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Abstract
Manufacturers are facing increasing pressure to reduce the development costs and de-
ployment times for automated assembly systems. Since 1994, the Microdynamic Sys-
tems Laboratory at Carnegie Mellon University has been developing an automation
framework, called Agile Assembly Architecture (AAA). Additionally to the concept, a
prototype instantiation, in the form of a modular tabletop precision assembly system
termed Minifactory [1, 2, 3], has been developed. In this thesis various enhancements
for a second generation agent-based micro assembly system are designed, implemented,
tested and improved. The project includes devising methods for tray feeding of preci-
sion high-value parts, micro fastening techniques and additional work on visual- and
force-servoing. To help achieving these functions, modular and reconfigurable robot
end-effectors for handling millimeter sized parts have been designed and built for the
existing robotic agents. New concepts for robot end effectors to grasp and release tiny
parts, including image processing and intelligent control software, were required and
needed to be implemented in the prototype setup. In order to have a modular system,
the factory the main part of this project was the initialization and auto calibration
of the different agents. The main focus, of this research, is on improving the design,
deployment and reconfiguration capabilities of automated assembly systems for pre-
cision mechatronic products. This helps to shorten the development process as well
as the assembly of factory systems. A strategic application for this approach is the
automated assembly of small sensors, actuators, medical devices and chip-scale atomic
systems such as atomic clocks, magnetometers and gyroscopes.
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1 Introduction

Nowadays a very high demand on new products exists in the high tech industry. The
trend is towards smaller and cheaper devices, which are able to perform tasks faster and
have lower production costs than their predecessors. This leads to a growing amount
of features that have to be integrated into shrinking part sizes. Decreasing the size of
the product does not only save weight and transport costs, it is also more convenient
for the customer to carry around. The shorter product life cycle [4] is related to the
fact that the high tech industry is a fast evolving industry and products have a very
fast obsolescence rate. The variety of products increases almost daily which leads to
individualization of the products. The customer needs have to be fulfilled, so they can
choose between the variations and choose their custom product.

In order to sell products, manufacturers have to decrease their development costs and
deployment times for automated assembly systems. Two tasks, which take, among
others, the most time to deploy, is the difficult integration and the assembly time to
develop and establish the production line. The calibration and programming of the
system accounts to a big amount of the setup time of a factory. Each of these trends
represents different challenges for production lines. Especially in the high tech industry
products are affected by most of these trends, some even by all of them. In this case
some restrictions have to be made, since most common assembly systems can not meet
all stated requirements and demands.

The Microdynamic Systems Laboratory (MSL) at Carnegie Mellon University (CMU)
developed a new philosophy of factories, called the AAA. This philosophy is imple-
mented in the Minifactory (see Figure 1.1) which tries to answer to the stated chal-
lenges. The Minifactory and AAA provide a platform that will support and integrate
the different precision manufacturing processes, that need to be developed to assemble
a large variety of small mechatronic products. With the modular structure of the fac-
tory it is easily manageable to manufacture a wide variety of products and test them
on a single production line.

The Minifactory is under a constant progress of development. The current version
of the system (version 2.0) is still in development. During the advancement process,
different research projects to enhance the abilities have been done. Currently only one
courier agent (see subsubsection 2.2.1) is fully functional.
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Figure 1.1: Minifactory at MSL

Ten manipulator agents are functional (see subsubsection 2.2.1), but they do not have
end-effectors (see subsection 3.1.1) in order to work on a product. In order to get a
better test setup, six more couriers as well as end-effectors for the manipulators are
currently in production.

1.1 Objectives & Requirements

In this thesis, various enhancements for the 2nd generation of agent-based micro assem-
bly system have been designed, implemented, tested and improved. Figure 1.2 shows
a modular overview about AAA, the dark blue colored areas correspond to the work
done in this thesis.

The AAA is divided into two main parts:

Software: The software entails not only the visualization of the factory, it also is
part of the system where the whole factory is programmed and simulated.



CHAPTER 1. INTRODUCTION 3

Figure 1.2: AAA modular overview.

A detailed overview about the Interface Tool is given in subsection 2.2.2. In this thesis
the websocket (see subsection 3.3.1) and the Computer-Aided Design (CAD)-
model import have been the the two main parts of the software module which were
changed in order to accomplish the stated goals in section 4.4. Smaller changes were
done in the other modules during the integration of the new software parts into the
Interface Tool.

Minifactory: The Minifactory is an instantiation of an AAA. There are two main
parts: hardware and communication. The hardware is defined by different agents (see
subsubsection 2.2.1). One Part of this thesis was the development of an prototype
End-Effector which is able to show the benefits of distributed computing and the
modular structure of AAA, as described in subsection 3.1.1.
The communication part of Minifactory can be divided in several ways. Figure 1.2
describes the division by looking at the hardware on which the communication is hap-
pening. In this thesis all three methods of communication are introduced. I2C (see
subsection 3.3.4) is needed in order to connect the end-effector to the correct ma-
nipulator. The optical communication (see subsection 3.3.3) enables courier agents
to detect manipulators (section 4.2) and initiates the data exchange by sending the
Identifier (ID) to the courier (section 4.3). Another part of this thesis is the modula-
tion and demodulation of the ID on top of the optical signal, as well as the precision
navigation which is needed for finding the manipulator agents.
Finally the main correspondence between agents is done on an Ethernet basis. In or-
der to establish a real-time communication between to agents, the name of the agents
needs to be known.
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In this thesis an Ethernet based multicast framework (see subsubsection 3.3.2) was
implemented which resolves the agent in the network and returns information about
the connection methods of each agent.
The existing publish/subscribe framework was expanded (see paragraph 2.2.3) in order
to offer more different communication methods between agents and also to update the
status information and position of agents (see subsection 4.3.3).

This thesis project includes devising methods for tray feeding of precision high-value
parts, micro fastening techniques such as adhesive dispensing and additional work on
visual- and force-servoing. In order to help to achieve these functions, modular and
reconfigurable robot end-effectors for handling parts, which are sized in the millimeter
range, have been designed and built for existing robotic agents. In addition, new
concepts for robot end-effectors to grasp and release tiny parts were required and
needed to be implemented. This includes image processing and intelligent control
software. These concepts need to differ largely from traditional handling paradigms in
order to solve problems introduced by electrostatic and surface tension forces, which
are dominant for manipulating parts that are millimeter and below in size.

The improvement of design, deployment and reconfiguration capabilities of automated
assembly systems for precision mechatronic products is one of the main goals of the
thesis. A strategic application for this approach is the automated assembly of small
sensors, actuators, small medical devices and chip-scale atomic systems such as atomic
clocks, magnetometers and gyroscopes.

This thesis aims to achieve the following objectives:

R1 Decentralized computation during operation.
The whole factory needs to operate without a centralized knowledge base. Each
agent should work independently, only communicating with other agents to par-
ticipate in joint manufacturing.

R2 Initialization without prior knowledge.
In order to initialize the factory each agent needs a calibration routine that en-
ables the robot to determine the environment and other agents in the neighbor-
hood.

R3 General approach to manipulating parts.
End-effectors need their own computation unit which stores not only the CAD
model of the end-effector, but also is able to do additional computation like image
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processing and force sensing.

R4 Geographically independent control of factories.
An AAA factory should be able to be controlled independently from the location
of the operator.

1.2 Innovation

Assembly lines are highly complicated systems which need a great deal of precision
in order to work properly. This precision can only be achieved if the system is setup
with at least the desired precision which takes a long time. Setup times cost producers
money since the place is filled with a new factory but this factory can’t produce any
products yet.

The Microdynamic Systems Laboratory at CMU developed a new philosophy of facto-
ries, called the Agile Assembly Architecture (AAA). With this framework it is possible
to develop agile factories which are able to calibrate themselves and produce a variety
of products in a small scale rapid prototyping environment. Assembly lines nowadays
are designed for a specific task and changing the factory for another product can take
a long time and often requires reconstruction of parts of the factory. With AAA the
factory can be reconfigured on the fly since the manipulator robots are not configured
in a line working at a conveyor belt but instead use carrier robots which transport the
product from one step to another. The testing factory which is designed at CMU is
called Minifactory.

The Minifactory and AAA provide a platform that will support and integrate the
different precision manufacturing processes, that need to be developed to assemble a
large variety of small mechatronic products. With the modular structure of the factory
it is easily manageable to manufacture a wide variety of products and test them on
a single production line. Since the system is designed to produce chip-scale devices
with a precision of 200nm, the location of the manipulator robots needs to be known
with at least the same precision. In order to achieve this goal a new initialization
method was developed which finds the manipulator robots with help of the carrier
robots. Through help of different communication channels the robots are able to find
each other and establish a relationship which is able to build the whole factory. This
enables user to simply state which manipulator should be used in order to achieve the
desired operation. The system will plan all movement between stations and prevent
collisions between different courier robots.
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This helps to shorten the programming phase of the assembly system. Another step
to re-usability is the development of end-effectors which attach to manipulator robots.
With help of these end-effectors it is possible to use a manipulator for different task,
while only changing the end-effector which includes the part of the robot which does
the product modification. The high precision motors which are needed in the factory
are in the manipulator robot. This systems saves money since only small parts of the
factory needs to be changed in order to enable the assembly line for a new product.

In summary this type of factory and specifically the in this thesis developed auto
calibration methods will help to shorten the setup time and thus the overall costs of
factory systems in small scale setups. By having an agile and reconfigurable system
it is possible to have a faster development phase of new products since many different
products can be tested in a short amount of time without the need to rearrange the
hardware in the assembly system.

To the best of the authors knowledge there are no smart factories with this high
precision which include auto calibration and such ah high degree of agility.

1.3 Structure

This report is composed of several chapters. chapter 2 gives an
overview about the AAA as well as the instantiation in form of the Minifac-
tory. Furthermore this section explains recent developments in smart factories from
different universities. The expansion of the framework and Minifactory during this
thesis is described in chapter 3. The process of detecting an agent of the Minifactory,
instantiate communication to the agent, as well as updating or generating the agent
inside the Interface Tool is described in chapter 4. The validation of these instantiation
algorithm is described in chapter 5. chapter 6 describes the scientific contribution
of this thesis. Finally chapter 7 summarizes the outcome of this report and gives a
conclusion as well as an outlook for future work.
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2 Smart Factories

In order to reach the in section 1.1 stated requirements a through understanding of
smart factories needs to be established first. Thus this chapter introduces first current
developments in the area of smart and agile factories. Additionally the proceedings at
CMU are described and the current system in form of the Minifactory at the beginning
of this thesis is presented. This gives an overview of the needed knowledge by explaining
terms and definitions of relevance for the following work.

2.1 Existing Approaches to Agile Manufacturing

In recent years there have been different approaches for designing and building smart
factories.

The desire to implement a modular and agile environment lead to the development of so
called Reconfigurable Manufacturing Systems (RMS). On approach by the University
of Applied Scienes Utrecht is a five staged development process where the RMS is
indexed by using “‘Qualitative Analysis’ based on ‘Coding’ combined with the method
of ‘Structured Analysis Design Technique’s.”[5] This design based approach deals with
ways to integrate a product into a better development and production factory. Since
this approach deals with the early phases during the development the factory needed
can be adjusted before the production of the product starts.[5]

Smart factories have to begin during the designing phase of a product. Especially the
project management has to adapt to agile factories. The technical university of Prague
is researching agile frameworks which enables the user to manage products in an agile
way. This transition from software design to physical products enables the usage of
well known methods in a new field and thus improves modern product design. [6]

Another way of achieving a smart factory is presented by the University in Clermont.
The work describes a formal framework which is able to classify not only physical sys-
tem by their characteristics but also literature in the field of factories and agile assembly.
The main focus is on system characterization which enables a production system to
contiguously modify the behavior and and thus fit into changing environments. The
concept of a formal framework allows mathematical descriptions of production pro-
cesses. This enables users to integrate different systems within each other and produce
a single description throughout whole companies by combining different factories. [7]
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Interoperability and dynamic assembly are two very important keywords for smart fac-
tories. Therefore special considerations need to be given to a modular communication
framework which connects different parts of a factory. The usage of a Service-Oriented
Architecture (SOA) allows the communication of factories based on the offered services
which enables factories a fast deployment of different interactions between autonomous
devices. By using WebSocket (WS) a standard protocol is implemented which allow
Point-to-Point (p2p) between embedded devices. The Loughborough University re-
searches this approach by using standardized messages between parts of the factories.
[8]

Smart factories are not only dependent on the programmed software but also on the
hardware components. The Technical University Munich researches a framework which
allows agile manufacturing processes. The focus relies hereby not only on the software
which runs the factory but also on the interchangeability of the hardware and the
connection between those two parts of a factory. Another part of this research includes
the human as part of the system and thus creates a closed environment. The whole
system is divided into subsystems which can run autonomously and only connect at
specified exchange points. This allows the whole factory a high level of agility since
each subsystem can easily be exchanged with another part of the factory. [9]

The different research projects all have advantages and disadvantages. Neither one
offers a whole process which enables an user to stay within one framework during the
design and operation phase of a smart factory. Single research projects concentrate
on the design process, other at the integration of software and hardware. The MSL
at CMU took different approaches and tries to integrate them into a single framework
which is explained in the following section.

