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1. Introduction 
Water distribution networks (WDNs) as pivotal urban infrastructures are responsible for 

delivering water with adequate quality and quantity to the public. They face various spectrums of 

disruptive events that threaten their functionality. These events are categorized into natural 

disasters (e.g., earthquakes, hurricanes, floods) and human-made disasters (e.g., overloading, 

terrorist attacks, cyber-attacks) (Assad, Moselhi, and Zayed 2019; Diao et al. 2016). Water 

infrastructures are made of multiple elements which interact in a complex way (Sitzenfrei et al. 

2020). Therefore, due to their high level of complexity, minor disturbances can trigger cascading 

events causing crucial impacts on the well-being and safety of residents (Shuang, Zhang, and Yuan 

2014; Zhang et al. 2020). Supplementary to these, the aging of networks increases their 

vulnerability, which causes an increase in the likelihood of interruption in their functionality 

during and after disasters (Diao et al. 2016). Consequently, these infrastructures need to be robust 

enough to cope with any disruption with the least impact on their functionality. This is where 

resilience is emerging as a significant consideration in the planning of WDNs (Assad et al. 2019). 

Resilience can be defined as the ability of networks to maintain and adapt their operational 

performance over design life, in the face of adverse conditions (Herrera, Abraham, and Stoianov 

2016; Strigini 2012).  

Various definitions have been documented to quantify the concept of resilience in WDNs (Herrera 

et al. 2016). Common approaches use hydraulic models and formulate resilience as a measure 

(e.g., the ability of a system to maintain water supply under adverse conditions). These 

approaches are known as performance-based or hydraulic-based, requiring hydraulic simulations 

during multiple failure scenarios (Pagano et al. 2019). A primary drawback of hydraulic-based 

approaches is that the analysis may become very computationally intensive, specifically when it 

comes to large-scale networks (Herrera et al. 2016). In addition, detailed input information 

regarding hydraulic models is required to do such analyses. Another mathematical tool for 

quantifying the resilience of WDNs is graph-based approaches, which are less computationally 

intensive and data-dependent compared to hydraulic models (Pagano et al. 2019). Graph-based 

approaches analyze WDNs from the topological perspectives, mainly focusing on connectivity, 

diversity, and redundancy as structural properties (Butler et al. 2017). In these approaches, a 

WDN is presented as a graph with nodes (e.g., reservoirs and tanks) interconnecting via edges 

(e.g., pipes, valves, and pumps). This paper focuses on the application of graph-based approaches 

for the resilience assessment of WDNs.  

1. 1 Background 

Over the past few years, new graph-based approaches have been introduced in the literature for 

several tasks of WDNs modeling (Giustolisi, Ridolfi, and Simone 2019; Herrera et al. 2016; Lorenz, 

Altherr, and Pelz 2021; Sitzenfrei et al. 2021). Giustolisi et al., (2019) customized certain graph 

metrics according to WDNs characterization to predict the hydraulic behavior of these networks. 

Simone et al. (2020) applied one of those customized metrics (i.e., edge betweenness) to seven 

WDNs to underline the role of topological attributes in water flow prediction. Sitzenfrei et al. 

(2020) introduced a customized metric for distributing water flow in networks and developed a 

highly efficient approach for the Pareto-optimal design of WDNs. In addition, graph-based 

approaches have been successfully applied for water quality assessment (Sitzenfrei 2021), 

efficient water quality sensor placement (Giudicianni et al. 2020), and identification of network 

patterns in optimal WDNs (Sitzenfrei, Oberascher, and Zischg 2019). 
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Several studies have been conducted on the resilience assessment of WDNs using graph-based 

approaches (Pagano et al. 2019; Yazdani, Dueñas-Osorio, and Li 2013). Employing various graph 

metrics provides simplified and general information on resilience. Average node degree, link 

density, meshedness coefficient, and average path length are all instances of these graph metrics 

(Hwang and Lansey 2017; Torres et al. 2017; Yazdani et al. 2013; Yazdani, Otoo, and Jeffrey 2011). 

Such metrics have been widely used in literature as surrogate indicators for the resilience 

evaluation of WDNs (Pandit and Crittenden 2016; Perelman et al. 2015; Yazdani et al. 2011; Zhao, 

Chen, and Gong 2015). However, the inherent constraint of these metrics is that they cannot 

properly reflect the hydraulic behavior of networks as they only focus on the topological and 

structural attributes. Meng et al., (2018) showed that although topology could have a significant 

impact on the performance of WDNs, not all the topological graph metrics are suitable as 

surrogate resilience indicators. 

To account for the hydraulic behavior of WDNs, Herrera et al. (2016) suggested using topological 

constants (i.e., pipe length and pipe diameter) as a potential surrogate measure for energy loss 

corresponding with water transport routes in a network. Since Herrera’s approach relies only on 

the topological attributes, Lorenz et al. (2019) modified this approach by considering pipe 

resistance as a physical feature of water routes. Pagano et al., (2019) highlighted the potentials 

and limitations of graph-based approaches compared to a hydraulic-based method for resilience 

assessment of WDNS. Their results showed that the graph-based approaches could have high 

reliability to identify critical pipes for networks with simple structures. They also introduced a 

particular graph measure based on network connectivity to evaluate the impact of single pipe 

failures on the resilience of WDNs. This measure only relies on the topological features such as 

the length and diameter of pipes and overlooks the role of water flow on the resilience assessment. 

Chen, Vladeanu, and Daly (2021) used two standard graph metrics (i.e., betweenness centrality 

and bridge metric) to quantify pipe criticality in WDNs. Their idea was to present a graph 

technique as a potential surrogate for hydraulic simulations.  However, they could not find any 

correlation between the graph metrics and the hydraulic behavior of pipes. The reason is that the 

metrics applied in their study cannot evaluate the capacity and redundancy of pipes. Moreover, 

the effects of nodal demand and water flow were neglected from their analysis. 

1. 2 Problem statement  

The aforementioned graph-based approaches applied for the resilience assessment of WDNs are 

mostly dependent on topological and structural perspectives and independent of the impacts of 

hydraulic characteristics (e.g., water flow and pipe capacity). Since hydraulic variables affect 

friction losses and nodal pressure (Rossman 2000), neglecting their impacts could considerably 

influence the accuracy of resilience analysis. Another drawback of conventional graph approaches 

is that they cannot investigate the consequences of failures on the other components of WDNs. In 

other words, failure propagation and, therefore, the ‘local response’ of networks to failure modes 

is not clear in their resilience analysis. In addition, the proposed graph-based methods are 

incapable of considering the impact of multiple failures on resilience. They also need to be tailored 

to consider the characteristics of  WDNs with multiple sources. These research gaps need to be 

addressed by developing a graph theory-based approach that can consider the effects of the 

hydraulic behavior of WDNs under various failure modes. 
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1. 3 Aim of the study  

This paper aims to propose a hydraulically-informed graph-based approach (HGA) to assess the 

resilience of WDNs due to pipe failures. In this context, HGA is a modification to the regular graph 

applications of WDNs, wherein the graph weighting functions are proportionally derived from the 

hydraulic and structural characteristics to mimic the hydraulic behavior. Using this approach, 

specific graph measures are introduced to identify critical pipes and better understand the ‘local 

response’ of WDNs under different failure modes (i.e., single and multiple pipe failures). The 

topological and hydraulic features of WDNs, such as pipes capacity, network connectivity, and the 

impact of nodal demand, are considered in this method. Besides, this research explores to what 

extent the suggested HGA can be used as a hydraulic surrogate for the resilience enhancement of 

WDNs in case of multiple pipe failures due to earthquakes.  

2. Materials & methods 
This study investigates the effects of different failure modes on the resilience of WDNs. These 

modes include single pipe failures, firefighting (excess demand on nodes), multiple pipe failures 

due to earthquakes, and a combination of multiple and simultaneous failures.  Currently, we just 

focus on single and multiple pipe failures, but this study will be extended, and other modes will 

be added to it in the future. The suggested resilience evaluation procedure is as follows: 

1) First, based on a hydraulic model simulation, the level of failure magnitude resulting from 

single pipe failures is assessed, and critical pipes are ranked. For multiple pipe failures, 

earthquake scenarios are created using earthquake modeling, and the failure magnitude 

of each scenario is calculated based on the hydraulic simulations. These scenarios are then 

ranked according to their magnitude.    

