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1 Timeline
Research on the topic "Existence of solutions to evolution equations related to p-
elastic energies" was conducted under supervision of Prof. Armin Schikorra on site
at the University of Pittsburgh from January 5th until March 23rd 2020. However,
the actual duration of this research project exceeds the duration of the stay, which
will be discussed in the following.

In a preliminary phase, before the arrival at the University of Pittsburgh, several
preparations were completed. This includes preparatory meetings with Prof. Simon
Blatt, supervisor at the University of Salzburg, as well as the study of literature
related to fractional versions of elastic energies, in particular so called tangent-point
energies, regularity theory and gradient flows, i.a. [SvdM12, BR15, Man02, MM12].

The main phase of the research project took place at the University of Pittsburgh. In
the beginning of the stay, discussions with the local supervisor Prof. Armin Schikorra
led to the extraction of the core research question and the main hypothesis was
formed. The latter roughly states higher regularity of critical points for scale-invariant
tangent-point energies. This result is an intriguing novelty, as it was completely out
of reach up to now, and several conclusions can be drawn from that, especially for the
non-scale-invariant case. Details regarding the precise statement, its consequences,
and its classification into the research landscape are treated in the upcoming sections.

In consultation and collaboration with Prof. Simon Blatt and in addition, Prof.
Philipp Reiter from the Martin Luther University of Halle-Wittenberg, who is an
outstanding expert on curvature energies, the mathematical argumentation was
started to develop under supervision of Prof. Armin Schikorra. Amongst others,
crucial methods and techniques were studied accurately, e.g. [Sch15, BRS19, Ada75,
SU81, SvdM12], and calculations got carried out in detail. At least weekly discussions
with Prof. Armin Schikorra provided profitable ideas and helpful advices throughout
this process. Essential milestones are:

• Elaboration of suitable notions and expected statements: Section 2

• Familiarization with energy spaces: Section 3

• Proof of homeomorphisms appear as limits: Section 4

• Regularity theory (work in progress): Section 5

In the main phase of the research stay, the COVID-19 pandemic emerged and the
decision to travel back to Europe approximately four weeks earlier than planned was
taken, eventually. In spite of the unexpected event of the COVID-19 pandemic and
its psychological strain and early return journey associated with it, the supervisors
Prof. Simon Blatt from the University of Salzburg and Prof. Armin Schikorra from
the University of Pittsburgh optimally ensured all necessary support to continue the
collaboration in long-distance until the originally planned return and beyond that.

In the final phase, research findings are summarized in one paper in collaboration
with Prof. Simon Blatt, Prof. Philipp Reiter, and Prof. Armin Schikorra, and
subsequently, published. We are confident that the obtained results will lead to a
publication in a high-ranking journal due to the significant research findings, not to
mention its similarities to the Willmore energy, cf. the celebrated work on Willmore
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surfaces [Riv08] for example, and its complex methods of proof, which will be outlined
later on. The completion and publishment of the paper is expected, despite the
additional delay triggered by the COVID-19 pandemic, by the end of summer 2020.
Finalization of the paper and follow-ups are done online via email and online meetings.
The complete research period is hence expected to last for approximately one year.
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2 Introduction and main results
When modelling and simulating topological effects in biology, chemistry, or physics
(e.g. protein knotting) one has to make a choice. Either one explicitly models
partial differential equations that incorporate different effects such as bending or
self-repulsion through penalization. Or one tries to construct an energy that models
the behavior at hand, and hopes that minimizing the energy, respectively following
the steepest descent, delivers a realistic description. For the latter, knot energies
have been introduced by Fukuhara [Fuk88] and O’Hara [O’H91, O’H92, O’H94].
One of the characteristic properties of these knot energies is that they model the
topological resistance, i.e. self-repulsion, without resorting to a penalization term,
but by incorporating them intrinsically, which necessarily leads to nonlocal curvature
energies of fractional order.
The analytically most interesting cases of such energies are scale-invariant knot
energies. They are to a certain extent an one-dimensional analogue of the Willmore
energy. However, let us remark that the one-dimensionality does not simplify much
the matter due to the nonlocality of the situation.
O’Hara introduced in [O’H91, O’H92, O’H94] the first class knot energies, which
known as O’Hara’s knot energies. They are defined as follows. Let γ : R/Z → R3

be the parametrization of a closed regular Lipschitz curve in the three-dimensional
Euclidean space. Technically speaking, γ is both an immersion and an embedding,
therefore. The Euclidean structure of the surrounding space R3 induces a metric dγ
on γ(R/Z), namely for two points on the curve γ(x), γ(y) ∈ γ(R/Z),

dγ(γ(x), γ(y)) := min
{�

[x,y]
|γ′|,

�
R/Z\[x,y]

|γ′|
}
.

O’Hara’s knot energies are then defined for any αp ≥ 4, p ≥ 2, as

Oα,p(γ) :=
�
R/Z

�
R/Z

(
1

|γ(x)− γ(y)|α −
1

dγ(γ(x), γ(y))α

) p
2

|γ′(x)| |γ′(y)| dx dy.

The scale-invariant case is αp = 4. Until very recently, among all scale-invariant
O’Hara’s know energies, only the so-called Möbius energy, given by α = 2, p = 2,
was understood at all. This is due to the celebrated work by Freedman–He–Wang,
[FHW94]. They discussed existence and regularity of minimizers w.r.t. knot classes
via geometric methods which crucially relied on a special property, the Möbius
invariance of O2,2(γ). Since their arguments are based on the Möbius invariance, and
Möbius invariance is known (and most likely true) only for very special cases, there
was not much progress on existence or regularity of scale-invariant knot energies
for a long time. Precisely, in the two recent works [BRS16, BRS19], Blatt, Reiter,
and Schikorra established the regularity theory for all scale-invariant O’Hara’s knot
energies Oα,p for critical points and, in particular, minimizers via a completely new
method. Namely, they showed that critical knots γ induce via their derivative γ′ a
sort of fractional harmonic map between R/Z and S2. Then, with extending the tools
developed for harmonic and fractional harmonic maps they completed regularity
theory via arguments based on compensation effects and Harmonic Analysis.
In this work we push further the analysis of minimizers and investigate scale-invariant
tangent-point energies. As in the case of O’Hara’s knot energies, the scale-invariant
situation is the most challenging, and up to now was completely out of reach.
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Tangent-point energies were proposed first by Gonzalez and Maddocks [GM99],
with variations proposed in [BGMM03, SvdM12, BR15]. They are defined for any
γ ∈ C2(R/Z,R3) as follows

TPp,q(γ) :=
�
R/Z

�
R/Z

∣∣∣ γ′(x)
|γ′(x)| ∧ (γ(x)− γ(y))

∣∣∣q
|γ(x)− γ(y)|p |γ′(x)||γ′(y)| dx dy

=
�
R/Z

�
R/Z

|γ′(x) ∧ (γ(x)− γ(y))|q

|γ(x)− γ(y)|p |γ′(x)|1−q|γ′(y)| dx dy

This energy is called tangent-point energy, because for p = 2, q = 1

Rt(x, y) := |γ(x)− γ(y)|2

2 |γ′(x) ∧ (γ(x)− γ(y))|

is the (smallest) radius of the unique circle passing through γ(x) and γ(y) which is
tangential at γ(x).

γ′(x)

Rt

γ(x)

γ(y)

Figure 1: This picture illustrates the definition of the tangent-point function Rt.

One of the main features that motivates the tangent-point energy is that there is a
natural analogue for surfaces, see [BGMM03, SvdM13]. This is also one motivation
behind the present work. The analysis developed here is not only fundamental for the
theory in one dimension, but may (in a future work) also be extendable to surfaces.
The subcritical case of the tangent-point energies, i.e. p > q + 2, was discussed
in [BR15]. Strzelecki and von der Mosel [SvdM12] obtained the first fundamental
results in the scale-invariant case p = q + 2. They showed in particular that the
images of curves with finite TPq,q+2-energy form a topological one-manifold. However,
observe this could be a doubly-traversed line, see Example 4.1, or a non-C1-image,
see Example 4.7. These examples also show that there is an issue with even defining
the notion of minimizing curves of the tangent-point energies. While the energy of
the doubly-traversed line is zero, there is no regularity or the like.
Thus we restrict our interest on curves which appear as the limit of diffeomorphisms.
Let us introduce the localized energy for A ⊂ R/Z by

TPp,q(γ;A) :=
�
A

�
A

|γ′(x) ∧ (γ(x)− γ(y))|q

|γ(x)− γ(y)|p dx dy

In the remainder we always assume p ≥ q + 2.
Following the spirit of an analogue idea for Willmore surfaces, [Riv08, Definition I.1],
we define
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Definition 2.1 (Homeomorphisms with locally small tangent-point energy). Let
γ : R/Z→ R3 be a Lipschitz map and x ∈ R/Z.
γ is called a homeomorphism with locally ε-small tangent-point energy at x if
there exists an open interval B(x, ρ) ⊂ R/Z and a sequence of C1-homeomorphism
γk : R/Z→ R3, |γ′k| ≡ 1, such that

1. γk converges uniformly to γ in R/Z,

2. supk TPp,q(γk;R/Z) <∞, and

3. supk TPp,q(γk;B(x, ρ)) < ε.

