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1 Introduction and Motivation

Reactive agents are a particular type of autonomous agents that are able
to interact with the environment. They can perceive the current state of
the world and figure out their next actions by consulting a given policy and
their knowledge base. The knowledge base describes the agents’ capabilities,
represents the world’s model and helps them in reasoning about their course
of actions. Thus, they are able to decide for themselves what to do to satisfy
their design objectives. After executing the determined actions, they are
able to observe the outcomes and reiterate the process. As such agents
become more common in our lives, the issue of verifying that they behave
as intended becomes increasingly important. It would be highly costly, time
consuming and sometimes even fatal to realize on runtime that following a
given policy does not provide the desired results.

Running example We consider the following running example that aims
to illustrate the problem. In search scenarios, an agent needs to find a
missing person in unknown environments. A naive approach is to search for
a plan that achieves the main goal, which easily becomes troublesome, since
the planner needs to consider all possibilities to find a plan that guarantees
finding the person. Alternatively, a reactive policy can be described for
the agent (e.g., “move to the farthest visible point”) that determines its
course of actions and guides the agent in the environment towards the main
goal, while the agent gains information (e.g., obstacle locations) through its
sensors on the way. Following this reactive policy, the agent would traverse
the environment by choosing its actions accordingly, and reiterating the
decision process after reaching a new state. Then, one can check whether
this policy works or not. Verifying beforehand whether the designed policy
satisfies the desired goal (e.g., can the agent always find the person?), in all
possible instances of the environment is nontrivial.

Action languages As action languages [12] are a convenient tool to de-
scribe dynamic systems, one can make use of them to represent reactive
agents and define reactive policies. However, the shortage of representa-
tions that are capable of modeling reactive policies prevents one from veri-
fying such policies using action languages before putting them into use. We
thus aim for a general model that allows for verifying the reactive behavior
of agents, by using the representation power of the transition systems de-
scribed by action languages and combine components that are efficient for
describing reactivity.

Dissertation work In the dissertation work, we consider agents with a
reactive behavior that decide their course of actions by determining targets
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as stepping stones to achieve during their interaction with the environment.
Such agents come with an (online) planning capability that computes plans
to reach the targets. For the case of static environments, we described the
semantics of a policy that follows a reactive behavior, by integrating com-
ponents of target establishment and online planning [22]. This framework
represents the flow of executing the policy, which is the agent’s actual tra-
jectory in the environment following the policy. This lays the foundations
for verifying whether execution of a policy results in reaching the desired
main goal, i.e. the policy works.

k-Maintainability Things get more complex when dynamic environments
are considered. In this case, the state of the world changes through both
actions of the agent and of the environment. Since the environment can
change the state while the agent is executing its determined sequence of
actions, one can not just assume that the agent will always be able to reach
its targets. It may need to stop on the way, and reconsider its state and
actions. In particular, if some “adversary” is present, the environment would
change in a way to prevent the agent from achieving its goals. For example,
in the search scenario, the missing person may be running away from the
agent. In this case, the described example policy can not achieve the main
goal of finding/catching the person. Even if the agent observes the person
at some point, it is not guaranteed that it will catch the person in the next
state as the person may move away. However, if there is a time period where
the person does not move, then one can check whether the policy works with
respect to this window of opportunity. These are highly interesting issues
that are waiting to be addressed.

As studied by Baral et. al. [2], when taking into account how the envi-
ronment might act, a straightforward attempt to express goal maintenance,
e.g. “in all possible executions the fluent f will eventually hold true and
it will remain true”, becomes inadequate. An adversary environment that
plays against the agent would prevent it from reaching its goal, and such a
maintenance goal would never be satisfied. For these cases, one can aim for
checking the maintainability of the goal when there is a window of opportu-
nity, a respite from the deterrent actions of the environment.

With this project, we took the first step to broaden our ongoing disser-
tation work to consider dynamic environments and to combine the notion
of “maintenance” from [2]. Extending the framework to gain the capability
of expressing the behavior of agents in dynamic environments opens a range
of possibilities for applications and for designing behaviors. In the end, we
hope to achieve a representation that allows for a verification capability over
the policies of reactive agents in dynamic environments.
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1.1 Approach

In order to achieve the aim of the project, we combined the notion of main-
tenance with the representation of reactive policies using the notion of state
equalization.

In the original maintenance framework, things get tricky when one con-
siders large environments. This is due to the fact that when representing
large environments, too many irrelevant information is being kept in the
state, even if one focuses on only some part of it. When a certain pol-
icy/control is provided to the agent that determines its actions, it may only
use certain information in the state, and the remaining information may
not be necessary to keep in the state. Therefore, our notion of abstracting
away from the irrelevant information has become a useful extension of the
maintenance framework.

We extended the original k-maintainability notion to consider equalized
states, which are states where the irrelevant information is abstracted away.
Then, we generalized their notion of a control to return a sequence of actions,
and the possibility of having concurrent actions of the agent and of the
environment. Also we described how following the policy may result when
there are changes in the environment. We focus on policies that determine
subgoals/targets that are achievable, and we want to check whether following
the policy through such targets would achieve in the main goal given a
“window of opportunity”.

Different from our work with static environments [22], we considered a
dynamic nature of the environment, where things may occur in the state
for the agent to stop and reconsider its next actions. In our representation
of following a policy, we distinguish different cases such as (a) the agent
executing the plan returned by the policy without any interference, (b) the
environment actions preventing the agent from executing the remaining of
its actions, or (c) the agent realizing a “better” way to reach its main goal
instead of executing its current plan to reach some target.