2) Second, conventional graph metrics used in literature for resilience analysis are 

introduced. Thereafter, we propose an HGA to investigate the impacts of pipe failures on 

resilience and identify critical pipes (for single pipes failures) and critical scenarios (for 

multiple pipe failures).  

3) Third, the pipe and scenario rankings obtained from (1) are then compared with those 

derived from HGA in step (2). 

4) Forth, after successfully validating the results in (3), an HGA framework is proposed for 

the resilience enhancement of WDNs in case of multiple pipe failures that occurred due to 

earthquakes. 

5) Fifth, the accuracy of the proposed framework in (4) is evaluated by comparing the results 

with a simulated annealing-based optimization approach which is integrated with a 

network-level seismic assessment model. 

It is worth mentioning that due to the high computational burdens of the optimization approach 

in the (5), the fourth and fifth steps will be added to this study in the future. Besides, this research 

will be extended by conducting a comprehensive literature review on the seismic rehabilitation 

of WDNs. 

2.1. Resilience analysis based on hydraulic simulations  

Hydraulic simulations are executed using the EPANET-MATLAB toolkit (Rossman et al. 2020) 

based on two different analyses, i.e., demand-driven analysis (DDA) and pressure-driven analysis 

(PDA). In DDA analysis, nodal demands are always fulfilled regardless of nodal pressure, while 

PDA assumes demands are satisfied proportional to nodal pressure (Tanyimboh and Templeman 
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2010). DDA simulations have been traditionally used for the hydraulic modeling of WDNs. 

However, they may yield unrealistic results, especially under certain circumstances like pipe 

failure, as providing desired demands is not always possible in such conditions (Gorev et al. 2021; 

Mahmoud, Savić, and Kapelan 2017).  

The hydraulic resilience is evaluated based on two terms: a) serviceability and b) robustness. 

Serviceability is the ability of a system to maintain water supply under adverse conditions, and it 

is a common approach to formulate hydraulic resilience (Herrera et al. 2016). Any disruption in 

WDNs could lead to the loss of serviceability which results in supply failure. Robustness can be 

defined as the ability of the system to reduce the impacts of failures (Jung, Lee, and Kim 2019).  

Therefore, the more robust a WDN is, the less is the magnitude of ‘supply failure’. In this study, we 

defined resilience as a level to which a WDN minimizes supply failure and robustness failure 

magnitude in the face of adverse conditions. The procedure of resilience assessment of WDNs 

under single and multiple pipe failure is described in the following.  

2.1.1 Single pipe failures 

The framework of resilience assessment based on the hydraulic model is shown in Fig. 1. In this 

framework, single pipe failures are modeled by adjusting the status of pipes to ‘closed’ for 24 h in 

EPANET. To account for demand changes over one day, a standard demand pattern with 24-hourly 

multipliers is defined (see Fig. 2). In this figure, the demand multiplier of the peak demand (Qdesign) 

is 1.0 and the average demand (Qavg) over one day is Qavg = 0.62 Qdesign. 

 

Fig. 1. Flowchart of the calculation steps for the hydraulic model 
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Fig. 2. Diurnal demand pattern 

Two indicators, i.e., a) supply failure magnitude and b) robustness failure magnitude, are applied 

as measures to identify critical pipes and evaluate the resilience of WDNs.   

The supply failure magnitude resulting from pipe failure over one day is calculated as follows:  

𝑆𝑢𝑝𝑝𝑙𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =
∑ (∑ (𝐷𝑖,𝑡 − 𝑆𝑖,𝑡))𝑖=𝑛

0
𝑡=𝑇
0

∑ (∑ 𝐷𝑖,𝑡
𝑖=𝑛
0

𝑡=𝑇
0 )

                                                                           (1) 

Where, 𝐷𝑖,𝑡 is the required demand of node i at time t (l/s), 𝑆𝑖,𝑡 is the supplied demand (i.e, outflow) 

of node i at time t (l/s), T is the time steps (h), and 𝑛 is the number of nodes.   

The supplied demand is calculate using EPANET 2.2 which can implement both PDA and DDA 

approaches (Rossman et al. 2020). In this software, Wagner’s equation (Wagner, Shamir, and 

Marks 1988) is applied, and the supplied demand (outflow) of each node at each time step is 

calculated as follows:  

𝑖𝑓 𝑃𝑖,𝑡 ≤ 𝑃𝑚𝑖𝑛 ∶  𝑆𝑖,𝑡 = 0  

𝑖𝑓 𝑃𝑚𝑖𝑛 < 𝑃𝑖,𝑡 < 𝑃𝑟𝑒𝑞 ∶  𝑆𝑖,𝑡 = 𝐷𝑖,𝑡 . ( 
𝑃𝑖,𝑡 − 𝑃𝑚𝑖𝑛

𝑃𝑟𝑒𝑞 − 𝑃𝑚𝑖𝑛
)γ                                                                                      (2) 

𝑖𝑓 𝑃𝑖,𝑡 ≥ 𝑃𝑟𝑒𝑞 ∶  𝑆𝑖,𝑡 = 𝐷𝑖,𝑡 

Where 𝑃𝑖,𝑡 is the pressure of node i at time t, 𝑃𝑚𝑖𝑛 is the minimum pressure (i.e., pressure below 

which the outflow is zero), 𝑃𝑟𝑒𝑞 is the required pressure to deliver full demand, and γ is the 

pressure exponent. In this paper, 𝑃𝑚𝑖𝑛 and 𝑃𝑟𝑒𝑞 are considered 0 and 30 m, respectively (ÖNORM 

2018), and γ is set equal to 0.5 (Gorev et al. 2021).  

The robustness failure magnitude is estimated using Eq. 3, which represents pressure failure 

resulting from pipe failures compared to the ordinary condition.    

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 1 −
𝑅𝑜𝑏𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙

𝑅𝑜𝑏𝑛𝑜𝑟𝑚𝑎𝑙
                                                                               (3) 

𝑅𝑜𝑏𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 and  𝑅𝑜𝑏𝑛𝑜𝑟𝑚𝑎𝑙 are robustness under abnormal (i.e., single pipe failures) and normal 

(i.e., ordinary) conditions, respectively, where robustness itself is calculated as follows: 

𝑅𝑜𝑏 =
∑ (∑ (𝐷𝑖,𝑡  .  𝑃𝐼𝑖,𝑡))𝑖=𝑛

0
𝑡=𝑇
0

∑ (∑ 𝐷𝑖,𝑡
𝑖=𝑛
0

𝑡=𝑇
0 )

                                                                                                                          (4) 
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Where, 𝐷𝑖,𝑡 is the required demand of node i at time t (l/s), 𝑛 is the number of nodes, and 𝑃𝐼𝑖,𝑡 is 

the ‘performance index’ of node i at time t which is calculated based on the penalty curve shown 

in Fig. 3 (Hajibabaei, Nazif, and Sitzenfrei 2019; Tabesh and Zia 2003).  

According to this Figure, the value of 1 describes the excellent performance level, and 0.75, 0.5, 

and 0.25 show suitable, acceptable, and unsuitable levels, respectively. 𝐻𝑑𝑒𝑠 is the desired nodal 

pressure recommended by standard codes (ÖNORM 2018),  satisfying demand and enough water 

pressure for consumers. The desired (𝐻𝑑𝑒𝑠 ) and maximum (𝐻𝑚𝑎𝑥 ) pressures in Fig. 3 are set to 

60 m and 100 m, respectively.  𝐻1, 𝐻2 , and 𝐻3 are the pressures in which outflow is equal to 0.25, 

0.5, and 0.75 of required nodal demand, respectively, calculated based on 𝐻𝑑𝑒𝑠 as follows (Tabesh 

and Zia 2003): 

𝐻1 =
1

16
𝐻𝑑𝑒𝑠,  𝐻2 =

1

4
𝐻𝑑𝑒𝑠, 𝐻3 =

9

16
𝐻𝑑𝑒𝑠                                                                                                      (5) 

 

 

Fig. 3. Penalty curve of nodal pressure for calculating performance index (PI) of each node at each 

time step. 

After performing hydraulic simulation under single pipe failure mode, critical pipes are identified 

and ranked regarding their level of failure magnitude. 