2.2 Agile Assembly Architecture at CMU: an Overview

The CMU developed a new concept about assembly architecture in 1995. The Micro-
dynamic Systems Laboratory presented this forward-looking approach in form of the
AAA which is an approach to meet the demands on automated assembly systems from
the fast evolving market [10].
These characteristics are achieved by a modular structure of the assembly system with
reusable elements, which can be dynamically reassembled to a new system. The idea
of AAA resembles building blocks in a construction kit which offers standardized basic
modules guaranteeing a high reusability and adaptability to diverse applications easy
and quick.
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This is achieved by standardizing data protocols as well as mechanical and electrical
interfaces. Thus an arbitrary combination of all elements is offered which also allows
a possible future extension of the assembly factory [10].

The main feature of an AAA system is the decentralization of the computing power.
Each robotic module is independent knowing about the capability of the agent only.
This offers the advantage that during operation no central control unit is needed. Each
agent communicates to the other agents over network.

Part of the AAA philosophy is the symbiosis between the real assembly system and
an identical virtual version for simulation. With the help of the Interface Tool [11], a
basis for the virtual environment as well as a platform for displaying the behavior of
the robotic modules is provided. The robotic modules get their information from the
real hardware that provide geometrical models, their abilities and the communication
interface in order to control them. Within the Interface Tool a virtual factory can be
designed, programmed and tested with actual module specifications. These specifica-
tions can be loaded directly from the existing modules in the factory or even from the
Internet. In order to simplify the process of generating a virtual system, a library of
routines is provided as well as a standardized communication protocol which helps to
develop an assembly system faster.

The modular construction of an AAA system and the standardized interfaces allow
an easy setup of a real assembly system. Since there is a close relationship between
simulation and real hardware, the tested (simulated) program can be easily changed and
uploaded to the robotic modules. This transition is supported by the agents capability
of self calibration. Since couriers have the ability to explore the environment, the
alignment of the system elements can be determined by the agents as well. This leads
to short setup times and the possibility to change the system fast.

The following sections provide an overview of the different aspects of AAA. The in-
stantiation of this concept is explained in form of the Minifactory. In this chapter the
different parts of the factory are described. An interface provides a system to program
the whole factory in a virtual environment, it also opens the possibility to run simula-
tions in this environment. In order to have an agile system the communication between
different agents has to be self-describing and each agent must be able to connect to
other agents without the need of a programmer.
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2.2.1 Minifactory

Minifactory is a tabletop system which was designed by the MSL at CMU. This
modular assembly system is an implementation of the AAA philosophy. It is able
to produce products, like position sensors and small microphones, in the range of
millimeters till up to some centimeters and with the precision of micrometers. In order
to get a modular system which can be easily assembled for a multitude of different
products the whole factory is divided into different parts. These parts are described in
the following sections [12, 1, 10].

Base unit

The main operation platform is the base frame module which is shown in Figure 2.1.
This unit has a platen tile that is mounted on top of this module which serves as the
floor for moving agents. The platen tile features a very tight grid (1mm) of ferromag-
netic posts which is used by the moving agents (see subsubsection 2.2.1) for navigation
and orientation. In order to provide a barrier at the edges of the base module, each
unit has curbs made out of polyethylene. This barrier prevent the moving agents from
falling off the Minifactory.

Figure 2.1: Minifactory: Base module provided by [12].

In order to mount manipulator agents (see subsubsection 2.2.1) on top of the module
and to connect different modules, aluminum profiles are used for connections and sta-
bility. As is shown in Figure 2.1 these aluminum profile bridges are movable and can
be placed where a manipulator is needed. A central unit has the ability to serve up
to eight agents with power, network services, vacuum and pressured air. The power is
already provided with standardized voltages serving the different needs of the agents,
which reduces the needed amount of voltage regulation in each agent.
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There is a 100Mbit network provided, using standard IP protocols and real time capa-
bilities for communication between the different agents [13].

Agents

A robot communicating and assembling in the Minifactory is called
an agent. Each agent has its own processing unit and works
autonomously in an AAA environment. It connects to other agents over a net-
work. There are different types of agents in the Minifactory. Each agent has a low
Degrees of Freedom (DoF) factor that is combined with other agents by communicating
with them. The DoF can be combined and more complicated assembly tasks can
be achieved this way. The different types of agents can be categorized as robot
manipulators and mobile robots.

A robot manipulator consists of a sequence of rigid bodies (links) and articulations
(joints) which interconnect the links. This sequence represents the arm of a manipu-
lator. In the Minifactory there are open kinematic chain manipulators, which means
that there is only one connection between the base of a robot and the end-effector
which performs the required task of the robot. The amount of movement is defined by
the length of the arm and the DoF of the robot.

Unlike the robot manipulator which has a fixed base, the main feature of a mobile
robot is the ability to move its base freely in the environment. The main usage of
this type of robot is servicing parts between manipulator agents inside the Minifactory.
Generally a mobile robot can be classified in separate categories: wheeled robots, legged
robots and planar robots. The most common type of mobile robots are wheeled robots.
Minifactory uses planar robots which move around the factory on an air bearing [14,
Chap. 1].

Moving Agents

The moving agents, which are called couriers, have two different tasks in the Minifac-
tory:

The first task is the transportation of the product in the Minifactory from one ma-
nipulator agent (see subsubsection 2.2.1) to the next until the product is finished.
Conventional assembly systems often use conveyor belts or similar systems.
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These systems are unidirectional and it is very hard to insert new production processes
into an existing factory street. The Minifactory uses the courier agents to transport
the product. Since these agents can move freely in x and y direction there is no need
for a serial line up of the assembly stations. The stations can be arranged parallel in
order to save space. Also the expansion of a factory with a new manipulator agent
does not require any mechanical reconfiguration of the existing factory.

The second task of this type of agents is the positioning of the product under a certain
manipulator agent and the following processing for the stated task of the manipulator
agent. This cooperation is the solution for the problem that the small number of DoF
is insufficient for most assembly tasks. The courier agent offers three DoF [15] which
can be added to the DoF of the manipulator agent. So it is possible that by combining
a courier with a manipulator agent, complex processes that require more DoF can be
performed [14, Chap. 1].

Figure 2.2: Minifactory: Moving agent provided by [12].

The courier agent consists of two parts as shown in Figure 2.2. The brain box is the
heart of the agent. It contains most of the electronic and processing hardware which
is needed to operate the agent. The brain box is connected to a base module by using
a standardized connection cable.

The second part of the agent is the courier unit. This unit is connected to the brain
box by a multicore cable which includes vacuum and pressured air. This cable also sets
the boundaries of the movement of the courier in its length since it is the maximum
distance the courier can move away from its brain box. In order to move the courier on
the platen tile an air bearing is generated which raises it to an altitude of 10 − 15µm
above the factory floor.
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The cube is moved by using four planar stepper motors which use the Sawyer principle
in combination with the grid of ferromagnetic teeth in the platen in order to shift the
agent in x and y directions. The positioning which is able to detect the location of the
cube at a precision of 0.2µm is provided by a platen sensor that uses the magnets in
the baseplate. This enables a closed loop system to control the position and speed of
the agent with a maximum speed of 1.5m

s
. [11, 1, 15, 2, 16, 17]

In order to be able to establish a network communication between a manipulator
and a moving agent, there needs to be a way of discovering each other. An optical
coordination sensor mounted on the courier offers the ability to listen for beacons sent
out by the manipulator agent. Furthermore it is able to measure the relative distance
between manipulator and courier for calibration up to a resolution of 0.15µm. The
exact way of establishing a first communication channel is described in subsection 3.3.3
[18].

Manipulator Agents

The second type of agents are manipulator agents (see Figure 2.3). These agents are
mounted above the factory baseplate on bridges which allows them to be very flexible
mounted across the Minifactory. The manipulator has two axes which allows two DoF.
A vertically mounted Z-axis allows the movement of up to 150mm range whereas a
rotary axis can move it around φ with 330◦. Since a conventional assembly robot (e.g.
SCARA-robot [14, Chap. 1]) has a common DoF-factor of four it is mandatory for the
manipulator to communicate and work with the courier agent in order to get this kind
of freedom in movement. Since this reduces the number of DoF by half the operation
can be executed with a much higher precision. Another advantage of two separate
robots working together is the assembly speed. Since the manipulator can start to
work even before the courier has reached the final position for assembly, there is an
increase in the assembly speed for the assembled item [19, 1].

In order to be modular and flexible in the mounting the manipulator has its own brain
box which is inside the manipulator. The same connector which is used to connect the
brain box of the courier to the base module is used to connect this agent. The brain box
includes its own processor, which allows the function of the agent to be independent
from any outside input. The manipulator offers a standardized interface at the end of
the vertical axis which allows different kinds of end-effectors (see subsection 3.1.1) to
be mounted on the manipulator.
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Figure 2.3: Minifactory: Manipulator agent provided by [12].

A quick connector offers a fast and easy way to change the utilization of the manipu-
lator. The interface can be seen in Figure 2.4.

Figure 2.4: Minifactory: Manipulator interface for end-effectors provided by [12].
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Operating System

In order to have a fast assembly system the Operating System (OS) on each agent
needs to be fast, but accurate as well. The only way to guarantee the fixed task plan
is by using a Real-Time Operating System (RTOS). There are several different types
of computation units in the Minifactory. Since each courier and manipulator agent is
a standalone application every single one of them needs a processor. QNX was chosen
as RTOS. The Unix derivative offers a micro-kernel design and a modular architecture
which makes the whole operating system small and flexible. Especially in the courier
agent real-time processing is needed to guarantee that not only the closed loop control,
but also the motor control works as desired. [20]

2.2.2 Interface Tool

Common development of assembly systems is usually divided into two stages. The
development of the software and the hardware usually happens in parallel. Sometimes
the software is developed even before the hardware is built. It is normal that a simulated
environment is used to program the software offline. After simulation the results are
used to integrate software into the physical machines. Traditional online systems like
Supervisory Control and Data Acquisition (SCADA) and Human Machine Interface
(HMI) do not have the ability to simulate the hardware. As such there is a gap between
offline and online systems that often results in two different software environments used
during the design, deployment and operation phase. AAA offers a combined solution
in the form of the Interface Tool. It is used for planning and creating virtual factories
as well as real factories [11].

Having a virtual model of the physical factory can decrease the setup process of an
assembly system since the software part can be tested and errors can be fixed even
before there is a single piece of hardware. Often the physical factory is only assembled
at the customer location. Thus in common proceeding there is a need to fix errors at
the customers site which takes time and creates a bad image for the company. Errors
during the planning phase can be very expensive when they lead to time- and money
consuming modifications of the real system. Simulations can show these errors before
the physical factory is built and thus avoid these costs. Another useful feature of virtual
assembly systems is the avoidance of downtime during programming of new tasks. If
the program can be written offline, the physical system can still run and work on a
current task.
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There is even the possibility to work on multiple new tasks at the same time since
the virtual factory can run parallel on multiple instances. Also testing the new task
in a simulation is not dangerous and cannot cause damages to the physical assembly
system. This feature is only useful if the virtual factory is nearly identical to the
physical one. Otherwise there is a time loss when deploying the code to the physical
assembly system since parameters would need to be changed in order to work with the
hardware system.

Traditional simulation systems need a high degree of programming in the simulation
part. The programmer needs to have a very good knowledge of the physical assembly
system in order to build the virtual one. Mechanical and physical proceedings of the
system needs to be known and modeled as mathematical equations. A factory is not
a simple system and basic simulation software is often pushed to or beyond its limits.
As such the timing factor in the development of a factory is a big factor in the success
and cost-effectiveness of the assembly system.

AAA Interface Tool offers features which allow both simulation and hardware control.
As such the program guarantees the highest possible correlation between these two
worlds. There are two possible ways the Interface Tool can be generated. The usual way
of implementation is the top down approach. A model is developed and programmed
in the Interface Tool which can be used as a base for generating a simulation. After
testing the model and programming the agents, the physical system is connected to
the Interface Tool. The second possible way is the auto generation of the interface
model. In this mode the courier agent generates a map of the factory. After finding a
manipulator it is inserted into the Interface Tool. A complete model is generated and
can be used without the need of drawing the model itself, after the whole factory is
mapped. This option is only available for existing hardware factories.

All physical models are registered in the Interface Tool component palette. This in-
cludes information about the body structure, abilities, ways to connect to the interface
of an agent and the connection to other components of each module. Each agent has
its model stored internally which can be downloaded to the Interface Tool. Changes in
the model can therefore be easily implemented in the Interface Tool. It is also an easy
way to introduce new models to the Graphical User Interface (GUI) [11].

