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Abstract 

 

Previous studies have confirmed that production forecasts in the oil and gas 

industry are exposed to a variety of biases. This thesis extends those previous findings by 

investigating the quality of production forecasts for oil fields on the Norwegian Continental 

Shelf, which were approved between 1995 and 2017. The research focuses on optimism 

and overconfidence biases.  

Both biases are observable in the production forecasts provided by the Norwegian 

Petroleum Directorate. By comparing annual production data with production forecasts, it 

is possible to draw conclusions pertaining to the quality of those forecasts. A variety of 

methods are applied to investigate and illustrate the magnitude of those biases. The findings 

illustrate that the reason operators do not attain set project goals is because of 

aforementioned biases rather than unexpected events. The systemic inability to deliver on 

what was promised is observable through the lack of forecasting quality improvement over 

time.  

Two correction processes are proposed to reduce the encountered biases. A 

reference class is established to put past outcomes in a distributional setting. Uplift and 

scaling factors are drawn from the class to adjust the biased production forecasts. The 

results show a clear improvement in the quality of production forecasts through the use of 

reference class forecasting. A second process is introduced in which a Bayesian framework 

is suggested to calculate updated production forecasts. The same reference class is used to 

provide a prior distribution, which is then updated by the initial forecast (signal) to 

determine a posterior distribution. The posterior distribution exhibts on average a greater 



 iv 

variance and a lower mean than the initial forecast. Therefore, the updated production 

forecasts are better calibrated and the impact of the biases is reduced.  

Limitations arise regarding the availability of additional data, however preliminary 

results from the analyses are encouraging. Drawing on past experience to debias production 

forecasts is of paramount importance.  
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1. Introduction 

OVERVIEW AND MOTIVATION  

Oil and gas projects are typically characterized by their capital intensity as well as 

their longevity. Knowing how much and when hydrocarbons will be produced is important 

as it provides the basis for any cash flow calculations. Hence, an integral part of the Final 

Investment Decision (FID) for any oil and gas project is the production forecast. The 

production forecast should be the result of a mindful assessment of the surface and 

subsurface conditions - i.e. reservoir properties, geological factors, well completion 

constraints etc. 

Oil and gas companies are usually interested in three values obtained from such a 

production forecast. The three values are a low estimate, a mean assessment (or a P50) and 

a high estimate. Uncertainty ranges in the oil and gas industry are typically given by a low 

value and a high value. In this study the definitions set forth by the Norwegian Petroleum 

Directorate will be utilized, which specify the uncertainty ranges as follows: The low 

estimate is represented by the P10 value, and the high estimate by the P90 value. For a 

continuous distribution, the P10 value marks the point for which 10% of the observations 

will be lower than the P10. The P90 value marks the point for which 90% of the 

observations will be lower than the P90. The quality of those production forecasts will be 

the subject of this study.  

The industry is plagued by frequent schedule delays and cost overruns.1 Observed 

time and cost results tend to deviate from forecasts systemically in one direction, indicating 

                                                 
1 (Welsh et al. 2005), (Ernst & Young 2014),  
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the presence of biases. Those deficiencies are also observable in other uncertainty 

assessments of oil and gas projects, such as production forecasts.2  

 Various research groups have found substantial shortcomings in the petroleum 

industry’s ability to produce unbiased probabilistic forecasts.3 It was observed that the 

forecasts are optimistic in terms of expected production and overconfident regarding the 

range of possible outcomes. There are many reasons why production forecasts consistently 

miss their estimates, which we will elaborate on in one of the subsequent chapters. Given 

the pivotal role of future production values, it is consequential to suggest the need to revise 

those forecasts and highlight the shortcomings with hopes that the industry will adapt and 

improve.   

 

OBJECTIVES 

The objectives for this research thesis are threefold. Chapter 2 briefly discusses 

previous research on biases in infrastructure projects. Chapters 3 and 4 introduce the data 

set and applied methodology used in this thesis. The first objective is to investigate whether 

the shortcomings in probabilistic production forecasts found by other research groups still 

persist today. Therefore, chapter 5 analyzes and assesses production forecasts and actual 

production data from the Norwegian Continental Shelf (NCS) pertaining the quality of the 

production forecasts. Extending the analysis beyond the base case comparison and having 

access to low and high production estimates allow for an exhaustive study about the quality 

of probabilistic forecasts. The second objective is to analyze and illustrate any biases found. 

Chapter 6 introduces previously suggested processes to reduce encountered biases. The last 

                                                 
2 (Mohus 2018) 
3 (Welsh et al. 2005), (Nandurdikar and Wallace 2011), (Flyvbjerg et al. 2014) 
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objective is to propose methods on how to improve probabilistic production forecasting in 

the oil and gas industry. Chapters 7 and 8 demonstrate two different approaches on how to 

debias forecasts.    
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2. Literature review  

SHORTCOMINGS IN LARGE INFRASTRUCTURE PROJECTS 

Large, capital-intensive projects are prone to cost and time overruns. The examples 

are abundant, and the incurred value loss can be substantial.4 A study by Flyvbjerg and 

COWI highlighted significant deviations between forecasts and outcomes for large 

infrastructure projects.5 The study concluded that nine out of ten infrastructure projects 

have experienced cost overruns to varying extent. Cost escalation was observed in different 

industry sectors including roads, rail, energy and others.6 Infamous instances of project 

disasters are found across industries and countries with no immediate improvement over 

time.7 For example: The Sydney Opera House was completed ten years behind schedule. 

The scaled-down version was over-budget by $95 million, against an original estimate of 

$7 million.8 The Channel tunnel, connecting France and the United Kingdom, was over-

budget by 80% and forecasted revenues were halved upon completion.9  

There are many reasons why forecasted project goals were delayed or not attained 

at all. However, the research in this thesis will focus on biases, rather than computational 

errors. Flyvbjerg et al. ascribe the causes for those shortcomings to two predominant 

categories of biases.10 They differentiate between delusional and deceptive biases, both of 

which will be discussed in chapter 5.11  

                                                 
4 (Priemus et al. 2008), (Cantarelli et al. 2012) 
5 (Flyvbjerg et al. 2004) 
6 (Buhl et al. 2003) 
7 (Buhl et al. 2002), (Flyvbjerg et al. 2005) 
8 (Flyvbjerg 2014) 
9 (Moore 2010) 
10 (Flyvbjerg 1996), (Buhl et al. 2002) 
11 (Flyvbjerg et al. 2014) 
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There is strong evidence that those shortcomings are not confined to the public 

sector. Projects in the private sector are similarly exposed to cost and time overruns.12  

The upstream oil and gas sector is a project-based industry, where individual 

projects typically compete against each other for internal funding. Those circumstances 

make the oil and gas industry an ideal environment for a variety of biases to occur.  

 

BIASES IN THE OIL AND GAS INDUSTRY 

The petroleum industry’s susceptibility to biases has been the focus of several 

research groups.13 A seemingly counterintuitive finding predicates that even experts which 

specialized knowledge exhibit a susceptibility towards biases.14 Industry experience alone 

offers limited help in avoiding these biases. Welsh et al. published a research paper in 2005, 

in which the potential of reducing biases is highlighted if a person undergoes risk training, 

which will be elaborated on in chapter 6.15 

The financial impact of such biases can be substantial. Findings by Welsh et al. in 

2007, indicate that biased input parameters provide erroneous uncertainty distributions not 

only for those input parameters, but also for the resulting outputs.16 The net present value 

(NPV) is a commonly used financial metric in the oil and gas industry. Like other key 

performance indicators, NPV is determined using a variety of inputs, which are uncertain. 

Welsh et al. demonstrate that the NPV calculated from biased input parameters is lower, 

compared to the NPV calculated from unbiased input parameters. In one of the illustrated 

examples the technical reserves were estimated at 360 million barrels of oil, with an 

                                                 
12 (Ernst & Young 2014) 
13 (Hawkins et al. 2002), (Welsh et al. 2005), (Welsh et al. 2007) 
14 (Welsh et al. 2005) 
15 Ibid. 
16 (Welsh et al. 2007) 
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expected value of 346 million USD for the project. Figure 1 shows the impact 

overconfidence levels can have on the project NPV. A probability distribution is said to be 

overconfident if the range of distributed values is too small. In Figure 1, the technical 

reserves remain constant at 360 million barrels with varying degrees of overconfidence 

(the actual reserves are a function of economics and would therefore change).  

While real-life examples may exhibit different responses to overconfidence levels, 

the discussed case demonstrates the possibility of value erosion. In some instances, it could 

potentially lead to the approval of a project which - if the input parameters were unbiased 

- would have yielded a negative NPV. 

 

 

Figure 1. NPV change with varying degree of overconfidence 
(Welsh et al. 2007)  
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Welsh et al. focused on the effect of the overconfidence bias, the trust heuristic bias, 

and the availability bias. However, subsequent research has confirmed that the industry 

seems to be affected by an even broader range of biases.17 

The financial ramifications of different biases vary depending on the type of bias 

encountered. A study by Mohus in 2018 examined 56 oil fields regarding lost value due to 

cost and time overruns as well as underproduction.18 The accrued value erosion due to 

biased production forecasts was estimated at 56.8 billion USD for those fields. While the 

impact of overconfidence production forecasts appears to be substantial, other biases in the 

oil and gas industry seem to be less damaging. In 2008, Begg and Bratvold published the 

results of a study that investigated the errors associated with project and portfolio selection. 

They concluded that the impact of the selection bias, relative to other biases in the oil and 

gas industry, seems comparatively small.19 It is worth mentioning, that the selection bias 

is potentially more severe if the initial NPV estimates carry more uncertainty, which would 

be reflective in the uncertainty ranges of the estimates.  

 
  

                                                 
17 (Welsh and Begg 2015), (Mohus, 2018) 
18 (Mohus, 2018) 
19 (Begg and Bratvold 2008) 
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3. Data 

ATTRIBUTES OF PROBABILISTIC FORECASTS  

Future production is unknown and, therefore their forecasts are associated with 

varying degrees of uncertainty. Best practice stipulates that probabilistic forecasts are 

generated to assess the uncertainties. There are several characteristics of probabilistic 

production forecasts that are of interest to this study. A set of criteria must be met to 

consider a probability distribution as well-calibrated. A well-calibrated production forecast 

is unbiased and consistent with the forecasters’ knowledge.  