2.1.2 Multiple pipe failures under earthquake 

In order to create the earthquake scenarios, the first step is to calculate the seismic repair rate 

(repairs per 1000 ft. of pipe) for each pipe. Fig. 4 illustrates the required steps to calculate the 

seismic repair rate for each pipe. We need to identify the earthquake with the highest contribution 

(i.e., highest value) in the initial stage, known as scenario earthquake. The scenario earthquake is 

chosen based on deaggregation analysis. USGS (2018) is used to conduct the deaggregation 

analysis considering the spatial relationship among seismic intensities (Adachi 2007; Jayaram and 

Baker 2009; Weatherill et al. 2013; Zanini et al. 2016; Zanini, Faleschini, and Pellegrino 2017).  

After the selection of the scenario earthquake, peak ground velocity (PGV) is calculated using the 

ground motion prediction equation (GMPE) (Abrahamson and Silva 2007; Zanini et al. 2016, 

2017). The general equation is given by the following equation: 

log10 (PGVmn) = f (Mm, Rmn, θm) + Ϭx vm + Ϭyεmn                                                                            (6) 

Where PGVmn = value of peak ground velocity at location n  from source m; Rmn = distance between 

location m and location n; Mm  = earthquake magnitude; θm = fault geological parameters at location 

m; Ϭxvm = the interevent residual; and Ϭyεmn = the intra-event residual. Scenario shake map 
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calculator is used to create a peak ground velocity map (Field et al. 2005). The value of εmn is 

estimated using Eq. 7 (Weatherill et al. 2013; Zanini et al. 2016).  

ε =M+ V.L                          (7) 

Where M = Mean value of normally distributed vm and εmn ; L = Lower triangular matrix; V = vector 

of random variables with normal distribution. The value of M is considered as 0. Cholesky 

decomposition method was applied to find the value of L, such that LLT
 = CoV. CoV  is the covariance 

matrix, which can be calculated based on the following equation.  

CoV = [

1 Ϭ(d1,2) ⋯ Ϭ(d1,N)
⋮ 1 ⋯ Ϭ(d2,N)
⋮ ⋮ ⋱ ⋮

𝑠𝑦𝑚 ⋮ ⋯ 1

]                                                       (8) 

Where Ϭ(dm,n) is a correlation coefficient between intra-event residuals for location m and location 

n. The value of Ϭ(dm,n) can be estimated using Eq. 9 (Jayaram and Baker 2009). 

 
Fig. 4. Steps of calculating seismic repair rate of each pipe 

 

Ϭ(dm,n) = 𝑒(
−𝑑𝑚,𝑛

𝑟
)                                                                                                                                                     (9) 
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Where dm,n = distance between location m and location n; and r is the intersite distance. According 

to (Wang and Takada 2005), the value of r can be considered between 20 km - 40 km. The whole 

thing is repeated for K times to create K random PGV fields (Zanini et al. 2017). Seismic pipe repair 

rates for each pipe are then determined based on ALA (2001): 

RRi,k = Mod * 0.00187 * PGVi,k                                                                                            (10) 

RRi,k is this equation the seismic pipe repair rate per 1000 ft of pipe i for the kth seismic PGV field. 

Mod is the modification factor that adjusts the value of the repair rate considering the corrosivity 

of soil, pipe diameter, pipe material, and pipe joint characteristics. 

2.1.2.1 Integrated Multi-physics modeling and Monte Carlo simulation 

Supply failure magnitude in case of an earthquake is calculated using Eq.1 and Monte Carlo 

simulation. The procedure is indicated in Fig. 5. 

 

 
Fig.5. Steps of Monte Carlo simulation for a given earthquake scenario for the kth PGV field 
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Only breaks are considered in this study as seismic damage. After determining if there is a break 

in the pipe or not, the breaks are combined into the hydraulic model of the original network, and 

pressure at each node is determined.  

For every Monte Carlo simulation, the following steps are: 

1) Analyzing the network, including breaks 

2) Removing nodes having negative pressure 

3) Step 1 and step 2 are repeated if there is any node with negative pressure.  

Afterward, the supply failure magnitude for the predefined maximum Monte Carlo runs is 

calculated using Eq. 11: 

𝑆𝑢𝑝𝑝𝑙𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑎𝑣𝑔  =
1

𝐾
. ∑ 𝑆𝑢𝑝𝑝𝑙𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑘

𝐾

𝑘=1

                                          (11) 

Where 𝑆𝑢𝑝𝑝𝑙𝑦 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒𝑘 is the value of failure magnitude calculated based on Eq. 1; 

and  K is the total number of PGV fields. In the end, the value of supply failure magnitude for each 

Monte Carlo run is then recorded.  

2.2. Resilience analysis based on graph theory 

2.2.1 Graph representation of WDNs 

Urban water networks can be described with a specific branch of mathematics known as graph 

theory. Accordingly, WDNs can be modeled as a mathematical graph G composed of #N (vertices/ 

nodes) connected by a set of #E (edges/pipes). The structural connection between nodes of graph 

G is expressed by elements aij of an adjacency matrix A (#N × #N). The element aij is either 1 or 0. 

The value of 1 implies a link connecting nodes i and j, and when there is no connection, the value 

is 0. Graph G can be weighted or unweighted. All weights of edges/nodes in an unweighted graph 

are equal to 1. In a weighted graph, different weights can be assigned to each edge k. For instance, 

structural parameters such as pipe length (Lk) and pipe diameters (DNk), or (simulated) hydraulic 

parameters such as water flow (Qk) and friction loss (hk), or their combinations (e.g., Lk .Qk /DNk) 

can be used as weighting functions. With the aid of these weighted graphs of water networks, 

various graph investigations can be conducted. As an example, the weights representing travel 

time (e.g., Lk/DNk) can be used as surrogate measures for water age or water quality-related 

analysis (Sitzenfrei et al. 2019).  

2.2.2 Background of Graph metrics for WDNs 

This section describes some conventional metrics and certain modified measures, which provide 

general information regarding the resilience analysis of WDNs. In literature, the following metrics 

have been suggested. 

The degree of a node is the number of edges (e.g., pipes) connected to it. It can also be averaged 

throughout the entire system, referred to as average node degree (NDavg) (Newman 2010). 

Higher values of NDavg indicate multiple paths, which can be interpreted as higher redundancy 

(Hwang and Lansey 2017). The corresponding equation is given by Eq. 12: 

𝑁𝐷𝑎𝑣𝑔 =
2 ∙ #𝐸

#𝑁
                                                                                                                                                   (12) 

Where, #𝐸 is the number of edges, and #𝑁 is the number of nodes.  
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Further, the meshedness coefficient (Rm) (Buhl et al. 2006) expresses the fraction between the 

actual number of independent loops in a network and the maximum number of loops (Eq. 13). The 

range of Rm is between 0 (tree-like networks) and 1 (grid-like networks), implying that the larger 

the values of Rm, the more connected the WDN (Pagano et al. 2019). 

𝑅𝑚 =
#𝐸 − #𝑁 + 1

2#𝑁 − 5
                                                                                                                                            (13) 

The density of bridge (Dbr) in a WDN represents the ratio of edges whose failure isolate a part of 

a network (i.e., bridges) to the total number of edges, which is calculated based on the following 

equation  (Yazdani et al. 2011): 

𝐷𝑏𝑟 =
#𝐸𝑏𝑟

#𝐸
                                                                                                                                                           (14) 

Where, #𝐸𝑏𝑟 is the number of bridges and #𝐸 is the number of edges.  

Shortest path length (SPL) is another metric utilized in the literature for several tasks of WDNs 

modeling. SPL between two nodes i and j describes the shortest distance between these nodes. In 

this context, distance refers to the sum of all edge weights in the path that connects these two 

nodes (Dijkstra 1959). Depending on modeling tasks, various kinds of weights can be assigned to 

edges for SPL calculation. For instance, pipe length divided by pipe diameter (Lk/DNk) was used by 

Herrera et al. (2016) as a weighting function for SPL to consider friction losses along pipes.   

Edge betweenness centrality (EBC) has been used in literature to indicate the significance of 

edges in a WDN. EBC (k) is the EBC of the edge k, which measures how often k is a part of the SPL 

from a source s (e.g., tank) to every node 𝑖 ∈ 𝑁 (Brandes 2008): 

𝐸𝐵𝐶(𝑘) = ∑ 𝑆𝑃𝐿𝑠,𝑖(𝑘)

𝑠,𝑖∈𝑁

                                                                                                                                 (15) 

For example, Fig. 6a shows that when we calculate the SPL from every node to the source node 

with an unweighted graph, the edge between N1 and N2 is only once part of the shortest path. In 

contrast, the connected edge to the source occurs seven times in SPL (𝐸𝐵𝐶(𝑘) ∈ [0, #𝑁  ]). 