Let us remark that there exists homeomorphism with locally ε-small tangent-point
energy γ which do not belong to C1, see Example 4.7.
The justification for Definition 2.1 is two-fold. On the one hand, as mentioned above,
there is no reason that Lipschitz maps with finite tangent-point energy are injective,
indeed the tangent-point energy might be zero and still the map γ is a doubly covered
interval, cf. Example 4.1. So it makes sense to consider limits of diffeomorphisms.
On the other hand, sequences of curves with uniformly bounded tangent-point energy
converge to homeomorphisms with locally ε-small tangent-point energy outside of at
most finitely many points. In fact, this is the content of our first main result.

Theorem 2.2. Let p ≥ q + 2, Λ > 0, q > 1; let ε > 0. Then there exists a number
K = K(q,Λ, ε, δ) such that the following holds.
Let γk ∈ C1(R/Z,R3) with |γ′k| ≡ 1 and

sup
k∈N

TPp,q(γk) < Λ.

Then there exist translations pk ∈ R3 and a subsequence ki
i→∞−−−→ ∞ such that the

curves γ̃ki := γki − pki uniformly converges to a Lipschitz map γ : R/Z → R3.
Furthermore, the map γ has the following properties:

• γ is a bi-Lipschitz homeomorphism.

• |γ′| = 1 for a.e. x ∈ R/Z.

• TPp,q(γ) ≤ lim infk→∞TPp,q(γk).

• There is a discrete set Σ, with #Σ ≤ K and the following properties: For any
point x0 ∈ R/Z\Σ there exists ρx0 > 0 such that

– supk TPp,q(γk, B(x0, ρx0)) < ε and
– a subsequence (γki)i∈N weakly converges to γ in the Sobolev space
W

1+ p−q−1
q

,q(B(x0, ρx),R3).

Remark 2.3. While we make no attempt to prove it explicitely, it is likely that there
are examples for p = q + 2 where the singular set Σ in Theorem 2.2 is nonempty.
From the comparison with harmonic maps or the Möbius energy, an example could
look as follows. Take a smooth curve of nontrivial topology. The scaling invariance
(for harmonic maps the conformal invariance, for the Möbius energy the Möbius
transform invariance) should allow a transform which performs a pull-tight effect
where the “topology is contained in a small set”, cf. [FHW94] for this notion, without
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changing the energy level, especially without blowing up the energy. This leads to a
sequence of curves γk with uniformly bounded energy but with a pull-tight in the
limit, where energy gets lost and, in particular, no Sobolev-convergence is doable.
Remark 2.4. Whether the curve γ above is globally Sobolev or not, is unclear to us.
From 2-dimensional analogues [Hub57, Mv95] one might believe that this does not
need to be true. However, observe that this is ruled out for O’Hara’s knot energies.
Theorem 2.2, which we discuss in more detail in Section 4, extends the earlier results
on the energy space of tangent-point energies TPp,q with p > q + 2 by Blatt and
Reiter [BR15] to the scale-invariant case p = q + 2. In this critical case p = q + 2,
Theorem 2.2 can be interpreted as a one-dimensional analogue of a fundamental
theorem of Müller and Sverak, [Mv95], who showed that surfaces with small second
fundamental form w.r.t. L2-norm can be conformally parametrized, see also earlier
works by Toro [Tor94, Tor95]. We also refer to [KL12, LLT13, KS12, Riv15]. More
precisely Theorem 2.2 is an analogue of Hélein’s version of the Müller-Sverak theorem,
[H0́2, Theorem 5.1.1], that limits of conformally parametrized 2D-maps with second
fundamental form small in L2 are either point maps or bi-Lipschitz. Said theorem
was generalized for surfaces to a fractional case in [Sch18b]. What corresponds to a
conformal map in 2D, i.e. ∂Φ ∈ CO(2, N), becomes in 1D arclength-parametrization,
i.e. |γ′| ≡ const. Whereas the noncompactness of the conformal group CO(2, N)
is a major difficulty for the two-dimensional result, |γ′| ≡ const in our case can be
essentially reduced to the case γ′ ∈ SN−1, and SN−1 is compact.
As a particular consequence of Theorem 2.2, weak local immersions with bounded
tangent-point energies appear as limits of smooth minimizing sequences. Since
these minimizing sequences are minimizing within topological classes, they are not
necessarily global minimizing sequences of the tangent-point energy. This is why
we, in spirit similar to Willmore surfaces [Riv08, Definition I.2], introduce local
critical points. Observe that as of now, we have no way of hoping that the limit of
minimizing sequences with finite energy is a minimizer in the same isotopy class,
there may have been concentration/bubbling phenomena.
Definition 2.5 (Weak critical point). Let γ be a homeomorphism with small tangent-
point energy around B(x, ρ) as in Definition 2.1. We say that γ is a critical point in
B(x, ρ) of TPp,q if the following holds:
Let ϕ ∈ C∞c (B(x, ρ)). If we set γt := γ + tϕ, then

d

dt

∣∣∣
t=0

�
B(x,ρ)

�
R/Z

|γ′t(x) ∧ (γt(x)− γt(y))|q

|γt(x)− γt(y)|p |γ′t(x)|1−q|γ′t(y)| dy dx = 0.

The notion of weak critical point as in Definition 2.5 can be justified by the following
theorem: minimizing sequences converge away from finitely many points to a weak
critical point.
Theorem 2.6. Let [γ0] be an ambient isotopy class and let γk ⊂ [γ0] be a minimizing
sequence for

Λ := inf
γ∈[γ0]

TPp,q(γ)

in the sense that γk ∈ C1(R/Z,R3) are homeopmorphisms with |γ′k| ≡ 1 and γk(R/Z)
belongs to the knot class [γ0].
Then, up to taking a subsequence, γk converges uniformly to a limit map γ : R/Z→ R3

which is a weak critical point in the sense of Definition 2.5 outside of finitely many
points Σ ⊂ R/Z. Moreover #Σ ≤ C(Λ).
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Let us remark that there is no reason that minimizing sequences in isotopy classes
converge globally in a strong norm, due to effects described in Remark 2.3
Now we come to our last main result, which is the regularity of critical points and
thus minimizers.

Theorem 2.7. Let q ≥ 2. Let γ be a critical weak local immersion with small
tangent-point energy around B(x, ρ). Then γ ∈ C1,α for some uniform constant
α > 0.

Theorem 2.7 is in the spirit of [Riv08, Theorem I.3]. Note that the proof is still work
in progress, however, only the last part of it remains to be elaborated in detail.
As a consequence of Theorem 2.6 and Theorem 2.7, we obtain

Corollary 2.8. Let [γ0] be an ambient isotopy class and let γk ⊂ [γ0] be a minimizing
sequence for

Λ := inf
γ∈[γ0]

TPp,q(γ)

in the sense that γk ∈ C∞(R/Z,R3) are homeopmorphisms with |γ′k| ≡ 1 and γk(R/Z)
belongs to the knot class [γ0].
Then, up to taking a subsequence, γk converges to a limit map γ : R/Z→ R3 which
is a weak critical point in the sense of Definition 2.5 outside of finitely many points
(whose number is bounded in terms of Λ). In particular, in view of Theorem 2.7, the
limit is C1,α outside of finitely many points.
In fact, any minimizer of TPq,q+2 in any isotopy class (if it exists) can be parametrized
by a C1,α-curve.

Observe that we do not treat existence in this work, which we will leave as a future
project, cf. [MS20].
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Outline

The outline of the remaining project report is as follows. In Section 3 we introduce
the Sobolev spaces we work with and state some facts that were established in the
beginning of the project work and turned out to be useful throughout the paper.