After some background knowledge in Section 2, we shortly summarize
our method in Section 3. Then in Section 4, we go over the achieved objec-
tives of the project, and talk about the ongoing work related to the project.
We conclude in Section 5 with a final discussion, by mentioning some of the
related work and our future work in the scope of the dissertation.

The technical details are mostly omitted throughout the paper in the
interest of readability.

2 Background

For better understanding of the concepts that will be described later on, this
section aims to provide preliminary knowledge to the reader. More details
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about the following preliminary notions about agents and environments can
be found in [21].

An agent is an autonomous system that perceives its environment through
sensors, and acts in the environment through its actuators. The agents we
are particularly interested in have a knowledge base that represents facts
about the world, explains the relations between the structures in the world,
and describes the possible actions that the agent can do to change the state
of the world. The knowledge base helps the agent in reasoning about the
next course of actions at state. The agent can determine the current state of
the world by perceiving the environment, figure out its next actions, execute
them and observe the outcomes. A goal is an information that describes the
desirable situations for the agent to reach. The agent can combine this by
reasoning about its actions, in order to choose the actions that achieve a state
that satisfies the goal. Such agents are called goal-directed agents. Finding
a sequence of actions that achieves the desired goals is called planning.

The environment that one is considering can have different properties
which may affect the behavior of the agent. The properties that are partic-
ularly of interest to us are described below.

• If the agent is able to observe the complete state of the world, then
the environment is said to be fully observable. Such environments are
convenient in the sense that the agent always knows for certain which
state it is in, and can act accordingly. However, such environments are
not easy to achieve in real-world problems, as it may not be possible
to represent all the information of the world in a state. In partially
observable environments, the agent can only observe some part of the
state, and can gain new information about the state of the world as it
moves along.

• If the next state of the world can be completely determined from the
current state and the actions the agent is executing, then the environ-
ment is deterministic. If there are possible states to be in after exe-
cuting the actions, then it is a nondeterministic environment. When
the environment is partially observable, it also may appear as non-
deterministic, as the agent can not be sure in which state it will be
in after executing the action. As expected, nondeterministic environ-
ments make it tricky for the agent, as it can not be sure whether it will
reach the goal it was aiming at after executing the determined actions.

• Static environments are those where only the agent can make a dif-
ference in the state, and everything else remains still. If the agent
gains new information about the environment at a state, then it can
be sure that the information will not be changed in the next state. In
dynamic environments, the state of the world can be changed without
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the control of the agent, and the agent needs to observe the change to
know about it.

Planning in partially observable, dynamic environments is a nontrivial
task, and is being addressed in the literature. We are approaching the issue
from a different point of view, where the agent is given a control/policy that
does not immediately try to find a sequence of actions to achieve the main
goal, but finds actions to reach some targets with the aim of eventually reach-
ing the goal. Then one can check whether by following the control/policy,
and going through the targets one after the other, the agent can eventually
reach the desired main goal.

We now provide some background information on some of the works that
have been made use of throughout the project.

2.1 k-Maintainability

Chitta Baral et al. [2] focus on dynamic worlds, and goal-directed agents
that can perform actions that change the state of the world. As changes may
happen in this dynamic world which are beyond the control of the agent,
the agent should be able to cope with the change and manage to reach the
goal it is aiming for. For further details about the following descriptions
please refer to [2].

The following notion of system is considered to describe dynamic sys-
tems.

Definition 1 (System). A system is a quadruple A = 〈S,S0,A,Φ, poss〉,
where

• S is the finite set of system states;

• S0 ⊆ S is the finite set of initial system states;

• A is the finite set of actions, which is the union of the set of agent
actions, Aag, and the set of env. actions, Aenv;

• Φ : S ×A → 2S is a non-deterministic transition function;

• poss : S → 2A is a function that shows the possible actions to take in
the states.

This description considers the actions to occur one at a time, and the
possible actions at a state can either be an agent’s action or an environmental
action, assuming that the possible actions always lead to some successor
state. Additionally, the environmental actions that are possible at a state
are modeled by an exogenous function exo : S → Aenv, such that exo(s) ⊆
poss(s).

The evolution of the world with respect to a system is characterized by
the following definition.
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Definition 2 (Trajectory). Given a system A = 〈S,S,A,Φ, poss〉, an alter-
nating infinite sequence of states and actions s0, a1, s1, . . . , sk, ak+1, sk+1, . . .
is said to be a trajectory consistent with A if sk+1 ∈ Φ(sk, ak+1), and
ak ∈ poss(sk).

The above notion of trajectory does not require that agent actions and
environment actions be interleaved. While the agent’s actions are often
dictated by a policy, the environmental actions shows the possible changes
that may occur in the model.

A control for the agent is considered to be a function that returns the
set of actions that the agent should execute at a given state.

Definition 3 (Control). Given a system A = (S,S0,A,Φ, poss) and a set
Aag ⊆ A of agent actions, a control function for A w.r.t. Aag is a partial
function K : S → Aag such that K(s) ∈ poss(s) whenever K(s) is defined.

The main intuition behind the notion of maintainability is that mainte-
nance becomes possible only if there is a window of non-interference from
the environment while it is performed by the agent. In other words, an agent
k-maintains a condition c following its control only if it does the determined
actions without interference from the environment for at least k steps, and
gets to a state that satisfies c within those k steps.

