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Abstract 
Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST) 
research at the SF Nanosystems Engineering Research Center (NERC) advances health 
informatics and biomedical engineering. ASSIST research focuses on developing 
nanotechnology-based systems to empower wearable monitoring platforms composed of 
embedded battery-free sensing, human body energy harvesting and wireless 
communication interfaces that aim to improve understanding of health and environmental 
exposure related adverse health responses. The ASSIST Health and Environment Tracker 
(HET) system testbed is a sensor system monitoring physiological and ambient parameters. 
The goal of this Bachelor thesis is to provide real-time data visualization and data 
aggregation support to the HET project by implementing an Android user interface enabling 
Bluetooth Low Energy (BLE) communication technology for low power wireless data 
transfer of sensor data transmitted by the HET monitoring platform. The BLE compliant 
Texas Instrument (TI) System-on-Chip (SoC) CC2451 currently integrated in the wearable 
HET system operating on limited lithium battery power supply provides power optimized 
components to allow energy efficient operations.  In an effort to improve wearability and 
usability a custom SoC platform is being developed by the ASSIST research team to 
significantly reduce power consumption ultimately enabling ultra-low power operations for 
battery-less sensing. A comparative analysis of the respective TI and ASSIST SoC 
components presented in this paper highlights the advancements towards ultra-low power 
wireless communication to overcome impeding development barriers imposed on self-
powered body sensor systems.  

 

Zusammenfassung 
Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST) 
Forschung am SF Nanosystems Engineering Research Center (NERC) bringt Fortschritte 
in den Bereichen Gesundheitsinformatik und biomedizinisches Ingenieurswesen. ASSIST 
Forschung konzentriert sich auf die Entwicklung von nanotechnologiebasierenden 
Systemen, um tragbare batterielose Sensorplattformen zu ermöglichen, die aus 
Komponenten zur Energiegewinnung aus Körperwärme sowie drahtlosen 
Kommunikationsschnittstellen bestehen, mit dem Ziel, ein besseres Verständnis über den 
Zusammenhang zwischen Gesundheit und krankheitserregenden Umwelteinflüssen zu 
gewinnen.  Die ASSIST Health and Environment Tracker (HET) Systemtestplattform dient 
zur Messung von physiologischen Parametern sowie Umgebungsparametern. Ziel dieser 
Bachelorarbeit ist die Implementierung einer Android Benutzeroberfläche, die Bluetooth 
Low Energy (BLE) als Kommunikationstechnologie zwecks energiesparender, drahtloser 
Datenübertragung einsetzt, um Datenvisualisierung in Echtzeit sowie Datensammlung von 
Sensordaten, die über die HET Überwachungsplattform gesendet werden, zu ermöglichen. 
Der derzeitige auf der tragbaren HET Plattform integrierte BLE konforme Texas Instruments 
(TI) System-on-Chip (SoC)  CC2541  arbeitet mit begrenzter Energieversorgung, die mittles 
einer Lithiumbatterie zugeführt wird und stellt energieoptimierte Komponenten zur 
Verfügung, um energieeffiziente Arbeitsschritte zu ermöglichen. Das ASSIST 
Forschungsteam arbeitet an der Entwicklung einer SoC Plattform, die eine beträchtliche 
Reduzierung des Energieverbrauchs ermöglicht, um letztendlich Operationen mit extrem 
niedrigen Stromverbrauch für einen batterielosen Betrieb zu erzielen. Ein in dieser Arbeit 
präsentierter Vergleich der Komponenten des TI SoCs sowie der ASSIST SoC Entwicklung 
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streicht die Fortschritte Richtung drahtloser Kommunikation mit extrem niedrigen 
Energieverbrauch hervor, um in Verbindung mit selbstversorgenden Körpersensoren-
systemen stehende Entwicklungsbarrieren zu überwinden.
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1 Introduction 
 
Motivation 

The purpose of this research project is to support the Health and Environment Tracker 
(HET) project of the NSF Engineering Research Center for Advanced Self-Powered 
Systems of Integrated Sensors and Technologies (ASSIST) at North Carolina State 
University (NCSU) in Raleigh [ASSIST]. The ASSIST HET system testbed platform is one 
of the biocompatible sensor systems monitoring individual biomedical and environmental 
parameters. A wireless communication interface is provided to enable transmission of 
heterogeneous data composed of parameters that aim to improve understanding of health 
and environmental exposure related adverse health responses.  

The implementation of an Android user interface establishing a Bluetooth Low Energy (BLE) 
wireless communication with the ASSIST HET wristband serves a dual purpose comprised 
of data aggregation support and real time data visualization.  

Wireless communication is one of the major contributing factors of high energy consumption 
in wearable body sensor systems. A custom System-on-Chip (SoC) is being developed by 
ASSIST to significantly reduce power consumption. A comparative analysis of the 
commercially-off the-shelf (COTS) Texas Instruments (TI) SoC and the development 
achievements of ASSIST towards an ultra-low power (ULP) SoC highlights key custom 
elements and components designed to ultimately lower power consumption.  

 

Relevance and expected results 

Applications establishing BLE communication with in vivo sensors enabling ubiquitous 
monitoring of physiological and ambient parameters represent a growing segment in the IoT 
market. Mobile applications in association with wearable devices constitute key components 
contributing to data aggregation efforts and enhancing user experience. Facilitating data 
aggregation in a joined effort for continuous data storage supports the ASSIST Testing and 
Data Analysis Thrust V team in their efforts to perform key data analytics advancing 
medicine driven by information extraction from collected data and pattern recognition 
bridging the correlation between environmental exposure and adverse health effects. Real 
time visualization of individual physiological parameters enhances user awareness of 
aforementioned causation and contributes towards effective health monitoring of biomedical 
sensor data received from wearable sensors based on ultra-low power wireless 
communication. In order to achieve ultra-low power wireless communication used to tether 
body sensor systems to data access points such as smartphones power reduction is one of 
the major challenges being tackled by scientists of Thrust IV. Researchers aim to create 
key hardware components in an ongoing development of a custom SoC designed to achieve 
overall operations in the submilliwatt range. This paper provides an overview of the key ULP 
components by comparing architectural SoC designs supporting ULP energy consumption 
for wireless data transfer of environmental and physiological health sensing parameters. 
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Methodological considerations 

The SoC comparison is based on the technical documentation provided by Texas 
Instruments and IEEE publications in relation to the development of an ultra-low power SoC. 

The DBIS database and the IEEE/IET Electronic online library is used to perform literature 
search. Abstracts of conference proceedings and publications containing relevant acronyms 
are scanned for appropriate content and full-text papers are obtained as referenced. 
Content-based classification of publications is performed to organize literature results. 
Relevant figures are referenced for illustrative purposes. The literature search is concluded 
with supplementary documentation provided by the framework websites. Book reviews are 
included in the scope of Software Development. 

The implementation of BLE data aggregation support and data visualization follows the 
phases of the Software Development process coherent to the Waterfall Model as elaborated 
in [SDWM]. Product scope, hardware and system requirements as well as functional and 
non-functional requirements are outlined in the Software Requirements Specifications 
(SRS) document. System visualization is facilitated by using the Unified Modeling Language 
(UML) Design providing a high-level abstraction layer of the application [UML].  

 

Structure of the paper  

The rest of this paper includes an elaboration of the theoretical background in Chapter 2 
focusing on the HET 1.0 system testbed deploying an SoC by Texas Instruments. A 
comparative analysis of selective SoCs is presented in Chapter 3. The specifications of 
requirements and design and the subsequent implementation are outlined in Chapter 4. 
Implementation results are demonstrated in Chapter 5 along with a discussion reflecting 
upon the results. An overview of related work is presented in Chapter 6. Conclusion is given 
in the final Chapter including an outlook on future work regarding the Android HET ASSIST 
application.  

