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Addressing the Modifiable Areal Unit Problem (MAUP) with 

Dasymetric Modeling in the Context of Spatial Decision 

Support for Real Estate Choice 

Abstract 

Avoiding misleading or erroneous results when using aggregated census data in Spatial Models 

can be challenging. A host of analytical hurdles are encountered with aggregated data, not the 

least of which is the Modifiable Areal Unit Problem (MAUP). This research explores the 

integration of dasymetric modeling and Locally Weighted Linear Combination (LWLC) as a 

framework for mitigating negative effects associated with the MAUP.  

1 Introduction 

Aggregated census data is arguably one of the most ubiquitous data resources used in 

population based geographic analysis. The explicitly geographic nature of census data, ease of 

access and often times low cost, contribute to its prolific use in a myriad of spatial analysis 

domains. However, aggregated census data comes at a steep analytical cost. Any spatially 

aggregated data is subjects to a problem known as the Modifiable Areal Unit Problem (MAUP) 

(Fotheringham & Wong, 1991).  

In order to protect individual privacy, survey data is spatially aggregated to various 

enumeration units (e.g. polygonal units such as tracts, blocks, and block groups or grid cells). In 

general, as the enumeration unit’s spatial extent increases, so too does the number of 

attributes detailing the aggregate characteristics of the underlying population. Attribute 

richness makes census data with larger spatial extents very attractive for use as evaluation 

criteria in GIS Multi-Criteria Decision Analysis (GIS-MCDA) models. The aggregation of 

population attributes certainly achieves the desired result of masking respondent identity. 

However, analysis results derived from these zones, should be approached with great caution, 

due in large part to the MAUP (Malczewski, 1999). Unknown distribution of attributes within 

zones, as well as arbitrary zoning and boundary arrangements, all contribute to undesirable 

uncertainty, and even at times entirely useless results (Openshaw and Taylor 1979, 1984).  

Recent work in GIS-MCDA, which incorporates parameters accounting for local variation in 

evaluation criteria is the main motivation behind this research. Locally Weighted Linear 

Combination (LWLC) is a GIS-MCDA technique that employs the range sensitivity principle to 

increase or decrease weights based on the variability of criterion values observed in a defined 

neighborhood (Fischer, 1995; Carter & Rinner, 2013). However, in applications using socio-

demographic data as evaluation criterion, LWLC encounters two challenges that potentially 

diminishes its utility and reliability: 1) unknown MAUP-related effects on input criteria and 
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model solution reliability, 2) restrictions imposed on neighborhood definitions due to the 

limited number of scales available for socio-demographic data. Though the functionality of 

analyzing locally variable criteria values exists in LWLC, the model must have sufficiently 

disaggregated data in order to be fully leveraged. Being able to quickly and accurately model 

granular population criteria could significantly increase model robustness and accuracy. The 

increase in utility would be especially beneficial in situations where decision alternatives exist in 

one or more of the same aggregate zones. In general, understanding of the underlying 

heterogeneity of evaluation criteria allows for better discrimination between decision 

alternatives in GIS-MCDA. 

Dasymetric modelling has shown promising results as a more generalized approach for 

disaggregating census based population characteristics (Eicher & Brewer, 2001; Mennis, 2003; 

Nagle et al., 2013). Dasymetric modeling differs from traditional interpolation methods by 

incorporating related and limiting ancillary variables. A thorough review of the literature reveals 

a gap in the exploration of integrating dasymetric modeling and GIS-MCDA. Dasymetric 

modeling could expand the utility of LWLC by allowing for more flexible neighborhood 

definitions and scale arrangements. Expanded scale flexibility for evaluation criteria in LWLC 

would address research findings that show the necessity of evaluating different neighborhood 

arrangements in order to produce more reliable model results (Carter & Rinner, 2013). 

The originally proposed research for this project was directed at addressing issues relating to 

MAUP with dasymetric modeling in the context of spatial decision support for real estate 

choice. However, sufficient data relevant to choice models for real-estate was unattainable. As 

such, an alternative case study relating to vaccination coverage and risk has been developed 

based on data availability. As before, the formulation of a case study is intended to serve 

primarily as a testbed to explore the general validity of integrating dasymetric modelling with 

choice models to address MAUP related challenges. 

2 Literature Review 

2.1 Modifiable Areal Unit Problem (MAUP) 
The Modifiable Areal Unit Problem, or MAUP as it is known, has been a pervasive and long-

standing challenge in nearly all spatial analysis domains. The MAUP can be categorized as a 

special occurrence of ecological fallacy. Ecological fallacy is a logical error that occurs when 

conclusions are made about individuals, or subsets of individuals, based on the results of 

analyzing the aggregate group (Malczewski, 1999, King, 1997). The MAUP occurs in a similar 

way when change in the analysis scale and/or zoning arrangements of areal units alters results 

and consequently the ability to produce reliable conclusions (Openshaw and Taylor 1979, 

1984;). The effects of the MAUP were first articulated by Gehlke and Biehl in 1943. When 

investigating correlation coefficients, Gehlke and Biehl observed in bivariate analysis of census 

tracts that the values of the correlation coefficients were dependent on the size of the areal 

units and the arrangements of the sampled census tracts. Later, Openshaw and Taylor (1979) 
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would not only coin the term Modifiable Areal Unit Problem, but clarify Gehlke and Biehl’s 

observations as one of two more specific problems found within the MAUP. The two problems 

are actually very interrelated and can be thought of as the scale problem (observed by Gehlke 

and Biehl) and the aggregation problem (Openshaw and Taylor, 1979). The scale problem is 

encountered when geographic attribute values are aggregated into larger/courser areal units or 

disaggregated erroneously into smaller areal units. The zone problem occurs when different 

arrangements of aggregate zones within a shared parent boundary can produce vastly different 

and unpredictable summary statistics (Wong, 2004). Furthermore, as Taylor (1979) originally 

pointed out, the aggregation problem can be described in reference to a zone system or a 

grouping system, the former pertaining to contiguous arrangements of areal units and the later 

for non-contiguous groupings of areal units. An example of the aggregation/zoning and scale 

components of MAUP can be seen in Figure 1 (Bell & Schuurman, 2010); this figure illustrates 

the percent of population per arrangement, which hold university degrees (base population 

captured within a boundary divided by university degree counts within the same boundary). 

Here is an example where a single fixed location within a study area could have many different 

attribute values simply based on the scale or zoning arrangement of the data. Clearly then, 

these two problems individually, and in combination can result in inconsistent and/or 

unreliable decision model outcomes.  