In order to assure a high correlation between the two systems during the complete life-
time of an assembly factory, the Interface Tool offers bi-directional transitions between
simulation and reality.
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This means that any change in either one of the two systems can be transferred to
the other system. Most common simulation systems allow only the transition from
simulation to reality once, during the construction phase of the factory. With Interface
Tool the full potential of simulated factories can be utilized.

Since real agents also have the capability of self calibration, it is possible to change
the layout of the Interface Tool accordingly. This helps to close small gaps between
the simulated and the physical factory. This means it fulfills a requirement of AAA: a
high degree of agility.

There are two different environments inside the Interface Tool. First, the tool environ-
ment provides a GUI for the physical interaction with agents and shows the current
status of the whole factory. The second one is the sim environment. Inside this mode
it is possible to program, design and test a virtual factory. Both operation modes offer
a similar GUI and have access to the same information about the factory components,
products and their description. The sim environment offers additionally the ability to
take photos and record movies of the simulation.

Structure

The Interface Tool is structured in a vertically layered architecture. The GUI is the
highest level and therefor the visual part which interacts with the user. It allows the
construction of factories in a very convenient way. The models of the required compo-
nents can be selected in the component palette. These models include the graphical
description of them in the form of Open Inventor files1 as well as a description of the
available command interfaces and how to access them. Since the software has a graphi-
cal interface it offers all benefits such as menu bars and dialog boxes. The top level also
offers the user a three dimensional rendering of the running factory in both operation
modes, either in the simulation or real time execution. The engine offers six DoF in
the viewing angle. Changing the viewing angle, regulating the execution speed of the
simulation as well as zooming in is possible. Since the whole factory is designed as a
decentralized environment the Interface Tool is not required for running the assembly
process. After programming the factory the parts are uploaded to the agents. The
GUI can be used to monitor the progress, as it processes the data in real time and
updates the view accordingly to the monitored devices in the factory.

1more details: http://web.mit.edu/ivlib/www/iv/files.html

http://web.mit.edu/ivlib/www/iv/files.html
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There are two different programming languages in the Interface Tool and the agents.
The basic and low-level functions as well as the display are written in C++. The logical
programs such as the run-time behavior for the simulated and physical factories are
written in Python. This programming language is an object oriented programming /
scripting language which stores the executable file as byte code. In order to get an
“easy to use” programming interface, Python encapsulates the lower level C++ code
and offers the user all required methods. The code behind instantiates the needed
objects which offers a bind method describing all required global factory components.
A run method states the actual script which defines the runtime behavior of the agents
[21].

The GUI already provides the basic layout of a Python program while assembling
the virtual factory. The chosen components building the factory are included with
their specific position matrices and their parent-child-relations in the Python file by
the Interface Tool. The programer has to add the functionality and desired outcome
of the agents (the run method) to the existing script. These command lines can be
put together by using the library which is entailed by the chosen type of robot agent.
Each assembly task of a specific robot is included with the required methods in this
library. The Python library encapsulates the source code which is written in C++ and
establishes the ground functionality of an agent. This offers the benefit that a user only
has to know one programming language while using the Minifactory. Since Python is
an easy to learn and use language this reduces the programming effort since only short
blocks of code have to be written.

Class Hierarchy

Every component in the Minifactory is based on the description class. This overall
class is the base to all products and components as shown in Figure 2.5.

The class ComponentDescription is the base class for all components which are needed
in the factory. This includes static components such as platens and frames as well as
agents which occupy the factory. Each of these components has an own class describing
its features and connection properties. Each single agents is derived from the class
AgentDescription. In this class there exists an interface component which holds all
information about the communication between the Interface Tool and the agent. There
are different types of agents such as courier, manipulator and end-effector agents. Each
type of agents has its own description class.
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Figure 2.5: Class hierarchy for the description of factories.

Every product that is needed in the assembly process is presented by the ProductDe-
scription class [11].

Design

While designing a factory there are two separate types of hardware which have to be
generated. Basic modules, like platen, curbs, bridges and base units are reusable in
almost every kind of factory. As such they can be imported into the system from the
database. Agent modules on the other side needs to be modified for each task in many
instances. In most cases it is enough to extend standard courier and manipulator with
the required tools, like specialized end-effectors and mounting kits for the couriers.
Since the end-effectors are custom made for the specific task of the assembly system
they are often shipped with existing CAD drawings. These drawing can be used in
order to get a virtual model integrated into the Interface Tool.
If there is no existing CAD file it has to be created before a model can be inserted into
the GUI. Since there is no internal representation of the model needed, a high level of
abstraction is allowed in the design process. As such only the outer shell and essential
details have to be inserted into the drawing. This procedure has to be fulfilled for each
part of the factory.
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This includes agents and basic modules as well as all component parts and products
which get assembled in the Minifactory.

In order to use a CAD generated model in the Interface Tool the file has to be trans-
formed into a Inventor file (IV) format. The Interface Tool uses the Metric system
to display the environment. If the CAD file was not generated in this system the IV
file needs to be adjusted to it. During this process there is also the ability to change
the material and color in order to have a better representation of the model. Using a
transformation matrix enables the programmer to change the size, rotation or position
of the model. Since the Interface Tool can only load information from Python files
the converted IV files have to be included in Python files which offer the possibility to
add additional information like a preview picture or a transformation matrix for the
position of the model.

The design of the factory is done inside the GUI. After loading the required com-
ponents from the component palette the factory designer can link the parts together.
This is done by selecting two parts with the cursor and activating the assemble com-
mand. Since all possible connection locations are hard coded into their C++ files it is
impossible to generate invalid connections. In order to get the right result, the position
and orientation of the parts have to be as desired since there are several available con-
nection locations. This alignment can be achieved by switching the GUI from selection
into moving mode.

If parts of the assembled product should be displayed at the start of the program on
the courier their IV files have to be placed inside the courier’s Python file. Another
way of integrating parts in the production process is to place the IV files inside the
main program of the Minifactory. This is the case for products which should appear
during the runtime of the assembly process. These two alternatives are needed if the
model is part of the product and not of an agent or basic module.

The final step of the agent design is the generation of a static 3D image of the Mini-
factory.

Programming

After designing the Minifactory, a basic structure of the program is already built au-
tomatically by the Interface Tool. The relationships between modules are shown as
parent-child inheritance inside the factory file.
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Those files are stored in the model directory of the Minifactory and have the ending
.fac. This includes the platen to base unit relations as well as that one between ma-
nipulator and bridge. The position of each child member is relative to the parent and
described as a transformation matrix. Since the programing language for this part of
the Interface Tool is Python any text editor is suitable to program the behavior of the
factory.

The assembly movements are coded as part of the member fields of an agent. Besides
a name for an easier identification of the agent, the whole assembly task is inserted
into this Python file. The instruction set for each agents is defined by the implemented
interface (see Figure 3.2). In order to generate an “easy to use” language for the AAA
a very high level approach was used while designing the command set.

There is a difference in coding for the sim and tool environment in the Interface Tool.
Although the general structure of the Python file is identical, the commands differ
for the agents. The real hardware agents have specific commands for controlling the
motors and valves. Since the virtual agents do not have to care about the exact
behavior of those, the commands are simplified in the sim environment. This leads
to an easier programming of the virtual factory, which is why the sim environment is
more convenient and faster in the development of a new factory. Therefore this tool
is ideal for testing new agents and implementing fast prototypes. The downside of the
separation of commands is that a direct translation from sim to tool environment is
not possible.

2.2.3 Communication

This section explains the different mechanism for communication in the Minifactory.
The main method of communication is done over Ethernet in a global IPv4 network.
The network has different methods as well depending on the communication partner.
If it is a user interface an agents provides a websocket. The agent to agent commu-
nication is done over publish / subscribe methods. The network is divided into two
different subnets.
Each courier agent is equipped with two network cards which support a seamless co-
operation between the agents. The first connection is to a standard network which
carries non-latency-critical information such as debug and status information as well
as commands to and from the Interface Tool and between manipulators and courier.
This network utilizes standard IP protocols. In order to have a reliable realtime com-
munication between the courier agents there is a second network connected to them.
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The AAA-Net carriers real-time information which are needed in order to coordinate
the moving operations between different couriers [22, 23].

Websocket: GUI-Website

A standard website loads data from a server and displays it to the client. If the clients
wants to interact with the server a new request is sent to the server which will result in
a new (modified) website being generated and downloaded by the client. This scheme
takes time and redundant data that is transmitted over the network. If there is a
website which needs frequent update sent to the client as well as giving the client the
opportunity to interact with the server there is another method of communication.

A WS is a protocol which offers bidirectional full-duplex communication between
server and client. Furthermore this channel can be established by using only a single
Transmission Control Protocol (TCP) connection. While the protocol is independent
from a standard Hypertext Transfer Protocol (HTTP), its handshake is still interpreted
as upgrade request by the server.

In Minifactory a WS uses port 80 for communication but it can be any other port as
well [24].

In order to get the actual data from an agent a GUI needs to have a constant exchange
between GUI and the program running on the agent. Minifactory offers for each agent
a simple GUI in the form of a website display the status and simple control operations.
The actual data and the commands are sent over TCP-WSs in both directions. This
enables a platform independent survey of the agent state. In a real factory this will
enable the user to control the agent while going through the factory with the help
of a tablet. Since simple operations, like manually driving an agent and testing its
functions, is also possible the GUI represents a simple and efficient communication
between user and factory agent.

The GUI of the agents is specific for each type of agent. The dashboard gives a overview
about the status, type and name of the agent as well as controls for testing the agent.
It is shown in Figure 2.6 for both the courier and manipulator agent. This board is
divided into several sections. On the upper part there are general information about
the agent such as name, type of the agent, general status informations and the state of
the backend system. Furthermore this section offers an emergency break button which
stops every movement in cases like collisions or wrong test configurations.
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(a) Courier GUI (b) Manipulator GUI

Figure 2.6: GUI of the agents.

The next section offers general settings such as the overall vacuum and pressured
air of the agent as well as amplifier circuits depending on which type of agent the
GUI is representing. For manual operation and testing of the main functions of an
agent, the system offers buttons in the GUI for the basic movements like X and Y
for the courier agents. Z and Θ movements are provided for the manipulator agents
as shown in Figure 2.6b. In this section the overall parameters such as maximum
velocity and acceleration for the different axis and parameters like proportional, integral
and differential of the motor controller can be changed here. The last section offers
movement to specific coordinates. This section uses the internal controller algorithm
in order to reach the stated goal by using the provided controller parameters. If the
agent is a courier robot this sections also offers a map showing the couriers position as
relative position to the point of the agents origin as is shown in Figure 2.6a.

Another part of the GUI is the status and information center. In this view different
information about the agent as well as its sensor status are displayed. For courier
agents this also includes the current power which is consumed by all eight coils and
the raw readings from the platen sensor. The manipulator agent displays the status
of the servos such as the temperature, the error state, the trajectory and the current
direction.
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Every agent has a script view. In this view different scripts for testing functionality
and snippets for productive can be programmed and tested. This scripting can be done
without the need of an Integrated Development Environment (IDE) and the need to
move the data from the development PC to the agent. The scripts can be directly
programmed, stored and tested inside the agent. These snippets can later be used
in the actual production code as tested fragments. That way it is easy to program
new functionality into the agent without setting up an IDE, which leads to a faster
development.

Lastly the GUI offers a message view. Inside this view messages from the agent during
operation will be showed. Depending on the debug level of the operating agent the out-
put of the message window can differ in the granularity which represent the operation
status.

Publish / Subscribe

Publish / Subscribe is a messaging pattern used in software architecture where the
receiver is not known during programming of the sender. Therefor the sender of a
message, called publisher, characterizes the message in such a way that there is no
need for a specific receiver. There can be no, one or many receivers to a particular
message. The pattern introduced by the Gang of Four (GoF) is called Observer pattern
and is part of the behavioral design patterns. A receiver, called subscriber, does not
know the specific sender of the message instead he has a public interface to which he can
subscribe to the type of message he wants to receive. This offers a loose interconnection
between the two agents. If the messaging is only inside one program the architecture
can be handled by different classes inside the same program. If there is a need for
interconnection between different programs on the same PC or over the network there
are often machine-to-machine middleware (m2m) systems involved. They handle the
sending and receiving over the network. This provides the programmer the freedom to
concentrate on the programming of the messages instead of taking care of the network
part of the transaction [25].