 

2 Theoretical background 
 

ASSIST wearable sensor monitoring platforms are developed to track biomedical and 
environmental parameters. Five cross-disciplinary and collaborative ASSIST research 
Thrusts incorporating human and environmental factors are geared to develop highly 
effective technologies for harnessing and storing human body energy in the long term. This 
combined effort ultimately enables ultra-low power communication and computation and 
empowers nanotechnologies for sensing through integration in a wearable sensor system 
designed to provide comfortable and biocompatible health monitoring devices. The 
monitoring device used for this Android user interface implementation is part of the HET 
wearable sensor system comprised of a chest patch and a wristband [HET1].  

The current wristband prototype consists of COTS components to simultaneously measure 
the level of ozone, the variability of heart-rate, motion in terms of three-axis acceleration, as 
well as ambient temperature and humidity values using a lithium polymer battery as a power 
source. 
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Fig. 1 BLE Frequency spectrum (see [BLE4]) 

The long-term vision of the five integrated ASSIST research thrusts is to develop a unified 
battery-free system using self-powered technology harvesting human body heat and 
motion. Gradually integrating a unique set of power optimised sensors, continuous energy 
harvesting modules, a custom ultra-low power (ULP) radio are key power reducing 
strategies towards achieving self-powered operations.  

Radio transmissions are performed using the BLE technology introduced with Bluetooth 4.0 
coexisting with WiFi channels in the 2.4 GHz ISM spectrum [BLE]. BLE operations are 
performed on the physical advertising channel and the physical data channel. Fig. 1 [BLE4] 
shows 40 radio frequency (RF) channels separated by 2MHz that are available for allocation 
to the two physical channels.  

 

 

 

 

 

 

 

 

 

 

 

The RF channels are spread in between wireless LAN channels to mitigate frequency 
interferences. Up to 37 RF channels can be used by the physcial data channel. The 
remaining three RF channels 37, 38 and 39 positioned at index 0, 12 and 39 are dedicated 
advertising channels. Advertising channels are used to broadcast a device’s presence and 
to perform device discovery and connection initiation to establish a BLE communication. 
The same RF channel needs to be used by BLE radio transceiver components of the BLE 
Physical Layer (PHY) illustrated in Fig. 2 [BLE5] to enable a BLE connection between 
devices.  
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One physical channel is used at any time. The Link Layer of the BLE device looking for 
advertising devices listens on the RF channels assigned to the physical advertising channel 
during a device scan and in the connection initiating state as indicated in Fig 3 [BLE6]. The 
connection initiating link layer takes the master role of the connection.  

Fig. 2 Advertising and Data Channel communication flow [BLE6]. 

Fig. 3 BLE Layer architecture (see [BLE5]). 



 

12 

current 

 

A channel is connected when devices are tuned to the same physical channel correlated by 
an access address and the link layers are synchronized to the frequency and timing. 
Synchronization between master and slave is controlled by connection event timing 
performed by the master starting an connection event by transmitting a data channel packet. 
Connection events are characterised by data packet transmissions on the physical data 
channel defined for each connection event by the master and slave. Data transmissions 
only occur during connection events. At least one master data packet is transmitted during 
a connection event that remains open during the transmission period that can consist of 
alternating sending and receiving sequences [BLE].  

BLE enables low power consumption data transfers during very short connection events of 
a few milliseconds depending on various factors such as the Protocol Data Unit (PDU) size 
or required processing time. Contrary to the continuous streaming mode operation of classic 
Bluetooth BLE is designed to operate in sleep mode when not transmitting and wake up 
upon periodic connection initiation for small data packets transmissions as illustrated in 
Fig. 4 [BLE2].  

 

 

Fig. 4 Current consumption vs time during a BLE connection as in [BLE2]. 

 

At each start of a connection event also referred to as anchor point the slave listens to the 
packet transmitted by the central device. The master controls the connection event timing 
by scheduling the start of the first connection event. Subsequent anchor points are defined 
by the connection interval parameter of 1.25 ms multiples between 7.5 ms and 4 s. The 
slave can optionally skip listening to a number of consecutive connection events set by the 
value of the slave latency parameter depicted in Fig. 5 [BLE6] if there is no data to be sent.  
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Fig. 6 Current Consumption vs time during a single Connection Event (see [BLE2]). 

 

Fig. 5 Slave latency (see [BLE6]). 

 

The slave latency value and the connection interval are efficient timing parameters 
contributing to increased power savings. Fig. 6 [BLE2]. below indicates a spike in power 
consumption during connection event initiation leveling out during the wake-up period. The 
amount of drawn current changes during a connection event with the actual transmission 
state being the peak current consumer. 
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Link Layer master role or the slave role when the packet header MD bit of the data channel 
PDU indicating more data is set to zero.   
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The Broadcaster constantly sends advertising packets embedding accessible data without 
allowing connections while the Observer passively collects and processes the broadcasted 
data. The Observer doesn’t intend to send any data therefore there is no need for the ability 
to initiate a connection. The GAP Central on the other hand corresponds to the Link Layer 
master role and has the ability to connect to the power optimized GAP Peripheral 
corresponding to the Link Layer slave role. The Peripheral encapsulates device and 
connection specific information in the read-only GAP Service accessible to all connected 
devices. The GAP service is a mandatory Generic Attribute profile (GATT) based service. 
GATT is a framework establishing the exchange of data transported over the stateless 
transport protocol Attribute Protocol (ATT). Interacting devices can adopt either a GATT 
client or server role that are completely independent from the roles defined by GAP. The 
GATT client requests data structured in the GATT database of the GATT server. The GATT 
server responds to client requests accordingly. Communication initiated by the server can 
be configured by the client enabling notifications to automatically receive new data values 
from the GATT server database [BLE]. 

  

Fig. 7 BLE roles (see [BLE]). 
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The GATT database is a structured data collection depicted in Fig. 8 [BLE] holding attribute 
values. Attributes are adressable data containing the actual data and a corresponding data 
description. A unique 16-bit attribute handle is assigned to address each attribute on a 
GATT server. The attribute type is defined by a globally unique 128-bit number referred to 
as Universial Unique Identifier (UUID) as indicated in Table 1 [BLE] representing an 
example of an attribute‘s constitution. 

 

Attribute handle Attribute type Attribute value Attribute 
permissions 

0x0008 “Temperature 
UUID” 

“Temperature 
value” 

“Read only, no 
authorization, no 
authentication” 

Table 1 Attribute (see [BLE]). 

 

GATT organizes individual attributes into a strict data hierachy referred to as Generic 
Application Profiles as shown in Fig. 8 [BLE]. Conceptually related attributes are grouped 
into services. Services contain Characterisitics holding at least two attributes. The 
characteristic descriptor attribute provides metadata about the characteristic and its value 
and the characteristic value attribute contains the actual data value. 

Fig. 8 BLE GATT database (see [BLE]). 
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Profiles provide an abstraction interface between the application and the BLE protocol 
stack. The Host Controller Interface (HCI) as shown in Fig. 2 enables communication 
between the Host and Controller blocks of the BLE protocol stack. The L2CAP Logical Link 
Control and Adaptation Protocol on top of the HCI layer provides multiplexing, data packet 
segmentation and reassembly functionalities for data exchange between the Host and 
Controller elements. The data encapsulation services provided by the L2CAP layer 
transporting data between the upper and lower layers permits logical end-to-end data 
communication. The Security Manager (SM) on top of L2CAP defines security features for 
secure data exchange [BLE].  

Implementing the BLE stack on a BLE compliant SoC acting as the BLE peripheral enables 
wireless low power communication between the Android device and the sensor device.  



 

17 

3 SoC Comparison 
 

3.1. System architecture overview 
 

TI CC2541  

The TI CC2541 is a COTS BLE 4.0 compliant SoC optimized for ultra-low power 
consumption integrated in the HET wristband prototype [TI1]. Featuring a proprietary 
industry RF radio it enables continuous BLE data streaming of sensor readings through 
appropriate peripherals depicted in Fig. 9 [TI1]. 21 of the 23 GPIO pins can be configured 
as peripheral I/Os. A peripheral I/O mapping is provided demonstrating the available pins 
for the required peripheral function such as interfacing with sensors. The simplified block 
diagram in Fig. 9 below shows the main SoC components. 