 

Figure 1. MAUP 

Early research results using advanced multivariate statistical analysis pointed to the nearly 

complete unreliability of analysis performed on aggregate areal data. Unfortunately, (and with 
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a tone of exasperation) the recommendation by the researchers to avoid MAUP related effects 

was simply to entirely avoid the use of aggregated enumeration units in spatial analysis 

(Fotheringham & Wong, 1991).  

In the case of socio-demographic data, the use of aggregate data in spatial analysis is still quite 

commonly practiced. This is due in large part to the ease of access and relatively low cost. 

Enumeration units are constructed in order to protect the privacy of survey participants. Survey 

participants are commonly individuals, households or businesses.  Access to sampled point data 

with individual human or business characteristics is not surprisingly highly restricted. 

Consequently, aggregate census data is still one of the most widely used datasets when 

analyzing socio-demographic population characteristics in GIS. Unfortunately, due to the 

complexities involved with the MAUP and lack of a generalized solution, many researchers 

simply omit or ignore the effects altogether (Swift et al., 2013). Fotheringham and Wong’s 

initial pessimism regarding the ability to address the MAUP in any meaningful way seems a bit 

hopeless, however in the years to follow some success was seen with domain specific solutions 

(Dungan et al., 2002; Xu et al., 2014). Typically, these proposed solutions include a myriad of 

caveats and complexities, such as significant knowledge of the underlying phenomena, correct 

sampling unit size/shape presuppositions, and explorations of many different definitions of 

scale. 

While many domain specific solutions for the MAUP rely solely on source areal unit attribute 

data and statistical interpolation methodologies, this research aims to investigate the utility of 

dasymetric modeling as a streamlined approach for in mitigating negative effects of the MAUP 

in GIS-MCDA. More specifically, this research attempts to mitigate issues arising with aggregate 

grid data due to the scale effect. However, since the scale and zonal effects of the MAUP are 

quite interrelated, potential solutions may have positive implications for addressing the 

aggregation component of the MUAP as well.  

2.2 Dasymetric Modeling 
Dasymetric mapping is a relatively old cartographic method created by the Russian Geographer 

Benjamin Semyonov-Tyan-Shansky in 1911 (Petrov, 2008). Semyonov-Tyan-Shansky proposed 

mapping population density in Russia by excluding areas where population counts would be 

unlikely (later termed the binary method), as well as calculating density values for inhabited 

regions. An example of Semyonov-Tyan-Shansky’s original work from 1922 can be seen in figure 

2 (Preobrazhensky, 1954). Semyonov-Tyan-Shansky’s density calculations were heavily based 

on current knowledge of land use patterns throughout the study area (Petrov, 2012). Aside 

from Semyonov-Tyan-Shansky, Wright is also highly cited for his work on dasymetric mapping in 

an early journal contribution to Geographic Review in 1936. However, as Petrov pointed out 

(2012), this method sat in academic obscurity for nearly 90 years until experiencing a 

resurgence of interest during the early 2000’s. Petrov and others have attributed this 

resurgence in large part to a combination of technological advancements in spatial analysis 

allowing for more complex tasks, and a need for higher resolution datasets detailing population 



8 
 

distribution (Eicher & Brewer, 2001). It’s important to temper the statement regarding a 

resurgence by pointing to the most prominent paper in the field, which was authored by 

Jeremy Mennis in 2003. Mennis’ work has been cited 365 times (Google Scholar, 2016), The 

citation count highlights how this is still a method very much in the process of exploration and 

development.  

 

Figure 2 Semyonov-Tyan-Shansky 1922 Dasymetric Map 

Dasymetric mapping is generally considered a form of areal interpolation rather than strictly a 

cartographic technique (Qui & Cromley, 2013; Mennis, 2009). In brief, areal interpolation deals 

with different methods and techniques for transforming phenomena attributes from a set of 

source units to a set of target units (Goodchild and Lam, 1980). At the core, this is exactly what 

the dasymetric method does. Very simply, dasymetric mapping uses additional finer scale data 
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(ancillary data) and empirical statistical methods to establish relationships (expressed as 

weights) between the ancillary data and aggregated attribute. These derived weights are then 

used to disaggregate source zone attributes to the higher resolution target zone scale. Ancillary 

data used in dasymetric mapping can be categorized as one of two variable types:  

1) Limiting variables, which restrict or place a limit on where a source unit phenomenon 

can occur in the targeted zones. An example in population density modeling would be 

cells categorized as water in a LULC raster dataset 

2) Related variables, which either decrease or increase the presence of a source 

phenomenon within a target unit. An example in population density modeling would be 

the cells categorized by a range of residential-use intensities (e.g. low, medium, high).  

 Two noteworthy examples of modern dasymetric modeling include: 

1) empirical sampling of land-use/land-cover (LULC) classes in raster data to establish a 

relationship between target zones and source zone population attributes (Mennis & 

Hultgren, 2006). In traditional applications of this method, target zones (cells in this 

case) can only represent a single value from a range of related ancillary subtypes. 

2) Ordinary Least Squares (OLS) regression weighting. In this method source zone 

phenomenon values are regressed against a set of target zone explanatory variables. 

Explanatory variable coefficients are interpreted as density values per target zone. A 

further scaling and fitting step is incorporated to ensure target zones estimations sum 

up to the value of the source zone value (Langford, Obtaining population estimates in 

non-census reporting zones: An evaluation of the 3-class dasymetric method, 2006). 

Dasymetric mapping then can be thought of a conditional probability equation in Gaussian 

statistics. However, this method is explicitly spatial in nature and the use of ancillary data 

uniquely separates this method from strictly empirical statistical methods of areal 

interpolation, such as Inverse Distant Weighting (Lu and Wong, 2008), Spline or Kriging (Lam, 

1983). 

Contemporary applications of dasymetric methods predominately revolve around mapping 

population density. In these applications, the source units consist of census enumeration units 

(e.g. grids, block groups, municipalities), while target units are typically the cells dictated by the 

resolution of Land Use Land Cover (LULC) data (Zandbergen & Ignazio, 2010).  