Given a control K and a set of desired states E, [2] formulates how
K maintains E, when the agent is located in one of the states in S, with
the following approach. If in the system A = 〈S,S0,A,Φ, possK,exo〉 where
possK,exo(s) = {K(s)} ∪ exo(s) restricts the agents actions to the control,
and the agent is in a state s that could be reached from any state in S
(i.e. s ∈ Closure(S,AK,exo)), then given a window of non-interference from
exogenous actions, it must get into some desired state during that window.
They also consider the notion of unfolding a control, Unfoldk(s,A,K), which
is a sequence of states of length at most k+1 that the system may go through
if it follows the control K starting from state s.

Definition 4 (k-Maintainability). Given a system A = 〈S,S,A,Φ, poss〉,
a set of agents action Aag ⊆ A, and a specification of exogenous action
occurence exo, we say that a control K for A w.r.t. Aag k-maintains S ⊆ S
with respect to E ⊆ S, where k ≥ 0, if for each state s ∈ Closure(S,AK,exo)
and each sequence σ = s0, s1, . . . , sl ∈ Unfoldk(s,A,K) with s0 = s, it holds
that {s0, . . . , sl} ∩ E 6= 0.

The system A is k-maintainable, k ≥, with respect to a set of states
E ⊆ S, if there exists a control K which k-maintains S w.r.t. E.

2.2 Representing Policies using Equalization

Our consideration of a policy [22] is similar to the control definition above,
with the extension of returning sequences of actions to be executed at a
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state. Also, the policies we focus on guide the agent through some targets,
with the aim of reaching the desired main goal.

Definition 5 (Policy). A policy is a function Pg∞,KB : S→2Σ that outputs
the set of courses of actions, i.e., plans, given the current state, where Σ is
the set of plans, while considering the main goal and the knowledge base,
which is the formal representation of the world’s model with a transition
system view.

We do state clustering by getting rid of irrelevant information being kept
in the state w.r.t the policy or w.r.t. the observability of the environment.
The states that are indistinguishable, when considering only the relevant
information in the state, are clustered into one. We make use of the following
notion to distinguish the states.

Definition 6. A profile scheme is a tuple p = 〈a1, .., an〉 of attributes ai
that can take values from a set Vi; a (concrete) profile is a tuple 〈v1, ..., vn〉
of values.

The profile of a state is determined by evaluating a set of formulas that
yield the attribute values. We consider a classification function, h : S→Ωh,
where Ωh is the set of possible state clusters with respect to the profiles. For
partially observable environments, same observations yield the same profile.

Definition 7. An equalized state relative to the classification function h is
a state ŝ∈Ωh.

As described more detailed in [22], we introduced an equalized transition
system that consists of the equalized states and a transition function that
shows the states reached after executing the sequence of actions that was
determined by the policy. Since the environment is considered to be static,
and the plans that are returned by the policy are conformant plans, which
guarantees the achievement of the target after executing the plan in the
given state, we only care about the reached state and omit the “middle-
states”. The transition can also be viewed as a “big-jump” that shows the
resulting state after following the plan at a given state.

The main goal that the policy is aiming for, denoted by g∞, can be
expressed as a formula that should be satisfied at a state.

Definition 8. The policy works w.r.t. the main goal g∞, if for each run
ŝ0, ŝ1, . . . such that ŝ0 ∈ Ŝ0 and ŝi+1 ∈ΦB(ŝi), for all i ≥ 0, there is some
j ≥ 0 such that ŝj |=g∞.

One can also make use of temporal operators, and define g∞ by a temporal
formula (e.g., AF(personFound), meaning “in all trajectories, eventually,
personFound holds true”) and then check whether the initial states in Ŝ0

satisfy the formula.
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As our main focus was on the verification of such policies, we also showed
the conditions that the classification of states should satisfy in order to make
sure that, any trajectory found in the equalized transition system has a
concrete trajectory in the original system. This ability becomes handy when
one checks whether the policy satisfies certain policies over the equalized
states. If a counterexample trajectory is encountered while checking for
properties, then one can be sure that a respective counterexample trajectory
also occurs in the original transition system, and hence the policy does not
work.

3 Method

During this project we focused on combining the two notions (i) maintenance
in dynamic systems and (ii) representation of reactive policies through the
equalized states. In order to achieve this, we moved forward step-by-step
by making sure that each introduced detail is consistent with the original
works.

Firstly, we started with introducing the notion of equalized states to the
original maintenance framework. We showed that the newly introduced sys-
tem with this notion is able the keep the properties of the original system,
and can be used to check for maintainability. Then, we extended the origi-
nal maintenance framework to consider concurrent actions of the agent and
the environment, and a control that returns a sequence of actions. We then
introduced the notion of equalization to this extended framework, and ad-
dressed the issue of having unobserved environmental actions by describing
an abstraction of the actions. We proved that the properties of the original
system are being kept in the newly introduced extended system, which al-
lows one to make use of the extended system for checking for properties of
the policy. We then found relations of the new notions with the syntax and
semantics of action languages.

In this section, we summarize the steps that are taken and illustrate
some of the notions, by avoiding technical details.