Sitzenfrei et al. (2020) added a modification to the EBC, specifically for WDNs analysis, referred 

to as demand edge betweenness centrality (𝐸𝐵𝐶𝑄). As illustrated in Fig. 6b, EBCQ determines 

the SPL connecting the source node s and every demand node i, and adds the demands of node i 

(Qi > 0) to the corresponding path. The 𝐸𝐵𝐶𝑄(k ) ∈ [0, ∑ 𝑄𝑖𝑠,𝑖∈𝑁   ] is calculated as follows: 

𝐸𝐵𝐶𝑄(𝑘) = ∑ 𝑆𝑃𝐿𝑠,𝑖(𝑘) ∙ 𝑄𝑖

𝑠,𝑖∈𝑁

                                                                                                                       (16) 

The 𝐸𝐵𝐶𝑄  indicated in Fig. 6b was calculated using the weighting function of pipe length and can 

be used for the optimal design of WDNs (Sitzenfrei et al. 2020). The weights applied for this 

example are static. However, Sitzenfrei et al. (2020) introduced a new term for weighting graphs, 

denoted ‘dynamic weights’, where the edges’ weights can be changed iteratively. In this study, we 

add a customized modification to the proposed ‘dynamic weights’ (described in section 2.2.3) and 

apply it for the resilience analysis of WDNs. 
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Fig. 6. Calculating EBC and 𝑬𝑩𝑪𝑸 for a simplified WDN. 

Local graph theory measures for pipe ranking (LGTM) is an approach including topological 

metrics to identify crucial pipes in WDNs under single pipe failures, which was proposed by 

Pagano et al. (2019). LGTM is conducted based on the comparison between 𝑆𝑃𝐿𝑠,𝑖,0 (the SPL from 

each water source to all other nodes under normal conditions), with the SPL resulting from the 

removal of edge m, i.e., 𝑆𝑃𝐿𝑠,𝑖,𝑚. Accordingly, three potential scenarios are possible for removing 

an edge 𝑚 ∈ 𝐸 from a WDN (Pagano et al. 2019).   

a) If there are no changes in the 𝑆𝑃𝐿𝑠,𝑖,𝑚 compared to the𝑆𝑃𝐿𝑠,𝑖,0, the impact of the edge 

failure on the resilience of WDNs is neglectable.  

b) If the 𝑆𝑃𝐿𝑠,𝑖,𝑚 returns infinity, it can be interpreted as a disconnection between a node(s) 

and sources. Therefore, the impact of the edge failure (D(m) in Eq. 17) is estimated by 

calculating the total nodal demand (∑ 𝑄𝑗𝑗∈𝑁 ) that becomes isolated from all water sources 

as follows:  

𝐷 (𝑚) = ∑ ∑ 𝑄𝑗

𝑗∈𝑁

     

𝑆

𝑠=1

                                                                                                                         (17) 

Edges with a high value of D(m) are then ranked accordingly to highlight the critical pipes.  

c) If the  𝑆𝑃𝐿𝑠,𝑖,𝑚 increases compared to 𝑆𝑃𝐿𝑠,𝑖,𝑜, the consequence of the edge failure on the 

resilience of WDNs is estimated by the SPL changes (  𝑆𝑃𝐿𝐶𝑠,𝑖,𝑚 = 𝑆𝑃𝐿𝑠,𝑖,𝑚 − 𝑆𝑃𝐿𝑠,𝑖,0) as 

follows: 

𝑆𝑃𝐿𝐶(𝑚) = ∑ ∑ 𝑆𝑃𝐿𝐶𝑠,𝑖,𝑚

𝑖∈𝑁

     

𝑆

𝑠=1

                                                                                                      (18) 

Edges with a high value of 𝑆𝑃𝐿𝐶(𝑚) are ranked and considered as critical pipes. 

LGTM creates two subsets of pipes (edges) based on D(m) and 𝑆𝑃𝐿𝐶(𝑚), and pipes with higher 

values in each subset are considered as the critical elements. In this paper, we compare the results 

of our proposed HGA with LGTM to underline the potentials and limitations of both approaches. 
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2.2.3 HGA for resilient assessment under pipe failures  

Resilient operation of WDNs depends on network connectivity (i.e., the existence of redundant 

paths between nodes), as well as hydraulic heads and energy losses (Ulusoy, Stoianov, and 

Chazerain 2018). Using this concept, an HGA is proposed to evaluate the resilience of WDNs 

without conducting any hydraulic simulations. The proposed approach is based on the 𝐸𝐵𝐶𝑄  (Eq. 

16) introduced by Sitzenfrei et al. (2020) for the design of WDNs. However, a modification is 

added to it herein, denoted dynamic 𝐸𝐵𝐶𝑄  (𝐸𝐵𝐶𝐷
𝑄

), which can mimic the hydraulic characteristics 

of existing WDNs by applying proper dynamic weights. The framework of the proposed HGA is 

elucidated using simple examples in the following sections.   

2.2.3.1 Identifying critical pipes for single-source WDNs 

In this section, 𝐸𝐵𝐶𝐷
𝑄

 calculation for a single-source WDN is first explained and then applied for 

critical pipes identification. 

The procedure of calculating 𝐸𝐵𝐶𝐷
𝑄

 is similar to 𝐸𝐵𝐶𝑄 , and the only difference is in applying the 

weighting function.  When it comes to determining SPL and 𝐸𝐵𝐶𝑄  for existing WDNs, we usually 

access information such as pipe diameter and roughness, which can be applied as graph weights. 

However, an appropriate weighting function is required to be derived from the hydraulic and 

structural characteristics to mimic the hydraulics of pipes. 

In order to fulfill the water supply in a WDN, a flow at a source needs to find its optimal pathway 

to its demand node. We know from the hydraulic behavior of WDNs that water flow tends to 

choose the path with the least hydraulic resistance. Accordingly, pipe resistance can be integrated 

into the weighting function of SPL to explain this event. The hydraulic resistance of an edge k can 

be estimated using Eq. 19 (Lorenz and Pelz 2020). 

𝑟𝑘 ≈ 𝑓𝑘 ∙
𝐿𝑘

𝐷𝑘
                                                                                                                                                          (19)  

Where, 𝐿𝑘 is the length of edge k, 𝐷𝑘 is the diameter of edge k, and 𝑓𝑘 is the pipe’s friction factor 

calculated as follows, assuming the turbulent flow in pipes (Lorenz et al. 2021): 

𝑓𝑘 = (2 log10 (𝐷𝑘 𝑎𝑘⁄ ) + 1.74) −2                                                                                                                  (20)  

Where, 𝑎𝑘 is the roughness of edge k. 

Once a path with the minimum resistance from the water source to a node is found, the 

corresponding demand (water flow) is routed from the source to the demand node. That causes 

an additional friction loss (resistance) along that path. Consequently, to fulfill the energy balance 

in the WDN, the next flow package from the source to the demand node may avoid taking the path 

used before by the previous flow package. This issue can be addressed by applying the dynamic 

weight for 𝐸𝐵𝐶𝑄  (i.e., 𝐸𝐵𝐶𝐷
𝑄), which modifies the weights (Eq. 19) iteratively. Fig. 7 shows a 

simplified example for 𝐸𝐵𝐶𝐷
𝑄  calculation. 
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Fig. 7. Applying dynamic weights to calculate dynamic demand edge betweenness centrality (𝑬𝑩𝑪𝑫
𝑸

) 

According to this figure, the Epanet input file of WDN is first converted to the MATLAB graph 

objective (Fig. 7a). Then the hydraulic resistance of pipes is calculated using Eq. 19, and the values 

are assigned to the pipes as weights (gray-colored numbers). Additionally, the demand for each 

node is divided into packages to mimic flow package routing in real WDNs. The procedure is 

initiated by the node with the minimum non-zero demand value (i.e., N1). As shown in Fig. 7b, 

𝑆𝑃𝐿1,𝑆1is the path between node 1 and source 1 where the hydraulic resistance of pipes is minimal. 

After determining 𝑆𝑃𝐿1,𝑆1, the first demand parcel of node 1 (i.e., 1 l/s) is added to the 

corresponding path (red-colored route) to calculate 𝐸𝐵𝐶𝐷
𝑄 .  Routing the first parcel from N1 to the 

source causes additional resistance in the corresponding path. Therefore, the hydraulic resistance 

of the flow path in the first iteration is artificially lengthened by the factor of 1+(Q1/Qmax)2, where 

Qmax is the maximum nodal demand in the networks. This lengthening factor allows the next 

demand parcel in the second iteration to be routed through the alternative path to the left branch 

(Fig. 7c). This procedure is repeated for all the demand nodes and final values of 𝐸𝐵𝐶𝐷
𝑄  are 

calculated by summing up the 𝐸𝐵𝐶𝐷
𝑄  of pipes obtained in each iteration (Fig. 7d).  