In recent years researchers have started to explore new ancillary data, such as LIDAR (Aubrecht 

et al., 2009), cadastral data (Maantay et al., 2007), and address point location (Zandbergen, 

2011) to achieve greater precision and accuracy in population density mapping. In addition to 

advances in spatial resolution for mapping population density, researchers have shown that 

dasymetric techniques provide a promising avenue for disaggregating census based socio-

demographic attributes. Such research efforts include mapping diversity (Dmowska & Stepinski, 

2014), crime (Poulsen & Kennedy, 2004), income and race (Leyk et al., 2013, Nagle et al., 2013) 

and housing prices (Eicher & Brewer, 2001). 
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Within the literature there are various ways researchers have tackled the discussion regarding 

uncertainty and accuracy of model outputs.  For example, some researchers have explored 

uncertainty rather than error (Nagle et al., 2013). Uncertainty is calculated based on published 

margins of error in census data. Other research limits disaggregation to the highest resolution 

target zone with known population attributes in order to test model performance. Still, there 

are some researchers who have chosen to entirely omitted the analysis regarding the accuracy 

of the mapped attribute (Poulsen & Kennedy, 2004; Dmowska & Stepinski, 2014). This can be 

often times attributed to access limitations for actual population counts at the target unit scale 

being mapped. In many studies the target cell resolution is 30 meters (derived from LULC raster 

data), which is a significantly higher resolution than most commonly available data sources. 

2.3 GIS-MCDA and LWLC 
GIS can be considered an integrated decisions support and problem solving system which 

utilizes spatial data (Cowen 1988). GIS-MCDA is a heavily researched and active field which 

provides a wealth of structured methodical approaches for leveraging GIS as a decision making 

tool (Carver 1991, Jankowski, 1995, Malczewski, 1999). GIS-MCDA transforms, geographically 

represents and evaluates a decision maker’s goals and preferences to aid in one, or a set of site 

and/or plan evaluation(s) (Carver, 1991). As Malczewski outlines (2006), there are five 

foundational elements of GIS-MCDA:  

(i) A goal or a set of goals an individual (or a group of individuals) attempts to achieve 

along with associated evaluation criteria (objectives and/or attributes) on the basis 

of which the decision-maker evaluates alternative courses of action  

(ii) The decision-maker or a group of decision-makers involved in the decision-making 

process along with their preferences 

(iii) The set of decision alternatives (or the decision variables) 

(iv) The set of uncontrollable variables or states of nature (decision environment)  

(v) The set of outcomes or consequences associated with each alternative-criterion pair 

GIS-MCDA models commonly use census based socio-demographic areal datasets to represent 

evaluation criteria. Census data can be represented using one or multiple scales, (e.g. grid, 

block group, municipality) and various arbitrary boundary arrangements. Due to the use of 

various aggregation scales and zoning schemes, GIS-MCDA is susceptible to the same analytical 

difficulties previously mentioned with the MAUP. Evaluation criteria are not only represented 

(incorrectly) as spatially homogenous in these datasets, but it has been shown that evaluating a 

set of alternatives using areal evaluation criteria in GIS-MCDA models can have drastic and 

unpredictable effects on evaluation outcomes (Malczewski & Rinner, 2015). 

Malczewski and Rinner (2015) confirm these difficulties with aggregated data. Furthermore, 

Malczewski and Rinner point to the fact that there has been little effort directed towards 

creating a systematic approach to addressing the MAUP in GIS-MCDA. Additionally, Malczewski 

and Rinner articulate the significant value of being able to traverse criteria scales in order to 
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find the most suitable aggregation level to address MAUP related effects. This scale selection 

process has also been shown to be successful in other research domains outside GIS-MCDA (Xu 

et al., 2014). Unfortunately, in many cases the available spatial scales for evaluation criteria are 

often limited and fixed to a particular zoning and boundary arrangement. 

Furthermore, new GIS-MCDA methods have emerged which point to the need for higher 

resolution evaluation criteria. One such method is Local Weighted Linear Combination (LWLC) 

(Malczewski, 2011). LWLC is an extension of the popular Weighted Linear Combination (WLC) 

method. There is a large volume of notable research relating to the use of WLC in GIS-MCDA 

(Eastman et al. 1993; Malczewski 2000, 2006). One of the reasons for the extensive use of WLC 

is its computational simplicity and ease of implementation. However, the use of WLC for 

decision making can be problematic when applied to study areas with locally variable criteria.  

The method by which WLC is calculated can have the side effects of masking underlying 

variability, increasing autocorrelation, and clustering among the final decision alternative values 

(Carter& Rinner 2014).  This masking effect is due to the global weighting scheme WLC employs 

(Malczewski, 2011). As Malczewski points out (2011), this global weighting scheme is unrealistic 

in many real world applications. LWLC in contrast employs what is known as the range 

sensitivity principle (Carter& Rinner 2014; Fischer, 1995). This principle is based on the notion 

that weights should fluctuate based on the distance from, and variability within a given 

neighborhood. LWLC incorporates this principle by applying criterion weights based on the 

range of values observed within a user defined neighborhood scheme for a given study area 

(Malczewski, 2011). “Neighborhood” in the case of the ArcGIS LWLC tool developed by Carter & 

Rinner (2014) is defined by three types of spatial contiguity; Rook, Queen and K-nearest. The 

ArcGIS Desktop LWLC tool uses these neighborhood definitions to measures and apply weights. 

Criteria with high neighborhood variability are assigned larger weight values, and conversely 

criterion with lower neighborhood variability are assigned proportionately lower weight values. 

Whereas WLC tends to suppress and mask high variability criteria, LWLC incorporates the use of 

contiguity, local variability, and global variability to emphasize such cases in the model output.  

LWLC offers a robust exploration of local variability. However, since LWLC is noted for being 

sensitive to criterion scale (Malczewski, 2011; Carter, Rinner 2014). As the level of aggregation 

increases (e.g. going from 250m grids to 500m grids), trade-offs among alternative locations 

within the study area become less clear due to a higher likelihood of a multiple locations falling 

within the same zone. Additionally, an increase in aggregation extent only serves to further 

mask the underlying heterogeneity of the population by increasing the number of census 

respondent surveys being average. For these reasons, a high degree of criteria granularity 

offers a potential advantage in LWLC. 

2.4 Integrating Methods 
Utilizing dasymetric techniques for modeling evaluation criteria could potentially lead to a 

better understanding of the decision space, as well as more robust model outcomes. 

Dasymetrically modeled evaluation criteria could also lead to more flexibility when choosing 
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optimal scale and/or zoning arrangements for decision criteria as well as neighborhood 

definitions. Additionally, there are potential implications beyond the usage in LWLC. GIS-MCDA 

is a broad field of research with a multitude of choice models which incorporate the use of 

areal census data. This research provides an exciting opportunity to add knowledge to the field 

of GIS-MCDA by improving criteria reliability, accuracy, precision and model robustness.  After 

an extensive review of the literature, there is a clear gap in research addressing the analysis and 

testing of dasymetric modeling for the production of evaluation criteria layers in spatial choice 

model applications. 