In Section 4 we outline the proof of our first main theorem Theorem 2.2 that sequences
of diffeomorphisms with uniformly bounded tangent-point energy converge outside of
a finite singular set. The argument is based on a gap-estimate, vaguely reminiscient
of the Müller-Sverak [Mv95] or Hèlein [H0́2] result for bounded second fundamental
form surfaces. A further crucial ingredient is an adaptation of the “straightness”
analysis developed by Strzelecki and von der Mosel [SvdM12], which in their case
leads to the fact that finite energy curves are topological 1-manifolds.

In Section 5 we discuss the regularity theory, Theorem 2.7. We follow the spirit of
[BRS19] of building a bridge to harmonic map theory. Particularly, we introduce an
energy Ep,q such that the arc-length parametrization of a critical knot γ of TPq+2,q

induces via its derivative γ′ a critical map of Eq in the class of maps between R/Z
and the sphere S2. The energy Eq is structurally similar to the W

1
q
,q-Dirichlet energy,

whose critical points are called W
1
q
,q-harmonic maps. For q = 2, techniques for

regularity theory of W
1
2 ,2-harmonic maps between manifolds were introduced in the

pioneering work by Da Lio and Riviére, [DLR11b, DLR11a]; this was extended to
W

1
q
,q-harmonic maps into spheres in [Sch15]. Here, we extend the techniques of

[Sch15] to obtain the regularity for derivatives γ′ of the arclength-parametrization
of critical knots γ. Note that the last part presented in this section is still work in
progress, but expected to be written down entirely in detail within the next weeks.

In Section 6 we summarize the outcome of the research project and observe that the
obtained results serve a starting point for thrilling future projects, e.g. the hardly
investigated existence of solutions to degenerate geometric evolution equations.

Finally, we point out that the proof of Theorem 2.6 is based on Theorem 2.2 combined
with a fractional Luckhaus lemma and the theory for isotopy classes for Sobolev
maps. However, we waive a detailed discussion here since it was not the main focus
of the research stay, and refer to the preprint. Also, we remark that the theory
we used and developed in this project is very delicate and technical in its details,
which is why we decided to focus in this report on the main ideas and concepts of
the elaborated paper. By this, we hope to make the overall direction of proof clear.
Further details can be looked up in the preprint. Explanation of notation is included
whenever necessary.
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3 Preliminaries on Sobolev maps
In this section we recall some basic notation and properties of Sobolev maps and
mention some facts that are particularly useful in proving the main statements of
this project.
Let s ∈ (0, 1), p ∈ (1,∞) and Ω ⊂ R open. The fractional Sobolev space W s,p(Ω) is
defined as all maps f ∈ Lp(Ω) such that the Gagliardo semi-norm

[f ]W s,p(Ω) :=
(�

Ω

�
Ω

|f(x)− f(y)|p

|x− y|1+sp

) 1
p

dx dy <∞.

For s ∈ (1, 2) the Sobolev space W s,p(Ω) is defined to be the space of f ∈ Lp(Ω), for
which f ′ ∈ Lp(Ω) and

[f ′]W s−1,p(Ω) <∞.

One important observation, cf. [Bla12, Lemma 2.1], is that small W 1+s, 1
s -Sobolev

norm implies a bi-Lipschitz estimate if |γ′| > 0. Namely, we have,

Lemma 3.1. Let s ∈ (0, 1). For any λ1 > λ2 > 0 there exist ε = ε(λ1, λ2, s) > 0 such
that the following holds. For any −∞ < a < b < ∞ and for any γ ∈ Lip([a, b],R3)
such that

inf
[a,b]
|γ′| ≥ λ1

and
[γ′]

W s, 1
s ((a,b))

< ε,

we have
|γ(x)− γ(y)| ≥ λ2|x− y|.

Let us also remark the following consequence of Lemma 3.1, which states that closed
curves have minimal W 1+s, 1

s -energy.

Corollary 3.2. Let s ∈ (0, 1), −∞ < a < b < ∞. For any λ > 0 there exists
ε = ε(λ, a, b, s) > 0 so that the following holds.
Whenever γ ∈ Lip((a, b),R3) ∩ C0([a, b]) with γ(a) = γ(b) and inf |γ′| ≥ λ. Then
[γ′]

W s, 1
s ([a,b])

≥ ε.

The remaining lemmata in this section are assumed to be well-known to experts and
we do not claim any originality here. Nevertheless, they are particularly useful in
the context of this work.
We begin with two identifications for the fractional Sobolev space, in particular we
show two equivalences to the standard W s,p-seminorm.

Lemma 3.3 (Identification 1). Let s ∈ (0, 1), p ∈ (1,∞). Then for any ball B ⊂ R
or B = R and any f ∈ C∞c (R),

[f ′]pW s,p(B) :=
�
B

�
B

|f ′(x)− f ′(y)|p

|x− y|n+sp dx dy ≈
�
B

�
B

∣∣∣f(y)−f(x)−f ′(x)(y−x)
|x−y|

∣∣∣p
|x− y|n+sp dx dy

The constant depends on s and p, but not on the set B or the function f .
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Lemma 3.4 (Identification 2). Let s ∈ (0, 1), p ∈ (1,∞). For any g ∈ C∞c (R) and
any B ⊂ R a ball or B = R we have

[g]pW s,p(B) ≈
�
B

�
B

�
(x,y) |g(x)− g(z)|p dz
|x− y|1+sp dx dy.

The constant depends on s and p but not on the set B or the function g.

Furthermore, we make use of the following

Lemma 3.5 (Sobolev embedding). Let B ⊂ R a ball. For s, t ∈ (0, 1), t < s, and
p, q ∈ (1,∞) with

s− 1
p
≥ t− 1

q
,

we have
[f ]W t,q(B) ≤ C(s, t, p, q) diam (B)s−t−

1
p

+ 1
q [f ]W s,p(B). (3.1)

If B = R and s− 1
p = t− 1

q , then

[f ]W t,q(B) ≤ C(s, t, p, q) [f ]W s,p(B). (3.2)

The constant C(s, t, p, q) does not depend on f and B.

4 Homeomorphisms appear as limits: Proof of Theorem 2.2
It is easy to construct Lipschitz parametrization of curves γ : R/Z → R3 with
vanishing tangentpoint energy TPp,q(γ) = 0, p ≥ q + 2, but with no reasonable
regularity, namely γ 6∈ C1(R/Z,R3) and γ 6∈W 1+ p−1

q
,q(R/Z,R3).

Example 4.1. For any Lipschitz map γ̃ : R/Z → [0, 1/2] with |γ̃′| ≡ 1, if we set
γ(x) := (γ̃(x), 0, 0) ∈ R3 then

|γ′(x) ∧ (γ(x)− γ(y))| = 0.

In particular, if for any x ∈ R/Z there are only finitely many y ∈ R/Z such that
γ̃(x) = γ̃(y), we have that

|γ′(x) ∧ (γ(x)− γ(y))|q

|γ(x)− γ(y)|p = 0 L2-a.e. (x, y) ∈ (R/Z)2,

and thus TPp,q(γ) = 0.
For example, take γ̃ to be

γ̃(t) :=
{
t t < 1

2
1
2 − t t ∈ [1

2 , 1]
.

Then γ′ has a jump discontinuity at t = 1
2 and t = 0. Thus γ′ 6∈ C(R/Z,R3) and

γ′ 6∈ W
p−1
q
,q(R/Z,R3) whenever γ 6∈ W

1+ p−1
q
,q(R/Z,R3) for any p ≥ q + 2 and

q ∈ (1,∞).
It is easy to extend this example into a map γ with countably many points of
non-differentiability but still TPp,q(γ) = 0.
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See also example of k-covered circle [SvdM12, after Theorem 1.1].
Example 4.1 shows that there is no hope to classify a reasonable energy space of
Lipschitz maps γ : R/Z→ R3 with finite tangent-point energy. Rather we investigate
the space of diffeomorphisms with finite tangent-point energy, which turns out to
be more manageable – this is the content of the following Theorem 4.2 which is the
main theorem of this section. In particular, Theorem 4.2 implies Theorem 2.2.

Theorem 4.2. For any Λ > 0 and ε > 0 there exists a L = L(ε,Λ) ∈ N such that
the following holds.
Let γk ∈ C1(R/Z,R3), |γ′k| ≡ 1, be homeomorphisms with

sup
k
‖γk‖L∞ + sup

k
TPq,q+2(γk) ≤ Λ

Then there exists a subsequence (γki)i∈N and γ ∈ Lip (R/Z,R3) such that the following
holds for some finite set Σ ⊂ R/Z with #Σ ≤ L.