First, the lower (P10) and upper (P90) percentiles must be calculated, so that 80% 

of the time, the actual production outcomes fall within the range set by the two values. If 

this is not the case, the confidence interval is either too narrow or too wide, the former 

being more common in the production forecasting context and is denoted as 

overconfidence.20  

The forecasted P50 of a well-calibrated probability distribution specifies the value 

at which 50% of the actual outcomes exceed the P50 and half of the actual outcomes fall 

short of the P50. If more than half the actual values are greater or smaller than the P50, the 

probability distribution is either optimistic or pessimistic. An illustration of a biased 

forecast can be found in Figure 2. This biased forecast has a higher mean and a narrower 

distribution. 

 

 

                                                 
20 (Welsh et al. 2005) 
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DATA PRE-TREATMENT 

The data set utilized for the analysis in this research project comprises of production 

forecasts for 56 oil fields, located on the NCS. The production forecasts consist of a P10, 

a mean and a P90 estimate (rather than a continuous distribution) for every production year 

for every field. The forecasts were made before the time of the FID. Those fields reached 

their FID and were approved between 1995 and 2017. The production data for any fields 

on the NCS is publicly available through the Norwegian Petroleum Directorate’s (NPD) 

website.21 However, the production forecasts for those fields are not publicly accessible 

and therefore they were provided exclusively for research purposes under the condition 

that they are made anonymous.  

                                                 
21 (Norwegian Petroleum Directorate 2019) 

Figure 2. Overconfident and optimistic production forecast vs. actual production 
outcomes 

Outcomes 

Forecast 
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The NPD specifies that the operator must report probabilistic values on all 

petroleum resources in a way such that the uncertainties “... shall to the extent possible be 

designated by P10 - P expected - P90.”22 It is plausible to assume that a majority of the 

production forecasts were generated using a base case approach. The base case is calculated 

using inputs and assumptions that are consider most likely to occur. The best estimate is 

defined by the NPD as the “best estimate of petroleum volumes that are expected to be 

recovered from a project” and “If the best estimate is determined by a stochastic method, 

the best estimate shall be considered as the expected value”.23 In some cases P10 and P90 

might have been calculated directly from the base case, i.e. using a multiplier, rather than 

being drawn from a continuous probability distribution. However, for the purpose of this 

study it is assumed that the reported values were determined from continues probability 

distributions and thus can be evaluated using attributes of probabilistic forecasts.  

The forecasts are part of the required documentation for the Plan of Development, 

requested by the NPD. Four values are of interest for the subsequent analysis, namely the 

actual production and the three forecasted values: the P10, mean, and P90. In some 

instances, the P50 rather than the mean will be used. For most fields, the forecasted mean 

is close but not equal to the P50. The implications of the inequality will be discussed in 

Chapter 4. Only some minor adjustments to the data set are necessary, since the data has 

already been used in a previous research project.24  

 

                                                 
22 (Norwegian Petroleum Directorate 2018a),(Norwegian Petroleum Directorate 2018b) 
23 (Consortium 2016) 
24 (Mohus, 2018) 
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START-UP DELAYS 

Mohus (2018) found that the average initial production delay between intended 

start-up and actual start-up for this data set is 202 days.25 With an estimated mean 

development time of 2 years and 8 months, the time overrun averages at around 20% for 

the study period.26 To avoid confounding the impact of poor production forecasts with the 

impact of time delays, the first actual production year was set equal to the first forecasted 

production year. Table 1 shows the estimates (P10, mean and P90) and the actual 

production for one of the fields on the NCS, using anonymized data.  

                                                 
25 (Mohus 2018) 
26 (Haukaas and Mohus 2016) 

Table 1. Correction for start-up delays for one of the fields on the NCS, using anonymized 
data 
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On the left side the actual production is unchanged, and on the right side the actual 

production is corrected for start-up delays. It can be assumed that the forecaster considered 

the first forecasted production year as the first actual production year. In 2017, the 56 fields 

had a total of 603 forecasted production years. The amended data set (corrected for start-

up delays) comprises of 55 fields and 549 production years, which are used for further 

analysis.  
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4. Methodology – Probability distribution fitting 

LOGNORMAL FITTING APPROACH 

A key goal of this study is to assess the quality of production forecasts provided by 

the operators. It is assumed that the operators have provided production estimates as 

suggested by the NPD guidelines, i.e., P10/Mean/P90 values for each year. Production 

forecasts will be investigated for cumulative production years as well as individual 

production years. Cumulative production forecasts shall be denoted as production forecasts 

on an aggregated basis, which consider production values from previous years. Individual 

production forecasts shall be denoted as production forecasts on an individual basis, which 

is the forecast for any specific year of interest. 

The cumulative mean production forecast (𝜇𝜇𝑛𝑛) of a field for any production year n 

is calculated by simply adding the mean forecasts (𝜇𝜇𝑖𝑖) of the previous years.  

 

𝜇𝜇𝑛𝑛 = �𝜇𝜇𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

The resulting cumulative mean forecast can be directly compared to the cumulative 

production for that field. However, P10 and P90 forecasts for a given aggregation year 

cannot be added in the same way, as the sum of P10 values differs from the P10 of the 

sum.27  

Therefore, obtaining a field's cumulative forecasted P10 or P90 for any aggregation 

year will require first fitting a distribution to each of that field's yearly forecasts for two 

out of the three forecasted values, namely P10, mean, and P90. There is no single 

continuous distribution that will have an exact fit for all three forecasted values, for every 
                                                 
27 (Kreifeldt and Nah 1995) 
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given input triplet. While there might be instances where the unmatched, third estimate is 

equal to the equivalent value drawn from the fitted distribution, this remains the exception. 

As a consequence, a probability distribution was chosen that honors two out of the three 

forecasted values. A lognormal distribution was selected since it is bounded at zero on the 

low end but also allows to model potential production upside through the tail of the 

distribution on the high end (Figure 3). The two parameters of the lognormal distribution, 

the mean and the standard deviation, can be matched using any combination of two out of 

the three forecasted values – i.e. the P10 and mean, the P90 and mean, or the P10 and P90.   

Figure 3. P10/mean lognormal fit for one field on the NCS 

 

Selecting the P10 and mean as input values for the distribution fitting, rather than 

any of the other two combinations, will allow for more conclusive comparison, as the data 

is skewed towards the lower value (Figure 3). Using the mean as one of the fitting 

parameters seems appropriate as most of the time and effort goes into determining the mean 

forecast. Additionally, operators should pay close attention to downside risk in production 
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forecasts, validating the choice for the P10 as one of the fitting parameters, ensuring an 

exact fit for the P10 production forecast. The steps of the fitting approach are outlined 

below. 

 
1. The probability density function for a lognormal distribution is given by 

 

𝑓𝑓(𝑥𝑥) =
1

𝑥𝑥𝑥𝑥√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �−

(ln (𝑥𝑥) − 𝜇𝜇)2

2𝜎𝜎2
�            𝑥𝑥 > 0,𝜎𝜎 > 0 

 

where the logarithm of the random variable 𝑥𝑥 is normally distributed 

 

ln (𝑥𝑥)~𝑁𝑁(𝜇𝜇,𝜎𝜎2) 

 

with a mean (𝜇𝜇) and variance (𝜎𝜎2) of 

 

𝜇𝜇 = 𝑙𝑙𝑙𝑙

⎝

⎛ 𝑚𝑚

�1 + 𝑣𝑣
𝑚𝑚2⎠

⎞ 

 

𝜎𝜎2 = ln �1 +
𝑣𝑣
𝑚𝑚2� 

. 

2. The mean (𝑚𝑚) of the non-logarithmized sample (𝑥𝑥) – i.e. the forecasted mean 

production, is used to calculate the mean (𝜇𝜇) and variance (𝜎𝜎2) of the logarithmized sample 

ln(𝑥𝑥). The two equations are: 

 

𝑚𝑚 =  𝑒𝑒�µ + σ
2

2 � 
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𝐹𝐹𝑥𝑥(𝑧𝑧) =  φ �
ln (𝑧𝑧) − µ

σ
� 

 

where z is the percentile value (i.e. -1.282 for the P10 and 1.282 for the P90) for percentile 

α of the lognormally distributed production forecast. The mean (𝑚𝑚) of the production 

forecast and the cumulative normal distribution function (𝐹𝐹𝑥𝑥) are expressed in terms of 𝜇𝜇: 

 

𝜇𝜇 = ln(𝑚𝑚) − 𝜎𝜎2 2⁄  

 

and 

 

𝜇𝜇 = ln(𝑧𝑧) − 𝜎𝜎Φ−1(𝛼𝛼) . 

 

The two equations for 𝜇𝜇 are combined and the resulting equation can be solved using the 

quadratic formula. It will yield either zero, one or two solutions for 𝜎𝜎. The (real) solution 

must be chosen, so that 𝜎𝜎 is positive and the calculated mean matches the given mean using 

𝜎𝜎:  

 

 𝜎𝜎2 − 2Φ−1(𝛼𝛼)𝜎𝜎 + 2[ln(𝑧𝑧) − ln(𝑚𝑚)] = 0  

   

 𝜎𝜎 =
−𝐵𝐵 ± √𝐵𝐵2 − 4𝐴𝐴𝐴𝐴

2𝐴𝐴
  

 

With 

 

𝐴𝐴 = 1 
 

𝐵𝐵 = −2Φ−1(𝛼𝛼) 
 

𝐶𝐶 = 2[ln(𝑧𝑧) − ln(𝑚𝑚)] 
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The mean of the normal distribution is calculated using  

 

 𝜇𝜇 = ln(𝑚𝑚)− 𝜎𝜎2 2⁄   

 

With the mean and the standard deviation, it is possible to get an exact fit for the mean and 

the selected percentile and an approximate fit for the remaining percentile. The fitting 

method can also be used with the mean and the P90 value, as well as the P10 and P90 value, 

demonstrated in Appendix A-1. A comparison between different fitting methods is in 

Figure 4.  

Figure 4. Lognormal distribution fit for one field in year 0, using P10 and mean, P90 and 
mean and P10 and P90. 

 

3. Next, the mean and standard deviation of the fitted lognormal distributions now 

enable the summation of the production years for the individual fields, to obtain cumulative 
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production forecasts. Given the assumption that the production forecasts are independent, 

it is possible to calculate the cumulative variance (𝜎𝜎𝑛𝑛 2) for aggregation year n by adding 

up the variances of the previous years (𝜎𝜎𝑖𝑖 2).  