 

 

Fig. 9 Simplified TI CC2541 SoC block diagram (see [T1]). 

Port 0 provides up to eight input pins for ADC configuration to convert analog input. The 
multiple operation modes ADC includes eight input channels with an additional input 
channel for temperature sensing, supports battery measurement and is capable of single 
conversions and sequence conversions triggering the DMA without any CPU interaction to 
store up to 14-bit conversions in memory. A decrease in power consumption can be 
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achieved by utilising the DMA controller keeping the 8051 CPU in low-power mode by 
moving data between memory and peripherals such as the ADC or the USART [TI1].  

Two USART serial communication interfaces provide either an asynchronous mode to 
perform UART operations or the synchronous SPI mode allowing a master-slave 
communication relationship. The I2C module provided by the SoC CC2541 is another serial 
communication interface enabling master/slave operations for synchronous data transfer 
over a two-wire I2C serial bus. An I2C master waits for the I2C bus to be free before initiating 
the data transfer process including the generation of an interrupt signaling the CPU 
intervention to start the IRQ service routine. The I2C interrupt P2INT belongs to the same 
Interrupt Priority Group as the ADC and the Timer T1. Each timer has an assigned interrupt 
vector [TI1].  

The 16-bit Timer 1 consists of a 16-bit counter, features five capture-or-compare channels, 
operates in three different modes and can be configured to generate Infrared (IR) signals 
for remote control capabilities and IR Learning. Timer 1 together with Timer 3 are used to 
generate the IR signals. Timer 3 and Timer 4 are 8-bit timers offering two capture/compare 
channels each. These four modes 8-bit counter timers offer more granulated prescaler 
values for clock-tick frequency division than Timer 1. Like Timer 1 the maximum clock 
frequency is 32MHz. There are two high-frequency and two low frequency oscillator clock 
sources available. The system clock can either be driven by the 32-MHz crystal or by the 
power efficient 16-MHz RC oscillator. Either one of the low frequency oscillators can be 
used to set the 32-kHz clock rate for the 15-bit Watchdog Timer and the 24-bit Sleep Timer 
which continues running without interruptions. The sleep timer sets the low-power mode 
periods during which the system clock is shut down. During this time the Sleep Timer 
ensures that timing is maintained for the 40-bit Timer 2, which keeps time for the BLE Link 
Layer controlling the RF state [TI1].  

The integrated BLE compliant radio transceiver is accessed through API calls to the TI BLE 
stack as direct application access to the RF core controlling the radio modules is only 
permitted when operating the radio in proprietary mode for data transmission. Various data 
transfer rates are available for GFSK and MSK modulation formats ranging from 250 kbps 
to 2 Mbps. FIFOs are used for data transport between the MCU and the radio and the DMA 
can be set up for data transfer between memory and the radio. Radio access is provided by 
the SFR bus connecting the CPU and the two channel DMA controller with peripherals and 
memory. The MCU memory spaces are mapped to memory-mapped registers, a non-
volatile 245kb Flash program memory and an 8kb SRAM memory block which retains its 
content in all power modes. Five modes of operation are available to manage power 
consumption [TI1]. 
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Fig. 10 ASSIST SoC system block diagram (see [HET4]). 

ASSIST ULP SoC 

Research Thrust IV integrates innovative power management technologies critical to self-
powered wearable systems to enable energy harvesting sensing, sensor data computation, 
data storage and wireless communication [HET4]. The system block diagram in Fig. 10 
[HET4] below depicts a highly integrated self-powered SoC architecture developed by the 
Thrust IV research team.  

 

 

It shows a Power Management Unit (PMU) integrating energy harvesting from ambient 
energy sources such as thermoelectric generators (TEG). The low output voltage supply 
generated by TEGs is boosted up to the required voltage by the Boost Converter to enable 
system operations. Before system operations are performed the digital power management 
(DPM) unit monitors available voltage levels of an off-chip storage capacitor charged by the 
Boost Converter, controls power options for peripherals and changes system modes based 
on voltage thresholds. The 8-bit ADC can be used for voltage sampling to monitor for 
operating mode thresholds while receiving data over the SPI Interface. SPI sensor 
communication is triggered by a Timer 1 system interrupt [HET4].  

The SoC provides two independent general purpose timers with Capture/Compare 
capabilities. Each timer can interrupt the integrated Lightweight Control Unit (LCU) used for 
SoC data management and node control during off-mode periods of the OpenMSP430 
(OMSP) [OMSP] [HET7]. LCU and OMSP have access to the clocking module for SoC reset 
and clock frequency configurations. Three system clock sources can be configured to drive 
the system clock from the on-chip clocking unit. An external clock, an on-chip low power 
31.25kHz crystal oscillator or an integrated ultra-low power custom designed programmable 
all digital phase locked loop (ADPLL) receiving its reference from the on-chip oscillator. The 
ADPLL frequency ranges between 187.5 kHz and 500 kHz [HET4].  



 

20 

A free running 4GHz ring oscillator can be used to provide a center frequency of 3.994 GHz 
of a 500MHz bandwidth for the Ultra-Wideband (UWB) transmitter of the integrated 
asymmetric ULP RF transceiver including a low power wakeup receiver (WuRx) to perform 
wireless high-data rate transmissions [HET4].  

On-chip data transfer is managed by the DMA. Bus 2 is used by the DMA to avoid using the 
OMSP/LCU controlled Bus 1 when moving data between peripheral blocks and on-chip 
memory blocks. The memory blocks is comprised of a 4kb data memory, a 2kb memory 
block dedicated each to a radio TX buffer, LCU instructions and OMSP instructions [HET4]. 

 

3.2. ULP related features 
 

TI CC2541 

The standard 8051 instruction set used for the TI CC2541 CPU, however due to the 
instruction cycle memory fetch alignment the standard 12 clocks cycle can be reduced to a 
single clock cycle increasing power consumption improvements due to increased speed of 
execution [TI1]. Caching instructions by enabling flash prefetching can further increase 
energy savings as faster access to flash memory is granted. Changing the flash memory 
space to accommodate SRAM into the CODE memory space results in further power 
savings by enabling code execution from the ultra-low power SRAM. Mapping parts of 
DATA memory into the XDATA memory space is another aspect for improving energy 
consumption by enabling the DMA controller to transfer data between 8051 memory blocks. 
Accelerating the speed of moving data blocks between memories is achieved by the 
architectural ULP enhancing introduction of two data pointers as opposed to using only one 
data pointer. Memory access points are provided by the memory arbitrator managing CPU 
and DMA access. Utilzing the DMA controller allows the CPU to stay in low-power modes 
managed by the Power Management Unit.  Additional power consumption aspects are the 
short transition times between power modes. ULP power mode is entered when clock gating 
is used and the voltage supply to digital modules as well as the oscillators driving the system 
clock are turned off to avoid leakage and dynamic power consumption. During active mode 
the system clock can derive its clock source from the high frequency RC Oscillator resulting 
in further reductions of power consumption, however the 32-MHz crystal oscillator is 
required when operating the RF transceiver [TI1].  