1. γki converges uniformly to γ and γ ∈ Lip (R/Z,R3).

2. For any x0 ∈ R/Z\Σ there exists a radius ρ(x0) > 0 such that γki weakly
converges to γ in W 1+ p−q−1

q
,q(B(x0, ρ)).

3. |γ′| = 1 a.e.

4. γ is uniformly bi-Lipschitz in B(x0, ρ) with the estimate

(1− ε)|x− y| ≤ |γ(x)− γ(y)| ≤ |x− y| ∀x, y ∈ B(x0, ρ).

5. We have lower semicontinuity, namely

TPp,q+2(γ) ≤ lim inf
k→∞

TPp,q+2(γk).

6. γ is a bi-Lipschitz homeomorphism.

We will prove a more detailed version of Theorem 4.2 in Proposition 4.10.
In order to prove Theorem 4.2 we proceed in several steps.

• First we prove in Section 4.1 that for the approximating sequence γk the local
tangent-point energy is uniformly small away from a finite set Σ (we will refer
to it as the “singular set”) of points of energy concentration.

• In Section 4.2 we obtain the Sobolev estimate for smooth curves whenever the
tangent-point energy is locally small, see Theorem 4.5, and as a consequence
a bi-Lipschitz estimate. This estimate is obtained by a gap-estimate. This in
particular characterizes the energy space for the tangent-point energies in the
scale-invariant case.

• In Section 4.3 we adapt an argument due to Strzelecki and von der Mosel
[SvdM12] to obtain a uniform estimate on global injectivity of the approximating
sequence γk away from the singular points, see Theorem 4.9.

• In Section 4.4 we then obtain in Proposition 4.10 the convergence outside the
singular set which implies Theorem 4.2.
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4.1 Locally uniform smallness

In the first step we ensure that away from a discrete set we have locally uniformly
small energy in the approximating sequence. The statement follows from a relatively
standard covering argument, see, e.g. [SU81, Proposition 4.3 and Theorem 4.4.].

Proposition 4.3. For any ε > 0, for any Λ > 0 there exists L = L(ε,Λ) such that
the following holds.
For any sequence γk ∈ Lip (R/Z,R3), |γ′k| ≡ 1, such that

sup
k

TPp,q(γk) ≤ Λ

there exists a subsequence γki and set Σ ⊂ R/Z consisting of at most L points such
that for any x ∈ R/Z\Σ there exists a radius ρ = ρx > 0 and an index K ∈ N such
that

sup
i≥K

�
B(x,ρx)

�
R/Z

|γ′ki(x) ∧ (γki(x)− γki(y))|q

|γki(x)− γki(y)|p dy dx < ε.

4.2 Small local energy implies local Sobolev space estimates

The main novel ingredient underlying our argument for Theorem 4.2 is a gap estimate
for Sobolev spaces with respect to the tangent-point energy.
As discussed in Example 4.1, it is impossible to control the Sobolev norm of γ in terms
of the tangent-point energy of γ, TPp,q(γ) without assuming a priori bi-Lipschitz
estimates as it was done in [BR15]. However, this is not a viable method for the
scale-invariant case p = q + 2 because the Bi-Lipschitz constant is not uniformly
controlled as a sequence γk converges to γ. We turn this argument around and first
a priori assume that the Sobolev norm is finite, and then conclude that this is an
estimate which is uniform for sequences γk converging to γ.
The first step is the following gap estimate1

Lemma 4.4. Let p ∈ [q + 2, 2q + 1). Let γ ∈ Lip (R/Z,R3), |γ′| ≡ 1. Then for any
ball B ⊂ R/Z of diameter less than 1

2 ,

[γ′]q
W

p−q−1
q ,q(B)

≤ C(p, q) TPp,q(γ,B) + C(p, q) [γ′]2q
W

p−q−1
q ,q(B)

, (4.1)

whenever the right-hand side is finite.

The gap-estimate leads to the following control of the Sobolev norm. Observe again
that we need to assume a priori that γ already belongs to the Sobolev space in
question, which rules out the irregular curves in Example 4.1.

Theorem 4.5. Let q0, p0 > 1, q1 < ∞, p1 < ∞ such that p1 − 2q0 < 1. Let ε > 0
then there exists δ = δ(q0, p0, q1, p1, ε) > 0 and a constant C = C(q0, p0, q1, p1) > 0
such that the following holds for any p ∈ [p0, p1] and q ∈ [q0, q1].
Let γ ∈ Lip(R/Z,R3), |γ′| ≡ 1, and assume that for some ball B ⊂ R/Z, diam(B) <
1
2 , we have

TPp,q(γ,B) < δ

1Lemma 4.4 is called a gap estimate, because it implies the following: for ε :=
(

1
2C(p,q)

) 1
q
we

have either [γ′]q
W

1
q

,q
(B)

≤ 2C(p, q) TPq+2,q(γ,B) or [γ′]
W

1
q

,q
(B)

≥ ε.
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and
either γ ∈ C1(B) or [γ′]q

W
p−q−1
q ,q(B)

<∞. (4.2)

Then
[γ′]q

W
p−q−1
q ,q(B)

≤ C(q0, p0, q1, p1) TPp,q(γ,B). (4.3)

and we have the bi-Lipschitz estimate

(1− ε)|x− y| ≤ |γ(x)− γ(y)| ≤ |x− y| ∀x, y ∈ B. (4.4)

Let us also remark, for the sake of completeness, that the argument in the proof of
Lemma 4.4 also gives a real classification of the energy space, if one assumes a priori
bi-Lipschitz estimates (cf. [BR15, Proposition 2.4]).

Lemma 4.6. Let p ∈ [q + 2, 2q + 1). Let γ ∈ Lip (R/Z,R3), |γ′| ≡ 1 and γ : B → R
be bi-Lipschitz, i.e.

(1− λ)|x− y| ≤ |γ(x)− γ(y)| ≤ |x− y|

Then for any ball B ⊂ R/Z of diameter less than 1
2 ,

TPp,q(γ,B) ≤ C(p, q, λ)[γ′]q
W

p−q−1
q ,q(B)

+ C(p, q, λ) [γ′]2q
W

p−q−1
q ,q(B)

.

With the help of Lemma 4.6 we obtain

Example 4.7. There exists a homeomorphism γ : R/Z→ R3 which is bi-Lipschitz,
whose derivative is not everywhere continuous, but has finite tangent-point energy
TPq,q+2(γ) for any q > 1. Moreover there exists a sequence of C∞-diffeomorphisms
γk converging uniformly to γ with uniformly bounded tangent-point energy, i.e.

sup
k∈N

TPq,q+2(γk) <∞.

Indeed, denote by N = (0, 0, 1) the north pole of S2.
Let u ∈W

1
q
,q([−1

4 ,
1
4 ], S2)\C0([−1

4 ,
1
4 ],R3) such that

〈u,N〉 ≥ 1
4

and u is constant for |x| ≤ −1
8 and |x| ≥ 1

8 .
For example for any η ∈ C∞c ((−1

8 ,
1
8), [0, 1]) with η ≡ 1 in [− 1

16 ,
1
16 ] we could set

u(x) =
( 1√

2
sin(η(x) log log 1/|x|), 1√

2
cos(η(x) log log 1/|x|), 1√

2

)
.

Now let for x ∈ [−1
4 ,

1
4 ],

γ(x) =
� x

− 1
4

u(z) dz

Then γ is Bilipschitz in [−1
4 ,

1
4 ] because

|γ(x)− γ(y)| ≥ 〈γ(x)− γ(y), N〉 =
�

[x,y]
〈u,N〉 ≥ 1

4 |x− y|.
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Observe that γ′ is constant around x ≈ −1
4 and x ≈ 1

4 , so γ can be smoothly extended
into a closed curve on [−1

2 ,
1
2 ] which is a smooth 1-D manifold outside of [−1

4 ,
1
4 ]. By

Lemma 4.6 the curve γ has finite tangent-point energy TPq,q+2 but γ is not C1 since
γ′ is discontinuous.
On the other hand, any regular homeomorphism γ ∈W 1+ 1

q
,q can be approximated

by smooth homeomorphisms with uniformly controlled Bi-Lipschitz constant, so that
in view of Lemma 4.6 the tangent-point energy TPq,q+2 is uniformly bounded.

