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Abstract 

The correlation between crime and urban blight, a term used to denote disorder in a society, has 

been subjected to intense debate. The Broken Windows Theory introduced by Kelling and 

Wilson (1982), suggests that urban blight contributes to increased crime in a neighborhood. For 

such a study, researchers have resorted to methods including Systematic Social Observations, 

Google Street View and the use of geo-spatial technology such as spatial videos to be able to 

collect fine-scale and detailed data. The latter method is a relatively novel method which offers 

the advantage of collecting spatio-temporal data in a single spatial video. Nonetheless, to carry 

out further analysis, a process involving manual identification, collection, and classification of 

physical urban blight instances from the geospatial videos, is required prior to the spatial 

analysis of blight locations. This demands a lot of time and effort on the part of the researcher 

who is interested in assessing the amount of physical urban blight in the researcher’s area of 

interest. This project seeks to capitalize on the automation capabilities offered by the field of 

Machine Learning (ML), to classify and automatically detect urban blight indicators in spatial 

videos. The workflow used in this study can be broken down into three major steps: the 

automatic detection of litter objects, the automatic mapping of the locations of the predicted 

litter objects and the classification of litter locations. From the results obtained in the automatic 

detection of litter objects, it was observed that the selected CNN model, YOLOv3, was capable 

of accurately detecting litter objects in spatial videos within a significantly shorter time than in 

the traditional approach. The model was seen to have a better performance when trained with a 

large dataset.  

 

Keywords: Urban Blight, Machine Learning, Video Object Detection, Spatial Video 

Technology, Baton Rouge 
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1 Introduction 

1.1 Motivation 

Urban blight denotes disorder in a neighborhood or the deterioration of elements such as 

buildings. It may be socially- or physically - related. The former describes anti-social behaviors 

displayed by residents. These behaviors may include public verbal harassment, urination in 

public places and open solicitation for prostitution (Sampson and Raudenbush 1999; Skogan 

1990; Kelling and Wilson 1982). The latter is normally characterized by broken windows or 

doors, abandoned vehicles, litter, unkempt areas, abandoned property, illegal parking, and other 

forms of disorder. Over the years, researchers have sought to evaluate the correlation between 

urban blight and crime in a neighborhood. This includes the Broken Windows Theory 

introduced by Kelling and Wilson (1982), which suggests that urban blight contributes to 

increased crime in a neighborhood. Such a study will require the use of fine-scale and detailed 

data. Different data collection methods have been adopted including the use of geospatial video 

technology, which is also known as spatial video (Stratmann 2019; Stratmann et al. 2020). 

However, the methods used required a lot of time and effort on the part of the researcher. In 

addition, the manual classification of urban blight carried out was subjective. It is necessary to 

identify urban blight in spatial videos in a relatively easier, time-efficient and objective manner. 

Machine Learning (ML) is a sub-set of Artificial Intelligence (AI), which enables processes to 

be automated and large data to be more effectively handled in order to derive relevant insight. 

ML can be defined as training a computer to think and learn like a human being in a defined 

situation without being told what to do explicitly. This requires training the computer using data 

and allowing it to improve its learning over time based on the training data (Samuel 1959). ML 

has a myriad of applications such as object detection, product recommendation, and virtual 

personal assistants (Packt 2018). This project seeks to capitalize on the automation capabilities 

of ML in order to apply it to automatically detect and classify physical urban blight indicators 

from spatial videos. 

1.2 Research Questions 

Researchers have utilized different methods in collecting data to study the correlation between 

crime and urban blight. Sampson and Raudenbush (1999) made use of the Systematic Social 

Observation (SSO) approach to derive physical and social disorder indicators from analogue videos. 

This derived information was useful in estimating the amount of urban blight in a neighbourhood. 

Another existing approach involves the use of Google Street View (GSV). The use of GSV offers 

the advantage of low cost and safety. However, the temporal components of images pose certain 

limitations due to the issues regarding flexibility and stability (Curtis et al. 2013a; Marco et al. 

2017). 

A relatively novel approach, which involves the application of geospatial technology methods, 

such as spatial videos and geo-narratives, has facilitated the collection and analysis of spatio-

temporal data of physical urban blight locations using Local Moran’s I Spatial Autocorrelation 

(LISA) and the Kernel Density Estimation (KDE) (Stratmann 2019; Stratmann et al. 2020). 

These methods were successful to accomplish the required tasks and to answer all research 

questions regarding the effectiveness of spatial videos and geo-narratives in identifying 

physical urban blight, and the relationship between physical urban blight and crime in Baton 
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Rouge, USA. However, the methods required a manual identification, collection, and 

classification of physical urban blight instances from the geospatial videos prior to the spatial 

analysis of blight locations. This demanded a lot of time and effort on the part of the researcher 

who is interested in assessing the amount of physical urban blight in the researcher’s area of 

interest. Furthermore, the manual classification carried out was more subjective than objective, 

since the classification was determined by the researcher who was carrying out the classification 

tasks. 

ML has already been successfully applied in many areas including object classification, identity 

confirmation, obstacle detection, and avoidance in autonomous driving (Zha et al. 2015). 

Mohana and Aradhya (2016) suggested that ML is useful in detection and classification of 

objects in video surveillance. Jogin et al. (2018) studied the use of different classifiers including 

the k-Nearest Neighbor, linear classifier, softmax classifier, Support Vector Machine and 

Convolutional Neural Network (CNN). They proposed the CNN as the optimum classifier for 

video classification based on their results.  CNN has different architectures including “You 

Only Look Once” (YOLO) and AlexNet. Research has shown that YOLO is useful in increasing 

computation speed while correctly identifying objects in videos (Jana et al. 2018). This project 

seeks to harness the strengths of ML in automating the identification, collection, and 

classification of urban blight indicators in geospatial videos, possibly resulting in a massive 

reduction of time and efforts required by for such a task. 

Therefore, this research aims to answer the following central question and sub questions: 

• How suitable is ML in detecting urban blight indicators? 

a. How suitable are Convolutional Neural Networks (CNN) in detecting urban blight 

indicators? 

b. What considerations are necessary in developing a requirement catalogue for 

detecting urban blight within the context of ML? 

1.3 Approach 

The beginning of this project will be devoted to an extensive literature review of the state of the 

art of different ML algorithms that have already been adopted in detecting and classifying 

objects in images and videos. Studies have shown that Convolutional Neural Networks, which 

represent a class of ML algorithms, are applicable in face recognition and object detection 

(Howard et al. 2017; Girshick et al. 2013). An optimum ML algorithm will then be selected 

and implemented based on the literature review. For consistent analysis, a requirement 

catalogue used extensively in literature will be adapted. The suitability of this catalogue within 

the context of ML will be evaluated. An appropriate requirement catalogue will subsequently 

be defined. Labelbox, a platform which is used to scale the creation and management of quality 

training data, also provides image and video classification tools (Labelbox 2020). This platform 

may be relevant in labeling the different physical urban blight indicators. An example of the 

requirement catalogue to be adopted from existing literature is illustrated in Table 1.1.  

The appropriate quantity of data required for the analysis will be determined and preprocessed 

to obtain as accurate and high-quality results as possible. The ML models will then be trained 

with a sufficiently large training data set (i.e., spatial videos). Some ML algorithms such as 

neural networks usually require their parameters to be adjusted during the training process until 
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desired results are obtained. Therefore, in the event of a neural network being selected, a process 

of parameter fine tuning will be included for optimum results. A portion of the data will be 

reserved for the testing process. This involves the ML model detecting and classifying physical 

urban blight indicators in new and previously unseen data samples (i.e., spatial videos). The 

accuracy assessment measures, such as error and accuracy rates, will be considered to guide the 

selection of an optimum ML model. Subsequently, the results from the selected model will be 

compared to the results of the manual detection and classification of physical urban blight 

indicators from the 2019 Marshall Plan (MP) research project. A subsequent comparison of 

different spatial analysis results between the ML algorithms and the manually collected urban 

blight locations will complete this proposed research. 

Table 1.1: Sub-section of requirement catalogue for physical urban blight indicators adopted 

from (Weisburd et al. 2010; Hinkle and Weisburd 2008; Skogan 1990; Ross and Mirowsky 

2001) as cited in Stratmann et al. (2020, pp. 5-6, Table 1). 

 

 

1.4 Significance of the Study 

• Identification of the necessary considerations to be made in developing a requirement 

catalogue for detecting urban blight within the context of ML. This adapted requirement 

catalogue may be applied by other researchers who may be interested in applying ML 

to object detection in spatial videos.  
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• Implementation of an optimum ML model which will be suitable for the automatic 

detection and classification process in identifying physical urban blight indicators, 

leading to reduced time and efforts on the part of researchers and analysts. 

• To make a recommendation of the most appropriate ML method to be applied in 

evaluating and assessing urban blight depending on factors, such as time constraint. This 

will be useful to researchers who may be interested in assessing the relationship between 

crime and urban blight as well as the link between urban blight and health conditions. 

• The proposed project and best performing ML algorithm can also be applied in detecting 

damages in infrastructure as part of disaster and risk management efforts.  

• The proposed project and best performing ML algorithm may also be applicable to 

identify graffiti locations by researchers who are interested in graffiti research. 

1.5 Organization of the Thesis 

The remainder of the thesis is organized as follows: 

Chapter 2 presents an overview of relevant concepts which undergird this research. These 

concepts include crime concepts such as the Broken Windows Theory and other concepts about 

urban blight. Geospatial technologies are described with emphasis being placed on the spatial 

video technology used in this study.  In addition, the concept of machine learning is explained. 

Overviews of some available frame extraction tools and labeling tools are also provided in the 

chapter. Furthermore, the concept of object detection using deep learning is discussed. The 

chapter concludes with a review of some best practice examples for detecting physical urban 

blight using both non-ML and ML methods. Other related work in the field of object detection 

which are relevant for this study are described as part of the best practice examples. 

Chapter 3 describes the methodology to be adopted in this research. The data used as well as 

the steps to be employed in preparing the data for analysis are described. The architecture of 

the selected object detection model is explained. In addition, brief overviews of the training, 

validation and testing processes to be used in implementing the ML model are provided. 

Furthermore, some evaluation metrics used in evaluating deep learning models are presented. 

The last section of the chapter describes how the identified urban blight locations are visualized. 

Chapter 4 describes the study area and the physical urban blight indicator that were selected for 

this study. To avoid ambiguity, the selected physical urban blight indicator is defined within 

the scope of this project. The steps followed in implementing the ML model for automatic urban 

blight detection are explained in detail. Moreover, the evaluation metrics used in evaluating the 

model’s performance are described. The chapter concludes with a description of how the 

predicted physical urban blight objects are visualized. 

Chapter 5 presents the results obtained after following the processes described in Chapter 4.  

In Chapter 6, the results are interpreted and a discussion of the benefits and limitations of the 

proposed ML model for urban blight detection from spatial videos is carried out. 

Finally, Chapter 7 summarizes the thesis and Chapter 8 provides recommendations for future 

work that will augment the contributions made by this research. Further recommendations are 
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made for future work in different fields such as health, in which the proposed ML model may 

be adopted. 
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2 Theoretical Background and Literature Review 

This chapter begins with a section about criminological and urban blight concepts which tackle 

the link between urban blight and crime. Subsequently, the spatial video technology which is 

used in this study is described. Some applications of the technology are also discussed. The 

following sections explore machine learning, frame extraction software, tools required for 

labelling data, object detection and deep learning concepts. The chapter concludes with a review 

of some best practice examples for detecting physical urban blight using non-ML methods. 

Approaches involving the use of ML are also mentioned. Other related work in the field of 

object detection which are relevant for this study are described as part of the best practice 

examples.  

2.1 Crime Concepts 

Researchers in diverse fields including criminology, health, psychology, sociology and 

geography are commonly interested in theories that highlight principal neighbourhood and 

community features. Such theories may be relevant in identifying crucial relationships between 

community characteristics. As such, various concepts which describe disorder within 

neighbourhoods and their relationship to objective and subjective crime indicators exist. Data 

regarding objective crime indicators may be obtained from official crime reports. On the other 

hand, subjective crime indicators may show how an individual perceives safety or the fear of 

crime in a specific neighbourhood (van Bakergem et al. 2017; Stratmann 2019; Ross and 

Mirowsky 2001). 

2.1.1 The Broken Windows Theory 

In criminology, the Broken Windows Theory (BWT), plays a vital role. It was initially 

presented by Kelling and Wilson (1982) in The Atlantic Monthly magazine. The authors 

presented their point of view, stating that neighborhood disorder could be indicated by factors 

such as graffiti, broken windows or highly unkempt lawns filled with overgrown weeds. From 

their perspective and research, broken windows in a community often showed a lack of 

enforcement and community supervision. This could potentially encourage more disorder or 

crimes. Generally, one broken window in a community would facilitate other broken windows 

appearing on the scene of the community involved in a short time frame. This occurs 

irrespective of how well the community functions on a whole. Small violations build up into 

disorder over time. Disorder begets disorder. Hence, the lack of enforcement will encourage a 

lot of residents to have a lackadaisical approach to situations and to disregard pre-existing 

norms and regulations. Others may engage in violent activities. These forms of disorder may 

lead to increased fear within certain people in the community. This fear may force some 

residents to move to a different community where law and order may still be existent to a higher 

degree. This further leads to increased disorder on all level and may be characterized by 

increased violence, inordinate drinking activities as well as excessive and rampant littering. The 

resulting community will normally be characterized as a place where regular residents are afraid 

of crime and therefore choose not to go to public places as much as possible (Stratmann 2019; 

Kelling and Wilson 1982).  



 

 

7 

 

 

The Broken Windows Theory influenced policing strategies in urban areas. This is also referred 

to as broken windows policing. Patrols were undertaken by police officers in assigned 

neighborhoods where disorder was present. This approach to maintain law and order positively 

influenced prominent U.S. cities (Sampson and Raudenbush 1999). 

The BWT is essential for the urban blight concept which is described in the next section.  

2.1.2 Concept of Urban Blight 

Over the years, the term “urban blight” has been defined by many authors in different ways. 

This may be attributed to their focus on its characteristics and effects, rather than establishing 

a standard definition for the term (Lousada et al. 2021; Hoffman 2012).  In their Atlantic 

Monthly article, “Broken Windows”, Kelling and Wilson (1982) used the term “urban decay”. 

This term is synonymous to “urban blight”. 

The word “blight” has its origins in the 16th century and was initially used by farmers to describe 

plant disease which causes the affected parts of the plant to wither and die (Oxford Dictionaries 

2019). The word evolved and became associated with urban neighbourhoods which were falling 

into disrepair or disorderliness. Darling (1943) introduced the term “urban blight” and described 

it in broad terms as a condition of properties which is caused when such properties are neglected 

and inhabited by people who live below their society’s average standard of living. Ferreira et 

al. (2018) mentioned that such neighbourhoods are typically characterized by poor housing 

where there are limitations with space, air quality and light. Also, these areas are often inhabited 

by people who desperately need a place to stay and whose income would not allow them to 

afford alternative houses which have appropriate living conditions (Darling 1943). Studies have 

shown that urban blight is typical in areas where there are high poverty rates, minority 

households, slums and crime (Stratmann 2019; Stratmann et al. 2020). 

Generally, researchers differentiate between social and physical urban blight. Social urban 

blight is mostly used as a broad term to denote behaviours which are considered anti-social and 

may be perpetrated by unpredictable or unstable people in society. These may include open 

solicitation for prostitution, urination or sleeping in public places, open verbal harassment, 

school truancy and nuisance neighbours (Sampson and Raudenbush 1999; Skogan 1990; 

Kelling and Wilson 1982). On the other hand, physical urban blight, which is the focus of this 

research, is used to denote deterioration or disorderliness of urban areas. A more recent definition 

of urban blight by Sun et al. (2019) depicts this form of urban blight; “abandoned or poorly 

maintained real properties, often characterized by overgrowth, litter, abandoned vehicles, junk, and 

dumping”. Other examples of physical urban blight include abandoned or burned cars, graffiti, 

broken windows, and broken streetlights, etc. Although social urban blight occurs more habitually 

than physical urban blight, the damage of the former is not as glaring as that of the latter (Stratmann 

2019; Kelling and Wilson 1982; Skogan 2012).  

Drawing a line between social and physical urban blight is not always a simple task in spite of 

the differences that exist between the two forms of urban blight. Rather than mostly considering 

physical factors, the concept of urban blight has evolved to envelope subjective factors as well. 

In order to enhance the understanding of disorder in urban areas, a combination of social and 

physical urban blight, as well as socio-economic factors is required (Stratmann 2019; Hinkle 

and Weisburd 2008; Skogan 1990).   
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2.1.3 Fear of Crime 

In a study carried out by Kelling and Wilson (1982), it was observed that certain factors 

aggravated the fear of crime in people while others caused people in some neighborhoods to 

feel safer. One typical factor mentioned was the presence of police officers foot patrolling 

selected areas. It was recognized that although crime rates had rather increased, the mere 

presence of foot patrol officers made some citizens living in foot patrolled areas feel safer. 

Hence, they were less careful about putting in place security measures including locking their 

doors. Within the area under study, informal rules which were generally understood and 

accepted by the residents there were used to maintain some level of order. For example, bottles 

had to be put in paper bags, begging was not permitted, talking to or bothering people at the 

bus stops was not allowed, etc. This brought to light the idea that people are not only afraid of 

sudden violent attacks from strangers. Rather, they also fear being victims of disorderly 

behaviors exhibited by mentally disturbed people, loiterers, addicts, rowdy teens, panhandlers, 

to mention but a few. 

Consequently, in areas where there is less social control, it is common to find people altering 

their behaviors or routines to avoid being in situations where their safety is compromised. For 

example, people who do not feel safe may reduce their use of streets or other public places 

especially at odd hours, stay indoors or walk hurriedly through such areas. Some may leave to 

a different neighborhood where they feel safer. These altered behaviors may potentially 

encourage crime since these areas are made more conducive for criminals to perpetrate their 

activities (Kelling and Wilson 1982).  

In a research conducted by Sampson and Raudenbush (2001), showed that cohesion among 

residents led to the reduction of physical and social disorder. Furthermore, a combination of 

high cohesion among residents and increased social observation by police officers led to low 

violence. While police presence in some neighborhoods leads to residents feeling safer, some 

studies have also shown that in other neighborhoods, residents tend to become very fearful due 

to the police presence. This however does not include people who commute through such areas. 

This tendency is more applicable to people who monitor street behavior from their homes 

(Weisburd et al. 2010). Hinkle and Weisburd (2008) mentioned that the increased fear 

associated with increased police activity may be attributed to two possible reasons. They stated 

that when people notice increased police presence in their neighborhoods, they may be 

reminded of the already existing issues in their areas. Additionally, residents are likely to infer 

that there is an increase in crime in their areas when there is a sudden increase in police presence 

on their block. This leads them to begin to view their blocks as more dangerous than in previous 

times. 

Generally, disorder elicits negative impressions in people’s minds. Thus, urban blight has the 

potential to affect the value of properties negatively (Sun et al. 2019). Within the real estate 

market, blighted areas are more likely to have less sales since people will be hesitant to purchase 

houses in such areas (Sampson and Raudenbush 2001). Additionally, the perceived disorder 

within a neighborhood can affect the health of residents negatively, leading to chronic health 

issues and increased physical impairments. 
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2.1.4 Discussion: Perspectives on Broken Windows Theory  

Kelling and Wilson (1982) proposed a correlation between disorder and crime in their broken 

windows theory. They threw more light on how disorderly conditions such as broken windows, 

could lead to much more serious crime if not tended to. This is similar to how one unfixed 

broken window could result in other windows being broken and subsequently, severe damage 

being done to the entire building (Gault and Silver 2008). There are differing perspectives about 

the BWT among researchers. Therefore, this hypothesis has been subjected to various tests and 

discussions. The perspectives of some researchers appear to be consistent with the BWT. 