3 Case Study  

Austria’s implementation of Statutory Health Insurance (SHI) and various other supplementary 

insurance options for children, non-working spouses and low income households, ensures that 

nearly 99% of the population is covered by health insurance (Austrian Embassy). Even with the 

expansive implementation, coverage capacity and cost of the SHI, Austria has continually 

ranked one of the lowest in the world for influenza vaccination rates, with less than 10% 

population coverage in the 2011/2012 year (Kunze et al., 2013). According to the World Health 

Organization (2011), on average 400,000 people contract influenza every year in Austria, and 

out of those, up to 6000 die due to influenza related complications. WHO along with leading 

researchers point to a lack of public awareness and ineffective social marketing campaigns as a 

major contributor to low coverage rates (Kunze, 2008). Additionally, researcher suggests that 

focused, effective, research driven marketing campaigns should be adopted as part of a holistic 

effort to increase health literacy, and decrease flu related morbidity and mortality in the 

population (Kunze et al., 2013, Kunze et al. 2007; Hoffman, 2015). The multiple criteria nature 

of identifying the distribution and concentration of at-risk and low-coverage populations to aid 

decision makers in the development of more effective marketing campaigns provides a logical 

case study for the proposed research. The objective in this case study is to more precisely 

identify the geographic distribution of at-risk and low coverage population groups in order to 

facilitate more effective marketing campaigns. 

4 Study Area 

The selected study area for this research is located in the southern-most region of the federal 

province of Carinthia, Austria (Figure 3).  

The analysis extent is defined using the Klagenfurt-Villach Nomenclature of Territorial Units for 

Statistics (NUTS) level 3 classification boundary. The specific NUTS 3 code for this region is 

AT211. This study area was selected in order test and validate a Dasymetric-LWLC framework 

under varying population density and land-use conditions. The Klagenfurt-Villach region 

contains a wide variety of land-use characteristics ranging from densely populated urban 

structure, to large swaths of sparsely populated or uninhabited land.  
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Figure 3. Klagenfurt-Villach NUTS 3 study area 

5 Research Questions 

In the context of the aforementioned objectives, there are two related research questions: 

1) What are the performance differences between simple Linear Apportionment (LA) 

and OLS for producing disaggregated evaluation criteria? 

2) What zonal related effect can be observed among market area alternatives when 

using 250m disaggregated decision alternatives (grid cells) as compared with 500m 

aggregated decision alternatives? 

6 Data 

Regional sociodemographic and building data from Statistics Austria has been provided by the 

Department of Geoinformation at Carinthia University of Applied Science. The following is a 

brief summary of the two primary datasets used in this research: 

1. 250 meter regional statistical grid unit census data. The feature class includes total 

population counts, as well as eleven age distributions categories ranging from 0-85+. This 

data will provide actual population counts for model performance testing, while also serving 

as the source to produce aggregated data within the study area. 

2. 250 meter regional statistical grid unit building data (Table 1). This feature class contains 

building counts and use-type counts at the 250m cell resolution. Building data is subdivided by 

structure type or use-types. OBJ_1 through OBJ_10) are counts of buildings according to the 

predominate purpose of the property (e.g. commercial or residential) . NTZ_ALL, NTZ_HWS and 
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NTZ_NWS are use-type counts per grid. A single property can contain multiple use types. This 

dataset will serve as the ancillary dataset in each dasymetric model.  

 

Name Description 

OBJ Building (Sum of OBJ_1 to OBJ_10) 

OBJ_01 Resident building with 1 apartment 

OBJ_02 Resident  building with > 1 apartment 

OBJ_03 Community building (e.g. retirement homes, dormitories, apprentice centers) 

OBJ_04 Hotel, restaurant, pension 

OBJ_05 Office building 

OBJ_06 Commercial building 

OBJ_07 Transportation or telecommunication building 

OBJ_08 Industry or storage building 

OBJ_09 Building for cultural activities, education, health 

OBJ_10 Other building 

OBJ_WG Resident building ( Sum of OBJ_1 and OBJ_ 2) 

NTZ_ALL All use-types (Includes NTZ_HWS and NTZ_NWS but does not equal their sum) 

NTZ_HWS Permanent residency use-type (NTZ_ALL subtype) 

NTZ_NWS Secondary  residency use-type (NTZ_ALL subtype) 
Table 1. Ancillary data 

 

7 Methodology 

7.1 Dasymetric Modeling 
The following section outlines three specific dasymetric methodologies used in this research. All 

three methods were coded and implemented using Python 2.7.12 and the following libraries: 

 Geospatial Data Abstraction Library (GDAL) 

 Pandas 

 Numpy 

 Statsmodels 

Maps and visualizations are produced using ArcGIS Desktop 10.4 and Mapbox. 

7.1.1 Ordinary Least Squares (OLS) 

The first method utilized in this research will be an adapted version of OLS regression weighted 

dasymetric modeling articulated by Longford (2006), as well as Reibel and Agrawal (2007).  

Dasymetric modeling using OLS is a two stage process. The first step involves fitting an OLS 

model to derive related variable disaggregation weights. Explanatory variable coefficients from 

OLS results are interpreted as the global per unit area population density for each related 

variable. Unlike other methods for deriving weights via regression, OLS has the added 

advantage of directly reading coefficients as density values. For this research the dependent 
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variable will be the 500m source zone population counts and explanatory variables will be 

building and/or use-type subtypes classes at the 250m scale. 

In realistic applications the R2 value obtained from OLS fitting will be below 1. In this case, less 

than 100% of source zone population variation is explained by the regression. To account for 

this a fitting procedure is utilized to scale the weighted estimates for each related variable 

according to its associated source zone. This fitting and scaling procedure accounts for 

populations not predicted in the OLS model and ensures the sum of target zone estimations 

equal the source zone population value, a method derived from smooth concepts in smooth 

pycnophylactic scaling (Tobler, 1979).  The fitting procedure is describe using the following 

formula: 

𝑑𝑐𝑠 =
𝐸𝑠

𝐸𝑖𝑠
∙ 𝑑𝑐  

Where dcs is the population density estimate for building type c in source zone s; Es is the actual 

population count in source zone s, Eis is the estimate population count in the source zone 

produced by the initial OLS density estimate, and dc is the initial OLS density estimate for 

building type c. 

The formula assumes a particular ancillary data structure, specifically a raster data structure. In 

raster applications a cell can only represent a single related variable subtype from a range of 

subtypes (e.g. a LULC class). However, this study utilizes vector data which allows for multiple 

ancillary classes to be represented within a single grid cell.  As such, the formula requires an 

adaptation in order to leverage higher dimensional inputs. In this research  a single cell can (and 

in most cases does) contain multiple building classes. Each of these building classes will need to 

be assigned an associated density estimate from OLS model . To account for this and produce 

valid target estimates, a new approach has been formulated which is expressed using the 

following formula. 