4.3 The Strzelecki–von der Mosel argument: locally small energy
implies global injectivity

In this section we provide a reformulation of a powerful argument due to Strzelecki
and von der Mosel, [SvdM12]. They used it to show that the image of a curve with
finite tangent-point energy for p ≥ q + 2 is a topological 1-manifold embedded into
R3. Recall that this manifold could be the twice covered straight line, Example 4.1.
We rework their argument to provide us with uniform injectivity for intervals with
small energy, Theorem 4.9.
The following is essentially a reformulation (with a slight refinement) of [SvdM12,
Lemma 2.1].

Lemma 4.8 (Strzelecki–von der Mosel). Let p ≥ q + 2. For any ε > 0 there exists
δ > 0 such that the following holds.
Let γ ∈ Lip (R/Z,R3), |γ′| ≡ 1, and assume that for some x0 ∈ R/Z and ρ > 0 we
have �

B(x0,ρ)

�
R/Z

|γ′(x) ∧ (γ(y)− γ(x))|q

|γ(x)− γ(y)|p dydx < δ. (4.5)

Moreover assume that there is y0 ∈ R/Z with d := |γ(y0)− γ(x0)| ≤ ρ.
Then

γ(R/Z) ∩B2d(γ(x0)) ⊂ Bεd(L(γ(x0), γ(y0)),
where L(γ(x0), γ(y0)) is the straight line containing γ(x0) and γ(y0) defined by

L(γ(x0), γ(y0)) = {(1− t)γ(x0) + tγ(y0), t ∈ R} .

With help of the previous lemma, we gain an uniform estimate on global injectivity
of the approximating sequence γk away from the singular points.

Theorem 4.9. Let p ≥ q + 2. There exists δ > 0 such that the following holds.
Let γ ∈ Lip (R/Z,R3) be a homeomorphism, |γ′| ≡ 1, and assume that for some
x0 ∈ R/Z and ρ > 0 we have that

either γ ∈ C1(B(x0, ρ)) or [γ′]
W

p−q−1
q ,q(B(x0,ρ))

<∞. (4.6)

Also assume �
B(x0,ρ)

�
R/Z

|γ′(x) ∧ (γ(y)− γ(x))|q

|γ(x)− γ(y)|p dydx < δ. (4.7)

If for any z0 ∈ R/Z we have

|γ(x0)− γ(z0)| < 1
10ρ,

then there exists x̄ ∈ B(x0, ρ) such that γ(x̄) = γ(z0). In particular, we have
z0 ∈ B(x0, ρ).
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4.4 Convergence

Together with the previous observations, we obtain the following convergence result
outside of the singular set.
Proposition 4.10. For any Λ > 0 and ε > 0 there exists a L = L(ε,Λ) ∈ N such
that the following holds.
Let γk : R/Z→ R3, |γ′k| ≡ 1, be C1-homeomorhpisms with

sup
k
‖γk‖L∞ + sup

k
TPq,q+2(γk) ≤ Λ

Then there exists a subsequence (γki)i∈N and γ ∈ Lip (R/Z,R3) such that the following
holds for some finite set Σ ⊂ R/Z with #Σ ≤ L.

1. γki converges uniformly to γ and γ ∈ Lip (R/Z,R3).

2. For any x0 ∈ R/Z\Σ there exists a radius ρ(x0) > 0 such that γki weakly
converges to γ in W 1+ p−q−1

q
,q(B(x0, ρ))

3. |γ′| = 1 a.e.

4. γki and γ are uniformly bi-Lipschitz in B(x0, ρ) with the estimate

(1− ε)|x− y| ≤ |γki(x)− γki(y)| ≤ |x− y| ∀x, y ∈ B(x0, ρ) ∀i. (4.8)

and
(1− ε)|x− y| ≤ |γ(x)− γ(y)| ≤ |x− y| ∀x, y ∈ B(x0, ρ). (4.9)

5. For any point x0 ∈ R/Z\Σ and any y ∈ R/Z with |γki(x0)−γki(y0)| ≤ 1
100ρ(x0)

or |γ(x0)− γ(y0)| ≤ 1
100ρ(x0) we have |x0 − y0| ≤ ρ(x0).

6. In particular, whenever γ(x) = γ(y) then either x = y or {x, y} ⊂ Σ.

7. We have lower semicontinuity, namely

TPp,q+2(γ) ≤ lim inf
k→∞

TPp,q+2(γk). (4.10)

8. γ : R/Z→ R3 is a homeomorphism.

9. γ is globally bi-Lipschitz.

5 The regularity theory for critical points
This section is dedicated to show C1,α-regularity of weak critical points for scale-
invariant tangent-point energies TPq+2,q with q ≥ 2, cf. Theorem 2.7. Inspired by the
investigations on critical O’Hara’s knot energies in [BRS19] by means of fractional
harmonic maps, cf. [Sch15], we proceed as follows:

• In Section 5.1 we relate critical knots of scale-invariant tangent-point energies
TPq+2,q to fractional harmonic maps: We first define a suitable energy Eq+2,q

such that the unit tangent u := γ′

|γ′| of critical knots γ of TPq+2,q with constant-
speed parametrization are critical maps of the energy Eq+2,q in the class of maps
v : R/Z→ S2. By observing that the new energy Eq+2,q is locally comparable
to a W

1
q
,q-seminorm, cf. Section 4, its critical maps are indeed (essentially)

fractional harmonic maps into the sphere S2.
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• In Section 5.2 we derive the Euler-Lagrange equations of the new energies
Eq+2,q for q ≥ 2 and extract the highest order term of the Lagrangian.

• In Section 5.3 we finally treat the higher regularity of weak critical points. We
outline the method of proof and provide insights into its technical details.

Before continuing with the upcoming subsections, we need to introduce some notation
for integration on R/Z, cf. [BRS19, Remark 2.2]:

(1) We identify by ρ(x, y) the distance of two points x, y ∈ R/Z on R/Z, in
particular ρ(x, y) = |x− y|mod1

2 .

(2) If x and y are not antipodal, which means |x− y| 6= 1
2 , we denote by x . y the

shortest geodesic from x to y. Hence, we define for any Z-periodic f
�
x.y

f :=
� ỹ

x
f(z) dz,

where ỹ ∈ y + Z such that |x− ỹ| < 1
2 .

(3) Furthermore, we write
σ(x . y) = sgn

�
x.y

1.

That means, if x . y is positively oriented, we have σ(x . y) = 1, and if x . y is
negatively oriented, we get σ(x . y) = −1.

(4) Now given a Z-periodic function f , we define

(f)R/Z :=
� 1

0
f(z) dz

and
−
�
x.y

f := σ(x . y)
ρ(x, y)

�
x.y

f.

5.1 A new energy Ep,q

Our first objective in this subsection is to construct a new energy Ep,q, which
coincides with the tangent-point energies TPp,q for sufficiently regular curves γ, but
only depends on the first derivative γ′. We then show that any critical knot of the
tangent-point energies TPp,q parametrized by arc-length produces a critical S2-valued
map of the new energy Ep,q.
For this purpose, we recall that the tangent-point energies are given for any γ ∈
C1(R/Z,R3) by

TPp,q(γ) :=
�
R/Z

�
R/Z

|γ′(x) ∧ (γ(x)− γ(y))|q

|γ(x)− γ(y)|p |γ′(x)|1−q|γ′(y)| dx dy.
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Now we transform the cross product in the numerator by Lagrange’s identity and
the fundamental theorem of calculus to∣∣γ′(x) ∧ (γ(y)− γ(x))

∣∣2
=
∣∣γ′(x) ∧ (γ(x)− γ(y)− γ′(x)(y − x))

∣∣2
= |γ′(x)|2|γ(y)− γ(x)− γ′(x)(y − x)|2 − (γ′(x) · (γ(y)− γ(x)− γ′(x)(y − x)))2

= |y − x|2
(
|γ′(x)|2| −

�
x.y

γ′(z) dz − γ′(x)|2 − ||γ′(x)|2 − −
�
x.y

γ′(x) · γ′(w) dw|2
)

= |y − x|2
(
|γ′(x)|2| −

�
x.y

γ′(z)− γ′(x) dz|2 − 1
4 | −
�
x.y
|γ′(x)− γ′(w)|2 dw + |γ′(x)|2

− −
�
x.y
|γ′(w)|2 dw|2

)
.

Additionally, observe that

|γ(y)− γ(x)|2

|y − x|2
= −

�
x.y

−
�
x.y

γ′(s) · γ′(t) ds dt

= −
�
x.y
|γ′(w)|2 dw − 1

2
−
�
x.y

−
�
x.y
|γ′(s)− γ′(t)|2 ds dt.