 

𝜎𝜎𝑛𝑛 2 =  �𝜎𝜎𝑖𝑖 2
𝑛𝑛

𝑖𝑖=1

 

 

To re-calculate the P10 and P90 of the aggregated production forecasts, values were 

transformed from the input data space (lognormal mean and variance) to the calculation 

space (non-logarithmized mean and variance) using the following two equations, which 

we already used previously to define the normal distribution. 

 

 𝜇𝜇 = ln

⎝

⎛ 𝑚𝑚

�1 + 𝑣𝑣
𝑚𝑚2⎠

⎞  

 

𝜎𝜎2 is the variance of the non-logarithmized input value. 

 

 𝜎𝜎2 = ln �1 +
𝑣𝑣
𝑚𝑚2�  

 

In some cases, the operator failed to provide valid P10 (and/or P90) forecasts. Such 

an invalid forecast would comprise of a P10 (and/or P90) value equal to the mean forecast, 

a P10 (and/or P90) value of zero or the absence of a P10 (and/or P90) value. In such 

instances those fields were omitted from the analysis. The resulting probability 

distributions of the aggregated production forecasts allow the identification of any 

statistics, including the P10, mean, P50 and P90. 
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SKEWNESS OF LOGNORMAL DISTRIBUTIONS 

Some of the subsequent analyses use the P50, rather than the mean forecast. For 

most fields in this study, the mean of the forecasted aggregated production is close to the 

P50 of the forecasted aggregated production, yet they are still inequal. To validate the use 

of the P50 instead of the mean, the skewness of the distributions needs to be quantified.  

The input parameters used for the lognormal distribution fitting exhibit positive 

skew, as the ration (𝑃𝑃90 − 𝑃𝑃50)/(𝑃𝑃50 − 𝑃𝑃10) > 1. Thus, the lognormal distributions 

also exhibit positive skew with 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑒𝑒𝑠𝑠 > 𝑃𝑃50. Pearson’s second skewness 

coefficient was determined for each field used in the aggregation calculations. Aggregation 

year 4 was used as an example to demonstrate the range of skewness coefficients.  

For aggregation year 4, the resulting skewness coefficients range from 0.04 and 0.8, 

with an average of 0.2. A skewness of 0 indicates a perfectly symmetric distribution. A 

rule of thumb dictates that if skewness is between -1 and -0.5 or between 0.5 and 1, the 

distribution is moderately skewed. If skewness is between -0.5 and 0.5, the distribution is 

approximately symmetric (Bulmer 1979).  

With increasing number of distributions being added, the skewness reduces in 

accordance with the Central Limit Theorem. Positive skewness is expected in the 

production forecasting context as production is bounded on the low end and unbounded on 

the high end. With an average skewness coefficient of 0.2 for aggregation year 4 (reduced 

for subsequent aggregation years), evaluating biases based on P50 values - rather than 

means - appears valid. Despite 𝑃𝑃50~mean, the analyses should use the mean values when 

convenient to honor inputs provided by operators. 
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5. Results and Analyses 

No fields from the data set were omitted from any of the analyses unless otherwise 

indicated. Using the method presented in the previous chapter, a series of methods will be 

introduced to illustrate the performance of production forecasts.  

 

FORECASTED PRODUCTION PROFILE VS. ACTUAL PRODUCTION PROFILE 

Figure 5 shows actual production and mean forecasted production for all 55 fields, 

and Figure 6 shows the fields' cumulative production by year. Again, in these graphs time 

delays have been eliminated so that actual production start equals forecasted production 

start for all of the fields.  

Figure 5. Actual production and mean forecasted production for all fields. 
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Figure 6. Cumulative actual production and cumulative mean forecasted production for all 
fields. The grey bars indicate the number of fields available for the analysis in each 
production year. 

 

Figure 5 shows that for each of the first five years, average actual production from 

the 55 fields was short of average forecasted-mean production. However, from year six 

onward, average actual production was greater than average forecasted-mean production. 

Figure 6 shows that in year 20, cumulative actual production is close to cumulative 

forecasted-mean production. However, as will be discussed in detail later, most of the fields 

delivering on the expected ultimate recovery (or exceeding it) required additional 

investment beyond what was used in the production forecast made at the time of FID. 

Additional investment types included, but is not limited to: redevelopment projects, 

additional wells, etc. The grey bars indicate the number of fields available for the analysis 

for any production year. 
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OPTIMISM BIAS  

Operators are interested in production forecasts on an individual basis, when 

compared to actual production, to judge whether production goals were met. Likewise, the 

comparison between an aggregated production forecast and cumulative production will 

indicate whether an operator has delivered over the life of a field. Biases that are observable 

for both, the aggregated and individual production years, will also render the argument that 

individual production forecast might suffer from one-off unexpected events rather than 

biases, invalid.  

The degree of optimism bias for any aggregated production year n can be assessed 

by using cumulative distributions of the normalized actual production of all fields. 

Comparing the cumulative distribution with the normalized forecasted mean production 

for aggregation year n will also demonstrate the quantitative impact of optimism. The 

generation of the cumulative distributions over normal actual production values was 

preceded by a number of steps.   

 

1. First, the aggregated mean production forecast for year n has been normalized so 

that the mean forecast is 1.0. 

 

2. Next, each field’s actual production outcome for aggregation year n was normalized 

by the field’s mean forecasts, to allow the distribution of forecasted mean production to be 

compared with the distribution of actual production. 
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3. Because the ratio of the forecasted mean production versus actual production varies 

by field, a Metalog distribution28 was fit to the normalized actual production data. The 

Metalog distribution was chosen because it is simple, flexible and provides an easy fit.  
 

Figure 7 displays the CDF for aggregation year three (chosen randomly) with the 

red line indicating the normalized mean production forecast. The horizontal axis denotes 

the aggregated, normalized actual production values for the aggregation year, and the 

vertical axis denotes the probability of the actual production being less than the value of 

the horizontal axis.  

 

                                                 
28 (Keelin, 2019) 

Figure 7. CDF for normalized actual production, with the normalized mean forecast 
indicated. The CDF is for the aggregation year 3, including all fields 
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If the production forecasts were unbiased, the normalized actual production values 

would be less than the normalized mean production forecast approximately 50% of the 

time (recall 𝑃𝑃50~mean for aggregation years). Figure 7 shows that for aggregated year 3, 

optimism in the mean forecasts can be observed, as the probability of production being less 

than the normalized mean forecast is greater than 50%. In fact, for 69% of the fields, the 

normalized actual production was less than the normalized mean forecast production 

(x=1.0). 
 

SENSITIVITY ANALYSIS FOR OPTIMISM BIAS 

A sensible question to ask at this point is if optimism bias is also observable in other 

aggregation years. Figure 8 shows the results of a sensitivity analysis of the optimism bias 

as a function of production year. The orange dots show the percentage of fields whose 

cumulative actual production did not exceed the field's aggregated forecasted P50, to 

number of aggregation years 𝑛𝑛. Notice that for the sensitivity analysis, the P50 (determined 

from the fitted lognormal distribution) was used instead of the mean. Using the P50 allows 

for valid comparison between the number of instances where the cumulative production 

was less than the aggregated P50 and the aggregated P50 value itself.  Sensitivity years 𝑛𝑛 

range between 1 and 8, because beyond year 8 fields are much more likely to be subject to 

redevelopment. Those redevelopments would not have been specified in the FID. The gray 

bars show the number of fields included as a function of 𝑛𝑛 with the scale on the right-hand 

side of the graph. The number of fields with valid P50 forecasts decreases as 𝑛𝑛 increases, 

because of data availability and field life. Figure 8 shows that there are no major 

improvements in the optimism bias throughout the years, as cumulative forecasted P50 

systemically overestimate production. The aggregated forecasted P50 values are 
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consistently above the black dotted line – the line indicating where an unbiased, well-

calibrated P50 would fall.  

 

OVERCONFIDENCE BIAS  

Recall that for a well-calibrated production forecast, the P10 and P90 values should 

bound the range where the actual production values fall 80% of the time. Using a similar 

approach as with the optimism bias, the probability of the normalized actual production 

being less than the normalized P10 forecast is determined (Figure 9). The same CDF plots 

are used to see whether the normalized P10 forecast for aggregation year 3 (chosen 

randomly) for all fields is overconfident. For an unbiased normalized P10 forecast the 

probability of normalized actual production being less than the normalized P10 forecast 

should, of course, be 10%. If the normalized P10 forecast was unbiased and a red, vertical 

Figure 8. Sensitivity analysis of the optimism bias as a function of production year, on an 
aggregated basis 
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line was constructed using the normalized P10 forecast on the horizontal axis, the red, 

vertical line would cross the CDF with a corresponding value on the vertical axis of 0.1.  

 

The dotted red line in Figure 9 indicates that the normalized P10 value for 

aggregation year 3 is overconfident. For 51 % of the fields, the normalized actual 

production was less than the normalized P10 forecast production. 

 

Figure 9. CDF for normalized actual production, with the normalized P10 forecast 
indicated. The CDF is for the aggregation year 3, including all fields. 
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SENSITIVITY ANALYSIS FOR OVERCONFIDENCE BIAS  

Similar to the optimism bias, a sensitivity analysis was conducted to investigate 

whether the overconfidence bias is observable throughout the first eight production years. 

Figure 10 shows the results of a sensitivity analysis of the overconfidence bias as a function 

of production year. The orange dots show the percentage of fields whose cumulative actual 

production did not exceed the field's aggregated forecasted P10, to number of aggregation 

years 𝑛𝑛. The gray bars show the number of fields included as a function of 𝑛𝑛 with the scale 

on the right side of the graph. The number of fields with valid P10 forecasts decreases as 

𝑛𝑛 increases, because of data availability and field life. There are no major improvements 

in the overconfidence bias throughout the years.  

Overconfidence seems to be even more severe than optimism for this specific data 

set. It is reasonable to assume that most of the time and effort goes into determining the 

Figure 10. Sensitivity analysis of the overconfidence bias as a function of production 
year, on an aggregated basis 
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mean production forecasts, resulting in mean assessments that are less affected by biases 

as compared to low (and/or) high estimates. 

Overconfidence is more apparent in P10 estimates, as P90 estimates might not 

capture the full extent of overconfident forecasts – i.e. it is not possible to exceed the P100. 

Therefore, overconfidence and the impact on the 80% interval is better examined using the 

P10 value.  

 

FIELD SIZE SENSITIVITY ANALYSIS  

An argument could be made that field size might play a role in the occurrence of 

biases and that optimism depends of field size. Some might argue that smaller fields, 

compared to larger fields, need to be more optimistic to get them approved, as smaller 

fields might be more marginally economical. If optimism is intentional to get those field 

approved, the bias becomes a motivational bias.  

