
Algorithmic Aspects of Graph Connectivity
Report for Marshall Plan Foundation Scholarship

Veronika Loitzenbauer

Research stay, Summer 2016, University of Michigan

Connectivity is one of the most well-studied notions in graph theory. The literature
covers many different aspects of connectivity related problems. During my research stay
at the University of Michigan, we studied three different aspects of graph connectivity:
(1) Connectivity oracles for graphs subject to vertex failures, (2) the characterization of
vertex cuts with generalizations of SPQR-trees, and (3) faster algorithms for maximal
k-connected induced subgraphs in directed graphs. For (1) the main goal was to improve
upon the already almost tight results of [4]. For (2) the main goal was to re-evaluate the
definitions of [3] to obtain a formal and clear expositions of their results as a basis for
potential algorithmic uses of their graph decomposition. For both (1) and (2) related
work was studied and several approaches were explored but no results were obtained.
We plan to continue with (2) in future work. Therefore this report presents the results
for (3), where faster algorithms were obtained. These results are joint work with Shiri
Chechik, Thomas D. Hansen, Giuseppe F. Italiano, and Nikos Parotsidis, see [2].

1 Introduction

Problem definition and related concepts. Strong connectivity. Let G = (V,E) be
a directed graph (digraph) with m = |E| edges and n = |V | vertices. The digraph G
is said to be strongly connected if there is a directed path from each vertex to every
other vertex. The strongly connected components (SCCs) of G are its maximal strongly
connected subgraphs. Two vertices u, v ∈ V are strongly connected if they belong to the
same strongly connected component of G.

2-edge connectivity. An edge of G is a strong bridge if its removal increases the number
of strongly connected components. Let G be a strongly connected graph. We say that G
is 2-edge-connected if it has no strong bridges. Two vertices v and w are 2-edge-connected
if there are two edge-disjoint paths from v to w and two edge-disjoint paths from w to v.
A 2-edge-connected component of G is a maximal subset of vertices such that any pair of
distinct vertices is 2-edge-connected. For a set of vertices C ⊆ V its induced subgraph
G[C] is a maximal 2-edge-connected subgraph of G if G[C] is a 2-edge-connected graph
and no superset of C has this property. The 2-edge-connected components of G might
be very different from the maximal 2-edge-connected subgraphs of G because the two

1

𝑏 𝑐

𝑑 𝑒

𝑓 𝑔

ℎ 𝑖

𝑗 𝑘

𝑎

𝑏 𝑐

𝑑 𝑒

𝑓 𝑔

ℎ 𝑖

𝑗 𝑘

𝑎

𝑏 𝑐

𝑑 𝑒

𝑓 𝑔

ℎ 𝑖

𝑗 𝑘

𝑎

𝑏 𝑐

𝑑 𝑒

𝑓 𝑔

ℎ 𝑖

𝑗 𝑘

𝑎

𝑏 𝑐

𝑑 𝑒

𝑓 𝑔

ℎ 𝑖

𝑗 𝑘

𝑎

(a) G (b) 2ECS (G) (c) 2ECC (G) (d) 2VCS (G) (e) 2VCC (G)

Figure 1: (a) A strongly connected digraph G; strong articulation points and strong
bridges are shown in red. (b) The 2-edge-connected subgraphs of G. (c) The
2-edge-connected components of G. (d) The 2-vertex-connected subgraphs of
G. (e) The 2-vertex-connected components of G.

edge-disjoint paths between a pair of vertices of a 2-edge-connected component might use
vertices that are not in the 2-edge-connected component. (See Figure 1 for an example.)

2-vertex connectivity. Analogous definitions can be given for 2-vertex connectivity. In
particular, a vertex is a strong articulation point if its removal increases the number of
strongly connected components of G. Let G be a strongly connected graph. The graph
G is 2-vertex-connected if it has at least three vertices and no strong articulation points.
Note that the condition on the minimum number of vertices disallows for degenerate
2-vertex-connected graphs consisting of two mutually adjacent vertices (i.e., two vertices v
and w and the two edges (v, w) and (w, v)). Two vertices v and w are 2-vertex-connected
if there are two internally vertex-disjoint paths from v to w and two internally vertex-
disjoint paths from w to v, i.e., the paths meet at v and w but not in-between. A
2-vertex-connected component of G is a maximal subset of vertices such that any distinct
pair of vertices is 2-vertex-connected. For a set of vertices C ⊆ V its induced subgraph
G[C] is a maximal 2-vertex-connected subgraph of G if G[C] is a 2-vertex-connected graph
and no superset of C has this property. Note that the 2-vertex-connected components of
G might be very different from the maximal 2-vertex-connected subgraphs of G.

k-connectivity. The notions of 2-edge and 2-vertex connectivity extend naturally to
k-edge and k-vertex connectivity. Given a directed graph G = (V,E), a set of edges
S is an edge cut of size |S| if its removal increases the number of strongly connected
components of G. A strongly connected graph is k-edge-connected if it has no edge

2

cut of size less than k. Two vertices v and w are k-edge-connected if there are k edge-
disjoint paths from v to w and k edge-disjoint paths from w to v. A k-edge-connected
component of G is a maximal subset of vertices such that any pair of distinct vertices is
k-edge-connected. For a set of vertices C ⊆ V its induced subgraph G[C] is a maximal
k-edge-connected subgraph of G if G[C] is a k-edge-connected graph and no superset of C
has this property. A set of vertices S is a vertex cut of size |S| if its removal increases
the number of strongly connected components of G. A strongly connected graph G is
k-vertex-connected if it has at least k + 1 vertices and no vertex cut of size less than k.
Two vertices v and w are k-vertex-connected if there are k internally vertex-disjoint paths
from v to w and k internally vertex-disjoint paths from w to v. A k-vertex-connected
component of G is a maximal subset of vertices such that any distinct pair of vertices is
k-vertex-connected. For a set of vertices C ⊆ V its induced subgraph G[C] is a maximal
k-vertex-connected subgraph of G if G[C] is a k-vertex-connected graph and no superset
of C has this property.

We usually omit the word maximal when referring to maximal k-edge- or k-vertex-
connected subgraphs.

Our results. We present O(m3/2) time algorithms for computing the maximal 2-
edge-connected subgraphs and the maximal 2-vertex-connected subgraphs of a given
directed graph with m edges and n vertices. This is an improvement over the existing
O(n2) time algorithms [17] whenever m is o(n4/3). The algorithm for 2-edge-connected
subgraphs is extended to compute the maximal k-edge-connected subgraphs for any
constant k ≥ 2 and runs in time O(m3/2 log n), improving over the existing O(n2 log n)
time algorithm [17]. The maximal k-edge-connected (and k-vertex-connected) subgraphs
are defined for undirected graphs as they are for directed graphs. We also show how to
adjust the algorithm to compute the maximal k-edge-connected subgraphs for undirected
graphs in time O((m+n log n)

√
n), where k is again viewed as a constant. For the special

case where k = 3, the running time for computing the 3-edge-connected subgraphs on
undirected graphs is O(m

√
n).

Related work. In the literature the terms “components” and “blocks” have both been
used to mean either k-connected components, as defined above, or the maximal (induced)
k-connected subgraphs; therefore we explicitly use the term subgraphs for the latter in
order to avoid further confusion.