The proposed approach described in Fig. 7, takes into account the resistance of pipes, demands of 

nodes, and alternative supply paths between sources and demand nodes, without performing any 

hydraulic simulations. Also, the principal idea of the lengthening factor (i.e., 1+(Qi/Qmax)2) is 

derived from the Darcy-Weisbach equation where friction loss/resistance is proportional to Q² 

(Hajibabaei, Hesarkazzazi, and Sitzenfrei 2021). This lengthening factor indicates that small 

demands in a WDN are usually routed through the shortest paths with the least resistance. In 

contrast, large demands tend to travel through more alternative paths, which are not necessarily 

the shortest path. This idea is in agreement with the concept of energy balance in WDNs. 

After calculating 𝐸𝐵𝐶𝐷
𝑄 , we create a failure matrix F (#E × #E) for the pipe ranking under single 

pipe failures. The element fmn in F shows the failure consequence of the edge (pipe) n on the edge 

m and is determined as follows: 

First, according to the procedure illustrated in Fig. 7, 𝐸𝐵𝐶𝐷
𝑄 is calculated under normal conditions 

and based on the average nodal demand using the following dynamic weight:  
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𝑟𝑘,𝑗 = 𝑟𝑘,𝑗−1. (1 + (𝑄𝑖 𝑄𝑚𝑎𝑥⁄ )2)                                                                                                                       (21) 

Where, 𝑟𝑘,𝑗−1 is the hydraulic resistance of each k-shortest path between node i and source s in 

the jth iteration (m/m), 𝑄𝑖  is the demand of node i (L/s), and 𝑄𝑚𝑎𝑥 is the maximum nodal demand 

that exists in the network (L/s). 

Second, an edge 𝑛 ∈ 𝐸 is removed from the graph of WDN (see Fig. 8), which is considered as the 

pipe failure. In this situation, two scenarios are possible:  

(1) After the edge failure, no path exists between the nodes connecting the edge n, and 

therefore, at least one node becomes disconnected from the source (see Fig. 8b). This 

means removing the edge leads to cutting off part of the network which cannot be supplied 

anymore. In this case, the total demand that is not fulfilled is equal to the 𝐸𝐵𝐶𝐷
𝑄

 routed 

through the failed edge in the normal condition. Therefore, we allocate the 𝐸𝐵𝐶𝐷
𝑄(𝑛)𝑛𝑜𝑟𝑚𝑎𝑙 

to 𝑓𝑛,𝑛  as the failure effect of the edge n (see Fig. 8b), and assign zero to the other elements 

(i.e., 𝑓𝑚,𝑛=0, m≠n). 

𝑓𝑛,𝑛 =  𝐸𝐵𝐶𝐷
𝑄(𝑛)𝑛𝑜𝑟𝑚𝑎𝑙                                                                                                                        (22) 

Where, 𝐸𝐵𝐶𝐷
𝑄

(𝑛)𝑛𝑜𝑟𝑚𝑎𝑙 is the dynamic demand edge betweenness centrality of the edge n 

(L/s) under the ordinary condition. As shown in Fig. 8d, nonzero values on the main 

diagonal of the failure matrix F are related to the pipes whose failure isolates a part of the 

WDN from the source (i.e., p1 and p5). 

(2) In the second scenario, the edge failure does not isolate part of the network but changes 

the connectivity between the source and the demand nodes. In this case, the failure 

consequence is assessed by investigating its impacts on the other edges (pipes). For 

instance, when the edge P2 (n = p2) fails (Fig. 8c), the load on it (i.e., 𝐸𝐵𝐶𝐷
𝑄) is borne by the 

other edges. These edges can be identified by comparing their 𝐸𝐵𝐶𝐷
𝑄(𝑚)𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 with 

𝐸𝐵𝐶𝐷
𝑄(𝑚)𝑛𝑜𝑟𝑚𝑎𝑙. Fig. 8c indicates that the load on the edge P2 is redistributed through the 

orange-colored pipes with the ∆𝐸𝐵𝐶𝐷
𝑄(𝑚)𝑝2 = 𝐸𝐵𝐶𝐷

𝑄(𝑚)𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙,𝑝2 − 𝐸𝐵𝐶𝐷
𝑄(𝑚)𝑛𝑜𝑟𝑚𝑎𝑙 >

0. In the next step, the extra loads on the paths (∆𝐸𝐵𝐶𝐷
𝑄(𝑚) > 0) are compared with the 

optimal capacity of the edges. As shown in Fig. 8c, the failure effects of edge 2 on the pipes 

whose excess loads are less than their optimal capacity are neglectable (i.e., 𝑓𝑚,2=0, 

m=1:6). On the other hand, the excess loads of the red-colored edges are greater than their 

optimal capacity. Under those circumstances, the failure consequence of the edge n on the 

edge m is estimated as follows: 

𝑓𝑚,𝑛 =
∆𝐸𝐵𝐶𝐷

𝑄(𝑚)𝑛 − 𝐶𝑜𝑝𝑡(𝑚)

𝛿(𝑚)
                                                                                                       (23) 

Where, ∆𝐸𝐵𝐶𝐷
𝑄(𝑚)𝑛 is the changes of 𝐸𝐵𝐶𝐷

𝑄(𝑚) due to the failure of the edge n (L/s), 

𝐶𝑜𝑝𝑡 (𝑚) is the optimal capacity of the edge m (L/s), and 𝛿(𝑚) is the overload coefficient 

of the edge m (-). 

𝐶𝑜𝑝𝑡 (𝑚) is calculated based on the optimal flow velocity 𝑉𝑜𝑝𝑡(𝑚) of the edge 

(recommended by the standard codes in Table. 1), and the edge diameter 𝐷(𝑚) as follows: 

𝐶𝑜𝑝𝑡(𝑚) = 𝑉𝑜𝑝𝑡(𝑚) . 𝜋𝐷 (𝑚)2 4⁄                                                                                                     (24)   

Besides, 𝛿(𝑚) describes the maximum capacity of the edge m regarding its optimal 

capacity (𝐶𝑚𝑎𝑥 𝐶𝑜𝑝𝑡⁄ ), and is calculated using Eq. 25. 

𝛿(𝑚) = 𝑉𝑚𝑎𝑥 𝑉𝑜𝑝𝑡 ⁄ (𝑚)                                                                                                                      (25) 
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Where, 𝑉𝑚𝑎𝑥 is the maximum acceptable velocity in WDNs (m/s). In this study, 3 m/s is 

considered for 𝑉𝑚𝑎𝑥  (ÖNORM 2018), and 𝑉𝑜𝑝𝑡 values are determined using Table 1. 

Table 1: Suggested values for the optimal velocity in WDNs (ÖNORM 2018) 

D (mm) 80 100 125 150 200 250 300 350 400 500 600 700 

Vopt (m/s) 0,80 0,80 0,80 0,85 0,90 0,95 1,00 1,05 1,10 1,20 1,30 1,40 

Copt (l/s) 4,0 6,3 9,8 15,0 28,3 46,6 70,7 101 138 236 368 539 

 

This procedure is conducted by removing every edge n (𝑛 = 1: 𝐸) and calculating its impacts on 

the WDN using Eq. 26. Thereafter, the maximum value of I (n) is determined (𝑖. 𝑒. , 𝐼 𝑚𝑎𝑥), and the 

graph index (GI) of the failure of edge n is calculated based on Eq. 27. 

𝐼(𝑛) = ∑ 𝑓𝑚,𝑛

𝐸

𝑚=1

                                                                                                                                                  (26) 

𝐺𝐼(𝑛) =
𝐼(𝑛)

𝐼 𝑚𝑎𝑥
                                                                                                                                                     (27) 

Edges with the positive value of 𝐺𝐼(𝑛) are identified and ranked accordingly, and particular 

attention is given to those with the highest values. 

For the multiple pipe failures, the failure matrix F consists of #E × #S, where S is the number of 

failure scenarios. The element fm,s in F shows the consequence of the scenario s on the edge m. 