Figure 11 shows a sensitivity analysis on the field size vs. the occurrence of 

overconfidence and optimism. There seems to be no observable trend that indicates that 

field size plays a role in how well calibrated forecasts are. 
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LIMITATIONS OF THE ANALYSIS  

There are several limitations of the analysis that will be briefly discussed in this 

chapter. First, production forecasts and rates are reported annually, which makes it 

impossible to determine the month for first oil production, based on the available data. 

Imagine the following scenario: The forecasted start-up for the first year was intended to 

be early in that year (e.g. February or March), a delay might push the start-up out a few 

months but not into a new calendar year. This will create a seemingly overconfident or 

optimistic first year production forecast. Of course, the opposite scenario is also possible. 

Figure 11. Sensitivity analysis on field size vs. occurrence of overconfidence and optimism. 
The bars depict the relative frequency with which the forecasted P50 is equal or 
greater than the actual production (in blue) and the relative frequency with 
which the forecasted P10 is equal or greater than the actual production (in 
orange). The number of fields that fall into each field size category varies 
between 14 and 6 fields. 
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Therefore, to reliably judge the quality of the production forecasts in year 1, further data 

refinement will be necessary.  

Secondly, as the production years increase the data availability decreases. It 

becomes increasingly difficult to draw conclusive findings supported by statistics.  

 

DO FORECASTERS LEARN FROM THEIR MISTAKES? 

The study period covers 22 years in which there have been significant technical 

advances in the industry. A lot of attention and effort has been spent on increasing the 

sophistication of uncertainty models. But the question remains whether those 

improvements have led to a decrease in biases in those forecasts. Figure 12 shows the 

results of a sensitivity analysis on the production performance of all 55 fields over the 22 

years span.  

The FID year is displayed on the horizontal axis, with each blue dot representing 

the production excess or shortfall of the mean forecast relative to the actual production, for 

a field that was approved (FID) in that year. The mean production forecast for the first four 

years of each field was aggregated and measured against the actual production. For the 

years 2015, 2016 and 2017, the first three, two and one year(s) were used respectively. A 

blue dot below the black line (at value zero) indicates production shortfall, and a dot above 

the line indicates production excess. If there are improvements pertaining the quality of 

production forecasts, the moving average of all dots would converge to zero over time. The 

red curve shows a LOESS curve (local polynomial regression) for the entire time span.  



 31 

 

From year 1996 to 2008 there is gradual change in the LOESS curve from a low 

value of -0.51 to a high of 0.07, indicating a general improvement in the quality of 

production forecasts. After 2008 the trend reverses and in 2017 the local polynomial 

regression reaches a value of -0.51 again. Therefore, operators do not seem to learn and 

improve the quality of their production forecasts over time, even with the advent of more 

sophisticated uncertainty models over the past two and a half decades. The increase in 

application of more sophisticated models does not in and of itself remove bias or improve 

forecasting performance. 

Figure 12. Production excess or shortfall for cumulative first four-year production displayed 
in the year the FID was made for the field. The red LOESS curve is a moving 
polynomial regression 
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REASONS FOR OVERCONFIDENCE AND OPTIMISM 

Future production is uncertain, and this uncertainty creates an environment in 

which unforeseen events will occur. However, a distinction must be made between 

unexpected events and biases in production forecasting. In a major study by Flyvbjerg, the 

reasons for shortcomings in forecasts were classified as causes and root causes.29 

Production is associated with a variety of uncertainties, and some of the causes that may 

occur include development time delays, unexpected geological features, reservoir 

complexity, flow constraints etc. While the causes for not attaining the forecasted 

production are numerous, one should expect an improvement over time. In a professional 

setting, the financial ramifications of not delivering on forecasted production would lead 

to efforts to mitigate future production shortfalls. With no immediate improvement in sight, 

the explanations for those shortcomings must be found elsewhere. The focus why forecasts 

systemically fail to deliver must shift to root causes. The latter are those factors that persist 

in the face of statistical analysis. The root causes are that forecasters continuously 

underestimate and, in some cases, even ignore the previously mentioned causes. The 

ignorance or misjudgments of those uncertainties are ultimately manifested in the observed 

biases. Forecasting errors typically fall in two categories. They can either be unintentional 

(i.e. delusion) or intentional (i.e. deception).  

 

Delusion  

Decision makers and forecasters fall victim to what Kahneman and Tversky (1974) 

call the planning fallacy.30 This fallacy will manifest itself in forecasters exhibiting a 

delusional optimism when assessing uncertainties. The tendency to create production 
                                                 
29 (Flyvbjerg 2011) 
30 (Tversky and Kahneman 1974) 
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forecasts based on scenarios of success might be appealing but forecasters will miss the 

potential for mistakes, even if it is unintentional. Those forecasts will create scenarios in 

which operators do not deliver and what was promised and likewise the expected financial 

returns are not attained. Kahneman and Tversky’s initial work was later extended by 

Lovallo and Kahneman (2003) who argue that the biases occur because decision makers 

often take an inside view when generating those forecasts. Viewing the problem at hand 

form an inside view will result in forecasters focusing on the unique characteristics of the 

project at hand. Several studies have shown, that adopting an outside view can reduce the 

level of delusion in producing uncertainty estimates.31  

 

Deception 

Another explanation, why forecasts exhibit continuous biases, is deception. 

Strategic and deliberate misrepresentation of future production is a common occurrence in 

a project-based industry.32 Forecasters and decision makers will intentionally overestimate 

production to increase the chances that their project will receive the necessary approval 

and the subsequent funding. The deliberate emphasis of advantageous project 

characteristics and the misrepresentation of potential downside risk will make the project 

appear superior than it actually is. This fosters an environment in which biases are likely 

to occur. Financial metrics can also be used to measure the consequences of those biases. 

Value is destroyed, as capital is not allocated in the most efficient way possible.33 Such 

strategic misrepresentations can be countered by enhancing transparency pertaining project 

forecasts within companies. Providing clarity and aligning incentives, in such a way that 

                                                 
31 (Flyvbjerg et al. 2014), (Kahneman and Lovallo 2003) 
32 (Flyvbjerg et al. 2014) 
33 (Ernst & Young 2014) 
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deliberate distortion of project details is discouraged, would be first steps in the right 

direction. 
  



 35 

6. Improvements to production forecasting 

 

ORGANIZATIONAL IMPROVEMENTS   

Strong evidence has been presented showing that production forecasts of oil fields 

on the NCS do indeed suffer from optimism and overconfidence. The focus should now 

shift towards possible bias mitigation measures. There are several organizational 

improvements proposed in different research works that have been proven to reduce the 

biases and their impacts.  

 

Number of expert opinions 

Welsh et al. (2007) showed that if an increasing number of expert opinions are 

considered, overconfidence decreases with a rate that is dependent on the extend of 

agreement between different experts.34 They found that the decrease in overconfidence 

levels, with the increasing number of expert opinions, is non-linear and tends to reduce as 

the number of experts increases, shown in Figure 13. Thus, more expert opinions only 

translate into marginal overconfidence reductions after a certain threshold.  

                                                 
34 (Welsh et al. 2007) 
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In a corporate setting production forecasts are typically reviewed by more than one 

person but seldomly do those numbers increase into the double digits. Potentially a greater 

impact stems from the fact that in most companies, expert opinions - while sometimes 

reached individually - will be incorporated in such a way that there is generally a consensus 

reached among those who produce or review the production forecasts. The data available 

in this study does not indicate the number of expert judgements used to produce the 

production forecasts.  

 

Figure 13. Reduction of overconfidence levels by number of experts and 
level of agreement 
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Risk awareness training  

In 2005 Welsh and colleagues published the results of a study in which they asked 

oil and gas industry professionals a set of questions to highlight common biases.35 One of 

the biases that was investigated was overconfidence. The results confirmed that 

overconfidence commonly occurs in the oil and gas industry. Participants of the study were 

also asked regarding their industry expertise as well as state their previous experience with 

risk awareness training and when they completed such training. Findings highlighted that 

there is no significant reduction in overconfidence with increasing industry experience – 

which might be most surprising or even worrying, since we commonly rely on industry 

professional with experience. However, the subject individuals who had undergone recent 

risk awareness training were performing slightly better than those whose training has been 

further in the past.  

A subsequent study that was published by the same authors confirmed previous 

findings regarding the reduction of overconfidence with individuals who have had some 

sort of risk training.36 This study made the difference even more apparent as a group of 

students was given two test, one prior to risk awareness training and one immediately after 

the risk awareness training. The results showed an increase in the range estimates by 20% 

for the answers given in the post-training test. The importance of frequent risk awareness 

training was made apparent when the same group of students outperformed a group of 

industry professionals of whom half of those professionals had some sort of risk awareness 

training in the past.   

The extend of the debiasing effect seems to differ not only regarding the timing of 

when risk awareness training has been received, but also on the industry and its ability to 

                                                 
35 (Welsh et al. 2005) 
36 (Welsh et al. 2006) 
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highlight those shortfalls in a practical setting.37 Kahneman has found that the effect of 

debiasing forecasts is mitigated once applied in practice.38 Therefore, there is a need to 

actively be aware of those biases, which can be achieved through tracking and updating 

forecasting performances. 

 

Tracking performance 

There is clear evidence that tracking past performances will aid in reducing biases 

encountered in uncertainty assessments.39 Fondren et al. published a research study in 2013 

in which a database was built to track probability assessments and their outcomes. In one 

of the examples, shale production forecasts were compared to actual production outcomes 

to assess the biases and investigate possible corrections. The findings show that using past 

results can help better calibrate production forecasts. Figure 14 and Figure 15 summarize 

their findings.  

                                                 
37 (Sellier et al. 2019) 
38 (Kahneman 2011) 
39 (Capen 1976), (Fondren et al. 2013),  
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The plots indicate the percentiles on the horizontal axis and the percentiles based 

on the actual outcomes on the vertical axis. For an unbiased forecast the data points would 

fall on the 45-degree line, i.e. a forecasted Pxx would be an observed Pxx. However, as the 

authors point out, there are limitations to their study. Given the sparse amount of actual 

production history, the future actual production was generated using “hind-casting”. Shale 

formations are characterized by fast build-ups and declines, which limits the number of 

Figure 15. Biased long-term forecast (left) and debiased long-term forecast with 1.5 years 
of production history. (Fondren et al. 2013) 

Figure 14. Biased long-term forecast (left) and debiased long-term forecast with 3 years of 
production history. (Fondren et al. 2013) 
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usable production years. The attention then shifts towards the question whether a few years 

of actual production history are sufficient to measure the full extent of the impact of those 

biases? 

