
JED: JSON Edit Distance

Marshall Plan Scholarship

FINAL RESEARCH PAPER

by

Dipl.-Ing. Thomas Hütter

Supervisor: Univ.-Prof. Nikolaus Augsten, PhD (University of Salzburg)

Host-Supervisor: Prof. Michael J Carey, PhD (University of California, Irvine)

Salzburg, September 16, 2020

Department of Computer Sciences ● Faculty of Natural Sciences
Paris Lodron University of Salzburg

Jakob-Haringer-Straße 2 ● A-5020 Salzburg

Abstract

In the last decade, JSON became one of the most popular data formats in computer
sciences, especially since the rise of document stores. Commonly, these database
systems natively store data in a JSON-like format to address the need for schema-
less data. While these systems evolved into full-fledged applications, an unaddressed
problem is the similarity of their data items, hence JSON documents. Existing
databases only support similarity queries for individual values, e.g., strings or sets,
rather than for the entire data record.

To this end, we define an intuitive edit-based distance measure for JSON doc-
uments, called JSON edit distance (JED). Unfortunately, computing JED is NP-
complete as proven in this paper. Therefore, we present JED approximations with
lower and upper bound guarantees that can be computed in polynomial time. In
an experimental evaluation on several real-world datasets, we compare and analyze
the runtime and tightness of these bounds. Finally, we present a prototype system,
called AsterixDB, and discuss two approaches of how to integrate JED.

i

Contents

Abstract i

Contents iii

1 Introduction 1

2 Preliminaries 3

2.1 JSON Format . 3
2.2 JSON tree representation . 3
2.3 Tree Edit Distance . 4
2.4 Edit Mapping . 5

3 JSON Edit Distance (JED) 7

3.1 NP-completeness of the JSON Edit Distance 8

4 JED Approximations 13

4.1 Node Intersection (NI) . 13
4.2 Ordered JSON Edit Distance (OJED) 14
4.3 Document Preserving JSON Edit Distance (DPJED) 15
4.4 Ordered Document Preserving JSON Edit Distance (ODPJED) . . . 16

5 Related Work 19

5.1 JSON Schema . 19
5.2 JSON Di↵s . 19
5.3 JSON Tree Representations . 20
5.4 Tree Edit Distance . 20
5.5 Unordered Tree Edit Distance Approximations 21
5.6 Further edit-based tree distances . 21

6 Experiments 23

6.1 Real-World JSON Dataset Analysis . 23
6.2 Tightness Analysis . 24
6.3 Runtime Analysis . 26

iii

iv CONTENTS

7 System Integration 29

7.1 AsterixDB . 29
7.2 JSON Similarity Queries within AsterixDB 30

8 Conclusion and Future Work 33

Bibliography 35

CHAPTER 1
Introduction

Nowadays, one of the most prominent data formats is the JavaScript Object Nota-
tion (JSON). It is used in a large variety of scenarios, e.g, a vast amount of real-world
datasets are provided in JSON format or, being native to Javascript, JSON is the
standard data interchange format in mobile and web applications. Another applica-
tion of interest are non-relational database systems, in particular document stores,
which use JSON-like formats to natively store semi-structured data.

Due to the schema-less approach of document stores, individual data records
may not have similar structures or attributes. Consider a product database of an
online shop. A certain product may be o↵ered by multiple vendors and is stored
several times in the database with minor di↵erences, e.g., only some products have
a description or provide compatible operating systems (cf. Figure 1.1). To avoid
duplicates in the product catalog, similar records must be identified and similarity
queries that allow di↵erences in the data records are required.

{
"Trackpad" : {,

"model" : "X",
"size" : {

"Weight" : 8.6,
"Height" : 7,
"Depth" : 1.1

}
"Layout" : "EN",
"OS" : ["OSX", "Win"]

}
}

{
"Trackpad" : {,

"model" : "X",
"size" : {

"Weight" : 8.6,
"Height" : 7,

}
"Layout" : "DE",
"Description" : "Input

device."
}

}

Figure 1.1: Two example JSON documents of products in an online shop.

Currently, most database systems provide only limited or no support for simi-
larity queries. In order to compute the similarity of data records, stored as JSON

1

2 CHAPTER 1. INTRODUCTION

documents, existing solutions divide the data into smaller junks of information, e.g.,
sets of tokens or strings of certain values. However, the overall structure and the
hierarchically encoded information of JSON documents is neglected. While distance
measures for other data formats (e.g., XML [14, 24, 22]) are well studied, the simi-
larity of JSON documents is poorly addressed in literature and by database system
vendors.

To the best of our knowledge we are the first to address edit-based distance
measures for JSON documents. The main contributions described in this paper
are:

� We introduce JED, an edit-based distance for JSON documents based on an
intuitive tree representation.

� We give a detailed NP-completeness proof to show the computational com-
plexity of JED.

� We present four JED approximation algorithms with lower and upper bound
guarantees.

� We gathered a collection of 20 JSON datasets and analyzed their characteris-
tics.

� In an experimental evaluation, we use the collected datasets to verify the
quality and runtime of the proposed approximations.

� We analyze a prototype system, called AsterixDB, and discuss JED integration
methods.

The remainder of the paper is structured as follows: Section 2 discusses im-
portant preliminary informations on JSON and similarity measures for trees. An
edit distance for JSON documents (JED) and its NP-completeness proof is shown
in Section 3. Next, we present e�cient and e↵ective approximation algorithms for
JED in Section 4. The related work is discussed in Section 5. In Section 6, we ana-
lyze the characteristics of 20 real-world JSON datasets and experimentally evaluate
our approximation algorithms. Methods on how to integrate JED within a big data
management system can be found in Section 7. In Section 8, we summarize and
give an outlook on future JED projects.

CHAPTER 2
Preliminaries

Before we head on to the definition of a novel JSON edit distance, we summarize
essential information on the JSON data format, JSON trees, and edit-based tree
distances.

2.1 JSON Format

JSON, as described in RFC8259 [9] is composed of the following three basic com-
ponents:

� An object is an unordered list of key-value pairs that are surrounded by curly
braces. Keys are string literals that are unique within a certain object. The
definition of values can be found below.

� An array is an ordered list of JSON values surrounded by brackets.

� A value is either a literal (string, number, boolean, or null), an object, or an
array. The recursive definition of values results in the hierarchical structure
of JSON documents.

Two examples of JSON documents are given in Figure 1.1. Consider the doc-
ument on the left hand side. The root node is an object that contains a key-value
pair with key "Trackpad" and a nested object as a value; the value of key "OS" is
a nested array that contains a list of two objects. In this example, only string and
number literals are used.

2.2 JSON tree representation

Based on their recursive definition, JSON documents are naturally represented as
trees. A JSON tree T is a directed, acyclic, connected graph with a set of nodes

3

4 CHAPTER 2. PRELIMINARIES

{ }

”Trackpad”

{ }

”Model”

”X”

”Size”

{ }

”Width”

8.6

”Height”

7

”Depth”

1.1

”Layout”

”EN”

”OS”

[]

”OSX” ”Win”

{ }

”Trackpad”

{ }

”Model”

”X”

”Dimensions”

{ }

”Width”

8.6

”Height”

7

”Layout”

”DE”

”Description”

”Input device.”

Figure 2.1: According JSON tree representations of the JSON documents shown in
Figure 1.1.

N(T), a set of edges E(T) ⊆ N(T)×N(T), and a relation <S that defines the sibling
order.

Each node v ∈ N(T) has a type, type(v), and a label, lbl(v). The type of a node
represents a certain JSON component, i.e., an object, an array, a key, or a literal.
Labels carry the data of a node, but are not necessarily unique. Note, that object
and array nodes have an empty label. The size �T � of tree T is the number of its
nodes �N(T)�.

In an edge (v,w) ∈ E(T), v is the parent and w the child, p(w) = v. Children
of the same node are siblings. Each node v has at most one incoming edge. The
node without a parent is the root node, a node without children is a leaf. The
relationship between parent v and child w is limited by the following type conditions:
(1) type(v) = object �⇒ type(w) ∈ {key}, (2) type(v) = array �⇒ type(w) ∈{object,array, literal}, and (3) type(v) = key �⇒ type(w) ∈ {object,array, literal}.
Since literals cannot have children, there is no edge (v,w) ∈ E(T) with type(v) =
literal. Node x is an ancestor of node v, x ∈ anc(v), i↵ x = p(v) or x is an ancestor
of p(v). x is a descendant of v, x ∈ desc(v), i↵ v is an ancestor of x.