�̂�𝑡𝑠 = ∑ 𝑑𝑐𝑠 ∙ 𝑣𝑐𝑡

𝐶

𝑐=1

 

Where p̂ts is the sum of fitted estimated populations for target zone t in source zone s; c is the 

building type in source zone s; dcs is the population density estimate for building type c in 

source zone s (obtained from the previous formula), and vct is the count value of building type c 

in target zone t. This method allows for multiple ancillary variables to be considered within a 

single vector grid cell. Lastly, two important points need to be made regarding the OLS method: 

1. OLS regression for deriving disaggregation weights should be fitted without intercepts, 

since areas with no inhabitable building classes are expected to have no population. 

Reibel & Agrawal (2007). 
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2. The  scaling and fitting of dervied weights increases the explanatory power of the OSL 

regression model to R2 = 1.0. This process addresses (in part) some of the issues arising 

from autocorellated explanatory variables, as well as offers an alternative sollution 

otherwise unattainable using traditional statistical appraoches (Flowerdrew & Green 

1989), (Flowerdrew & Green 1992), (Reibel & Agrawal, 2007). 

7.1.2 Linear Apportionment (LA) 

The second dasymetric method selected for this research is based on a very simple linear 

relationship model between the source population and the ancillary class variable(s) counts. 

The application of this model simply involves dividing each source zone population by the sum 

of the ancillary class variable(s) in all feasible target zones. The value obtained is then the 

specific disaggregation weight for each ancillary unit type within the source zone. The primary 

motivation behind using this approach is based on results observed in previous research which 

was able to produce very high accuracy estimation using building point data (Zandbergen, 

2011). A criticism of this work was the use of simple mean error across all target zones as the 

measure of comparative model performance. This measurement of model performance can be 

misleading since the mean of the errors masks the effect of significant, offsetting, under/over 

count errors. For this reason, further performance measurements (discussed later) will be 

employed to test model performance and quality. Important secondary considerations for the 

use of this method also include the ease of implementation and low computational overhead in 

comparison to the OLS approach.  

7.1.3 Binary Method 

In order to disaggregate age-related variables, the Binary Method was implemented. This 

method simply removes areas of infeasible population location within a given source zone, 

thereby disaggregating the population density of the associated age variable within the source 

zone. Although the method has proven to be simple and robust (Fisher & Langford, 1996; 

Langford, 2006. As discussed later in the data preparation section; to expand the expression of 

the age variable across all source zones with population attributes, simple IDW was employed. 

IDW was used in order to expand the areal coverage for a comparative analysis between LWLC 

model outcomes. As such, it would be erroneous to develop and test the efficacy of a 

dasymetric model for disaggregating aggregate IDW interpolated age attributes. However, 

binary disaggregation is justifiable since common sense would dictate that any associated age 

attributes (modeled or actual) of a population can only exist where there is a presence of a 

population. The binary method is described as: 

�̂�𝑡𝑠 = ∑
𝐴𝑡𝑠𝑝𝑃𝑠

𝐴𝑠𝑝
 = 

𝑆

𝑠=1

∑ 𝐴𝑡𝑠𝑝𝑑𝑠𝑝 

𝑆

𝑠=1
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where p̂ts is the estimated population of target zone t in source zone s; Atsp is the area of 

overlap between target zone t and source zone s, and having p building class(es) identified as 

populated; Ps is the population of source zone s; Asp is the area of source zone s having building 

class(es) identified as populated; S is the number of source zones; and Atspdsp is the dasymetric 

density of the populated class in source zone s (Langford, 2006). 

7.1.4 Performance Testing 

Two quantitative performance measurements and one qualitative method were employed in 

order to evaluate model performance and the efficacy of use in LWLC. These methods are 

described as follows: 

1. Root Mean Square Error (RMSE): RMSE is the summary statistic most frequently used 

for error calculations and performance comparison between models in dasymetric 

research (Eicher, Brewer 2001; Langford, 2006).  RMSE can be thought of as the 

standard deviation of the error distributions across a study area for a given dasymetric 

estimation. It is represented with the following formula: 

√
∑ (�̂�𝑖 − 𝑝𝑖)2   𝑚

𝑖=1

𝑚
 

where p̂i is the actual population of zone i, pi is the estimated population of zone i, and 

m is the number of zones in the study area ( (Reibel & Agrawal, 2007) 

2. Linear regression: A simple linear regression analysis using a 95% confidence interval is 

performed, where the actual population of the study is the criterion variable and the 

dasymetric estimates serve as the predictor variable. The R2 will provide an added 

dimension of global model performance for comparison purposes, as well as an absolute 

measure of performance (Zandbergen, 2011).  

Visual Analysis: for each of the dasymetric techniques, maps will be presented for a visual 

analysis of error across the study area. 

7.2 Local Weighted Linear Combination (LWLC) 

7.2.1 Method 

As discussed previously this research will implement the LWLC method developed by 

Malczewski (2011) and further built upon for vector based implementation by Carter and 

Rinner (2014). LWLC is expressed as follows: 

𝑉(𝑙𝑖𝑞) =  ∑ 𝑊𝑘𝑞𝑉𝑘𝑞(𝑙𝑖𝑞)

𝑛

𝑘=1
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where V(liq) represents the local score of location i within the qth neighborhood, wkq represents 

the locally adjusted weight assigned to the kth criterion within the qth neighborhood, 

and vkq(liq) represents the value of the kth criterion at location i as determined by standardizing 

the value of the kth criterion with respect to all values of criterion k within the local 

neighborhood, q. 

The local weight of criterion k is a function of both the global weight assigned to criterion k and 

the local range of values of criterion k. Local weight are expressed as follows: 

𝑤𝑘𝑞 =  

𝑤𝑘𝑟𝑘𝑞

𝑟𝑘

∑
𝑤𝑙𝑟𝑙𝑞

𝑟1

𝑛
𝑙=1

 

where wkq represents the local weight assigned to the kth criterion within the qth 

neighborhood, wk is the global weight of criterion k, rkq is the range of values of criterion k 

within the qth neighborhood, and rk is the global range of criterion k. The local weight is 

standardized by dividing by the sum of all local criterion weights (l) for each location such that 

the local weight will fall within the range 0 ≤ wkq ≤ 1 and the sum of all the local weights for 

location i will equal 1.  