Undirected graphs. It has been known for over 40 years how to compute the 2-edge-
and 2-vertex-connected components of undirected graphs in linear time [28]. While the 2-
edge-connected (resp., 2-vertex-connected) components are equal to the 2-edge-connected
(resp., 2-vertex-connected) subgraphs in undirected graphs, this is no longer the case for
k > 2. The first algorithm for computing the 3-vertex-connected components in linear (in
the number of edges) time was by Hopcroft and Tarjan [19]. Later, Galil and Italiano [11]
reduced the computation of the 3-edge-connected components to 3-vertex-connected
components, thus obtaining a linear time algorithm for this case as well. Kanevsky and
Ramachandran [22] showed how to test whether a graph is 4-vertex-connected in O(n2)
time. Over 20 years ago, Nagamochi and Watanabe [27] presented an algorithm for
computing the k-edge-connected components for k > 3 in O(m + k2n2) time. The best

3

known algorithm for this problem runs in expected Õ(m + nk3) time and was presented
by Hariharan et al. [16]. Their algorithm additionally computes a partial version of
the Gomory-Hu tree [15], that represents the edge-connectivity of the pairs whose
edge-connectivity is less than k; the k-edge-connected components are contracted into
singleton vertices in the tree. Karger [23] showed how to determine with high probability
whether an undirected graph is k-edge-connected in Õ(m) time. In a recent breakthrough,
Kawarabayashi and Thorup [24] presented a deterministic algorithm that achieves similar
time bounds. There is no study that explicitly considers the computation of the k-
edge-connected or the k-vertex-connected subgraphs of undirected graphs, however, the
problem can be reduced to the problem on directed graphs in a straightforward manner.
Furthermore, for undirected graphs the runtime (which is implied by [8], see below) of
the basic algorithm for k-edge-connected subgraphs for constant k can be reduced to
O(n2 log n) by additionally maintaining a sparse certificate [5, 26, 30].

k-connected components in digraphs. Very recently Georgiadis et al. [14, 13] showed
that the 2-edge-connected and the 2-vertex-connected components of a directed graph
can be computed in linear time. Nagamochi and Watanabe [27] gave an O(kmn) time
algorithm for computing the k-edge-connected components in directed graphs.
k-edge-connected subgraphs in digraphs. A simple algorithm for computing the maximal

2-edge-connected subgraphs is to remove at least one strong bridge of a strongly connected
component of the graph and repeat on the resulting graph. It is known since 1976 how to
compute a strong bridge [29] in O(m + n log n) time, and since 1985 in O(m) time [10],
resulting in an O(mn) time algorithm for computing the 2-edge-connected subgraphs of
a directed graph. Recently, Italiano et al. [20] gave a linear time algorithm for computing
all strong bridges of a directed graph in O(m) time, of which there can be O(n) many. A
similar idea can be used to compute the k-edge-connected subgraphs. In this case, in
each iteration we remove the minimum edge cut of each strongly connected component of
the graph, if its size does not exceed k − 1. Since an edge cut of size k can be computed
in time O(km log n) [8], and in each iteration we disconnect at least one pair of vertices,
this algorithm runs in O(kmn log n) time. Recently, Henzinger et al. [17] presented an
O(n2) time algorithm for computing the 2-edge-connected subgraphs of a directed graph
and an O(n2 log n) time algorithm for the k-edge-connected subgraphs for any constant k.
Their algorithm uses a sparsification technique introduced in [1, 18] that can be used,
under appropriate structural properties, to replace a factor of m in the running time of
an algorithm by n.

k-vertex-connected subgraphs in digraphs. 2-vertex-connected subgraphs were first
studied in 1980 by Erusalimskii and Svetlov [6], but they did not analyze the running
time of their algorithm. Very recently, Jaberi [21] showed that their algorithm runs in
O(nm2) time and presented an O(mn) time algorithm. Prior to Jaberi, Makino [25] gave
an algorithm for computing the maximal k-vertex-connected subgraphs of a directed
graph in time O(n · S), where S is the running time for computing a single vertex cut
of size at most k − 1. Since one strong articulation point [12], or even all the strong
articulation points [20], can be computed in linear time, Makino’s algorithm can be
implemented so as to compute the 2-vertex-connected subgraphs of a directed graph
in time O(mn). Combined with Gabow’s algorithm for identifying k-vertex cuts [9],

4

Makino’s algorithm yields a runtime of O(mn · (n + min{k5/2, kn3/4})) for k-vertex-
connected subgraphs; an O(kmn2) time algorithm is already implied by combining it
with [7]. The recent algorithm of Henzinger et al. [17] computes the 2-vertex-connected
subgraphs in time O(n2) and extends to the k-vertex-connected subgraphs for constant
k with a runtime of O(n3).

Key Ideas. We next outline the main ideas behind our approach. The basic algorithm
for 2-edge-connected subgraphs can be seen as maintaining a partition of the vertices that
is iteratively refined by identifying parts that cannot be in the same 2-edge-connected
subgraph, which are then separated from each other in the maintained partition. In the
basic algorithm these parts are identified by computing bridges and SCCs. The main
technical contribution of this work is a subroutine that can identify a “small” part that
can be separated from the rest of the graph by local depth-first searches that, starting
from one given vertex, explore only the edges in this small part and a proportional
number of edges outside of it.

For 2-edge-connected subgraphs we call the subgraphs identified in this way 1-edge-out
and 1-edge-in components1. A k-edge-out (resp., k-edge-in) component of a vertex u is
a subgraph that contains u and has at most k edges from (resp., to) the subgraph to
(resp., from) the rest of the graph. We start the searches for these subgraphs from all
vertices that have lost edges since the last time bridges and SCCs were computed and
only recompute bridges and SCCs when no 1-edge-out or 1-edge-in component with at
most

√
m edges exists2.

The intuition for the local depth-first searches for edge connectivity can be better
understood in terms of maximum flow in uncapacitated graphs. Assume there is a
1-edge-out component of a vertex u. Since this subgraph has at most one outgoing edge
to the rest of the graph, the vertex u can send at most one unit of flow to any vertex
outside of the subgraph. Thus if we find a path along which we can send one unit of flow
to some vertex outside of the subgraph and then look at the residual graph given this
flow, then there is no edge from the subgraph to the rest of the graph in the residual
graph. We find such a flow using depth-first search and then use a second search to
explore the subgraph that is still reachable from u in the residual graph.

Finding k − 1 paths to send flow out of a (k − 1)-edge-out component is more difficult
for k > 2. We show that one can exploit the properties of depth-first search to find a set
of O(k) paths of which at least one of them leaves the (k − 1)-edge-out component. As
we have to do this for k many searches, each conducted in the residual graph after the
previous search, this yields an exponential dependence on k. For any constant k > 2 we
compute the k-edge-connected subgraphs in time O(m3/2 log n) time, where the additional
factor of log n compared to k = 2 is due to the increased cost of computing cuts with at
most k − 1 edges.

The notion of a k-edge-out (resp., k-edge-in) component of a vertex u is adjusted to
vertex connectivity as follows. A k-vertex-out (resp., k-vertex-in) component S of a

1A similar notion called 2-isolated set was introduced in [17].
2A similar overall algorithmic structure was used in [17, Appendix B] and, for a different problem, e.g.,

in [1].

5

vertex u is a subgraph that contains u and at most k vertices in the subgraph have edges
from (resp., to) the subgraph to (resp., from) the rest of the graph.

For vertex connectivity some additional difficulties arise. First, the 2-vertex-connected
subgraphs partition the edges rather than the vertices (apart from degenerate cases),
i.e., when we find a strong articulation point and run our algorithm recursively on the
subgraphs that it separates, the strong articulation point is included in each of these
subgraphs. Second, the intuition of flows and residual graphs cannot be applied directly;
instead, we let one depth-first search “block” specific vertices (those whose DFS subtree
is adjacent to many edges) and let a second search “unblock” vertices such that it can
explore the 1-vertex-out component but not the remaining graph.

1.1 Preliminaries

For a directed graph G we denote by V (G) its set of vertices and by E(G) its set of
edges. The reverse graph of a directed graph G = (V,E), denoted by GR = (V,ER), is
the directed graph that results from G after reversing the direction of all edges. By G \S
and G \Q we denote the graph G after the deletion of a set S of vertices and after the
deletion of a set Q of edges, respectively. We refer to the subgraph of G induced by the
set of vertices S as G[S]. Let H be a strongly connected graph, or a strongly connected
component of some larger graph. We say that deleting a set of edges Q (resp., set of
vertices S) disconnects H, if H \Q (resp., H \ S) is not strongly connected. Given a set
of vertices C, we say that a set of edges Q (resp., a set of vertices S) disconnects C from
the rest of the graph if there is no pair of vertices (x, y) ∈ C × (V \ C) that are strongly
connected in G \Q (resp., G \ S). For the sake of simplicity, we write S ⊆ G, instead
of S ⊆ V (G), to denote that a set of vertices S is a subset of the vertices of a graph G.
We similarly write Q ⊆ G instead of Q ⊆ E(G), where Q is a subset of the edges of the
graph G. Furthermore, we write v ∈ G and e ∈ G instead of v ∈ V (G) and e ∈ E(G),
respectively.