3.1 Maintenance over Abstract States

The original notion of equalization [22] is based on getting rid of information
that are not considered by the policy at a state (i.e., do not affect the target
determination). Since this can be seen as abstraction on the states, we had
indicated the conditions that this equalization should satisfy in order to
maintain the properties of the original system, and these conditions were
related to targets that the policy determines at a state.

As the aim of having an equalized transition system is to reduce the
state space, but still to keep the important properties of the original system,
this is a useful notion to be made use of within the original maintenance
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framework. In this section, for simplicity, we omit the details of how the
policy determines the next sequence of actions, and consider the equalization
as an abstraction. Therefore, our following definitions are more general, and
can also be applied to equalization as long as the conditions are satisfied.

In order to have the notions more understandable to the reader, we
consider a simple example, and illustrate our main definitions.

Example: Consider an agent that can only move right, down, up, and wants
to reach the point at (0,2) from its initial position (0,0). However there is a
door between column 1 and 2, that can move up and down. Figure 1 shows
the original transition system of this scenario. For simplicity, we assume
that the door and the agent stops moving once the agent reaches (0,2).

doorDown

doorDown

doorDown

doorDown

doorUp

doorUp

doorUp

doorUp
down

down

down
up

up

up

up right

right

right down
up

right right

doorDown
doorUp

up

Figure 1: Original system of the door example

Assume that the agent can only observe the neighboring cells on the
right, up or down. So once the agent reaches (0,1) or (1,1) it can see whether
the door is blocking its way or not. It is actually not necessary to keep the
information in the state that the agent can not observe and make use of.
Therefore, we consider an abstraction on the states to get rid of the irrelevant
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information.
An abstraction function h is described by a surjection h : S → Ŝ where

Ŝ is the set of abstract states. This function maps the states that are not
distinguishable with respect to some relation to the same abstract state.

Notice that in the door example the aim is to abstract away the infor-
mation in the state that the agent can not observe. For example, in the
initial state where the agent is located in the upper-left corner, the agent
can not observe which state the door is in. Therefore two different initial
states are considered due to taking into account the possibilities for the
door’s location. Furthermore, since the agent can not observe the door at
that state, it also can not observe which action the door is making. When
one abstracts away such information on the state, also the relevant actions
need to be abstracted away. Hence we introduce a dummy action adummy

for the environment, for the cases where the environment’s action can not
be observed.

We define the abstract system that is generated by the abstraction func-
tion over the system defined in Definition 1.

Definition 9 (Abstract system). An abstract system generated by the ab-
straction function h is a quadruple Ah = 〈Ŝ, Ŝ0,A, Φ̂, p̂oss〉, where

• Ŝ is the finite set of abstract system states;

• Ŝ0 ⊆ Ŝ is the finite set of initial abstract system states;

Ŝ0 = {ŝ | ∃s ∈ ŝ : s ∈ S0};

• A is the finite set of actions, which is the union of the set of agent ac-
tions, Aag, and the set of environment actions, Aenv ∪ adummy, where
adummy is a dummy action which represents an action that the envi-
ronment is doing in the part of the state that is abstracted away;

• Φ̂ : Ŝ ×A → 2Ŝ is a non-deterministic abstract transition fn., where

Φ̂(ŝ, a) =

{
ŝ′ | ∃s′ ∈ ŝ′ ∃s ∈ ŝ : s′ ∈ Φ(s, a)} if a 6= adummy

ŝ if a = adummy

• p̂oss : Ŝ → 2A is a fn. that shows the possible actions to take in the
abstract states, where

p̂oss(ŝ) = {aag | ∃s ∈ ŝ : aag ∈ poss(s)} ∪
{adummy | ∃s ∈ ŝ ∃aenv ∈ Aenv : aenv ∈ poss(s) &

∀s′ ∈ Φ(s, aenv) : h(s′) = ŝ} ∪
{aenv | ∃s ∈ ŝ : aenv ∈ poss(s) &

∃s′ ∈ Φ(s, aenv) : h(s′) 6= ŝ}
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The second line of p̂oss assigns the dummy environment action for an ab-
stract state, if in one of its concrete states there is an environment action
that is done in the part that is abstracted away, and that does not make
any difference for the state.

Introducing Φ̂(ŝ, a) = ŝ for the dummy environment action is for keeping
all possible trajectories from the original system in the abstract system,
which is an important condition if one wants to keep the properties of the
original system in the abstract system.

Example (ctd): Consider the door example and an abstraction function h
that abstracts away the information of the door’s location when the agent
is not able to observe it. Figure 2 shows the abstract system w.r.t. h.

doorDown

doorDown

doorUp

doorUp
down

down

up

up
right

right

right down
up

right

right

?

?

right

?

Closure(�S0, A�K,�exo
)

doorDown

doorDown

doorUp

doorUp

down right

right

up

?

down right

right

?

?

rightright

Unfold4(ŝ0, Ah, �K)?

rightright

doorMoves

doorMoves

doorMoves

doorMoves

?

doorMoves

up

?
up

?
up

ŝ0

Figure 2: An abstract system of the door scenario

Definition 10 (Abstract trajectory). Given an abstract systemAh = 〈Ŝ, Ŝ0,
A, Φ̂, poss〉, an alternating infinite sequence of states and actions ŝ0, a1, ŝ1, . . . ,
ŝk, ak+1, ŝk+1, . . . is said to be a (abstract) trajectory consistent with Ah if
ŝk+1 ∈ Φ̂(ŝk, ak+1), and ak ∈ p̂oss(ŝk).