Similar to single pipe failures (Fig. 8c), if multiple edge failures in scenario s only change the 

connection of flow path between the source and nodes, the effects of the scenarios are estimated 

using Eq.26 and 27(where, n=s). However, there could be a scenario like in Fig. 9 (for the same 

WDN),  in which not only a part of the network gets disconnected, but also the connection between 

the source and the demand nodes is changed. To calculate the element of fm,s in this point, the 

isolated nodal demand(s) is assigned to the edges whose failure disconnected part of the network 

from the source (see Fig. 9b). Afterward, the effects of scenario s on the other edges are estimated 

by identifying the overloaded edges (Fig. 9c) and applying Eq.26 and 27 (where, n=s).  
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Fig. 8. Pipe ranking under single pipe failures  
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Fig. 9. Multiple edge failure in the scenario s 

2.2.3.2 Identifying critical pipes for multi-source WDNs 

The effect of single pipe failures on multi-source WDNs is investigated in this section. For this 

purpose, the first step is to conduct the source tracing for every node. As shown in Fig. 10, the 

nodes in the multi-source WDN are supplied by the sources based on their nodal heads. The nodal 

head i is estimated by subtracting the energy (head) loss hfi,S  along the flow path from the source 

S with the head HS (i.e., Hi,S = HS - hfi,S). Head losses in hydraulic models can be determined using 

the Darcy-Weisbach equation (Rossman et al. 2020). Accordingly, energy loss hfm, in each pipe m 

with the diameter Dm, the length Lm, the friction factor fm, and the water flow Qm is calculated 

as follows (in the SI units): 

ℎ𝑓𝑚 =  
𝑓𝑚 𝐿𝑚

12.1𝐷𝑚
5 ∙ 𝑄𝑚

2     (𝑚)                                                                                                                                (28) 

fm is dependent on the flow regime in pipes, which is determined with the Reynolds number 

(Rossman et al. 2020). Note that the goal here is to simplify the head loss formula in order to 

use it as a weighting function for the graph-baed model without conducting hydraulic 

simulations. To do so, if we use the expression of 𝑄𝑚 = 𝑣𝑚 ∙ 𝐷𝑚
2 ∙ 𝜋 4⁄  in E.q 28, and assume a 

constant flow velocity (𝑣𝑚) in all pipes, the following term is derived for the weighting function 

of 𝑤𝑠𝑡𝑎𝑡𝑖𝑐: 

𝑤𝑠𝑡𝑎𝑡𝑖𝑐  = c ∙
𝐿𝑚

𝐷𝑚
    (𝑚)                                                                                                                                      (29) 

Where c with the unit of meter can be interpreted as a hydraulic gradient multiplied by average 

pipe diameter in WDNs. For instance, hydraulic gradient (friction slope) for optimal WDNs can 

be assumed to be 20 m/km (i.e., 1/50 m/m) (Sitzenfrei et al. 2020); which means if the average 

pipe diameter in a network is 0.1 m, the coefficient c is estimated with 1/50.  

𝑤𝑠𝑡𝑎𝑡𝑖𝑐 in Eq. 29 can be integrated into the weighting function of SPL to estimate the head loss 

along the flow path (i.e., hfi,S ≈ 𝑆𝑃𝐿𝑖,𝑆 ). For this purpose, firstly, the 𝑆𝑃𝐿𝑖,𝑆 is calculated from the 

node i to every source S with the static weight of 𝑤𝑠𝑡𝑎𝑡𝑖𝑐. In the second step, the 𝑆𝑃𝐿𝑖,𝑆 is subtracted 

from the corresponding source head (Hi,S = HS - SPLi,S). Finally, the nodal head (Hi,S) resulted from 
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each source are compared, and node i is assigned to the source with a higher value of Hi,S (see Fig. 

10a). Note that this procedure only presents a simplified assumption to conduct the source 

tracing, and calculated Hi,S with the SPLi,S cannot represent the accurate nodal head. 

After conducting the source tracing based on the SPL (Fig 10a), the WDN is divided into two parts 

in Fig. 10b. The 𝐸𝐵𝐶𝐷
𝑄

(𝑚)𝑛𝑜𝑟𝑚𝑎𝑙 of each part is calculated based on the dynamic weights similar 

to single-source WDNs. After an edge failure, the source tracing needs to be repeated because as 

shown in Fig. 10c, the supplied nodes by each source could be changed due to the failure. 

Thereafter 𝐸𝐵𝐶𝐷
𝑄

(𝑚)𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 of each part is determined, and edges are ranked similar to the 

procedure described for single-source WDNs. 

 

Fig. 10. Source tracing and 𝑬𝑩𝑪𝑫
𝑸

 calculation in a multi-source WDN 

3. Case studies 
Different WDNs are analyzed as case studies to compare the results of the proposed HGA with 

those obtained from hydraulic simulations. The first case study is a real WDN consisting of 242 

junctions, 268 pipes, and a single reservoir. This network was also optimally designed to 

investigate the effects of different configurations on resilience. The diameters of the optimally 

designed networks were determined based on the evolutionary algorithm and using the state-of-

the-art methodology GALAXY (Wang, Savić, and Kapelan 2017). More information regarding the 

design procedure can be found in (Sitzenfrei et al. 2020). The second case study (D-Town) is a 

benchmark WDN with a complex hydraulic behavior comprising 399 junctions, 433 pipes, 11 

pumps, 5 valves, 7 storage tanks, and a single reservoir. For this network, the results of HGA under 

single pipe failures are compared with hydraulic simulations and graph measures suggested in 

the literature. The third case study (BAK) is also a benchmark network selected to investigate the 
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impacts of multiple pipe failures (under earthquake scenarios) on resilience. This WDN has 58 

pipes, 35 junctions, and a single reservoir. 

 

Fig. 11. Layouts of the case studies 

The properties of the networks are also indicated in Table 2. 

Table 2: Properties of the case studies 

 
#N #E NDavg Rm Dbr 

total length 

(km) 

average 

length (m) 

Existing WDN 242 268 2.21 0.05 0.47 14.5 54 

D-Town 407 459 2.25 0.07 0.41 61 141 

BAK 36 58 3.22 0.34 0.05 25 424 

4. First results 

4.1 Single pipe failures for the first case study 

The impact of network configuration on resilience is assessed by analyzing different networks. 

For this purpose, the existing network was redesigned for two single-source (Fig. 12b and 12C), 

and one multi-source WDNs (Fig. 12d). For each network, the critical pipes in terms of supply 

failure and robustness failure derived from the hydraulic model are compared with those 

obtained from the proposed HGA. 

 

Fig. 12. Considered WDNs for the first case study 
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Conducting the hydraulic simulations for the existing network (Fig 12a) shows that only 6 pipes 

(out of 268) impact more than 6% on the supply and robustness indices if they fail individually. 

The top 6 pipes are all identified by the proposed HGA. As shown in Fig. 13, those are the main 

pipes whose failure disconnects a major portion of the network. Note that Fig. 13b is the graph 

drawing of the first case study with force-directed placement, which uniforms the edge lengths 

and helps to compare the critical edges better. The existing network is comprised of pipes with 

enough capacity. Therefore, the failure of a single pipe located in a loop would be compensated by 

others, highlighting that redundancy plays a crucial role in the resilience of WDNs. We have 

addressed this issue in HGA by considering alternative supply paths between sources and demand 

nodes, as well as the capacity of those alternative paths. The critical pipes indices of the existing 

network obtained from the hydraulic model are indicated in Table A1 in the appendix.  

 

 

Fig. 13. Critical pipes for the existing WDN with the supply and robustness failure magnitudes of 

more than 6% under single pipe failures 

The resilience analysis of optimally designed WDN 1 indicates that this network is less resilient 

than the existing WDN. The response of WDN 1 to single pipe failures shows that 9 pipes have a 

supply failure magnitude of more than 6% (based on PDA). These pipes with the same ranking are 

among the top 9 pipes identified by HGA and are illustrated in Fig. 14. In the optimally designed 

WDN1 (Fig. 12), several pipes have larger diameters or more water flow than the 7th pipe in Fig. 