We use the term tree to refer to a rooted tree with edges directed away from the root.
Given a tree T , a vertex u is an ancestor (resp., descendant) of a vertex v if there is a
directed path from u to v (resp., from v to u) in T . We denote by T [u, v] the path from
u to v in T . We use T (u) to denote the set of vertices that are descendants of u in T .

There is a natural connection between edge cuts and maximum flow in unweighted
graphs. The maximum flow that can be sent from a source vertex s to a target vertex
t in directed graphs with uncapacitated edges is equal to the number of edge-disjoint
paths directed from s to t. Therefore, the existence of a cut consisting of k edges directed
from a set of vertices A to a set of vertices B implies that the maximum flow that can
be pushed from any vertex in A to any vertex in B is at most k. We implicitly use
this connection between edge cuts and max flow. We further assume that the reader is
familiar with depth-first search (DFS), see, e.g., [28].

6

𝑏 𝑐

𝑑 𝑒

𝑓 𝑔

ℎ 𝑖

𝑗 𝑘

𝑎

Figure 2: An example of a 1-edge-out component of j.

2 Maximal 2-edge-connected subgraphs of a digraph

In this section we first show how to identify 1-edge-out components that contain at most
∆ edges in time proportional to ∆. Applied to the reverse graph, the same algorithm
finds 1-edge-in components. We then use this subroutine with ∆ =

√
m to obtain an

O(m3/2) algorithm for computing the maximal 2-edge-connected subgraphs of a given
directed graph.

2.1 1-edge-out and 1-edge-in components

Definition 1. Let G = (V,E) be a digraph and u ∈ V be a vertex. A k-edge-out
component of u is a minimal subgraph S of G that contains u and has at most k outgoing
edges to G \ S.

We similarly define a k-edge-in component of u.

Definition 2. Let G = (V,E) be a digraph and u ∈ V be a vertex. A k-edge-in component
of u is a minimal subgraph S of G that contains u and has at most k incoming edges
from G \ S.

See Figure 2 for an example of a k-edge-cut and Figure 3 for an example of a k-edge-in
with k = 1. Note that u may have more than one k-edge-out (resp., k-edge-in) component.
Also note that for k′ < k, every k′-edge-out component of u is a k-edge-out component of
u as well. For the case when k = 1, the outgoing (resp., incoming) edge of a 1-edge-out
(resp., 1-edge-in) component S is either a strong bridge or an edge between strongly
connected components of the graph. Moreover, each 2-edge-connected subgraph is either
completely contained in S or in G \ S (see also [17]).

We next present an algorithm that takes as input a graph G, a vertex u ∈ V (G), and
a parameter ∆ < m/2, and that spends time at most O(∆) to search for a 1-edge-out

7

𝑏 𝑐

𝑑 𝑒

𝑓 𝑔

ℎ 𝑖

𝑗 𝑘

𝑎

Figure 3: An example of a 1-edge-in component of f .

component of u in G. The algorithm may fail to find such a component, and we therefore
prove the following guarantees about its outcome:

• If u has a 1-edge-out component with at most ∆ edges, then the algorithm returns
a 1-edge-out component for u with at most 2∆ edges.

• If every 1-edge-out component of u has more than ∆ edges, then the algorithm
may return a 1-edge-out component for u with at most 2∆ edges, but it may also
return the empty set (i.e., fail to find a 1-edge-out component for u).

Note that by using exponential search in ∆, the algorithm can find a 1-edge-out component
for a given vertex u in time that is linear in the number of edges of the smallest 1-edge-
out component that contains u. For our purpose in Section 2.2, however, it suffices to
distinguish between small and large 1-edge-out components and only use one fixed choice
of ∆. We thus use the algorithm to quickly find a small 1-edge-out component S, given a
vertex u in S.

For the rest of this section, we assume that the starting vertex u can reach at least
2∆ + 1 edges. Notice that if u cannot reach 2∆ + 1 edges, then the reachable subgraph
from u defines a 0-edge-out component of u containing at most 2∆ edges. In this case,
the algorithm returns this 0-edge-out component. We use exactly the same algorithm
executed on the reverse graph for 1-edge-in components and therefore only describe the
algorithm for 1-edge-out components. First, we provide the following supporting lemmas.

Lemma 3. Let (x, y) be the outgoing edge of a 1-edge-out component 1EOut(u) of a
vertex u. Then u has a path to every vertex v ∈ 1EOut(u) that is contained entirely
within the subgraph 1EOut(u). Moreover, u has two edge-disjoint paths to x within
1EOut(u).

8

Proof. We begin by showing that u has a path to every vertex v ∈ 1EOut(u) that is
contained entirely within the subgraph 1EOut(u). Assume for the sake of contradiction
that there is a set of vertices C ⊂ 1EOut(u) such that the vertices of C are unreachable
from u in 1EOut(u). Then there is no edge (w, z) with w ∈ 1EOut(u)\C and z ∈ C and
thus the only possible outgoing edge from 1EOut(u) \C is (x, y). Thus, 1EOut(u) \C is
a 1-edge-out component of u, which contradicts the minimality of 1EOut(u).

We now show that u has two edge-disjoint paths to x in 1EOut(u). First, we note that
all simple paths from u to x contain only vertices in 1EOut(u) since there is no edge
(x′, y′) 6= (x, y) leaving 1EOut(u). Assume, for the sake of contradiction, that all paths
from u to x in 1EOut(u) share a common edge (w, z). Then, u does not have a path to z
in 1EOut(u) \ (w, z). Let C ⊂ 1EOut(u) be the set of vertices that become unreachable
from u in 1EOut(u) \ (w, z). (Notice that |C| ≥ 1 since z ∈ C.) Clearly, there is no edge
(w′, z′) such that w′ ∈ V (1EOut(u)) \C and z′ ∈ C. Hence, the only outgoing edge from
1EOut(u) \C is (w, z). Thus, 1EOut(u) \C is a 1-edge-out component of u, which again
contradicts the minimality of 1EOut(u).

Our algorithm starts a DFS traversal F1 from u. We charge to a visited vertex its
outgoing edges that were discovered by F1. We stop F1 when the number of traversed
edges reaches 2∆+1. Let T be the DFS tree constructed by the DFS traversal. We define
the weight of a vertex v, denoted by w(v), to be the total number of edges charged to the
descendants of v in T (including v). Assume u is contained in a 1-edge-out component C
with at most ∆ edges. Note that for any vertex v 6= u whose DFS subtree only explores
edges inside C (that is, the DFS search never leaves C after vising v), we have w(v) < ∆.

Lemma 4. Let 1EOut(u) be a 1-edge-out component of u such that |E(1EOut(u))| ≤ ∆,
let (x, y) be the outgoing edge of 1EOut(u), and let T be a DFS tree of a DFS traversal
from u that visited 2∆ + 1 edges. Then w(v) ≥ ∆ for each vertex v on the path from u to
y in T , i.e., v ∈ T [u, y], and w(v) < ∆ for each v ∈ 1EOut(u) \ T [u, x].

Proof. Since |E(1EOut(u))| ≤ ∆ and the DFS traversal visits at least 2∆ + 1 edges, it
follows that T visits at least ∆ edges in the subtraversal from y (that excludes (x, y)).
Therefore, for each v ∈ T [u, y] it holds that w(v) ≥ ∆. Note that (x, y) can be used only
once by the DFS traversal, and any traversal from u that does not visit vertices outside
1EOut(u) cannot reach more than ∆ edges. Further, since the DFS starts from u, any
vertex apart from u can only reach strictly less than ∆ edges without its subtraversal
leaving 1EOut(u). None of the subtraversals from vertices v ∈ 1EOut(u) \ T [u, y] could
visit vertices outside 1EOut(u), since either they were visited after the edge (x, y), or
they could not visit y. Thus, for each vertex v ∈ 1EOut(u) \ T [u, x], it holds that
w(v) < ∆.