However, there remain other researchers who stand as critics of the theory. 

An influential article which was published in the American Sociological Review by Sampson 

and Raudenbush (1999) stated that there was no direct correlation between disorder and crime. 

They reported their findings as being contrary to the views pushed forward by the Broken 

Windows Theory (Gault and Silver 2008). Harcourt (2009) put forward a similar argument 

about the lack of evidence of a direct link between serious crime and disorder (Hinkle and 

Weisburd 2008). 

In response to the afore-mentioned critique, some researchers have argued that the BWT does 

not propose a direct relationship between disorder and crime, but rather an indirect relationship 

involving the fear of crime and its associated effects on informal social controls (Hinkle and 

Weisburd 2008; Bratton and Kelling 2006). Gault and Silver (2008) maintained a neutral stance 

but sought to present their alternate interpretation of the findings of Sampson and Raudenbush 

(1999), which they believed is more consistent with the latter’s empirical findings.  They argue 

that Kelling and Wilson (1982) suggested a chain of events occurring between disorder and 

crime, and not a direct link. Furthermore, they mention that Sampson and Raudenbush’s 

findings are not contradictory to the BWT but rather supports the BWT since it also shows that 

disorder weakens social control, which also results in increased crime (Gault and Silver 2008). 

The results of a study carried out by Hinkle and Weisburd (2008) showed that there is a link 

between disorder and fear of crime, thus substantiating the BWT hypothesis. They however 

mention that policing strategies which are based on the broken windows should focus on not 

only reduction of disorder, but also on warding off citizens’ fear of crime (Skogan 1990; 

Weisburd et al. 2010; Stratmann 2019).  

The broken windows theory heavily influenced policing strategies over many years. The broken 

windows policing strategy involves strict law enforcement by police where there is zero 

tolerance. An analysis of various disorder policing strategies which was carried out by 

implementing several experiments, showed that the strict law enforcement strategy is not 

always helpful. Alternatively, there exist policing strategies which are more problem-oriented 

and allow active participation by citizens in problem-solving interventions. These strategies 

have proven to be more effective in reducing urban blight and crime rates as compared to the 

strategies which focus solely on untended behaviour (Braga et al. 2015; Skogan 2008; 

Stratmann 2019). 

(Branas et al. 2018) investigated the result of standardized, reproducible interventions aimed at 

restoring blighted vacant land on crime, violence and people’s perception of fear and safety. To 

achieve this, they employed a mixed-methods approach including quantitative and ethnographic 



 

 

10 

 

 

analyses. The results obtained after analyzing 445 randomly sampled participants over a period 

of 38 months showed that for those who resided near restored vacant lots, there were significant 

reductions in the perceptions of crime, vandalism and safety concerns when moving outside of 

their homes. In addition, their use of public spaces for socializing and relaxation, increased 

significantly. Pertaining to crime, significant reductions were also obtained. Therefore, they 

concluded that blighted urban areas have an impact on people’s perception of safety. 

Furthermore, they proposed that treatment of blighted vacant lots can be effective for 

intervening in crime, violence involving guns as well as fear in urban areas. Their conclusion 

is consistent with the BWT hypothesis. 

Haney (2007) assessed the impact of living in a poor area on the self-esteem of residents in such 

areas. In his article, he mentioned that rather than merely eliciting fear in residents of blighted 

areas, residents were more likely to perceive a sense of fatalism; a feeling that misfortunes and 

incivilities will occur irrespective of their actions. He alluded this to severe psychological 

effects. Furthermore, he stated that perceived disorder is more related to who resides in a 

particular area than physical urban blight and observed behaviours. Thus, contradicting the 

theory. 

The discussion held in this section shows the divergent opinions held by various researchers 

concerning the broken windows theory as well as diverse policing strategies. Nonetheless, a 

relationship can be observed between crime and urban blight, even though the extent and 

correlation are not clearly established yet. 

2.2 Geospatial Technologies 

Geospatial technologies consist of methods that are used to store, acquire, analyze, model and 

visualize spatial data. They include Geographic Information Systems (GIS), photogrammetry, 

remote sensing, Global Navigation Satellite Systems (GNSS), traditional survey methods and 

laser scanning, etc. These advanced methods are applicable in a wide range of location-based 

services. However, they pose certain limitations. For example, satellites are unable to capture 

vertical surfaces in an efficient manner due to their perspective. On the other hand, Unmanned 

Aerial Vehicles (UAVs) can efficiently capture vertical surfaces since they have the correct 

perspective for achieving that. UAVs also provide high resolution images. Nonetheless, there 

are legal issues surrounding the use of UAVs and these are largely dependent on the local 

legislation. In some areas, UAVs are prohibited from flying in urban areas without permission. 

It is possible to use handheld Global Positioning System (GPS) devices and other conventional 

survey techniques to correctly position contextual data. However, this approach is time-

intensive and is therefore not suitable for studies involving large areas (Strelnikova et al. 2018; 

Stratmann 2019). A more efficient and cost-effective alternative has been used for 

environmental observations. Nonetheless, pictures provided by Google Street View have a 

limitation of temporal instability. This approach is therefore unsuitable for spatio-temporal 

studies (Curtis et al. 2013b; Stratmann 2019). 

Presently, a lot more focus is on finding methods which overcome these limitations, i.e., 

methods which are time-efficient, cost-effective, capable of collecting contextual features and 

applicable in finding spatial correlations in a GIS (Curtis et al. 2015; Stratmann 2019). 
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2.2.1 Spatial Video Technology 

Videography is a concept which has been used in diverse ways and within several disciplines. 

Basically, it refers to the capture of moving objects using video cameras. Aside the visual 

component, which is collected using video cameras, they are capable of also capturing audio. 

Videography has been applied in social science research mainly to observe different phenomena 

or events, provide feedback, and to learn from a distance. With the convergence of GPS, 

coupled with reduced costs of videography components and sensor enhancements, the resulting 

technology - spatial video - promises to be a great tool for collecting field data and may be used 

in different disciplines especially geography (Mills et al. 2010). 

Spatial Video, otherwise known as Spatial Video Acquisition System (SVAS), is a relatively 

new technology that can capture contextual field data for in-depth research. Using the spatial 

video technology approach, spatio-temporal data can be captured and analyzed to determine 

geographic occurrences as well as any environmental changes. Furthermore, it is described as 

a ground-level remote sensing method which improves environmental monitoring due to its 

combination of GPS and video. The SVAS is made up of digital video cameras which are linked 

to a GPS unit. This enables individual frames of the video to be linked to GPS coordinates. As 

a result, each recorded frame has its corresponding geographic location and timestamp 

information. Varying surveying vehicles can serve as the platform onto which the SVAS is 

mounted. Several angles can also be recorded by using more than one camera (Curtis et al. 

2013a; Curtis et al. 2015; Stratmann 2019; Ristea et al. 2021).  

Recently, the spatial video technology has been adopted in several studies. For example, it has 

been applied in post-disaster assessment to track the recovery of selected areas following a 

hurricane or firestorm (Mills et al. 2010). It has also been applied in health-related studies to 

support field epidemiology. By analyzing the spatial videos, the effect of seasonal changes on 

cholera within endemic areas can be determined. To add to this, by extracting contextual 

characteristics such as standing water, accumulated trash etc., from the spatial videos, health 

risks such as tuberculosis can be identified. Therefore, spatial videos enhance spatial 

epidemiological analysis and make it possible to identify spatial patterns (Curtis et al. 2016; 

Curtis et al. 2015). Moreover, an underwater version of the spatial video which involves the 

attachment of the GPS and cameras to a boat, has been applied in coral health status analysis 

(Riegl et al. 2001; Stratmann 2019; Ristea et al. 2021). SVAS has been adopted to collect 

contextual data in crime-related research (Curtis et al. 2012; Stratmann 2019; Ristea et al. 

2021). The technology has been used in assessing and evaluating the occurrence of urban blight 

within selected neighborhoods in Baton Rouge, USA. By leveraging the spatial video and some 

other technologies in a mixed methods approach, fine-scale information of the occurrences of 

physical urban blight as well as people’s perception of safety could be analyzed (Stratmann 

2019; Ristea et al. 2021).  

Although the spatial video is time-efficient, cost-effective and provides valuable insights into 

spatial patterns of specific occurrences and can be applied in diverse fields, the mapping process 

is laborious. The spatial video has to be watched and the identified and desired occurrences 

must be digitized into a GIS layer (Stratmann 2019; Ristea et al. 2021; Ajayakumar et al. 2021; 

Stratmann et al. 2020). This makes the spatial video less scalable and sustainable (Ajayakumar 
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et al. 2021). Therefore, there is the need to explore the use of ML methods to automate the 

transformation of spatial video frames into maps. 

2.3 Machine Learning Concepts 

In 1956, a group of computer scientists introduced the term “Artificial Intelligence (AI)” at the 

Dartmouth Conferences. The term connotes intelligence which is demonstrated by machines. 

Since then, AI has evolved in a great measure due to the widespread availability of data and 

increased computational power. Intelligence is often associated with human minds. Therefore, 

when a machine imitates cognitive functions that are normally associated with human minds, 

the term “artificial intelligence” comes into play. These cognitive functions typically include 

“learning” and “problem solving”. 

Machine Learning (ML), a subset of AI, was first defined by Arthur Samuel as programming 

computers in such a way that they learn how to accomplish a task from experience. Thus, 

removing the need to elaborately program the computers to perform desired tasks (Samuel, 

1959). ML is mostly applied in complex cases where explicitly programming algorithms is 

infeasible. For example, in computer vision, email filtering and network intruder detection.  

Computer programs can be taught to perform specific tasks using different machine learning 

techniques. These include supervised learning, unsupervised learning, reinforcement, and semi-

supervised learning. However, the most commonly adopted techniques are supervised learning 

and unsupervised learning (Ongsulee 2017).  

2.3.1 Supervised Learning 

In supervised learning, algorithms are provided with labeled examples during training. These 

labeled examples contain some pre-defined inputs and their associated correct outputs. This 

implies that the algorithm is given examples of what the “right answer” is for each input. Given 

additional unlabeled data, the algorithm predicts the values of the labels. Learning is achieved 

by the algorithm by comparing its predictions to the correct outputs to identify errors. It then 

adjusts the model where necessary. Supervised learning is commonly applied in areas where 

historical data can be used to predict future events that are likely to occur. For example, it can 

be applied to detect fraudulent credit card transactions. Popular supervised learning techniques 

include classification, regression, gradient boosting and prediction (Ongsulee 2017). 

2.3.2 Unsupervised Learning  

The unsupervised learning technique, as its name implies, involves no supervision or guided 

learning. This means that no labeled examples are provided to the algorithm. Therefore, the 

algorithm has no information on what the “right answer” is. It is required to explore the data 

and identify a hidden structure or pattern within the provided data. Based on the identified 

structure, the algorithm can create segments of the data. Typical applications include identifying 

consumer segments for more targeted marketing efforts and segmentation of text topics. The 

nearest-neighbour mapping, self-organizing maps,  singular value decomposition and k-means 

clustering are among the most popular unsupervised learning techniques (Ongsulee 2017). 
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2.4 Frame Extraction Software Review 

In recent times, video content has gained a lot of attention. This is due to advancements in 

technology and the increasing use of social media. This brings to fore the challenge of 

identifying what the videos contain – video annotation which may also be referred to as video 

labeling. Video annotation may be carried out on individual frames which are extracted from 

the video or may be carried out directly on the video (Gaur et al. 2018). The former usually 

requires the use of a frame extraction software or tool to extract the individual frames for 

subsequent video labeling processes.  

Due to the explosion of video content, many tools have been created to work with videos. As a 

result, there are multiple frame extraction software which can be used to generate individual 

video frames or images from the video content. Free Video to JPG Converter1 is one such 

extraction software. It supports multiple video formats including mp4 and can perform frame 

extraction on multiple videos in one instance. The extraction of individual video frames from 

the video is done automatically and saved to a user-defined output folder as a JPG image file. 

It can extract batches of frames based on a specified time (e.g., every 1 second) or by a specified 

interval (e.g., every 50 frames). A specific total number of frames can be extracted. For 

example, only 10 frames out of all the video frames. This gives the user great flexibility and 

simplifies the extraction of many video frames. However, Free Video to JPG Converter requires 

that .NET framework is pre-installed before it can be installed. Another tool known as Batch 

Video to Image Extractor2 works in a similar way to the Free Video JPG converter in terms of 

automatic extraction of frames in batches based on specified intervals, time or number of 

frames. However, Batch Video to Image Extractor offers support for other image formats such 

as TIFF, GIF etc. It can capture all the video frames as one image, with a specified number of 

columns and lines. Batch Video to Image Extractor tool allows for users to specify the output 

frame size and set the frame per second (fps). A drawback of this tool is that it has a relatively 

longer processing time. Another frame extraction software worth mentioning is the VLC Media 

Player.3 It supports multiple video formats and allows for video frames to be extracted in 

batches based on a defined parameter known as the recording ratio. VLC Media Player has the 

option of extracting frames manually as well as automatically. The manual option is suitable 

for capturing a few frames. Although the other two extraction tools can work on multiple videos 

at a go, VLC works as a complete media player with many other functions and performs the 

extraction of frames very well (Singh 2018). There is yet another tool called FFmpeg.4 It is a 

command line tool and is useful for changing the file formats of multimedia content. It can 

therefore be used to extract video frames. Compared to VLC Media Player, FFmpeg is less 

intuitive due to the use of the command line (FFmpeg 2021). VLC Media Player is therefore 

easier to use due to its simple and intuitive user interface. In addition, there is yet another tool 

called Frame Selector, which was developed by Andrew Curtis et al.5 Frame Selector is a stand-

alone software which can be used to manually extract individual frames from a video while it 

 

 

1 https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm 
2 https://batch-video-to-image-extractor.en.softonic.com/ 
3 https://www.videolan.org/vlc/ 
4 https://ffmpeg.org/download.html 
5 https://www.kent.edu/geography/profile/andrew-curtis   

https://www.dvdvideosoft.com/products/dvd/Free-Video-to-JPG-Converter.htm
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is playing. Hence, extracting many frames must be done manually. Nonetheless, it offers the 

advantage of being able to save frame extraction sessions, making it easier to identify the 

extracted frames from the video after a period of time. Moreover, Frame Selector’s naming 

convention for the extracted frames using the video file name and the timestamp may prove 

useful for properly identifying individual frames. To add to this, by using Frame Selector to 

manually extract the spatial video frames, the issue of varying image quality will be addressed 

(Ajayakumar et al. 2021). 

For this study, VLC Media Player will be useful for automatically extracting many video 

frames. This may be useful for generating many video frames for training the object detection 

model. Furthermore, the media player may be useful for performing functions such as viewing 

or trimming the video as is appropriate for any platforms on which they will be uploaded onto. 

Frame Selector may be a more suitable option for differentiating between the various extracted 

video frames; know which video were extracted and at which time. This may be useful for the 

automatic mapping process which will be discussed in subsequent sections.  

2.5 Review of Tools Used for Labeling Data 

For computer vision tasks, generating ground truths is a vital part of training and testing of 

computer vision (CV) algorithms. This has led to increased development of tools and 

frameworks to support researchers in the creation and collection of datasets. After creating 

ground truth labels, the datasets that are derived are used in various CV tasks including object 

detection and tracking. 

Research groups often develop stand-alone tools for annotation tasks. The tools are usually 

tailor-made for their specific needs. These tools include GTVT, ODViS, GTTool, ViPER-GT. 

These are however limited in terms of generating ground truth datasets on a large scale. 

Furthermore, they can only be used by a limited number of people. Moreover, sharing of labeled 

data is not supported. There are also web-based tools such as LabelMe6 which allow for 

collaborative efforts; large groups of people can combine their efforts in creating and collecting 

reliable ground truths. Nonetheless, LabelMe’s platform does not combine multiple annotations 

made by multiple annotators. As a matter of fact, the data from LabelMe is considered to be 

quite inaccurate. LabelMe supports the annotation of still images. It also has a version that 

supports video annotation. However, the video-based version is neither as successful nor as 

flexible as that of the image version. Alternative platforms such as Amazon’s Mechanical Turk 

(MTurk),7 leverage crowdsourcing to collect large, annotated datasets. On MTurk, workers are 

motivated by being paid for their work. This is because workers’ motivation affects their work 

and must be considered. Apart from workers’ motivation, quality control must be considered. 

Methods such as task redundancy (where several people label the same data), ground truth 

seeding (combining the ground truth with the test data) and user reputation have been used 

successfully to support the building of large-scale datasets. However, they may be expensive 

 

 

6 http://labelme.csail.mit.edu/Release3.0/ 
7 https://www.mturk.com/ 
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and may still be of low data quality since workers may not be as motivated as researchers even 

if they are paid (Kavasidis et al. 2014). 

Other modern data annotation/labeling platforms include Labelbox,8 Amazon SageMaker 

GroundTruth,9 Clarifai,10 SuperAnnotate,11 Computer Vision Annotation Tool (CVAT)12 and 

Visual Object Tagging Tool (VoTT)13. Labelbox’s platform is easy to use. It has a simple 

intuitive interface, easy project set up and a possibility of reusing ontologies. Ontologies contain 

all necessary information regarding a particular kind of annotation. It is useful for ensuring 

high-quality annotations and reducing the number of errors as well as inconsistencies for a 

particular annotation type. The platform also makes labeling tasks very efficient due to the 

availability of hotkeys – shortcuts used to perform certain tasks (e.g., copying a ground truth 

box to another object of similar size). With regards to the type of data that is supported for 

carrying out labeling tasks, Labelbox supports a diverse range of data including video, images, 

text, tiled imagery, etc. It also supports collaborative labeling and shows how a team is 

performing generally as well as on an individual basis. To ensure high quality labels, the labels 

that are created can be reviewed. It has other quality assurance measures such as setting 

benchmarks and a consensus approach.  In terms of pricing, Labelbox offers a free version to 

small teams and individuals, especially developers. However, the free version is limited in 

certain ways including how many annotations can be made. To experience the full capabilities 

of the platform, the pro and enterprise version have been made available. A free non-

commercial version is available for educational and research purposes. Furthermore, Labelbox 

supports manual, semi-automatic and automatic annotation methods. Different object 

recognition tasks such as object detection, semantic segmentation and image classification are 

supported. Another important consideration for the annotation tools is the output format used 

for the created labels. Labelbox outputs the created labels in JSON or CSV formats (Labelbox 

2021).  

G2, a platform on which people can find and review software, listed Amazon SageMaker 

GroundTruth, Clarifai and SuperAnnotate as the top 3 best alternatives to Labelbox (G2 2021). 

Indeed, they have many similarities to Labelbox. However, unlike Labelbox, Amazon 

SageMaker GroundTruth does not offer a free version for educational and non-commercial 

purposes. The latter only offers a free tier for the first two months of starting to use it (Amazon 

Web Services, Inc. 2021). Clarifai and SuperAnnotate are also very similar to Labelbox. 