Tracking performance through past production history is beneficial and easy to 

implement, yet organizational measures maybe often be cumbersome to introduce, and 

their adaptability might vary depending on company culture. Therefore, the next two 

chapters will briefly introduce two methods that can be used to reduce biases in production 

forecasts, that do not rely on any organizational measures, but rather on statistical methods.  
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7. Reference Class Forecasting  

The previous chapters highlighted the possibility of using past performances and 

actual outcomes to improve uncertainty assessments in probabilistic forecasting. One such 

method that has gained increasing popularity in the past decades is reference class 

forecasting. 

 

LITERATURE 

Reference class forecasting (RCF) is based on early work from Daniel Kahneman 

and Amos Tversky who propose the selection of a reference class “… for which the 

distribution of outcomes is known, or can be assessed with reasonable confidence.”40 A 

reference class is a group of comparable, historic projects. To establish an appropriate 

reference class the number of projects included must be large enough to allow for statistical 

conclusions to be drawn. However, it must also capture the characteristics of the project in 

question, such as size, complexity, duration etc., which will in contrast limit the size of the 

class.  

The idea behind reference class forecasting is to provide an outside view on projects 

with the goal to mitigate some of the biases described earlier. The outside view is achieved 

by gathering information regarding outcomes and by establishing a distribution of past 

projects in a statistical setting. This distribution can then be used to improve the specific 

project at hand. Kahneman and Tversky concluded that decision makers and forecasters 

that focus on individual estimates, without considering distributional information, will be 

optimistic in their assessments.41 Various research studies have proven that if a suitable 

                                                 
40 (Kahneman and Tversky 1979) 
41 Ibid.  
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reference class is applied, the accuracy of the investigated forecasts will improve.42 In one 

such study, Flyvbjerg et al. investigated the performance of time and cost estimates for 

roadwork projects in Hong Kong. Projects were divided in different categories depending 

on what completion stage they were in. Optimistic and overconfident forecasts were 

identified, and a reference class was used to correct the forecasts. The resulting uplift 

factors (U) are a function of the probability (p) of a cost or time overrun. For the 

probabilities between 0 and 1, the maximum overrun was established that was not exceeded 

in the historic data, where 𝑥𝑥 are the overruns and 𝑋𝑋 is a given value of 𝑥𝑥. (𝑖𝑖𝑖𝑖𝑖𝑖 being the 

infimum; the greatest lower bound for this set). The results are illustrated in Figure 16. 

𝑈𝑈(𝑝𝑝) = 𝑖𝑖𝑖𝑖𝑖𝑖{𝑥𝑥:𝑝𝑝 ≤ 𝑃𝑃𝑃𝑃(𝑋𝑋 ≤ 𝑥𝑥)} 

                                                 
42 (Kahneman and Tversky 1979), (Gilovich et al. 2002), (Flyvbjerg et al. 2004), (Flyvbjerg et al. 2016) 

Figure 16. Uplift factors for different acceptable chance of cost overrun 
for one of the project categories. The grey band indicates 
the 95% confidence interval. Flyvbjerg et al. 2016 
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 The uplift factors to adjust the initial, biased forecasts for all projects are 

summarized in Figure 17. The factors can be used as a multiplication factors for the 

original, biased forecast. For example: an uplift of 13% will yield in a multiplication factor 

of 1.13. If the forecasts were pessimistic, the multiplication factor would be smaller than 

one.  

 

APPLICATION 

The application of reference class forecasting is detailed in the following three 

steps43 

 

                                                 
43 (Flyvbjerg 2005) 

Figure 17. Uplift multipliers for roadwork project forecasts in HK early stage projects 
(Category C) and late stage projects (Category A); (Flyvbjerg et al. 2016) 
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1.) Past projects that are comparable to the project at hand will be identified and 

included in the reference class. The selection process may vary on the user’s preferences 

and which projects she or he deems comparable.  

 

2.) A cumulative probability distribution for the parameter of interest (usually 

completion time or cost) is generated using outcomes from past projects that were selected 

in step 1. One possible approach would include determining the required probability of 

meeting a production forecast, based on the historic data, and fitting a cumulative 

distribution to the past outcomes.  

 

3.) Finally, the project at hand is compared with the distribution obtained in step 2. The 

comparison will yield uplift and/or scaling factors that can be used to amend the probability 

assessment for the project at hand, as shown in Figure 17. An example will be demonstrated 

in the subsequent paragraphs.  

 

To date, there has not been an extensive, public study on the application of RCF for 

production volumes (or reserves) in conventional oil and gas reservoirs. There might be 

several reasons why this is the case. Oil and gas companies are naturally inclined not to 

disclose sensitive data, making it difficult to gain access to production forecasts. While the 

theory behind reference class forecasting has been developed by Kahneman and Tversky 

in the 1970s and early 1980s, it took almost 30 years to utilize the theory in a practical 

setting.44 Flyvbjerg et al. presented the first major study using RCF in 2004.45 

                                                 
44 (Tversky and Kahneman 1974, Kahneman and Tversky 1979) 
45 (Flyvbjerg et al. 2004) 
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The reference class for this study was established by considering all fields that were 

used in the investigation for the optimism and overconfidence bias. While the geological 

features might differ significantly within the Norwegian Continental Shelf, the projects are 

comparable in their fundamental nature. They are all producing from a well-known 

geological system, where ample data is available through historic projects. Further, the 

projects used for the reference class are all producing oil. Any fields not producing oil i.e. 

NGL, condensate and gas were omitted from this study at the beginning. 

Step 2 puts the production outcomes in a distributional setting so that information 

can be drawn from the probability distribution. One of the advantages of a continuous 

probability distribution is that we can draw any value of interest and compare it with the 

forecasted production. Details of step 2 are outlined below.  

 

RCF FOR FIELDS ON THE NCS 

Reference classes were established for each of the first eight production years. The 

first reference class contains first year production outcomes for all fields. The second 

reference class contains aggregated second year production outcomes for all fields, and so 

on. No fields were omitted from the study. With increasing production year, the size of the 

reference classes decreases, as some fields do not have eight years’ worth of production. 

Table 2 shows the number of fields included in each reference class.  

 

Production year 1 2 3 4 5 6 7 8 

Number of fields included in RC 52 52 50 48 44 40 35 33 

Table 2. Number of fields included in each reference class 
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Similar to Chapter 5, the actual production outcomes for any aggregation year are 

normalized by the P50 forecasts (we are using the normalized P50s here, rather than the 

normalized means as it is more conclusive in this example). The normalized actual 

production values are sorted in ascending order by magnitude and analogous to Chapter 5, 

Keelin’s metalog distribution was used to fit a cumulative distribution to the normalized 

actual production data. Figure 18 shows the cumulative distribution for production year 3.  

 

After the cumulative distribution is fitted, the axes are switched and thus the 

distribution becomes inverted, shown in Figure 19. This will allow the determination of 

any multiplication factors.  

 

Figure 18. Cumulative distribution of normalized production outcomes for aggregation 
year 3 
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 Recall that the production outcomes were normalized by the P50. Any P50 forecast 

of any project at hand (for that specific aggregation year) can now be normalized (such that 

x=1.0) and be compared to the inverted distribution. The horizontal axis shows the 

acceptable probability of producing less than the forecasted value. The vertical axis in this 

context shows the RCF multipliers (i.e. multiplication factors, uplift factors). Therefore, 

for an unbiased P50 forecast the cumulative distribution would return a factor of 1.0 when 

looking at the 50% value on the horizontal axis. The plot for aggregation year 3 is again 

depicted in Figure 20 for better visualization.  

 

Figure 19. Inverted cumulative distribution for normalized aggregated production in year 3 
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If the P50 production forecast is optimistic the multiplication factor for the P50 

forecast will be less than 1. To account for the overconfidence bias, similar adjustments 

are expected for the 10th percentile. Figure 20 confirms that the multiplication factor for 

the biased P10 forecasts for aggregation year 3 are lower than 1. The RCF multipliers for 

the P10 and the P50 forecast are indicated in Figure 21, highlighted by the orange dotted 

lines.  

Figure 20. Acceptable chance of not attaining production and according RCF multiplier 
for aggregation year 3 
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RCF UPLIFTS FOR YEAR 1 TO YEAR 8 

Figure 22 and shows the P10 values both the biased and debiased forecasts, on an 

aggregated basis. The red dots indicate the probability of producing less than the biased 

P10 forecasts. The green dots show the debiased forecasts.  

 

 

 

Figure 21. Acceptable chance of not attaining production and respective RCF multiplier 
for aggregation year 3 with indicated P10 and P50 multipliers 
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  The debiased forecasts were obtained by applying the aforementioned multipliers 

to the initial forecasts, and then determining the new probability of producing less than the 

forecasted production. An improvement is observable for the P10 forecasts, once the 

multiplication factors are applied. The quality of the forecasts improves, as the actual 

percentiles move closer to the values that would constitute an unbiased forecast.  

Figure 22. P10 percentiles before and after the application of RCF over the first 8 
production years 
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Figure 23 shows the P50 for both the biased and debiased forecasts, on an 

aggregated basis. The red dots indicate the probability of producing less than the biased 

P50 forecast. The green dots show the debiased forecasts.  

Again, an improvement is observable for the P50 forecasts, once the multiplication 

factors are applied. The quality of the forecasts improves, as the actual percentiles move 

closer to the values that would constitute an unbiased forecast.  

 

The multiplication factors are summarized in Table 3. The table also highlights one 

of the challenges encountered when using RCF. The number of available fields after year 

5 is reduced to the point where the obtained scaling factors for the P10 forecasts result in 

debiased P10 values close to or equal to zero. 

 

Figure 23. P50 percentiles before and after the application of RCF over the first 8 production 
years 
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Year Without applying RCF multipliers With applying RCF multipliers 

 P10 P50 P90 P10 P50 P90 

1 0.59 0.63 0.41 0.13 0.44 0.87 

2 0.53 0.67 0.47 0.06 0.52 0.94 

3 0.51 0.66 0.49 0.09 0.46 0.91 

4 0.59 0.75 0.41 0.06 0.40 0.94 

5 0.58 0.70 0.42 0.04 0.43 0.96 

6 0.60 0.68 0.40 0 0.40 1 

7 0.56 0.63 0.44 0 0.40 1 

8 0.56 0.58 0.44 0.06 0.45 0.94 

Table 3. RCF multipliers for P10s and P50s for the first eight production years 

 

LIMITATIONS OF RCF  

There are several limitations pertaining to reference class forecasting.46 If the 

projects span over an extended time period, then the technology applied might differ 

significantly between individual projects. The uncertainty assessments may also differ 

substantially between individual fields. In the production forecasting context for fields on 

the NCS, those arguments do not hold true. It was already established that the increase in 

sophistications in uncertainty modeling does not in and itself lead to a reduction in the 

magnitude of biases.  