Lemma 5. Let F be a DFS traversal that visited 2∆ + 1 edges and let T be the DFS
tree generated by F . The edges e = (x, y) ∈ T with w(y) ≥ ∆ form a path in T .

Proof. Assume by contradiction that there are two tree edges e1 = (x1, y1) and e2 =
(x2, y2) with w(y1) ≥ ∆ and w(y2) ≥ ∆ that do not have an ancestor-descendant relation
in T (i.e., y1 is not an ancestor of x2 and y2 is not an ancestor of x1). Since also the

9

edges (x1, y1) and (x2, y2) are visited by T , this contradicts the fact that the traversal
visited 2∆ + 1 edges. Therefore, all edges e = (x, y) ∈ T with w(y) ≥ ∆ form a path in
T .

After the execution of the first DFS F1, by Lemma 5, there is a path P of T such
that we have w(y) ≥ ∆ for every edge e = (x, y) of P . We call this path the heavy path
of F1, and the edges contained in the heavy path the heavy edges of F1. Note that (1)
the heavy path has to leave a 1-edge-out component of u with at most ∆ edges for the
search to reach more than ∆ edges and (2) the heavy path cannot enter the component
again after leaving it because the subtree of any incoming edge of the component cannot
contain ∆ or more edges as the only outgoing edge of the component was already used.
We construct the residual graph G′ formed from G by reversing the direction of the
heavy edges of F1. The residual graph will be used as follows. If there exists a 1-edge-out
component 1EOut(u) of u containing at most ∆ edges, then the heavy path P can be
interpreted as sending one unit of flow out of 1EOut(u) and in the residual graph with
respect to this flow no additional unit of flow can be sent out of 1EOut(u). That means
that no other search from u is able to have an outgoing path from 1EOut(u). Next, we
execute a second traversal F2 from u (not necessarily a depth-first search) on G′. We
show that if there exists a 1-edge-out component 1EOut(u) of u containing at most ∆
edges, this second traversal has two main properties: (i) it never visits edges outside
of G′[V (1EOut(u))], and (ii) it visits all the edges in G′[V (1EOut(u))]. Whenever F2

traverses more than ∆ edges, we terminate the search and conclude that any 1-edge-out
component of u contains more than ∆ edges.

Lemma 6. Let G′ be the residual graph obtained from G by reversing the direction of
the heavy edges of F1. The traversal F2 reaches at most ∆ edges in G′ if and only if there
exists a 1-edge-out component 1EOut(u) of u containing at most ∆ edges. Moreover, if
F2 traverses at most ∆ edges, then the subgraph in G induced by the vertices traversed by
F2 defines 1EOut(u).

Proof. Let us first assume that there exists a 1-edge-out component 1EOut(u) of u that
contains at most ∆ edges and has one outgoing edge (x, y). By Lemma 4, the edge (x, y)
is reversed in the residual graph G′. Moreover, the lemma implies that no incoming edge
to 1EOut(u) is reversed in G′ because each incoming edge (v, z) either has w(z) < ∆ or
z ∈ T [u, x]; in the latter case (v, z) cannot be a DFS tree edge. Thus, G′[V (1EOut(u))]
has no outgoing edges to G′[V (G) \ V (1EOut(u))]. Therefore, F2 cannot visit more than
∆ edges. We now show that F2 visits all vertices in G′[V (1EOut(u))] using only paths
internal to G′[V (1EOut(u))]. Notice that this does not trivially follow from Lemma
3 since we are operating on the residual graph G′, where the direction of some edges
of 1EOut(u) is reversed. Assume by contradiction that u cannot visit all vertices in
G′[V (1EOut(u))]. Then, there is a set of vertices C ⊂ V (1EOut(u)) that has no incoming
edge in the residual graph G′. By Lemma 5 the edges that are reversed in the residual
graph G′ form a path P in the DFS tree of F1. The path P contains an incoming edge
to C in G since otherwise 1EOut(u) \ C is a 1-edge-out component of u, contradicting
the minimality of 1EOut(u). Since C has no incoming edges from 1EOut(u) \ C in G′,

10

we have that P has no outgoing edges from C to 1EOut(u) \ C. Therefore T [u, y] ∈ P
implies x ∈ C. Since P does not enter 1EOut(u) after leaving through (x, y), only one
edge incident to C was reversed in G′. As there is no edge incident to C in G′, this is a
contradiction to Lemma 3, which says that u has two edge-disjoint paths to x. Hence no
such set C exists and F2 traverses all vertices of 1EOut(u).

Now we show the opposite direction. Assume that F2 visits at most ∆ edges in the
residual graphs. We will show that there exists a 1-edge-out component 1EOut(u) of u
that contains at most ∆ edges and that is given by the subgraph induced by the vertices
traversed by F2. Let C be the subgraph that F2 traversed in the residual graph. Then C
has no outgoing edges in G′, since otherwise their neighbors would also be traversed by
F2. Since F1 visited 2∆ + 1 edges, there is at least one edge e∗ incoming to C in G′ that
was reversed. Note that there cannot exist more than one incoming edge to C in G′ that
was reversed after F1, since that would imply the existence of an outgoing edge from C
since the set of reversed edges forms a path by Lemma 5. Hence u has no path to any of
the vertices in V \ C in the residual graph G′, and has only one outgoing edge in the
original graph G. Therefore, after restoring the reversed edges, C forms a 1-edge-out
component of u that contains at most ∆ edges, with the only outgoing edge being e∗.
Notice that the vertices of C were all traversed by F2. It remains to show that there is
no 1-edge-out component 1EOut′(u) of u with one outgoing edge (x′, y′) and such that
1EOut′(u) ⊂ 1EOut(u). Assume by contradiction that there exists such a component.
By Lemma 4 the traversal F1 reversed (x′, y′), and there is no other outgoing edge from
1EOut′(u) in the residual graph. Therefore, F2 cannot visit vertices outside 1EOut′(u).
A contradiction to the fact that F2 visited all the edges and vertices in 1EOut(u).

Recall that we assumed in the beginning of this section that u reaches at least 2∆ + 1
edges. That allows us to eliminate the existence of a 0-edge-out component of u with
at most 2∆ edges. This property is important for determining whether there exists
a 1-edge-out component of u with at most ∆ edges, since our algorithm uses a DFS
search (namely F1) to visit 2∆ + 1 edges. After the execution of the traversal F2 on the
residual graph G′, we can answer whether there exists a 1-edge-out component of u with
at most ∆ edges, as shown in Lemma 6. The pseudocode of our algorithm is illustrated
in Procedure 1EdgeOut. The following lemma summarizes the result of this section.

Lemma 7. Procedure 1EdgeOut computes a 1-edge-out (resp., 1-edge-in) component of u
with at most 2∆ edges or decides that there is no 1-edge-out (resp., 1-edge-in) component
of u with at most ∆ edges. Moreover, Procedure 1EdgeOut runs in O(∆) time.

2.2 Computing the 2-edge-connected subgraphs.

Let G = (V,E) be a digraph. A straightforward algorithm for computing the 2-edge-
connected subgraphs is to recursively remove, from G, one strong bridge of each strongly
connected component of G until no strong bridges can be found. In each recursive call
at least one vertex gets disconnected from the rest of the graph. Since computing the
strongly connected components and one strong bridge (or all strong bridges) of a digraph
can be done in linear time, this simple algorithm runs in O(mn) time.