 

ASSIST SoC 

The configurable system clock of the ASSIST SoC is driven by the ultra-low power ADPLL 
clock generator consuming only 300nW by eliminating the divider to significantly reduce 
power consumption [HET10]. The ADPLL receives its reference from the 31.25-kHz crystal 
oscillator requiring only 29nW in its low power state [HET4]. The digital components 
operating in sub-threshold run on the 0.5V rail provided by the PMU supplying 1.2V and 
0.5V power rails regulated by a single-inductor multiple-output DC-DC converter for power 
delivery. The power consumption of the power-gateable memory arrays can drop down to 
0.35V. Sub-threshold operations are enabled by power-gateable memories consisting of 
eight transistor (8T) SRAM bitcells with reduced static and dynamic power consumption and 
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performing read before write operations. The two channel DMA efficiently performs data 
transfer between memories and peripherals on Bus 2 reducing power consumption by 
unburdening the OMSP or LCU. The LCU is the default controller for Bus 1, however, the 
controller configuration can be changed by the LCU to assign the main bus controller 
function to the OMSP. The ULP optimized OMSP 16-bit RISC microcontroller is ASIC 
suitable enabling energy-efficient processing for sub-threshold operations. ULP operations 
for wireless RF communication and high-data rate transmissions are enabled by utilizing 
asymmetric RF communication, a custom designed low power wakeup receiver (WuRx) 
operating on a narrowband RF  downlink and the application of OOK modulation decreasing 
the power consumption of the UWB transmitter and the WuRx. A motion detection sample 
application using the described SoC architecture for digital data processing of motion sensor 
data received through SPI and wirelessly streaming the data over the integrated UWB 
demonstrates a total of 6.45 µW power consumption [HET4]. 

A total power consumption of 507 nW is achieved with a different SoC architecture 
integrated in a ULP system-in-package (SiP) as illustrated below in Fig. 11 [HET5].  

Fig. 11 ASSIST 507nW SoC block diagram (see [HET5]). 

The total value includes power consumptions of the on-chip components SPI, GPIO, Timer, 
IO, MCU and Radio interface used for an application tracking shipping-integrity. Fig. 11 
shows the main building blocks of the ULP SoC including an energy harvesting unit 
powering the SoC, off-chip sensors as well as the in-package 1 Mb/s FSK transmitter and 
NVM. The SoC is cold-booted from the NVM by the power monitor (PM) component using 
the cold-boot management system (CBMS) for optimal NVM integration. The PM and the 
CBMS make up the control block together with the RI, a custom low power controller (LPC) 
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and the instruction memory (IMEM). The power saving modes of the 8T bitcell SRAM 
significantly reduce the power consumption of the control block.  

 

3.3. Comparison 
Major achievements in power consumption reduction measurements result from the 
proprietary SoCs design proposed by ASSIST [HET8] [HET9]. The integration of a low 
power 16-bit RISC OMSP430 as suggested in Fig. 10 or a custom low power controller as 
in Fig. 11 are one of the contributing power reduction factors compared to the enhanced 
8051 microcontroller used by the TI CC2541 SoC.  

Communication between the 8051 microcontroller unit and DMA with peripherals and 
memory is accomplished through an SFR bus as opposed to the two 16-bit busses 
architecture applied to the ASSIST design as in Fig. 10 or the 16-bit Wishbone bus 
architecture used for circuit communication as depicted in Fig. 11.  

Memory access through the SFR bus of the CC2541 is facilitated via a memory arbitrator. 
The architectural design of the ASSIST SoC does not include a separate memory arbitration 
component. The memory arbitrator access points of the CC2541 can map to physical 
memories such as the on-chip flash memory or the SRAM block. Data transfer between 
physical memories can be performed by a five channel DMA controller integrated on the 
CC2541 and the two channel DMA of the ASSIST SoC architecture as shown in Fig. 10.  

DMA triggers of the TI SoC can occur upon ADC conversions executed by the integrated 
ADC supporting 7-12 bits of resolution is capable of single and sequence conversions and 
operating in multiple modes provides eight input channels as well as temperature sensing 
capabilities. The ASSIST SoC design shown in Fig. 11 provides a 12-bit ADC. Data obtained 
via the proposed 8-bit four channel ADC of the ASSIST as illustrated in Fig. 10 can serve 
as input to the DPM unit.  

The CC2541 integrates a Power Management Controller (PMC) to provide management of 
available power modes. Power Management of the ASSIST SoC architecture is provided 
by the Power Management Unit shown in Fig. 10 and the Platform Power Manager in 
Fig. 11. The PPM is part of the SoC EH-PPM unit powering the SoC system and 
components of the SiP. The SoC system power is adjusted by the on-chip Power Monitor 
(PM) as shown in Fig. 11. In addition to power monitoring the PM includes a cold-boot 
capability to startup the system from the off-chip system-in-package non volatile memory 
component.  

Communication between SiP and SoC components is enabled by custom digital SPI and 
GPIO interfaces. While the ASSIST SoC architectures show an integrated SPI component 
the TI CC2541 additionally provides an I2C module for serial communication. The digital 
I2C master and slave communication requires two of the 23 GPIO pins. Fig. 11 indicates 8 
GPIO pins compared to the total number of the TI CC2541 GPIO pins.  

The TI SoC designates a number of GPIO pins to provide timer functionality. The peripheral 
set of the TI SoC is comprised of a sleep timer, a watchdog timer and four timers with 
capture and compare capabilities. Two capture/compare timer modules are integrated in 
the ASSIST SoC as illustrated in Fig. 10 [HET10].  
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The internal system clock frequency used for the TI SoC timers can be generated by an 
internal clock source. Two high-frequency oscillators and two low-frequency oscillators are 
available for clock generation. The clock frequency used by the ASSIST SoC timers can be 
derived from an external clock source, the internal low frequency crystal oscillator or the 
integrated ULP ADPLL.  

A 4GHz ring oscillator provides the center frequency for the integrated asymmetric ULP RF 
transceiver as shown in Fig. 4 using OOK modulation for data transmission at 187.5kbps 
as opposed to the GFSK and MSK modulation format supported by the TI SoC radio 
transmitter achieving data rates between 250 kbps to 2Mbps. The SiP depicted in Fig. 11 
includes an FSK transmitter for up to 1Mb/s wireless data transfers.  

 

4 Methodology and Implementation 
The implementation of the wireless communication user interface on Android applies 
methodological considerations in accordance to the Software Design Waterfall Model 
commencing with the requirements specification phase followed by the design phase and 
the implementation phase subsequently. 

 

4.1. Requirements specification 
The requirements are specified in the SRS document and briefly outlined below. 

 

Product Scope 

The scope of this implementation is to provide data aggregation support to the ASSIST HET 
project and graphical visualization of physiological & environmental sensor data transmitted 
via BLE. 

 

Hardware Requirements 

The HET wrist watch developed by the ASSIST center shall provide the respective sensor 
data transmitted to a BLE enabled smartphone. 

 

System Interfaces 

Following interfaces are defined: 

 Sensor device 

 User interface 
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Functional Requirements 

Identified use cases are listed below and depicted in the use case diagram provided in 
Appendix A.  
 

 Use case: Start BLE 
The system must allow the user to start BLE including the scan for the BLE wrist 
device, connecting to the found device, discovering the BLE services, reading and 
writing BLE characteristics and enable notifications. 

 Use case: Visualize real time data 
The system must allow the user to view a graphical display of real time data. 

 Use case: Stream data 
The system must allow to stream data autonomously to a dedicated server. 

 Use case: Upload data file 
The system must allow the user to upload a csv file of raw data to a dedicated server. 

 Use case: Delete data file 
The system shall allow the user to delete stored csv files.  

 Use case: Disconnect 
The system shall allow the user to disconnect the BLE device. 

 
Non-functional Requirements 
The following system constraints apply: 

 Security & Privacy 
The scope of the ASSIST research project does not include any security nor 
privacy related considerations. 

 IDE 
Android Studio Version 2.3 is the preferred development environment for 
implementation. The minimum Android API level is 24 Nougat.  

 Usability 
Ease of learning is facilitated through an intuitive and structured user interface. 

 
Requirements Prioritization 
The MoSCoW prioritization scheme is applied defining the following use case priorities: 

  Must 
o Start BLE 
o Visualize real time data 
o Upload data file 

 Should 
o Stream data 

 Could 
o Delete data file 
o Disconnect 

 Won’t 
o User Authentication 
o Security 

 
Must and Should use cases are elaborated in Appendix B. 



 

25 

4.2. Design specification 
 
Communication design 
 
 

 

Fig. 12 Communication flow 

Fig. 12 demonstrates the communication flow from the BLE sensor device to the dedicated 
server via the Android device. As outlined in the functional requirements the implementation 
of the HET app includes two communication paths. The BLE communication between the 
sensor device enables the exchange of BLE data.  The communication between the Android 
phone and the dedicated server enables the transfer of BLE transmitted sensor data. The 
server port 22 receives SFTP file uploads and the Forwarding Port 5672 is activated for 
data streaming with RabbitMQ. 
 