JSON documents are usually a hybrid consisting of ordered (values of arrays)
and unordered siblings (key-value pairs of objects). The sibling order is defined by
the pair (N(T),<S), a strict partially ordered set, with the following properties:
(1) the order is total among the children of an array node, and (2) for any distinct
nodes x, y, x′, y′ ∈ V , if x ∈ desc(x′), y ∈ desc(y′) and x

′ < y′, then x < y.
An additional constraint, introduced by the definition of JSON, is that the labels

among all children of an object node, namely keys, must be unique.
Figure 2.1 shows the tree representations of the JSON documents in Figure 1.1.

In this visualization, object nodes are depicted as { }, array nodes as [], and key
and literal nodes with their original values.

2.3 Tree Edit Distance

After defining a tree representation of JSON documents, we will discuss a well es-
tablished distance measure for tree-structured data. The so-called tree edit distance,
�(T,T ′), between two trees T and T

′, which is defined as the minimum number of

2.4. EDIT MAPPING 5

node edit operations that transform T into T
′. Allowable node edit operations are:

delete node v and connect all its children to the parent of v maintaining the sibling
order; insert a new node w between an existing node v and a consecutive subset or
subsequence of v’s children, rename the label of node v.

The state-of-the-art algorithm by Pawlik and Augsten [26] computes the tree
edit distance between two ordered trees in O(n3) while the problem was shown
to be MaxSNP-hard for unordered trees by Zhang [38]. JSON trees may include
ordered (array) and unordered (object) siblings.

2.4 Edit Mapping

An edit mapping, M , between the nodes of two trees T and T
′, represents the edit

operations that transform T into T
′.

Node pairs that are mapped represent rename operations, unmapped nodes in
T are deleted, and unmapped nodes in T

′ are inserted. Considering the unit-cost
model, a mapped node pair with identical labels is renamed at zero cost, all other
operations have cost 1. The cost of an edit mapping, cost(M), is the cost sum of
all its operations.

The edit mapping is defined based on restrictions on the node mappings. Note
that Definition 2.1 lists the conditions for ordered trees. The edit mapping between
unordered trees neglects the order condition (cf. Definition 2.2).

Definition 2.1 (Edit mapping for ordered trees).

Given two trees T and T
′ and a mapping M ⊆ N(T)×N(T ′), M is an edit mapping

from T to T
′ if and only if the following conditions hold for any two node pairs(v,w), (v′, w′) ∈M :

� v = v′ i↵ w = w′ (one-to-one),
� v is an ancestor of v′ i↵ w is an ancestor of w′ (ancestor),
� v is to the left of v′ i↵ w is to the left of w′ (order).

Definition 2.2 (Edit mapping for unordered trees).

Given two trees T and T
′ and a mapping M ⊆ N(T)×N(T ′), M is an edit mapping

from T to T
′ if and only if the following conditions hold for any two node pairs(v,w), (v′, w′) ∈M :

� v = v′ i↵ w = w′ (one-to-one),
� v is an ancestor of v′ i↵ w is an ancestor of w′ (ancestor).
In the following section, we will similarly define an edit mapping for JSON trees.

CHAPTER 3
JSON Edit Distance (JED)

We present a novel edit-based distance measure for JSON documents, called JSON
Edit Distance (JED). JED operates on the tree representations of JSON documents
as described in Section 2.2. The distance, denoted JED(TJ , T

′
J
), is defined as the

minimum-cost sequence of node edit operations that transform JSON tree TJ into
T
′
J
.
Conceptually, JED is similarly defined as the widely adopted and accepted string

and tree edit distance. The core of the distance are three edit operations on the
nodes of a JSON tree: delete a node, insert a node , and rename the label of a node.
Note that only the label of a node can be renamed, not its type. Hence, objects
and arrays are not a↵ected by rename operations. In Definition 3.1, we define the
edit mapping for JED.

Definition 3.1 (JSON Edit Mapping).

Given two JSON trees T and T
′ and a mapping M ⊆ N(T) ×N(T ′), M is a JSON

edit mapping from T to T
′ if and only if the following conditions hold for any node

pairs (v,w), (v′, w′) ∈M :

� v = v′ i↵ w = w′ (one-to-one),
� v is an ancestor of v′ i↵ w is an ancestor of w′ (ancestor),
� v <S v

′ and w is comparable to w
′ in <S then w <S w

′ (array-order),
� type(v) = type(w) (type).
The JSON edit mapping extends the edit mapping of unordered trees by two con-

ditions, array-order and type. First, JSON trees are a hybrid containing unordered
children for objects and ordered children for arrays. We leverage the partial order<S to express the order that is imposed by arrays. Second, only nodes of the same
type are allowed to be mapped, to introduce more intuitive mappings.

7

8 CHAPTER 3. JSON EDIT DISTANCE (JED)

{ }

”l1”

{ }

”c11”

”L”

”c12”

”L”

”c13”

”L”

. . . ”ln”

{ }

”cn1”

”L”

”cn2”

”L”

”cn3”

”L”

TC

-subtrees (n many)

TS

�-subtrees (m = 3k many)

µ-subtrees (n − k many)

{ }

”s1”

”L”

”s2”

”L”

. . . ”sm”

”L”

”ln+1”

{ }

”lx”

”L”

”ly”

”L”

”lz”

”L”

. ”l2n−k”

{ }

”lx”

”L”

”ly”

”L”

”lz”

”L”

Figure 3.1: Polynomial time transformation of an exact cover by 3-sets (X3C)
instance into JSON trees TS and TC .

The JSON edit mapping for the two JSON trees in Figure 2.1 is as follows: the
two object nodes and key "Trackpad" starting at the root of the tree are mapped,
the subtrees of key "Model" are mapped, the subtrees of key "Layout" are mapped
with cost 1, "Size" is renamed to "Dimensions", the key-value pair "Depth" :

1.1 is deleted. In the remaining subtree "OS" is renamed to "Description", "OSX
is renamed to "Input device.", and the array node and "Win" is deleted.

3.1 NP-completeness of the JSON Edit Distance

In order to show that the computation of the JSON edit distance is NP-complete,
we consider the following decision problem called JED:

Definition 3.2 (JED).

Instance: Two JSON trees TS and TC and a positive integer i.
Question: Is the minimal JSON edit distance JED(TS , TC) ≤ i?

Similar to the unordered tree edit distance [35], the proof is by reducing the exact
cover by 3-sets (X3C) problem, c.f. Definition 3.3, to JED. The NP-completeness
proof of X3C was published by Garey and Johnson [18].

Definition 3.3 (Exact cover by 3-sets (X3C)).

Instance: A finite set S = {s1, s2, . . . , sm}, where m = 3k, and a collection C ={C1, C2, . . . , Cn}, where Ci = {ci1 , ci2 , ci3} and cij ∈ S.
Question: Is there a subcollection C

′ ⊆ C such that every element of S occurs in
exactly one member of C ′?

Given an instance of X3C, let l1, . . . , l2n−k, lx, ly, lz, L ∉ S be strings that are
not elements of set S and, w.l.o.g, each element si ∈ S occurs only once in S. The
polynomial time transformation of an X3C instance into a JED instance (i.e., JSON
trees TS , TC , and integer i) is shown in Figure 3.1. Tree TS is built based on set S;
for each element si ∈ S, a �-subtree is inserted (3k many), and additionally n − k
µ-subtrees are inserted. Tree TC is built based on collection C; for each element
Ci ∈ C, a -subtree is inserted (n many). Further, let i = 4n − 2k.

3.1. NP-COMPLETENESS OF THE JSON EDIT DISTANCE 9

Given an instance of X3C with JSON tree transformations TC and TS , we show
that the following holds: JED(TS , TC) ≤ 4n−2k i↵ there is an exact cover by 3-sets.

Lemma 3.4.

Given an instance of X3C with JSON tree transformations TS and TC , let MJED be
the minimal JSON edit mapping between JSON trees TS and TC , then JED(TS , TC) ≥
4n − 2k.
Proof.

As a result of the described transformation process, the sizes of the trees �TC �, �TS �
and the mapping size �MJED � are as follows:

� �TS � = 8(n − k) + 2(3k) + 1: n − k µ-subtrees of size 8 are inserted, a �-subtree
with 2 nodes is inserted (key and literal) for each si ∈ S with �S� = 3k, and one
node for the root.

� �TC � = 8n+1: for each Ci ∈ C with �C � = n, a -subtree with 8 nodes is inserted,
and one node for the root.

� �MJED � = �TS � − d = 8n − 2k + 1 − d, where d is the number of unmapped nodes
in TS . From the JSON tree transformation, we know that �TC � ≥ �TS �. Then,
the mapping size is the size of the smaller tree �TS � subtracted by the number
of unmapped nodes in TS .

Further, there are at most 4(n − k) + 2(3k) + 1 nodes with identical labels. 1
results from the identical object in the root nodes, s1, . . . , sm and their child literals
L may be identical to cij and their child literals, and all other subtrees (n−k many)
share one object node and three literals L.