Nevertheless, the additional possibility to set benchmarks and utilize a consensus approach to 

ensure high data quality, makes Labelbox’s quality assurance measures more comprehensive. 

Although CVAT is a well-designed, web-based platform for annotating videos and images, it 

only works well in Google Chrome. This is because it was not optimized or tested for other 

browsers. VoTT on the other hand was developed by Microsoft and is a free and open-source 

alternative. Within the community of ML engineering and data scientists, VoTT has a good 

 

 

8 https://labelbox.com/ 
9 https://aws.amazon.com/sagemaker/groundtruth/ 
10 https://www.clarifai.com/ 
11 https://superannotate.com/ 
12 https://cvat.org/ 
13 https://github.com/microsoft/VoTT 
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reputation. In addition, it supports a variety of annotation export formats such as CSV, generic 

JSONs etc. However, for it to be loaded in a browser, VoTT requires a relatively longer time 

since it is not light weight.  

Multiple annotation tools have been compared based on factors such as ease of use, efficiency, 

the type of data that is supported, data quality control, pricing and available annotation file 

output formats. As with other ML tasks, high quality data is highly important for this study. 

Labelbox appears to outperform all the described tools in terms of data quality control measures 

due to the possibility to reusable ontologies, benchmarks, reviews and consensus. Moreover, 

the free non-commercial version for educational and research purposes will be suitable for this 

project. Therefore, Labelbox will be used for creating the labeled datasets required for the 

project. 

2.6 Object Detection Using Deep Learning  

Object detection is a principal area of computer vision which involves locating and classifying 

objects within a digital image or video (Zhou et al. 2017) with the aid of rectangular bounding 

boxes (Xiao et al. 2020). Its main goal is to develop and make use of computational models and 

techniques which answer the question, “What objects are in the given image or video and where 

are they located?” – a question that is usually required by computer vision applications (Zou et 

al. 2019).  

Object detection is somewhat related to object classification, instance segmentation and 

semantic segmentation (Xiao et al. 2020). They all fall under object recognition in computer 

vision. However, there are some variations in how the object recognition task is accomplished 

and the information derived at the end. Object classification determines the category or class of 

an object within a given image. Object detection on the other hand, does not only determine the 

category of the object. It also aims to determine the location of the object in the image using a 

bounding box (Wu et al. 2020). Object detection can therefore be described as a combination 

of object classification and object localization (Zhao et al. 2019). In semantic segmentation, 

each pixel in the given image is assigned a class label. In comparison to object detection, 

semantic segmentation is unable to distinguish between multiple objects in the same category. 

For example, it can only predict that an object is a fruit, but it cannot distinguish between a 

banana and an apple. Instance segmentation accomplishes this by bringing object detection and 

semantic segmentation together. It also localizes objects using pixel-level localization while 

bounding boxes are used in object detection. These differences are illustrated in Figure 2.1. 

Object detection plays a vital role in computer vision and has been applied in scientific research 

and in practical industry production. Some of these applications include text detection, face 

recognition and video detection (Xiao et al. 2020). 
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For several decades, traditional object detection algorithms were used extensively. These 

algorithms include deformable part-based model (DPM), selective search, Oxford-MKL and 

NLPR-HOGLBP. Their basic architecture consists of the region selector, the feature extractor 

and classifier, as illustrated in Figure 2.2. At the region selection stage, the entire input image 

is scanned using multi-scale sliding windows. Hence, making it possible for objects of varying 

sizes and at different positions to be captured. The sliding window crops image blocks and 

forms a uniform-sized image out of those blocks. Since objects are recognizable due to certain 

distinct features which they possess, at the feature extraction stage, these features are extracted 

from the image using feature descriptors such as histograms of oriented gradients (HOG), scale-

invariant feature transform (SIFT) and Haar-like features. Classifiers such as Adaboost, support 

vector machine (SVM) and deformable part-based model (DPM) (Zhao et al. 2019) are used to 

determine the object’s category. 

 

 

Figure 2.2: The traditional object detector basic architecture. Adopted from Xiao et al. (2020, 

p. 23731, Fig. 3). 

Traditional methods used in object detection have several pitfalls including high computational 

cost and window redundancy due to the high number of sliding windows used. In addition, due 

to the multiplicity of backgrounds, appearances and lighting conditions, manually designing a 

Figure 2.1: a) Object classification determines the category of the objects in the image; b) Object 

detection identifies the category of the objects as well as their location using bounding boxes; c) 

Semantic segmentation assigns labels of a category to the object without distinguishing between 

the object instances; d) Instance segmentation. Adopted from Xiao et al. (2020, p. 23730, Fig. 1).  
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comprehensive feature descriptor which can describe objects perfectly is an arduous task. As a 

result, little gain was obtained from 2010 to 2012 by building ensemble systems and making 

use of minor variants of methods which proved to be successful (Xiao et al. 2020; Zhao et al. 

2019). 

In recent times, deep learning techniques (Liu et al. 2020; Hinton and Salakhutdinov 2006; 

LeCun et al. 2015) have proven to be valuable for automatically learning various feature 

representations from given data. This implies that there is no need for handcrafted features. 

They have led to significant improvements in object detection, as demonstrated in Figure 2.3 

(Liu et al. 2020; Tang et al. 2017; Wu et al. 2020). 

 

Figure 2.3: A general outlook of how object detection has performed over the years: there has 

been a major increase in performance (in mean average precision) since deep learning emerged 

in 2012; a) Excelling entries’ detection results in the VOC 2007-2012 competitions; b) Results 

of the top object detection competition in ILSVRC2013-2017 (in both panels, only the training 

data which was provided is used). Adopted from Liu et al. (2020, p. 262, Fig. 3). 

Deep learning (DL) is a sub-field of machine learning, as illustrated in Figure 2.4. It makes it 

possible for computational models which possess several processing layers to imitate how the 

human brain sees and understands diverse forms of data. Thus, these models learn and represent 

data using many abstraction levels and they do this in a way that is similar to how humans 

perceive data. Deep learning can also be described as a large family of methods comprising of 

neural networks, diverse feature learning algorithms (supervised and unsupervised), and 

hierarchical probabilistic models (Voulodimos et al. 2018). 
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Figure 2.4: Deep learning as a sub-field of machine learning which is also a sub-field of artificial 

intelligence. Adopted from Patterson and Gibson (2017, p. 4, Figure 1-1). 

Artificial neural networks (ANNs) are made up of many interconnected computational nodes 

which are also referred to as neurons. These neurons work together to learn from input data to 

improve the final output. ANNs typically have a basic structure which comprise an input layer, 

hidden layers and an output layer, as shown in Figure 2.5. 

 

Figure 2.5: The basic structure of an Artificial Neural Network. Adopted from O’Shea and Nash 

(2015, p. 2, Fig. 1). 

The input layer takes in the input which is often multidimensional in nature. It then assigns the 

input to the hidden layers. The hidden layers proceed to assign weights based on decisions made 

in the previous layer. These weights are randomly changed, and the final output is observed to 

understand how a change affects it – whether it deteriorates or improves. This process is what 

is commonly known as learning. The concept of deep learning in neural networks comes in 

when many hidden layers are stacked together (O'Shea and Nash 2015). In the field of deep 
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learning, the convolutional neural network (CNN) is the most representative model (Zhao et al. 

2019).  

2.6.1 Convolutional Neural Networks 

Convolutional neural networks are comparable to traditional artificial neural networks in that 

they are made up of interconnected neurons. The arrangement of these neurons is acyclic 

(Aloysius and Geetha 2017). In addition, similar to traditional ANNs, CNNs improve their final 

output through learning (O'Shea and Nash 2015). The major difference between CNNs and 

traditional neural networks is that a neuron in the hidden layer of the CNN is connected to some 

of the neurons in the previous layer, rather than to all the neurons in the previous layer. As a 

result of this sparse connectivity, CNNs are capable of learning features in a comprehensive 

manner. Its deep architecture enables features to be extracted in a hierarchy, with different 

layers performing different functions. For example, the trained filters for the first layers can be 

visualized as colour blobs or a set of edges (e.g., lines). The trained filters for the second layers 

extract lower-level features in a combined manner, for instance, a combination of several lines 

to express shapes (Brownlee 2019; Aloysius and Geetha 2017). The subsequent layer may learn 

object parts while the final layers’ filters determine what the objects are (Aloysius and Geetha 

2017).  

Deep CNNs have a basic architecture which comprise of a series of convolutional, pooling, 

non-linear activation, and fully connected (FC) layers (Wu et al. 2020). The basic architecture 

of a convolutional neural network is demonstrated in Figure 2.6. 

 

Figure 2.6: The basic architecture of a convolutional neural network demonstrating a sequence 

of alternating convolutional and pooling layers. The receptive regions are shown using 

highlighted small boxes. The connections illustrate how features are learned implicitly. 

Adopted from Aloysius and Geetha (2017, p. 0589, Fig. 1). 

2.6.1.1 Convolutional Layer 

The convolutional layer is the most basic unit of the convolutional neural network where the 

majority of the computation is done (Aloysius and Geetha 2017). This layer convolves over a 

received input image by n x n kernels in order to create a feature map. The convolution process 

usually involves the computation of the dot product of associated receptive region elements and 

filter (Wu et al. 2020; Brownlee 2019), as demonstrated in Figure 2.7. This implies that for 

each element, the input and filter are multiplied, and the result is summed up. As a result, a 

single value is obtained. Due to the single value derived at the end of this operation, it is often 

referred to as “scalar product”. The feature map which is generated can be seen as an image 
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with multiple channels. Each channel in the image symbolizes different information within the 

image. Pixels in the feature map, also known as neuron, are individually connected to a subset 

of neurons from the preceding map (Wu et al. 2020). This sparse connectivity between the 

neurons of adjacent layers represents a hyperparameter known as receptive field. Several 

hyperparameters are responsible for regulating the output volume. These include the depth (to 

regulate how many filters a layer has), stride (responsible for the movement of filters), and zero-

padding (regulates the output’s spatial size) (Aloysius and Geetha 2017).  

 

Figure 2.7: The process of convolution on an RGB image. Adopted from Aloysius and Geetha 

(2017, p. 0589, Fig. 2). 

2.6.1.2 Pooling Layer 

The basic architecture of a CNN is made up of alternating convolutional and pooling layers as 

well as additional functions. This results in a reduction of the spatial dimension of the activation 

maps while preserving all information. The number of parameters in the neural network is also 

kept to a minimum. This offers the advantages of a general reduction of computational 

complexity and regulation of the problem of overfitting. Average pooling and max pooling are 

examples of common pooling operations. The process of max pooling is shown in Figure 2.8. 

 

Figure 2.8: The process of max pooling. Adopted from Aloysius and Geetha (2017, p. 0589, 

Fig. 3). 
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2.6.1.3 Fully Connected Layer 

The fully connected (FC) layer is so called because the neurons included in this layer are 

connected fully to the neurons in the preceding layer. In this layer, high level reasoning is 

carried out. 

2.6.1.4 Loss Layer 

This is the last FC layer. It is responsible for computing the error or loss resulting from 

inconsistencies between the desired output and the actual output. Softmax loss is a widely used 

loss function which predicts one class out of N mutually exclusive classes. 

2.6.1.5 Activation Functions 

Activation functions take an input (often a single number) and perform some mathematical 

operation on the received input. This implies that the operation of the activation function 

influences the output. There are many activation functions including sigmoid, Tanh, ReLU and 

LeakyReLU (Aloysius and Geetha 2017). 

2.6.2 Deep Learning-based Object Detection: Algorithms 

Presently, the deep learning algorithms that are used for object detection tasks, can be 

categorized into the following two options: 

• Two-stage detectors: For example, Region-based CNN (R-CNN) and its revised 

versions (Wu et al. 2020) 

• One-stage detectors: For example, You Only Look Once (YOLO) and its revised 

versions (Wu et al. 2020) 

The two-stage detectors operate by first generating a random set of region proposals and 

extracting features from the generated region proposals. The goal of this first stage is to generate 

region proposals which have a high recall. This ensures that all the objects present in the image 

are contained within at least one of the generated region proposals.  This initial step is then 

followed by a classification of each of the region proposals by a classifier (a deep learning-

based model). The model may be classified using a predefined class label or classified as a 

background. The model also improves the initial localization recommendations made by the 

proposal generator. The processes undergone by the two-stage detectors imply that a single 

image may be viewed multiple times and hence increase the time required to complete the task 

at hand (Wu et al. 2020). Figure 2.9 illustrates how the R-CNN, which is a two-stage detector 

operates. 
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Figure 2.9: The operation principle of an R-CNN framework. Adopted from Tang et al. (2017, 

p. 725, figure 3). 

On the other hand, one-stage detectors can predict the categories of objects at every location of 

the feature maps in a single step. These detectors do not generate region proposals. Instead, they 

treat all the positions on a given image as prospective objects. Therefore, all the regions of 

interest (ROI) are classified individually. The ROI may be a background or a target object. 

From its operations, it implies that the image is only viewed once, and the categorical prediction 

of objects is done in that single step. This makes them a more time-efficient option. In addition, 

they are known to achieve real time detection. 

While the two-stage detectors do not achieve real-time detection like the one-stage detectors, 

they are widely known to have better detection performance. On public benchmarks, the two-

stage detectors record state-of-the-art results (Wu et al. 2020). Nonetheless, for this study, the 

one-stage detectors are preferred due to their time-efficiency and real time detection application 

which is suitable for videos. 

There are several one-stage detectors including YOLO, its variants, Single Shot MultiBox 

Detector (SSD) and RetinaNet. The first one-stage detector, YOLO, was proposed in 2015 by 

Redmon et al., (2016). YOLO outperforms the two-stage detectors in terms of speed. It has a 

VOC07 mean Average Precision (mAP) of 52.7% and runs at 155 fps. Its enhanced version has 

a VOC07 mAP of 63.4%, VOC12mAP of 57.9% and runs at 45 fps. As its name implies, YOLO 

applies one neural network to the whole image. The image is then divided into regions. 

Bounding boxes and probabilities are predicted for each region. These are carried out 

simultaneously by the network, as demonstrated in Figure 2.10. The improved versions of 

YOLO, as proposed by R. Joseph (Redmon and Farhadi 2017; Redmon and Farhadi 2018) are 

known as YOLOv2 and YOLOv3. These versions improve detection accuracy while 

maintaining an extremely high detection speed. Although YOLO outperformed the two-stage 

detectors, its localization accuracy is lower compared to the two-stage detectors. However, 

YOLOv2 and v3, as well as the SSD, give more attention to this problem (Zou et al. 2019). Due 

to Joseph Redmon’s (Redmon and Farhadi 2018) dissatisfaction with the military application 

of his open-source algorithm as well as privacy concerns, he chose to discontinue computer 

vision (CV) research. Alexey Bochkovskiy and a team from Ultralytics LLC proposed 

YOLOv4 and YOLOv5 respectively. Alexey’s work has received an official approval from the 

original author of YOLO (Yang et al. 2020). YOLOv4 is said to improve YOLOv3’s 

performance. It increases its Average Precision (AP) by 10% and FPS (frame per second) by 

12% (Bochkovskiy et al. 2020). Although YOLOv5 has not received an official approval from 

the original author of YOLO, its usefulness remains unaffected. When compared with other 
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YOLO versions especially YOLOv4, YOLOv5 achieves 140 FPS while YOLOv4 achieves 

only 50 FPS on Tesla P100 rapid detection. Moreover, with a size of 27 MB, YOLOv5 proves 

to be smaller than YOLOv4 which uses Darknet architecture and has a size of 244 MB. In terms 

of accuracy, there is no difference between YOLOv4 and YOLOv5. Both have the same 

accuracy. Furthermore, YOLOv5 has taken on YOLOv4’s advantages, namely adding SPP-

Net, making changes to the SOTA method, and introducing modern data enhancement 

approaches such as mosaic training (Yang et al. 2020). 

SSD made its debut as the second one-stage detector in 2015. It was proposed by W. Liu et al. 

SSD is fast and has an advantage in terms of detection accuracy. Using some benchmark 

metrics, SSD is said to run at 59 fps and has a VOC07 mAP of 76.8%, VOC12 mAP of 74.9%, 

COCO mAP (at .5) of 45.5% and mAP[.5, .95] = 26.8% (Zou et al. 2019). However, from Table 

2.1, YOLOv3 performs better than the variants of the SSD on most of the metrics including the 

APS metric. On the AP50 metric, YOLOv3 is comparable to the alternative models shown 

(Redmon and Farhadi, 2018).  

 

 

Figure 2.10: The operation of the YOLO model. Adopted from Redmon et al. (2016, p. 780, 

Figure 2). 
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Table 2.1: Comparison of selected two-stage methods including Faster R-CNN, and one-stage 

methods including YOLOv3, SSD, and RetinaNet. Adopted from Redmon and Farhadi (2018, 

p. 3, Table 3). 

 

RetinaNet is another popular one-stage detector which was introduced by T.-Y. Lin et al. in 

2017. With the introduction and adoption of a new loss function known as “focal loss”, the 

detectors were made to focus more on the examples that were misclassified during training. 

This makes it possible for the one-stage detector to achieve accuracies that are comparable to 

that of the two-stage detectors, while still running at very high detection speed (Zou et al. 2019). 

As demonstrated in Table 2.1, RetinaNet has a higher AP compared to the other models. 

However, when the inference speed is taken into consideration, YOLOv3 appears to offer a 

good trade-off between accuracy and detection speed compared to RetinaNet, as illustrated in 

Figure 2.11. On a Titan X, YOLOv3 runs in 51 ms and achieves 57.9 mAP50 while RetinaNet 

runs at a speed of 198 ms and achieves 57.5 mAP50. Therefore, the two models achieve similar 

performance but YOLOv3 is 3.8x faster (Redmon and Farhadi, 2018). 

 

Figure 2.11: The trade-off between accuracy and speed for selected models including YOLOv3 

and RetinaNet. Adopted from Redmon and Farhadi (2018, p. 4, Figure 3). 
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2.6.3 Deep Learning Frameworks for CNN Implementation 

A myriad of deep learning frameworks exists and can be used for implementing deep learning 

models. Out of these, Google’s Tensorflow14 is considered to be the fastest growing framework. 

Tensorflow (Abadi et al. 2016) is an open-source machine learning platform where high 

computational tasks can be performed using data flow graphs. The edges in the graphs represent 

tensors. With this, load can be distributed between several nodes (GPUs or CPUs) using a single 

API. This framework has been available to the public since November 2015. The second fastest 

growing DL framework is Keras.15 It is also open-source and is written in Python. Keras can 

run with Theano or Tensorflow as backend. Theano (The Theano Development Team et al. 

2016) is an alternative open-source framework written in Python.16 It can be used for numerical 

computations and makes the writing of DL models simpler. Caffe (Jia et al. 2014),17 another 

DL framework, was developed by Berkeley Vision and Learning Center (BVLC). Caffe has 

already existing Python-based deep learning examples. Furthermore, there is a framework 

known as Torch. It places more importance on GPUs and has an underlying C implementation. 

Torch, developed by Torch, and Matlab’s matconvnet are popular deep learning frameworks 

(Aloysius and Geetha 2017). Moreover, PyTorch18 is a python library that was developed based 

on Torch. It was designed such that a balance between speed and ease of use can be achieved. 

Since it leverages python, a programming language that many data scientists are familiar with, 

it is simple to use. In addition, it makes use of GPU acceleration. Thus, it performs fast. It does 

so while not compromising on performance, making it comparable to the fastest DL frameworks 

(Paszke et al. 2019).  