14. However, HGA distinguishes between them and recognizes the critical pipe, as the alternative 

paths’ capacity under the failures is considered in this approach. Moreover, the proposed HGA 

identifies top pipes with a robustness failure magnitude of more than 5% for this network. There 

is only a minor difference in the ranking related to the 7th and 8th pipes (Table. A2).  
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Fig. 14. Critical pipes for the optimally designed WDN 1 with the supply failure magnitudes of more 

than 6% under single pipe failures 

Analyzing the results for the optimally designed WDN 2 showed that the top 13 pipes identified 

by the graph-based model (i.e., HGA) are all ranked in the top 13 pipes of the PDA model as well 

(with the same order). For this network, we assess all the pipes whose failure affects the networks 

(for detailed information see Table. A3). Fig. 15 shows the comparison of the critical pipes derived 

based on the hydraulic model (a) with those obtained from HGA (b). The thickness of the edges in 

this figure represents the criticality of the pipes. The results demonstrate that 96% of the pipes 

with a supply failure magnitude greater than or equal to 1% (44 out of 46) are identified by HGA. 

The neglected pipes by HGA (i.e., pipes P495 and P454 in Fig 15a) have a low supply failure 

magnitude (1%) according to the PDA approach.  

Besides, the graph-based approach identifies 95% of the pipes with a robustness failure 

magnitude of more than 1%. Therefore, the proposed HGA can provide remarkably promising 

results for the resilience analysis of this case study. 

The resilience analysis for the optimally designed WDN 3 with two sources shows that 30 pipes 

have a supply failure magnitude ≥ 1% if they fail individually. As shown in Fig. 16, the HGA can 

identify all of these pipes with some minor differences in their ranking compared to the hydraulic 

model. The second source in this network (S2) adds an extra capacity to the system, so the pipe 

rankings are changed compared to the single-source WDNs. As shown in Fig. 16, the main pipes 

connecting to the first source are not as critical as they were for the investigated single-source 

WDNs. The reason is that if S1 is isolated from the network (due to single pipe failure), the 

provided extra capacity through the pipes connecting to S2 can supply the WDNs. In contrast, in 

the case of main pipe failures close to S2, the extra capacity between S1 and the nodes is 

insufficient to support S2.  This issue cannot be addressed by the conventional graph measures in 

the literature. For instance, the LGTM approach (Eq. 17) gives the main pipes connecting to each 
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source the same ranking, not representing comparable results with the hydraulic model. However, 

the suggested HGA in this study can properly address the issue by conducting the source tracing 

and considering the effects of overloaded edges on the resilience of WDNs. In addition, using HGA 

for the resilience assessment of this network is 3 times faster than the hydraulic simulations in 

terms of computation efforts. Pipe ranking for this WDN based on HGA takes 46 s, while resilience 

analysis based on the hydraulic simulations (PDA approach) requires 140 s on a desktop 

computer (Intel® Core™ i7–8,700 CPU @ 3.2 GHz). 

 

Fig. 15. Critical pipes for optimally designed WDN 2: a) Based on the hydraulic model (PDA) with the 

supply failure magnitudes ≥ 1%, b) Based on HGA 

 

 

Fig. 16. Critical pipes for optimally designed WDN 3: a) Based on the hydraulic model with the supply 

failure magnitudes ≥ 1%, b) Based on HGA 

The results provided in this section reveal another drawback of the conventional graph metrics 

such as average node degree (Eq. 12), and meshedness coefficient (Eq. 13). The three optimally 
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designed WDNs evaluated in this section have the same properties as the existing WDN in Table 

2. This shows that using topological metrics (like in literature), the resilience measures would be 

the same for all three design configurations. While using HGA for their resilience assessment can 

properly differentiate between the results.  

4.2 Single pipe failures for the second case study 

The response of D-Town to single pipe failure is analyzed using hydraulic simulations and 

calculating supply failure magnitude. The results are then compared with those obtained from our 

proposed approach (HGA) and the LGTM method suggested by Pagano et al. (2019) (Eq. 17 and 

18). D-Town is comprised of five communities with five demand patterns. This network has a 

complex hydraulic behavior with seven tanks and five pumping stations (with different operation 

times).  Depending on the operation cycle of the tanks (i.e., emptying/filling), the tanks can play a 

hydraulic role either as a source node (during the emptying process) or a demand node (during 

the filling process). The hydraulic role of the tanks in different time steps cannot be recognized by 

the HGA. However, the network configuration (see Fig. 11b) reveals that the first tank (i.,e T1) acts 

as an interface between the reservoir and other tanks. This means water needs to transfer from 

the reservoir to the first tank (T1), and then from T1 to other tanks during the filling process. 

Therefore, T1 can be considered as the second hub in the system after the reservoir.  

Pipe failures could occur during the filling or emptying process of the tanks. Hence, in the HGA 

procedure, we assume that the failure consequence of a pipe whose removal changes the 

connections between the reservoir and nodes is the average of impacts during the filling and 

emptying of T1. This means, for the failure of this pipe, one simulation is conducted when the 

reservoir is the main source and T1 is filling, and another simulation is performed the other way 

round. Besides, to mimic the pumps’ performance in the graph of  WDN, small weights are 

assigned to pumps, which allows the demand parcel to route through them frequently. 

Fig. 17 shows the top 10% of high-ranked pipes (i.e., 40 pipes) according to the hydraulic 

simulations. 98 % of these pipes (39 out of 40) are among the top 10% of HGA rankings (see Table 

A4). The only neglected pipe by HGA (P319) is the 40th critical pipe regarding the hydraulic model. 

This pipe is connected to the pumping station (see Fig.17a), and due to the complex hydraulic of 

the system, HGA could not recognize it as the critical pipe. However, HGA provides promising 

results regarding the order of pipe rankings. Only for five pipes of P99, P297, P20, P291, and P996, 

the difference between the order of rankings derived from HGA and hydraulic simulation is more 

than five. These pipes are highlighted in Fig. 17a and Table 4A.  

To analyze the correlation between the graph method (i.e., HGA) and the hydraulic simulation, 

Spearman’s rank correlation coefficient (Spearman 1904) is calculated. This coefficient evaluates 

the dependency between the ranking of two variables using a monotonic function (Bolboaca and 

Jäntschi 2006). The index is between -1 to +1, which shows a perfect positive and negative 

association of ranks, respectively. In addition, when the value is 0, there is no association of ranks. 

The Spearman correlation index between the ranking obtained from HGA and the one 

corresponding to the hydraulic simulations is 0.92, confirming a very strong correlation between 

them.  

On the other hand, the LGTM method creates two subsets of pipes for the pipe rankings, in which 

most of the order of rankings cannot be compared with those obtained from the hydraulic 
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simulations (see Table A4). The reason is that the proposed graph measures in the LGTM method 

only rely on the topological features and cannot capture the real hydraulic behavior of the WDN. 

 

Fig. 17. Top 10% of high-ranked pipes for D-Town: a) Based on the hydraulic model and supply 

failure magnitudes, b) Based on HGA 

4.3 Multiple pipe failures for the third case study 

The effect of multiple pipe failures on the resilience of the WDN is assessed in this section. For this 

purpose, earthquake scenarios are created based on the method described in 2.1.2, and the supply 

failure magnitude of each scenario is calculated using the hydraulic model. In addition, a 

convergence study is required to identify an adequate number of Monte Carlo simulations. 

According to Fig. 18, the convergence study indicates that 3,000 Monte Carlo simulations are 

adequate for this network. The values of the supply failure magnitude in this figure are the average 

values in each Monte Carlo run. In the next step, these 3,000 earthquake scenarios are used as an 

input for HGA. Therefore, the failure matrix of HGA consists of 58 × 3,000 elements, where 58 is 

the number of edges, and 3,000 is the number of failure scenarios. The effects of each scenario on 

the network are estimated based on Eq.27 (where n=s), and then pipes with the higher values of 

GI (graph index) are ranked accordingly.     

 

Fig. 18. Convergence study to identify an adequate number of Monte Carlo simulations for BAK WDN 
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Fig. 19 shows the distribution of the supply failure magnitude of the scenarios (ordered from the 

maximum value) compared to the corresponding distribution obtained by HGA. GI in this figure is 

the graph index (Eq. 27) calculated based on the proposed HGA. The x-axis (in Figure 19, right) is 

set to the logarithmic scale to highlight the comparison between the critical scenarios better. The 

results show that GI has a similar trend with the values derived from the hydraulic simulations. In 

addition, most critical scenarios (with the supply failure of more than 20%) are identified by HGA.   

The Spearman correlation index between hydraulic and graph-based metrics is 0.91, confirming 

a robust correlation between them. This infers that HGA can represent practical results for 

identifying critical earthquake scenarios.  

 

Fig. 19. Comparison between the hydraulic simulations (supply failure) and HGA (GI) for ranking the 

earthquake scenarios. 