The cost � of the minimal JSON edit mapping MJED between TS and TC is
bounded as follows:

�(MJED) ≥ (�MJED � − (4(n − k) + 2(3k) + 1))+ (�TC � − �MJED �) + (�TS � − �MJED �)
�(MJED) ≥ 4n − 4k − d + (�TC � − �MJED �) + (�TS � − �MJED �)
�(MJED) ≥ 4n − 2k + (�TS � − �MJED �)
�(MJED) ≥ 4n − 2k + d
�(MJED) ≥ 4n − 2k

Note that the first term is an upper bound on the number of rename opera-
tions, the second term is the number deletion, and the third term is the number of
insertions.

Since the minimal JSON edit mapping is a visual representation of the node
edit operations, we know that �(MJED) = JED(TS , TC). Hence, JED(TS , TC) ≥
4n − 2k. �
Lemma 3.5.

Given an instance of X3C with JSON tree transformations TS and TC , the following
holds: if there is an exact cover by 3-sets, then JED(TS , TC) ≤ 4n − 2k.

10 CHAPTER 3. JSON EDIT DISTANCE (JED)

Proof.

Create a JSON edit mapping M
∗ as follows:

� Map nodes s1, s2, . . . , sm in TS to a cij in TC with the same label. There must
be zero-cost mappings for all si ∈ S as well as their literal children L, since
there exists an exact cover by 3-sets. Hence, for each triplet of �-subtrees (k
many), 2 nodes have to be inserted (lj and an object node). The resulting
costs are 2k.

� Map the remaining µ-subtrees (n−k many) in TS to the remaining -subtrees
in TC with cost 4.

The cost of the resulting mapping is �(M∗) = 2k+4(n−k) = 4n−2k. Since M∗ is a
valid but not necessarily minimal JSON edit mapping, �(M∗) ≥ JED(TS , TC). �
Lemma 3.6.

Given an instance of X3C with JSON tree transformations TS and TC , the following
holds: if JED(TS , TC) ≤ 4n − 2k, then there is an exact cover by 3-sets.

Proof.

From JED(TS , TC) ≤ 4n−2k and Lemma 3.4, we know that JED(TS , TC) = 4n−2k.
Further, from Lemma 3.4, we know that d = 0, hence all nodes in TS are in the
minimal JSON edit mapping MJED. We continue by analyzing which nodes pairs
of TS and TC are in MJED.

First, the roots of TS has to be mapped to the root of TC . Otherwise, the root
can only be mapped to an object in a -subtree. Due to the ancestor condition, all
nodes in TS have to be mapped to the subtree of the according object node in TC .
Since there are more nodes in TS than in such a subtree, it contradicts the fact that
all nodes in TS are mapped.

Next, consider the root node of any µ-subtree. Due to the type constraint of
the JSON edit mapping, it can only be mapped to the root of a -subtree or to a
cij . Mapping it to the root implies a minimal cost of 4 rename operations compared
to at least 6 deletion operators otherwise. Therefore, in a minimal mapping, each
µ-subtree is mapped to a -subtree with cost 4, which results in an overall cost of
4(n − k).

Hence, only 2k edit operations remain to map 3k �-subtrees to k -subtrees.
The size di↵erence between these remaining subtrees in TC and TS is 8k − 6k = 2k.
Hence, all nodes in TS must be mapped with cost 0, i.e., all si ∈ S must match
exactly one cij in k -subtrees in TC , which is equivalent to C

′ and , therefore,
there is exists an exact cover by 3-sets. �
Theorem 3.7.

Computing the JSON edit distance between two JSON trees is NP-complete.

Proof.

We need to show the following two steps:

3.1. NP-COMPLETENESS OF THE JSON EDIT DISTANCE 11

� JED ∈ NP : A non-deterministic algorithm can guess a JSON edit mapping
M
∗ ⊆ N(TS) × N(TC) between two JSON trees TS and TC and verify in

polynomial time whether the mapping costs, hence the number of rename,
insertion, and deletion operations, are at most i.

� X3C can be reduced to JED: From Lemma 3.5 and Lemma 3.6 immediately
follows that there is an exact cover by 3-sets i↵ JED(TC , TS) ≤ 4n − 2k.

Hence, the computation of the JSON edit distance is NP-complete. �
While the above proof only holds for JSON trees with degree 3, the proof for

trees with degree deg = q > 3 results from an according reduction of exact cover by
q-sets. In this general case, the claim is as follows: there exists an exact cover by
q-sets i↵ JED(TS , TC) ≤ (q + 1)n + (q − 5)k.

”l1”

{ }

”c11”

”L”

”c12”

”L”

”c13”

”L”

”l1”

{ }

”c11”

”L”

”lw”

{ }

”c12”

”L”

”c13”

”L”

Figure 3.2: Transformation of - and µ-subtrees into a JSON tree with degree 2,
lw ∉ S.

Since exact cover by 2-sets is solvable in polynomial time, we reduce exact cover
by 3-sets to show the NP-completeness of trees with degree two. The following two
modifications are needed: (1) compared to Figure 3.1, adjust the structures of -
and µ-subtrees as shown in Figure 3.2, (2) the sizes change as follows �TC � = 10n+1,�TS � = 10(n−k)+2(3k)+1, �M � = 10n−4k+1−d, and there are at most 5(n−k)+2(3k)+1
nodes with identical labels. Then it holds that JED(TC , TS) ≤ 5n − 3k i↵ there is
an exact 3-cover. Hence, the JSON edit distance is NP-complete for JSON trees
with degree 2 or higher.

Note, that JED for degree 1 trees can be computed using the string edit distance
where each node of the tree is considered as a single character in the string. This
observations follows from the ancestor condition of JED.

CHAPTER 4
JED Approximations

Computing the JSON edit distance is not feasible, even for small documents, as
proven in the previous section. In this section, we present well-defined approxima-
tions of JED that are computable in polynomial time. Further, we proof that each
approximation is either a lower or an upper bound to JED.

4.1 Node Intersection (NI)

A basic JED approximation is the so-called node intersection. Intuitively, the hier-
archical information is disregarded and nodes are mapped with cost 0 if they have
the same type and label. Otherwise, it is considered that the remaining nodes can
be renamed with cost 1. Note, that we consider the unit cost model for all of the
following examples, i.e., each insertion, deletion, and rename have cost 1.

Theorem 4.1 (Node Intersection Lower Bound).

Given two JSON trees TJ and T
′
J
, let N and N

′ be the bags of nodes of TJ and T
′
J
,

and �N �N ′� be the bag intersection, respectively.

JED(TJ , T
′
J) ≥max(�N �, �N ′�) − �N �N ′�

Proof.

The right-hand side of the equation is equivalent to the number of nodes in the
larger tree that cannot be mapped to a node in the smaller tree with zero cost (i.e.,
di↵erent type and/or label). Consequently, for all of these nodes exactly one edit
operation is imposed. All other nodes are considered to be mapped with cost 0, even
though they may not be in the minimal JSON edit mapping. The overestimation
of 0 cost mappings lead to an overall lower bound. �

Consider JSON trees TJ and T
′
J
in Figure 2.1, the node intersection is 19−11 = 8.

As shown in Section 3, the computed value is equivalent to JED in this example.

13

14 CHAPTER 4. JED APPROXIMATIONS

4.2 Ordered JSON Edit Distance (OJED)

The first out of three upper bounds for JED that we present in this paper adapts
the edit mapping definition for ordered trees (cf. Definition 2.1) to JSON trees
which results in Definition 4.2. The main di↵erence is the additional JSON type
constraint (type).

Definition 4.2 (Ordered JSON Edit Mapping).

Given two JSON trees TJ and T
′
J
and a mapping MOJED ⊆ N(TJ)×N(T ′J), MOJED

is an edit mapping from TJ to T
′
J
if and only if the following conditions hold for

any two node pairs (v,w), (v′, w′) ∈MOJED:

� v = v′ i↵ w = w′ (one-to-one),
� v is an ancestor of v′ i↵ w is an ancestor of w′ (ancestor),
� v is to the left of v′ i↵ w is to the left of w′ (order),
� type(v) = type(w) (type).
The resulting distance, called OJED, is equivalent to the minimum cost ordered

JSON edit mapping. OJED considers an order among all siblings of a JSON tree,
including unordered key-value pairs of object nodes. As a consequence, the con-
sidered order may forbid mappings that are part of the minimal JED mapping.
However, OJED provides an upper bound to JED as shown in Theorem 4.3.

Theorem 4.3 (OJED Upper Bound).

Given two JSON trees TJ and T
′
J
, then

OJED(TJ , T
′
J) ≥ JED(TJ , T

′
J).

Proof.