2.6.4 CNN Training Using Transfer Learning 

The process of training a deep convolutional neural network is laborious because of non-convex 

loss functions. When large training datasets are to be used for the deep learning task, then high 

computing speed (possible with GPUs) will be required. As a result, CNNs are seldom trained 

from the ground up. With the right network initialization, convergence can be sped up. If a 

significant weight initialization is desired or a small training dataset is available, then transfer 

learning can be employed. In transfer learning, only the last few layers or the classifier of the 

neural network undergo retraining. This aids in the reduction of the overall training time. A 

good model can be obtained if parameters such as the number of iterations, learning rate, batch 

size and the amount of training and testing samples are carefully chosen (Aloysius and Geetha 

2017). 

 

 

14 https://www.tensorflow.org/ 
15 https://keras.io/ 
16 https://pypi.org/project/Theano/ 
17 https://caffe.berkeleyvision.org/ 
18 https://pytorch.org/ 
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2.7 Best Practice Examples 

2.7.1 Non-ML-based Detection of Physical Urban Blight 

Many governments, decision makers, urban planners, researchers, health workers and other 

institutions are interested in collecting data about urban blight for varied purposes. These may 

include utilising urban blight data as the basis for important decisions about budget allocations, 

planning of urban areas, testing of hypothesis or theories such as the Broken Windows Theory, 

determining the impact of urban blight on the health of people within a community as well as 

to guide policing efforts. Owing to its relevance in diverse fields, several approaches have been 

adopted to collect urban blight related data.  

In the attempt to fight urban blight, many cities previously resorted to occasional ground-level 

inspections and arbitrary detection of blight by city officials within their borders. The ground-

level inspections involve a city official performing rounds within assigned locations and taking 

note of locations where blight indicators are observed. Some blighted properties may also be 

arbitrarily spotted by the city officials in other locations and noted accordingly (Pough and Wan 

2007).  

Methods which have been adopted previously by researchers to assess the level of disorder in 

a public place include the Systematic Social Observation (SSO) method and the self-report 

approach. With regards to the SSO method, Sampson and Raudenbush (1999) employed 

analogue videos to collect data about physical (e.g., broken windows, boarded windows, 

graffiti, etc.) and social disorder indicators (e.g., public harassment, open solicitation 

prostitution, etc.). These indicators could be systematically observed and extracted from the 

video recordings. However, the collected data cannot be readily integrated into a GIS software 

for further spatial analysis. This is due to the absence of a link between the images and 

coordinates. The spatial video technology provides an improvement in this area since it makes 

use of Global Positioning System (GPS) sensors. This allows both the spatial and temporal 

aspects to be captured easily. The data can therefore be integrated in a GIS software for further 

visualization and analysis (Mills et al. 2010; Curtis et al. 2013a).  

Varying self-report approaches - residents’ providing information pertaining to their 

neighbourhood - have also been used on a wide scale.  One self-report approach involves the 

collection of individual perceptions about fear of crime and safety in public places from a 

sample of residents who are deemed as reliable (Marco et al. 2017; Stratmann 2019). Due to 

the subjectivity of such data, an index known as the “Ross-Mirowksy neighbourhood disorder 

scale” is used in the data collection process. This index comprises of indicators which cover 

physical and social disorder. The selected residents evaluate pre-defined statements regarding 

disorder in their neighbourhood using this index. For increased objectivity, the collected data 

is compared to more objective measures such as census tracts which may include information 

about poverty, population density and crime rates (Ross and Mirowsky 2001; Stratmann 2019) 

This approach poses a risk for the research staff since they are required to be present in areas 

where crime is prevalent and to engage in conversations with total strangers. Additionally, it 

has not proven to be time-efficient (Stratmann 2019; Stratmann et al. 2020). 

Another self-report approach adopted by some cities over the years includes the collection of 

data from residents via 311 calls. Since residents are more likely to encounter blight indicators 
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during their day-to day-activities, cities have resorted to leveraging on calls and complaints 

from residents in a neighbourhood. With the advent of technology and the increased use of 

smartphones, more cities are encouraging residents to actively participate in the provision of 

blight data through crowdsourcing applications. Residents can therefore send photographs and 

communicate their impressions of housing blight via these applications within the speed of 

light. Nonetheless, the quality of such data is a major issue for consideration. A typical use case 

is seen in Detroit’s blight tracking initiative. This initiative comprises of citizens sending 

photographs and personal impressions of housing blight through the ‘Blexting’ app, an activity 

which has come to be known as “blexting” in Detroit, USA. Subsequently, the crowdsourced 

data is cleaned and put into a standard format by data analysts. The standardized data is then 

combined with other data such as data from fire departments and code violations. This is done 

to provide a different perspective which may prove useful to understanding the occurrence of 

blight in the city of Detroit (Pough and Wan 2007). 

2.7.1.1 State of-the-art Methods to Detect Urban Blight 

A recent study involving the use of Google Street View (GSV) to remotely conduct systematic 

observation has proved to be cheaper, safer, and scalable. This serves as an alternative approach 

to the use of analogue videos for systematic observations as conducted by Sampson and 

Raudenbush (1999). GSV is easily accessible and provides high resolution 360° images of a 

myriad of locations worldwide. Nonetheless, there are limitations with regards to the stability 

and flexibility of the temporal components of the images (Curtis et al. 2013b; Marco et al. 

2017). 

A relatively novel approach involving Spatial Video Acquisition System (SVAS) was 

employed to collect urban blight data within selected neighbourhoods in Baton Rouge, USA. 

The SVAS, also known as spatial videos, enabled spatio-temporal data to be collected at a single 

instance. GPS sensors were linked to the spatial video to ensure that the geographical 

information of a recorded location was appropriately assigned to each recording frame. Each 

recording frame also had a timestamp. The spatial videos were shown to be a cost-effective and 

reliable approach to collecting exhaustive and standardized urban blight data. The combination 

of both the spatial and temporal aspects in the spatial videos, made the integration of the 

collected data into a GIS program relatively simpler (Stratmann 2019; Stratmann et al. 2020). 

The spatial video offers a myriad of benefits compared to other methods. In addition to the 

above-mentioned advantages, the utilization of spatial videos reduces the time spent by research 

staff gathering data in the field.  When contrasted with Google Street View, the spatial video 

technology offers researchers the opportunity to control the data collection and utilize the 

acquired data in a more flexible manner (Curtis et al. 2015).  

To carry out further analysis on the collected data, the spatial videos were watched and paused 

each time an urban blight indicator was observed. The indicators were determined based on a 

pre-defined requirements catalogue. Subsequently, the location at which the urban blight 

indicator was identified was then digitized using a GIS program. This required an intensive 

effort and a lot of time on the part of the researcher. This manual detection and classification 

process also introduced subjectivity into the data (Stratmann 2019; Stratmann et al. 2020).  

Urban blight is a phenomenon which has affected over 10,000 homes in various cities. 

Considering the high presence of urban blight over widespread geographical locations, it is 
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advisable to reduce the time, resources as well as the effort required in detecting urban blight 

(Pough and Wan 2007). Therefore, to reap the benefits offered by spatial videos while cutting 

down on the extraction of urban blight locations from the spatial videos, it is necessary to 

automate the detection and classification of urban blight from spatial videos. Machine Learning 

(ML) offers automation possibilities which can be leveraged on to easily detect and classify 

urban blight indicators from spatial videos. This will enable researchers who are interested in 

conducting urban blight related studies to easily access details of urban blight within their area 

of choice and to carry out further analysis with ease and in a time-efficient manner. 

2.7.2 ML-based Detection of Physical Urban Blight 

Some researchers have sought to apply ML to automatically detect urban blight, thereby 

reducing the human interventions required. Some studies have shown that ML can be applied 

in the automatic detection of urban blight as well as in predicting the risk of urban blight. 

A number of cities have resorted to collecting urban blight data via 311 calls. Athens et al. 

(2020) assessed how data from the 311 call system could be used to display urban blight at fine-

grained geographies within various periods of time. They applied natural language processing 

(NLP), an ML technique, to develop an algorithm which can detect and classify 311 data as 

urban blight-related calls, as well as to investigate the distribution of these calls across New 

York City. In addition, they allowed a group of people called ‘raters’ to manually categorize 

the 311 calls. Each call was assigned one of the pre-defined categories including social 

conditions, air quality, deserted properties, sanitary conditions, sidewalk maintenance and 

building safety. To test for the accuracy of their algorithm, they compared the categorization 

results of the NLP algorithm with that of the manual categorization. It was observed that both 

results were consistent with each other.  

Reyes et al. (2016) proposed a predictive approach to enable city officials to conduct city 

inspections in a prioritised manner. Rather than carrying out inspections at locations which did 

not have urgent need of such inspections, the city officials desired to maximize the inspections 

carried out. Using a combination of geographical and historical data of the City of Cincinnnati 

in the USA, an ML model was developed and trained to provide recommendations of properties 

at risk of urban blight by means of a ranked list of all such properties. This led to more targeted 

and prioritised inspections which in turn reduced the time and cost required for the inspections. 

2.7.3 Other Related Work: Object Detection 

Urban blight related studies are not very common. Therefore, it is worth selecting and taking a 

look at individual physical urban blight indicators to have an overview of research directions 

for the selected indicators. A typical example of physical urban blight indicator which has been 

tackled in various studies is litter. 

The methods used to monitor garbage and waste demand intensive human effort. To support 

smart city development and initiatives, Carolis et al. (2020) developed YOLO TrashNet – a 

YOLOv3 model that was trained to detect waste in video streams. By applying YOLO TrashNet 

to the video streams, the model could identify any waste around garbage dumpsters or bins. 

This helped to determine localities that required cleaning or not. Good prediction speed and 

accuracy results were achieved, indicating that the model could successfully perform the 
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desired detection task. Ping Ping et al. (2020) also developed a deep learning model, Faster R-

CNN, to analyse street imagery to automatically detect, classify and analyse various categories 

of litter including tree branches, leaves, bottles etc. The Faster R-CNN model was discovered 

to be effective and showed a strong potential in smart city applications. Nevertheless, both 

studies were not applied to very small objects. The question regarding how ML models can be 

used to detect small objects effectively remains. There is therefore an interest to explore the use 

of a deep learning model to detect small objects in videos. 

Due to the possibility of capturing fine-scale and contextual data using spatial video technology, 

spatial videos are useful for identifying health risks. Nonetheless, their sustainability and 

scalability are limited as a result of the intensive effort needed to convert the spatial video 

frames into maps. Ajayakumar et al. (2021) applied YOLOv3 to spatial videos collected from 

Haiti. This was done to identify potential health risks automatically. The results showed that 

ML can be used in conjunction with spatial videos to identify environmental risks that have a 

correlation with common health problem. The test sites in focus were informal settlements. To 

develop a more sustainable method of creating maps from spatial videos and updating them, it 

is necessary to first identify the risk features automatically. Subsequently, the locations of the 

identified risk features can be mapped. However, Ajayakumar et al. (2021) focused on 

automatically extracting the risk features from spatial videos in their study. Therefore, there is 

still a need to explore how maps showing the locations of automatically identified features can 

be created from spatially encoded video frames. 

 

In conclusion, the Broken Windows Theory and the urban blight concept have been discussed 

in this chapter. Varying perspectives of the BWT were also reviewed. Although there were 

divergent views, it was realized that there was a correlation between crime and urban blight, 

although the full extent of this relationship had not yet been determined. The spatial video 

technology was also introduced and was seen to be useful for collecting fine-scale data within 

their spatial context. A limitation of the spatial videos was identified as being the laborious 

effort and intensive time required to convert the spatially encoded video frames into maps. To 

reap the full benefits of the spatial video, automating the mapping process appeared to be a 

promising direction. Since ML offers automation capabilities, the concepts of ML and object 

detection using deep learning were introduced. The state-of-the-art tools required in the object 

detection process including frame extraction software and tools used for labelling data were 

also reviewed. Furthermore, deep learning algorithms were assessed to identify a suitable one 

for this study. From these concepts and reviews, it was concluded that ML may be applicable 

to spatial videos to detect physical urban blight in the spatial videos. VLC Media Player was 

identified as a good alternative for extracting many frames from the spatial videos due to its 

ease of use and the availability of other media player functions relevant for pre-processing the 

video (e.g., trimming the video due to file size limits). For the purposes of mapping the 

identified physical urban blight, it may be necessary to identify the video frames used in terms 

of their timestamp. Therefore, the Frame Selector software will be suitable for this since the 

frames are automatically named by the video name and timestamp of the extracted video frame. 

Labelbox was also identified as the best alternative for labelling the extracted frames to make 

up the training, validation and test datasets. From the assessments made, Labelbox showed to 

have a more comprehensive quality control mechanism compared to other competitors such as 
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Amazon Sagemaker GroundTruth, SuperAnnotate and Clarifai. YOLOv3 was seen to be a 

suitable option out of the other deep learning algorithms such as Faster R-CNN due to its good 

trade-off between accuracy and speed. Moreover, some best practice examples were reviewed. 

From these reviews, applying ML to detect urban blight as well as small objects, and convert 

spatially encoded video frames into maps were identified as potential research directions. 

Therefore, this study may prove to be valuable in answering questions in the identified research 

directions. 
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3 Methodology 

This chapter presents the conceptual workflow to be used in this study. The spatial video data 

collection, data preparation and architecture of the selected model are described. The concepts 

of training, validating, testing and evaluating deep learning models are also explained in general 

terms. Furthermore, evaluation metrics that are frequently used to evaluate object detection 

models are introduced. The chapter concludes with a brief description of how the detected 

physical urban blight indicators will be visualized in a GIS environment. 

3.1 General Project Workflow  

 

 

Figure 3.1: The Project Workflow 
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Figure 3.1 represents the conceptual workflow for this research project. The project will begin 

with gaining access to the spatial videos collected by Stratmann (2019). Once the data is 

obtained, some of the spatial videos will be selected. Video frames will be extracted from these 

video frames, and some will be selected depending on how suitable they are. Subsequently, the 

selected video frames will be labeled and split into training, validation and test data. The model 

model will then be trained, validated and tested on these datasets. While the training and 

validation datasets will be made available to the model during its learning phase, the test dataset 

will be kept away from the model until the testing phase. The model will then be evaluated 

using evaluation metrics that are widely accepted for object detection tasks. Finally, a map of 

showing the physical urban blight indicator locations will be generated. Further details of the 

afore-mentioned steps are provided in the next sub-sections. 

 

3.2 Spatial Video Data Collection 

In this study, secondary data will be used. The data were collected during the research 

conducted in (Stratmann 2019; Ristea et al. 2021; Stratmann et al. 2020). The data collection 

process will be described in this section since it is an important part of this research. 

The spatial video technology makes it possible to collect video data which include the 

geographical location on a frame-by-frame basis. Therefore, the identified indicators that are 

relevant for physical urban blight studies in Baton Rouge are collected using the spatial video 

technology. These indicators are summarized in the criteria catalogue in Table 3.1. In the 

criteria catalogue, a distinction is made between environmental or infrastructural blight, and 

property blight. 
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Table 3.1: The criteria catalogue for the physical urban blight indicators. Adopted from 

Stratmann (2019, pp. 16-17, Table 2). 
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The physical urban blight data were recorded using five extreme sport cameras. The cameras 

were from the Contour +2 brand. They were mounted on the windshield and windows using 

suction window clamps. The setup was done as follows: one camera on the inside windshield 

(Figure 3.2c), two cameras on the right and on the left inside windows (Figure 3.2a, b). Multiple 

cameras were used to ensure that a backup was available if one of the cameras failed to record 

properly or if a GPS connection was lost.  

Due to the high crime level in the selected neighbourhoods in Baton Rouge, the cameras were 

mounted inside the vehicle for an unobtrusive data collection. By connecting GPS sensors to 

the Contour +2 cameras, the geographical location of each recorded video frame was obtained. 

The camera’s battery lasted for a duration of approximately two hours while in power mode. 

This can be extended by connecting the SVAS setup to the car’s charger (Figure 3.2d).  

Factors such as the weather condition and the vehicle speed were taken into consideration to 

ensure high data quality. Therefore, the data were only collected in good weather conditions 

where there was no precipitation. In addition, the drives were conducted during the daytime for 

increased visibility. An average speed of 26.29 km was used during the drives. High speed was 

avoided because of its potential impact on the quality of the video. As a result, all the streets of 

the selected neighbourhoods were covered, with the exception of highways. Over a period of 8 
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days, a total of 383.84 km was driven during the data collection. This was achieved in 14 hours 

and 36 minutes. Table 3.2 contains the details of the distance covered, how long the data 

collection process lasted (duration) and the dates on which the data collection was done. 

 

 

Figure 3.2: Spatial video equipment instalment illustration a) two cameras on the inside window 

on the right, b) two cameras placed on the inside window on the left, c) camera fixed on the 

inside windshield, d) charging equipment. Adopted from (Stratmann 2019; Ristea et al. 2021) 
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Table 3.2: Details of the distance, duration and dates of the spatial video data collection. 

Adopted from Stratmann (2019, p. 44, Table 4). 

 

 

3.3 Data Preparation 

In supervised learning, the algorithms are provided with labeled examples from which they can 

learn from. Therefore, for the selected deep learning model to detect physical urban blight 

indicators in spatial videos, the model must be provided with labeled examples, i.e., examples 

of physical urban blight indicators in spatial videos.  

Convolutional Neural Networks are known to perform better when provided with large, labeled 

datasets to learn from, as compared to small amounts of data. This also applies to computer 

vision tasks including object detection (Pathak et al. 2018).  

Apart from the amount of data used, the quality of the dataset also plays a big role in the 

accuracy of the CNN’s output (Zhou et al. 2017). This implies that garbage in, garbage out. 

Hence, it is important to prepare the data before they are passed to the model. This is often 

known as pre-processing.  

3.3.1 Data Pre-processing 

The pre-processing steps to be performed for any data is determined by the kind of data under 

consideration. In this research, spatial videos will be used. Spatial videos are like other videos. 

They mainly vary from them due to their capability to capture the geographic information as 
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part of the videos captured. Therefore, the pre-processing steps carried out for other videos may 

be applicable to the spatial videos. 

Video streams may often be characterized by factors such as motion blur and video defocus. 

These lead to varying quality across the video frames (Zhu et al. 2020). There may also be 

varying lighting conditions across the video frames. All these factors need to be taken into 

consideration and handled appropriately for improved results. Depending on the intensity of 

destruction arising from motion blur, video defocus etc., some video frames may be removed 

from or included in a dataset. 

In this study, the intended approach to be used for training the deep learning model is by using 

extracted video frames. Thus, individual video frames have to be extracted using a suitable 

frame extraction tool. Since a large dataset is more suitable for CNNs, VLC Media Player will 

be used to automatically extract the video frames from selected videos. VLC may also be 

helpful to edit certain parameters of the video such as the video size to suit the requirements of 

diverse platforms. Frame Selector, an alternative frame extraction software, will be used for 

extracting the test images from selected videos. This is because during the mapping process, it 

may be vital to distinguish between the various test video frames being used. After the frame 

extraction process, suitable video frames which cover a variety of scenarios (e.g., different 

lighting conditions) will be selected. Subsequently, the frames will be labeled using bounding 

boxes in Labelbox. This will involve drawing bounding boxes around physical urban blight 

indicators and assigning the appropriate class to each object. By using the bounding boxes, the 

spatial extent of the object within the video frames can be determined. Thus, enabling the object 

to be classified and localized. The resulting annotation file will then be converted into the 

appropriate format for the selected model. 