We then formally define the notions of sets of reachable states, and the
closure of a set of states which returns all the states that are reachable from
the given set of states.

Definition 11 (Abstract closure). Given an abstract systemAh = 〈Ŝ, Ŝ0,A,
Φ̂, p̂oss〉 and a state ŝ, R(Ah, ŝ) ⊆ Ŝ is the smallest set of states that satis-
fying the following conditions:
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• ŝ ∈ R(Ah, ŝ) ,

• If ŝ′ ∈ R(Ah, ŝ) , and a ∈ p̂oss(ŝ′), then Φ̂(ŝ′, a) ⊆ R(Ah, ŝ).

For any set of states Ŝ ⊆ Ŝ, the closure of Ah w.r.t. Ŝ is defined by
Closure(Ŝ, Ah) = ∪

ŝ∈ŜR(Ah, ŝ).

Let K be a control function for the (original) system A as defined in
Definition 3. Now, we describe a control function on the abstract system,
K̂, that is defined to keep the properties of K.

Definition 12 (Abstract control). Given an abstract systemAh = 〈Ŝ, Ŝ0,A,
Φ̂, p̂oss〉 and a set Aag ⊆ A of agent actions, a control function for Ah w.r.t.

Aag is a partial function K̂ : Ŝ → 2Aag s.t. K̂(ŝ) = {a ∈ p̂oss(ŝ) | ∃s ∈ ŝ :

a ∈ K(s)} whenever K̂(ŝ) is defined.

Note that K̂(ŝ) is defined if there exists a concrete state s ∈ ŝ such
that K(s) is defined, and undefined if for all concrete states s ∈ ŝ, K(s) is
undefined.

Example (ctd): For the door example, we consider a policy K that tells
the agent to move right whenever possible, if right is not possible then either
move up or down, depending on which one is executable. Once the agent
reaches (0,2), no more action is taken.

Maintenance The notion of maintenance is defined similarly to the orig-
inal definition [2] which aims to show the possibility for the control/policy
to maintain a condition if there is a window of non-interference from the
environment.

We consider the following parameters:

• an abstract system Ah = 〈Ŝ, Ŝ0,A, Φ̂, p̂oss〉,

• a set of desired abstract states Ê that we want to maintain, where
Ê = {ŝ | ∃s ∈ ŝ : s ∈ E}.

• a set Aag ⊆ A of agent actions,

• a function êxo : Ŝ → 2Aenv∪adummy detailing exogenous actions, s.t.
êxo(ŝ) = {a ∈ p̂oss(ŝ) | ∃s ∈ ŝ : a ∈ exo(s) ∪ adummy}, and

• a control function K̂.

In order to define the maintenance, we first need to define a notion for
following the control without the interference of the environment. The aim
of the following definition on unfolding a control from a state is to find all
the possible sequences when following the control from that state, while the
environment is not interfering for a given number of time steps.
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Definition 13 (Abstract unfold). Let Ah = 〈Ŝ, Ŝ0,A, Φ̂, p̂oss〉 be a system,
let ŝ ∈ Ŝ, and let K̂ be a control for Ah. Then Unfoldk(ŝ, Ah, K̂) is the set
of all sequences σ̂ = ŝ0, . . . , ŝl where l ≤ k and ŝ0 = ŝ such that K̂(ŝj) is

defined for all j < l, ŝj+1 ∈ Φ̂(ŝj , K̂(ŝj)), where for any set of actions AC,

Φ̂(ŝ, AC) = ∪a∈ACΦ̂(ŝ, a), and if l < k, then K̂(ŝl) is undefined.

Example (ctd): Figure 3 shows the figures of the closure and the unfolding
of the abstract system according to K̂ and êxo.

doorDown

doorDown

doorUp

doorUp

down right

right

up

?

?

rightright

doorMoves

doorMoves

?
up

ŝ0

(a) Closure(Ŝ ,Ah,K̂ ,exo)

down right

right

?

?

rightright

?
up

(b) Unfoldk(ŝ, Ah, K̂)

Figure 3: Closure of the initial state and unfolding of the control from the
initial state

We now define the notion of k-maintainability over the abstract system.

Definition 14 (Abstract k-maintainability). Given an abstract systemAh =
〈Ŝ, Ŝ0,A, Φ̂, p̂oss〉, a set of agent actions Aag ⊆ A, and a specification of ex-

ogenous action occurrence êxo, we say that a control K̂ for A w.r.t. Aag

k-maintains Ŝ ⊆ Ŝ w.r.t. Ê ∈ Ŝ, where k ≥ 0, if for each state ŝ ∈
Closure(Ŝ ,A

h,K̂ ,exo
) and each sequence σ = ŝ0, . . . , ŝl in Unfoldk(ŝ, Ah, K̂)

with ŝ0 = ŝ, it holds that {ŝ0, . . . , ŝl} ∩ Ê 6= ∅.

The intuition is similar as in [2]. The condition {ŝ0, . . . , ŝl} ∩ Ê means
that we can get from a state ŝ0 to a state in Ê within at most k steps when
following the control K̂ if the world unfolded as ŝ0, . . . , ŝl, where ŝ0 = ŝ.
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We now need to show that by introducing this notion over the abstract
system we keep the properties of the original system. This way, one can
check for the desired maintenance property over the abstract system, and it
should be guaranteed that this property also holds in the original system.