The only constraint from OJED (cf. Definition 4.2) that di↵ers from JED (cf.
Definition 3.1) is the order constraint. However, a total order on all nodes of a tree
is stricter than the partial order on array nodes, hence, each ordered JSON edit
mapping is a JSON edit mapping and, consequently, OJED is an upper bound of
JED. �

The imposed order between unordered siblings (keys) can highly influence the
distance between two JSON trees. A good heuristic for real-world datasets is to
sort the keys of object nodes alphabetically by key labels. Note that this results in
a consistent ordering since keys are unique among all sibling of a JSON object.

In the example in Figure 2.1, OJED(TJ , T
′
J
) is 14. Due to the imposed order,

the subtree of key "Layout" is mapped to the subtree of key "Description" with
two rename operations. The subtrees of keys "Model" and "OS" in the left hand
tree are deleted, and the subtrees of keys "Layout" and "Model" in the right hand
tree are inserted. The subtree with key "Size" is mapped to the subtree of key
"Dimensions" using one rename and two delete operations.

OJED can be computed by adjusting the cost-model (mapping cost of infinity for
nodes of di↵erent type) of any existing ordered tree edit distance algorithm. In our

4.3. DOCUMENT PRESERVING JSON EDIT DISTANCE (DPJED) 15

experiments (cf. Section 6), we have implemented the state-of-the-art algorithm
by Pawlik and Augsten [26] providing a runtime complexity of O(n3) and space
complexity of O(n2) where n is the size of the larger tree.

4.3 Document Preserving JSON Edit Distance
(DPJED)

OJED decreases the algorithmic complexity by neglecting the unordered fashion
of key-value pairs. In order to consider unordered siblings and keep a polynomial
runtime and space complexity, further constraints are needed.

In JSON trees, each subtree (starting at an array or object node) is a nested
JSON document itself. A natural constraint, called document preserving, for JSON
trees allows only individual subtrees, hence JSON documents, to be mapped to one
another. Adding the described constraint to the JSON edit mapping defines an
another approximation of JED (cf. Definition 4.4).

Definition 4.4 (Document Preserving JSON Edit Mapping).

Given two JSON trees TJ and T
′
J

and a mapping MDPJED ⊆ N(TJ) × N(T ′
J
),

MDPJED is an edit mapping from TJ to T
′
J
if and only if the following conditions

hold for any two node pairs (v,w), (v′, w′), (v′′, w′′) ∈MDPJED:

� v = v′ i↵ w = w′ (one-to-one),
� v is an ancestor of v′ i↵ w is an ancestor of w′ (ancestor),
� v <S v

′ and w is comparable to w
′ in <S then w <S w

′ (array-order),
� type(v) = type(w) (type),
� let lca(v, v′) = V and lca(w,w′) = W ; V is proper ancestor of v′′ i↵ W is
proper ancestor of w′′ (document preserving).

Like OJED, the resulting distance DPJED, is equivalent to the minimum cost
document preserving JSON edit mapping. DPJED imposes additional restrictions
on the JSON edit mapping and, hence, is an upper bound of JED as shown in
Theorem 4.5.

Theorem 4.5 (DPJED Upper Bound).

Given two JSON trees TJ and T
′
J
, then

DPJED(TJ , T
′
J) ≥ JED(TJ , T

′
J).

Proof.

Assume that DPJED(TJ , T
′
J
) < JED(TJ , T

′
J
), then there exists a DPJED edit

mapping MDPJED with cost c(MDPJED) = DPJED(TJ , T
′
J
) and a JED map-

ping MJED with cost c(MJED) = JED(TJ , T
′
J
). Since MJED is (by definition)

also a DPJED edit mapping, the cost of MJED is not minimal, which contradicts
c(MJED) = JED(TJ , T

′
J
). �

16 CHAPTER 4. JED APPROXIMATIONS

The constraints introduced by OJED and DPJED are independent from each
other. Therefore, there is no upper or lower bound relation between the two edit
distances.

In the example in Figure 2.1, DPJED(TJ , T
′
J
) is 8 and hence less than the

ordered JSON edit distance. DPJED finds the minimum cost mapping between the
subtrees of unordered sibling pairs, i.e., "Model" to "Model", "Size" to "Dimensions",
"Layout" to "Layout", and "OS" to "Description".

In order to compute DPJED, we combined the algorithms for the ordered con-
straint tree edit distance [36] and the unordered constraint tree edit distance [37].
Next to adjusting the cost-model, we needed to adjust the method of finding the
minimum mapping between siblings. For arrays, the order must be considered;
therefore, the string edit distance between the ordered sequences of siblings is used.
For objects, the best combination of sibling pairs need to be identified using a bi-
partite graph matching approach, e.g., with the Hungarian Algorithm. Keys only
have one child and literals are leave nodes, hence, there children can be mapped
trivially.

4.4 Ordered Document Preserving JSON Edit
Distance (ODPJED)

The third approach combines the constraints of OJED and DPJED, i.e., all siblings
are considered to be ordered and only distinct subtrees can be mapped to one
another. The edit mapping of the resulting distance measure, called ODPJED, is
shown in Definition 4.6.

Definition 4.6 (Ordered Document Preserving JSON Edit Mapping).

Given two JSON trees TJ and T
′
J
and a mapping MODPJED ⊆ N(TJ) × N(T ′J),

MODPJED is an edit mapping from TJ to T
′
J
if and only if the following conditions

hold for any two node pairs (v,w), (v′, w′), (v′′, w′′) ∈MODPJED:

� v = v′ i↵ w = w′ (one-to-one),
� v is an ancestor of v′ i↵ w is an ancestor of w′ (ancestor),
� v is to the left of v′ i↵ w is to the left of w′ (order),
� type(v) = type(w) (type),
� let lca(v, v′) = V and lca(w,w′) = W ; V is proper ancestor of v′′ i↵ W is
proper ancestor of w′′ (document preserving).

Like OJED and DPJED, the resulting distance ODPJED, is equivalent to the
minimum cost ordered document preserving JSON edit mapping. In Theorem 4.7
and Theorem 4.8, it is shown that ODPJED is an upper bound for OJED as well
as DPJED and consequently for JED.

Theorem 4.7 (ODPJED is an upper bound for OJED).

Given two JSON trees TJ and T
′
J
, then

ODPJED(TJ , T
′
J) ≥ OJED(TJ , T

′
J).

4.4. ORDERED DOCUMENT PRESERVING JSON EDIT DISTANCE
(ODPJED) 17

Proof.

Assume that ODPJED(TJ , T
′
J
) < OJED(TJ , T

′
J
), then there exists a ODPJED

edit mapping MODPJED with cost c(MODPJED) = ODPJED(TJ , T
′
J
) and a OJED

mapping MOJED with cost c(MOJED) = OJED(TJ , T
′
J
). Since MOJED is (by

definition) also a ODPJED edit mapping, the cost of MOJED is not minimal, which
contradicts c(MOJED) = OJED(TJ , T

′
J
). �

Theorem 4.8 (ODPJED is an upper bound for DPJED).

Given two JSON trees TJ and T
′
J
, then

ODPJED(TJ , T
′
J) ≥DPJED(TJ , T

′
J).

Proof.

Assume that ODPJED(TJ , T
′
J
) <DPJED(TJ , T

′
J
), then there exists a ODPJED

edit mapping MODPJED with cost c(MODPJED) = ODPJED(TJ , T
′
J
) and a DP-

JED mapping MDPJED with cost c(MDPJED) =DPJED(TJ , T
′
J
). Since MDPJED

is (by definition) also a ODPJED edit mapping, the cost of MDPJED is not minimal,
which contradicts c(MDPJED) =DPJED(TJ , T

′
J
). �

Theorem 4.9 (ODPJED is an upper bound for JED).

Given two JSON trees TJ and T
′
J
, then

ODPJED(TJ , T
′
J) ≥ JED(TJ , T

′
J).

Proof.

Immediately follows from Theorem 4.7 or Theorem 4.8. �
Similar to the experiments on real-world datasets in Section 6, ODPJED(TJ , T

′
J
) =

14 is equivalent to OJED(TJ , T
′
J
). In order to compute ODPJED, we use the algo-

rithm for the ordered constraint tree edit distance [36]. Like for OJED and DPJED,
the cost-model needs to be adapted to guarantee the JSON type constraint.

CHAPTER 5
Related Work

5.1 JSON Schema

Most of the scientific publications related to the JSON data format deal with schema
extraction/inference algorithms. An extracted schema may be used as a description
of the dataset or enables schema-based optimization techniques on JSON data.
In a recent study by Baazizi et al. [5], a parametric and parallelizable schema
inference algorithm was introduced. Klettke et al. [23] presented a schema extraction
algorithm to identify structural outliers in large datasets. Further algorithms have
been published by Frozza et al. [15] and Spoth et al. [30].