For this research, the dataset will be split into training, validation and test datasets. The training 

dataset will be used to show the model some examples of physical urban blight indicators. The 

validation dataset will be used to determine if it will be necessary to tune the model’s parameters 

any further. This depends on how well the model identifies physical urban blight indicators on 

the validation dataset. On the other hand, the test dataset will be used to assess how well the 

model identifies physical urban blight in spatial video frames that it has never seen. 

3.4 Choice of Object Detection Model 

YOLOv3 will be used in this study. YOLOv3 is known to outperform two-stage detectors such 

as R-CNN in terms of speed. Although the two-stage detectors were previously known to 

produce better localization accuracy, subsequent versions of YOLO namely, YOLOv2 and 

YOLOv3, give more attention to this challenge. YOLOv3 also performs better than other one-

stage detectors including variants of Single Shot MultiBox Detector (SSD) (Zou et al. 2019). It 

also offers a better trade-off between accuracy and detection speed compared to RetinaNet. In 

addition, it is 3.8x faster than RetinaNet (Redmon and Farhadi 2018). 

Within the scope of this study, YOLOv3 is preferred due to its ability to detect multiple objects 

of different classes, the good trade-off between detection speed and accuracy that it offers, its 

ability to detect objects in real-time, and its successful application to detect objects in spatial 

videos (Ajayakumar et al. 2021). 
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3.4.1 Detailed Architecture of the Selected Model 

Darknet-53 is the backbone network that YOLOv3 uses for its feature extraction. An input 

image is split into an NxN grid, where N is usually 7. For each grid cell, five bounding boxes 

are created, together with an “objectness” score per bounding box. A number of class 

probabilities are also output. If K represents the total number of classes, then the number of 

values produced by each grid cell is 25 + K (5 x 4 + 5+K). Only bounding boxes whose center 

lies in a specific grid cell are predicted (Ajayakumar et al. 2021). Further details of the YOLOv3 

architecture can be found in the original paper by Redmon and Farhadi (2018) .  

3.5 Training and Validation of the Object Detector 

After the data preparation stage, the YOLOv3 model will be trained to identify litter. This will 

be carried out using the training dataset containing the labeled video frames. At this point, the 

goal is to fit the model on the training dataset.  

There are some parameters such as number of iterations, batch size, learning rate etc., that need 

to be carefully selected to get a good model. These parameters are known as hyperparameters 

and are not determined by the model. They are rather user-specified inputs. The tuning of the 

model’s parameters is done at the validation stage. Using the validation dataset, the model can 

be assessed and appropriate parameter values for the model will be determined (Aloysius and 

Geetha 2017; Mohri et al. 2018). Different parameter settings will lead to different models. 

Hence, at this stage, the model whose parameter gives the best results will be selected as the 

model for this study. 

The loss function, a function that measures how different a predicted label is from a true label 

(Mohri et al. 2018), will be used to determine the progress of the model and to avoid underfitting 

or overfitting the model. Underfitting occurs when a model’s bias is very high. In such a case, 

the model fails to adequately capture complex patterns that exist in the given data. The 

underfitted model’s failure to capture the complex patterns in the data, results in increased 

training and validation errors (Minhas 2021). The model can therefore be described as too 

simplified to learn the problem well. Underfitting often occurs when there is insufficient data 

leading to too little learning (Brownlee 2018). In the case of overfitting, the model is too 

complex, i.e., it learns intricate details of the training dataset including the noise in the data. As 

a result, although the model may perform well on the training dataset, it will not be able to 

generalise well to data it has never seen before. The goal is to achieve a good model that learns 

well from the training dataset and can generalise well to data it has never seen before (Brownlee 

2018; Minhas 2021).  

3.6 Testing of the Object Detector 

At the testing phase, the test dataset will be used to evaluate the model’s performance. The test 

data will be kept separate from the training and validation datasets. This implies that it will not 

be made available to the model during the learning stage. After training and validating the 

model, the model will then be required to make predictions based on the features it has learnt 

from the labeled examples. These predictions will be made on video frames that it has never 

seen before.  
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The model’s performance will be evaluated by comparing the predicted labels to the ground 

truth labels of the test dataset. It must be noted that the ground truth labels of the test dataset 

will not be provided to the model. Several evaluation metrics exist for this evaluation process. 

These will be discussed in the following sub-section. 

3.7 Evaluation of the Object Detector’s Performance 

Evaluation metrics used to evaluate the performance of an object detection algorithm include 

Recall, Precision, Intersection over Union (IoU), Frame Rate, Precision-Recall curve (PR 

curve) etc. These metrics are very much related to one another. The IoU measures how much 

the predicted bounding box overlaps with the ground truth bounding box. The closer the match, 

the higher the IoU value. Using the IoU metric, it is possible to determine correct predictions 

and wrong predictions, i.e., false positives generated. Precision measures how many of positive 

detections made by the model are true. The recall focuses on the how many positive detections 

have been made out of all the ground truth data. The Average Precision (AP) is the derived 

statistical mean of the Precision (Xiao et al. 2020). The AP is often described as the area under 

the PR-curve. Hence using the AP, it is possible to summarize the PR-curve as one value. This 

value is the mean of all the derived precisions. The precision-recall curve shows the point at 

which the recall and precision are both high. This is usually the best point. However, some PR-

curves may be too complex to easily identify the best point. In such cases, the F1 score can be 

used to evaluate the balance between recall and precision. Higher F1 values suggest that both 

the recall and precision are high while lower values suggest a higher level of imbalance between 

the recall and precision (Gad 2020).  

3.8 Visualization of the Detected Physical Urban Blight 

The final outcome of this study is to obtain a map showing the locations of the predicted 

physical urban blight indicators as a point pattern within a GIS environment. This should be 

done in such a way that further spatial analysis to determine an appropriate threshold for 

classifying an area as blighted can be carried out. 

To map the identified physical urban blight indicators automatically, the indicators will be 

linked to the GPS coordinates of the video frames in which they occur. The result will be stored 

in a file in a format that can be used to display the GPS locations in a GIS environment such as 

ArcMap (e.g., CSV). After the locations are displayed, a threshold for physical urban blight 

will be determined using ArcMap. 
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4 Implementation 

This chapter provides details about the study area, i.e., its geography and demography. 

Additional information about the selection of test areas within the entire study area is provided. 

This is followed by a description of the selection process of a physical urban blight indicator to 

be used within this study. The selected physical blight indicator is defined within the scope of 

this project. Moreover, the data preparation, model training and validation, testing, model 

performance evaluation processes are described into detail. The chapter ends with a detailed 

explanation about how the predicted litter objects are visualized on a map as point patterns. 

4.1 Study Area 

The area in focus for this research is Baton Rouge, highlighted in red in Figure 4.1. The City of 

Baton Rouge is the capital of Louisiana in the United States. Baton Rouge is listed among the 

four cities located in the East Baton Rouge Parish (EBRP). The other cities in the EBRP are 

Baker, Central and Zachary (Stratmann 2019; Ristea et al. 2021). 

 

Figure 4.1: The four cities located in the East Baton Rouge Parish and their geographic 

boundaries. Adopted from Stratmann (2019, p.31, Figure 9) 

There are 58 neighbourhoods in the city of Baton Rouge, with a total area of 123.84 km2. Per 

the 2010 census data, there are officially 229,422 inhabitants living in Baton Rouge. As per the 

US Census data from July 2018, the estimated number of inhabitants was 221, 599. 
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Based on the Uniform Crime Reporting (UCR) Program conducted by the FBI, Baton Rouge is 

categorized as one of the cities in the US where violence is highest (Stratmann 2019). The UCR 

program is dedicated to reporting crime data of the US and ranks the reported crime data for 

various cities or states in the US. From the kernel density map in Figure 4.2, crime incidents in 

Baton Rouge appear to be the highest (red colour) in the northern and middle areas of the city, 

and lowest (blue colour) in the southern part. Different crime types including burglary, 

narcotics, assault, robbery, battery, theft, homicide, firearm, vice, criminal damage to property, 

juvenile and sexual assault are considered.  

 

Figure 4.2: Kernel density map showing crime densities throughout the city of Baton Rouge. 

Adopted from Stratmann (2019, p. 34, Figure 11). 
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Although physical urban blight indicators as described in the criteria catalogue are relevant for 

studying physical urban blight, the presence of an indicator (e.g., broken windows) on one street 

does not imply that the whole area has physical urban blight. Also, crime locations are not 

distributed uniformly. Therefore, to determine the variation of physical urban blight and crime 

in one neighbourhood, census block groups were selected. 

Neighbourhoods in Baton Rouge were selected based on the crime density, i.e., the total number 

of crime incidents divided by the area of the selected neighbourhoods in km2. In total, five 

neighbourhoods that fall within Baton Rouge’s city limits were selected. Using quantile 

classification, the crime density was classified into five classes ranging from very low crime to 

very high crime. Other factors that were considered for the neighbourhood selection include the 

following: absence of highways and lakes, connectivity between different parts of the selected 

areas, similar street length and ease of movement through the selected areas by automobile. In 

addition, to ensure that blighted areas were present in the selected sites within the study area, a 

density map showing urban data from 311 reports were analysed.  

The selected neighbourhoods include Fairfields, MidCity, Southside, Pollard/Woodchase and 

University Acres/Woodstone. From Figure 4.3, it can be observed that Fairfields has a very 

high crime density. It is followed by MidCity with a high crime density. Southside is seen to 

have a moderate crime density. Pollard/Woodchase and University Acres/Woodstone have a 

low crime density and very low crime density, respectively. The selected neighbourhoods 

comprise a total of 22 census block groups (Stratmann 2019; Stratmann et al. 2020). 
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Figure 4.3: Neighbourhood selection based on the crime density in the city of Baton Rouge. 

Adopted from Stratmann (2019, p. 36, Figure 12). 

4.1.1 Site Selection 

The major criteria for selecting a few neighbourhoods and certain areas within the five 

neighbourhoods was the spatial distribution of physical urban blight locations. Neighbourhoods 

with a high concentration of physical urban blight locations were selected. This was done to 

obtain a dataset with a large sample size and as many varying conditions as possible to enhance 

the training of the object detection model. 

The spatial distribution of physical urban blight locations within the five initially selected 

neighbourhoods, is illustrated in Figure 4.4. The red points represent locations where property 

blight was identified while the green points represent environmental/infrastructural blight. The 

majority of the points are concentrated in the northern part of Baton Rouge, where Fairfields 

and MidCity are located. Therefore, Fairfields and MidCity were selected as the main sites for 

the object detection process. 
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Furthermore, sub-areas within Fairfields and MidCity were chosen depending on whether there 

was a high density of both property and environmental/infrastructural blight. Figure 4.5 

visualizes the density of property blight and that of environmental/infrastructural blight 

separately. The density map was obtained by dividing the number of blight occurrences 

associated with the specific blight type (property or environmental) by the area. Thus, 

comparable maps were obtained since the blight indicators were not normalized with varying 

variables (number of buildings, street length) (Stratmann 2019). It can be observed that the area 

which records the highest blight densities in Figure 4.5a form a part of the areas that record the 

highest densities in Figure 4.5b. Consequently, those census tracts, as shown in Figure 4.6 were 

selected as the sub-areas to be focused on throughout the project. The sub-areas selected in 

Fairfields are indicated in a light purple colour while light blue is used to represent MidCity. 

 

Figure 4.4: The spatial distribution of locations where property blight and 

environmental/infrastructural blight are present within the five selected neighbourhoods in 

Baton Rouge. Adopted from Stratmann (2019, p.52, Figure 23). 
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Figure 4.5: a. Property blight density; b. Environmental/Infrastructural blight density. Adopted 

from Stratmann (2019, p. 62, Figure 33).  

It is worth noting that later in this study, an additional site – a sub-area in Southside - was 

randomly selected and added for the purposes of testing the object detector on an entirely new 

video stream covering a completely new neighbourhood.  
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Figure 4.6: The selected sub-areas in Fairfields and MidCity to be used in this study 

4.2 Physical Urban Blight Indicator Selection 

The defined criteria catalogue illustrated in Table 3.1 contains 16 different types of physical 

urban blight indicators. Owing to the limited timeframe for this study, a single type of physical 

urban blight indicator is selected as the main indicator throughout the study. The selection was 

done based on the following factors:  

• The prevalence of the physical urban blight indicator as compared to the other blight 

indicators; 
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• The ease of identification of the physical urban blight indicator by a human being.  

In terms of the prevalence of physical urban blight indicators, Stratmann (2019) identified a 

total of 1,717 physical urban blight locations within the five neighbourhoods. 1,182 points 

(68.4% of the study area) were identified as being environmental/infrastructural blight while 

property blight accounted for 538 points (31.6%) These values did not take into consideration 

the occurrence of multiple blight indicators at a single location. For example, one location can 

be characterised by a boarded door, litter and broken windows. When the aforementioned factor 

was taken into consideration, 880 property blight indicators were identified in the study area 

while 1,498 points were attributed to environmental/infrastructural blight. The frequency of the 

different property blight indicators and the environmental/infrastructural blight indicators are 

illustrated in Figure 4.7 and Figure 4.8, respectively. Litter, which had 798 points, was 

identified to be the most frequently occurring blight indicator. 

 

Figure 4.7: The frequency of individual property blight indicators. Adopted from Stratmann 

(2019, p. 50, Figure 19). 
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Figure 4.8: The frequency of different environmental/infrastructural blight indicators. Adopted 

from Stratmann (2019, p. 50, Figure 20).  

The other factor which was considered to determine the physical urban blight indicator to be 

selected was how easy it is for humans to detect the blight indicator from the spatial videos. In 

the attempt to further explore the mapping of physical urban blight indicators using the 

traditional method, the digitizing process described in (Stratmann 2019) was replicated. 

Therefore, videos for the corresponding test sites (Fairfields, Southside, University 

Acres/Woodstone) were randomly selected. The videos were watched and each time a blight 

indicator was spotted, a point was placed at the corresponding blight location on a map layer in 

ArcMap 10.6.1.  

During the process, it was observed that the indicators which occurred at the foreground of the 

video frames were the most easily identifiable. These were mostly 

environmental/infrastructural blight indicators, of which litter stood out. Litter was closely 

followed by unkempt areas, overgrown vegetation and illegal dumping. The latter three could 

almost be observed at the same time and were therefore assigned to a similar rank. It was also 

observed that property blight became more obvious in the absence of any 

environmental/infrastructural, except in the case of bright-coloured buildings. While viewing 

the video, it was also noted that some blight indicators such as broken windows were the most 

difficult to spot. They were however more noticeable if they were of a higher intensity, i.e., if 

they occurred in higher numbers. 

Based on the experience with this manual detection and mapping of physical urban blight, a 

ranked list was developed as follows: 1) Litter; 2) Unkempt area/overgrown vegetation/illegal 

dumping; 3) Structural integrity/boarded windows; 4) Building graffiti/building overgrowth; 5) 

Broken windows/doors, no windows/door. 
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To add to this, the opinion of Judith Stratmann, an expert in detecting physical urban blight 

from spatial videos, was sought via email correspondence. She mentioned abandoned property, 

building graffiti and illegal dumping, litter and blocked windows as easy to detect. On the other 

hand, she stated broken windows as being one of the hardest indicators to detect. 

Litter was therefore selected as the main physical urban blight indicator for this research. This 

is because it was identified as the most prevalent or frequently occurring physical urban blight 

indicator and was also easily identifiable in the spatial videos. 

4.3 Litter Definition and Scope 

It is commonplace for the terms ‘litter’ and ‘illegal dumping’ to be confused or have different 

meaning to different people. Hence, it is important for these two physical urban blight indicators 

to be distinguished from each other in a way that brings clarity to the work being carried out in 

this study.  

Several definitions exist for litter and illegal dumping. For instance, litter may be used to 

describe pieces of trash that are discarded onto the ground, rather than being placed in a garbage 

bag (Weisburd et al. 2010). A waste commission known as iLiveHere was established as an 

environmental outreach program for Scott County in Minnesota, United States. They describe 

litter as little amounts of trash pieces that are thrown carelessly onto the ground. They further 

add that although the act of littering may involve dropping small pieces of trash at a time, litter 

tends to pile up very quickly over time. In differentiating between litter and illegal dumping, 

the latter was described as a large amount of garbage that is dumped rather than being disposed 

of properly (iLiveHere 2021).  Maghelal et al. (2013) describes illegal dumping as trash piles, 

i.e., waste material (e.g., construction materials, tyres, asbestos) that is unlawfully deposited. 

From the definitions provided, some key factors for differentiating between litter and illegal 

dumping are identified. These include the volume/size of the trash item, the type of waste, how 

the trash pieces are packaged (in a disposable garbage bag or not) and the appearance/dispersion 

of the trash items. Trash items are classified as litter, if they have a small volume or size and 

are disposed of onto the ground in a careless manner. Such objects are usually not placed in a 

garbage disposable bag. They are also relatively lighter and may include food packages, drink 

cans and bottles. Illegal dumping, on the other hand, denotes heavier and bulkier objects such 

as tyres, mattresses, construction materials and discarded furniture. It may also include 

disposable garbage bags containing trash pieces that are dumped at undesignated places. With 

regards to appearance, litter often appears scattered and randomly dispersed while items which 

are illegally dumped often mostly appear in heaps. Nonetheless, continuous littering may 

generate piles of litter if the act is not controlled. Table 4.1 summarizes the differences between 

litter and illegal dumping based on the identified factors: volume/size, type of waste, packaging 

of the waste and appearance/dispersion of the trash items. 
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Table 4.1 Differences between litter and illegal dumping 

Differentiating 

Factor 

Litter Illegal Dumping 

Volume/ Size Lower/Smaller Higher/Larger 

Type of Waste Relatively lighter objects, such as food 

packages, drink cans, bottles, etc. 

Heavier and bulkier 

objects, such as tyres, 

mattresses, discarded 

furniture and 

construction materials, 

disposable garbage bags 

containing waste 

Appearance/Dispersion Mostly scattered or randomly 

dispersed 

Exception: Piles of litter may be 

generated due to continuous littering 

over time 

Heaped/piled 

Packaging  Trash pieces are dropped onto the 

ground as they are, rather than into a 

garbage bag/ bin 

Trash may be deposited 

into a disposable garbage 

bag 

 

Within the scope of this project, litter is defined as artificial objects which are discarded or 

disposed of carelessly onto the ground in private areas (e.g., in a person’s garden) or in public 

areas (e.g., on the street, on vacant lots), rather than being placed within designated garbage 

bins. These artificial objects may include drinking cans, food wrappers, bottles etc., and are 

usually lighter and smaller than illegally dumped objects such as tyres. Due to the random 

nature in which littering is done, litter may often appear randomly dispersed or scattered. 

However, it may also appear in piles in cases where it has not been controlled.  

It should be noted that naturally occurring objects such as tree branches and leaves are not 

considered as litter within the scope of this project. 

 

4.4 Data Preparation 

As previously discussed, some sub-areas in Fairfields and Mid-City were selected to be the 

focus areas in this study. This was because the selected areas had a high density of property 

blight and environmental/infrastructural blight.  