UML modelling 
The class diagram attached in Appendix C shows the main classes enabling the 
implementation of the use cases defined in the functional requirements. The 
MainActivity.java class holds functions to bind to the BLE service class and starts it as a 
background service. The service class provides BLE functions to the user application and 
contains BLE callback functions indicating the results of the respective BLE operations. 
Received sensor data is displayed in real time directly in the MainActivity class. The 
Chart2Activity class is used to render static charts using fragment classes. In addition to the 
chart rendering functionality sensor data is stored in csv files and can be uploaded to the 
dedicated server using the SSHActivity.java class. Data streaming functions are provided 
by the background service ESPservice.java started by the MainActivity and fed with data by 
the BLE service class. Event classes such as EventFileName are implemented for 
communication purposes between activities.  
 
User interface design 
Appendix D includes user interface (UI) mock ups to illustrate the design supporting an 
intuitive user experience. The start screen displays the BLE connection sequence indicated 
in numerical order subsequently enabling the kickstart button and characteristic notification 
switches. Graphical user buttons for additional chart renderings and file uploads allow the 
user to navigate to the respective screens. The chart screen displays tabs for each fragment 

HET 
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including corresponding icons and allows swiping motions to switch between fragments. A 
bottom navigation bar provides labelled icons to navigate to the start screen. 
The file upload icons take the user to the upload screen providing toast messages to indicate 
the transmission progress and automatically returns to the start screen upon completion of 
the file transfer. An overflow menu on the top right provides the possibility to disconnect the 
BLE connection and delete stored csv files.  
 

4.3. Implementation 

4.3.1.  Introduction 

As illustrated by the mock ups of Appendix D the UI design of the implementation of the 
HET app includes data visualization and data transmission. The following components are 
deployed to implement the use cases of the HET application:  

 SciChart  
The SciChart API is a high-performance Android charting library used to render real 
time data charts [SCI]. 

 RabbitMQ 
RabbitMQ is a message broker software supporting the Advanced Message 
Queuing Protocol (AMQP) using the assigned port number 5672 [RMQ]. 

 Cisco AnyConnect Secure Mobility Client 

The Cisco AnyConnect provides a VPN connection to the NCSU network [CISCO]. 

 Termius 
The Termius app is a SSH/SFTP client supporting Port Forwarding [TERM]. 

 JSch  
The Java Secure Channel (JSch) API allows SFTP file transfer. [JSCH]. 

 EventBus 
The open-source library by greenrobot enables communication based on the 
Publisher/Subscriber design pattern [EVENT]. 

 
Flow chart  
The flow chart depicted in Fig. 13 shows the user interaction sequence enabling data 
visualization and data transmission. When the application is started the system checks if 
Bluetooth is turned on and access to the device location is granted. Once the Start button 
is pressed the BLE connection process is initiated and the Kickstart button is enabled as 
soon as BLE services are discovered. Pressing the Kickstart button enables the 
characteristic 3 notification switch. After the notification flag for characteristic 3 has been 
successfully set the characteristic 4 switch is enabled. As soon as notifications for both 
characteristics have been registered BLE sensor values are received and displayed in real 
time on the start screen of the application.  
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Fig. 13 Flow chart user interaction. 

 

4.3.2.  BLE Peripheral device 

The firmware implementation of the BLE sensor device is performed by the HET ASSIST 
research group. The current peripheral implementation does not include any BLE security 
features such as encrypting the link between the peripheral device and the central device. 
The Android phone receives byte values from the BLE peripheral sensor device. The HET 
watch BLE implementation defines one HET service containing three relevant 
characteristics listed below.  



 

28 

 Characteristic 1 is used to kickstart characteristic 3 and characteristic 4 by writing 
the HEX value 0x01. 

 Characteristic 3 consists of 10 bytes holding four different ozone values of 2 bytes 
each and the value for the battery. 

 Characteristic 4 is composed of 14 bytes holding three WAV, accelerometer, 
temperature and humidity values. 

Fig. 14 indicates the composition of the characterisitcs 3 and 4 as elaborated above. 

 

 

 

 

 

Fig. 14 Characteristic 3 and characteristic 4 

 

 

4.3.3.  BLE Central device 

The BLE data transmission of the characteristics illustrated in Fig. 14 is enabled by 
implementing key BLE functionalities.  

 

4.3.3.1. Start Bluetooth 

The BLE support introduced with Android API level 18 allows a BLE central device to scan 
for nearby peripheral devices, discover BLE services, establish and disconnect a BLE 
communication and transmit BLE specific information.  Listing 1 shows the permissions 
needed to be declared in the manifest file of the application to enable BLE functionalities. 

 

 
BLE specific functions are implemented in the BLEservice class extending the application 
component Service. The setOnClickListener of the Start Button in the MainActivity.java 
includes the startBluetooth() function instantiating an Intent to bind to the BLEservice class. 
A bound service allows the MainActivity class to interact with received responses from the 
service class. The MainActivity instantiates and initialises the BroadcastReceiver overriding 
the onReceive() method with a switch case for specific messages sent by the broadcast 
update of the BLE service class. 

1 <uses-permission android:name="android.permission.BLUETOOTH" /> 
2 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" /> 

Listing 1 BLE permissions. 
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The onResume() method of the MainActivity in Listing 2 registers the Broadcast receiver. 
The BroadcastReceiver object is passed to the registerReceiver() method along with an 
Intent filter for Intents sent in the sendBroadcast() method by the BLE service class.  

 
The first broadcast is sent after successfully obtaining a BluetoothAdapter from the 
initialized BluetoothManager – a procedure called in the onServiceConnected() method of 
the MainActivity as shown in Listing 4.  

  

1 mBluetoothManager = (BluetoothManager) 
2 getSystemService(Context.BLUETOOTH_SERVICE); 
3 
4 mBluetoothAdapter = mBluetoothManager.getAdapter(); 

1 @Override 
2 protected void onResume() {  
3    super.onResume(); 
4    final IntentFilter filter = new IntentFilter(); 
5    filter.addAction(BLEservice.ACTION_BLESTARTED); 
    . 
    . 
8    filter.addAction(BLEservice.ACTION_DATA_RECEIVED); 
9    registerReceiver(mBleUpdateReceiver, filter); 
10 } 

1 private final BroadcastReceiver mBleUpdateReceiver = new BroadcastReceiver() { 
2    @Override 
3    public void onReceive(Context context, Intent intent) { 
4        final String action = intent.getAction(); 
5 
6        switch (action) { 
7            case BLEservice.ACTION_BLESTARTED: 
8                if (mServiceConnected) { 
9                    mBLEservice.scan(); 
10                } 
11                break; 
12 
13            case BLEservice.ACTION_BLESCAN_CALLBACK: 
14                mBLEservice.connect(); 
15                break; 
. 
. 
. 

Listing 2 onReceive() method of the BroadcastReceiver. 

Listing 3 onResume() method of the MainActivity.java class. 

Listing 4 Bluetooth adapter initialization. 
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This broadcast update causes the scan procedure to be called on the BLEservice class 
object of the MainActivity. The scan function in Listing 5 filters for the BLEdevice containing 
the BLE HET service. 

 
The callback function of the startScan() function in the BLEservice class gets the BLEdevice 
and broadcasts that it found the desired HET device. Upon receipt of the BLE scan callback 
broadcast the connectGatt() function is called on the BLE device initializing the 
BluetoothGatt object in the BLEservice class as shown in Listing 6.  

 
The  BLE Gatt callback broadcasts the connection state to the Broadcast Receiver, which 
initiates the discoverServices() in Listing 7. This method is called on the BluetoothGatt 
object upon receipt of the broadcast update when a connection has been established . 