Initial testing of dasymetric evaluation criteria in LWLC will be done using an MCDA ArcGIS add-

in with LWLC functionality. This tool was developed by Voss under the supervision of Rinner 

(2013).  

7.2.2 Analysis Procedure 

As with previous work in LWLC, a series of maps will be used to qualitatively evaluate and 

compare model outputs. Analyzing model output in this research also presents challenges not 

encountered in previous literature relating to LWLC. Rather than analyzing the effects 

associated with altering neighborhood definitions within the same spatial scale, as seen with 

Carter & Rinner’s work (2014), this research will be evaluating disparate spatial scales using the 

same neighborhood definition. For this reason, measurement of performance and change 

between model outputs using the techniques described by Carter and Rinner are not directly 

applicable. To address questions relating to scale and zone effects, a quantitative evaluation of 

change in the areal expression, scale, and boundary relationships of criteria value pairs will be 

presented. 
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7.3 Data Preparation 

7.3.1 Inverse Distance Weighting 

For 250m grid cells with fewer than 30 people (discussed later in Dasymetric Implementation), 

a combination of Inverse Distance Weighting (IDW) and the Largest Remainder method was 

used to interpolate and populate missing values. 

IDW is a simple method based on Tobler’s first law of geography that “everything is related to 

everything else, but near things are more related than distant things” (Tobler, 1970). 

Unmeasured values within a study area (in this case, age category counts) are predicted based 

on the distance to, and value of, the surrounding locations with known values. Locations with a 

known value closer to the un-sampled location will have a larger influence on the predicted 

value than locations further away. IDW is expressed formally as (: 

 

 

Where Zj is the interpolated value of a grid node, Zi are the neighboring data points, hij 

are the distances between the grid node and data points, β is the weighting power, and δ is the 

smoothing parameter (Tomczak, 1998). In this application distance between an unknown and 

known point was based on Euclidian distance.  

7.3.2 Largest Remainder Method 

A percent of population value was derived for each age attribute from the sum of IDW 

interpolated age attributes. These percentages were used to distribute the actual population of 

a cell with 30 or fewer people into each age category. To produce integer population counts the 

Largest Remainder (or Hare-Niemeyer) method was employed (Niemeyer & Niemeyer, 2008). 

This method truncates each age estimation to an integer value, then progressively increments 

the each by one based on the decimal remainder value (highest to lowest) until the sum of the 

actual population is attained.  
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8 Dasymetric Implementation 

8.1 Data Preparation 
Since census data was provided at the 250m scale, it was necessary to manufacture an 

aggregate dataset to test the various dasymetric methods. A 500m aggregation level was 

chosen for testing. Since 250m grid cells are enumerated population counts with no margin of 

error, a simple summation of the population counts and associated attributes was theoretically 

the only needed step. However, after closer inspection of the data, it was found that any cells 

with population counts less than 31 did not have any associated age characteristics. 

Consequently, this equated to 73.3% reduction in viable aggregation cells, and a 20.1% loss of 

the total population count within the study area. Refer to Figure 4 for a visual representation of 

analysis loss in the study area. Additionally, cells with and without age attributes are commonly 

located within the same (500m) parent aggregate grid cell. The consequence here being that 

only those 500m grid cells containing 250m cells with more than 30 people could be utilized in 

the study. For this reason, the exclusion of the 250m cells without age attributes from the study 

was found to be intolerable as this would unduly constrain the study area. 

In order to overcome the challenge of missing age data, a simple Inverse Distance Weighting 

IDW interpolation was used to create a count estimate for each missing age category across the 

study area. Cells with missing age attributes were appended with interpolated counts and a 

percentage distribution was calculated by using the sum of all interpolated age categories as 

the population total. The modeled age distribution percentages for each 250m cell were used 

as weights to allocate the actual population into respective age categories. Lastly, the Largest 

Remainder method  was employed to produce integer population values for each age category 

(Niemeyer & Niemeyer, 2008)  
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Figure 4. Data constraints 

Strictly for the purpose of comparative analysis in LWLC, the need for accurate age distributions 

within the source population is of less concern than exact population counts. This is due to the 

choice of modeling age attributes using the binary method. Unlike LA or OLS, the binary method 

simply eliminates locations within a source zone where a population attribute (interpolated or 

actual) would be unlikely (e.g. grid without building attributes). For example, target zone t in 

source zone s contains no attributes determined to be associated with the presence of 

population; in which case no population counts from source zone s will be distributed to target 

zone t. Figure 5 provides a simple illustration of the difference between a disaggregated age 

attribute criteria produced via the binary method and population density criteria produced 

using LA or OLS. 
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Figure 5. Binary Method vs. LA and OLS 

8.2 OLS Dasymetric Modeling 
The initial OLS fitting utilized the building type subclasses outlined in Table 2 as explanatory 

variables.  

Name Description 

OBJ_03 Community building (e.g. retirement homes, dormitories, apprentice centers) 

OBJ_04 Hotel, restaurant, pension 

OBJ_05 Office building 

OBJ_06 Commercial building 

OBJ_07 Transportation or telecommunication building 

OBJ_08 Industry or storage building 

OBJ_09 Building for cultural activities, education, health 

OBJ_10 Other building 

OBJ_WG Resident building ( Sum of OBJ_1 and OBJ_ 2) 
Table 2. OLS explanatory variables 

However, this resulted in OBJ_4 (Hotel, restaurant, pension) receiving a negative coefficient 

value. The use of OLS does have the added simplicity of interpreting coefficients as density 

estimates per grid cell, as well as the downside of potentially producing negative coefficients for 

highly locally variable phenomenon. This issue is documented and provides an example where the 
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exact interpretation of OLS coefficients and their intuitive use in dasymetric modelling diverge 

(Langford, 2006). In these cases, recommended alternatives can be inequality constrained least 

squares estimation (Moxey & Allanson, 1994) or Poisson regression. Rather than implementing an 

alternative regression technique, a simplified solution was implemented by removing the Hotel, 

restaurant, pension subtype as an explanatory variable. Two justifications can be made regarding 

this approach: 1) Hotels, restaurants, and pensions intuitively have a low relationship with 

nighttime residential census population location, 2) this building subtype accounted for a relatively 

low percentage (2.5%) of the total number of buildings within the study area. However, the removal 

of this subtype does incur the cost of zero population allocation to target zones containing only this 

building subtype.  