To identify the corresponding spatial videos for the selected areas, they were viewed in the 

Camera Player software. In Camera Player, the uploaded spatial videos can be viewed alongside 

their GPS tracks, as illustrated in Figure 4.9. By viewing the GPS tracks of the collected spatial 

videos, the appropriate ones were identified. In total 3 videos were selected out of all the spatial 

videos. These represented the selected areas in Fairfields and MidCity. A random video of an 

area in Southside was added to the dataset. This was due to the need to test the model on an 

entirely new spatial video from a completely different neighbourhood. In addition, an additional 

video from Fairfields was also included in the dataset because of the high presence of large 
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piles of litter and large individual litter objects. This addition was necessary in order to obtain 

a well-balanced dataset that covers a wide span of scenarios in the spatial videos. Therefore, 

the total number of videos used in this study is 5. The videos have a frame rate of 25 frame per 

second and a resolution of 1920 × 1080. This high resolution ensured that the spatial videos 

were of good quality. Apart from the video from Southside, video frames from the other 

selected videos were used during training, validation and testing. Extracted frames from the 

selected Southside video were only used during the testing stage. The selected videos, their 

lengths and the purpose for which they were used in this study are described in Table 4.2. 

 

Figure 4.9: An uploaded spatial video (middle) and its GPS track (upper right) shown in the 

Camera Player software 

 

Table 4.2: The neighbourhood in Baton Rouge, US, video length and size, and the purpose of 

the selected videos 

Video Neighbourhood Video 

length 

Size  Purpose in the 

study 

Fairfields_2.1_left  

 

Fairfields 

00:37:23 3.66 GB Training and 

Validation only 

Fairfields_2.2_left 00:7:37 777 MB Training, Validation 

and Testing 

Fairfields_3&4_left 00:31:44 3.08 GB Training and 

Validation only 

MidCity_1_left MidCity 00:24:41 2.40 GB Training, Validation 

and Testing 

Southside_1_left Southside 00:30:40 3,04 GB Testing only 
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It must be noted that the entire data collected covered angles from the left, right and front since 

multiple cameras were used at different angles. However, for a better view of the objects in a 

video frame, the left and right recordings were the most suitable. Those from the left were 

selected for use in this study, while those from the right were watched occasionally for 

confirmation (e.g., in case of uncertainty of the class of an object). 

To further ensure high quality of the selected dataset and transform the spatial videos into the 

appropriate format for the model, some pre-processing steps were performed. These include 

extracting and selecting suitable video frames, splitting the dataset to be used in various stages 

of the model implementation and conversion of the annotation file to YOLO format. These 

steps are elaborated on in the ensuing sub-sections. 

4.4.1 Spatial Video Frame Extraction and Selection 

For video object detection, videos can be labelled in two ways. The first method involves the 

extraction of individual frames from the video. Objects in the individual video frames are then 

labelled. This approach leads to feature extraction redundancies between frames which are 

adjacent to each other. This is because there are spatial and temporal relationships between 

video frames. In addition, there may be computational inefficiencies, if features are detected in 

each image/video frame (Zhu et al. 2020). The second approach involves directly annotating 

the videos. This is done in such a way that the spatial and temporal correlations between video 

frames are preserved. Objects which appear in consecutive video frames are only labelled once. 

Their labels may however be adjusted due to changes in the angle or position.  

Considering the advantages of the second approach, it was desired to annotate the spatial videos 

as complete videos rather than as individual images/video frames. Nonetheless, some 

challenges were encountered during the upload of the spatial videos onto the selected annotation 

platform, Labelbox. Due to a file size limit of 256 MB, the videos had to be trimmed or have 

their resolutions lowered. Sample spatial videos were therefore trimmed while the resolutions 

of the remaining sample spatial videos were lowered. After several trials from different people 

including the Labelbox support team, all but one video could finally be uploaded successfully. 

Since the trimmed and lower resolution videos could both be uploaded, the trimmed was 

preferred. This is because a higher resolution is much suitable for obtaining more accurate 

results. It is not yet clear why one of the sample spatial videos could not be uploaded. Due to 

time limitations the first approach, outlined in the previous paragraph, was adopted. Labelbox 

was also maintained as the data annotation platform for the project due to the interest to ensure 

high data quality.  

In Labelbox, the individual images/video frames must already exist prior to the upload. There 

is no option to upload the video and choose between the first or second approach. Hence, it was 

necessary to include a frame extraction process. 

VLC media player and Frame Selector were used to extract the video frames from the selected 

spatial videos. VLC media player was used to automatically extract a large batch of frames 

from some of the selected videos. The extraction process was achieved using ‘Scene Filter’, 

one of the many filters available for videos within VLC. Figure 4.10 shows the parameter 

settings used in extracting the frames from the spatial video. The image format was set to jpg 

while the image width, height and filename prefix were kept at the default settings. Leaving the 
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image width and height at -1 ensured that the output images were not resized (Julie 2014). The 

resulting output images were stored in a user-specified location. The recording ratio was set to 

1 in order to capture all the video frames. The recording ratio is a parameter that informs VLC 

how often an image should be captured. For example, a recording ratio of 50 implies that every 

50th frame should be captured. Apart from the specific settings, it was necessary to ensure that 

‘Scene Video Filter’ was checked, under the list of video filters. Subsequently, the spatial 

videos were uploaded to VLC one after the other. As long as ‘Scene Video Filter’ was checked, 

the scene filter settings were applied automatically to all uploaded videos while they were being 

played. The output images were then saved to the specified folder. After the extraction of the 

selected spatial videos, ‘Scene Video Filter’ was unchecked to prevent further frame extraction 

on other videos. 

 

Figure 4.10: Parameter settings for extracting frames from videos using 'Scene Filter' in VLC 

media player 

After the frames were extracted, some of them were selected to form the training and validation 

datasets. The frames were selected based on the following criteria: lighting conditions, the type 

of property on which the litter object occurs, the type of surface on which it occurs, the 

type/shape, size and colour of the litter object as well as the concentration nature of the litter 

object. The selected spatial videos were collected under different lighting conditions. In some 

cases, it was bright and sunny while at other times, it was dark and cloudy. A spatial video 

could have a mixture of both cases. Furthermore, litter could be found on either private or public 
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property (e.g., an individual’s garden) or public property (e.g., vacant lots, on the street, etc.). 

On these varying types of property, they could also be found on grass, bare soil, on the road, 

etc. Additionally, the litter objects were of different types (and hence shapes) and varied in size; 

the objects ranged from small to large. They also had different colours with white being the 

most predominant. Moreover, there could be single instances of litter or piled up litter. 

Therefore, the dataset was selected to represent these variations. The selections were made in 

such a way that the resulting dataset would reflect as many real-life scenarios as possible. This 

was done to improve the accuracy of the model on different conditions. 

It should be noted that some video frames were affected by reflections, motion blur and tree 

shadows. The video frames that were badly affected by these were not included in the dataset. 

However, those which were not badly affected were included because in real-life scenarios, 

there will be some motion blur, reflections and tree shadows. Including these variations was 

relevant for the model’s training process and achieving good results. Furthermore, successive 

video frames containing the same objects were only selected if the objects were shown at 

different angles. Successive video frames in which objects remained unchanged were not 

included in the dataset in order to avoid redundancy.  

Although VLC media player was suitable for automatically extracting video frames to make up 

the training and validation dataset, Frame Selector was used to extract the video frames for the 

test dataset. Frame Selector, illustrated in Figure 4.11, was selected for this task mainly because 

of its naming convention of the extracted video frames. The naming convention includes the 

spatial video name and the timestamp of the video frame, and this makes it easier to distinguish 

between the video frames. This is necessary for the mapping of the identified litter locations 

using the spatial video frame GPS coordinates. Therefore, Frame Selector was used to extract 

frames from the selected videos including the Southside spatial video. The resulting frames 

were used as the test dataset. The spatial videos were uploaded to Frame Selector one by one 

and played. Each time a litter object was spotted, and the aforementioned frame selection 

criteria were met, the video frame under consideration was added by clicking on ‘Add Frame’. 

In Frame Selector, it is possible to save the frame extraction session for future work. Therefore, 

the output images were downloaded, and the session was saved. Saving the session created a 

JSON file containing information about the uploaded spatial videos and their respective frames. 

The output images/video frames were saved using the video name and the timestamp at which 

the frame occurs (in seconds).  

4.4.2 Dataset Splitting 

This research was ran two times, the first time with a small dataset of 138 video frames and the 

second time with a larger data set of 338 video frames.  The 138 video frames of the first smaller 

data set were also included in the larger data set of 338 frames.  110 frames of the first smaller 

data set were split by a 90:10 ratio into 99 frames for training and 11 for validation. This 90:10 

ratio for splitting the training and validation data is suitable for very large datasets (Kumar 

2021). Since the sample size of the litter objects was high, this was maintained as the default 

value of 90:10 as set by Muehlemann (2021) within the selected YOLOv3 model. The 

remaining 28 frames were selected for testing.  The larger data set of 338 frames was also split 

by a 90:10 ratio into 279 frames for training and 31 for validation. The same 28 frames from 

the first smaller data set that were used for testing were included as the test dataset for the 
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second larger data set. This was done to obtain comparable results and better understand the 

model’s performance after being trained and validated on different data sets. It should be noted 

that although the two datasets vary in size, another difference exists. The second larger dataset 

has more examples of large litter objects than the first smaller dataset. Details about the number 

of video frames and litter objects used during training, validation and testing are included in 

Table 4.3.  

 

Figure 4.11: Interface of the Frame Selector software 

4.4.3 Spatial Video Frames Labelling 

To create labels in Labelbox, a project setup process was completed. To begin with, data were 

uploaded onto the Labelbox platform. Then the ‘Editor’, the area in which the labeling was to 

be done, was configured. This involved defining an ontology. In the ontology, the object label 

was specified as ‘litter’ and the bounding box was selected as the annotation/ labeling method 

to be used in the project. The final step for the project setup was the enablement of quality 

assurance tools. Either benchmarks (to measure the quality of labels using a gold standard) or 

a consensus (to measure the agreement level of labelers on a dataset) could be selected. In 

addition, a review step could be put on or off to determine whether labels should be reviewed 

manually or not. The settings for these quality assurance tools were left at the default: 

benchmarks (on), consensus (off) and review step (off). 

After setting up the project, labeling could proceed. For every image/spatial video frame in the 

uploaded dataset, a bounding box was drawn to fit tightly around the identified litter objects. 

Due to the angles and shapes of some litter objects, a small section of the object’s surrounding 

was captured, as illustrated in Figure 4.12. On the contrary, some objects were either rectangular 

in shape or almost rectangular, just like the bounding boxes used. In such a case, a little space 

was left between the litter object and the bounding box’s boundaries, as shown in Figure 4.13. 

This was deemed necessary to provide the model with some context of the object’s immediate 

surrounding. Context was considered vital to achieve good results. For example, without 

context, rectangular, white litter objects may easily be mistaken for a small section of any other 

white object (e.g., a white wall, white floor etc.). Labelbox uses a queueing system for easy 
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workflows. Once labeling was completed on an image/ video frame, it was moved out of the 

queue. 

 

Figure 4.12: Sample annotations of litter objects whose shapes naturally allow a section of the 

object's surrounding area to be included. 

 

Figure 4.13: Sample annotation of a litter object where context (the object's surrounding) is 

deliberately included. 

Overall, 469 objects were labelled as litter in the first dataset which consisted of 138 spatial 

video frames. The count takes into consideration all the labeled objects in the training, 

validation and test datasets. The test dataset on its own, consisted of 28 video frames with a 

total of 135 litter objects. This test dataset was the same for the first and second dataset. 

Therefore, the first dataset constituted of 334 sample litter objects for training and validation 

only.  The overall sample size was increased from 469 to 1,141 litter objects in the second 

dataset; from the 200 additional video frames, 672 litter objects were identified. Out of the 

1,141 litter objects in the second dataset, 1,006 litter objects were reserved for the training and 

validation stages. Detailed information about the number of video frames and the number of 

litter objects used in the different stages of the model implementation for both datasets are 

described in Table 4.3. The specific videos as well as the neighbourhood names are also shown. 
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Table 4.3: Details of the datasets used in this study; the number of video frames and litter objects 

used at various stages in the study, the videos the frames were extracted from, and the 

neighbourhoods covered. 

Dataset 

name 

Machine 

Learning 

Stage 

Number 

of video 

frames 

selected 

Number of 

litter 

objects in 

the selected 

video 

frames 

 Selected videos Neighbourhood 

information  

 

 

 

Dataset 

1 

(Smaller 

dataset) 

Training 99  

334 

Fairfields_2.1_left 

Fairfields_2.1_left 

Fairfields_2.1_left 

MidCity_1_left 

Fairfields and 

MidCity 

 
Validation 11 

Testing 28 

(Test set 1 

= Test set 

2) 

135 Fairfields_2.2_left 

MidCity_1_left 

Southside_1_left 

Fairfields, 

MidCity and 

Southside 

Total 

number 

138 469  

      

 

 

 

Dataset 

2 

(Larger 

dataset) 

Training 279  

1,006 

Fairfields_2.1_left 

Fairfields_2.1_left 

Fairfields_2.1_left 

MidCity_1_left 

Fairfields and 

MidCity 

 
Validation 31 

Testing 28 

(Test set 1 

= Test set 

2) 

135 Fairfields_2.2_left 

MidCity_1_left 

Southside_1_left 

Fairfields, 

MidCity and 

Southside 

Total 

number 

338 1,141  

 

According to Muehlemann (2019), to obtain decent results, at least 100 images should be 

annotated. At least 300 images should be labeled if good results are desired and 1000 images 

for great results. The sample images used in his GitHub project mostly contain one object. Since 

videos can be described as moving images (Oxford Learner's Dictionaries 2021), the extracted 
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video frames used in this study can be likened to images. In this study, some video frames 

contain more than one litter object. Based on this premise, the labels created for the two datasets 

in this study, were deemed sufficient to achieve accurate results. 

It should be noted that labels were created for all objects that could clearly be identified as litter. 

In cases of uncertainty, the object was not labeled. This was to avoid passing wrong examples 

to the model. Furthermore, all objects in each video frame were labeled. In an initial labeling 

attempt, only objects within 2 metres of the road (in the foreground of the video frame) were 

labelled. This initial attempt led to the model identifying only litter objects in the foreground of 

the video frame. The model may have associated litter objects as objects which occur at the 

foreground of the video frame. Moreover, it was often necessary to zoom in to label some 

objects due to the small size or uncertain object boundaries. This did not influence the labels 

created since the video frames were restored to their default sizes.  

After labeling all video frames in the labeling queue, the corresponding annotation files for the 

two datasets were generated and exported in the JSON format. The JSON format was preferred 

to the CSV format because its structure makes it easy to read and understand the information 

contained in the annotation file.    

4.4.4 Conversion of Annotations to YOLO Format 

As discussed previously, YOLO is a deep neural network that can detect objects in images and 

videos in a single step. Due to the good trade-off that it offers between high-speed detections 

and accurate predictions, it is widely adopted in object detection tasks. In the next step of this 

research, YOLOv3 -the selected object detection algorithm- will be trained to detect litter 

objects in spatial videos. However, prior to this, it is necessary to ensure that the annotation 

files obtained from Labelbox are in a suitable format for the YOLOv3 model. This is because 

YOLO has its own format for annotation files. The format requires that the image name 

precedes the bounding box information, and the class label as follows: 

<image><xmin><ymin><xmax><ymax><label>. 

The bounding box information consists of the coordinates of the top (ymin) left (xmin) corner 

of the box and the bottom (ymax) right (xmax) corner. The origin of the bounding box is taken 

to be the top left corner since the bounding box is usually drawn starting from the top left corner.  

The annotation file exported from Labelbox had a different format and contained a lot more 

information than is required in the YOLO format. The format used for the bounding box 

information is as follows: 

{… “bbox”: {“top”: top_value, “left”: left_value, “height”: “height_value”, “width”: 

width_value}}. 

Therefore, it was necessary to convert the Labelbox JSON annotation file into the YOLO 

format. The conversion was done using a python script. The python script worked by getting 

all the image names and appending the corresponding bounding box information and label to 

the image name. The bounding box information was converted into the YOLO format for the 

bounding boxes using the following logic: The ‘left’ and ‘top’ values represented the ‘xmin’ 

and ‘ymin’ values, respectively. As previously discussed, the latter represent the top left corner 

of the bounding box. To derive the ‘xmax’ and ‘ymax’ values, the ‘width’ and ‘height’ for each 



 

 

60 

 

 

object was added to their corresponding ‘xmax’ and ‘ymax’ values. Furthermore, the newly 

derived information, in addition to the image names and corresponding labels were saved to a 

CSV file to complete the conversion to the YOLO format. The entire code is included in 

Appendix A. 

 

4.5 YOLOv3 Model Training and Validation 

Training CNNs from scratch with random weight initializations is rarely done. This is because 

deep CNNs have a non-convex loss function. Hence, training them is a rather tedious process. 

To obtain a meaningful weight initialization within a relatively shorter amount of time and 

hence reduce the training time, the technique of transfer learning was employed (Aloysius and 

Geetha 2017). A pre-trained YOLOv3 model developed by (Muehlemann 2021) was adopted 

in this study. It was selected because it was pre-trained on the ImageNet 1,000 dataset. This 

dataset has a wide range of categories and objects including bottles, which form a part of litter 

per the scope of this project. The model was developed using Tensorflow 2.3 and Keras 2.4 The 

entire repository is accessible via https://github.com/AntonMu/TrainYourOwnYOLO. The 

repository contains detailed information for implementing the model successfully.  

The repository was cloned to a local machine and customized to suit this study’s use case of 

detecting litter. To customize the cloned repository, its pre-existing images and annotation files 

were replaced with the ones pertaining to this project. These changes were made in the directory 

within which it was stored on the computer. The newly customized repository on the local 

machine was pushed to GitHub, a platform that supports code storage, management and version 

control. In the ‘TrainYourOwnYOLO’ project, a Colab notebook which implements the model 

already exists. Therefore, it was adapted for this project. The new, customized repository 

containing the sample video frames for this project was then cloned in Google Colaboratory. 

The YOLOv3 model was trained in Google Colab. Colab is a free, cloud-based Jupyter 

notebook, which comes with computing resources such as CPUs, GPUs and TPUs. The GPUs 

available in Colab usually include T4s, Nvidia K80s, P4s and P100s (Google 2021). Owing to 

the fact that deep learning tasks often deal with large datasets and therefore require higher 

computational power, Colab was deemed suitable for the implementation of the YOLOv3 pre-

trained model. Compared to training the model on the local machine, the training process on 

Colab is significantly sped up when the GPU is enabled.  

The training was performed for the two variations of the dataset: 

• Relatively small dataset: This dataset contains more small-sized litter objects 

compared to the larger dataset. However, the difference between the number of larger 

litter objects and small litter objects is not very significant. The dataset can therefore be 

described as more balanced than the larger dataset. 

• Larger dataset: This dataset contains more larger-sized litter objects than in the small 

dataset. On its own, the number of larger litter objects was significantly higher 

compared to the smaller litter objects. 