11

Procedure 1EdgeOut(G, u, ∆)

Input: Digraph G = (V,E), a vertex u, and an integer ∆
Output: Either a 1-edge-out component of u with at most 2∆ edges or ∅; if ∅ is

returned, then every 1-edge-out component that contains u has more
than ∆ edges

1 Execute DFS F1 from u for up to 2∆ + 1 edges
2 Let S1 be the vertices reached by F1

3 if F1 cannot reach 2∆ + 1 edges then
4 return G[S1] as 1-edge-out component of u

5 else
6 Let P be the heavy path of F1

7 Let G′ be G after reversing the direction of the edges of P
8 Execute DFS F2 from u on G′ for up to ∆ + 1 edges
9 Let S2 be the vertices reached by F2

10 if F2 cannot reach ∆ + 1 edges then
11 return G[S2] as 1-edge-out comp. of u

12 else
13 return ∅

In our algorithm we build on the simple algorithm described above. The high-level
idea of our approach is to (a) find subgraphs with at most

√
m edges that are not

2-edge-connected to the rest of the graph in total time O(m
√
m) and by this (b) limit the

maximum recursion depth to
√
m by only making recursive calls when large subgraphs will

be disconnected from each other or the remaining graph has at most O(
√
m) edges. This

is done as follows. We use the terms small and large components to refer to subgraphs
that contain at most and more than

√
m edges, respectively. We first identify all the

small components that can be disconnected from the rest of the graph by a single edge
deletion. In each recursive call of the algorithm we maintain a list L of vertices for which
we want to identify small 1-edge-out and 1-edge-in components. Initially, we set the list
L to contain all vertices in order to find all small components that can be separated
by at most one edge. We search for such small subgraphs using the algorithm from
Section 2.1. We compute 1-edge-in components by executing 1EdgeOut(GR, u,

√
m),

where GR is the reverse graph of G. Whenever we find a small 1-edge-out or 1-edge-in
component, we remove all its incident edges and search for more small 1-edge-out or
1-edge-in components in the remaining graph. We do that by inserting the endpoints
of the deleted edges into the list L. If, on the other hand, we cannot find new small
components, we conclude that either the remaining graph is 2-edge-connected or there
are at least two large sets of vertices that will get disconnected by either recomputing
SCCs or by the removal of a strong bridge. In a final phase of each recursive call we
compute the SCCs of the graph and for each SCC we remove one strong bridge and
then recursively call the algorithm on every resulting SCC. Before each recursive call, we

12

Algorithm 1: 2ECS(G,L)

Input: A strongly connected digraph G = (V,E) and a list of vertices L (initially
L = V)

Output: The 2-edge-connected subgraphs of G

1 Let m0 be number of edges of initial graph
2 if G has no strong bridge then
3 return {G} as 2-edge-connected subgraph

4 while L 6= ∅ & G has more than 2
√
m0 edges do

5 Extract a vertex u from L
6 S ←1EdgeOut(G, u,

√
m0)

7 SR ←1EdgeOut(GR, u,
√
m0)

8 If either S or SR is not empty, remove from G all edges incident to one
non-empty set of S and SR and add their endpoints to L

9 Compute SCCs C1, . . . , Cc of G
10 U ← ∅
11 foreach Ci, 1 ≤ i ≤ c do
12 Remove one strong bridge from Ci

13 Recompute SCCs and delete the edges between them
14 foreach SCC C ′ do
15 Insert into L′ the vertices of C ′ that are endpoints of newly deleted edges
16 U ← U ∪ 2ECS(C ′, L′)

17 return U

initialize the lists L to contain the vertices that lost an edge during the last phase of the
parent recursive call. We keep this list in order to restrict the total number of searches
for small separable components to O(m + n) since, after initially adding all vertices to
the list of the initial call, we only add the endpoints of deleted edges into the lists (which
is O(m)). Algorithm 1 contains the pseudocode of our algorithm.

The following is a key property that allows us to find small sets that are not strongly
connected or that can be disconnected by deleting a single edge, or to conclude that
there are no such small sets. Every new 1-edge-out component that appears in the graph
throughout the algorithm must have lost an outgoing edge. Respectively, every new
1-edge-in component that appears must have lost an incoming edge. Therefore, we use
the list L to keep track of the vertices that have lost an edge and for each such vertex
u we search for new small 1-edge-out or 1-edge-in components of u. If no such small
components exist in a set of vertices C, then we know that either C is a 2-edge-connected
subgraph or either recomputing SCCs or the deletion of some strong bridge disconnects
at least two large components. These properties are summarized in the following lemma.

Lemma 8. Let C be a set of vertices in G. Every 1-edge-out or 1-edge-in component (of
some vertex u ∈ C) in G[C] that is not such a component in G must contain an endpoint

13

of an edge incident to G[C]. Moreover, if there is no 1-edge-out or 1-edge-in component
containing at most

√
m edges for any vertex u ∈ C in both G and G[C], then one of the

following holds:

(a) G[C] is a 2-edge-connected subgraph of G.

(b) There are two sets A,B ⊂ C with |E(G[A])|, |E(G[B])| >
√
m such that A and B

are in different strongly connected components of G[C].

(c) For each strong bridge of G[C] there are two sets A,B ⊂ C with |E(G[A])|, |E(G[B])| >√
m that get disconnected by the deletion of the strong bridge.

Proof. We first show that every 1-edge-out component 1EOut(u) of some vertex u ∈ C
that is no 1-edge-out component in G must contain a vertex x ∈ 1EOut(u) such that
there is an edge (x, y) with y 6∈ C. Assume, by contradiction, that 1EOut(u) exists but
there is no such edge (x, y) in G with x ∈ 1EOut(u) and y /∈ C. In this case we have
that the very same component 1EOut(u) is a 1-edge-out component of u in G. The
same argument on the reverse graph shows that every new 1-edge-in component (of some
vertex u ∈ C) in G[C] must contain an endpoint of an edge incident to G[C] in G.

We now turn to the second part of the lemma. If G[C] is strongly connected and does
not contain a strong bridge, then G[C] is 2-edge-connected and thus (a) holds. If G[C]
is not strongly connected, then it contains (at least) two disjoint sets A,B ⊂ C such
that both G[A] and G[B] are strongly connected components of G[C] and G[A] has no
outgoing edge in G[C] (i.e., G[A] is a sink in the DAG of SCCs of G[C]) and G[B] has
no incoming edge in G[C] (i.e., G[B] is a source in the DAG of SCCs of G[C]). That
is, in G[C] we have that G[A] is a 1-edge-out component of some u ∈ C and G[B] is a
1-edge-in component of some u′ ∈ C. Both can have the same property in G or be new
such components in G[C] compared to G. In any case it contradicts the assumptions if
one of them has at most

√
m edges and otherwise statement (b) holds. If G[C] is strongly

connected and contains a strong bridge e∗, an analogous argument can be made for two
disjoint sets A,B ⊂ C by considering the DAG of SCCs of G[C] \ e∗. In this case e∗ is
the only incoming edge of B and the only outgoing edge of A in G[C]. We have that
case (c) holds if the assumptions of the lemma are satisfied.

Lemma 9. Algorithm 2ECS runs in O(m
√
m) time.

Proof. First notice that each time we search for a 1-edge-out or a 1-edge-in component,
we are searching for a component with one outgoing (resp., incoming) edge containing
at most

√
m edges or with no outgoing (resp., incoming) edges and at most 2

√
m edges.

We can identify if such a component containing a given vertex u exists in time O(
√
m)

by using the algorithm of Section 2.1. We initiate such a search from each vertex that
appears in the list L of some recursive call of the algorithm. Initially, we place all
vertices in the list L. Throughout the algorithm we insert into L only vertices that are
endpoints of deleted edges. Therefore, the number of vertices that are added to the
lists L throughout the algorithm is O(m). Hence, the total time spent on these searches
is O(m

√
m).

14

Consider now the time spend in each recursive call without the searches for 1-edge-out
and 1-edge-in components. Let G′ be the graph for which the recursive call is made and
let mG′ = |E(G′)|. In each recursive call the algorithm spends O(mG′) time searching for
strong bridges in G′ in lines 2 and 12 and computing SCCs in lines 9 and 13. Since the
subgraphs of different recursive calls at the same recursion depth are disjoint, the total
time spent at each level of the recursion is O(m). We now bound the recursion depth
with O(

√
m).