5. Next steps 
In this report, we indicated the suitability of HGA for ranking the critical pipes of different WDNs 

under single pipe failures. HGA provided comparable results with the hydraulic model and can be 

used for critical pipes assessment of networks without hydraulic simulations. The suggested 

approach also requires less information and computational efforts compared to conventional 

hydraulic models. In addition, this method was successfully applied to the BAK network with 

multiple pipe failures (due to earthquakes) to rank the critical scenarios. In the next step, this 

paper will be extended by proposing a graph-based approach for the resilience enhancement of 

WDNs in case of multiple pipe failures. 

As shown in Fig. 19, HGA could rank the important scenarios based on their GI. After ranking the 

critical scenarios, the failure matrix F enables us to recognize the most impacted pipes of critical 

scenarios. In the future, we will select those pipes and redesign them based on a graph-based 

design approach, which is faster than evolutionary optimization. The results of this method will 

then be compared with a simulated annealing-based optimization approach which is integrated 

with a network-level seismic assessment model. Additionally, a comprehensive literature review 

on seismic rehabilitation of WDNs will be added to this study. 
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6. Appendix  
 

Table A1: Comparing pipe rankings obtained from the hydraulic simulations and HGA for 

existing network 

 
Supply failure magnitude 

HGA 

ranking 

Robustness failure 

magnitude 

N 
PDA DDA 

Pipe ID Pipe ID index 
Pipe ID index Pipe ID index 

1 232 1.00 232 1.00 '232' 232 1.00 

2 504 0.98 504 0.98 '504' 504 0.98 

3 501 0.98 501 0.98 '501' 501 0.97 

4 235 0.97 235 0.97 '235' 235 0.95 

5 254 0.95 254 0.95 '254' 254 0.92 

6 516 0.94 516 0.94 '516' 516 0.91 

 

 

Table A2: Comparing pipe rankings obtained from the hydraulic simulations and HGA for the 

optimally designed network 1 

 
Supply failure magnitude 

HGA 

ranking 

Robustness failure 

magnitude 

N 
PDA DDA 

Pipe ID Pipe ID index 
Pipe ID index Pipe ID index 

1 232 1.00 232 1.00 '232' 232 1.00 

2 501 0.98 504 0.98 '501' 504 0.98 

3 504 0.98 501 0.98 '504' 501 0.97 

4 235 0.97 235 0.97 '235' 235 0.95 

5 254 0.95 254 0.95 '254' 254 0.92 

6 516 0.94 516 0.94 '516' 516 0.92 

7 178 0.09 607 0.21 '178' 607 0.08 

8 607 0.08 178 0.20 '607' 178 0.07 

9 592 0.07 592 0.19 '592' 592 0.06 
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Table A3: Comparing pipe rankings obtained from the hydraulic simulations and HGA for the 

optimally designed network 2 

 Supply failure magnitude 
HGA 

ranking 

Robustness failure 

magnitude 

N 
PDA DDA 

Pipe ID Pipe ID index 
Pipe ID index Pipe ID index 

1 232 1.00 232 1.00 '232' 232 1.00 

2 504 0.98 504 0.98 '504' 504 0.98 

3 501 0.98 501 0.98 '501' 501 0.98 

4 235 0.97 235 0.97 '235' 235 0.97 

5 254 0.95 254 0.95 '254' 254 0.95 

6 516 0.94 516 0.94 '516' 516 0.94 

7 607 0.12 607 0.36 '607' 607 0.24 

8 178 0.12 178 0.34 '178' 178 0.24 

9 592 0.12 592 0.33 '592' 592 0.23 

10 225 0.10 225 0.27 '225' 225 0.21 

11 529 0.09 474 0.20 '529' 474 0.18 

12 474 0.09 529 0.16 '474' 529 0.16 

13 484 0.08 484 0.13 '484' 484 0.14 

14 601 0.06 601 0.06 '512' 601 0.07 

15 40 0.06 40 0.06 '473' 314 0.05 

16 314 0.06 314 0.06 '593' 40 0.05 

17 347 0.05 347 0.05 '133' 347 0.05 

18 349 0.05 349 0.05 '475' 593 0.05 

19 574 0.04 574 0.04 '601' 349 0.05 

20 441 0.03 593 0.03 '40' 133 0.04 

21 593 0.03 441 0.03 '314' 574 0.04 

22 317 0.03 133 0.03 '347' 473 0.03 

23 195 0.03 195 0.03 '349' 495 0.03 

24 133 0.02 317 0.03 '574' 441 0.03 

25 525 0.02 528 0.02 '441' 195 0.03 

26 528 0.02 523 0.02 '195' 317 0.03 

27 523 0.02 525 0.02 '317' 475 0.02 

28 342 0.02 342 0.02 '528' 523 0.02 

29 260 0.01 35 0.01 '523' 525 0.02 

30 35 0.01 260 0.01 '525' 528 0.02 

31 495 0.01 558 0.01 '342' 342 0.02 

32 558 0.01 509 0.01 '35' 260 0.01 

33 509 0.01 570 0.01 '260' 35 0.01 

34 458 0.01 581 0.01 '558' 558 0.01 

35 396 0.01 396 0.01 '570' 509 0.01 

36 581 0.01 458 0.01 '581' 458 0.01 

37 570 0.01 521 0.01 '396' 396 0.01 
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38 521 0.01 345 0.01 '458' 581 0.01 

39 345 0.01 344 0.01 '509' 570 0.01 

40 510 0.01 427 0.01 '521' 521 0.01 

41 427 0.01 510 0.01 '345' 510 0.01 

42 344 0.01 439 0.01 '344' 467 0.01 

43 482 0.01 482 0.01 '427' 427 0.01 

44 454 0.01 454 0.01 '510' 345 0.01 

45 439 0.01 

 

'439' 
 

46 473 0.01 '482' 

 

 

Table A4. Comparing pipe rankings obtained from the hydraulic simulations, HGA and LTTM 

for D-Town 

Pipe ID Hydraulic model ranking 

(based on supply failure 

magnitude) 

HGA 

ranking 

(This study) 

LGTM ranking 

(Pagano et al. 2019) 

Based on Eq. 

17 

Based on Eq. 

18 

P310 Rank 1 Rank 1 Rank 18  

P316 Rank 2 Rank 2 Rank 19  

P98 Rank 3 Rank 3 Rank 17  

P83 Rank 4 Rank 5 Rank 15  

P97 Rank 5 Rank 4 Rank 16  

P22 Rank 6 Rank 7 Rank 13  

P100 Rank 7 Rank 6 Rank 14  

P23 Rank 8 Rank 8 Rank 12  

P25 Rank 9 Rank 9 Rank 10  

P34 Rank 10 Rank 10 Rank 9  

P102 Rank 11 Rank 11 Rank 8  

P24 Rank 12 Rank 13 
 

Rank 26 

P110 Rank 13 Rank 12 
 

Rank 24 

P99 Rank 14 Rank 24 
 

Rank 19 

P17 Rank 15 Rank 16 
 

Rank 21 

P18 Rank 16 Rank 14 
 

Rank 20 

P19 Rank 17 Rank 15 Rank 1  
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P20 Rank 18 Rank 25 Rank 18  

P468 Rank 19 Rank 22 Rank 11  

P297 Rank 20 Rank 39 
 

Rank 17 

P21 Rank 21 Rank 17 
 

Rank 39 

P892 Rank 22 Rank 18 Rank 2  

P96 Rank 23 Rank 19 Rank 3  

P467 Rank 24 Rank 21 Rank 5  

P445 Rank 25 Rank 20 Rank 4  

P465 Rank 26 Rank 23 
 

 

P237 Rank 27 Rank 26 
 

Rank 2 

P379 Rank 28 Rank 27 
 

Rank 1 

P308 Rank 29 Rank 33 
 

Rank 7 

P256 Rank 30 Rank 35 
 

Rank 9 

P252 Rank 31 Rank 34 
 

Rank 8 

P238 Rank 32 Rank 30 
 

Rank 3 

P292 Rank 33 Rank 29 
 

Rank 4 

P933 Rank 34 Rank 36 
 

Rank 10 

P934 Rank 35 Rank 37 
 

Rank 11 

P293 Rank 36 Rank 32 
 

Rank 5 

P996 Rank 37 Rank 28 Rank 6  

P291 Rank 38 Rank 31 
 

Rank 6 

P397 Rank 39 Rank 38   Rank 7  

P319 Rank 40 Rank 52   
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