOV of the non- motion axis that results in faster

convergence when flying alongst the height of a camera with more HFOV than

VFOV. Lastly, we demonstrate that xVIO’s unknown-depth initialization method is

prone to divergence during vertical profiles and flights over discontinuous terrains,

and subsequently evaluate 3 potential SLAM feature inverse-depth initialization

alternatives, finding that using the median inverse-depth of the N closest tracked

SLAM features offers the best results given sufficient filter iterations using an IEKF,

while using an LRF range measurement is a more reliable approach otherwise.

Next, we analyze the impact of linearization on position error and uncertainty,

finding an exponential decay relationship with camera image rate and a linear rela-

tionship with the number of tracked SLAM features, but no relationship with either

the IMU rate or the number of IEKF iterations. We continue with an evaluation of

the process noise, finding a linear relationship between inertial noise and both the

position error and its uncertainty, and demonstrate that inflating the approximated

accelerometer and gyroscope noises by a factor of 4 and 2 respectively to obtain the

process noise provides the right balance in filter confidence to maximize accuracy

whilst minimizing risks of divergence.

Now focusing on Visual Odometry, we start with an analysis of quantization error

where we observe an exponential decay relationship between image resolution and

both position error and uncertainty. Conversely, we find that tracking error has

a radical relationship with position error and a cubic relationship with position

uncertainty. However, we demonstrate that motion blur does not contribute to

this error given our sensor suite and trajectory designs, and observe no significant

improvement in performance from incorporating the camera distortion model to our

visual measurement model.

Moving to Range-Visual Odometry, we find no range-dependent noise nor any sig-

nificant biases in our SF30D LRF based on our field experiments. Assuming this

weren’t the case, we observe a linear relationship between LRF noise and both

position error and uncertainty in simulation. Furthermore, while we demonstrate

that horizontal violations of xVIO’s zero camera-LRF translation assumption do
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not affect performance, vertical offsets lead to errors in the velocity estimates which

increase the position drift rate. Lastly, we find that while the local planarity as-

sumption of the Delaunay triangles in xVIO’s range update holds well over planar

terrains, the range measurement uncertainty can rapidly grow over discontinuous

terrain and become unrecoverable, leading subsequent range updates to be rejected

as outliers by the Mahalanobis distance check for the remainder of the flight.

Finally, we evaluate xVIO’s measurement noises. We find that a minimum of 6σ,

where σ represents the true normalized pixel standard deviation, is required as

visual measurement noise to prevent occurrences of filter divergence (<0.01% risk)

in our large Monte Carlo simulations (M=300). Above this boundary, we find a

linear relationship between visual measurement noise and both position error and

uncertainty. Conversely, while we do not find the filter consistency to be sensitive to

the range measurement noise, we observe an exponential decay relationship between

the range measurement noise and both the position error and covariance.

4.2 Validation with high-altitude outdoor flights

We demonstrate xVIO’s high-altitude capabilities in the Arroyo Secco environment

next to JPL via a series of flights ranging up to 1km in length at 135m in height

using our modified Sentinel UAV, achieving with RVIO less than 2% of final position

error in all axes relative to the distance travelled, compared to less than 10% with

VIO only.
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5 Conclusion and future work

In conclusion, this work analyzed and discussed state-of-the-art high-altitude vision-

based navigation, evaluated the high-altitude and all-terrain capabilities and limita-

tions of the xVIO range-visual-inertial odometry framework, and demonstrated its

high-altitude and long-range capabilities in the field.

Extending this work in the future, the NASA Jet Propulsion Laboratory will likely

conduct outdoor experiments at higher altitudes, over longer distances and in ter-

rains that better reflect Mars, using a more capable drone. Furthermore, while un-

fortunately unavailable for this research, the newly launched Pegasus aerial robotics

simulator [107] and the upcoming Microsoft Project AirSim simulator are opening

many new realms of possibilities for realistic simulations of aerial autonomy on the

Martian surface. Areas of particular interest for future research include the evalu-

ation of Multi-Image Super-Resolution (MISR) techniques to mitigate quantization

error at high altitudes, and the evaluation of Visual Compass techniques to mitigate

heading drift over long trajectories.
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A IMU sensor model

Parameter Definition Unit

dt Measurement frequency Hz

σa Discrete accel noise spectral density m/s2/sqrt(Hz)

σba Discrete accel bias random walk m/s3/sqrt(Hz)

σw Discrete gyro noise spectral density rad/s/sqrt(Hz)

σbw Discrete gyro bias random walk rad/s2/sqrt(Hz)