We show that the graph passed to each recursive call has at most max{mG′−
√
m, 2
√
m}

edges, or G′ is a 2-edge-connected subgraph and thus the recursion stops. This implies a
recursion depth of O(

√
m) as follows. If the graph passed to a recursive call has at most

2
√
m edges, then also the number of vertices of this graph is at most 2

√
m. Therefore,

even if the algorithm only removes one strong bridge from every strongly connected
component in each recursive call, the total recursion depth is at most O(

√
m). On the

other hand, the number of times that the graph passed to a recursive call has
√
m fewer

edges than G′ is at most
√
m. Overall, this implies that the recursion depth is bounded

by O(
√
m).

It remains to show the claimed bound on the size of the graph passed to a recursive
call in line 16. For every 1-edge-out or 1-edge-in component with at most 2

√
m edges

that is discovered throughout the algorithm, its incident edges are removed and therefore
it will be in a separate strongly connected component with at most 2

√
m edges. Let C

be the set of vertices that were not included in any 1-edge-out or 1-edge-in component.
By Lemma 8 the subgraph G′[C] either is a 2-edge-connected subgraph or there are two
sets A and B with |E(A)|, |E(B)| >

√
m that will be separated in Line 12. Thus, every

graph passed to the recursive call will have at most max{|E(G′)| −
√
m, 2
√
m} edges.

The lemma follows.

Lemma 10. Algorithm 2ECS is correct.

Proof. First note that by assumption the initial call to the algorithm is on a strongly
connected graph and that recursive calls are only made on strongly connected subgraphs.
Thus whenever the algorithm reports a 2-edge-connected subgraph in line 3, then it is
a strongly connected subgraph that does not contain any strong bridges, which is by
definition a 2-edge-connected subgraph. Thus it suffices to show that the algorithm
reports all the maximal 2-edge-connected subgraphs. Notice that this also implies that the
reported 2-edge-connected subgraphs are maximal. Let C be a maximal 2-edge-connected
subgraph. We show that the vertices of C do not get separated by the algorithm, and
therefore C is reported eventually as a 2-edge-connected subgraph. Since there are two
edge-disjoint paths between every pair of vertices in C, any search for either a 1-edge-out
or a 1-edge-in component of a vertex u (lines 6–7) either returns a superset of C or fails
to identify such a set containing a subset of the vertices of C. Furthermore, notice that
any deletion of an edge that does not have both endpoints in C does not affect the fact
that C is 2-edge-connected. That is, unless an edge with both endpoints in C is deleted,
no strong bridge appears in C. Thus, it remains to show that no edge (x, y) such that
x, y ∈ C is ever deleted throughout the algorithm. The edges deleted in line 8 of the

15

algorithm are incident to a 1-edge-out or a 1-edge-in component. Since C is always fully
inside or fully outside of such a set, no edge from C is deleted. The edges deleted in
line 12 are strong bridges and the edges deleted in line 13 before the recursive calls are
between separate strongly connected components. Since C is 2-edge-connected, no edges
from C are deleted. Finally, notice that at each level of recursion at least one of the
strong bridges of each strongly connected component of the graph is deleted and the
algorithm is recursively executed in each resulting strongly connected component. Thus,
finally there will be a recursive call for each strongly connected subgraph that does not
contain strong bridges, including C.

We have shown the following theorem.

Theorem 11. The maximal 2-edge-connected subgraphs of a digraph can be computed in
O(m3/2) time.

3 Maximal 2-vertex-connected subgraphs in directed graphs

In this section we first introduce a procedure for identifying 1-vertex-out components
containing at most ∆ edges in time proportional to ∆. The same algorithm applied to
the reverse graph identifies 1-vertex-in components. We then use this subroutine with
∆ =

√
m to obtain a O(m3/2) algorithm for computing the maximal 2-vertex-connected

subgraphs of a given directed graph.

3.1 1-vertex-out and 1-vertex-in components.

We begin with the definition of 1-vertex-out and 1-vertex-in components of a vertex.

Definition 12. Let G = (V,E) be a digraph and u ∈ V be a vertex. A k-vertex-out
component of u is a minimal subgraph S of G that contains u and has at most k vertices
X ⊂ V (S), u 6∈ X, with outgoing edges to G \ S.

Definition 13. Let G = (V,E) be a digraph and u ∈ V be a vertex. A k-vertex-in
component of u is a minimal subgraph S of G that contains u and has at most k vertices
X ⊂ V (S), u 6∈ X, with incoming edges from G \ S.

As in the case of k-edge-out (resp., k-edge-in) components, a vertex u may have more
than one k-vertex-out (resp., k-vertex-in) component. Also note that for k′ < k, every
k′-vertex-out component of u is a k-vertex-out component of u as well. For the case when
k = 1, the only vertex x that has outgoing (resp., incoming) edges from a 1-vertex-out
(resp., 1-vertex-in) component S is either a strong articulation point or a vertex that has
outgoing (resp., incoming) edges to vertices that belong to different strongly connected
components than x. Moreover, each 2-vertex-connected subgraph is either completely
contained in S or in (G \ S) ∪ x.

For a given vertex u and a parameter ∆ < m/2, we present an algorithm for computing
a 1-vertex-out component of u that runs in time O(∆) and has the following guarantees:

16

• If there exists a 1-vertex-out component of u with at most ∆ edges, then it returns
a 1-vertex-out component of u with at most 2∆ edges.

• If no 1-vertex-out component with at most ∆ edges exists, it might either return a
1-vertex-out component of u with at most 2∆ edges or the empty set.

As mentioned earlier, our algorithm identifies a 1-vertex-out component of u in time
proportional to its size (i.e., its number of edges). In Section 3.2 we will use this algorithm
to determine quickly whether there exist 1-vertex-out (resp., 1-vertex-in) components
of small size (namely, containing at most a predefined number of edges ∆), or conclude
that all 1-vertex-out (resp., 1-vertex-in) components have large size. We show that
this is sufficient to bound the total running time of our algorithm for computing the
2-vertex-connected subgraphs.

For the rest of this section, we assume that we are given a starting vertex u that can
reach at least 2∆ + 1 edges. If this is not the case, then the reachable subgraph from u
defines a valid 1-vertex-out component of u that contains at most 2∆ edges and has no
outgoing edges. The exactly same algorithm executed on the reverse graph computes a
1-vertex-in component of u that contains at most 2∆ edges, or we conclude that there is
no 1-vertex-in component of u with at most ∆ edges. Since the algorithm for computing
a 1-vertex-in component of u is identical to the algorithm for computing a 1-vertex-out
component of u when executed on the reverse graph, we only describe the algorithm
for finding 1-vertex-out components. The following supporting lemma shows important
properties which we exploit in our algorithm.

Lemma 14. Let 1V Out(u) be a 1-vertex-out component of a vertex u and let x, x 6= u,
be the only vertex having outgoing edges from 1V Out(u). It holds that u has a path
to every vertex v ∈ 1V Out(u) that is contained entirely within the subgraph 1V Out(u).
Moreover, u has two internally vertex-disjoint paths to x in 1V Out(u).

Proof. We begin by showing that u has a path to every vertex v ∈ 1V Out(u) that is
contained entirely within the subgraph 1V Out(u). Assume, for the sake of contradiction,
that there is a set of vertices C such that the vertices of C are unreachable from u in
1V Out(u). Then there is no edge (w, z) where w ∈ 1V Out(u)\C and z ∈ C and thus the
outgoing edges from the vertex x are the only possible outgoing edges from 1V Out(u)\C.
Thus, 1V Out(u) \ C is a 1-vertex-out component of u, which contradicts the minimality
of 1V Out(u).