5.2 JSON Di↵s

The only work on JSON di↵s was published by Cao et al. [12]. In their study they
presented an algorithm thats computes a JSON patch based on the edit operations
defined in RFC6902 [10]. Even though an experimental study and a comparison to
four open source solutions was performed, the runtime and space complexity of the
presented algorithm was not discussed. Further, the resulting patch is not minimal.
Yahia et al. [33] proposed a YAML based, language for describing change detection
strategies on JSON data.

There is a larger number of di↵ algorithms for other hierarchical data formats.
Assuming application domain-specific properties, Chawathe et al. [13] presented an
algorithm that computes minimal di↵s for Latex as well as HTML documents. The
di↵ consists of the following edit operations: insert a leaf node, delete a leaf node,
update the value of any node and move a subtree. The di↵ between XML docu-
ments introduced by Cobena et al. [14] considers insertions of subtrees, deletions of
subtrees, value updates of any node, and move a node or a part of a subtree. The
di↵ is computed bottom-up and in linear time. Another algorithm on XML di↵s

19

20 CHAPTER 5. RELATED WORK

were published by Leonardi and Bhowmick [24] using relational databases. Here,
node insertion, node deletion, and leaf update are considered.

While all previously mentioned algorithms compute the di↵ based on tree-
matching, Jang et al. [22] propose a stream-based method using a D-Path algorithm.

5.3 JSON Tree Representations

Di↵erent approaches for tree representations of JSON objects have been published
recently. Bourhis et al. [8] represent keys and the array order as edges and values
as leaves nodes; however, object and array informations is not explicitly encoded in
the tree. The approach by Shukla et al. [29] is similar, but keys and the array order
are inner nodes instead of edges. In the work of Klettke et al. [23], there are three
di↵erent types of nodes (object, array, property) additional to the label. Spoth et
al. [30] state that the tree contains atomic values at the leaves and complex values
in the inner nodes.

Further, tree representations of XML data may be applied in the context of
JSON. For example, Augsten et al. [4] use keys as inner nodes and key-value pairs
as leaf nodes.

5.4 Tree Edit Distance

A well-known edit distance for trees is the tree edit distance (TED). As pointed out
in Section 2.3, there exist algorithms for ordered and unordered trees. The state-
of-the-art algorithm for ordered trees by Pawlik and Augsten [26] computes TED
in cubic time using quadratic memory. Computing the exact tree edit distance for
unordered trees is NP-hard, as shown by Zhang et al. [39]. Typical approaches for
polynomial time algorithms are the consideration of certain tree classes, parameter-
ized algorithms or restricted edit operations.

Akutsu et al. [1] considers only special classes of trees, namely stars, caterpillars,
and moths. The presented parameterized algorithm runs in O(2(b1+b2)�T1��T2��)
time, where �T1�, �T2� and �b1�, �b2� are the sizes of the input trees and their num-
ber of branching nodes and � is maximum number of children in both trees.
Akutsu et al. [2] presented another parameterized algorithm that runs in O(2.62k ⋅
poly(�T1�, �T2�)), where k is an upper bound on the unordered tree edit distance.
Shasha et al. [28] presented an exact algorithm that runs in O(4�l1�4�l2�min(l1, l2) ⋅�T1��T2�), where �l1�, �l2� are the number of leaf nodes.

Given an upperbound k and the edit operations node insertion and leaf deletion,
Fukagawa and Akutsu [16] presented an algorithm that runs in O(4kn).

Fukagawa et al. [17] transformed the unordered tree edit computation in a max-
imum clique problem and applied existing solvers. In their experimental evaluation,
they compared their algorithm to an A

∗ approach by Horesh et al. [21]. Another A∗
algorithm was published by Higuchi et al. [20]. In order to improve their solution,
they apply lowerbounds, namely tree size di↵erence, label histogram distance, and
degree histogram distance.

5.5. UNORDERED TREE EDIT DISTANCE APPROXIMATIONS 21

5.5 Unordered Tree Edit Distance Approximations

Augsten et al. [4] introduce an approximation for the unordered tree edit distance
by tree decomposition, called windowed pq-grams. This approach splits a tree
into a set of smaller elements which are then compared to the decomposition of
another tree. In their experimental evaluation, they show that windowed pq-grams
outperform other tree decomposition algorithms, namely binary branches [34], path
shingles [11], and valid subtrees [19]).

Torsello and Hancock. [31] present an algorithm that transforms the unordered
tree edit distance computation into a series of maximum weighted clique problems
and then finds an approximation using relaxation labeling.

A di↵erent concept was used by Shasha et al. [28] which is based on hill climbing
and bipartite graph matching.

5.6 Further edit-based tree distances

Due to the computational complexity of the tree edit distance between unordered
trees, other distance measures have been proposed in literature that impose further
restrictions the edit mapping.

One of these distances for unordered trees was introduced by Zhang [37], the
so-called constrained edit distance (or isolated-subtree distance). Here, disjoint
subtrees can only be mapped to disjoint subtrees. This distance can be computed
in O(�T1� ⋅ �T2� ⋅ (deg(T1) + deg(T2)) ⋅ log2(deg(T1) + deg(T2))) for unordered trees.

Distances for unordered trees that can be computed in linear time are the top-
down by [27] and bottom-up distance [32]. Intuitively, two nodes can be mapped,
if their parents (resp. all children) are mapped.

CHAPTER 6
Experiments

In this section, we experimentally evaluate the introduced JED upper bounds in
terms of runtime and tightness. Therefore, we implemented all approximation algo-
rithms in a unified C++ framework. The experiments are executed single-threaded
on an Intel Xeon E5-2630 v3 2.40GHz server with 8 cores and 96GB of RAM,
running Debian 4.19.0. The experimental setup is as follows:

� A dataset is a collection of multiple JSON documents. These documents
are transformed into according JSON trees which serves as input for our al-
gorithms. To this end, we gathered 20 real-world JSON datasets (cf. Sec-
tion 6.1).

� We compare the upper bounds OJED, DPJED, and ODPJED in terms of
runtime and tightness by performing a pair-wise distance computation of
all neighboring JSON trees in a collection, i.e., given a dataset D, compute
ub(TJ1

, TJ2
), ub(TJ2

, TJ3
), . . . , ub(TJ�D�−1 , TJ�D�), where ub ∈ {OJED,DPJED,

ODPJED}.
6.1 Real-World JSON Dataset Analysis

We collected a large amount of real-world JSON datasets to verify the quality of the
proposed upper bound algorithms in realistic scenarios. In an extensive analysis,
we identified insightful characteristics of JSON datasets as shown in Table 6.1. We
highlight the most important characteristics in the following paragraphs.

Dataset sizes (#records): We define the size of a datasets as the number of
individual JSON documents/trees it contains. In our gathered collection, the sizes
vary from 25 up to almost 9 million JSON documents.

Document sizes (#nodes/rec): The size of a document within a dataset is defined
as the number of nodes of its according JSON tree. In our gathered collection of

23

24 CHAPTER 6. EXPERIMENTS

datasets, the maximum tree size is around 18k nodes. However, for most of the
datasets the tree sizes are less than 1000 nodes. Another interesting property is the
size di↵erence within a dataset. For example, the smallest tree in the DBLP dataset
has size 14 while the largest one has 651. As a consequence, the size di↵erence
between two tree can be used as an e�cient and e↵ective JED lower bound.

Type distributions (#objects, #arrays, #keys, #literals): A JSON-specific char-
acteristic is the type distribution of the nodes of a JSON tree. Relative to the num-
ber of nodes in a tree, there are at most 20% object nodes, 10% array nodes, 49%
key nodes, and 49% literal nodes. This is of special interest since there are similarity
algorithms with a complexity that depends on the number of leaves (literal nodes).
E.g., the algorithm by Zhang and Shasha [35] can be used to compute OJED in
O(�TJ ��T ′J �LTJ

LT ′J), where LTJ
and LT ′J denote the number of literal nodes of JSON

trees TJ and T
′
J
.

Degree (object/array degree): The degree of a JSON tree is equivalent to the
maximum number of key-value pairs (resp. elements) among all objects (resp. ar-
rays) in a certain document. In our dataset collection, the average degree of both,
objects and arrays, is typically less than 20 except for the Device dataset. This char-
acteristic is of special interest since the complexity of DPJED depends on the degree
of the JSON tree, i.e., O(�TJ ��T ′J �(deg(TJ) + deg(T ′J))log2(deg(TJ) + deg(T ′J))).

Tree depth (max. depth): The depth of a JSON tree can be seen as the num-
ber of nested values within a JSON document. As a result of our analysis, none
of our datasets is deeply nested. The maximum depth of 8 can be found in the
dataset Twitter 2. Similar to the number of leave nodes, there are algorithms with
a complexity that depends on the tree depth, e.g., the algorithm by Zhang and
Shasha [35] can be used to compute OJED in O(�TJ ��T ′J �DTJ

DT ′J), where DTJ
and

DT ′J denote the depth of JSON trees TJ and T
′
J
.