 
The result of the discoverServices() method invokes the onServicesDiscovered callback. 
The callback gets three characteristics from the HET BluetoothGattService based on their 
UUIDs as shown in Listing 8.  

 

  

1 mLEScanner.startScan(filters, settings, mScanCallback); 

1 mBluetoothGatt = mLeDevice.connectGatt(this, false, mGattCallback); 

1 mBluetoothGatt.discoverServices(); 

1 BluetoothGattService mService = 
2 gatt.getService(BLEdefinedUUIDs.Service.HET_SERVICE); 
3  
4 mChar1Characteristic =  
5 mService.getCharacteristic(BLEdefinedUUIDs.Characteristic.CHAR1); 

Listing 5 startScan() method call. 

Listing 6 BluetoothGatt object initialization. 

Listing 7 discoverServices() method call. 

Listing 8 getCharacteristic() method call. 
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Once the respective characteristics have been assigned the Broadcast Receiver is informed 
that services have been discovered. The Broadcast Receiver then enables the Kickstart 
button which writes a 0x01 value to the characteristic 1 shown in Listing 9 to allow the 
subscription to characteristic 3 and characteristic 4 notifications. 

 
The next step is to enable notifications by putting the switch for the characteristic 3 in the 
on-position. This sets the characterisitic notification flag to true, sets the 
BluetoothGattDescriptor value to enable notification and passes the set Client 
Characteristic Configuration Descriptor UUID to the writeDescriptor() method called on the 
BluetoothGatt object as shown in Listing 10.  

Enabled notifications trigger the onCharacteristicChanged() callback when new values are 
received.  
The received bytes are assigned to a byte array, buffered into a string variable holding the 
respective HEX value shown in Listing 11 and a broadcast update informs the MainActivity 
that new data has been received.  

 

  

1 mChar1Characteristic.setValue(byteVal); 
2 mBluetoothGatt.writeCharacteristic(mChar1Characteristic); 

1 mBluetoothGatt.setCharacteristicNotification(mChar3Characteristic, value); 
2  
3 mCccd.setValue(BluetoothGattDescriptor.ENABLE_NOTIFICATION_VALUE); 
4 mBluetoothGatt.writeDescriptor(mCccd); 

1 public void onCharacteristicChanged(BluetoothGatt gatt, 
2                                   BluetoothGattCharacteristic characteristic) { 
3 
4    String uuid = characteristic.getUuid().toString(); 
5    switch (uuid){ 
6       case CHAR3UUID: 
7        final byte[] data = characteristic.getValue(); 
8        StringBuffer buffer = new StringBuffer(); 
9        for(int i=0; i < data.length; i++){ 
10            buffer.append(Character.forDigit((data[i] >> 4) & 0xF, 16)); 
11            buffer.append(Character.forDigit((data[i] & 0xF), 16)); 
12         } 
13 
14        String result = buffer.toString(); 
15        mChar3ValueFull = result; 

Listing 9 writeCharacteristic() method call. 

Listing 10 writeDescriptor() method call.  

Listing 11 onCharacteristicChanged() method. 
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4.3.3.2. Visualize real time data 

The received data is retrieved as shown in Listing 12 and processed in the 
BroadcastReceiver of the MainActivity class.  

 
The substring() method is called on the received HEX value to extract the respective values 
such as ozone related values. These string values are then parsed to Integers and added 
to an ArrayList. The corresponding ArrayList object is passed to a function that updates the 
data visualization chart. The chart surface is added to the LinearLayout as shown in 
Listing 13.  

 
The SciChartBuilder helper class is used to initialize chart objects such as Axes or 
DataSeries objects as demonstrated in Listing 14 below. 
 

 

  

1 surface = new SciChartSurface(this); 
2 chartLayout.addView(surface); 

1 final IAxis xAxis = sciChartBuilder.newNumericAxis() 
2         .withAxisTitle("Ozone") 
3        .build(); 
. 
. 
6 lineData = sciChartBuilder.newXyDataSeries(Integer.class, Integer.class) 
7        .withFifoCapacity(fifoCapacity) 
8        .build(); 

1 String char4valueFull = mBLEservice.getmChar4ValueFull(); 

Listing 12 Data value assignment. 

Listing 13 Adding a chart surface to the LinearLayout. 

Listing 14 Chart objects initialization. 
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The lineData object receives the new data points stored in the ArrayList holding the new 
data values in a TimerTask running a SciChart UpdateSuspender method to append each 
new data point to the lineData object demonstrated in Listing 15. 
 

 
The SciChartBuilder helper attaches the lineData to the RenderableSeries object as shown 
in Listing 16.  

Then the RenderableSeries instance is added to the chart surface shown in Listing 17. 

The procedure outlined above renders the new data values on the chart surface. 
 
4.3.3.3. Stream data 

Simultaneously new data values are streamed to the dedicated server using the message 
broker software RabbitMQ supporting the network protocol AMQP. AMQP enables the 
communication between publisher, consumer and AMQP message broker. The RabbitMQ 
Java Client Library requires the manifest declaration for Internet access to allow a 
connection establishment shown in Listing 18. 

1 <uses-permission android:name="android.permission.INTERNET" /> 

1 TimerTask updateDataTask4 = new TimerTask() { 
2    private int x = 0; 
3    @Override 
4    public void run() { 
5        UpdateSuspender.using(surface, new Runnable() { 
6            @Override 
7            public void run() { 
8                lineData.append(x, value.get(x)); 
9                surface.zoomExtents(); 
10                ++x; 
11            } 
. 
. 

1 final IRenderableSeries lineSeries = sciChartBuilder.newLineSeries() 
2        .withDataSeries(lineData) 
3        .withStrokeStyle(ColorUtil.LightBlue, 2f, true) 
4        .build(); 

1 surface.getRenderableSeries().add(lineSeries); 

Listing 15 Appending new chart data values. 

Listing 16 RenderableSeries initialization. 

Listing 17 Adding data to RenderableSeries. 

Listing 18 Internet access permission for RabbitMQ. 
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Two apps enable the connection establishment:  

 Cisco AnyConnect 
VPN tunneling is established using the Cisco AnyConnect app to gain access to the 
NCSU network.  

 Termius 
The server host access is configured to run a terminal session with SSH and activate 
a port forwarding rule for the RabbitMQ port 5672. 

 
A RabbitMQ ConnectionFactory object is initialised and set with the host, port, username 
and password parameters in the onStartCommand of the ESP Service class.  
Connection establishment is performed on a thread with a reconnection interval of 
5 seconds. A new RabbitMQ connection object is instantiated in this thread using the 
ConnectionFactory object as demonstrated in Listing 19.  
 

  

1 publishThread = new Thread(new Runnable() { 
2    @Override 
3    public void run() { 
4        while(true) { 
5            try { 
6                Connection connection = factory.newConnection(); 
7                Channel channel = connection.createChannel(); 
8                while (true) { 
9                    String message = queue.takeFirst(); 
10                    try{ 
11                        channel.basicPublish("sasesp", "chatter", null,  
12                                             message.getBytes()); 
13                        channel.waitForConfirmsOrDie(); 
14                    } catch (Exception e){ 
15                        queue.putFirst(message); 
16                        throw e; 
17                    } 
18                } 
19            } catch (InterruptedException e) { 
20                break; 
21            } catch (Exception e) { 
22                try { 
23                    Thread.sleep(5000); 
24                } catch (InterruptedException e1) { 
25                    break; 
26                } 
27            } 
28        } 
29    } 
30 }); 
31 publishThread.start(); 
 

Listing 19 RabbitMQ publishThread. 
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The MainActivity starts the background service in the onCreate() method as shown in 
Listing 20.  

The publishThread is started in the onStartCommand() method of the ESPService Class. 
The queue used in publishThread shown in Listing 19 is fed with new BLE data in the 
onCharacteristicsChanged() method of the BLEservice class.  
 