Data Distribution Service One standard, which fulfills the properties of a m2m
standard for network communication, is the Data Distribution Service (DDS) which
was developed by the Object Management Group (OMG).
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It is designed for real-time systems with high performance and interoperable data ex-
changes as well as scalability between publisher and subscriber. There are different
implementations of DDS that are open source as well as as commercial. Minifactory
implements the DDS solution from Real-Time Innocations, Inc. (RTI)2 using a com-
mercial license. A Message is marshalled by wrapping the content into a JavaScript
Object Notation (JSON) format which allows the exchange of multiple variables in
one single message. The middleware handles all connectivity requests and routes the
messages through the network by using plain User Datagram Protocol (UDP) multi-
cast standards. By implementing Quality of Service (QoS) specifications the message
can be prioritized and thus critical system messages are always delivered in the fastest
possible way while info messages can be delayed in order to control the network flow.
In order to limit the amount of traffic, a message is only sent if there is at least one
subscriber to the message. [26, 27]

Minifactory uses DDS in order to subscribe to agent events. This is mostly done by
the interaction between manipulator and other agents, like end-effectors or courier.
Certain messages like the position of an agent have their own encapsulation and meth-
ods in order to standardize the workflow between the different agent programs and
thereby makes it easier for a programmer to get the factory running. After the ini-
tial communication is established the corresponding agent can be contacted by the
exchanged parameter. The initial communication is established by using other com-
munication paths like I2C and Infra-Red (IR). The initial communication data is
exchanged by using Lightweight Communications and Marshalling (LCM) in order to
find the right agent in the network (see subsubsection 3.3.2). Each agent has to have
an unique name in the DDS network. This name is used by other agents to subscribe
to messages and get updates from the agent. Messages can either be sent as single
value messages (monotone), by calling a pre-defined encapsulated method like the po-
sition of the agent (position) or be sending a self generated JSON dictionary (raw) to
the subscribed agents. Depending on the chosen method of sending the message, the
subscriber has to know how to extract the data from the message.

AAA-Net AAA-Net is a low latency 100MBit Fast Ethernet based communication
protocol developed by MSL in order to fulfill the needs of Minifactory. In order to
achieve inter agent coordination of courier agents and synchronize possible configura-
tions there are a number of requirements which AAA-Net needs to satisfy.

2more details: https://www.rti.com/products/dds/

https://www.rti.com/products/dds/
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One of the main features which have to be fulfilled is a low latency. Sharing sensor and
actuator data across courier agents requires the support of a real-time network. The
longer the transmission is delayed the less information it can provide to other couriers.
Since Minifactory is a dynamic system with varying amount of agents connected to it,
the network needs to support scalability. The network is able to provide low latency
in a small network supporting only a few agents as well as in big networks supporting
many agents operating at the same time. The network consists of standard Ethernet
hardware. In each base unit a hub connects the agents in a star topology. A relay
switch connects the different base units filtering data packets destined for local agents
and allows scalability to the Minifactory.

AAA-Net is running on a Fast Ethernet network. In order to compare it to an IP based
network the Open System Interconnection (OSI) reference model is used. IP based pro-
tocols cover a wide range of applications. Thus the IP implementation is only part of
OSI layer 3 and other protocols build on top of this generating different applications.
AAA-Net is designed for the usage in Minifactory. This enables AAA-Net to cover a
wider range in the OSI reference model covering the layers three to five and imple-
menting the translation of agent software data in layer five down to the conversion into
the appropriate format for transmission over Fast Ethernet in layer three. AAA-Net
offers two different transport types for communication. Non-guaranteed transmission
protocol is state and connection-less and aims to provide high network performance.
In order to provide a reliable network communication guaranteed transmission protocol
is used for state-full connections between agents. These two types of protocols are like
UDP and TCP but are specifically designed in order to provide high performance and
low latency. [13]
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3 Improvements of Minifactory: Hardware and In-
frastructure

In order to implement decentralized computation the modular structure of the AAA
systems was expanded and automated initialization procedures the hardware of CMUs
Minifactory needed to be improved. In this chapter the changes to the end effectors,
manipulator agents and courier, that were made for this thesis, are described. In
addition, the existing Interface Tool has been expanded, which allows the system to be
programmed and by running the whole factory in a virtual environment, it also opens
the possibility of simulations. In order to better integrate this chapter with the whole
Minifactory, the layout of the different sections is identical to the layout in section 2.2.

3.1 Minifactory

The main focus of this thesis was on extension and initialization of the Minifactory.
This instantiation of the AAA framework illustrates the paradigm which are described
in section 2.2. As stated in the introduction (see chapter 1) one main requirement of this
thesis is decentralized computing. In order to achieve an agile system, each component
needs to have its own processing unit. As such an endeffector in an AAA system should
contain its own model and environment interaction module. Additionally to the need
of a RTOS, an easy integration of optical sensor modules is required for endeffectors.
This was achieved by using a standard Linux-based OS which offers an integration of
computer vision frameworks.

3.1.1 End-Effectors

The end-effector is the part of a manipulator which affects the product by manipulating
it. There are different kinds of end-effectors like vacuum grippers, welders, gluers,
lasers, a japper tip or a tweezer which can be mounted on top of the manipulator.
End-effectors can have a force sensor build into it. The implemented interface, that
connects the end-effector to the manipulator, offers several different power supply lines,
vacuum and pressured air channels. Additionally different Input/Output (IO)-lines as
well as communication busses like USB and I2C for specific hardware like cameras,
processing tools and Ethernet for connection to processing power are provided in this
standardized connector. Without the connector there would be no quick exchange of
different endeffectors between manipulator agents.
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Figure 3.1a shows a draft of a typical end-effector, Figure 3.1b the designed prototype
[15].

(a) Draft of typical endeffector provided by
[12].

(b) Developed prototype endeffector

Figure 3.1: Minifactory: Endeffectors

In order to be self contained the end-effector has a small integrated processing unit. The
computer, that was chosen for this task, is a RaspberryPi Zero1, which is a single-board
computer running a Debian based operating system called Raspbian. The OS is stored
on a SD-card which offers a fast way to test different configurations for the OS. A 40-pin
General Purpose Input/Output (GPIO) offers a wide variety of connection possibilities
like I2C and Serial Peripheral Interface (SPI). Since the RasberryPi Zero does not have
a built-in Ethernet connection, a separate Ethernet adapter was connected to the SPI
bus. The I2C bus connects directly to an Analog Digital Converter (ADC) and through
the interface to the processing unit of the manipulator. This way the communication
can be initially established as described in subsection 3.3.4 [28].

The inventory of an end-effector includes a camera, that enables finding parts which
are needed for the assembly and navigating to them. The processing of the camera
images is done by the end-effector, using the RaspberryPi. The OpenCV2 framework,
which was compiled for the chosen platform, empowers the end-effector to detect the
assembly piece on a courier or storage. A manufactured part can have different shapes
and forms with a very small size. Therefore the lens of the camera has to have a
magnification factor to capture the millimeter sized parts in a high resolution.

1more details: https://www.raspberrypi.org
2more details: http://opencv.org/

https://www.raspberrypi.org
http://opencv.org/
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One advantage of an integrated image processing in the end-effector is the ability
to exchange the end-effectors, since different kinds of effectors need various image
processing algorithm. Another advantage is the reduction of the processing load in the
manipulator agent. If the image is already processed, then only the relevant information
(i.e. movement commands) are relayed to the manipulator. This reduces the processing
load of the manipulator and enables the agent to focus on the communication with other
agents and the control of the motors.

Achieving a high level of inter-agent coordination is only possible if the sensor of an
agent have the needed precision. Contact tasks require accurate sensors to prevent
damage which could happen through the usage of to much force. Therefore the possi-
bility to equip end-effectors with force sensors was included in the design. This enables
the manipulator to sense the environment. There is a wide selection of commercially
available force sensors. In order to fulfill the constraints of the Minifactory a force
sensor needs to be able to work in 3 DoF, provide sensitivity of at least 0.1N and sense
force along the z-axis as well as torque in the x and y axes. The used actuator in the
current manipulator already offers this force sensing inside the motors by usage of the
error signal in the controller and reading the torque of the motors [29].

3.1.2 Operating System

As described in subsubsection 2.2.1 the main OS in Minifactory is QNX. The in sub-
section 3.1.1 described end-effectors have other requirements to an OS than courier
or manipulator agents. In order to meet those requirements, the second OS, which
was chosen for an AAA factory, is Raspbian. The Debian based OS is used to control
the end-effector agents of the Minifactory. Since an end-effector has a camera, the
OS needs to be able to process the camera images. Using Raspbian made it possible
to use the OpenCV framework which enables feature extraction from an image and
positioning of the agent on top of the product. OpenCV is an open source computer
vision framework that includes common algorithms for computer vision applications.
These algorithms implement object identification, camera movement tracking and ob-
ject tracking. They make is possible for end-effectors to find the product and interact
with the courier while the courier is still moving.

3.2 Interface Tool

The existing Interface Tool (see subsection 2.2.2) was designed and programmed in
1995 in order to meet the requirements of version 1.0 of the Minifactory [11].
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These requirements changed with the introduction of version 2.0 in 2005. In the course
of this change the communication between Interface Tool and hardware agents needed
to be redesigned. One major upgrade between the two version was the demand that
the Interface Tool should be geographically independent of the hardware factory. This
enables programmers and operators to control factories from all over the world with-
out the need to be physically present at the site of the assembly system. The already
implemented InterProcess communication Toolkit (IPT) allows message based commu-
nication only on local networks. Thus a new communication needed to be established
which required the update of the Interface Tool.

The communication to the agents is described in the interface field of an (softare-)
agent. This field itself consists of a database which encapsulates the actual implemen-
tation for both, the remote communication to the real hardware and the simulated
agent running inside the Interface Tool. Inside this database there are state variables
which offer monitor functionality of the agent and parameters. This state variables
can be used as a way to influence the behavior during the operation mode of an agent.
The implementation of an interface field has to be a subclass of the interface class as
shown in Figure 3.2.

Each agent description must implement a method called update. This function is called
by the Interface Tool as often as possible. It handles the movement of rendered parts
and the agents description such as the position of the end-effector with respect to the
manipulators actions and the position of the courier agents on the platen. Since there
is a very strict hierarchy the program needs to be highly nested inside the Interface
Tool, more details can be seen in Figure 3.2.

Since the Interface Tool is highly object oriented, the implemented changes fit the
requirements of a modular character, which is essential in the Minifactory and AAA.
Each component in the factory is now self describing. It offers methods and parameters
which describe its appearance and dynamic possibilities. As an example each object
offers a method which defines the single parts of the object and how this component
is assembled. Thus it is possible to show the process of a correct assembly in the
GUI even in the virtual factory by implementing these needed methods, which makes
adaption of existing factories to this framework easy.
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Figure 3.2: Class hierarchy for agents interfaces.

3.3 Communication

This section explains the different mechanism for communication in the Minifactory
which have been expanded during this project. The main method of communication is
done over Ethernet in a global IPv4 network. There are also different methods provided
for establishing the first sequence of communication such as I2C and IR. The network
has different methods as well, depending on the communication partner. If it is a user
interface or the Interface Tool, an agent provides a websocket. The agent-to-agent
communication is done via publish / subscribe methods.

3.3.1 Websocket: Interface Tool Interface

The Interface Tool connects to agents in the same way then the GUI. Therefore the
same messages as described in subsubsection 2.2.3 were be applied for usage in the
Interface Tool. One of the goals of AAA is the decentralization of infrastructure.
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Using WSs as communication method between the Interface Tool and the agents made
it possible to route the information over the Internet, since most firewalls do not block
port 80. This enabled the Interface Tool to be anywhere in the world and still be able
to manage and program the factory.

There are additional information, that are not needed by the GUI and therefore ignored
by it. All messages which are dedicated to the Interface Tool were marked by a message
type Interface Tool. This special type includes updates to the position of the agent like
x, y, z and θ. Another type of message, which is dedicated to the Interface Tool, are
progress information. Status updates during the operation of the factory are necessary
to entail the progress of the production. The Interface Tool collects these information
and displays them centrally for all agents. This enables a global reporting of the factory.

Since there are additional messages which are sent to the Interface Tool a higher band-
width in the network was needed. In order to reduce the load on the network, agents
were programmed to send Interface Tool specific messages only to the Interface Tool
and not to each connected WS. This is achieved during the connection to the WS.
Normal web clients connect to the agent in the root directory of the web server. The
Interface Tool connects directly to the sub directory wsint, which is an extension of
the WS directory ws. The difference between those two directories is the storage loca-
tion of the connection instance. This enabled the agent to send message of the type
Interface Tool only to connected Interface Tools.

3.3.2 Publish / Subscribe

One of the stated requirements of this project is initialization without prior knowledge.
In order to achieve this, the existing publish / subscribe frameworks had to be updated
and a new framework for broadcasting was implemented. This was needed, since the
already existing DDS-framework does not allow multicasts without a specified recipient
of the message.

Data Distribution Service: Extension

Each type of agent has defined messages which are customized to the special needs of
the agent. These messages are partly defined by the abilities of an agent and by the
information it needs to provide for the environment of the Minifactory.
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A new endpoint for endeffector agents was developed which defines the communication
aspects to these devices. This enabled the factory to reach the full agility together
with the already existing agent endpoints for manipulator and courier agents.

In order to communicate between agents, messages have to be defined. During this
project initialization, messages have been developed which allow the exchange of data
like ID, address, model-information and additional information.

Asynchronous communication is the last expansion of the Data Distribution Service-
framework which was developed in this thesis. Instead of polling for messages, a
subscribed agent registers the desired message as an asynchronous message. This allows
an event based communication between sender and receiver. During the registration
the receiver defines a callback method which gets called as soon as a message arrives.
Instead of waiting for messages the main operation of the agent has priority, which
enabled an event based programming of the whole assembly process.