A second argument could be made about the class size. What is an appropriate size 

for a reference class, so that on the one hand, the projects are comparable but on the other 

                                                 
46 (Hájek 2007), (Leleur et al. 2015) 
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hand the comparison is meaningful? It might be challenging to find a measure of 

comparison to quantify appropriate levels of similarities. In this study, given the limited 

amount of data, no samples were excluded from the reference class. Therefore, an 

inferential approach, to calculate the robustness of the reference class must be taken. To 

test the robustness of the class, a “one-out validation” was chosen. The following three 

steps were implemented. Aggregation year 3 was chosen to test the robustness:  

 

1.) Chose a random field from the reference class and exclude it from the class. 

2.) Recalculate a new reference class with the remaining fields. 

3.) Test if the new reference class would achieve the same or better results than the 

complete reference class, once the multipliers are utilized.  

 

The results of the one-out validation method are partly summarized in Table 4, the 

entire table can be found in Appendix A-5. Ten random fields have been chosen to show 

the results of the validity study. The P10 and the P50 corrected with the adjusted reference 

class shall be denoted as  

 

𝑃𝑃10𝑛𝑛−1 and 𝑃𝑃50𝑛𝑛−1 

 

Where n is the class size of the entire reference class. Table 4 shows that the P10 

forecasts on average were only slightly impacted by the removal one field from the 

reference class, indicating that the reference class in terms of determining the P10 scaling 

factors is robust. The P50 uplift factors in comparison seem to be moderately impacted by 

the removal of a single field. On average the removal of one field from the reference class 

resulted in a probability of 57% of producing less than the P50. For comparison, the entire 
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reference class will yield P50 forecasts that on average have a 46% probability of 

producing less than the forecasts. There is limited variation for the 𝑃𝑃10𝑛𝑛−1 and the 𝑃𝑃50𝑛𝑛−1 

for different 𝑛𝑛 − 1 reference classes. It can therefore be concluded, that the reference class 

is robust and large enough in size.  

 
Field number P10n-1 P50n-1 avg. P10n avg. P50n 

30 0.104 0.583 0.090 0.460 
47 0.104 0.604 0.090 0.460 
3 0.104 0.542 0.090 0.460 
35 0.104 0.583 0.090 0.460 
14 0.083 0.563 0.090 0.460 
39 0.104 0.604 0.090 0.460 
12 0.083 0.563 0.090 0.460 
42 0.104 0.604 0.090 0.460 
37 0.104 0.604 0.090 0.460 

Table 4. 10 randomly excluded fields with unbiased forecasts for the entire dataset 
excluding that specific field 

If the reference class would be sensible to the exclusion of one field, the reference 

class could be refined pertaining geological characteristics. Unfortunately, the geological 

data of each field are not available for this study. Another refinement to RCF in a 

production forecasting context could be the distinction regarding field size. However, as 

pointed out previously, for this specific case field size does not seem to significantly impact 

the magnitude of biases.  
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8. Rho Signal Information System 

 

REFERENCE CLASS COMBINED FRAMEWORKS – LITERATURE  

The application of RCF to oil and gas production can be considered a brute force 

method. The convenience regarding calculations and utilization is contrasted by the 

uncertainty whether the class is representative and thus applicable to the project at hand. 

The second approach, presented in this chapter, is based on Bayesian probability theory. A 

Bayesian framework will be used, in which historic data is used as a prior and the 

distributional forecast is used as a likelihood. Those two distributions will be used to 

calculate a posterior probability distribution. Previous research has produced a variety of 

different approaches to build such a model. 

Bordley published a study in 2014, in which a Bayesian framework was utilized by 

combining statistical modeling and past outcomes (reference class).47 A posterior 

probability was calculated by updating the reference class data with the statistical model. 

The study investigated the predicted healthcare cost under a voluntary employee benefit 

association and showed that the resulting posterior probability had a greater variance and 

a larger mean than the model-based approach, thus mitigating the biases of the original cost 

forecasts. While this might work well for cases with access to the model on which the 

forecasts are based on, it is not applicable in the existing case. The model(s) used for the 

production forecasts was (were) not made available for this study.  

A similar approach to Bordley can be found in a study published by Leleur et al. in 

2015, in which RCF is combined with expert judgement pertaining the uncertainty 

                                                 
47 (Bordley 2014) 
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ranges.48 Similarly, Leleur et al. found an improvement in the calibration of forecasts once 

RCF is applied. The use of expert judgement resulted in scaling factors that are either 

greater or smaller than 1, thus increasing or decreasing the uncertainty range for the 

reference class. The authors suggest that if the use of expert judgement yields a scaling 

factor greater than one, the uncertainty of the reference class is adjusted, taking into account 

higher uncertainty implied by the expert judgement. If the opposite case is present, and a 

scaling factor of less than one is obtained from expert judgement, the authors suggest using 

the uncertainty range specified by the original reference class.  

 

RHO SIGNAL INFORMATION SYSTEM - APPLICATION 

Therefore, the attention should be shifted to a model that will integrate the reference 

class data with the probability distribution over the forecasted production. A Bayesian 

framework, where the reference class information is used to define the prior and the 

forecasted production (likelihood function) is used as a signal to calculate the posterior 

probability distribution parameter, will be specified. The term rho signal information 

system (RSIS) was first coined in 2008 in a value-of-information focused paper by Eric 

Bickel.49 As part of this study, the value was determined for which the value of an 

information system correlated with a normally distributed signal, using 𝜌𝜌, is equal to 

𝜌𝜌 × 100% the value of perfect information. A similar approach is taking to develop the 

RSIS for the present data. 

                                                 
48 (Leleur et al. 2015) 
49 (Bickel 2008) 
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The assumption is made that the logarithm of the reference class data and the 

production forecasts are distributed according to a bivariant Gaussian distribution. The 

approach to creating such a model is detailed in the following steps:  

 

1.) The reference class consists of the actual outcomes for all fields that had valid P10, 

mean and P90 production forecasts. A maximum likelihood estimation (MLE) was used to 

find the parameters of the probability distribution that best fits the reference class data. The 

MLE is used to find the best estimate for the parameter values that will maximize the 

likelihood function that most closely approximates the observed data. The parameter values 

of the MLE are called maximum likelihood estimators. In this particular case, the desired 

probability distribution over the reference class data is a lognormal distribution. The 

detailed derivation of the maximum likelihood parameters for a lognormal distribution can 

be found in Appendix-A2. The resulting maximum likelihood estimators (mean and 

variance) for the lognormal distribution over the reference class data are:  

 

𝜇̂𝜇 =
∑ 𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

𝜎𝜎�2 =
∑ �𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖) −

∑ 𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛 �
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

Using the MLEs we were able to fit a lognormal distribution to the actual production 

outcomes. The lognormal distribution was then transformed into a normal distribution 

(Figure 24), in order to use properties of bivariant Gaussian distribution, which will become 

apparent in the next steps.  
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The following equations were used to transform the mean (𝑚𝑚) and variance (𝑣𝑣) of a 

lognormal distribution into the mean (𝜇𝜇) and variance (𝜎𝜎2) of a normal distribution.  

 
 

 

 

𝜇𝜇 = 𝑙𝑙𝑙𝑙

⎝

⎛ 𝑚𝑚

�1 + 𝑣𝑣
𝑚𝑚2⎠

⎞ 

 

𝜎𝜎2 = ln �1 +
𝑣𝑣
𝑚𝑚2� 

 

Figure 24. Reference class distribution in normal space 
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2.) In step 2, a Pearson correlation coefficient 𝜌𝜌 is used, to correlate the mean forecasts 

with the actual outcomes. For a pair of random variables X and Y, the correlation 

coefficient is defined as: 

 

𝜌𝜌𝑋𝑋,𝑌𝑌 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋𝜎𝜎𝑌𝑌

 

 

The covariance is defined as follows:  

 

𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌) = Ε�(𝑋𝑋 − Ε[𝑋𝑋])(𝑌𝑌 − Ε[𝑌𝑌]� = Ε[𝑋𝑋𝑋𝑋] − Ε[𝑋𝑋]Ε[𝑌𝑌] 

 

With E being the expected value. The rho between the forecasted mean and the actual 

production for this data set is 0.83. 

 

3.) The fitted lognormal distributions from chapter 4 were converted into normal 

distributions, using the same equations as in step 1. The forecast will be the likelihood 

function (i.e. the signal) in the Bayesian framework. 

 

4.) Next, an appropriate value from the production forecast distribution must be chosen 

to update the prior reference class and thus obtain the posterior probability. As stated 

previously, it is assumed that most of the time and effort will go into determining the 

expected production forecast, thus the mean was chosen as a representative value from the 

probability distribution.   
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5.) In the final step, the posterior probability must be calculated. The variance of the 

likelihood function in the RSIS is fixed and known, with the mean becoming the model 

parameter. Given that the prior and likelihood are Gaussian distributed, we can infer that 

the posterior will also be Gaussian distributed (bivariate Gaussian distribution - see Figure 

25) with the parameters as followed (the detailed derivations can be found in Appendix A-

3):  

 

𝜎𝜎𝑛𝑛2 = (1 − 𝜌𝜌2)𝜎𝜎02 

 
𝜇𝜇𝑛𝑛 =  𝜇𝜇0 + 𝜌𝜌(𝑥𝑥𝑖𝑖 − 𝜇𝜇)

𝜎𝜎0
𝜎𝜎

 

 

Figure 25. Schematic illustration of a bivariate Gaussian distribution (green). 
Matlab code provided by Bscan (2019).  
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RESULTS OF RSIS  

Figure 26 shows the rho signal information system results for a randomly chosen 

field and year.  