The training was monitored in Tensorboard. The number of epochs, i.e., the number of complete 

iterations to be made over the training data, was set at 51. The model has 252 layers. To begin 

https://github.com/AntonMu/TrainYourOwnYOLO
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with, the last few layers were trained on the respective datasets with a batch size of 32. The first 

249 layers were frozen. To fine-tune the model on the respective litter datasets, all layers were 

subsequently unfrozen. The training was done per the dataset and with a batch size of 4. Too 

many epochs may result in overfitting. Overfitting occurs when a model is overly specialized 

on a training dataset and can therefore not generalize on new datasets. To avoid overfitting, a 

call-back function called ‘EarlyStopping” was used in the pre-trained model. Early stopping 

helps to monitor a value and then stop the model from going through further epochs when no 

further improvements are observed. In this YOLOv3 model, the validation loss was the 

monitored value. However, no sign of further improvements on the first go may not always 

imply that there can be no more improvements. Therefore, a parameter within the early stopping 

call-back function known as ‘patience’ value was set at 10. Therefore, the training was only 

stopped if no further improvements were obtained after 10 more epochs.  

It should be noted that the validation process was carried out concurrently with the training 

process. In addition, model checkpoints were introduced to ensure that the model was saved 

after each epoch. This was to avoid losing any work done and to save the best model in the end. 

4.6 Testing of the Litter Detector 

The customized YOLOv3 model was tested on video frames in the test dataset. The test data 

was not made available to the model during the training and validation stages. It should also be 

noted that no annotation file was provided to the model. The model made predictions and these 

predictions along with their bounding box information, confidence scores, etc. per video frame 

were saved in a detection results csv file. 

4.7 Evaluation of the Litter Detector’s Performance 

After testing the model, its performance was evaluated by comparing the predicted labels to the 

ground-truth labels. The IoU was calculated from this comparison of the ground-truth labels to 

the predicted labels. IoU can be described as how similar a predicted bounding box is to its 

corresponding ground truth bounding box. Hence, it measures how accurately objects have been 

detected. This IoU calculation was done by taking the ratio of the intersection between the 

predicted bounding boxes and the ground truth bounding boxes, and the union of both. With a 

range from 0 to 1, IoU values that are closer to 1 denote higher accuracies. 

Other evaluation metrics were also calculated using a python script and these include Precision, 

Recall, and F-score. The Precision and Recall were calculated from the derived IoU values. 

Typically, to derive the Precision and the Recall, a threshold of value has to be defined. The 

threshold value varies. For example, the IoU threshold value in PASCAL VOC is 0.5. On the 

other hand, this value is converted to a composite value with the range [0.5, 1.0] in the MS 

COCO competition. All IoU values that are greater than the threshold value, are correct 

predictions while those less than the threshold, are wrong. From this, the statistical True 

Positives (TP), False Positives (FP), True Negatives (TN) and False Negatives (FN) are derived 

from the testing dataset. In the case of this study, the true negatives were ignored since no labels 

can be created to represent them. Also, a range of thresholds [0.0, 0.8] was used. The threshold 

was varied using values from the specified range in steps of 0.1 to observe the behaviour of the 

litter predictions. The precision was determined by calculating the ratio of true positives to the 
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combined true positives and false positives. The recall was calculated as the ratio of true 

positive to the combination of the true positive and the false negative. The F1 score was 

calculated from the derived precision and recall values using the formula: (2 * 

((precision*recall) / (precision + recall))). A python script was used for these calculations. The 

entire code is provided in Appendix B. 

It was also necessary to manually inspect the results obtained after testing to verify the 

performance of both models. This was done by manually viewing and comparing the ground 

truth labels made in a video frame to the predicted labels in that same video frame. Each time 

a predicted box was drawn around a particular litter object and a ground truth box was identified 

for that same object, it was counted as a true positive. Otherwise, it was counted as a false 

positive, that is, a box around a litter object was predicted, but no ground truth box could be 

identified. When no predictions were identified for a ground truth label, it was counted as part 

of the false negatives. The true negatives were not relevant in this study because they neither 

identified ground truth labels nor predicted labels.  

4.8 Visualization of the Predicted Litter Objects 

To automatically map the predicted litter objects, the GPS coordinates of each video frame in 

the test dataset were linked to the predicted objects. The workflow is illustrated in Figure 

4.14. 

 

Figure 4.14: Workflow for linking GPS coordinates to their corresponding video frames 

To begin with, the names of the video frames that exist in the test dataset and their 

corresponding timestamps were stored in a single CSV file. The naming convention used by 

Frame Selector to store these video frames made it possible to determine the corresponding 

timestamps for each video frame. The naming convention was as follows: ‘video path + ‘_’ + 

timestamp’. The timestamp (in seconds) represents the time at which the video frame occurs in 

the video. This is also known as the media time. For uniformity’s and simplicity’s sake, the 

naming convention was changed to a standard of ‘video name + ‘_’ + timestamp’ for all the 

video frames. The video path could also be very long and therefore made the video frame name 

very long.  
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Subsequently, the GPS log files for each of the spatial videos used in creating the test dataset 

were extracted using the Camera Player. The GPS log file contained the following information 

including the media time, GPS timestamp, GPS coordinates (latitude and longitude), elevation, 

speed, etc. However, the only fields that were of interest for this study were the media time, 

GPS timestamp, and GPS coordinates. Therefore, these fields were preserved. With the media 

time being the common attribute in both the csv file and the GPS log file, both files were joined 

together in Microsoft Excel. The media time in the csv file was searched for in the GPS log file 

and the associated GPS information was attached to the video frame name. Prior to the join, the 

media time in the GPS log file was converted from hours, minutes, and seconds (hh:mm:ss) to 

seconds. This was to make identification of a video frame’s media time within the GPS log file 

easier. For example, a media time of 337 seconds in the csv file may not be easily identified as 

00:05:37 without calculations. Therefore, the media time in the GPS log file was converted to 

seconds using Microsoft Excel’s Time Functions (Hour, Minute, and Second). The formula 

used for the conversion is as follows: ((hour (cell) * 3,600) + (minute (cell) * 60) + second 

(cell)), where cell represents the active cell in Excel containing the media time in hh:mm:ss. 

The resulting file is shown in Table 4.4.   

Table 4.4: Microsoft Excel file showing a section of a GPS log file extracted from Camera 

Player and the media time conversion from hh:mm:ss to seconds. 

 

It is worth mentioning that a GPS file showing a frame rate of 25 fps was expected. However, 

the GPS files obtained using Camera Player appeared to extract the GPS coordinates at different 

frame rates. For instance, the frame rate was 2 fps in some videos and 5 fps in others. To 

crosscheck, if all GPS information had really been captured from the spatial videos, two 

approaches were used and compared. These include: 

1. Extracting all information in a sample spatial video 

2. Extracting the GPS coordinates and timestamp information from the sample spatial 

video.  

Exiftool was used in both approaches. For the first approach, all the information contained in 

the sample spatial video was extracted using the following command: “exiftool -ee -G3 <file>”. 

The records were extracted as sub-documents. These sub-documents had the frame numbers, 
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making it possible for the tags to be related to the time in the spatial video. This also showed 

that the GPS coordinates were stored on a frame-by-frame basis. However, the number of sub-

documents and the number of frames in the sample spatial video did not match. The latter far 

exceeded the former. The former was however similar to the GPS log file that was extracted in 

the second approach. The command used to extract the GPS coordinates and timestamps is as 

follows: “exiftool -ee -p “$sampletime, $gpsdatetime, $gpslatitude, $gpslongitude” ‘<file>’ > 

output_file.csv”. The derived GPS log file was also compared to that which was obtained using 

Camera Player. The two GPS log files were similar. Their GPS recordings were made using the 

same frame rates and their resulting output files were the same when their location data were 

mapped. The Exiftool GPS log file had to be converted from degrees, minutes, seconds to 

decimal degrees to be comparable to Camera Player’s GPS log file. 

It should also be noted that Camera Player’s GPS log file had multiple variations of GPS 

locations for each media time. For example, if the GPS locations were extracted at 2 fps at a 

media time of 00:00:03, it implied that two different GPS coordinate values and GPS 

timestamps were recorded successively for 00:00:03. These variations were insignificant since 

the GPS coordinates could be located on or almost on the same parcel. Therefore, after 

searching for a media time within the GPS log file, only the first GPS coordinates were used. 

Furthermore, since the GPS signal was occasionally lost during data collection, it is possible to 

have to use the last known location of a preceding video frame. This was however not necessary 

for the selected test datasets since no video frame had a missing GPS value. 

After joining the video frame names to their corresponding GPS coordinates, it was necessary 

to combine this with the predicted objects in each video frame. The locations of the correctly 

predicted objects were to be identified based on their video frame GPS location, rather than 

their specific locations. The detection results file (in csv format) that was obtained during the 

testing phase was joined to the file containing the GPS information and the media time on the 

basis of the video frame name.  

4.8.1 Spatial Distribution of Predicted Litter Objects 

An additional field ‘number of objects per location’ was created to show how many litter objects 

were at a location. This was relevant for classifying a location as having a high number of litter 

objects. Therefore, the true positives and false positives within a video frame were manually 

counted and assigned to this newly created field. To avoid duplicate counts of the same object, 

duplicate objects in successive frames were counted only once. The resulting csv file was 

exported to ArcMap. Then the XY data were displayed as a map layer. The WGS 1984 

coordinate system was used. A base map of Baton Rouge was also included to provide some 

context. 

In ArcMap, a classification scheme was used to differentiate between varying levels of litter 

occurrences per location. This was done based on the attribute ‘number of litter objects 

detected.’ Natural breaks were used, and the number of classes was set at 3 to represent low 

intensity, medium intensity and high intensity. The corresponding ranges were 0-2, 3-6 and 7-

11 respectively. These were represented using a graduated colour ramp from green to red, where 

green represents low intensity and red represent high intensity. Low intensity implies that there 

was little to no litter at a location. Medium intensity implies a moderate amount of litter at a 

location and high intensity represents a high number of litter objects at a location. 



 

 

65 

 

 

4.8.2 Kernel Density Estimation of Litter Intensity 

To determine the litter intensity on the test dataset used in testing the models, the kernel density 

estimation map was created using CrimeStat IV. The parameters used are as follows: normal 

function, a minimum sample size of 10 with an adaptive bandwidth, cell grid size of 50 x 50 

and the use of quantiles to put the density values into 5 ranges, where red represents very high 

blight density and blue represents very low blight density.  
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5 Results and Analysis 

This chapter describes the results obtained from the ML-based litter detection process, the 

automatic mapping of detected litter objects and the classification of litter objects. The chapter 

concludes with a comparison of the traditional approach of detecting and mapping physical 

urban blight with the ML-based approach of detecting and mapping physical urban blight 

locations. 

5.1 Litter Detector Performance Evaluation 

The results achieved at various stages of the litter detection process namely: training and 

validation, testing and evaluation using standard metrics are described in the following sub-

sections. 

5.1.1 Training and Validation 

The YOLOv3 litter detector was trained and validated using 51 epochs. The training and 

validation losses were monitored in TensorBoard. During training and validation, the goal is to 

reduce the epoch loss value, which is the difference between the ground truth labels and the 

predicted labels. Lower epoch loss values imply that the predictions made are closer to the 

ground truth labels.  

5.1.1.1 Training on the relatively small dataset (Dataset 1) 

At the onset, i.e., after the first iteration with the smaller dataset (99 training samples: 11 

validation samples) using a batch size of 32 (i.e., the model was trained on 32 samples at a time, 

until all the samples had passed through it), the loss values for training and validation were 

8956.1982 and 7416.4028 respectively. After unfreezing all layers and fine-tuning the model 

on the dataset using a batch size of 4, the training and validation loss values reduced 

significantly to 20.6424 and 22.9669, respectively. This was recorded at the 87th epoch, after 

which early stopping was introduced due to no further improvements on the validation model. 

This is illustrated in Appendix C. Figure 5.1 demonstrates how the training loss (in blue) and 

the validation loss (in orange) reduce over 51 epochs.  
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Figure 5.1: Training and validation losses on the first, smaller dataset. 

5.1.1.2 Training on the large dataset (Dataset 2) 

The training was done on 279 video frames and validated on 31 samples, with a batch size of 

32. After the first epoch, the training and validation losses were 5657.1567 and 3264.6936, 

respectively. By the 75th epoch, the training and validation losses had reduced to 19.1792 and 

18.5987, respectively. At the 75th epoch, early stopping was introduced since no improvement 

were seen on the validation loss value. This is demonstrated in Appendix C. Figure 5.2 

illustrates how the training and validation losses reduce over 51 epochs. Table 5.1 summarizes 

the training and validation losses for dataset 1 and 2 and shows the final epoch number for 

training and validation. 
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Figure 5.2: Training and validation losses on the second, larger dataset 

 

Table 5.1: Summary of training and validation losses for dataset 1 and 2 and the final epoch 

number for training and validation 

  Dataset 1 Dataset 2 

Initial values Training loss 8956.1982 5657.1567 

Validation loss 7416.4028 3264.6936 

Final values Training loss 20.6424 19.1792 

Validation loss 22.9669 18.5987 

Final epoch number 87 75 

 

When comparing both data sets, the larger dataset 2 appears to have lower loss values than 

dataset 1 at all stages. This implies that the training and validation on dataset 2 yielded 

predictions that were closer to the ground truth labels than dataset 1. Furthermore, better results 

were obtained from the training and validation on dataset 2 over a fewer number of epochs 

compared to the results of dataset 1. Considering that dataset 2 is the larger dataset, the model 

can be seen to have learnt better on a larger sample size. 

5.1.2 Testing 

The respective models trained on dataset 1 (Model 1) and dataset 2 (Model 2) were tested on 

the 28 test video frames. A few of the results are compared in this section.  
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5.1.2.1 Case Study I: True negative -No litter object in video frame 

Both models were tested on a video frame where there was clearly no litter object. Both models 

did not wrongly predict a non-litter object as litter. Thus, the same result was obtained in both 

cases. They correctly identified that there was no litter object in the video frame. This is 

considered a true negative. This is demonstrated in Figure 5.3.  

 

Figure 5.3: Predictions made by models 1 and 2 (true negative) 

5.1.2.2 Case Study II: False negative -No prediction made even though there was litter 

In another scenario, both models wrongly predicted that there was no litter, even though there 

was litter. This implies that the litter object in the video frames was not detected as being litter, 

even though it is litter. This is considered as a false negative. This may be because of the 

position/angle of the litter object coupled with its small size. Both models therefore obtained 

the same result as shown in Figure 5.4.  A red arrow is used to point out the litter object in the 

video frame. Only one object is pointed out because it was clearly identified as being litter. The 

other small objects were not selected due to uncertainty about the kind of objects they are.  
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Figure 5.4: Predictions made by models 1 and 2 (false negative) 

5.1.2.3 Case Study III: False positives – Non-litter objects predicted to be litter objects 

In some video frames, objects which were clearly not litter were wrongly predicted as litter 

objects. These are considered as false positives. The models generated green bounding boxes 

around detected objects. To add to this, they predicted the class of the identified objects as litter. 

The class is shown using the green labels ‘litter’. Moreover, it also included a confidence score 

to show how likely it is for the objects to be litter. Confidence scores typically range from 0 to 

1. The higher the confidence score, the more confident the model is that the object is litter. 

Comparing Figure 5.5  and Figure 5.6, it can be observed that although both models correctly 

predict some litter objects, both also wrongly predict other objects (e.g., pavement blocks) as 

being litter. However, model 1 seems to predict more false positives than model 2 in Figure 5.5 

and Figure 5.6. The false positives are shown using red arrows in Figure 5.5 and Figure 5.6. In 

addition, the false positives are identified as having low confidence score values in both cases.  
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Figure 5.5: Predictions made by model 1 (false positive) 

 

Figure 5.6: Predictions made by model 2 (false positive) 

5.1.2.4 Case Study IV: True positives – Correctly predicting litter objects as litter 

Both models were capable of correctly identifying litter objects (true positives) in the video 

frames as shown in Figure 5.7 and Figure 5.8. They did so with varying confidence scores. In 

some cases, model 1’s predictions had higher confidence scores, whereas in other cases model 

2’s predictions had higher confidence scores. However, model 1 made more correct predictions 

on smaller objects. This may be attributed to the dataset used for training model 1, which 

included more smaller litter objects than for the training of model 2. This is illustrated in Figure 

5.7 and Figure 5.8. In this case study, the litter objects are not piled up on top of each other.  

Moreover, both models did not make predictions for some litter objects which can be identified 

by looking at the image. These often occur at the background of the video frame. This may be 
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attributed to the fact that the video frames used for training mostly had litter occurring within 

the foreground of the video frame. An insignificant number of video frames had litter occurring 

at the background of the video frame. Therefore, the model may have identified litter as being 

an object that occurs in the forefront of the video frame. 

 

Figure 5.7: Predictions made by model 1 (true positive) 

 

Figure 5.8: Predictions made by model 2 (true positive) 

However, in some cases, the model is able make correct predictions for all litter objects in the 

video frame. Figure 5.9 illustrates such a case where the model correctly predicts all the litter 

objects in a video frame.  
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Figure 5.9: Predictions made by model 1 (true positive) 

 

5.1.2.5 Case Study V: True positives – Variation of Case Study IV 

This is yet another variation of the model making correct litter predictions. In this case, large 

piles of litter are considered. From Figure 5.10 and Figure 5.11, it can be observed that when 

it comes to large litter piles, model 2 performs better. This may be attributed to the presence 

of more large litter objects in dataset 2 than in dataset 1. 

 

Figure 5.10: Predictions made by model 1 (true positive) 
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Figure 5.11: Predictions made by model 2 (true positive) 

Overall, both models can correctly identify objects in spatial video frames as being litter. Due 

to the dataset variations, model 1 and model 2 make more correct predictions for small litter 

objects and large litter objects, respectively. Both models wrongly identify a few objects as 

being litter when they are not litter. These objects include blocks and tyres. However, this is 

more predominant in model 1. 

5.1.3 Evaluation Metrics 

Table 5.2 summarizes the evaluation results for different metrics. These were obtained on the 

various threshold values used: [0.0, 0.8] in steps of 0.1. Generally, it can be observed that model 

1 performs better in the recall, while model 2 performs better in the precision. Model 2 performs 

better in precision possibly due to the larger amount of training samples provided to it. 

Therefore, it predicted fewer false positives, hence leading to a higher precision. When the F1 

score is considered, it is observed that both models perform better in 4 different F1 scores 

(highlighted in red for each model) and obtained the same results at a threshold of 0.4 

(highlighted in yellow). It can also be seen that the higher the threshold value, the more litter 

objects are ignored due to lower matches with the predicted bounding box. From inspections 

made on the individual video frames, it was realized that many litter objects may be counted as 

false negatives when they are actually litter objects simply due to low IoU values. Considering 

the nature of the litter dataset, where there are a lot of smaller objects to be detected, it was 

deemed as a better option to have no threshold, i.e., a threshold of 0. To accurately determine 

locations that are blighted by litter, it is necessary to consider all true litter occurrences. 

Moreover, both models record the highest F1 scores when the threshold is 0. High F1 scores 

indicate the best point for the model; the point at which both precision and recall record high 

values. 

A pseudo IoU-based confusion matrix was developed to better observe true positives, false 

positives, and false negatives. From Table 5.3 and Table 5.4, a similar trend was observed, 

namely that the higher the threshold, the more true positives were recorded as false negatives. 

The number of false positives was not affected by the threshold values, since these were non-
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litter objects which were wrongly predicted to be litter. They therefore had no ground truth 

labels and their numbers remained constant throughout. Nonetheless, model 2 was observed to 

have a lower number of wrong predictions compared to model 1. 