Lightweight Communications and Marshalling

The third publish/subscribe library, which is used in Minifactory, is LCM. This set of
libraries offers the ability to marshall data into defined structures as well as checking
the received packages against these structures. LCM offers a platform- and language
independent type specification language. In order to send messages over the network,
there are some prerequisites which needs to be fulfilled. The first task is to define the
type specification of the message.

A message is defined as a structure containing multiple variables of a simple datatype
like integer, double or string. There is also the possibility to include another defined
structure into the message. If the message is defined it can be compiled into byte-
code which is specific for the programming language which is used. In order to send
a message from sender to one or more receivers, all involved processes needs to agree
to the interpretation of the bytes they exchange. If this is not the case the resulting
system behavior is undefined.

Therefor each message needs marshalling in order to interpret the right bytes of the
message. Another feature is the fingerprint which is attached to each message. This
additional information is used in order to derive the type definition. Apart from the
hash of the member variables and its types, there is also the whole message type itself
recursively included.
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If this fingerprint is not correct the receiving client reports an type error. In order to
send data over a network an UDP multicast channel is used.

Each message needs to be sent over a specified communication channel. A receiv-
ing client needs to subscribe not only to the UDP multicast channel but also to the
named communication channel in order to receive a message. It is typical that for each
communication channel that only one defined message is sent over it. There can be
multiple communication channel using one multicast address. The maximum size of a
single message is 4GB of data. [30, 31]

In Minifactory LCM was implemented in order to be used as initial connection be-
tween different agents. As soon as some kind of identifier (see subsection 3.3.3 and
subsection 3.3.4) is exchanged between two agents, LCM is used to exchange the rest
of the needed information in order to establish a bi-directional communication channel.
The courier or end-effector agent sends a request message over LCM to all subscribed
agents requesting information about an agent with the delivered ID. Every receiving
agent checks this ID against his own and only the affected agents replies with the full
set of information needed to communicate with him like the IP address as well as ports
for the WS, the DDS channel and additional information like type and position of the
agent.

3.3.3 Infra-Red-link

In order to get the position and the initial communication between manipulator and
courier, an optical interaction system is used in AAA. The manipulator is operating as
sender. Mounted on each end-effector are two IR-Light Emitting Diodes (LED) which
transmit a static pulse with a frequency of 5kHz. On top of this base frequency an
Identifier is modulated. This ID can be used in order to find the right manipulator
with the help of broadcast messages across the Ethernet. Since the signal which is
transmitted by the IR-LED needs to be generated there is not enough space inside the
end-effector. Thus the generation and modulation is part of the manipulator and the
final signal is transmitted through the connection cable down to the end-effector where
the LED is mounted.

The courier has a optical coordination sensor mounted on top of it. This sensor is
equipped with absorption filters in order to minimize noise, a Position Sensitive De-
tector (PSD) which is able to determine the relative position of the manipulator in
reference to the courier with an accuracy in the sub-micro resolution (150nm).
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Additionally the needed circuit boards for generating the data are located in the couier
as well. After the light is filtered mostly from visible and ultra-violet light coming from
the environment is projected onto the PSD. This sensor is able to detect the centroid
position of the emitter. These sensor signals are used in order to determine the exact
relative position of the manipulator with reference to the courier. After filtering the
5kHz base frequency the modulated information can be extracted.[15, 18]

The modulated information is determined by both the IP-Address and the sub-net
mask of the manipulator. The ID is build from the client part of the IP-Address. This
address is unique inside the sub-net and therefor a good identifier for the agent. After
the courier has extracted the information it can contact the manipulator by combin-
ing the network-part of its own IP-address with the identification of the manipulator.
These information together build the IP of the manipulator agent. After the first
contact the courier is able to subscribe to the manipulator with help of the publish/-
subscribe network as described in subsubsection 2.2.3. Additionally the courier can set
the position data of the manipulator. In the initial stage during the factory mapping
this data is only relative positions of the courier map. The courier has to update each
position every time its map gets changed when combining the generated map with other
maps from other couriers. After the whole factory is mapped each manipulator has
the absolute positions with reference to the coordinate system of the biggest mapped
courier. This map will be used as reference for the operation of the assembly system.

3.3.4 I2C Bus System

In the initial stage of finding the end-effector connected to a specific manipulator, there
is no reliable way to get this information over Ethernet. Since there is usually more
than one manipulator and end-effector in a factory, one cannot determine the right
pairing by sending out a broadcast message over the network. The easiest way in
order to establish a direct connection between the two systems is a wired connection.
Since there are a series of data lines connecting an end-effector with the corresponding
manipulator the selected initial communication method was established by using the
I2C bus. As it is shown in Figure 3.3 this bus does not only connect the two agents
together, it is also used in order to get analog data like the force sensor of the end-
effector.

The serial protocol I2C is a two wire bus system which is used for low-speed devices
such as micro controllers, A/D and D/A converters as well as Electrically Erasable
Programmable Read-Only Memory (EEPROM).
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Figure 3.3: Schematic I2C bus devices, adapted from [32].

Although there are only two wires in the system there are a number of clients which
can be used on the same bus depending on the addressing scheme either 127 (7-bit
addressing) or in the newer version 1023 (10-bit addressing). Each slave needs to
have an unique address in the bus in order to be addressable. There are two different
operation modes of the bus.

In single-master mode there is only one master which reads and writes to the slaves.
The master sets the clock for the whole bus, which also relates to the speed of the
transmission.

In multi-master mode there is more than one master on the bus. In this operation
mode there needs to be backoff mechanism in place, in case there are two masters
transmitting at the same time. Also every master node needs to be in multi-mode
operation in order to enable the collision detection mechanism [32].

Implementing a slave onto a Linux environment was a difficult task since there a strict
time requirements in order to fulfill the timing sequences for a slave on the I2C bus.
The processor needs to support I2C as slave in order to fulfill the timing requirements.
Linux does not have an I2C slave driver built into the kernel by default. Since the
manipulator processor does not have I2C support, an external hardware driver was
required, that runs as I2C master. An additional package was programmed in order to
offer an Application Programming Interface (API) for the Python programming envi-
ronment. Thus the I2C was included in the high level programming of the manipulator
[33].

In order to establish a communication between manipulator and end-effector, the rasp-
berry pi inside the end-effector needed to support I2C slave mode. The arm processor
built into the raspberry pi supports I2C slave mode since raspberry pi version 2. The
Linux kernel was updated in order to enable a I2C slave driver.
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After the kernel was modified the I2C slave driver could be accessed by writing to the
path, specified by the kernel in the device tree. The kernel driver does not support
callback methods. Thus a constant reading of the file was implemented in order to
process data from an I2C master on the bus. The driver can be either accessed by an
extra program written in order to communicate with the I2C master or by usage of a
python wrapper through the high level programming of the end-effector.
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4 Initialization of agents

As the AAA is a decentralized architecture there is no central storage holding the
position of the agents. Therefore, an initialization routine has been developed which
allows each courier to generate a relative map and a coordinate system representing
the environment upon starting the factory. During this process there are different as-
pects which needs to be considered. This chapter describes the process of initialization.
It describes the area mapping as well as detecting manipulator agents, communicat-
ing to these agents and lastly updating the Interface Tool in order to get an exact
representation of the hardware factory.

4.1 Calculating relative position information between agents

In order to establish a communication between different agents the courier has to know
where the other agents are. Mapping agents to a coordinate system is only useful if
the courier has a defined origin. Thus the home position of the courier has to be found
first.

4.1.1 Initialization of relative coordinate system

In order to find manipulators in the Minifactory the courier has to know its own relative
position on top of one of the platen. Thus the courier needs to have a defined coordinate
system, to run a self initialization. This must be done before any other agent can be
detected by it. After starting the application the courier needs to find its relative home
position in the coordinate system. Since the position of the courier is not defined on
start-up the courier moves to the next boundary of the platen. The courier runs in a
closed-loop control. There are four planar motors on the courier which use the grid in
the platen. The same grid is also used by the sensor which measures the Alternating
Current (AC) waves and determines the covered distance while moving the courier.
Figure 4.1 shows the alignment of the four motors and the platen-sensor in the middle
of the courier.

Since the motor driver is controlled in close-loop it is possible to measure the error
of the controller. This measurement is used in order to detect the curbs of a platen.
When moving the courier across the platen the error is relatively small since there is
almost no force preventing the courier from moving.



40
4.1. CALCULATING RELATIVE POSITION INFORMATION BETWEEN

AGENTS

Figure 4.1: bottom side of a courier.

If the courier moves to a curb on the outside of the platen (see Figure 4.2), it runs
against a hard barrier which needs more force in order to move on. Since the controller
is still in moving mode, the error between the desired and the actual position will
increase. This increasing error signal is used to detect the edges of a platen. A standard
Minifactory platen which is used to hold manipulators has at least two curbs, trailing
on the long side of the platen. Small platen are used to connect the different production
phases and plates together. These smaller platen have between three and zero curbs.
A courier will always be assigned to a big platen. Thus the initialization routine has at
least two curbs in order to reset the relative coordinate system to the home position.
If there is a connection to another platen, the platen-sensor is able to detect the small
disturbance in the grid and can thereby detect the end of the platen as well.

During the initialization the courier will set the home position to the most negative
number in x and y direction, labeled H in Figure 4.2. This is either a curb or an end
of the platen on the connection line to another platen. A Minifactory is designed to
normally host two courier on a platen. Since each courier is connected by a tether to
the brain box, each courier has a primary side on the platen which is the side of the
brain box and a secondary side of the platen. If there are two couriers hosted on a
platen the brain boxes are mounted on the opposite sides of a platen. The fact that
a courier maps the area in x and y while maintaining a theta angle of θ = 0◦ the
coordinate system of a courier can be transformed between two courier on the same
platen by rotating it by θ = 180◦ and applying a translation matrix. Each platen
can have its own relative coordinate system. The whole factory can be described as
different platens connected by small platen forming a grid. The layout of the platen
can be discovered by detecting the connections between a platen from each courier and
detecting a manipulator on another platen.
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Figure 4.2: Orientation of courier on platen.

4.1.2 Area Mapping

After the home position of the courier is found the agent can start to map the area
in the neighborhood. Since platen carrying a courier are standardized with a size of
1200 mm by 600 mm the courier can detect its orientation in reference to the platen
by driving in either x or y axis until it hits another curb or a connection to another
platen. Since the home position of the courier is in one corner of the platen, the covered
distance to the next obstacle is the whole length the courier can drive on the platen.
Therefor the agent is able to determine which one of its axis (x, y) are aligned to the
long side of the platen. Additionally this initialization helps to find other platen and
build a map since after this routine the courier has knowledge about connecting platen
and curbs.

Since the courier has no prior knowledge of the factory, the second step of the mapping
process is done by driving along the length of the platen while at the same time cover-
ing the whole width of the platen. By doing this the courier covers the whole area of
the platen at least once.
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This enables the courier to determine if there are manipulator agents mounted above
the platen since the agent is able to detect there IR-signal as described in subsec-
tion 4.1.3.

A platen has up to two courier moving around in initialization mode. In order to
prevent collisions, the courier runs a defined path while mapping the area. Since the
two courier are mounted at opposite sides of the platen they have a homing position
diagonally with reference to each other. As a result the first half of the platen can be
mapped without any precaution. The second half of the platen could lead to a collision
if both courier keep going on and map the area from their starting position. After
the first half is mapped the courier proceeds to the end of the platen while moving
along the curb nearest to the brain box. After the end of the platen is detected the
courier will map the second half of the platen in reverse order. This procedure helps to
prevent collisions. Additionally the gain of the closed loop control is very low during
the initialization. This is needed in order to detect curbs without damaging the courier.
Another benefit of a low gain is the low energy which helps to prevent damage if two
courier collide together.

4.1.3 Detecting a Manipulator

In order to find a manipulator agent the courier has to have a way to detect the presence
in the vicinity. This is accomplished by reading data of an optical sensor mounted on
the agent. The sensor has, as described in subsection 4.2.1, an analog channel which
determines the state of the integrated Phase-Locked Loop (PLL). A manipulator has
an IR-LED flasher mounted at the bottom of every end-effector which send a signal
with a base frequency of 5kHz. The courier uses the PLL in order to filter out other
signals and lock into the base frequency of the manipulator. As soon as the optical
sensor has found this signal, it is shown in one of the sensor channel and the state of
the initialization program gets changed from area mapping to precision navigation as
described in the following section.

4.2 Precision Navigation

One part of the factory initialization is the systems auto-calibration. In order to
calibrate the manipulator, the exact x and y position needs to be known. The first
step in this positioning is finding the manipulator as described in section 4.1. The next
step is a precision navigation in order to get the exact relative coordinate position of
the manipulator.
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This navigation uses the optical IR system between manipulator and courier. This
section describes the reading of the coordination sensor and the controller needed to
find the exact position of the manipulator as shown in Figure 4.3.