We now show that u has two internally vertex-disjoint paths to x in 1V Out(u). First,
we note that all simple paths from u to x contain only vertices in 1V Out(u) since there
is no other vertex x′ 6= x such that x′ ∈ 1V Out(u) and x′ has edges leaving 1V Out(u).
Assume, for the sake of contradiction, that all paths from u to x in 1V Out(u) share a
common vertex w. Then, u does not have a path to x in 1V Out(u) \w. Let C be the set
of vertices that become unreachable from u in 1V Out(u) \ w. (Notice that |C| ≥ 1 since
x ∈ C.) Clearly, there is no edge (w′, z′) such that w′ ∈ 1V Out(u) \ C and z′ ∈ C, since
z′ would be reachable from u. Hence, the only vertex that has edges leaving 1V Out(u)\C
is w. Thus, 1V Out(u) \ C is a 1-vertex-out component of u, which again contradicts the
minimality of 1V Out(u). The lemma follows.

17

Our algorithm begins with a DFS traversal F1 from u. We charge to a visited vertex
its outgoing edges that were traversed. We stop F1 when the number of the traversed
edges reaches 2∆ + 1. Let T be the DFS tree constructed by the DFS traversal. We
define the weight of a vertex v, denoted by w(v), to be the total number of edges charged
to the descendants of v in T (including v).

Assume that u has a 1-vertex-out component C, with a single vertex x having outgoing
edges to V \ C, containing at most ∆ edges. It is easy to see that F1 is guaranteed
to traverse at least ∆ + 1 edges outside C (since it visits at least 2∆ + 1 edges and
|E(C)| ≤ ∆), and therefore, since x is the only vertex with outgoing edges from C we
have w(x) ≥ ∆ + 1. Moreover, for any vertex v 6= u whose DFS subtree explores only
vertices inside C, we have w(v) < ∆.

Lemma 15. Let 1V Out(u) be a 1-vertex-out component of u such that |E(1V Out(u))| ≤
∆, let x be the only vertex that has edges leaving 1V Out(u), and let T be a DFS tree
generated by a DFS traversal from u that visited 2∆ + 1 edges. Then, for each v ∈ T [u, x]
it holds that w(v) ≥ ∆ + 1 and for each v ∈ 1V Out(u) \ T [u, x] it holds that w(v) ≤ ∆.

Proof. By the fact that x is the only vertex that has edges leaving 1V Out(u) and that
1V Out(u) contains at most ∆ edges, the only way a DFS traversal can visit 2∆ + 1 edges
is by visiting at least ∆ + 1 edges outside of 1V Out(u). It follows that w(x) ≥ ∆ + 1, and
therefore, for each v ∈ T [u, x] it holds that w(v) ≥ ∆ + 1. Note that x can be used only
once by the DFS traversal, and also that any traversal from u that does not visit vertices
v /∈ 1V Out(u) cannot be charged by ∆ + 1 edges. Therefore, none of the subtraversals
from vertices v ∈ 1V Out(u) \ T [u, x] could visit vertices outside 1V Out(u), since either
v was visited after x, or it could not visit x. In both cases v could not use the outgoing
edges of x to visit more that ∆ + 1 edges. Thus, for each vertex v ∈ 1V Out(u) \ T [u, x],
it holds that w(v) ≤ ∆.

After the traversal F1, we say that a vertex v is blocked if w(v) ≥ ∆ + 1. Next, we
start a second traversal F2 from u (not necessarily a depth-first search) as follows. The
traversal F2 can visit only the vertex u and vertices that are not blocked. We say that
the traversal reaches a vertex v whenever it traverses an edge incoming to v; thus F2

can reach blocked vertices but not visit them and all vertices that are visited are also
reached by F2. Whenever F2 reaches a blocked vertex v, we unblock all blocked vertices
on T [u, v] \ v. (Notice that v itself is not unblocked.) Assuming that there exists a
1-vertex-out component of u with at most ∆ edges, this second traversal F2 has two main
properties: (i) it never unblocks x, and (ii) it reaches all edges and vertices in 1V Out(u).
Since we are interested only in computing a 1-vertex-out component of u containing at
most ∆ edges (recall that we assumed in the beginning that u can reach at least 2∆ + 1
edges), we terminate F2 whenever it visits ∆ + 1 edges. If the traversal F2 visits ∆ + 1
edges we conclude that there is no 1-vertex-out component of u containing at most ∆
edges. Before proving the above claim, we first show the following supporting lemma,
which says that the blocked vertices form a path in the DFS tree; we call this path the
heavy path of F1.

18

Procedure 1VertexOut(G, u, ∆)

Input: Digraph G = (V,E), a vertex u, and an integer ∆
Output: Either a 1-vertex-out component of u with at most 2∆ edges or ∅; if ∅ is

returned, then no 1-vertex-out component of u with at most ∆ edges
exists

1 Execute DFS F1 from u for up to 2∆ + 1 edges
2 Let S1 be the vertices reached by F1

3 if F1 cannot reach 2∆ + 1 edges then
4 return G[S1] as 1-edge-out component of u

5 else
6 Block in G vertices on the heavy path of F1

7 Execute a DFS F2 from u on G for up to ∆ + 1 edges, whenever a blocked
vertex v is reached: unblock blocked vertices from u to the predecessor of v in
F1 and continue the DFS without v

8 Let S2 be the vertices reached by F2 (including reached but not unblocked
vertices)

9 if F2 cannot reach ∆ + 1 edges then
10 return G[S2] as 1-vertex-out comp. of u

11 else
12 return ∅

Lemma 16. Let F be a DFS traversal that visits 2∆ + 1 edges and let T be its DFS tree.
The vertices v with w(v) ≥ ∆ + 1 form a path in T .

Proof. Assume, by contradiction, that the vertices v with w(v) ≥ ∆ + 1 do not form a
path on T . That means, there are two vertices x and y with w(x), w(y) ≥ ∆ + 1 that
do not have an ancestor-descendant relation in T , i.e., T (x) ∩ T (y) = ∅. If we count the
edges entering x and y in T , this is a contradiction to the fact that F visited only 2∆ + 1
edges. Therefore, the vertices v with w(v) ≥ ∆ + 1 form a path in T .

Lemma 17. Let G be a graph where the vertices v with w(v) ≥ ∆ + 1 are blocked after
the DFS traversal F1. If there exists a 1-vertex-out component of u containing at most
∆ edges, then F2 traverses at most ∆ edges. Moreover, if F2 traverses at most ∆ edges,
the subgraph induced by the vertices reached by F2 (including a reached but not unblocked
vertex) defines a 1-vertex-out component of u that contains at most ∆ + 1 vertices and
at most 2∆ edges.

Proof. Let us first assume that there exists a 1-vertex-out component 1V Out(u) of u
that contains at most ∆ edges and that all edges leaving 1V Out(u) share a common
source x. By Lemma 15, x is blocked. The traversal F2 cannot visit more than ∆ edges,
since u cannot visit vertices v /∈ 1V Out(u) avoiding x, and hence, F2 cannot unblock x.

19

Now we show the opposite direction. Assume that F2 visits at most ∆ edges. We will
show that there exists a 1-vertex-out component 1V Out(u) of u that contains at most
∆ vertices and at most 2∆ edges and is induced by the vertices reached by F2. Clearly,
if F2 unblocks the whole path Pblocked, then it will visit at least 2∆ + 1 edges, since F1

did so. Hence, there is at least one vertex that remains blocked after the traversal of
F2; let v∗ be this vertex. Let C be the set of vertices that were reached by F2. Then,
C has at most one blocked vertex, which is v∗, since whenever two vertices of the path
Pblocked are reached, reaching the vertex further away from u on Pblocked unblocks all the
blocked vertices on the tree path from u. Notice that all edges leaving C are from v∗.
Moreover, v∗ might have at most ∆ edges to vertices in C that were not traversed. Thus
the subgraph induced by C forms a 1-vertex-out component of u and contains at most
2∆ edges, with the only vertex that has outgoing edges being v∗. Notice that all vertices
in C were reached by F2. We are left to show that there is no 1-vertex-out component
1V Out′(u) of u where all the outgoing edges share a common vertex x′ and such that
1V Out′(u) ⊂ 1V Out(u). Assume by contradiction that there exists such a component.
By Lemma 15 the traversal F1 would have blocked x′, and there is no other outgoing
edge from a vertex in 1V Out′(u) to a vertex in 1V Out(u) \ 1V Out′(u). Therefore, F2

cannot visit vertices outside 1V Out′(u) since it cannot unblock x′. A contradiction to
the fact that F2 visited all the vertices of 1V Out(u).