Ts G-sensitivity matrix

Ta Accel misalignment matrix

Tg Gyro misalignment matrix

ba Accel bias m/s

bw Gyro bias rad/s

ma Accel measurement m/s2

mw Gyro measurement rad/s2

Φ Random gaussian distributed number

g Gravity m/s2

Table A.1: IMU model parameters

Given the above parameters and the current real position p, orientation R, velocity

v, acceleration a, and angular rate w of the IMU, we can write :

Accelerometer measurement model Gyroscope measurement model

bta = bt−1
a + dt · σba · Φ btw = bt−1

w + dt · σbw · Φ

a = Ta ·R · (a− g) w = (Tg · w) + (Ts · fa)

ma = a+ ba + σa · Φ mw = w + bw + σw · Φ
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B FOV distortion model

From [75], we learn that given a camera distortion coefficient s, we can distort a 2D

pixel pu(uu, vu) s.t :

pd(ud, vd) =
rd
ru

·

uu

vu

 (B.1)

using the undistorted radius

ru =
√

u2
u + v2u (B.2)

and the distorted radius

rd =
tan−1(2 · ru · tan( s2)))

s
(B.3)

From this model, we can derive the distortion Jacobian

Jd(2·2) ≡

 δud

uu

δud

vu

δvd
uu

δvd
vu

 (B.4)

δud

uu

=
tan−1(2 · tan( s

2
)) · ru

s · ru
−

u2
u · tan−1(2 · tan( s

2
)) · ru

s · r2u

+
2 · u2

u · tan( s2)
s · (u2

u + v2u) · (4 · tan2( s
2
) · (u2

u + v2u) + 1)

(B.5)

δud

vu
=

δvd
uu

=
2 · uu · vu · tan( s2)

s · (u2
u + v2u) · (4 · tan2( s

2
) · (u2

u + v2u) + 1

−
uu · vu · tan−1(2 · tan( s

2
))) · ru

s · r2u

(B.6)

δvd
vu

=
tan−1(2 · tan( s

2
)) · ru

s · ru
−

v2u · tan−1(2 · tan( s
2
)) · ru

s · r2u

+
2 · v2u · tan( s2)

s · (u2
u + v2u) · (4 · tan2( s

2
) · (u2

u + v2u) + 1)

(B.7)

35



C. Reference parameter values High-altitude VBN for future Mars rotorcraft

C Reference parameter values

Parameter Unit Value

Distance travelled m (x,y,z) [300,0,0]

Terrain slope degrees 0

Table C.1: Reference trajectory and terrain parameters

Parameter Unit Value

Initial position m (x,y,z) [0,0,100]

Initial velocity m/s (x,y,z) [10,0,0]

Initial attitude degrees (x,y,z) [0,0,0]

Initial gyro biases m/s2/sqrt(Hz) 0

Initial accel biases rad/s/sqrt(Hz) 0

Initial position uncertainty m 0

Initial velocity uncertainty m/s 0.05

Initial attitude uncertainty degrees 3

Initial accel bias uncertainty m/s2 0.3

Initial gyro bias uncertainty deg/s 6

Gravity m/s2 [0.0, 0.0, -9.81]

Table C.2: Reference filter initialization parameters

Parameter Unit Value

Accel noise spectral density m/s2/sqrt(Hz) 0.0083

Accel bias random walk m/s3/sqrt(Hz) 0.00083

Gyro noise spectral density rad/s/sqrt(Hz) 0.0013

Gyro bias random walk rad/s2/sqrt(Hz) 0.00013

Update frequency Hz 210

Table C.3: Reference IMU parameters

36



C. Reference parameter values High-altitude VBN for future Mars rotorcraft

Parameter Unit Value

Camera focal point pixels (x,y) [257.17, 254.75]

Camera principal point pixels (x,y) [354.04, 235.46]

Camera FOV distortion coefficient ratio 0.93439

Camera resolution pixels (x,y) [640,480]

Camera-IMU translation m (x,y,z) [0,0,0]

Camera-IMU rotation m (x,y,z) [0,90,0]

Camera measurement noise pixels 1

Update frequency Hz 30

Table C.4: Reference camera parameters

Parameter Unit Value

LRF intersect point pixels (x,y) [353, 235]

LRF-Camera translation m (x,y,z) [0,0,0]

LRF-Camera rotation m (x,y,z) [0,0,0]

Range measurement noise m 1

Update frequency Hz 30

Table C.5: Reference range parameters

Parameter Unit Value

FAST detection treshold pixels 20

Minimum feature count features 400

Number of tiles tiles 9

Max features per tile features 200

Table C.6: Reference feature tracker parameters
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