6.2 Tightness Analysis

In this section, we address the question of how tight the three upper bounds are to
JED. Due to the computational complexity of JED, the actual distances between
the tree pairs in a dataset are unknown and hence a comparison is not possible.

Given a lower bound lb of JED, we leverage the fact that ub(TJ , T
′
J
) = JED(TJ , T

′
J
)

if ub(TJ , T
′
J
) = lb(TJ , T

′
J
), where ub is an upper bound. As a result, we get a lower

bound of the relative number of tree pairs where an upper bound computes the same
distance as JED. In our experiments, we use the node intersection lower bound as
presented in Section 4.1.

Figure 6.1 shows the experimental results for 14 datasets (x-axis) which are
described in Section 6.1. The bars show the relative number of tree pairs within a
dataset where the node intersection is equivalent to the upper bound, i.e., OJED,
DPJED, or ODPJED.

Overall, the presented bounds perform well on most of the analyzed datasets.
For 10 out of 14 datasets, the exact JED distance can be computed in over 75%
of the cases. For the datasets Device and Reddit, the upper bounds are equivalent

6.2. TIGHTNESS ANALYSIS 25

Figure 6.1: Lower bound on the relative number of tree pairs, for which the upper
bounds OJED, DPJED, and ODPJED compute the exact distance within a dataset.

to JED for approximately 60% of all considered JSON tree pairs. In the Twitter 2
dataset, the exact JED distance is computed in 30% of the cases.

In contrast to the other datasets, all bounds perform poorly at the NBA dataset,
i.e., there is no tree pair in which the lower equals the upper bound. A more fine-
grained analysis of this behavior can be seen in Figure 6.3. The y-axis shows
the distances computed by the bounds for all considered JSON tree pairs ordered
ascending by OJED values. While OJED, DPJED, and ODPJED are rather similar
and vary only for some tree pairs, the values of the lower bound are never close to
any of the upper bounds. A detailed analysis of the dataset revealed that the trees
share a lot of common literals, however, at di↵erent positions in the tree. This is
a worst case scenario for the node intersection since the hierarchical information
is not considered and nodes are mapped incorrectly. The consistent values of the
upper bounds suggest that the exact JED value is close their approximation.

An interesting aspect of this experiment is the comparison between all upper
bounds. As shown in Figure 6.1, in most of the cases, all approximations perform
equal in terms of tightness. From the given upper bound relationships, it is ex-
pected that ODPJED is always higher or equal to OJED and DPJED. However, an
interesting fact is that there are no cases where OJED is tighter than ODPJED. In
turn, this suggests that the document preserving constraint introduced by DPJED
and ODPJED may not influence the distances of real-world JSON documents.

The overall winner is DPJED. There is no case, in which OJED (nor ODPJED)
is tighter than DPJED. For 4 datasets (DLBP, DENF, FENF, and Twitter 2) the
di↵erence is also visible in Figure 6.1. By analyzing the datasets, we have identified
a specific use-case, in which DPJED is superior to OJED, that occurs frequently
these datasets. OJED as well as ODPJED order the key-value pairs of an object
alphabetically by key. As a result, two matching values (nested-documents) may
not be mapped since their ordered keys are located at di↵erent positions and the
according subtrees cannot be mapped. An adapted example from the DBLP dataset

26 CHAPTER 6. EXPERIMENTS

Figure 6.2: Lower and upper bound values for the NBA dataset, ordered by ODP-
JED.

can be seen in Figure.
Summarizing, the given bounds perform well for real-world JSON datasets. A

detailed analysis of more problematic datasets is troublesome since the exact JED
distance cannot be computed.

6.3 Runtime Analysis

Next to tightness, we analyze the runtime behaviors of all upper bounds. We
consider the same 14 datasets as in the tightness experiment and measure the overall
runtime that is needed to perform the pair-wise distance computation explained in
Section 6.2. The time that is needed to load the data into memory is not considered.

Figure 6.3 shows the runtime for all upper bound algorithms in milliseconds.
Based on the asymptotic complexities of the algorithms, we expect ODPJED to take
the least time (O(max{�TJ �, �T ′J �}2)). Due to the complexities of OJED (O(max{�TJ �,�T ′

J
�}3)) and DPJED (O(�TJ ��T ′J �(deg(TJ)+deg(T ′J))log2(deg(TJ)+deg(T ′J)))), there

is no clear winner and the execution time depends on the degree of the trees. In
the following paragraphs, we discuss interesting aspects of the given experimental
results.

Comparing the results of ODPJED and OJED, the di↵erence in the asymptotic
complexity (quadratic vs. cubic) cannot be seen. In fact, OJED executes faster
than ODPJED in many cases. This behavior can be explained by analyzing the
document sizes within our dataset collection. The average number of nodes per
JSON tree is less than 80 for 8 out of 14 considered datasets. Comparing larger
JSON trees, e.g., Device (323), NBA (977), Reddit (265), or Twitter 2 (195), the
cubic complexity of the OJED algorithm becomes visible in the plot. DPJED has
a quadratic complexity in terms of tree sizes. Consequently, DPJED outperforms
OJED for large JSON trees, e.g., dataset Device and NBA.

6.3. RUNTIME ANALYSIS 27

Figure 6.3: Overall runtime in milliseconds for computing the pair-wise distance
using OJED, DPJED, and ODPJED.

An interesting dataset for DPJED is Reddit. As shown in Figure 6.3, DPJED
takes more than one order of magnitude longer than both, OJED and ODPJED.
Again, the behavior can be explained by the characteristics of the dataset. The com-
plexity of the DPJED algorithm depends on the degree of the trees, more specifically
the objects degrees. As listed in Table 6.1, compared to all other datasets, Reddit
has a high object degree with up to 104 key-value pairs per object.

Overall, ODPJED performs the best and does not run into worst case scenarios.
The remaining algorithms provide good results on average; however, OJED is inef-
ficient for large JSON trees and DPJED executes slowly for JSON trees with large
object degrees.

28 CHAPTER 6. EXPERIMENTS

AllCards Clothing DBLP DENF Device

#records 20,746 504 1,984,049 7,497 147,899
#nodes/rec 37 132 298 29 29 51 14 26 651 47 59 283 49 323 3264

#objects 3 12 39 4 4 7 2 2 2 2 2 2 2 2 2
#arrays 8 8 11 3 3 5 0 1.5 5 0 2.7 20 0 1.9 2
#keys 17 59 127 12 12 21 6 11 17 23 27 45 24 29.9 39

#literals 9 54 192 10 10 18 5 11.5 634 22 28 221 23 289 3230

ob
je
ct

d
eg
re
e min 0 0.9 1 2 2 2 1 1 1 0 2.7 20 0 5.9 6

avg 3 5.2 12 3 3 3 3 5.6 8.5 12 13.4 23 12 14.9 15
max 16 21.5 28 5 5 5 5 10 16 23 24 25 24 24 24

ar
ra
y

d
eg
re
e min 0 0.03 1 1 1 1 0 1.5 263 0 0.2 1 0 131 1600

avg 0.3 1.7 21 1.3 1.3 1.6 1 1.9 312 0 0.3 11 0 131 1602
max 1 7 167 2 2 2 1 2.3 621 0 1.3 95 0 131 1603

max. depth 3 4 4 5 5 5 2 2 2 1 1.3 3 5 5 5

Face FENF Movie NASA NBA

#records 409 13,991 8,765,568 1,000 31,686
#nodes/rec 29 68 359 47 49 51 15 23 729 15 27 31 659 977 1269

#objects 4 9.3 49 2 2 2 1 1.9 2 1 2 2 21 27 35
#arrays 3 6.5 33 0 0 0 0 0 1 0 1 1 3 3 3
#keys 12 28 147 23 24 25 7 11 13 7 12 14 339 477 619

#literals 10 24 130 22 23 24 7 10 714 7 12 14 332 470 612

ob
je
ct

d
eg
re
e min 2 2 2 0 0 0 1 1.4 11 2 2.1 7 1 1 1

avg 3 3 3 11.5 12 12.5 4.5 5.8 11 5.5 6.1 7 16 17.4 18.4
max 5 5 5 23 24 25 7 10 12 7 10.2 12 20 20.5 21

ar
ra
y

d
eg
re
e min 1 1 1 0 0 0 0 0 704 0 1.9 2 2 2 2

avg 1.3 1.6 1.9 0 0 0 0 0 704 0 1.9 2 5.3 7.5 10
max 2 3.1 16 0 0 0 0 0 704 0 1.9 2 7 10.7 14

max. depth 5 5 5 1 1 1 1 1.9 2 5 5 5 5 5 5

Reads Reddit Piazza SMSen SMSzh

#records 30,000 25 3756 55,835 31,465
#nodes/rec 11 11 11 209 265 432 19 21 78 81 81 81 79 80.9 81