Therefore, we can rewrite TPp,q(γ) in terms of the first derivative γ′ as

TPp,q(γ)

=
�
R/Z

�
R/Z

(|γ′(x)|2|−
�

x.y
γ′(z)− γ′(x) dz|2 − 1

4 |−
�

x.y
|γ′(x)− γ′(w)|2 dw + |γ′(x)|2 − −

�
x.y
|γ′(w)|2 dw|2)

q
2

|y − x|p−q

·
(
−
�

x.y

|γ′(w)|2 dw − 1
2
−
�

x.y

−
�

x.y

|γ′(s)− γ′(t)|2 ds dt
)− p

2

|γ′(x)|1−q|γ′(y)| dx dy

This motivates to define the desired new energy Ep,q for any map u : R/Z→ S2 by

Ep,q(u)

=
�
R/Z

�
R/Z

(
|u(x)− (u)R/Z|2| −

�
x.y

u(z)− u(x) dz|2

− 1
4

∣∣∣∣∣ −
�
x.y
|u(x)− u(z)|2 dz + |u(x)− (u)R/Z|2 − −

�
x.y
|u(z)− (u)R/Z|2 dz

∣∣∣∣∣
2 ) q

2

·
(
−
�
x.y
|u(z)− (u)R/Z|2 dz −

1
2
−
�
x.y

−
�
x.y
|u(s)− u(t)|2 ds dt

)− p2
· |u(x)− (u)R/Z|1−q|u(y)− (u)R/Z|

dx dy

ρ(x, y)p−q

and we observe that the energies TPp,q and Ep,q coincide accordingly.

Lemma 5.1. For any knot γ with finite tangent-point energies TPp,q and constant
speed parametrization, we have

TPp,q(γ) = Ep,q(γ′).
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It remains to show that weak critical points of the tangent-point energies TPp,q,
cf. Definition 2.5, indeed induce critical points into the sphere S2 of Ep,q. As a
consequence, we can make use of the machinery of proving higher regularity for
fractional harmonic maps. To show the next result, we argue as in the proof of
[BRS19, Theorem 2.1].
Proposition 5.2. Let q > 1, p = q+ 2 and γ : R/Z→ R3 be a weak local immersion
with small tangent-point energy TPq+2,q around B(x, ρ). Furthermore, denote the
unit tangent field of γ by u : R/Z→ S2 such that

�
R/Z u = 0.

If γ is a critical point of TPq+2,q in B(x, ρ), i.e. for any φ ∈ C∞c (B(x, ρ),R3) if we
set γε = γ + εφ it holds

d

dε

∣∣∣
ε=0

�
B(x,ρ)

�
R/Z

|γ′ε(x) ∧ (γε(x)− γε(y))|q

|γε(x)− γε(y)|p |γ′ε(x)|1−q|γ′ε(y)| dy dx = 0,

then u is a critical point of Eq+2,q around B(x, ρ) in the class of maps v : R/Z→ S2,
i.e. for any φ ∈ C∞c (B(x, ρ),R3) if we set uε = u+εφ

|u+εφ| it holds

d

dε

∣∣∣
ε=0

�
B(x,ρ)

�
R/Z

(
|uε(x)− (uε)R/Z|2| −

�
x.y

uε(z)− uε(x) dz|2

− 1
4

∣∣∣∣∣ −
�
x.y
|uε(x)− uε(z)|2 dz + |uε(x)− (uε)R/Z|2 − −

�
x.y
|uε(z)− (uε)R/Z|2 dz

∣∣∣∣∣
2 ) q

2

·
(
−
�
x.y
|uε(z)− (uε)R/Z|2 dz −

1
2
−
�
x.y

−
�
x.y
|uε(s)− uε(t)|2 ds dt

)− p2
· |uε(x)− (uε)R/Z|1−q|uε(y)− (uε)R/Z|

dx dy

ρ(x, y)p−q = 0.

5.2 Euler-Lagrange equations of Eq+2,q

Since we are interested in obtaining higher regularity of critical knots for scale-
invariant tangent-point energies, we focus our studies to the critical range p = q + 2
and q ≥ 2 from now on.
In this section, we start with deriving the Euler-Lagrange equations of Eq+2,q for q ≥ 2
and realize that the new energies Eq+2,q have a nonlinear and nonlocal Lagrangian.
Furthermore, we obtain a decomposition of the Lagrangian into a term of highest
order and terms of lower order, of which we will make use hereafter. The extraction
of the highest order term was one of the major advances in the project.
In the following we will deal only with Eq+2,q for q ≥ 2, for what reason we define
Eq(u) := Eq+2,q(u)

=
�
R/Z

�
R/Z

(
|u(x)− (u)R/Z|2| −

�
x.y

u(z)− u(x) dz|2

− 1
4

∣∣∣∣∣ −
�
x.y
|u(x)− u(z)|2 dz + |u(x)− (u)R/Z|2 − −

�
x.y
|u(z)− (u)R/Z|2 dz

∣∣∣∣∣
2 ) q

2

·
(
−
�
x.y
|u(z)− (u)R/Z|2 dz −

1
2
−
�
x.y

−
�
x.y
|u(s)− u(t)|2 ds dt

)− q+2
2

· |u(x)− (u)R/Z|1−q|u(y)− (u)R/Z|
dx dy

ρ(x, y)2 .
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We will observe that the L2-gradient of Eq can be decomposed into a term of highest
order, given as

QB(x,ρ)(u, ϕ) :=

q

�
B(x,ρ)

�
R/Z
| −
�
x.y

u(z)− u(x) dz|q−2 −
�
x.y

−
�
x.y

(u(z1)− u(x)) · (ϕ(z2)− ϕ(x)) dz1 dz2

·
(

1− 1
2
−
�
x.y

−
�
x.y
|u(s)− u(t)|2 ds dt

)− q+2
2 dy dx

ρ(x, y)2 ,

and the following remainders of lower order:

R1
B(x,ρ)(u, ϕ) := q

2

�
B(x,ρ)

�
R/Z

(
(a(0)− 1

4b(0)2)
q−2

2 − a(0)
q−2

2
) (

1− 1
2c(0)

)− q+2
2 a′(0) dy dx

ρ(x, y)2

R2
B(x,ρ)(u, ϕ) := − q

4

�
B(x,ρ)

�
R/Z

(a(0)− 1
4b(0)2)

q−2
2
(
1− 1

2c(0)
)− q+2

2 b(0) b′(0) dy dx

ρ(x, y)2

R3
B(x,ρ)(u, ϕ) := q+2

4

�
B(x,ρ)

�
R/Z

(a(0)− 1
4b(0)2)

q
2
(
1− 1

2c(0)
)− q+4

2 c′(0) dy dx

ρ(x, y)2

R4
B(x,ρ)(u, ϕ) := − q+2

2

�
B(x,ρ)

�
R/Z

(a(0)− 1
4b(0)2)

q
2
(
1− 1

2c(0)
)− q+4

2 d′(0) dy dx

ρ(x, y)2

R5
B(x,ρ)(u, ϕ) := q

�
B(x,ρ)

�
R/Z

(a(0)− 1
4b(0)2)

q−2
2
(
1− 1

2c(0)
)− q+2

2 a(0) e′(0) dy dx

ρ(x, y)2

R6
B(x,ρ)(u, ϕ) := q

2

�
B(x,ρ)

�
R/Z

(a(0)− 1
4b(0)2)

q−2
2
(
1− 1

2c(0)
)− q+2

2 b(0) (1
2d
′(0)− e′(0)) dy dx

ρ(x, y)2

R7
B(x,ρ)(u, ϕ) :=

�
B(x,ρ)

�
R/Z

(a(0)− 1
4b(0)2)

q
2
(
1− 1

2c(0)
)− q+2

2 ((1− q)e′(0) + f ′(0)) dy dx

ρ(x, y)2 ,

where

a(0) :=
∣∣∣∣∣ −
�
x.y

u(z)− u(x) dz
∣∣∣∣∣
2

, a′(0) = 2 −
�
x.y

−
�
x.y

(u(z1)− u(x)) · (ϕ(z2)− ϕ(x)) dz1 dz2,

b(0) := −
�
x.y
|u(z)− u(x)|2 dz, b′(0) = 2 −

�
x.y

(u(z)− u(x)) · (ϕ(z)− ϕ(x)) dz,

c(0) := −
�
x.y

−
�
x.y
|u(s)− u(t)|2 ds dt, c′(0) = 2 −

�
x.y

−
�
x.y

(u(s)− u(t)) · (ϕ(s)− ϕ(t)) ds dt,

and

d′(0) = −2 −
�
x.y

u(z) · (ϕ)R/Z dz, e′(0) = −u(x) · (ϕ)R/Z, f ′(0) = −u(y) · (ϕ)R/Z.