Figure 4.3: Optical Communication

4.2.1 Coordination Sensor

The coordination sensor offers 5 ADC channels ( diffx, sumx, diffy, sumy, VCO).
The sensors y axis is aligned with the motors y axis. This means that an angle in the
IR signal can be mapped directly to the needed motor control in order to correct it
independently in both axis. The Voltage-Controlled Oscillator (VCO) signal is the PLL
oscillator control output from the phase comparator. The input in the VCO channel
reflects whether the PLL in the synchronous detector has locked onto the 5kHz IR-LED
signal or not. This is represented by a stabilized signal in a narrow range of values.

The incident ray angle has the form arctan(ρ, f), where ρ is the distance of the centroid
of the LED image from the sensor center and f is the focal length. This can be used to
compute the angles of the projection of ray onto the xz and yz planes. For a centroid
location (dx, dy), equations Equation 4.1 and Equation 4.2 show the computation of
the angle in x and y directions.
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φx = arctan(dx, f) (4.1)

φy = arctan(dy, f) (4.2)

The actual centroid location (dx, dy) is reported by the PSD as a non-linear function
by the sum and difference of the photocurrents at opposite ends of an axis. Thus a
calibrated value can be approximated as shown in Equation 4.3 and Equation 4.4.

dx
∼=

diffx

sumx

(4.3)

dy
∼=

diffy

sumy

(4.4)

The sum is always positive. This leads to a rewritten Equation 4.1 as shown in Equa-
tion 4.5 and Equation 4.2 as shown in Equation 4.6.

φx = arctan
(
diffx

sumx

, f

)
= arctan (diffx, f · sumx) (4.5)

φy = arctan
(
diffy

sumy

, f

)
= arctan (diffy, f · sumy) (4.6)

Since the intrinsic calibration is difficult to recover, this is further simplified to an
extrinsic calibration which lumps the focal length and the sensor scaling into a single
dimensionless parameter for each channel as shown in Equation 4.7 and Equation 4.8

φx = arctan (diffx, kx · sumx) (4.7)

φy = arctan (diffy, ky · sumy) (4.8)

The shown computation for an angle can only be executed if there is a stabilized ref-
erence signal. Therefor the included control mechanism waits until the VCO reference
which presents an existing IR-LED signal with a frequency of 5kHz has a stable signal
output.
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This signal also displays if the calculations are really showing an existing signal or just
noise.

4.2.2 Controller

As soon as the PLL is locked to the 5kHz signal from the manipulator, the state of the
courier program changes into navigation mode, to reach the center of the IR signal.
This controller takes the given parameters φx and φy, as stated in subsection 4.2.1, and
calculates the error to the center of the IR sender. The coordination sensor returns the
values as angles in a spherical coordinate system. In order to have an usable distance for
the closed-loop control of the motor driver, the controller has to recalculate the point
in the Cartesian system. Since the optical sensor already produces separate signals
in x and y direction, the conversion from Spherical to Cartesian can be calculated as
shown in Equation 4.9 and Equation 4.10.

xerr = sin (φx) (4.9)

yerr = sin (φy) (4.10)

The resulting distances xerr and yerr are the actual values of the two different PID
controller while the desired value of both controllers is zero. The courier is controlled
by three different controllers. The optical controller is the most outer control. It defines
the chosen position of the courier in order to get the angle of the IR-signal to be 0◦.

Figure 4.4: block diagram showing the optical control of the courier.
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This input is the desired value of the motion control which is represented in Figure 4.4
as inner control. This controller handles the closed loop supervision of the courier
motion by using the platen sensor as input. The four motors are directed by a motor
control. This controller regulates the power each motor needs in order to fulfill the
desired motion.

4.3 Communication between courier and manipulator

The initialization of a factory consist of detecting a manipulator and determining the
correct position. Furthermore the additional parameter such as ID and network set-
tings of every detected agent needs to be exchanged. Since there is more than one
manipulator in a factory, it is not possible to use broadcast as a first communication
method, because of the fact that there is no possibility to distinguish between the
different manipulator agents on the network.

This section introduces the setup of the communication between courier and manipula-
tor agent by using first an alternative communication path in form of optical methods
and second switching to network communication. The full communication scheme,
which was developed during this thesis work, is shown in Figure 4.5 and explained in
detail in the following paragraphs.

Figure 4.5: Communication flow between manipulator and courier agents1

1UML sequence diagram. More information http://www.uml-diagrams.org/sequence-
diagrams.html

http://www.uml-diagrams.org/sequence-diagrams.html
http://www.uml-diagrams.org/sequence-diagrams.html
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4.3.1 Modulation on IR-Signal

Setting up the communication between courier and manipulator requires a different
connection method than Ethernet. Since there is more than one manipulator in a
factory, it is not possible to use broadcast without any prior knowledge. In the Mini-
factory an IR based optical communication is already used for precision navigation and
determining the position of a manipulator. The same signal can also carry information
that enables the courier to identify the manipulator.

The Minifactory uses an IR signal with a base frequency of 5kHz. The generation of
the base frequency is shown in Figure 4.6. In order to add an ID to the signal it has
to be modulated. There are different kinds of modulation. Since the receiver in the
courier uses a PLL, a Frequency Modulation (FM) is not possible. Manipulator agents
in the Minifactory use Amplitude Modulation (AM). This means that the amplitude
of the high frequency carrier wave is changed in accordance with the intensity of the
signal. The frequency of the carrier (base frequency) remains the same. Since each
manipulator has a different ID the modulated signal is generated by the main process of
the agent. The generated output is transferred over a serial interface to the IR flasher
board and used as modulator on top of the carrier. The whole transmission process
from the brain box of a manipulator to the brain box of a courier is shown in Figure 4.7.
In the overall communication flow shown in Figure 4.5 the optical transmission of the
ID is part of Message 1.
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Figure 4.6: IR signal generation provided by [12].

The courier has an optical sensor that is able to sense the IR signal of the manipu-
lator. After the manipulator is detected, the process of demodulation of the signal is
started. In order to read a modulated wave , it is necessary to change the nature of the
modulated wave. This is accomplished by a circuit called detector. A detector circuit
performs the following two functions:

Rectifying the modulated wave: A modulated wave has a positive and a negative
half which are exactly equal. Therefore, the average current is zero and the signal is
not readable. Eliminating the negative half of the modulated wave enables the signal
to be readable by the system.

Separating the signal from the carrier: The rectified modulated wave signal con-
tains the ID signal and the carrier. The recovery of the ID signal is desired. This is
achieved by a filter circuit that removes the carrier frequency and allows the signal to
reach the input of the courier processor. This process is shown in Figure 4.5 as part of
Method 2: Demodulation IR Signal.
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Figure 4.7: Optical Transmission.

4.3.2 Finding Network Agent

After the ID is extracted from the IR-signal the courier agent has to determine the
network address of the detected manipulator agent. The communication framework
used during the operation phase of the production cannot be used since DDS needs
to have a specific receiver in order to send messages through the network. Thus the
network communication needs to be established with a framework which is able to send
to unknown subscribers. This detection is done with help of the LCM-framework. As
described in subsubsection 3.3.2 the LCM-framework uses UDP multicast in order to
communicate with all subscribers to a certain message.

In order to send defined messages the courier agent generates a LCM message which is
described in Listing 4.2. This process is shown as Message 3: LCM Message-Broadcast
in Figure 4.5. The message can be used for requesting the information from a manipu-
lator and the answer from the manipulator to the courier. After inserting the available
information like sender name, sender and receiver type and id the courier proceeds to
send the message to the multicast address as stated in Listing 4.1. This address is the
default multicast address as well as the default port for LCM messages.

The parameter ttl = 1 defines the scope of the message to be the local subnet. By
default the messages have ttl = 0 which would set the message to be only sent to the
local network card and not to the connected subnet. Ttl describes the number of nodes
the message is allowed to pass in order to reach a receiver. Each network card and
router count as one node.

1 udpm://239.255.76.67:7667?ttl=1

Listing 4.1: Multicast Address for LCM
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Every agent listens to the DETECT channel. This channel is used in order to initiate
communication between the agents and exchange the data needed for communication.
As soon as a message is received (Method 4: LCM Listener in Figure 4.5) the agent
checks if the message has the same receiver type and ID than the agent. The agent
does not do any further processing if it is not the desired recipient of the message.
In a factory there is only one agent which has the right ID and type specified in the
message. This is one requirement which needs to be fulfilled during the setup of the
factory. The agent inserts the missing information like websocket, HTTP links for the
interface and the CAD-model as well as the IP-address. Additionally it checks whether
the position information of the agent needs to be updated in the local storage and
applies the changes if needed. After the message has been modified in order to entail
all available information, the manipulator changes the answer flag to indicate that the
sender and receiver should now be exchanged. Afterward the agent sends the message
through the DETECT channel back to the courier, as is labeled as Message 5: LCM
Message-Answer in Figure 4.5.

1 package lcmMinifactory;
2 struct agent_t
3 {
4 int64_t timestamp;
5 string snd_name;
6 string snd_type;
7 string rcv_type;
8 int rcv_id;
9 string rcv_ip_address;

10 string rcv_websocket;
11 string rcv_http_interface;
12 string rcv_3d_model;
13 double rcv_x_pos;
14 double rcv_y_pos;
15 boolean answer;
16 }

Listing 4.2: Message definition of the LCM DETECT channel

The sending courier receives the answer and processes it. After it is established that the
courier is the right one (message type and name) the final part of the communication
can be established. The provided information allows the courier to switch from LCM
to DDS communication. There are additional information like websocket and HTTP
links received that are stored in the manipulator database.
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Additionally the area mapping (see subsection 4.1.2) is updated with additional infor-
mation, in order to obtain a complete map of the platen.

4.3.3 Updating Agent

During the operation phase of the factory the agents communicate with help of the
DDS framework. This framework allows real-time p2p communication between differ-
ent processes in the Minifactory. In order to establish a connection the name of the
remote node is needed. This variable is provided with help of the LCM framework.
There are different functions implemented in order to exchange data between agents.
Some methods are the same for every agent, others are different depending on the
requirements for a specific agent. An example of different implementations would be
the publishing of the position of an agent. Courier agents publish their position using
x and y coordinates whereas manipulator agents publish their z and θ position.

A special method is the position update function that allows the courier to update the
general position of a manipulator in the coordinate system by sending the, during the
precision navigation phase (see section 4.2) detected, x and y values to the manipu-
lator. This update method is labeled Message 6: DDS Message in Figure 4.5. The
manipulator stores those coordinates in its global database along with the name of the
sender as additional information. If there is already an existing entry in the position
database the manipulator send the old position/s to the new courier as answer to the
update. If there is a difference between the sent coordinates and the stored ones the
courier will get the update along with the name of the other courier which has de-
tected this particular manipulator. If there is more than one manipulator detected by
the same courier they can update their map and find the rotational and translational
matrix between their two relative coordinate systems.

By having two points in a 2 dimensional coordinate system it is possible to determine
the vector between these points. Since it is known that the manipulator does not
change the position after startup with regards to x and y a courier can calculate the
difference between its own vector, between two manipulators and the vector of another
courier. After calculating the matrix, the relative coordinate system of one courier can
be rewritten as the relative coordinate system of the other courier. The coordinate
system which is rewritten is the coordinate system of the courier with the higher
ID. Each courier has a list referencing the dependent coordinate systems from other
couriers. If a courier meets another courier with a lower ID it needs to update its own
coordinate system.
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If the courier has dependent couriers it will send a message to the other couriers with
the new matrix in order to update their own coordinate systems. This enables the
factory to generate a global coordinate system after all couriers have mapped their
respecting area and met another courier form a different platen.

Every time a courier updates its relative coordinate system the position of the de-
tected manipulator agents is updated as well. In order to update the database of the
manipulator the courier sends a new update message to the manipulator with the new
position data. An additional parameter is also provided in order to tell the manipula-
tor the origin of the relative coordinate system in which the position is expressed. If
the manipulator receives a position in a certain coordinate system it checks whether it
already got a position from this system. If the position is the same in both entries an
acknowledgment is sent to the courier. Otherwise an error is generated since there are
contradicting position information from different couriers. Additionally the manipula-
tor knows when the last update is received as soon as the reference coordinate system
is from the courier with ID = 1.

4.4 Updating the Interface Tool

The last part of the initialization of the connection between courier and manipulator
agent is updating the Interface Tool. The Interface Tool is used as a design and
programming platform as well as a visualization tool for the AAA factory. The Interface
Tool needs to have a precise model of the assembly system while representing the state
of the physical factory. In order to get a precise model, the factory needs to update
the model after the connection between courier and manipulator agent is established
and a precise position for each manipulator is defined. Since an AAA factory is a
decentralized system there is no need for an Interface Tool to be connected directly to
the factory. WSs are used as a communication method between the Interface Tool and
every single agent in the factory as shown in Figure 4.8. This enables the programming
of the assembly system from all over the world.