#objects 1 1 1 5 13 27 1 1 1 19 19 19 19 19 19
#arrays 0 0 0 6 7.8 10 2 2.3 3 0 0 0 0 0 0
#keys 5 5 5 104 130 206 8 8.6 9 40 40 40 39 39.9 40

#literals 5 5 5 94 115 189 8 9.1 66 22 22 22 21 21.9 22

ob
je
ct

d
eg
re
e min 5 5 5 0 0 0 8 8.6 9 1 1 1 1 1.4 11

avg 5 5 5 7.6 11.3 20.8 8 8.6 9 2.1 2.1 2.1 4.5 5.8 11
max 5 5 5 102 103 104 8 8.6 9 9 9 9 7 10 12

ar
ra
y

d
eg
re
e min 0 0 0 0 0 0 0 0.7 15 0 0 0 0 0 0

avg 0 0 0 0 0.7 1.9 0.5 1.2 29.5 0 0 0 0 0
max 0 0 0 0 3.9 6 1 1.7 58 0 0 0 0 0 0

max. depth 1 1 1 2 6.2 7 2 2 2 4 4 4 4 4 4

Standford Dev Standford Train Twitter 1 Twitter 2 Virus

#records 48 442 1,984,049 19,316 500
#nodes/rec 2212 5379 18,135 294 2597 10,549 17 155 750 115 195 489 19 19 19

#objects 404 988 3303 50 440 1783 4 6.9 68 5 11.4 42 1 1 1
#arrays 118 264 864 28 242 966 0 4.5 65 2 13.2 27 0 0 0
#keys 904 2196 7416 122 1078 4383 8 75 316 55 83 222 9 9 9

#literals 786 1931 6551 94 837 3417 5 68 341 53 87 208 9 9 9

ob
je
ct

d
eg
re
e min 2 2 2 2 2 2 0 0.9 1 0 1.5 2 9 9 9

avg 2.1 2.2 2.3 2.4 2.45 2.5 1.8 11 14.5 4.4 7.75 11.9 9 9 9
max 3 3 3 3 3 3 4 37 37 29 34 35 9 9 9

ar
ra
y

d
eg
re
e min 1 2.2 4 1 1 1 0 0.01 2 1 1 2 0 0 0

avg 3.1 3.7 5.3 1.7 1.8 .9 0 0.6 2.7 1.7 2 2.5 0 0 0
max 21 43 98 5 43 149 0 1.5 29 2 4.4 16 0 0 0

max. depth 7 7 7 7 7 7 2 4.2 7 3 6 8 1 1 1

Table 6.1: Analysis of the collected JSON datasets.

CHAPTER 7
System Integration

In order to allow users to pose similarity queries on JSON documents as part of a
larger query, JED must be integrated into a database. In this section, we introduce
a suitable target system, AsterixDB, and discuss two approaches how to integrate
the JSON distance.

7.1 AsterixDB

AsterixDB [3] is an open-source big data management system (BDMS) that is de-
signed for computing data-intensive tasks. Its features comprise a JSON-like data
model, a declarative query language, a rule-based optimizer, and an execution en-
gine for parallel execution of query plans. The architecture of AsterixDB contains
multiple layers of software. In the following, we will give a brief outline of the most
relevant parts.

7.1.1 Data Model

The AsterixDB Data Model (ADM) is an extension of the JSON data format. The
main di↵erences include: (1) supporting multisets, i.e., an unordered set of values,
and (2) providing additional kinds of literals, e.g., circles, polygons, and intervals.
Note, that these changes do neither a↵ect the JED definitions nor the presented
algorithms. To represent multisets in a JSON tree, a new node type must be
introduced.

7.1.2 Query Processing

AsterixDB supports SQL++ [25] queries, a declarative language to query semi-
structured data. In the following, we discuss the most-important steps that are
performed while processing a query. First, an abstract syntax tree is built while

29

30 CHAPTER 7. SYSTEM INTEGRATION

parsing the incoming query. Next, the abstract syntax tree needs to be transformed
into a logical plan that serves as input for Algebricks [6], AsterixDB’s query com-
piler. Based on a set of rules, Algebricks optimizes the given logical plan before
it translates the logical into a physical plan. The rule-based optimizer is also ap-
plied on the physical plan in order to find an even more e�cient execution plan.
In Algebricks’ final step, jobs in the form of directed-acyclic graphs of operators
are generated according to the physical plan. Ultimately, the generated jobs are
executed in parallel on AsterixDBs runtime engine Hyracks [7].

7.1.3 Similarity Query Support

Currently, AsterixDB provides functionality for string and set similarity queries.
Strings can be compared using the Levenshtein distance. Similar to JED, the Lev-
enshtein distance is defined by the number of insert, delete, and rename operations
that transform one string into another. For example, the strings hello and shell
have a Levenshtein distance of 2, i.e., delete o, insert s.

Sets can be compared using Jaccard. Given two sets r and s, the Jaccard
similarity J is defined as J(r, s) = r∩s

r∪s . For example, the Jaccards similarity of sets
r = {1,3,5} and s = {1,2,3,4} is J(r, s) = 0.4.

In order to enable users to use their own similarity functions, AsterixDB provides
user-defined functions (UDF). Implemented UDFs can be called by function name
in an SQL++ query; however, the optimizer is not aware of any details of that
function and unable to optimize.

7.2 JSON Similarity Queries within AsterixDB

The integration of similarity queries for JSON documents is not straight forward.
JED is NP-complete and, therefore, cannot be used in real-world scenarios. In this
paper, we present several JED approximation algorithms and give a detailed analysis
in an experimental evaluation in Section 6. Since both, OJED and DPJED, have
runtime issues for certain tree characteristics, ODPJED may be used in time-critical
scenarios. However, DPJED can deal with unordered siblings and is therefore tighter
for some datasets. The final decision is user and application dependent and should
consider the characteristics of the data.

Next, we discuss two ways of how to integrate JED within AsterixDB. The first
approach are AsterixDB’s user-defined functions. The major advantage of UDFs
is that we do not have to modify the internals of the database system and limit
the scope of potential software errors to the newly implemented function. Hence,
only the functionality of the according JED approximation has to be implemented.
UDFs can be called by its function name using native SQL++ queries.

The second approach is to integrate an edit distance natively within AsterixDB.
While UDFs are an e�cient way to integrate functionality, they are external code
and can therefore not be considered in the optimization process. The function must
be implemented inside AsterixDB and further optimization rules must be added.
Especially for vast amounts of data or complex similarity queries, an optimized

7.2. JSON SIMILARITY QUERIES WITHIN ASTERIXDB 31

execution plan is crucial for an e�cient execution. However, the integration process
is more complex and time consuming.

CHAPTER 8
Conclusion and Future Work

In this paper, the unsolved problem of edit-based distance measures for JSON doc-
uments is addressed. Based on their hierarchical definition, we represent JSON
documents as a hybrid of ordered and unordered trees where each node carries a
type and a label. We define the JSON edit distance (JED) as the minimum number
of node edit operations, namely insertion, deletion, and rename, that transform one
JSON tree into another. We proof that computing JED is NP-complete and present
four JED approximation algorithms with lower and upper bound guarantees.

In an experimental evaluation, we analyze and compare the runtime and tight-
ness of the presented approximations. To build the groundwork for our experiments,
we gathered 20 real-world JSON datasets and performed an extensive analysis of
their characteristics.

We present AsterixDB, a big data management system, as a potential prototype
system for JED integration. Further, two integration approaches are discussed ,
namely UDFs and native code.

So far, the main focus of this work was on distances and algorithms to compute
them. However, computing the edit-distance of JSON documents can be applied in
various query paradigms, e.g., selection, join, or top-k queries. Each paradigm comes
with certain constraints that give rise to improvements over existing approximation
algorithms or the introduction of novel algorithms. For example, a given similarity
threshold can be leveraged in a join setting.

Acknowledgments. We thank Wail Alkowaileet, Daniel Kocher, Chen Li, Mateusz
Pawlik, and Zhihui Yang for valuable discussions. This work was conducted during a

research stay of the author at UC Irvine which was supported by the Austrian Marshall
Plan Foundation. This work was partially supported by the Austrian Science Fund

(FWF): P 29859.

33

Bibliography

[1] Tatsuya Akutsu, Daiji Fukagawa, Magnús M Halldórsson, Atsuhiro Takasu,
and Keisuke Tanaka. Approximation and parameterized algorithms for com-
mon subtrees and edit distance between unordered trees. Theoretical Computer
Science, 470:10–22, 2013.