Lemma 5.3. (Euler-Lagrange equations) Let q ≥ 2 and u : R/Z→ S2 be a critical
point of Eq around B(x, ρ) in the class of maps v : R/Z → S2 and

�
R/Z u = 0.

Then we have for any test function ϕ ∈ W
1
q
,q

loc (B(x, ρ),R), which is also tangential,
ϕ ∈ TuS2,

δEq(u, ϕ) = QB(x,ρ)(u, ϕ) +
7∑
i=1

RiB(x,ρ)(u, ϕ).
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Indeed, the main term QB(x,ρ) is of highest order, as we prove in the following, using
the identification Lemma 3.4.

Proposition 5.4. Let q ≥ 2 and u : R/Z → S2 be a critical point of Eq around
B(x, ρ) in the class of maps v : R/Z→ S2 and

�
R/Z u = 0. Then we have

|QB(x,ρ)(u, u)| ≈ [u]q
W

1
q ,q(B(x,ρ))

with constants only depending on q.

And the remaining terms of lower order, which is obtained by taking advantage of
the identification Lemma 3.4 and [BRS19, Proposition 2.5], and Sobolev embedding
Lemma 3.5.

Proposition 5.5. Let q ≥ 2, u : R/Z → S2 such that
�
R/Z u = 0 and ϕ ∈

W
1
q
,q

loc (B(x, ρ),R). Then we have

|R1
B(x,ρ)(u, ϕ)| . [u]2q−3

W
1
q ,q(B(x,ρ))

[ϕ]
W

1
q ,q(B(x,ρ))

for 2 ≤ q < 4,

|R1
B(x,ρ)(u, ϕ)| . [u]q+1

W
1
q ,q(B(x,ρ))

[ϕ]
W

1
q ,q(B(x,ρ))

for q ≥ 4,

as well as

|RiB(x,ρ)(u, ϕ)| .


[u]q+1

W
1
q ,q(B(x,ρ))

[ϕ]
W

1
q ,q(B(x,ρ))

for i = 2, 3 ,

[u]q
W

1
q ,q(B(x,ρ))

‖u‖L∞‖ϕ‖L1(R/Z) for i = 4, 5, 6, 7.

5.3 Regularity theory

In this section we finally run the grand machinery of showing higher regularity for
(essentially) fractional harmonic maps, which correspond to our critical knots of
interest. We establish a proof inspired by [Sch15] and [BRS19], but face some major
obstacles due to the weak definition of critical points for scale-invariant tangent-point
energies, cf. Definition 2.5, on the way.
Our main goal is to show the following

Proposition 5.6 (Decay estimate). Let q ≥ 2 and u : R/Z→ S2 a critical map of
Eq+2,q in B(x, ρ). Then there exist ε, τ ∈ (0, 1) and N0 ∈ N such that the following
holds.
If N ≥ N0, r > 0 and [u]

W
1
q ,q(B2Nr)

≤ ε, then

[u]q
W

1
q ,q(Br)

≤ τ [u]q
W

1
q ,q(B2Nr)

+ [ũ]
W

1
q ,q(R/Z)

∞∑
k=1

[ũ]
W

1
q ,q(B2N+kr)

+ 2Nr[ũ]q
W

1
q ,q(R/Z)

.

Here ũ denotes an extension u from R/Z to R.

This statement then implies Theorem 2.7: By iterating the decay estimate on small
balls, cf. [BRS16, Lemma A.8], we obtain a σ > 0 such that

sup
r>0, x∈R/Z

r−σ[u]
W

1
q ,q(Br(x))

. C(u).
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Hence by employing Sobolev embedding on Morrey spaces, cf. [Ada75], we achieve
u ∈ C σ̃ for some σ̃ < σ.
In order to attain Proposition 5.6, we begin with estimating the Gagliardo semi-norm
of u on the left-hand side by an operator Γβ,Bu, which is introduced in the following.
First recall that the term of highest order in the Euler-Lagrange equation of Eq is
given by

QB(u, ϕ) = q

2

�
B

�
R/Z

a(0)
q−2

2
(
1− 1

2c(0)
)− q+2

2 a′(0)(u, ϕ) dy dx

ρ(x, y)2

= q

�
B

�
R/Z

∣∣∣∣∣ −
�
x.y

u(z)− u(x) dz
∣∣∣∣∣
q−2(

1− 1
2 −
�
x.y

−
�
x.y
|u(s)− u(t)|2 ds dt

)− q+2
2

· −
�
x.y

−
�
x.y

(u(z1)− u(x)) · (ϕ(z2)− ϕ(x)) dz1 dz2
dy dx

ρ(x, y)2 .

As in [Sch15] and [BRS19], we now define the potential for some 0 < β < 1

Γβ,Bu(z) := QB(u, |z − ·|β−1),

following the definition of the Riesz potential Iβ of order β, which is defined by

Iβf(x) =
�
R
|z − x|β−1f(z) dz.

The inverse of the Riesz potential Iβ is called the fractional Laplacian of order β,
that is

(−∆)
β
2 f(x) = c

�
R

f(y)− f(x)
|x− y|1+β dy.

Applied to our situation, we hence observe that

QB(u, ϕ) = c

�
R

Γβ,Bu(z)(−∆)
β
2ϕ(z) dz. (5.1)

Our first interim result is the following. We basically estimate the Gagliardo semi-
norm by the introduced operator.

Proposition 5.7. (Left-hand side estimates) Let Br be an interval (motivated by
weak local immersion), ρ > 0 such that B2Lρ ⊂ Br and 1

q −
1
p > 0 small. If

u : R/Z→ S2 satisfies some conditions, then we have for any ε > 0

[u]q
W

1
q ,q(Bρ)

. [u]
W

1
q ,q(B2Lρ)

‖χB2Kρ
Γ 1
p
,B2Lρ

u‖
L

p
p−1

+ ε[u]q
W

1
q ,q(B2Lρ)

+ Cε

(
[u]q

W
1
q ,q(B2Lρ)

− [u]q
W

1
q ,q(Bρ)

)

for any L,K ∈ N large enough.

5.3.1 Mean Value Arguments

This subsection is meant to illustrate some technicalities, which arise in the case of
the scale-invariant tangent-point energies.
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Lemma 5.8. Let α ∈ R and a, b ∈ R with |a − b| . min{|a|, |b|}. Then for any
ε ∈ [0, 1],

||a|α − |b|α| . |a− b|ε min{|a|α−ε, |b|α−ε}

Cf. [MSY20, Lemma 3.3.]
In our situation we have to deal with the expression

1
|x− y|

�
(x,y)
||z − z2|α−1 − |z − x|α−1| dz2.

The following Lemma tells us, that it behaves very similarly to

||y − z|α−1 − |x− z|α−1|.

Lemma 5.9. Let x, y, z ∈ R three distinct points be inside a geodesic ball B ⊂ R
and α ∈ (0, 1). Set

F (x, y, z) := 1
|x− y|

�
(x,y)
||z − z2|α−1 − |z − x|α−1| dz2.

• If
|x− y| . min{|x− z|, |y − z|} (5.2)

then for any ε ∈ [0, 1],

F (x, y, z) . |x− y|ε min{|x− z|α−ε−1, |y − z|α−ε−1}. (5.3)

• If
|x− z| . min{|x− y|, |y − z|} (5.4)

then for any ε ∈ [0, 1],

F (x, y, z) . |x− z|α−1 . |x− y|ε|x− z|α−ε−1. (5.5)

• If
|y − z| . min{|x− y|, |x− z|} (5.6)

then for any ε ∈ [0, 1],

F (x, y, z) . |y − z|α−1 . |x− y|ε|y − z|α−ε−1 (5.7)

For upcoming statement, we need the notation of the uncentered Hardy-Littlewood
maximal function, which is given by

Mf(x) = sup
B(x,r)3y

1
|B(y, r)|

�
B(y,r)

|f(z)| dz.

Let us recall the following proposition first.

Proposition 5.10. [Sch18a, Proposition 6.6.] For any α ∈ [0, 1],

|u(x)− u(y)| . |x− y|α
(
M(−∆)

α
2 u(x) +M(−∆)

α
2 u(y)

)
.