When dealing with abstractions, one can not avoid the possibility of in-
troducing false positives in the abstract system, i.e. although a sequence in
the abstract system reaches the desired states, there may not be a corre-
sponding sequence in the original system. Inspired by the model checking
work in [7] where they introduce an “appropriateness” condition on the ab-
straction function to make sure that such false positive cases are avoided,
we also consider such a condition.

We prove the following proposition, which shows that introducing the
notion of abstract states keep the properties of the original system, and can
be used to determine k-maintainability.

Proposition 1. Let A = 〈S,S0,A,Φ, poss〉 be an original system, and let
Ah = 〈Ŝ, Ŝ0,A, Φ̂, p̂oss〉 be its abstract system w.r.t. an abstraction function
h that is appropriate for E and k. If Ah is k-maintainable, k ≥ 0, A is k-
maintainable.

Example (ctd): The door example is 4-maintainable, since all unfolding
sequences of at most 4 steps of all states in the closure of the (one and only)
initial state ŝ0, result in the goal state.

This result shows that introducing the notion of abstraction to the main-
tainability framework is able to reduce the state space by getting rid of ir-
relevant information, while keeping the properties from the original system.
However, in this section only a restrictive setting is considered where only
one action is executed at a time and the control only returns one action to
execute at a state. Our main aim is to consider a more generalized setting in
order to apply these notions to our ongoing dissertation work. In the next
section, we summarize our approach to this problem.

3.2 Maintainability of a Reactive Policy with Equalized States

In the previous section, we showed how to embed the notion of equalized
states into the original maintenance framework by defining it as an abstrac-
tion. However, our main focus is to extend our framework of representing
reactive policies using equalized states to consider dynamic environments.
To address this, we need to extend the original maintenance framework to
consider concurrent execution of the agent’s and the environment’s actions,
and control policies that return a sequence of actions to be executed at a
state. Then, we need to introduce the notion of equalized states to this ex-
tension. In the end, the extended framework will be able to represent what
we want to achieve.
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3.2.1 Motivating Example

We consider a supermarket with parallel aisles, in which an agent is looking
for a person. Although the agent knows the environment and the locations
of the aisles, it does not know where the person might be located at. A
policy of the agent can be defined to move the agent from aisle to aisle and
check for the person. If the agent observes the person, then it would decide
to move towards the person while it is still able to see the person or infer
his/her location.

If the environment is static, and the person is not moving, then the
question would be whether the person is eventually found when this policy
is followed. For dynamic environments, if the person is also moving, then
the question becomes whether the person can be found given a window of
opportunity in which the person does not move.

3.2.2 Generalization of the System and the Control

We began by introducing the following notions to the original maintenance
framework.

Concurrent actions We extend the original system definition (1) by con-
sidering concurrent actions of the agent and the environment. We have
the transition function as Φc : S × Aag × Aenv → 2S , which returns the
set of possible successor states after applying possible actions (aag, aenv)
in the current state. The possible actions function is also updated to
possc : S → 2Aag×Aenv In addition, we have an “doing nothing” action
for the environment, eno−op ∈ Aenv.

Policies with sequence of actions We consider the control/policy to
return a sequence of actions as in Definition 5. The plans returned by
the policy function at a state satisfy the condition that the sequence of
actions are executable from the state, if there is no interference from the
environment.

It is not guaranteed that the returned plan will be executable no matter
what the environment does. The policy only returns the set of plans it deems
to fit the state. When considering dynamic environments that may or may
not interfere with the agent’s plan execution, we need to express all possible
outcomes of the agent’s desire towards executing the plans determined by
the policy.

Following the policy To define the maintainability of a policy, we first
need to find all the states that are reachable when there are exogenous
actions occurring while the agent acts towards following the policy. The
aim of the policy is going through targets towards reaching a main goal.
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Therefore, any change during the execution of a determined plan, that may
prevent the execution of the remainder of the plan, or that may create an
opportunity to reach the main goal, is of importance.

We consider three possible cases when describing the agent’s followed
trajectory in the dynamic environment.

1. The environment may not interfere with the agent’s execution of the
plan defined by the policy, and the agent can execute the whole plan
and reach the state that the policy was aiming for.

2. The environment may act in a way that, at the reached state, even if
the environment no longer moves from now on, the remaining of the
plan becomes not executable.

3. The agent may reach a state that has a possibility to reach the main
goal it was aiming for. So, instead of executing the remaining plan to
reach some target, it can determine a new plan towards the goal.

We introduce a transition function ΨPg∞,KB ,exoΣ : S × Σag → 2S that
gives the resulting state of executing a determined plan of the policy, con-
sidering the above mentioned cases. If we want to consider the basic case
where the environment does not do any action, we can represent it with
ΨPg∞,KB ,no−op which returns the states that are reached by executing the
determined plans without interference and the states that are reached when
the agent realizes on its way that there is a possibility to achieve g∞, even if
the environment does not do anything. The states that are reached by the
transition function ΨPg∞,KB ,exoΣ are called checkpoint states.

Maintenance The idea is to keep track of the checkpoint states that are
passed when following the policy, and define maintenance over these states
since they are the ones of importance. Later on, the equalized transition
system will be built over these checkpoint states, and the “middle-step”
states will be omitted. The k-maintainability of a policy is then defined
over the newly introduced notions.

3.2.3 Introducing Equalization

After extending the original maintenance framework with the above mention
notions, we introduce the notion of equalization. The definitions for the basic
case as shown in Section 3.1 are adapted to these new notions.