[2] Tatsuya Akutsu, Daiji Fukagawa, Atsuhiro Takasu, and Takeyuki Tamura. Ex-
act algorithms for computing the tree edit distance between unordered trees.
Theoretical Computer Science, 412(4-5):352–364, 2011.

[3] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm,
Vinayak Borkar, Yingyi Bu, Michael Carey, Inci Cetindil, Madhusudan Chee-
langi, Khurram Faraaz, et al. Asterixdb: A scalable, open source bdms. arXiv
preprint arXiv:1407.0454, 2014.

[4] Nikolaus Augsten, Michael Böhlen, Curtis Dyreson, and Johann Gamper. Win-
dowed pq-grams for approximate joins of data-centric XML. VLDB Journal,
21(4):463–488, 2012.

[5] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.
Parametric schema inference for massive json datasets. The VLDB Journal,
28(4):497–521, 2019.

[6] Vinayak Borkar, Yingyi Bu, E Preston Carman Jr, Nicola Onose, Till West-
mann, Pouria Pirzadeh, Michael J Carey, and Vassilis J Tsotras. Algebricks: a
data model-agnostic compiler backend for big data languages. In Proceedings
of the Sixth ACM Symposium on Cloud Computing, pages 422–433, 2015.

[7] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose, and Rares Ver-
nica. Hyracks: A flexible and extensible foundation for data-intensive comput-
ing. In 2011 IEEE 27th International Conference on Data Engineering, pages
1151–1162. IEEE, 2011.

[8] Pierre Bourhis, Juan L Reutter, Fernando Suárez, and Domagoj Vrgoč. JSON:
data model, query languages and schema specification. In Proceedings of the
36th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database sys-
tems, pages 123–135, 2017.

35

36 BIBLIOGRAPHY

[9] Tim Bray. The javascript object notation (JSON) data interchange format.
RFC 8259, RFC Editor, 11 2017.

[10] Paul C Bryan and Mark Nottingham. Javascript object notation (json) patch.
RFC 6902, RFC Editor, 4 2013.

[11] David Buttler. A short survey of document structure similarity algorithms. In
International conference on internet computing, volume 7, 2004.

[12] Hanyang Cao, Jean-Rémy Falleri, Xavier Blanc, and Li Zhang. JSON patch
for turning a pull REST API into a push. In International Conference on
Service-Oriented Computing, pages 435–449. Springer, 2016.

[13] Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jen-
nifer Widom. Change detection in hierarchically structured information. Acm
Sigmod Record, 25(2):493–504, 1996.

[14] Gregory Cobena, Serge Abiteboul, and Amelie Marian. Detecting changes in
xml documents. In Proceedings 18th International Conference on Data Engi-
neering, pages 41–52. IEEE, 2002.

[15] Angelo Augusto Frozza, Ronaldo dos Santos Mello, and Felipe de Souza
da Costa. An approach for schema extraction of json and extended json docu-
ment collections. In 2018 IEEE International Conference on Information Reuse
and Integration (IRI), pages 356–363. IEEE, 2018.

[16] Daiji Fukagawa and Tatsuya Akutsu. Fast algorithms for comparison of similar
unordered trees. In International Symposium on Algorithms and Computation,
pages 452–463. Springer, 2004.

[17] Daiji Fukagawa, Takeyuki Tamura, Atsuhiro Takasu, Etsuji Tomita, and Tat-
suya Akutsu. A clique-based method for the edit distance between unordered
trees and its application to analysis of glycan structures. BMC bioinformatics,
12(S1):S13, 2011.

[18] Michael R. Garey and David S. Johnson. Computers and Intractability; A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA, 1979.

[19] Minos Garofalakis and Amit Kumar. Correlating xml data streams using tree-
edit distance embeddings. In Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 143–
154, 2003.

[20] Shoichi Higuchi, Tomohiro Kan, Yoshiyuki Yamamoto, and Kouichi Hirata. An
A* algorithm for computing edit distance between rooted labeled unordered
trees. In JSAI International Symposium on Artificial Intelligence, pages 186–
196. Springer, 2011.

BIBLIOGRAPHY 37

[21] Yair Horesh, Ramit Mehr, and Ron Unger. Designing an A* algorithm for
calculating edit distance between rooted-unordered trees. Journal of Compu-
tational Biology, 13(6):1165–1176, 2006.

[22] Bumsuk Jang, SeongHun Park, and Young-guk Ha. A stream-based method
to detect di↵erences between xml documents. Journal of Information Science,
43(1):39–53, 2017.

[23] Meike Klettke, Uta Störl, and Stefanie Scherzinger. Schema extraction and
structural outlier detection for json-based nosql data stores. Datenbanksysteme
für Business, Technologie und Web (BTW 2015), 2015.

[24] Erwin Leonardi and Sourav S Bhowmick. Detecting changes on unordered XML
documents using relational databases: a schema-conscious approach. In Pro-
ceedings of the 14th ACM international conference on Information and knowl-
edge management, pages 509–516, 2005.

[25] Kian Win Ong, Yannis Papakonstantinou, and Romain Vernoux. The sql++
query language: Configurable, unifying and semi-structured. arXiv preprint
arXiv:1405.3631, 2014.

[26] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance: Robust and
memory-e�cient. Information Systems, 56:157–173, 2016.

[27] Stanley M Selkow. The tree-to-tree editing problem. Information processing
letters, 6(6):184–186, 1977.

[28] Dennis Shasha, Jason Tsong-Li Wang, Kaizhong Zhang, and Frank Y Shih.
Exact and approximate algorithms for unordered tree matching. IEEE Trans-
actions on Systems, Man, and Cybernetics, 24(4):668–678, 1994.

[29] Dharma Shukla, Shireesh Thota, Karthik Raman, Madhan Gajendran, Ankur
Shah, Sergii Ziuzin, Krishnan Sundaram, Miguel Gonzalez Guajardo, Anna
Wawrzyniak, Samer Boshra, et al. Schema-agnostic indexing with Azure Doc-
umentDB. Proceedings of the VLDB Endowment, 8(12):1668–1679, 2015.

[30] William Spoth, Ting Xie, Oliver Kennedy, Ying Yang, Beda Hammerschmidt,
Zhen Hua Liu, and Dieter Gawlick. Schemadrill: Interactive semi-structured
schema design. In Proceedings of the Workshop on Human-In-the-Loop Data
Analytics, pages 1–7, 2018.

[31] Andrea Torsello and Edwin R Hancock. Computing approximate tree edit
distance using relaxation labeling. Pattern Recognition Letters, 24(8):1089–
1097, 2003.

[32] Gabriel Valiente. An e�cient bottom-up distance between trees. In spire, pages
212–219, 2001.

38 BIBLIOGRAPHY

[33] Elyas Ben Hadj Yahia, Jean-Rémy Falleri, and Laurent Réveillère. Polly: A
language-based approach for custom change detection of web service data.
In International Conference on Service-Oriented Computing, pages 430–444.
Springer, 2017.

[34] Rui Yang, Panos Kalnis, and Anthony KH Tung. Similarity evaluation on
tree-structured data. In Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pages 754–765, 2005.

[35] Kaizhong Zhang. The editing distance between trees: algorithms and applica-
tions. PhD thesis, Dept. of Computer Science, Courant Institute, 1989.

[36] Kaizhong Zhang. Algorithms for the constrained editing distance between
ordered labeled trees and related problems. Pattern recognition, 28(3):463–
474, 1995.

[37] Kaizhong Zhang. A constrained edit distance between unordered labeled trees.
Algorithmica, 15(3):205–222, 1996.

[38] Kaizhong Zhang and Tao Jiang. Some max snp-hard results concerning un-
ordered labeled trees. Information Processing Letters, 49(5):249–254, 1994.

[39] Kaizhong Zhang, Rick Statman, and Dennis Shasha. On the editing distance
between unordered labeled trees. Information processing letters, 42(3):133–139,
1992.

	Abstract
	Contents
	Introduction
	Preliminaries
	JSON Format
	JSON tree representation
	Tree Edit Distance
	Edit Mapping

	JSON Edit Distance (JED)
	NP-completeness of the JSON Edit Distance

	JED Approximations
	Node Intersection (NI)
	Ordered JSON Edit Distance (OJED)
	Document Preserving JSON Edit Distance (DPJED)
	Ordered Document Preserving JSON Edit Distance (ODPJED)

	Related Work
	JSON Schema
	JSON Diffs
	JSON Tree Representations
	Tree Edit Distance
	Unordered Tree Edit Distance Approximations
	Further edit-based tree distances

	Experiments
	Real-World JSON Dataset Analysis
	Tightness Analysis
	Runtime Analysis

	System Integration
	AsterixDB
	JSON Similarity Queries within AsterixDB

	Conclusion and Future Work
	Bibliography