4.4.1 Receiving Updates

The process of building a new factory starts with designing a virtual factory and testing
it against the given requirements of the factory. This simulation can be used in order
to eliminate errors in the concept before building the hardware and thus lowering the
costs for reconstructions or error correction in the hardware factory. Every factory has
a plan describing the process of assembling the factory as designed.
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Figure 4.8: Communication flow between agents and Interface Tool

Since there already exists a virtual model of the factory, the assembly of the hardware
factory does already have a plan on where to mount the manipulators and where
to place the courier on a platen. This prior knowledge is essential while changing
the simulation as the base for the later visualization of the hardware factory. The
simulation has already the placement of the agents. Connecting the simulation to
the real world requires the definition of the WSs to which an agent in the Interface
Tool needs to connect. After the connection is defined the Interface Tool is able to
communicate with the appropriate hardware agent. As described in subsection 2.2.2,
there are two operation modes in the Interface Tool. If the Interface Tool is started
in hardware mode it can be chosen by the usage of parameters on start, whether the
Interface Tool starts offline or tries to connect to the specified WSs of the agents
directly. The Interface Tool also provides menu options to connect to the agents after
the program has already been started.

As soon as the Interface Tool is switched to the online mode, the specified WSs try to
connect to other agents and once connected, try to receive status updates of them. If no
WS is available, the Interface Tool starts a backoff time until it tries to connect again.
A WS is an extension of the HTTP protocol. Therefor it enables the Interface Tool
to act like a web client while communicating with the different agents of an assembly
system. For more details see subsubsection 2.2.3. This fact makes it easy to connect to
the factory, as most firewalls allow HTTP traffic while blocking other types of traffic.
For every agent in the factory the Interface Tool opens a WS, connecting it to the
agent.
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Depending on the type of agent there are different interfaces that uses the WS to send
and receive data. The specific interface needed for an agent is selected after the WS is
connected and the first global information data is downloaded from the agent.

The first information that are received by the Interface Tool after connecting to an
agent are name, type, subtype and status of an agent. This information is used by
the Interface Tool to determine if the given WS is the correct socket for the specified
agent. The selection of the correct interface is needed to communicate with the agent
and implement the desired reaction from received messages. The agent is checked
against its name specified in the model of the factory.

The Interface Tool generates a message in order to inform the user about the wrong
configuration if both agents (model and hardware) do not have the same name. By
selecting the desired driver from the internal database, the Interface Tool is able to
communicate with the agent and get additional parameters such as the exact position
of the agent as well as the relative positions of connected components. In case of a
manipulator the Interface Tool gets the current position in z and θ which are specified
as absolute position in the coordinate system of the manipulator. In order to display
the position the Interface Tool needs to calculate the position in its own coordinate
system, as described in subsection 4.4.2. The state of the motor in an agent can result
in a notification of an user or a change in the representation of the model.

4.4.2 Position Calculation

The received coordinates from a manipulator are based on a relative coordinate system
inside a courier. In order to display the manipulator at the right position the Interface
Tool has to transform these coordinate to the desired coordinate system. The model of
a factory is described as a child parent relationship between elements of a factory. Each
child element has a relative coordinate system describing the position with reference to
the parent element of the factory. Transforming the coordinates to the right relative
coordinate system enables the position to be converted through every parent and child
system that builds the path from courier to manipulator.

The courier agent is a child element of the platen on which it is instantiated. The
maximal space a courier can drive on this platen is generated by the courier during
the initiation of the relative coordinate system as described in subsection 4.1.1. This
maximal position is used by the Interface Tool in order to calculate the relative position
of the manipulator to the platen since the courier can not drive to the edge of the platen
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because of the mounted curbs. Figure 4.9 displays the structure of a factory model
with four manipulators and two courier on a single base unit. After the transformation
into the relative coordinate system of the platen the position is also considered to be
the absolute position since the coordinate system of the platen is the same as the
representation of the base unit.

Figure 4.9: Structure of a factory model.

A base unit has bridges that enables the mounting of manipulator agents. These bridges
can be moved along the platen to position the manipulator in absolute x position of
the base frame. The x position is the axis of the long side of a platen. Since the
manipulator has a relative x and y position with reference of the base frame the bridge
holding the manipulator is updated with the given x position of the manipulator. Only
the bridge is able to move the manipulator in x position. In order to determine the
correct position for the bridge further position transformation needs to be completed
first. The given point regulates the position of the IR-LED of the manipulator. This
position is not the same as the x position of the bridge. Depending on the type of
manipulator and the model behind the Interface Tool is able to calculate the difference
between IR-LED position and the mounting point of the bridge.

After updating the bridge position and resolving the absolute position in x axis, the y
position needs to be calculated. This position is defined by the mounting point of the
manipulator on the bridge. The position of the mounting point needs to be calculated
the same way from the position of the IR-LED of the manipulator as the x position.
Since the Interface Tool models the factory in relative coordinate system the y position
needs to be determined with reference to the coordinate system of the bridge.

Since the position of the z and θ axis are only relative to the manipulator the only
calculation needed for the display of these parameters is the transformation from the
given parameter to actual position coordinates by usage of scaling matrices. These
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positions gets updated as soon as the manipulator operates one of the axis during
operation mode. The WS sends the new position and the calculation transforms the
position to a point in the Interface Tool.

4.4.3 Model Update

The model of a virtual factory is stored as a file with the ending .fac. Inside this file
every component of the assembly system is listed as described in subsection 2.2.2. The
file supports instruction commands in form of python programs. During the design
of the factory the Interface Tool automatically structures the factory file with pre-
assembled information about the assembly system. The child parent relationships are
represented in nesting the children inside the parent objects. Every object entails a
position matrix which describes the relative position of the object with reference to the
parent object. Additionally the representation as CAD model is linked to the factory
file. In order to connect to a hardware agent each virtual agent representing a real agent
has a interface defined that entails the corresponding WS for the communication. After
the initial assembly of the factory is completed the user can insert the program for each
agent into the run method of the agent. This program will be transferred to the agent
and run inside the agent environment. Available commands are described in the agent
library which is hosted inside an agent.

After successfully connecting to an agent there are certain information that are down-
loaded into the Interface Tool. The information about the location of the CAD model
and how to download it is included in the initial message after connecting to the agent.
The Interface Tool gets additional information about the CAD model like name and
version which can be compared to the stored CAD library inside the Interface Tool
enabling the limit of bandwidth usage. If the connected agent is not available in the
library, the Interface Tool will download the model from the agent and use it. The In-
terface Tool is able to process the version of a stored model which enables it to update
the model to the newest version as soon as there is a reconnect to the agent. That
means the representation is always the most resent and accurate model of the hardware
factory.

In order to have a persistent model the changes during initialization like CAD model
update or position update need to be written into the factory file. The file is only
parsed once during the loading of the factory. It is not needed during the operation
phase of the factory. This enables the Interface Tool to write changes of an agent
directly to the file without the need of locking mechanism like Mutex, not blocking



CHAPTER 4. INITIALIZATION OF AGENTS 57

the operation of the assembly system. The layout of the factory file is very important
for the consistent parsing into the Interface Tool. Changes to the model need to be
inserted at the right position. During the writing of a file the whole content of the
unmodified file is cached in the Interface Tool and updated first. After that the edited
file is written as a whole again, instead of updating only the changed sections of a
file, reducing the chances of errors in the file. The position of an agent is defined as a
matrix existing of a rotational and a translational part. It is written as a single line
vector consisting of 16 numbers. This vector represents a 4x4 matrix in the factory
file.
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5 Validation

In chapter 4 an initialization procedure has been developed. The procedure consists of
several individual steps, namely

• Calculating relative position information between agents

• Precision Navigation

• Communication between courier and manipulator

• Updating the Interface Tool

In order to validate each of these components different validation scenarios were de-
signed an executed, to demonstrate the correct functionality of the initialization.

5.1 Validation of the relative position calculation

First contact is defined by three different parts:

• initialization of the relative coordinate system

• area mapping

• manipulator detection

As such, three different validation methods were designed to test each parts for correct
operation. Due to prior tests the ground truth of the courier movements is given with
a precision of 200nm.

The initialization of the relative coordinate system of a courier was tested with a laser
distance measurement system. The test had two different stages. If the courier had
detected a curb it would stop until a manual input from the user. After the detection
the courier moved back to its origin. The distance between the curb and the origin was
captured with help of the laser interferometer. The settings of the validation are shown
in Table 5.2. As ?? shows, the validation used absolute positioning of the courier. If
the curb is not detected correctly, the distance between origin and curb will not be the
same as the real movement. This test was done for all four endpoints of a platen with
no distinction between curb and platen joint. Thus the detection can be validated,
which is the main process of the initialization of the relative coordinate system of a
courier.
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Number of tests 10
speed of courier 50 mm

s

accel. of courier 100 mm2

s

max. force of courier 30 N

Table 5.1: Rel. coord. system: Settings of validation

Since the area mapping uses the detected curbs and an additional buffer of 5mm,
the laser distance meter was used in order to determine the distance between curb
and courier after every movement along the aligned curb. If the used grid is aligned
correctly with respect to the surrounding curbs, the distance between curb and courier
will stay in the stated tolerance of 200nm. Figure 5.1 shows the resulting plot of
the courier positions during the mapping. Labeled as blue is the initialization of the
coordinate system, the area mapping path is drawn in red.

Figure 5.1: Area mapping: Path of courier

The validation of manipulator detection is two folded. Since the optical sensor is
mounted at the corner of a courier the range of the detection depends on the angle of
the courier. Thus a validation method for the manipulator detection is to position the
manipulators at different positions throughout the platen and determine the borders
in which a manipulator can be safely detected independent of the angle of a courier.

The second validation is the speed of the area mapping which a courier can have at
the maximum in order to detect a manipulator safely. The settings of the validation
are shown in Table 5.2.

The faster a courier moves the more uncertain is the detection. Since the PLL takes a
few processing cycles to lock into the IR-signal which is transmitted by the manipulator.
During the validation, different speeds of the courier were tested, more details can be
found in Table 5.3.
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Number of Manipulator 4
Number of tests 10

speed steps 20 mm
s

Lowest speed 60 mm
s

Fastest speed 400 mm
s

max. force of courier 30 N

Table 5.2: Manipulator detection: Settings of validation

Batch Nr. speed (mm
s
) detection rate

1 60 100%
2 80 100%
3 100 100%
4 120 100%
5 140 100%
6 160 100%
7 180 100%
8 200 100%
9 220 95%
10 240 90%
11 260 80%
12 280 60%
13 300 20%
14 320 5%
15 340 0%

Table 5.3: Manipulator detection: Speed and detection rate

As is shown in Table 5.3 the detection rate is very good up to a speed of 200mm
s
. If

the courier moves faster, it can no longer be guaranteed that all manipulators will
be detected. A slower speed than 200mm

s
has no negative influence concerning the

productivity of the system, as the detection is only done during the initialization phase
of the factory.

5.2 Validation of the Precision Navigation

The validation of the precision navigation is done with help of a laser interferometer.
The manipulator is approached from different directions and the controller is used in
order to navigate to the center of the manipulator. The interferometer shows the exact
position of the courier. If the optical sensor and the controller work as designed, the
courier will always reach the same position, within the stated precision of the courier
of 200nm, independent from the starting point of this test.
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5.3 Validation of the Communication between agents

The establishment of communication between manipulator and courier agents is done
in three different steps. This process was validated by testing each single step itself, in
order to prove the whole system.

Optical Coordination Sensor: Since the optical coordination sensor was already
tested and validated in [18], the validation in this section covers the process of modula-
tion and demodulation as well as sending and receiving the ID from the manipulator to
the courier. In order to test the different parts of the system, as shown in Figure 4.7, the
system needs to be split in single parts first. The transmitter and receiver were already
tested and validated in [18]. Therefore the modulation and demodulation needed to
be validated. This validation is done by sending a defined sequence of characters into
the modulation and, after the transmission, read the demodulated sequence back. If
both sequences are identical, the modulation and demodulation works as defined. The
validation was done by using random characters from the visible space of the American
Standard Code for Information Interchange (ASCII) set.

Lightweight Communications and Marshalling: The
main reason of using LCM as communication framework during the initializa-
tion is the multicast feature which allows sending messages to multiple subscribers. As
such the focus of the validation is on receiving sent messages and to assign them to the
correct agent, which have been subscribed to the message. The validation was done
by sending the defined message (see Listing 4.2) with random ID parameters. The
recorded messages were analyzed according to the transmitted ID, if the corresponding
agent responded to the message and if there was any response from agents which
received the message but did not have the right ID. The validation was repeated by
using different parameters as stated in Table 5.4. The parameters of the network load
were achieved by running two Iperf1 instances which generated the additional network
traffic through the hub of the base unit and thus setting a defined network to the
overall system. The results show that LCM did send and receive the defined packages
even during the high additional network load.