State clustering The idea for clustering the states is similar to the orig-
inal work [22], where it is done to get rid of the irrelevant information with
respect to the policy.
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Abstracting the exogenous actions One of the advantages of clustering
the indistinguishable states and omitting the information about the irrele-
vant part of the state is the possibility to abstract away the actions that the
environment might execute but are not relevant to the agent/policy at the
state.

We consider the abstraction of the environmental action with respect
to the action that the agent is taking. The environmental actions are ab-
stracted according to how much the agent can observe the execution of the
environmental action. For example, it may be the case that the agent sees
the person, and while moving to that person, the person moves away and
disappears. Although the agent does not know which action the person took,
it would know that he/she did some action that changed the environment.

Equalized transition system The transition system that represents the
policy evaluation is defined over the original transition system by taking into
account the classification function and the policy. The equalized transition
system makes use of the newly defined transition function ΨPg∞,KB ,exoΣ :

S×Σag → 2S , and therefore able to represent the following possible outcomes
of executing the plan determined by the policy:

1. During the execution of the plan σa the agent does not encounter
anything that may prevent it from executing the actions and reaching
the target.

2. The environment may change, which results in the agent being no
longer able to execute the remaining of the plan, or executing the plan
may not achieve its target.

3. The agent may observe on the way a possibility to reach its main goal,
so that it does not need to execute the remainder of the plan to achieve
a target.

3.2.4 Maintenance

The maintenance is defined similarly as before (Section 3.2.2), while taking
into account the checkpoint states.

We proved the following proposition to show that by introducing the
notion of equalized states, one is not losing the maintainability properties
of the original system. When one checks whether the equalized transition
system with respect to the given policy satisfies a desired property, then it
is guaranteed that the original system following this policy also satisfies the
property.

Proposition 2. If the equalized transition systemAh,Pg∞,KB
is k-maintainable,

then the original transition system A is k-maintainable.
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The following proposition shows how the newly introduced notions can
be related with our original framework [22].

Proposition 3. If the equalized transition systemAh,Pg∞,KB
is k-maintainable

in a dynamic environment, then the policy P works in k steps in a static
environment.

3.2.5 Bridging to Action Languages

We now describe how our representation of the behavior of the policy can
fit into action languages. Given a domain description defined by an action
language and its respective (original) transition system, we now show how to
model a reactive policy and how to construct the corresponding equalized
transition system by also taking into account the dynamic nature of the
environment.

Classifying the state space The approach to classify the (original) state
space relies on defining a function that classifies the states. There are at least
two kinds of such classification; one can classify the states depending on the
observed values of the fluents, or introduce a new set of fluents and classify
the states depending on their values. The classification is done similarly as
in [22].

Introducing abstract environment actions Abstract environment ac-
tions can be defined over the original environment actions and the current
state the agent is at. Since action languages allows one to specify the pre-
conditions and the effects of an action, the abstract environment actions can
be definable according to the abstraction idea described above.

Defining a target language A policy is defined through a target language
which figures out the targets and helps in determining the course of actions.
The target determination formulas, denoted as a set of formulas FB(F̂), is
constructed over F̂, the set of fluents that the equalized transition system is
built upon. The possible targets that can be determined via the evaluation of
FB(F̂) are denoted as a set FGB

(F̂). This language representation is similar
to [22].

Change in the state Since we are considering dynamic environments, we
need to be aware of any change in the state that may (i) prevent the agent
from reaching its target or (ii) create a “better” possibility for the agent to
take action. We can denote these cases as a set of formulas Fchange(F̂), and
if a state satisfies some of these formulas then it means the agent will stop
at this state and will not execute the remainder of the plan.

Transition between states The transitions in the equalized transition
system can be denoted with R̂ ⊆ Ŝ×Â×Ŝ, where R̂ corresponds to the
policy execution function Ψ

Pg∞,KB ,Σ̂env
that uses (a) the target language
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to determine targets, (b) an outsourced planner to find plans assuming the
environment does not do any actions and (c) the computation of executing
the plans while also taking into account the possibility of reaching a state
where formulas from Fchange(F̂) is satisfied. If no “middle-state” satisfies
these formulas, then the transition should be made to the state that satisfied
the previously determined target.

4 Project Objectives Achieved

The main objective of the project was to find a formal semantics for reactive
policies in dynamic environments, and this was achieved throughout the re-
search stay. In this report, for simplicity, we summarized the approach from
the point of view of generalizing the maintenance framework, by omitting
the details about how the policy works (i.e. target determination and online
planning). However, the representation is general enough that those aspects
can easily be combined within.

Extension of the dissertation work We distinguished between transi-
tion of states due to agent actions and environment actions, and incorpo-
rated the notion of having no interference of the environment for k steps,
i.e. window of opportunity. Since there is the possibility for the agent’s plan
to reach the target not being executable due to the change in the environ-
ment, we considered transitions with possibilities for the agent to stop at a
middle-state and reconsider its next actions to take. To address the issue of
partial observability of the dynamic environment, and the agent not being
able to observe the change made by the environment, we introduced abstract
environment actions. We considered the notion of “appropriateness” that
should be satisfied by this abstraction, in order to avoid having false posi-
tives. We showed that the introduced approach provides the possibility to
check for maintainability of the policy in a dynamic environment, by making
sure that this maintenance also holds in the original system.