4.3.3.4. Upload to server 

The onCharacteristicChanged() method additionally adds the new values to an ArrayList of 
Strings in the BLEservice class that is used to create a file for uploading the values to the 
server in a csv file format. Two Buttons are provided by the MainActivity to create the csv 
file for the respective characteristic putting the file path on the Eventbus. The 
communication across components using the Eventbus implementation is straight forward 
requiring the following steps: 
 

 Event definition with POJOs (Plain Old Java Object) shown in Listing 21. 

 Publishing component: 

o Post an Event in the publishing component shown in Listing 22. 

 
 

  

1 Intent intent = new Intent(this, ESPService.class); 
2 startService(intent); 

1 public class EventFilePath { 
2    public final String StringValue; 
3 
4    public EventFilePath(String StringValue) { 
5        this.StringValue = StringValue; 
6    } 
7 } 

1 EventBus.getDefault().postSticky(new EventFileName(mFileName)); 

Listing 20 Starting ESP Service. 

Listing 21 Eventbus class. 

Listing 22 Event publishing. 
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 Subscribing component: 

o Register the subscriber in the onCreate() method of the receiving component 
as in Listing 23. 

o Definition of event handling using the Subscribe annotation shown in 
Listing 24.  

 
The SSHActivity.java class picks up the path string and executes an AsyncTask to upload 
the file to the dedicated server outlined in Listing 25.  
The AsyncTask instantiates a JSch object to obtain a session object passing username, 
host and port parameters and setting the password. This session object is used to open and 
connect a channel and use an SFTP channel to upload the csv file by passing the file path 
and the destination folder.  
After the file upload the channel and the session are disconnected. 

 
4.3.3.5. Disconnect Bluetooth 

The overflow menu provides an option to call the disconnect() method on the BluetoothGatt 
object shown in Listing 26.   

 

1 JSch ssh = new JSch(); 
2 session = ssh.getSession(…); 
3 
4 channel = session.openChannel("sftp"); 
5channel.connect(); 
6 
7 ChannelSftp sftp = (ChannelSftp) channel; 
8 sftp.put(mFilePath, "/home/Data/HET_Upload/"); 
9 
10 channel.disconnect(); 
11 session.disconnect(); 

1 mBluetoothGatt.disconnect(); 

1 @Subscribe(sticky = true, threadMode = ThreadMode.MAIN) 
2 public void onEvent(EventFilePath event) { 
3    mFilePath = event.getMessage(); 
4 } 

1 EventBus.getDefault().register(this); 

Listing 23 Event subscription. 

Listing 24 Event handling. 

Listing  25 File upload procedure. 

Listing 26 disconnect() method call. 
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4.3.3.6. Delete files 

The second option of the overflow menu deletes the created csv files that are stored in the 
internal storage of the application as demonstrated in Listing 27 below. 

 

5 Results & Discussion 
 

The use case ‘Deleting files’ works as expected and frees up internal storage. Due to the 
requirement of uploading raw unstructured data as transmitted by the BLE peripheral device 
internal storage provides a sufficient storage solution. It allows the retrieval of stored files 
for upload to the designated server.  

Alternatively, a SQLite database could be implemented providing structured data storage. 
However, considering that SQL queries are not verified at compile time and manual query 
changes would be required in the case of schema changes, the use of the Room 
Persistence Library is recommended [AAC]. Room is an object mapping library that provides 
an abstraction layer for SQLite eliminating repetitive code while embracing SQLite. The 
built-in observability support of Room allows for an extension of the persistence use case 
by wrapping query results in lifecycle-aware LiveData. This allows observing changes of 
data persisted in the Room database. LiveData is a class designed to hold data active 
observers can subscribe to so that they can be informed about data changes.  

This concept could be applied to inform observers about new BLE data received in the BLE 
service class. The current implementation consists of a service class that performs BLE 
operations in the background and communicates data changes to the MainActivity that is 
bound to the BLE service class to receive broadcast updates. Upon receipt of the broadcast 
that new data has been received the Main Activity retrieves the new data from the BLE 
service class as elaborated in Chapters 4.3.3.1 and 4.3.3.2. 

Delegating data retrieval and data processing to a repository class would keep the UI 
Controller free of business logic. LiveData holding ViewModel classes could instruct 
repositories to fetch data. The data changes can be reflected to the activity associated with 
the ViewModel and subscribed to LiveData changes as an observer. This architecture 
provides a clear separation of concern addressing the main concept of Android Architecture 
Components (AAC). Room, LiveData and ViewModels are the key Android Architecture 
Components. AAC is a collection of libraries supporting the design of testable and robust 
applications, managing the lifecycle of UI components and applying data persistence to 
drive the UI.  

1 File dir = context.getFilesDir(); 
2 String[] children = dir.list(); 
3 for (int i = 0; i < children.length; i++) { 
4    new File(dir, children[i]).delete(); 
5 } 

Listing 27 Deleting csv files. 
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Persisting chart data in a ViewModel would particularly prove useful for the ‘Visualize data’ 
use case outlined in Chapter 4.3.3.2. The lifecycle awareness of ViewModels provide 
configuration change support by encapsulating UI related data. ViewModels are scoped to 
survive state changes of the components holding a reference to the ViewModel. That way 
charts would still be rendered after screen rotations due to the synchronous communication 
between View and ViewModel based on subscriptions to LiveData objects without the 
ViewModel knowing anything about the associated View.  

The HET implementation takes advantages of subscriptions to enable asynchronous 
communication between application components. Instead of passing information using the 
putExtra() method for Intents the greenrobot EventBus is implemented as outlined in 
Chapter 4.3.3.4. Events are routed based on their class name to disseminate content-based 
information. The event bus managing the routing of events serves as a means of a logical 
communication channel which corresponds to the Publish-Subscribe software design 
pattern indirectly linking Publisher and Subscriber objects. This differentiates the Publish-
Subscribe design pattern from the Observer design pattern [SDWM] inherent to LiveData 
Subject-Observer relationships that notify object status changes directly to observers. 
Persisting events is another distinguishing feature that EventBus is offering.  As outlined in 
Chapter 4.3.3.4 the implementation of the subscriber has the option to set the annotation 
attribute sticky to true. Hence, event caching is enabled allowing subscribers to pick up the 
most recent specified event that was posted on the default event bus before the subscriber 
was instantiated and able to register for events. The post(Object event) method of the 
EventBus class implements a List<Object> to add events as a mechanism for event 
propagation [EVENT]. 

Queues are key elements of the message broker library RabbitMQ used to asynchronously 
stream BLE data to the designated server. As elaborated in Chapter 4.3.3.3 the BLEService 
class adds new values to the internal producer queue to stream data. The publishing thread 
is created in the ESPService class removing the first item of the queue and passing it to the 
publishing method of the channel. The channel is created on an AMQP connection object 
with an underlying TCP connection between the application and the broker. As indicated in 
Chapter 4.3.3.3 RabbitMQ listens on port 5672 supporting AMQP. The Termius application 
is used to open an SSH terminal session and enable port forwarding.  

The JSch library is used to establish an SSH connection to transfer csv files over the SSH 
File Transfer Protocol (SFTP) as elaborated in Chapter 4.3.3.4. The JSch library offers a 
port forwarding feature that could be used to implement the ‘Stream data’ use case making 
Termius running in the background obsolete. Termius and the JSch library enable secure 
data transmissions between the dedicated server and the Android device. While the data 
transfer between the server and the Android device is secure, Chapter 4.3.2. indicates that 
the communication link between the BLE Android central device and the peripheral sensor 
device is not encrypted.  

The low energy Secure Connections pairing model introduced with the legacy BLE 4.2 offers 
effective encryption security features enabling link and data encryption to mitigate identity 
tracking, man-in-the-middle (MITM) attacks and passive eavesdropping [BLE1]. The 
energy-efficient cryptography algorithm Elliptic Curve Diffie Hellman is applied for key 
generation [ECDH] during connection establishment supporting low energy consumption 
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during data transmission. The peak BLE radio power consumption occurs during the active 
transmission state of connection events as indicated in Fig. 6 of Chapter 2. Improved power 
efficiency can be achieved by reducing wireless communication duty cycles. The increased 
successive interval between intermittent connection events prolong low power mode 
durations as a result. Due to the short distance between the BLE sensor device and the 
Android device the transmitter output power can be significantly reduced to gain further 
power savings [HET2]. Another impact on power consumption reduction is the achieved by 
increasing the slave latency [BLE2]. This parameter allows the peripheral sensor device to 
skip connection events effectively increasing low power mode periods. 