1more details: https://github.com/esnet/iperf

https://github.com/esnet/iperf
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Number of tests 20
Min. number of agents 2
Max. number of agents 12

Min. additional network load 0 Mbits
Max. additional network laod 50 Mbits

Table 5.4: Communication LCM: Settings of validation

Data Distribution Service: In order to validate the extension to the already ex-
isting DDS framework, these specific (new) communication methods were tested in
terms of reliability and correctness. Like the tests for the LCMframework, this test
also includes Iperf1, it was used as a network load generator. This was done to test
the performance and reliability during different loads on the network. The validation
was repeated by using different parameters as stated in Table 5.5. The results show
that DDS did send and receive the defined packages even during the high additional
network load. Even high network traffic did not change the reliability of 100%.

Number of tests 20
Number of communicating agents 2

Min. additional network load 0 Mbits
Max. additional network laod 50 Mbits

Table 5.5: Communication DDS: Settings of validation

5.4 Validation of the Updating of the Interface Tool

The Interface Tool is connected to the agent over websocket. This socket sends peri-
odical update messages to all connected clients. The update methods of the Interface
Tool were validated by logging the received messages and comparing them to the sent
messages of a single client. Using this validation technique, the whole system with
all agents got validated. The results showed that the Interface Tool can process the
update messages and display them in the specified way.

The position calculation was validated by sending defined positions to the Interface Tool
and evaluating the outcome of the calculation with the predefined values. The system
could be verified by using different positions and determining the correct outcome of
the calculation.

As with the IR-signal modulation the model update in the Interface Tool was done
by storing different versions of the CAD model in the agent and monitor the update
process of the Interface Tool.
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As is stated in subsection 4.4.3 the Interface Tool checks the current stored version of
the model in the internal database against the latest model stored in the agent. If the
version number is greater, the model gets updated. This was validated by changing
the version number both increasing and decreasing it. If the number was increased, the
model got updated during the next initialization of the connection between Interface
Tool and the agent. A decremental of the version number did not alter the stored
model. The results of the validation are shown in Table 5.6.

Version Version Model
Interface Tool Agent updated

1.0 -> 1.1 Yes
1.1 -> 2.0 Yes
2.0 -> 1.9 No
2.0 -> 2.0.1 Yes
2.0.1 -> 2.1 Yes
2.1 -> 2.0.9 No

Table 5.6: Model Update: Results of different versions
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6 Scientific Contribution

According to the authors of [34], manufacturers are facing increasing pressure to de-
crease development costs and deployment times for automated assembly systems for a
variety of precision mechatronic products. The difficulties of integrating these systems
must be significantly reduced in order to meet new and changing market needs. There
are many different approaches to solve that problem, among others are these major
efforts:

• Design of agile manufacturing workcells [35].

• Rapidly reconfigurable machining systems [36].

• Over-arching frameworks for manufacturing enterprises [37].

• Systems viewed as hierarchical collections of manufacturing
“holons” [38].

One goal of this thesis is a contribution to decrease the deployment times for automated
assembly systems. By automating the process of calibration and finding the different
agents, it enables the user to decrease the setup time, since the manual assembly of the
factory needs to have only a rigor of a few centimeters. Prior to that a high precision
assembly system was required to have the same exactness in assembling the factory
system. This preciseness represents a big part of the assembling process.

Programming an assembly system with planar robots takes a lot of time since the
position of each agent needs to be programmed before the operation. Additionally
the programmer needs to know the exact position of each agent, considering that the
movement between the agents needs to be manually programmed. According to the
authors of [34], the most common approaches are “robot-centric”. Flexible multi-robot
assembly lines tend to be very complicated and take a long time to deploy, because they
concentrate on the assembly robots and not on the interaction between robots. This
work improves the way of programming an assembly system by discovering the agents
automatically. Each agent stores its own discovered position and is able to transmit
these information to courier agents. Since this communication is automated between
the agents, the programmer only needs to specify which agent should be involved in
an assembly operation. The actual trajectory and position definition is included in the
agent framework.
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This thesis deals with the task of initialization in an AAA factory. As such the following
parts of the work are the scientific contribution:

C1 Initialization of relative coordinate system:
The courier initializes its own coordinate system on startup. This enables it to
have a standardized origin every time the factory is rebooted, which is needed in
order to have an automated calibration. Before this thesis the courier could only
be controlled manually without any knowledge about its position on the platen.

C2 Area Mapping:
A pre-requisite of calibration is the knowledge about the boundaries of the envi-
ronment. A courier agent can know detect the edges of a platen every time the
courier is initialized. This enables collision detection between different couriers
since the position of curbs is know.

C3 Detecting a Manipulator:
Finding different agents is needed in order to start the communication between
them. An AAA factory is able to detect agents by moving the courier along the
platen and recognizing an optical signal, sent by manipulator agents.

For a high precision factory the position of the agents needs to be known with the same
high accuracy.

C4 Coordination Sensor:
Detecting a manipulator as described in C3 is only useful if the exact position
of the agent can be determined. The sensor as well as the transformation into a
readable position is part of the preparation for C5.

C5 Controller:
The courier needs a precise method in order to determine the exact position of a
manipulator. This position is needed for the calibration as well as the operation
of the factory.

The communication between different types of agents, including the establishment of
the communication is presented in C6 and C7.

C6 Modulation on IR-Signal:
A factory has more than one manipulator. In order to establish a communication
between agents, the courier must determine which manipulator was detected.
This is done with help of a modulation on the IR signal.
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An ID is modulated onto the carrier frequency using AM. The courier demodu-
lates the signal and extract the ID of the manipulator.

C7 Finding Network Agent:
The courier is able to communicate with a manipulator by searching for the
interface on the Ethernet. The detected ID from C6 is used during the broadcast.
This enables the factory to establish a communication to all detected agents
during the initialization.

Another part of this work is finding methods which support the calibration of the
agents (C8) and updating the representation in an interface (C9 − C11) in order to
simplify the path planing and programming for user.

C8 Updating Agent:
An agent needs to know its own position in order to know if another agent is
near itself. Since each courier has its own relative coordinate system during the
initialization, a common system needs to be established. Communication between
agents allows the exchange of transformation matrices, exchanging the relative
coordinate system with a global one.

C9 Receiving Updates:
The calibration of the factory not only needs to be done for each agent, it is
also crucial that the Interface Tool represents the exact position of the agents,
providing the correct feedback to an user.

C10 Position Calculation:
Since the Interface Tool has its own coordinate system based on a parent/child
relationship between elements in the factory, the relative position of an agent
needs to be calculated after the agent has been updated in the Interface Tool
(C9).

C11 Model Update:
An accurate model is not only needed for representing the state of the hardware
factory, it is also useful for future development by using it as a simulation model.
As such the updated model (C9 & C10) is stored as file, that can be used to
develop new products in the factory without the need of the physical system.
This fastens the development process, since more then one simulation can run at
the same time.
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In summary, this work helps to shorten the development process as well as the assembly
of a factory system. Contributions C1 −C11 were defined in the requirements R2 & R3

(see section 1.1) which leads to the described outcomes O2 & O3 (see section 7.2). To
the best of the authors knowledge there are currently no assembly systems featuring
automatic calibration and agent detection helping the setup of an assembly system.

The whole factory is designed for rapid-prototyping of small scale and high precision
parts. As such the setup of the assembly system can change quickly. A generic approach
to endeffectors enables the factory to be agile. In this work a general approach to
endeffectors (C12 & C13) was described and implemented including the use of dedicated
processing units which enables decentralized computation during operation.

C12 Design of a general endeffector-hardware:
The endeffector needs to have a defined interface which connects it to the manip-
ulator. Pre-defined weight and size restrictions needs to be considered resulting
in a modular basic actor, which can be used as base definition of task-specific
endeffectors. The included processing unit allows the storage of the CAD model
of the endeffector as well as the computation of endeffector specific functions.

C13 Design of a general endeffector-software:
A dedicated processing unit inside an endeffector allows operators to change
endeffectors quickly between manipulators without changing the source code of
the operation in itself. Since the parts manipulation procedure is specific to each
endeffector the programmer needs to only program each endeffector once. The
manipulator inherits the endeffector and can call the specific methods without
knowledge about the inner working of an endeffector.

In summary this contributions help to maintain the paradigm of decentralized com-
putation during operating since each agent now has its own processing unit which
operates the specified part autonomously. Contributions C12 & C13 were defined in
the requirement R1 (see section 1.1) which leads to the described outcome O1 (see
section 7.2).

Globalization is a buzzword in the industry nowadays. It is very important to control
factories and get production statistics from around the world. As such the commu-
nication between the Interface Tool and the factory should not be dependent on a
propriety protocol which only works in a local subnet environment. In this work the
communication was exchanged (C14) which enables the control of factories from any
place in the world where an internet connection exists.
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C14 Communication between Interface Tool and agents:
The need of controlling a factory remotely has certain requirements to the proto-
col used for communication between agents and the Interface Tool. By changing
the communication from the propriety protocol IPT to standardized websockets
it is possible to control a factory remotely if there is an internet connection on
both ends of the communication.

Contribution C14 was defined in the requirement R4 (see section 1.1) which leads to
the described outcome O4 (see section 7.2).
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7 Summary, Conclusion and Outlook

In this chapter the work is summarized and the main achievements and outcomes are
discussed. This chapter concludes with an outlook about possible future work for AAA
assembly systems.

7.1 Summary

In this thesis an approach was defined which allows an automatic calibration in assem-
bly factories. The focus of the calibration is on detecting the different kinds of agents
and initialize the factory. Additionally updating the representation of a Graphical User
Interface in form of the Interface Tool was discussed.

First, relevant terms and definitions were outlined. This included the concept of Agile
Assembly Architecture and the components of the test environment, the Minifactory.
Second, an overview about the Interface Tool was provided and the generation of sim-
ulation and hardware factory was discussed. The different communication frameworks
and approaches, like websockets and publish/subscribe frameworks for network traffic
as well as I2C and optical communication, used in the Minifactory were presented.

Furthermore the design and implementation of the agent initialization and detection
was thoroughly discussed. The first contact of a courier agent to a manipulator agent
requires the initialization of the built in relative coordinate system of the courier as
well as the ability to map the area. A precision navigation using an optical sensor to
detect the manipulator was used to determine the general position and a controller
enabled the courier to drive to the exact position of the agent.

After the courier got the ID of the manipulator, the agent was able to get additional
information like the name and type of the manipulator by using the LCM framework.
The main communication was demonstrated by using DDS, a real-time messaging
framework. After the position of the manipulator was determined the Interface Tool
could be updated and the coordinates for the visualization were calculated.

As a practical proof-of-concept application the detection of a manipulator agent by
a courier was presented and used as demonstration throughout the description of the
factory initialization.
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7.2 Conclusion

For this thesis, a set of requirements and objectives has been identified in chapter 1.
Each requirement Ri has a corresponding outcome Oi. This section outlines first how
those requirements are fulfilled by their corresponding outcome. Finally the main
achievements are summarized.

O1 Decentralized computation during operation.
The design of the AAA is based on decentralized computation. After the design
of the factory and the programming is completed, the instructions for operating
are uploaded to each agent. Each agent is able to operate without any external
instructions.

O2 Initialization without prior knowledge.
During the start of the factory, each agent runs an individual initialization rou-
tine. For manipulators, this includes driving the axis in the home position and
learning the ID of the connected end-effector. Courier agents map the area and
detect manipulator agents. A communication is established between the agents.

O3 General approach to manipulating parts.
Each end-effector is specific to the task it should handle. A general approach to
end-effectors was established, including the recommendation of a small computing
unit that fits into the end-effector. Different kind of sensors, like camera and
force-sensor, were tested.

O4 Geographically independent control of factories.
The introduction of websockets in Interface Tool allows operators to control AAA
systems from any point in the world where a connection to the internet exists.

The presented solution in this thesis primarily addresses two of the stated requirements.
The decentralized computation and initialization are discussed and explained. Since
the end-effector is specific for each task only a generic approach is provided.

A prototype implementation in the form of the Minifactory demonstrated the suc-
cess of initialization and operation of the newly designed end-effectors. The update
of the Interface Tool was shown, which represents the success of the communication
establishment.
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7.3 Future work

Future work in this domain includes the investigation and development of additional
end-effectors, couriers, trajectories and the application in future use cases. The appli-
cation scenarios of these use cases are not limited to high precision factory work, but
may also include the processing like chemical synthesis (e.g. dispensing liquids such as
Deoxyribonucleic acid (DNA) onto chips) or biological assay (e.g. testing of biological
material such as cancer).

Future work in the domain of Agile Assembly Architecture needs to therefore focus on
extending the system to automatically determine the end-effector of each manipulator
as well as including automated load-balancing between similar manipulators. This
needs to be achieved by allowing the handling of trajectory planning and resource
reservation to be part of the agent and not having to be programmed manually.

In a first step, the concept of path planning needs to be included in the courier frame-
work and the high level API needs to offer rendezvous between agents. It will then
be possible to perform an automated path planning between two agents, by using the
data collected during the initialization of the factory.
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