8.3 Linear Apportionment (LA) Dasymetric Modeling 
Two attribute resolutions were used to test the LA method. The first model was implemented 

using the aggregated building count subtype (OBJ) in the ancillary data feature class. This 

subtype is the sum count of all building subtypes 1-10 for each 250m target zone. The second 

LA model iteration utilized the category which accounts for the sum of all reported use-types 

for every building in the target zone. Recall that a building subtype is a function of the 

classification of the main property (e.g. commercial or residential). This is not the case for the 

use-type attributes in the dataset. A single building can contain multiple use-types. These use-

type attributes (NTZ_All, NTZ_HWS and NTZ_NWS) are the counts of the number of use-type 

categorizations within a given 250m grid cell. For example, if a source zone had only one 

building and that building contained two permanent residency units and one secondary 

residency unit, the Building attribute (OBJ) would have a count of 1 and the All use-types 

attribute (NTZ_ALL) would have a count of 3. Although the building dataset does contain 

primary residency use-types as a sub category, inspection of the data against the urban 

structure and satellite imagery of the study area revealed significant sections of residential and 

urbanized area classified as having zero counts for primary residency use-type. For this reason, 

the All use-type (NTZ_ALL) attribute was selected to ensure any habitable use-type would be 

captured.  

9 Dasymetric Results 

The following two maps (Figure 5 and 6) allow for a visual comparison between source zone 

population densities and modeled target zone population densities using the LA use-type 

method. 
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Figure 6:  Dasymetric source zones 

 

Figure 7: Dasymetric Results: LA using use-type classification counts 

Table 3 provides a performance summary of each dasymetric method. In all cases, there is a 

significant linear relationship between the predicted cell population densities and the actual 

cell population densities. According to both critical statistics, RMSE and R2, both LA methods 

outperform the OLS method. However, LA using all use-types outperformed alternative 

methods by a large margin. Additionally, it is of value to note the mean over/under count 
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percentages among the three methods. Ranking agreement can be observed between RMSE 

and R2, whereas the mean over/under percent error is negligible. This illustrates the primary 

issue in using this statistic as an absolute or comparative measure of performance.   

Method: RMSE R2 Significance Mean over/under count percent error 

LA – Use Type 12.95 .968 p = 0 +4.68% 

LA – Building Count 34.26 .777 p = 0 +4.65% 

OLS 37.56 .737 P = 0 +4.55% 
Table 3. Dasymetric methods performance summary 

Error! Reference source not found., Figure 9, Figure 10 provide the scatter plot and regression 

line for LA use-type, LA using building counts, and OLS respectively. Additionally, Figure 11, 

Figure 12, and Figure 13 are selected maps focused on Villach and the surrounding 

communities. The large scale perspective of these maps allow for a better understanding of the 

geographic distribution of errors between methods.  

 

Figure 8. LA use-type scatter plot 
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Figure 9. LA building count scatter plot 

 

Figure 10. OLS scatter plot 
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Figure 11. LA use-type map 

 

Figure 12. LA building counts map 
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Figure 13. OLS map 

An initial visual analysis reveals apparent clustering and a high degree of extreme over 

estimations and under estimation values in the central Villach area in both the OLS and LA 

building count methods. A potential contributor for the extremes could be linked to the 

diversity of building types and associated population densities. LA applies the same 

disaggregation weight for all buildings regardless of class or use. However, it would be more 

accurate to apply a higher a higher weight to a class such as an apartment complex versus a 

single family home.  A high degree of diversity in building types and uses within 500m source 

zones is characteristic of the Villach region thus may be contributing to the pattern observed. 

The same observation can be made of OLS. Although OLS does distribute weights according to a 

statistical relationship in the building classes, recall that the predominate residential building 

classes were combined in order to avoid negative coefficients. Any differentiation between 

buildings with one unit, or more than one unit was lost in this process. Visual comparison may 

reveal different degrees of clustering between methods, however the Getis-Ord General G 

statistic indicate significant spatial clustering of high value errors for all three models. 

Based on the performance of LA use-type modeling, this method’s output was used as the 

binary restriction layer for modeling age distribution across the study region. Recall, the binary 

method (in this context) is simply a restriction on the probable location of an age characteristic. 

the LA use-type output will be used to eliminate 250m sectors within 500m source zones where 

a population attribute was not modeled. Additionally, the LA use-type output will serve as the 

population density criteria layer in the LWLC modeling step. 
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9.1 LWLC Implementation 
Evaluation criteria for study area analysis has been derived using published research results by 

the World Health Organization (2011) and current research related to public health and 

influenza vaccination rates in Austria (Kunze, 2013; Hoffman et al., 2016). These studies have 

found statistically significant correlations between specific age groups and low vaccination rates 

in Austria. Additionally, population density has been added as an evaluation criteria based on 

increased transmission risk in densely populated areas (Fang, 2012, Hu, 2013). By combining 

age and density, not only is the model incorporating the identification of at-risk and low 

coverage population groups, but also environmental conditions relating to increased risk. The 

addition of population density provides a further level of discrimination when making decisions 

about the efficient and effective allocation of resources for social marketing campaigns.  

In order to better conform to previously studied age ranges, the original eleven age categories 

were condensed into five. Global weights were applied evenly across all evaluation criteria. This 

was done to better illustrate the effect of local criteria weight changes between model 

iterations. The following is a list of selected evaluation criteria. 

Criterion: Global Weight: Criterion Type: 

Pop. Density (pop./grid) .20 Benefit/Maximize 

Age: 0 - 2 years .20 Benefit/Maximize 

Age: 3 – 19 years .20 Benefit/Maximize 

Age: 45 – 54 years .20 Benefit/Maximize 

Age: 65 years + .20 Benefit/Maximize 

Table 4. LWLC evaluation criteria 

The neighborhood scheme chosen for the LWLC model was k-nearest neighbor with the k-value 

of 19. The choice to apply the value of k=19 was based on preliminary test results in LWLC 

which produced a large number of cells with no viable local score, an issue which will be 

discussed in greater detail in the results section.  