 

The prior (RCF) is shown in blue, the signal (production forecast) is depicted in red 

and the adjusted production forecast (posterior) is shown in green. Recall that all 

distributions are depicted in normal space. The mean of the posterior is lower than the mean 

of the likelihood distribution, but higher than the mean of the prior distribution. This is a 

result that is expected. The RCF would likely underestimate the mean production but the 

signal and likelihood are used to update the prior beliefs and will result in a mean that is 

between the historic data of actual production and the production forecast generated for 

Figure 26. Rho-information system for a random field and a random production year 
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that field and year. The variance of the production forecast is considerably smaller than the 

variance of the reference class, resulting in a narrower distribution for the likelihood 

function. The reference class provides a wider distribution, based on historic outcomes 

which will also increase the variance of the posterior distribution. This correction will 

mitigate the effects associated with the overconfidence bias. Hence in a Bayesian updated 

forecast, we see that historic past data can be used to adjust a biased production forecast. 

 

Similar to RCF, a sensitivity analysis pertaining the first eight production years was 

conducted. Figure 27 depicts the probability of exceeding the production forecasts, before 

and after application of the rho signal information system, on an individual basis. 

Production years for the rho signal information system were investigated on an individual 

basis, rather than an aggregated basis (like in the RCF chapter) because a single distribution 

representing all production years was used as a prior. Thus, adding up variances as 

suggested previously to determine aggregated production forecasts would yield results that 

are not representative.   
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A quick view reveals that the adjusted percentiles are more accurate for the P10 

values, but the P50 forecasts only improve marginally. The first two production years 

deviate more significantly from the actual percentiles, even after the rho signal correction. 

Given the possible negative implications of overconfidence on NPV, the rho signal 

information system application is worthwhile.  

 

LIMITATIONS  

There are several limitations that arise when the rho signal information system is 

used. Keeping the variance of the prior fixed will result in a posterior distribution with a 

constant variance. In a practical setting it is expected that the variance for various fields 

differ. However, RSIS in this chapter was used to mainly illustrate that a Bayesian 

framework, where historic data is used to update the production forecast, can be used to 

adjust biased estimates. If a Bayesian framework is used to update the forecasts in future 

Figure 27. P10 and P50 percentile before and after the application of the rho signal 
information system for the first 8 production years, on an individual basis 
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work, more sophisticated models such as the Markov Chain Monte Carlo approach or the 

Normal-Gamma conjugate pair would likely yield better results.  

Another limitation arises from the constraints faced when choosing an appropriate 

value from the likelihood distribution. While it is sensible to choose the mean, a different 

value will yield different posterior distributions. Picking the mean or mode will give 

disproportional weight to those values. One potential approach to overcome this limitation 

would be a sequential use of the P10, mean and P90, where these three values are used as 

three signals to determine the posterior.   
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9. Discussion on limitation and next steps  

Despite having access to almost 600 years’ worth of forecasts and actual production 

data from 55, limitations still arise. First, the data is reported annually, which is especially 

detrimental for the initial production data. Without more detailed production data (i.e. 

monthly) it will be impossible to further refine the impact of the start-up delays on the 

production in the first year. Despite this limitation, the analysis based on the annual data 

provide valuable information regarding the quality of probabilistic production forecasts for 

oil fields on the NCS. 

As briefly alluded to earlier, the reference class should be refined to get more 

conclusive results from the reference class. Some of the characteristics, which might 

provide feasible class selection criteria are geological settings, field size, applied 

technology etc. Without any additional data for the fields investigated in this study it will 

be difficult to refine the reference class.  

Finally, the application of any model should naturally always be scrutinized in 

terms of its consistency with data at hand and rationale with regard to constraints. A good 

starting point is the recommendation made by Leleur regarding expert judgements. Picking 

the results with a wider uncertainty range, whether it is based on historic data or expert 

judgement, will yield better results on average. Given strong evidence of overconfident 

production forecasts, this argument also seems logically sound for this study.  

There are several steps that can be taken beyond what was covered in this thesis. 

The utilization of a database that keeps track of past forecasting performance and allows 

for easy access to data for any reference class seems imperative. It is assumed that most 

operators do have such a database, yet what remains uncertain is to what extend operators 

draw on past experiences to produce production forecasts. With ample evidence of past 
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forecasting studies from different disciplines, that keeping track is beneficial, the creation 

and appropriate utilization of such a database is strongly advised.  

Lastly, the Norwegian Petroleum Directorate is unique in its approach to improve 

transparency in the industry. More government agencies should advocate public 

accessibility to data to improve the industries understanding of this problem. Individually, 

operators may not always be aware that production shortfalls suffer from suffer biases 

rather than “unexpected events”. 
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10.  Summary and conclusions  

Production forecasts for oil fields on the NCS, approved between 1995 and 2017, 

are biased. The analysis demonstrates clear evidence of optimism and overconfidence. The 

mean forecasts are, on average higher than the actual production, i.e. they are optimistic. 

The P10 (and P90) forecasts bound an uncertainty range, in which less than 80% of the 

actual production falls, i.e. they are overconfident. The causes commonly presented to 

justify production shortfalls might be numerous, but the real causes are traceable to biases. 

There are generally two categories of biases that are predominant. Intentional biases 

(deception) and unintentional biases (delusion) can both lead to value destruction.  

The biases vary depending on the production year. Given that the first reinvestment 

occurred in year 8, most of the analyses focus on the first eight production years. CDF plots 

are generated to quantify the impact of those biases. 

There is a number of mitigation and correction processes that can aid in debiasing 

the forecasts. Reference class forecasting is a tool that puts past projects in a distributional 

setting and lets the forecaster determine uplift or scaling factor to the project at hand. It is 

a convenient and fast method that allows for convenient use. The results show significant 

improvement in the production forecasts when compared to the biased, uncorrected 

production forecasts. The rho signal information system is a more sophisticated model, 

compared to the RCF, with the latter considered as somewhat of a “brute force method”. 

In the rho signal information system, a Bayesian framework is used to update the prior 

probability distribution with the production forecasts. This framework can also be 

considered as a more wholesome approach, since it will honor all inputs provided by the 

experts to determine the production forecasts.  
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As shown by various studies, the financial impact of these biases can be substantial. 

The biases could, for example, lead to a project being approved when it would not have 

been approved, if the forecasts were unbiased. Moreover, even when the same projects 

would be approved, the concept choices would likely be different given unbiased forecasts. 

The reduction of biases in production forecasts is of importance since the NPV can be 

reduced by the aforementioned biases. 

Based on the widespread biases encountered in the industry, it is best to echo what 

Welsh and Begg have already stated in earlier work: “In fact, in light of what we know 

about how bias affects decision making and the economic impacts of this, it could 

reasonably be claimed that debiasing of [oil and gas] industry decisions has greater 

potential to improve economic outcomes than time and money put into honing 

technological and modelling processes.”50   
  

                                                 
50 (Welsh and Begg 2015) 
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11. Appendix A  

A-1. ALTERNATE LOGNORMAL FITTING METHOD  
A log-normal fit can also be obtained using the forecasted P10 and P90 values as 

followed. Setting up the following equations, with known 𝑧𝑧1, 𝑧𝑧2 values for 𝛼𝛼1,𝛼𝛼2 
percentiles, will give  

 
ln(𝑧𝑧𝑖𝑖) = 𝜇𝜇 + 𝜎𝜎Φ−1(𝛼𝛼𝑖𝑖). 

 
Combining the information from the two percentiles yields  
 

𝜎𝜎 =
ln(𝑧𝑧2) − ln (𝑧𝑧1)

Φ−1(𝛼𝛼2) −  Φ−1(𝛼𝛼1) 

 

𝜇𝜇 =
ln(𝑧𝑧1)Φ−1(𝛼𝛼2) − ln (𝑧𝑧2)Φ−1(𝛼𝛼1)

Φ−1(𝛼𝛼2)−  Φ−1(𝛼𝛼1) . 

𝜇𝜇 can also be calculated directly, once 𝜎𝜎 is obtained, as 𝜇𝜇 is a function of 𝜎𝜎 and can 

be calculated using either of the original equation presented in Appendix A-1, i.e., 
 

𝜇𝜇 = ln(𝑚𝑚) − 𝜎𝜎2 2⁄ . 

 

A-2. MAXIMUM LIKELIHOOD ESTIMATION51 

A lognormal distribution was chosen to be fit to the reference class data with the 

density function of such a distribution being,  

 

𝑓𝑓(𝑋𝑋|𝜇𝜇,𝜎𝜎2) =
1

�(2𝜋𝜋𝜎𝜎2)𝑋𝑋
𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝑙𝑙𝑙𝑙(𝑋𝑋) − 𝜇𝜇)2

2𝜎𝜎2
�                       𝑋𝑋 > 0,−∞ < 𝜇𝜇 < ∞,𝜎𝜎 > 0  

 

In order to compute the maximum likelihood estimators of the two-parameter 

lognormal distribution, the likelihood function needs to be established first.  

                                                 
51 (Ginos 2009) 
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𝐿𝐿(𝜇𝜇,𝜎𝜎2|𝑋𝑋) = �[𝑓𝑓(𝑋𝑋𝑖𝑖|𝜇𝜇,𝜎𝜎2)]
𝑛𝑛

𝑖𝑖

 

= ���
1

�(2𝜋𝜋𝜎𝜎2)
�

1
𝑋𝑋𝑖𝑖

exp �
−(𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖) − 𝜇𝜇)2

2𝜎𝜎2
��

𝑛𝑛

𝑖𝑖

 

 

With the log-likelihood function being:  

 

ℒ(𝜇𝜇,𝜎𝜎2|𝑋𝑋)  = ln ���
1

�(2𝜋𝜋𝜎𝜎2)
�

1
𝑋𝑋𝑖𝑖

exp �
−(𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖) − 𝜇𝜇)2

2𝜎𝜎2
��

𝑛𝑛

𝑖𝑖

 

= −
𝑛𝑛
2
𝑙𝑙𝑙𝑙(2𝜋𝜋𝜎𝜎2) −� ln(𝑋𝑋𝑖𝑖) −

∑ (𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖) − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1

2𝜎𝜎2

𝑛𝑛

𝑖𝑖=1

 

 

= −
𝑛𝑛
2
𝑙𝑙𝑙𝑙(2𝜋𝜋𝜎𝜎2) −� ln(𝑋𝑋𝑖𝑖) −

∑ [𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)2 − 2𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)𝜇𝜇 + 𝜇𝜇2]𝑛𝑛
𝑖𝑖=1

2𝜎𝜎2

𝑛𝑛

𝑖𝑖=1

 

= −
𝑛𝑛
2
𝑙𝑙𝑙𝑙(2𝜋𝜋𝜎𝜎2) −� ln(𝑋𝑋𝑖𝑖) −
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𝑙𝑙𝑙𝑙(2𝜋𝜋𝜎𝜎2) −� ln(𝑋𝑋𝑖𝑖) −

∑ 𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

2𝜎𝜎2

𝑛𝑛

𝑖𝑖=1

+
∑ 𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)𝜇𝜇𝑛𝑛
𝑖𝑖=1

𝜎𝜎2
−
𝑛𝑛𝜇𝜇2

2𝜎𝜎2
 

 

 

In order to find the maximum likelihood estimators, the two 

parameters 𝜇̂𝜇 and 𝜎𝜎�  need to be determined, such that the equation 

ℒ(𝜇𝜇,𝜎𝜎2|𝑋𝑋) is maximized. This is achieved by taking the gradient of ℒ with 

respect to 𝜇𝜇 and 𝜎𝜎2 then setting it equal to 0.  