Furthermore, we discussed the conditions that the equalized transition
system for dynamic systems should satisfy, in order to guarantee that when
one checks for the maintenance properties of the policy and obtains a coun-
terexample trajectory, which shows that the policy is not working, a respec-
tive trajectory also exists in the original system.

Relation with action languages Meanwhile, we related the newly in-
troduced notions to the previously defined approach, to bridge them with
the syntax and semantics of action languages as this is the focus of the dis-
sertation. The representation power of the action languages allows one to
define such complex notions.
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Expressing properties of policies The main property of the policy that
one would want to check is whether or not the main goal condition can be
achieved. It is possible to define the goal condition for the policy through
a set of desired states as in [2]. We also defined an alternative way, which
is expressing the goal condition as a formula, and described maintenance of
that goal which is to reach a state that satisfies the goal condition in the
window of non-interference from the environment.

4.1 Ongoing Work

Currently, we are working on a manuscript about the results that were
achieved. Also, we are working on the scalability analysis of the framework.
The expressiveness and scalability of the results will show a better picture
for possible applications. In the meantime, a demonstration of the results
on test cases is being implemented.

Furthermore, we believe that a prototype that compares the performance
of the examples that only consider the original maintenance framework, and
the examples that also combine the notion of equalized states will show
that the latter approach is an improvement on the solving of the problem.
This would be the expected result, since the notion of equalized states helps
in reducing the state space, which improves the search for a solution. In
principle, for application, one can make use of action languages, e.g. [14],
and their reasoning systems, e.g. [13]. Due to their close relationship to logic
programs, we are currently using ASP-based frameworks such as Clingo [11].

5 Discussion and Conclusion

This project succeeded in generalizing the perspective of our original frame-
work related with the dissertation work, by achieving a framework that is
able to represent reactive policies for different types of environments from
real world scenarios. Such a representation capability broadens the scope
of applicability of the dissertation work. As the aim of the dissertation is
to yield a theoretical foundation for gaining the capability of verifying reac-
tive policies for AI agents, the flexibility in applying this ability to different
real-world scenarios is the beneficial outcome of this research project.

Furthermore, this work broadened the application of the notion of main-
tainability of a system with respect to a policy, that was introduced by Baral
et al. [2]. The generalization of the control for the agent, and allowing con-
current actions allows for a wider range of possible applications. In addition,
having introduced the notion of equalized states to this framework helps for
the cases of large environments by omitting the details that are not relevant.
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5.1 Related Work

Maintenance goals are well-known in the AI literature, e.g., [17, 1], and have
similar approaches in other areas such as in stability theory of discrete event
dynamic systems [20] and in active databases [19]. However, earlier char-
acterizations of maintenance goals do not distinguish between transitions
due to agent actions and environment actions. Thus, it is not possible to
distinguish the case where the agent does its best to maintain a condition
and can make it true in some steps during which there is no interference
from the environment.

Planning is one of the most important areas of AI, and has been studied
to generalize in several directions, such as conditional effects of actions, non-
deterministic actions, or planning under incomplete information and partial
observability using conditional and conformant plans. However, the agent
actions and the exogenous actions are not considered separately. So, one
can not distinguish the possibility of the agent trying its best while there is
no interference of the environment.

Cimatti et al. [6, 5] and Bertoli et al. [4] focus on synthesizing plans via
symbolic model checking techniques. The approaches could solve difficult
planning problems like strong planning and strong cyclic planning, based on
OBDD methods and algorithms. Jensen et al. [15, 16] have generalized this
by having adversial actions, where they consider the problem of developing
policies that achieve a given goal while there are interferences from the
environment.

Son and Baral [23] extend the action language A by allowing sensing ac-
tions and allow to query conditional plans. The latter are general plans that
consist of sensing actions and conditional statements. They also consider a
“combined-state” which consists of the real state of the world and the states
that the agent thinks it may be in, while we combine the real states into
one state if they provide the same profile for the agent.

These works address a different problem than ours. Under nondetermin-
ism and partial observability, finding a plan that satisfies the desired results
in the environment is highly demanding. Our framework is capable of em-
ulating the plans found by these works, and verifying policies relates to an
intertwined plan generation and checking task. In addition, the equalization
of states with respect to the policy allows for omitting the details that are
irrelevant to the behavior of the agent.

Verifying whether a given plan is a solution to a planning problem con-
sidering knowledge-based programs as plans [18] or HTN plans [3] has been
studied, while the policies that we focus on are more enriched, making use
of target determination and outsourced planning.

There are logic-based monitoring frameworks for plan execution and re-
covery in case of failure. Some of the approaches are replanning [8], back-
tracking to the point of failure and continuing from there [24], or diagnosing
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the failure and recovering from the failure situation [10, 9]. These works
consider the execution of a given plan, while we consider a given reactive
policy that determines targets and uses (online) planning to reach them.

5.2 Future Work

As future work, it remains to investigate the possibility of verifying desired
policies on the extended framework considering dynamic environments. Cur-
rently, the ongoing dissertation work is focused on abstraction and refine-
ment methods for the verification of the policies over the framework that
consider static environments. Ideas from the CEGAR approach [7] is being
employed to address this issue. After accomplishing this task, it would be
interesting to study if considering the dynamic nature of the environment
can easily be embedded to the method. If not, one needs observe the re-
strictions of the method and find solutions in order to address the dynamic
environment case.
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