Table 5.2: Summary of evaluation metric results for models 1 and 2 

 

 

Table 5.3: IoU-based Pseudo-confusion matrix for model 1 
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Table 5.4: IoU-based Pseudo-confusion matrix for model 2 

 

Furthermore, the manual assessment of the performance of both models compared to the IoU-

based assessment at a threshold of 0 is demonstrated in Table 5.5. The results of both methods 

are almost similar when the true positives and false negatives are considered. The false positives 

report the largest differences between the two models. Model 1 has a better recall, while model 

2 has a higher precision and F1 score compared to model 1. Since model 2’s F1 score is higher 

than model 1’s, it implies that it provides a better trade-off between precision and recall. 

Furthermore, model 2’s precision far outweighs that of model 1 in the manual method and the 

IoU-based calculation at a threshold of zero. In addition, model 2 has fewer false positives in 

the manual method and the IoU-based assessment than model 1. In this study, it is desired to 

correctly identify litter locations and to reduce the event of wrongly classifying a location as 

being blighted by litter. Therefore, model 2 proves to be a better model compared to model 1. 

  

Table 5.5: Comparison of the results obtained using manual observation of the predicted litter 

objects to those obtained using the IoU at a threshold of 0. 
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5.2 Spatial Analysis of Detected Litter Objects 

The results of the automatic mapping of the litter locations as well as the results of spatial 

analysis of the mapped litter locations are described in the following sub-sections. The results 

from model 2 are used throughout this section. 

5.2.1 Visualization of Litter Locations 

The result of the automatic mapping process is shown in Figure 5.12. It can be observed that 

locations where litter was predicted were successfully displayed as point patterns on a map from 

the automatic mapping process. In addition, Table 5.6shows the resulting attribute table 

including the number of detected litter objects per video frame. It is important to note that four 

objects were identified as duplicate objects. Since duplicate litter objects were only counted 

once, the total number of objects predicted as litter (true positives and false positives) by model 

2 reduced by four. In Table 5.5, 83 true positives and 7 false positives were predicted by the 

model. Therefore, a total of 90 objects were predicted as litter by model 2. However, at this 

stage of the project, the duplicates were eliminated. As a result, only 86 litter objects were 

visualized. The attribute table in Table 5.6 shows this reduction. 

 

Figure 5.12: Automatically generated map of litter locations  



 

 

78 

 

 

Table 5.6: The resulting attribute table from the automatic mapping process including the 

number of objects detected in each video frame. 

 

 

5.2.1.1 Spatial Distribution of Litter Object Detections 

Figure 5.13 illustrates the spatial distribution of litter objects that were predicted by model 2. 

Green represents low intensity while red represents high intensity. The test dataset used does 

not represent the entire spatial video collection. Therefore, this mostly shows how identified 

litter locations can be classified in ArcMap based on the number of litter objects at the location. 

It is worth mentioning that a litter location may have more than one litter object. To classify an 

area as blighted or not, all other physical urban blight indicators must be taken into 

consideration. As a result, this visualization pertains to litter only. Although, the dataset is only 

a small section and imbalanced for each neighbourhood, it can be observed that most of the 

high intensity locations occur in the north where Fairfields and MidCity are located. The low 

intensity locations can be seen in the South where Southside is located. It is also worth 

mentioning that some points may not fall exactly in the middle of the road due to base map or 

GPS error. 
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Figure 5.13: Spatial distribution of predicted litter objects 

 

5.2.1.2 Kernel Density Estimation of Detected Litter Objects 

Figure 5.14 shows the kernel density map for the litter intensity across the selected areas. Since 

the samples being considered are close to each other, there is a polarized effect leading to 

concentric circles. Nonetheless, it can be observed that the intensity of litter in the northern area 

(where Fairfields and MidCity are) is higher than in the Southern area (where Southside is).  



 

 

80 

 

 

 

Figure 5.14: Kernel density map for litter intensity 
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6 Discussion 

In this chapter, the results obtained are interpreted, and the benefits and limitations of this study 

are discussed. The challenges encountered during the implementation are also described. 

6.1 Interpretation of Results 

The results are interpreted in light of the research questions posed at the beginning of the 

study:  

• How suitable is ML in detecting urban blight indicators? 

a. How suitable are Convolutional Neural Networks (CNN) in detecting urban blight 

indicators? 

b. What considerations are necessary in developing a requirement catalogue for 

detecting urban blight within the context of ML? 

 

In an attempt to replicate the traditional, manual approach of detecting and mapping litter, the 

manual approach was confirmed as requiring a lot of effort and time. In terms of the time 

needed, much more time was required by the author of this thesis, due to a lack of firsthand 

experience with the study areas. It was therefore observed that experience with the study area 

in question was a major factor in the manual approach. Furthermore, there was a constant need 

to refer to the criteria catalogue to determine the intensity of an identified physical urban blight 

indicator. In spite of constantly referring to it, there was still a lot of ambiguity concerning the 

intensity of some indicators. Therefore, personal discretion was used. In view of these 

drawbacks, an automatic detection and mapping approach was deemed to be very relevant. 

 

The workflow used in this study can be broken down into three major steps: The automatic 

detection of litter objects, the automatic mapping of the locations of the predicted litter objects, 

and the classification of litter locations. From the results obtained in the automatic detection of 

litter objects, it was observed that the selected CNN model, YOLOv3, was capable of accurately 

detecting litter objects in spatial videos. The model was seen to have a better performance when 

trained with a large dataset. Therefore, CNNs are suitable for detecting litter, which is one of 

the physical urban blight indicators. This therefore implies that ML is suitable for this task. 

More specifically, deep learning, which is a subset of ML is more suitable for object detection 

tasks.  

 

Furthermore, to develop a requirement catalogue within the context of ML, it is necessary to 

consider that a variety of scenarios could occur. For instance, some video frames may contain 

no litter object or just one litter object. Other video frames may have multiple litter objects. 

These multiple litter objects may either be piled or not piled up. In the case of multiple litter 

objects which are not piled up, the individual litter objects may also occur at different positions 

or at different scales. Therefore, it may be useful to factor these different scenarios in the 

development of an ML-based criteria catalogue. Although sub-classes of litter objects were not 
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considered in this study, from experience with the spatial videos, it was also gathered that 

multiple litter objects can be of different types. For examples, some may be paper, bottles etc. 

 

The following paragraphs address questions pertaining to how well the models were trained 

and how more litter examples will affect the models, possible reasons why the models mostly 

detected objects at the forefront of the video frames as well as potential reasons why the models 

could not detect some objects.  

 

Model training is generally affected by different factors including the quality of the data used. 

In this study, high quality data was used. The spatial videos had a resolution of 1920 x 1080. In 

addition, during the labeling process, high data quality was further ensured by only labeling 

litter objects that could be clearly identified as being litter. Ambiguous objects were not labeled. 

Moreover, the training dataset contained a variety of real-life scenarios that were observed in 

the spatial videos. Therefore, the models can be said to have been trained quite well. 

Nonetheless, involving other experts in the labeling process may improve the training of the 

models used in this study. By having other experts labeling or reviewing the created labels, the 

data quality may be improved and the issue of subjectivity in the training data may reduce. In 

addition, collecting a dataset in which background objects are very clear may also greatly lead 

to better trained models since more examples of litter objects occurring in the background will 

be provided to the models. 

 

From the results obtained by model 1 and 2, it was observed that model 2 generally performed 

better due to more examples in its dataset. This led to it making fewer false positive predictions 

than model 1. This shows that more examples can help the model to improve its learning of 

what litter is. Therefore, more examples may lead to even better results. 

 

Furthermore, the models mostly detected litter objects at the forefront of the video frames due 

to the training dataset used. In most of the selected video frames, litter mostly occurred at the 

forefront of the video frame. In other cases, it occurred at the background of the video frame. 

However, the latter occurrence was insignificant compared to the former. This is because the 

former far outnumbered the latter scenario. Moreover, most litter objects that occurred at the 

background could not be seen clearly and were therefore not labeled. This also affected the 

number of background litter object samples that were provided to the models. Therefore, the 

models may have learnt litter to be an object that usually occurs at the forefront of a video 

frame. 

 

In terms of the failure of model 1 and 2 to detect some litter objects, it was observed that this 

usually happened for very small litter objects. While some small objects were detected by the 

models, others were not. As a result, the small size of the litter objects may be a factor that leads 

to some objects not being detected. Nonetheless, it is not entirely clear from this study as to 

why some litter objects were detected while others were not detected.  
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6.2 Benefits 

6.2.1 Comparative Study: Traditional vs ML-based Approach 

Comparing the traditional approach to the ML-based approach, the ML-based approach offers 

the advantage of fast detection and mapping of detected litter locations.  

In addition, the implemented model can readily be tested on other spatial videos collected 

during the data collection process. The results will be made available within a short time. On 

the other hand, the traditional approach requires that the same laborious and time-intensive 

process be followed.  

Moreover, as afore mentioned, experience with the study area was identified as having a large 

impact on the ease of the traditional process, as well as on the time taken to complete the 

process. On the other hand, experience with the study area does not greatly impact the ML-

based approach. While it may be an advantage to properly classify litter objects, especially if 

various litter types are to be detected, the model is not greatly affected. 

6.2.2 Benefits to Stakeholders 

The outcome of this study has several benefits for different stakeholders including local 

governments, decision makers, urban planners, real-estate workers and researchers in diverse 

fields including criminology, disaster management, health, and graffiti research. 

Governments who are interested in fighting urban blight can now assess urban blight in their 

cities/districts/states more quickly. Rather than relying on occasional ground-level inspections 

and other methods which are not time-efficient and require more resources, this study provides 

a more time-efficient and cheaper approach for identifying urban blight. 

Moreover, decision makers and urban planners who are interested in assessing urban blight at 

a location in order to make important decisions about budget allocations, planning of urban 

areas etc., can also benefit from this study. They can also assess urban blight at a location more 

quickly. This may help to speed up their decision-making processes and support them to make 

good decisions since relevant and relatively accurate information about urban blight at a 

selected location can be accessed more quickly. Real-estate agents can also benefit since such 

this study can help to quickly assess urban blight in an area and make decisions on how to make 

their sales.  

This study can also enhance the work of researchers in diverse fields. Researchers who are 

interested in testing hypothesis or theories such as the Broken Windows Theory can do so more 

easily. To add to this, the possibility to quickly assess urban blight in a location can help health 

researchers who are interested in determining the effect of urban blight on people’s health. 

Furthermore, by extending this study to other physical urban blight indicators such as structural 

integrity, broken windows and graffiti, the impact of a disaster on building structures can easily 

be determined. To add to this, the work of researchers who are interested in graffiti research is 

enhanced. 
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6.3 Challenges/Limitations 

In the quest to implement the YOLOv3 pre-trained model, several errors were encountered. 

These include: ‘Module 'tensorflow' has no attribute 'get_default_graph’’, ‘Importerror: 

cannot import name ‘multi_gpu_model’, and ‘ImportError: cannot import name 'get_config' 

from 'tensorflow.python.eager.context' (/usr/local/lib/python3.7/dist-

packages/tensorflow/python/eager/context.py)’. The discrepancies between different versions 

of keras and tensorflow was identified as a possible reason. The errors were solved by 

changing from ‘keras’ to ‘tensorflow.keras’. This was coupled with installing the 

requirements file in the model’s repository as part of the model implementation steps in 

Colab. Figure 6.1 summarizes the attempted solutions. The solution that worked is 

highlighted in green while those that failed are highlighted in red. 

 

 

Figure 6.1: Attempted solutions for encountered model implementation errors 

There are several limitations to this study. The model currently works on only extracted video 

frames, rather than on a whole video. However, it may be applied to videos. Further tests are 

required to determine how to successfully do this. Furthermore, the general category ‘litter’ is 

considered rather than specific types of litter (e.g., paper, food package). In addition, litter is 

used as the main physical urban blight indicator in the study. Hence, to derive a complete urban 

blight concept, the workflow must be tested on the other blight indicators, as well. To add to 

this, the litter locations are (video) ‘frame-based’ locations rather than the specific location of 

each litter instance. Moreover, the ground-truth labels created were not evaluated by other 

experts, as well. This implies that some subjectivity may be introduced into the model at the 

data labeling stage. 

 



 

 

85 

 

 

7 Conclusion 

This study presented a workflow to automatically detect physical urban blight in spatial videos, 

map the detected physical urban blight indicators, and classify the locations where these 

indicators occur. Physical urban blight indicators were the focus of this study. More 

specifically, litter was selected as the main physical urban blight indicator in this study. 

Secondary data was used in this study. The data covered five neighbourhoods in Baton Rouge 

namely Fairfields, MidCity, Southside, Pollard/Woodchase and University Acres. The data 

collection was done using the spatial video technology, which allows for fine-contextual data 

to be obtained. GPS sensors were linked to the cameras used and as a result, the GPS 

information of a location within a video frame could be obtained. For the purposes of this study, 

Fairfields, MidCity and Southside were selected as the main study areas. The first two 

neighbourhoods were selected because of the high density of physical urban blight in those 

areas while Southside was added for additional model testing purposes. Specific sub-areas 

within Fairfields and MidCity were selected based on whether there was a high presence of 

both property and environmental/infrastructural blight. The corresponding spatial videos of the 

selected sub-areas were identified and used in this study. 

To automatically detect litter in spatial videos, it was necessary to make use of an object 

detection algorithm. The YOLOv3 model was selected due to its capability of detecting objects 

in videos including spatial videos. In addition, compared to other object detection models such 

as RetinaNet, it offered a better trade-off between accuracy and detection speed. To achieve a 

meaningful weight initialization faster, a pre-trained YOLOv3 model was adopted in this study.  

For the YOLOv3 model to detect litter in the spatial videos, the model was first provided with 

examples of litter during the training and validation stage. These examples were created by 

extracting video frames from the selected spatial videos, selecting suitable video frames, 

labeling the litter objects in the video frames by drawing a bounding box around the identified 

litter objects, and then converting the resulting annotation file to the appropriate YOLO format. 

The training and validation dataset were split by a 90:10 ratio. After training and validating the 

model, the model was tested on video frames which it had not seen before. The predictions 

made by the model were then evaluated using evaluation metrics such as the Intersection over 

Union, Precision, Recall and F1-score. The evaluation was done at different thresholds [0.0, 

0.8] in steps of 0.1. However, a threshold of 0.0 was identified to be optimum for this study due 

to the varying nature and small sizes of the litter objects. 

It is worth mentioning that the research was ran two times; the first time with a small dataset of 

138 video frames (469 litter objects) and the second time with a larger data set of 338 video 

frames (1,141 litter objects).  The 138 video frames of the first smaller data set were also 

included in the larger data set of 338 frames. The same test video frames were used in the two 

rans of this research. Since the datasets vary, two different models - models 1 and 2 - were 

obtained.  

At the training and validation stage, model 2 recorded lower training and validation losses 

compared to model 1. The results from the testing of both models, showed that both models 

could detect litter objects in the video frames with confidence scores as high as 0.95. In some 
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cases, the confidence scores were as low as 0.30. However, lower confidence scores were 

mostly observed for some small litter objects and false positives. To add to this, model 2 made 

fewer false positive predictions compared to model 1. Since it was desired to reduce the number 

of false positives in this study and avoid wrongly classifying a location as blighted, model 2 

was selected as the better model.  

The predictions made by model 2 were used in the automatic mapping and location 

classification process. The predicted litter objects were linked to their corresponding GPS 

coordinates. These predicted litter objects were then visualized as points on a map layer within 

a GIS program. Locations where litter objects were predicted were classified as having either a 

low, medium or high intensity of litter. This was done based on the number of litter objects at 

each location. 

When compared to the traditional approach of detecting and mapping physical urban blight, the 

ML-based method was observed to be faster. Therefore, the ML-based approach was identified 

as a time-efficient approach. Furthermore, the implemented ML-based approach can readily be 

extended to other videos collected during the data collection process without demanding a lot 

of effort. The traditional approach on the other hand is time-intensive and laborious. 

This study has some limitations. The model currently works on only extracted video frames, 

rather than on a whole video. Furthermore, the general category ‘litter’ is considered rather than 

specific types of litter (e.g., paper, food package). In addition, litter is used as the main physical 

urban blight indicator in the study. Hence, to derive a complete urban blight concept, the 

workflow must be tested on the other blight indicators, as well. To add to this, the litter locations 

are (video) ‘frame-based’ locations rather than the specific location of each litter instance. 

Moreover, the ground-truth labels created were not evaluated by other experts, as well. This 

implies that some subjectivity may be introduced into the model at the data labeling stage. 
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8 Future Work 

This chapter describes possible future research directions that may be explored in future studies. 

Further tests may be performed to assess how the model can be tested directly on spatial videos. 

In this study, extracted video frames were labeled and then used for training, validating and 

testing the model. This resulted in duplicates which were accounted for prior to the automatic 

process. Nonetheless, it would be interesting to explore how directly labeled videos impact the 

model’s performance. It would also be valuable to test the workflow on spatial videos of other 

areas. 

In addition, the identified workflow may be tested on the other physical urban blight indicators. 

Considerations for each physical urban blight indicator will be relevant for obtaining a model 

that works well for all the blight indicators. This is because the physical urban blight indicators 

vary. For example, one blight indicator may occur at different scales (e.g., close to the road, far 

away from the road) and in different positions. Moreover, different physical urban blight 

indicators also vary in terms of size. For example, litter objects are much smaller than objects 

that are considered under the physical urban blight indicator ‘illegal dumping’. Due to this vast 

variation, it is assumed that the selected model may not perform in equal measure on all the 

physical urban blight indicators. In such a case, it may be useful to explore how an approach 

such as ensemble learning can be used to improve the results. In ensemble learning, several 

models are trained for a problem and then combined to improve the results obtained (Rocca 

2019). 

Since the YOLOv3 model could successfully detect objects in the spatial videos, this study may 

also be applicable in disaster efforts. For example, detecting structural damage of houses after 

an earthquake. Other areas which may be explored include detecting potholes on a street from 

a video footage collected from a drone flying above the street surface.  

Furthermore, the data quality may be improved using a combination of the following 

approaches in Labelbox: labeling of the litter objects by a number of experts and making use of 

the quality assurance tools provided in Labelbox (review of labels, defining benchmarks, 

consensus).  

To add to this, it will be helpful to explore how to extract frames while preserving the exif. 

Moreover, the identification of specific litter classes may prove to be a valuable step due to 

smart city implementations and the like. 

It is worth mentioning that the software used in this study are all open source. Therefore, this 

approach may be a much cheaper option for local governments and academic researchers due 

to their financial budget constraints. 
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Appendix A.  Python Code to Convert Labelbox Annotation File 

to YOLO Format  

The following figure shows the python code that was used to convert the Labelbox annotation 

file to the appropriate YOLO format. 
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Appendix B. Python Code to Calculate Evaluation Metrics 

The following figures show the python code used to identify the corresponding ground truth 

and predicted bounding boxes, and calculate the following evaluation metrics: IoU, Precision, 

Recall and F1-score. The various codes are connected although each image starts numbering 

from 1.  
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Appendix C. Training and Validation Losses 

The following are training and validation results on dataset 1 and dataset 2. They show the 

initial training and validation loss values at the beginning of training and at the end of training, 

as well as the epoch at which early stopping is introduced. The epoch being considered, and the 

corresponding loss values are highlighted in red. The point at which early stopping is introduced 

is highlighted in green. 

1. Training and validation results on dataset 1 

 

 

 

 

 

 

2. Training and validation results on dataset 2 
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