 
∇ ℒ = 𝛿𝛿ℒ

𝛿𝛿𝛿𝛿
= ∑ 𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)𝑛𝑛

𝑖𝑖=1
𝜎𝜎�2

−  2𝑛𝑛𝜇𝜇�
2𝜎𝜎�2

= 0  
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→  
𝑛𝑛𝜇̂𝜇
𝜎𝜎�2

=
∑ 𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝜎𝜎�2
 

 

→  𝑛𝑛𝜇̂𝜇 = �𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

 

→  𝜇̂𝜇 =
∑ 𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

Analogous ∇ ℒ with respect to 𝜎𝜎2 will yield:  

 
∇ ℒ = 𝛿𝛿ℒ

𝛿𝛿𝜎𝜎2 
= −  𝑛𝑛

2𝜎𝜎�2
+ ∑ (𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)−𝜇𝜇�)2𝑛𝑛

𝑖𝑖=1
2(𝜎𝜎�2)2 = 0  

 

→  
𝑛𝑛

2𝜎𝜎�2
=
∑ (𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖) − 𝜇̂𝜇)2𝑛𝑛
𝑖𝑖=1

2𝜎𝜎�4
 

 

→  𝜎𝜎�2 =
∑ (𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖) − 𝜇̂𝜇)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 

 

→  𝜎𝜎�2 =
∑ �𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖) −

∑ 𝑙𝑙𝑙𝑙(𝑋𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛 �
2

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
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A-3. PROBABILITY DISTRIBUTION (POSTERIOR PROBABILITY) OF A BIVARIANT NORMAL 
DISTRIBUTION WITH MULTIPLE OBSERVATIONS52 

The derivation of the posterior probability for a multivariant gaussian is shown in 

the normal space. For a lognormal distribution the steps are the same, with the only 

difference that the data is exponentiated. 

 

Assume a normal distributed prior with fixed variance such that,  

 

𝜇𝜇~𝑁𝑁(𝜇𝜇0,𝜎𝜎02) 

 

With 𝜇𝜇0,𝜎𝜎02 being the prior hyperparameters. Given multiple independent 

observations X,  

𝑋𝑋𝑖𝑖|𝜇𝜇~𝑁𝑁(𝜇𝜇,𝜎𝜎2) 

 

Which yields 

 

𝑓𝑓�𝜇𝜇|𝑥𝑥� ∝ 𝑓𝑓(𝜇𝜇)𝑓𝑓 �𝑥𝑥𝑖𝑖|𝜇𝜇� 

 

=
1

�2𝜋𝜋𝜎𝜎02
𝑒𝑒𝑒𝑒𝑒𝑒 �

−(𝜇𝜇 − 𝜇𝜇0)2

2𝜎𝜎02
� × �

1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒𝑒𝑒𝑒𝑒 �
−(𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

2𝜎𝜎02
�

𝑛𝑛

𝑖𝑖=1

 

 

=
1

(2𝜋𝜋)
(𝑛𝑛+1)
2 �𝜎𝜎02𝜎𝜎2𝑛𝑛

𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝜇𝜇2 + 2𝜇𝜇𝜇𝜇0 − 𝜇𝜇02

2𝜎𝜎2
−�

𝑥𝑥𝑖𝑖2 + 2𝜇𝜇𝑥𝑥𝑖𝑖 − 𝜇𝜇2

2𝜎𝜎2

𝑛𝑛

𝑖𝑖=1

� 

 

Since the product of two Gaussian is a Gaussian 
                                                 
52 (Murphy 2007), (Stony Brook University 2019) 
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∝ 𝑒𝑒𝑒𝑒𝑒𝑒 �
−𝜇𝜇2(𝜎𝜎2 + 𝑛𝑛𝜎𝜎02) + 2𝜇𝜇(𝜇𝜇0𝜎𝜎2 + 𝜎𝜎02𝑥𝑥1 + ⋯+ 𝜎𝜎02𝑥𝑥𝑛𝑛) − (𝜇𝜇02𝜎𝜎2 + 𝜎𝜎02𝑥𝑥12 + ⋯+ 𝜎𝜎02𝑥𝑥𝑛𝑛2)

2𝜎𝜎02𝜎𝜎2
� 

 

∝ 𝑒𝑒𝑒𝑒𝑒𝑒

⎣
⎢
⎢
⎢
⎡−𝜇𝜇2 + 2𝜇𝜇 𝜇𝜇0𝜎𝜎

2 + ∑ 𝜎𝜎02𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝜎𝜎2 + 𝑛𝑛𝜎𝜎02
− �𝜇𝜇0

2𝜎𝜎2 + ∑ 𝜎𝜎02𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

𝜎𝜎2 + 𝑛𝑛𝜎𝜎02
�
2

2 𝜎𝜎02𝜎𝜎2
𝜎𝜎2 + 𝑛𝑛𝜎𝜎02 ⎦

⎥
⎥
⎥
⎤

× 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝜇𝜇02𝜎𝜎2 + ∑ 𝜎𝜎02𝑥𝑥12𝑛𝑛

𝑖𝑖=1

2𝜎𝜎02𝜎𝜎2
� 

 

∝ 𝑒𝑒𝑒𝑒𝑒𝑒

⎣
⎢
⎢
⎢
⎡
−
�𝜇𝜇 − 𝜇𝜇0𝜎𝜎2 + ∑ 𝜎𝜎02𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝜎𝜎2 + 𝑛𝑛𝜎𝜎02

�
2

2 𝜎𝜎02𝜎𝜎2
𝜎𝜎2 + 𝑛𝑛𝜎𝜎02 ⎦

⎥
⎥
⎥
⎤
 

 

Setting 𝜎𝜎𝑛𝑛2 and 𝜇𝜇𝑛𝑛 as (alt. matching coefficients): 

  

𝜎𝜎𝑛𝑛2 =
𝜎𝜎02𝜎𝜎2

𝜎𝜎2 + 𝑛𝑛𝑛𝑛02
=

1
𝜎𝜎−2 + 𝑛𝑛𝜎𝜎0−2

 

 

𝜇𝜇𝑛𝑛 =
𝜇𝜇0𝜎𝜎2 + ∑ 𝑥𝑥𝑖𝑖𝜎𝜎02𝑛𝑛

𝑖𝑖=1

𝜎𝜎2 + 𝑛𝑛𝑛𝑛02
=
𝜇𝜇0𝜎𝜎0−2 + ∑ 𝑥𝑥𝑖𝑖𝜎𝜎−2𝑛𝑛

𝑖𝑖=1

𝜎𝜎0−2 + 𝑛𝑛𝑛𝑛−2
= 𝜎𝜎𝑛𝑛2 �𝜇𝜇0𝜎𝜎0−2 + �𝑥𝑥𝑖𝑖𝜎𝜎−2

𝑛𝑛

𝑖𝑖=1

� 

 

Rewritten as 

𝜎𝜎𝑛𝑛2 = �
1
𝜎𝜎02

+
1

𝜎𝜎2/𝑛𝑛
� 

and  

𝜇𝜇𝑛𝑛 = 𝜎𝜎𝑛𝑛2 �
𝜇𝜇0
𝜎𝜎02

+
𝑛𝑛𝑥̅𝑥
𝜎𝜎2
� 
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Therefore the posterior distribution is 

 

𝑋𝑋𝑖𝑖~𝑁𝑁�𝜇𝜇,
𝜎𝜎2

𝑛𝑛
� 

 

Recall the pearson coefficient expressed in terms of the covaraince:  

 

𝜌𝜌𝑥𝑥,𝑦𝑦 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦)
𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦

   
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯�    𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑦𝑦) = 𝜌𝜌𝑥𝑥,𝑦𝑦𝜎𝜎𝑥𝑥𝜎𝜎𝑦𝑦 

Thus, the variance and mean expressed with 𝜌𝜌 becomes 

 

𝜎𝜎𝑛𝑛2 = (1 − 𝜌𝜌2)𝜎𝜎02 

 
𝜇𝜇𝑛𝑛 =  𝜇𝜇0 + 𝜌𝜌(𝑥𝑥𝑖𝑖 − 𝜇𝜇)

𝜎𝜎0
𝜎𝜎

 

A-5. VALIDITY RESULTS FOR REFERENCE CLASS 

Table of uplift factors for the “leave-one-out” process to test the robustness of the 

reference class in chapter 7.  

 
Field P10 P50 

28 0.104 0.563 
30 0.104 0.583 
32 0.104 0.583 
31 0.104 0.583 
7 0.083 0.542 

33 0.104 0.583 
39 0.104 0.604 
20 0.083 0.563 
6 0.083 0.542 

16 0.083 0.563 
36 0.104 0.604 
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43 0.104 0.604 
10 0.083 0.563 
8 0.083 0.563 
0 0.104 0.563 
5 0.083 0.542 
1 0.104 0.542 

47 0.104 0.604 
17 0.083 0.563 
34 0.104 0.583 
44 0.104 0.604 
45 0.104 0.604 
37 0.104 0.604 
22 0.104 0.563 
21 0.104 0.563 
11 0.083 0.563 
12 0.083 0.563 
14 0.083 0.563 
25 0.104 0.563 
19 0.083 0.563 
38 0.104 0.604 
18 0.083 0.563 
27 0.104 0.563 
2 0.104 0.542 

41 0.104 0.604 
48 0.104 0.604 
42 0.104 0.604 
9 0.083 0.563 

23 0.104 0.563 
35 0.104 0.583 
15 0.083 0.563 
40 0.104 0.604 
26 0.104 0.563 
24 0.104 0.563 
29 0.104 0.583 
3 0.104 0.542 

13 0.083 0.563 
46 0.104 0.604 
4 0.104 0.542 
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