As indicated above software related adjustments of BLE parameters can be taken into 
consideration to impact low power features of BLE compliant SoCs providing hardware 
support for ultra-low power operations. Chapter 3 elaborates specific ULP features of the 
TI CC2541 currently integrated in the HET wrist watch and ongoing SoC developments of 
the ASSIST research thrust VI towards self-powered system integration. A comparison 
highlights key differences of the architectural SoC designs. Custom ULP components 
integrated in the energy-harvesting ASSIST SoC depicted in Fig. 10 significantly contribute 
to reducing the power consumption to 6.45 µW. Fig. 11 illustrates the tight integration of the 
507nW SoC components enabling sub µW operations while interfacing with off-chip SiP 
components allowing a diverse spectrum of IoT applications.  

The development of custom components designed to meet the requirements of low energy 
performance and wireless communication defined by self-powered wearable ASSIST 
system platforms enable ultra-low-power operations that can’t be achieved with COTS 
approaches such as the TI CC2541 SoC. While offering a range of ultra-low power features 
commercially available SoCs are required to provide a broad selection of functionality and 
a rich set of peripherals to enable the implementation of a wide range of use cases beyond 
IoT applications.  

 

6 Related work  
 
BLE compliant COTS SoCs are continuously optimized to make application designs 
operating on limited energy sources feasible. Comparative studies of selected SoCs 
manufactured by various vendors such as the Texas Instruments CC2540 presented in 
[SOC1] or Nordic Semiconductor SoCs evaluated in [SOC2] focus on BLE performance and 
power consumption. A systematic approach towards the analysis of peripheral parameters 
impacting BLE performances of applications supporting wireless communication between a 
smartphone and a TI CC2540 peripheral is provided in [SOC3]. 
Contrary to the quantification of BLE power consumption measurements of BLE SoCs 
presented in existing work this paper provides a comparison of the architectural SoC design 
and hardware components supporting ULP energy consumption for wireless data transfer 
of environmental and physiological health sensing parameters. 
There has been considerable interest in BLE solutions dedicated to health-related wearable 
devices transmitting sensor data via wireless BLE communication. Major manufacturers 
address the increased demand of BLE solutions by developing low power BLE SoCs 
offering sample projects on Android BLE implementation. The BLE implementation of the 
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Android user interface presented in this work is based on the Cypress BLE demo project 
[CYP]. The sample implementation provided by Dialog is comparable to the Cypress sample 
project implementation. The Dialog Semiconductor SmartBond™ DA14681 Wearable 
Development Kit includes a wrist watch displaying heart rate and other health related 
parameters [DIAL]. The Dialog and the Cypress implementations create a BLE service class 
to enable BLE communication between the BLE peripheral and the Android device. The 
BLE implementation of the sample project included in the documentation of the Renesas 
RL78/G1D evaluation board suggests a different approach [REN]. A BLE wrapper class 
holding BLE requests and a BLE Wrapper Callback interface for request results are 
implemented to allow BLE communication without the use of a service class. 

 

7 Conclusion and Future work 
BLE enriches the world of wireless devices. The energy efficiency of this wireless 
communication protocol makes it ideal for establishing data transmissions between 
smartphones and wearable sensor devices operating on a restricted energy budget. Low 
energy radio technology in combination with custom ULP SoC components enable self-
powered wearable sensing platforms running on human body harvested power sources. 
Cutting edge research on the development of an energy-harvesting custom SoC addressing 
the challenges of ULP energy constraints for self-powered wearable sensing results in 
substantial power reductions enabling operations in the sub µW range. The sensing 
parameters monitored by the wearable HET system aim to provide an understanding of the 
correlation between environmental exposure and related adverse health responses. Data 
visualization of these ambient and physiological parameters on an Android device enhances 
self-efficacy strategies for optimized health care and wellness management. The data 
aggregation functionality provided by the Android device in terms of data streaming and file 
uploading for longitudinal data storage further assists data analysis advancing medicine and 
health management.  

Concepts of big data analytics could be addressed in future work with special focus on 
privacy concerns. An additional aspect to be covered is the implementation of security 
features preventing identity tracking, passive eavesdropping and MITM attacks and 
ensuring data integrity. The implementation of the Android User Interface could further be 
adapted to provide a comparison of the most widely adopted pattern approaches MVC, 
MVP and MVVM separating the application into logical components. The MVVM pattern 
could be presented to demonstrate and deep dive into the lifecycle aware Android 
architecture components introduced by Google.  
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Appendix A – Use Case Diagram 
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Appendix B – Use Case Descriptions 

 

Use Case Name Start BLE 

Brief Description Establish a BLE connection 

Pre-Condition BT enabled, devices not connected 

Post-Condition Devices connected 

Actors 
- User, primary, active, human 
- Sensor device, secondary, passive,  

Basic Flow 

1. The user presses the Start button. 
2. The system checks, if Bluetooth is enabled. 

If it is not enabled, the system prompts the 
user to turn on BT. 

3. The system checks, if access to device 
location is permitted. 

If it is not enabled, the system prompts the 
user to allow access. 

4. The system scans for a device holding the 
HET service. 

If it is found the system connects to the 
device. 

6. The system discovers services & 
characteristics. 

7. The system enables the Kickstart button. 

Alternate Flow 

1. The system does not find the required 
device. 

2. The system scans until a BLE device 
offering the requested service becomes 
available. 

Trigger The user presses the Start button. 
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Use Case Name Visualize real time data 

Brief Description Real time chart rendering of sensor data. 

Pre-Condition Nofications are not enabled. 

Post-Condition Real time data visualization on Start Screen. 

Actors 
- User, primary, active, human 
- Sensor device, secondary, passive,  

Basic Flow 

1. The user presses the Kickstart button. 
2. The system enables the setting of 

notifications. 

3. The system enables the notifications 
switches. 

4. The user puts the notification switches in 
the on position. 

6. The sensor device transmits data to the 
system. 

7. The system displays the real time charts. 

Alternate Flow The user disconnects the device. 

Trigger The user presses the Kickstart button. 
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Use Case Name Upload data file 

Brief Description 
Upload of csv file containing sensor data to the 
dedicated server.  

Pre-Condition Transmission of sensor data. 

Post-Condition Successful file upload to the dedicated server. 

Actors 
- User, primary, active, human 
- Sensor device, secondary, passive,  

Basic Flow 

3. The user presses the Upload button on the 
Start screen. 

4. The system creates a csv file of the 
respective sensor data. 

5. The system opens the Upload Activity. 
6. The user presses the Upload button on the 

Upload screen. 

3. The system establishes a secure 
connection to the dedicated server. 

4. The system uploads the csv file to the 
dedicated server. 

6. The system displays toast messages 
indicating the progress of the file upload. 

7. The system returns to the Start screen. 

Alternate Flow The user disconnects the device. 

Trigger The user presses the Upload button. 
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Use Case Name Stream data 

Brief Description 
Streaming data received from the sensor 
device to the dedicated server.  

Pre-Condition 

 Transmission of sensor data.  
 Enabling Port Forwarding to the dedicated 

server using the Termius app in the 
background. 

Post-Condition 
Successful data streaming to the dedicated 
server. 

Actors 
- User, primary, active, human 
- Sensor device, secondary, passive,  

Basic Flow 

1. The user opens the Termius app in the 
background to establish a secure 
connection to the forwarding port of the 
dedicated server. 

2. The system streams the data to the server. 

Alternate Flow The user disconnects the device. 

Trigger 
New sensor values received from the sensor 
device. 
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Appendix C – Class diagram 
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Appendix D – User Interface Mock ups 

 

 