10 LWLC Results 

It was observed that applying progressively smaller k-values for each model iteration produced 

an increasing number of cells with no viable local score. A variation of this issue is briefly 

addressed by Carter and Rinner (2014). However, the issue they describe was encountered on a 

much less impactful scale. Carter and Rinner described the problem as the result of insufficient 

neighborhood diversity among one or more evaluation criteria. Carter and Rinner encountered 

only few instances where this occurred, one of which was an island within their study area. One 

of the reasons the null value outputs were not as problematic in Carter and Rinner’s study as 

here can be attributed to their use of highly aggregated U.S. Census tract data with large 

population counts and attribute values. Census tracts are constructed in such a way to ensure 

they contain between 1200 – 8000 people with an optimum size of 4000 people (U.S. Census 
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Bureau, 2016). This study utilizes significantly higher resolution data with much smaller 

population counts and large sections of uninhabited space. The low population counts and non-

contiguous nature of the data in this study produces numerous instances where a criterion 

value will equal zero for all cells within a defined neighborhood; which in turn produces a 

division by zero error when calculating the local value function. This issue becomes especially 

evident in the study area when utilizing first-order rook or queen contiguity as the 

neighborhood definition. In the case of k-nearest neighbor, lower values of k decreased the 

number of cells within a neighborhood and increased the probability that all cells in that 

neighborhood would contain 0 values for a given criterion. Carter and Rinner propose two 

solutions for this problem. Below is a summary of each potential solution and a trade-off 

analysis for each in the context of this research: 

1. Exclude non-contiguous polygons from the study: The high resolution, non-contiguous 

nature of the layers produced by dasymetric modeling created a large number of cells 

which would be eliminated if this method was used. The number of cells eliminated 

from the analysis in addition to the high degree of performance achieved in the 

dasymetric output made this option undesirable. This particular solution essentially 

penalizes successful dasymetric modeling results and as such was discarded as a viable 

solution. 

 

2. Adapt the neighborhood definition (e.g. increase k): The problem with this solution (if 

increasing k is the adaptation) can be explained by the observation Carter and Rinner 

made later in their analysis; as k-increases so too does the spatial autocorrelation of 

local values. Additionally, as k increases so does the inclusion of criteria values from cells 

which may have little logical association. Essentially, every integer increase in k brings 

the LWLC model closer to the value outputs that would be expected in a global WLC 

solution. Although not optimal, a very large increase in k appeared to be the most 

feasible solution for this research. It is also worth noting that even with an increase to 

k=19, 115 cells (500m) and 415 cells (250m) respectively received no local value. 

Due to the extent of the study area and formatting constraints, a subsection of the results from 

LWLC has been selected for visual comparison and analysis. The following three maps focus on 

the north central portion of the study area, extending from the north-eastern section of Villach 

to Velden am Wörthersee (Figures 13, 14, 15, and 16).  

Figures 13 and 14 allow for a comparison between the value scores produced using 500m and 

250m criteria. Red and orange grid cells are associated with high to medium-high local scores 

(respectively) and are interpreted as locations with comparatively high concentrations of at-risk 

and low vaccine coverage rate populations. Based upon the criteria chosen for this case study, 

the high scoring locations would receive prioritized consideration when allocating resources in 

social marketing campaign efforts. When compared to the 500m results, the 250m cells expose 

a more detailed picture of the variability and internal performance of specific locations within 
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the study area. Rather than abrupt and/or extreme value changes, a smoother, more 

representative surface can be observed.  

 

Figure 14. 500m LWLC results 

 

Figure 15. 250m LWLC results 
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The use of 250m grids also allows for the exclusion of locations which were previously 

characterized as high-performing in the aggregate data and conversely, the inclusion of 

locations which were previously attributed with being low performing locations. Figure 15 

illustrates a selected location within the study area which exhibits significant underlying 

heterogeneity in local value ranges. This kind of general improvement in resolution can provide 

decision makers a far better understanding of the spatial distribution, concentration and 

variability of at-risk/low-coverage population groups. 

 

Figure 16. Observed value range change between 500m and 250m grid cells 

Figure 16 provides better understanding of the difference in areal extent between the two scale 

outputs. Using 500m grid cells produces a 88.0 sqkm area (excluding unpopulated zones), with 

3519 feasible grid cell decision alternatives. By incorporating the output from LA dasymetric 

modelling, the area becomes constrained to 51.3 sqkm. This represents a 42.0% reduction in 

what was previously categorized as feasible area in the original model. Although there is a 

reduction in feasible area, the higher resolution cells provide an increase in the number of 

potential decision alternatives. The number of feasible decision alternatives using 

dasymetrically modelled criteria increases from 3519 to 8204.  
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Figure 17. Coverage comparison between 500m and 250m LWLC 

Furthermore, high resolution modeled data allows for boundary discrimination and directly 

addresses scale related effects of the MAUP. Figure 17 illustrates three particular scale related 

problems which can be addressed by dasymetric modeling.  

 

Figure 18. Scale related effects and solutions 
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Red cells are populated locations outside the Klagenfurt-Villach study region which were 

contributing to the local value calculation at the 500m grid cell level. The crosshatched 500m 

cells are the cells with values entirely derived from 250m grids outside the study area. Although 

the most conservative method of selection was used to determine study area inclusion 

(intersection) for each 500m grid cell, the example in the upper right corner illustrates where 

even alternative methods such as centroid, or percent area selection would have incorrectly 

classified the cell as being a potential decision alternative. In total there were 164 grid cells 

containing 1145 people which were erroneously contributing to local value function results.  

Referring again to figure 17, the blue cells represent similar misclassifications when considering 

study area sub-divisions; in this case municipal boundaries. In situations where resources are 

allocated based on geographic patters at the sub-region level (e.g. municipality), it is of great 

value to understand, on which side of a boundary the attribute value belongs. It is certainly true 

that 250m cells can encounter the same challenge as 500m cells, however the problem is 

mitigated by disaggregating from 500m to 250m.  

The results presented here provide encouraging evidence that evaluation criteria derived from 

dasymetric modeling can contribute to more informed decisions outcomes in LWLC and aid in 

mitigating zone related problems associated with the MAUP. 

11 Conclusion, Limitations and Future Work 

This research tested and evaluated the integration of dasymetric modeling methods with the 

LWLC choice model. Vaccine related social marketing was identified as a case study for criteria 

selection and model testing. Three dasymetric models were tested; OLS regression, Linear 

Apportionment (LA) and the Binary Method. The LA method using total counts of building use-

type classifications significantly outperformed results obtained from either LA using building 

counts or the OLS regression method. Although a LA dasymetric model provides a simple, 

robust choice for population modeling, access to data such as use-type counts may be 

infeasible in other applications due to cost or access restrictions. Additionally, further testing 

should be done to study the impact on LA performance using larger source zone grids (e.g., 

1000m). 

This research also examined the use of LA model outputs as evaluation criteria in LWLC. 

Although, dasymetrically derived evaluation criteria show promise for improving decision 

outcomes by mitigating boundary and scale related effects of the MAUP, challenges with high-

resolution, low-diversity criteria values significantly reduced the utility of the dasymetric 

approach in this study. In order to fully exploit the advantages of high resolution dasymetric 

criteria, further research is needed to explore alternative implementation of LWLC, which are 

able to account for low diversity or isolated data without unreasonable neighborhood 

expansions or data deletion. 
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