This implies

−
�
x.y
|u(z1)− u(x)| dz1 . |x− y|αMM(−∆)

α
2 u(x),

and
−
�
x.y
|u(z1)− u(y)| dz1 . |x− y|αMM(−∆)

α
2 u(y).
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In the following, we need an adapted version of [Sch15, Proposition 6.3], given by

Lemma 5.11. Let

G(x, y, z) := |u(y) + u(x)− 2u(z)| −
�
x.y
||z − z2|

1
p
−1 − |z − x|

1
p
−1| dz2

and

H(x, y, z) := −
�
x.y
|u(z1)− u(x)| dz1 −

�
x.y
||z − z2|

1
p
−1 − |z − x|

1
p
−1| dz2.

Then for any α < 1
p and ε ∈ (0, 1− α) such that ε < 1

p −
α
2 , G(x, y, z) and H(x, y, z)

are, up to a constant, bounded from above by

|x−y|α+ε
(
MM(−∆)

α
4 u(x) +MM(−∆)

α
4 u(y) +MM(−∆)

α
4 u(z)

)
k 1
p
−α2−ε,

1
p
(x, y, z),

where ks,γ has the form

ks,γ(x, y, z) := min{|x− z|s−1, |y − z|s−1}

+
( |y − z|
|x− y|

)γ−s
|y − z|s−nχ{|y−z|.min{|x−y|,|x−z|}}

+
( |x− z|
|x− y|

)γ−s
|x− z|s−nχ{|x−z|.min{|x−y|,|y−z|}}.

Furthermore, we require the next statement for a special case in the proof of the
upcoming Lemma 5.13.

Lemma 5.12. Let G,H : R→ R+, α, β ∈ (0, 1) such that β < α < 1
p , and

I :=
�
R

�
R

�
R
G(x) −

�
x.y
|u(z1)− u(y)|2 dz1H(z) −

�
x.y
||z − z2|

1
p
−1 − |z − x|

1
p
−1| dz2

· |x− y|−2+α(q−2) dx dy dz.

Then

I .
�
R
Iα(q−1)+β+ε−1GM

(
M(−∆)

α
2 uM(−∆)

β
2 u
)
I

1
p
−ε
H

+
�
R
GIα(q−1)+β+ε−1M

(
M(−∆)

α
2 uM(−∆)

β
2 u
)
I

1
p
−ε
H

+
�
R
Iα(q−1)+β+ε−1GMM(−∆)

α
2 uMM(−∆)

β
2 u I

1
p
−ε
H

+
�
R
G Iα(q−1)+β+ε−1

(
MM(−∆)

α
2 uMM(−∆)

β
2 u
)
I

1
p
−ε
H

for any admissible ε ∈ (0, 1), α(q − 1) + β − 1 < ε < 1
p .

5.3.2 Right-hand side estimates

To prove the decay estimate Proposition 5.6 in the next step, we need to proceed
with estimating the right-hand side of Proposition 5.7 and it becomes clear how we
benefit from having introduced the operator Γ 1

p
,Bu. In particular, we project the
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operator Γ 1
p
,Bu firstly into the linear space spanned by u and secondly into linear

space orthogonal to u. More precisely, we observe by |u| = 1 a.e. that

‖χB2Kρ
Γ 1
p
,B2Lρ

u‖
L

p
p−1

. ‖χB2Kρ
u · Γ 1

p
,B2Lρ

u‖
L

p
p−1

+ ‖χB2Kρ
u ∧ Γ 1

p
,B2Lρ

u‖
L

p
p−1

.

Here we denote v∧ for any v ∈ R3 by the R3×3-matrix given by

v∧ =

 0 −v3 v2
v3 0 −v1
−v2 v1 0.


We then deal with each part of the splitting separately. However, both estimates
are based on effects of integration by compensation using non-linear commutators as
well as information from the Euler-Lagrange equations. The proofs also depend on
the mean value arguments discussed in Section 5.3.1.

Lemma 5.13. (Right-hand side estimates I; The orthogonal part) Assume that Br is
a geodesic ball (i.e. for all x, y ∈ Br we have |x−y|R/Z = |x−y|R). Let u : R/Z→ S2

solve the Euler-Lagrange equations of Lemma 5.3 in Br, then for any 1
p <

1
q and

L ∈ N large enough and any ρ > 0 such that B22Lρ ⊂ Br, we have

‖χB2Kρ
u · Γ 1

p
,B2Lρ

u‖
L

p
p−1

. [u]q
W

1
q ,q(B22Lρ)

+
∞∑
k=1

2−σ(L+k)[ũ]q
W

1
q ,q(B22L+kρ)

.

Here ũ denotes an extension u from R/Z to R.

Lemma 5.14. (Right-hand side estimates II; The tangential part) Assume that Br
is a geodesic ball. Let u : R/Z→ S2 solve the Euler-Lagrange equations of Lemma
5.3 in Br, then for any 1

p <
1
q and K ∈ N large enough and any ρ > 0 such that

B220Kρ ⊂ Br, we have

‖χB2Kρ
u ∧ Γ 1

p
,B210Kρ

u‖
L

p
p−1

. [u]q
W

1
q ,q(B220Kρ)

+ 2−σK [u]q−1

W
1
q ,q(B220Kρ)

+ [ũ]
W

1
q ,q(R)

∞∑
k=1

2−σ(K+k)[ũ]q−1

W
1
q ,q(B220K+kρ)

+ (22Kρ)[ũ]q
W

1
q ,q(R)

.

Here ũ denotes an extension u from R/Z to R.

The precise proof of the right-hand side estimates are expected to be written down
completely within the next weeks. Then by combining the left-hand side estimates
Proposition 5.7 with the right-hand side estimates Lemma 5.13 and Lemma 5.14, we
finally arrive at the decay estimate Proposition 5.6.
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6 Conclusion and Outlook
Overall we conclude that the research stay at the University of Pittsburgh sponsored
by the Austrian Marshall Plan Foundation led to intensive and in-depth conducted
investigations on the regularity theory for scale-invariant tangent-point energies.

In particular, we investigated critical points and minimizers for scale-invariant
tangent-point energies TPp,q of closed curves. We established the notion of critical
weak embeddings with locally bounded tangent-point energy. We showed that a)
minimizing sequences in ambient isotopy classes converge to critical weak embeddings
in all but finitely many points and b) are able to show their regularity. Technically,
the convergence theory a) is based on a gap-potential estimate for Sobolev spaces with
respect to the tangent-point energy. The regularity theory b) is based on constructing
a new energy Ep,q and proving that the derivative γ′ of a parametrization of a critical
curve γ is a critical map with respect to Ep,q acting on torus-to-sphere maps.

The elaborated outcome will be more than sufficient for publication in a well-
established, high-ranking journal, considering its significant and long-desired results
as well as its intriguing methods of proof, let alone its analogies to the Willmore
energy, e.g. Riviére’s outstanding work on Willmore surfaces [Riv08]. Moreover, due
to is interdisciplinary nature, the research project is likely to arise great attention
in various fields of research, for instance in geometric analysis, harmonic analysis,
and partial differential equations, but also in knot theory or molecular biology (e.g.
knotted proteins). Last but not least, thanks to the profound knowledge of Prof.
Armin Schikorra, I greatly deepened my knowledge in the research area of harmonic
analysis. All in all, the collaboration with Prof. Armin Schikorra culminated – as
expected – in a grand success.

The outcome of the project stands out as a starting point for further fascinating
projects. Immediately motivated from this work, it is desirable to prove the existence
of minimizers with respect to knot classes for scale-invariant tangent-point energies.
So far there exists only one existence result on scale-invariant knot energies, namely
for the Möbius energy case, cf. [FHW94]. However, this existence proof is heavily
based on the invariance with respect to Möbius transformations, which is presumably
not available in the case of scale-invariant tangent-point energies. Moreover, it would
be also fascinating to extend the regularity theory to surfaces, as there exist analogs
of tangent-point energies for higher-dimensional objects, cf. [BGMM03, SvdM13].

Eventually, it is obvious to study the almost unexplored field of gradient flows for scale-
invariant as well as non-scale-invariant knot energies in the next step. In particular,
a certain range of sub-critical tangent-point energies leads to degenerate evolution
equations, of which even non-fractional versions have been hardly investigated yet.
Based on the present research project, which covered the most challenging case of
tangent-point energies, i.e. the scale-invariant case, we have successfully laid the
foundation and elaborated the missing link for thriving pursuing studies on the
existence and regularity of solutions thereof.
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