After the execution of the traversal F2 we can either return a 1-vertex-out component
of u with at most 2∆ edges or decide that all 1-vertex-out components of u contain more
than ∆ edges, as shown in Lemma 6. The pseudocode of our algorithm is illustrated in
Procedure 1VertexOut. The following lemma summarizes the result of this section.

Lemma 18. We compute in O(∆) time a 1-vertex-out component of a vertex u containing
at most 2∆ edges, or we conclude that there is no 1-vertex-out component of u containing
at most ∆ edges.

3.2 Computing the 2-vertex-connected subgraphs.

In this section we present an O(m
√
m) time algorithm for computing the 2-vertex-

connected subgraphs of a directed graph. We begin with a simple algorithm and then
show how we can improve its running time. Recall that the 2-vertex-connected subgraphs
of a graph are subgraphs that do not contain any strong articulation points, that is,
they cannot get disconnected by the deletion of any single vertex. In contrast to 2-edge-
connected subgraphs, the 2-vertex-connected subgraph do not define a partition of the
vertices of the input graph. More specifically, any two 2-vertex-connected subgraphs
might share up to one common vertex. This introduces an additional challenge since
the existence of a strong articulation point x guarantees that the subsets of two sets
of vertices S and V \ (S ∪ x) do not appear in the same 2-vertex-connected subgraph,
but does not provide information on whether x itself appears in a 2-vertex-connected
subgraph with vertices from S or V \ (S ∪ x).

A simple algorithm for computing the 2-vertex-connected subgraphs of a directed
graph works as follows. We restrict our attention to the strongly connected components

20

of the input graph. We repeatedly find a strong articulation point x that disconnects
the graph into two sets of vertices S and V \ (S ∪ x), i.e., there is no pair of vertices u
and v that are strongly connected in G \ x such that u ∈ S and v ∈ V \ (S ∪ x). We
recursively execute the same algorithm on the strongly connected components of the
subgraphs G[S ∪ x] and G[V \ S] that contain at least three vertices. If a recursive call
fails to identify a strong articulation point in a strongly connected subgraph, then it
reports the subgraph as 2-vertex-connected. Both the correctness and the running time
of this simple algorithm are easy to verify. First, since at each recursive call we identify
a strong articulation point that separates two (non empty) sets of vertices, we know
that no pair across these two sets can be in the same 2-vertex-connected subgraph.We
moreover restrict the recursive calls on the strongly connected components of the resulting
subgraphs since a 2-vertex-connected subgraph is also strongly connected. Therefore, all
the 2-vertex-connected subgraphs are preserved at each recursive call, and the algorithm
reports a 2-vertex-connected subgraph once it recurses on a subgraph that does not
contain a strong articulation point, which is correct by definition. Second, we bound the
running time. The maximum recursion depth is n−1 since every recursive call is executed
on a graph that contains at least one vertex less than the parent call. Although at each
recursive call the strong articulation point is included in both sets that it separates, the
set of edges is partitioned between the two subgraphs. Therefore, at each recursion level
the total number of edges in all instances is at most m, and the total time to compute
a strong articulation point and the strongly connected components at the end of each
recursive call is O(m), which leads to overall O(mn) running time.

The high-level idea of our algorithm for computing the 2-vertex-connected subgraphs
is similar to the algorithm of Section 2.2 for computing the 2-edge-connected subgraphs,
but requires some additional machinery. In order to construct the two subgraphs on
whose strongly connected components the algorithm recurses we define the following
operation. Let G be a digraph, x a vertex, and N a subset of neighbors of x. The
operation split(x,N) is executed as follows. First, we create an additional vertex x′ in
G, that serves as a copy of x. Second, for every edge (x, y), where y ∈ N , we remove
(x, y) from G and add the edge (x′, y). Respectively, for every edge (y, x), where y ∈ N ,
we remove (y, x) from G and add the edge (y, x′). This operation can be implemented to
take time proportional to the number of neighbors of vertices in N , by traversing their
edges and for every edge incident to x we change it to be incident to x′.

Lemma 19. The number of edges in a graph does not change after any split operation.
The maximum number of auxiliary vertices after any sequence of split operations is 2m−n.

Proof. By definition, no edges are added or deleted while performing the split operation.
Since every edge has two endpoints, in the worst case all vertices are distinct. Notice
that the original n vertices always exist in the graph. Therefore, the total number of
auxiliary vertices cannot exceed 2m− n.

Lemma 20. Let G be a directed graph, x a strong articulation point, and N1, N2 the
neighbors of x such that all paths from any vertex in N1 to any vertex in N2 go through

21

x. There is a one-to-one correspondence between the 2-vertex-connected subgraphs in G
and in G after the execution of either split(x,N1) or split(x,N2).

Proof. W.l.o.g., we assume that the split operation is split(x,N1). Let C be a 2-vertex-
connected subgraph before the execution of the split operation. If the split operation
is not executed on a vertex of C, then C remains a 2-vertex-connected subgraph. Now
assume that the split operation is executed on a vertex x ∈ C. Then all neighbors of x
that are in C are strongly connected in G \ x, and therefore they are all included in N1

or none of them is. Thus, all the edges between vertices in C are preserved.
Now we prove the opposite direction. Let C be a 2-vertex-connected subgraph after

the execution of the split operation. Then, either all edges between the vertices in C
existed before the split operation, or there is an auxiliary vertex x ∈ C such that all edges
between vertices in C \x existed before the operation and all edges between vertices C \x
and x were between C \x and a vertex x′ before the split operation (where x′ is the vertex
on which the split operation was executed). In both cases C was a 2-vertex-connected
subgraph before the split operation.

We are ready to describe our algorithm for computing the 2-vertex-connected subgraphs
of a directed graph G. We build on the simple recursive algorithm that is described at
the beginning of this section. To distinguish the input graph from the graphs in the
recursive calls, we refer to the original input graphs as G0 = (V0, E0). We use the terms
small components and large components to refer to subgraphs that contains at most and
more than

√
m0 edges, respectively, where m0 = |E0|. (We allow small components to

contain up to 2
√
m0 edges.) Our algorithm begins by identifying all the small 1-vertex-out

and 1-vertex-in components of any vertex in G0, using the algorithm from Section 3.1.
Throughout the algorithm we maintain a list L of the vertices for which we should start
a search for a small 1-vertex-out or 1-vertex-in component. We show that it is sufficient
to search from the vertices that are inserted into L throughout the algorithm in order to
find {all} the small 1-vertex-out and 1-vertex-in components of all the vertices in the
graph. In the initial call to the algorithm we set L = V0. (I.e., this is not done for every
recursive call.) At each recursive call the algorithm first tests whether the given strongly
connected graph is 2-vertex-connected, and if that’s the case, it outputs the graph as a
2-vertex-connected subgraph. Then, while L is not empty, we extract a vertex u from L
and search for a small 1-vertex-out or a small 1-vertex-in component of u (containing at
most 2

√
m edges).

W.l.o.g., let 1V Out(u) be a small 1-vertex-out component of a vertex u that we identify.
If all the outgoing edges from 1V Out(u) share a common vertex x, then the algorithm
executes split(x,N), where N are the neighbors of x in 1V Out(u). Furthermore, for
every edge e = (w, z) incident to 1V Out(u) that is not adjacent to x, insert both w
and z into L and remove e from the graph. We treat every identified small 1-vertex-in
component in an analogous way.

If, on the other hand, we cannot find new small 1-vertex-out or 1-vertex-in components,
we conclude that there are at least two large sets of vertices that are in different strongly
connected components, or for every strong articulation point there exist two large sets

22

of vertices that get disconnected by the removal of the strong articulation point. To
exploit that, in a final phase of each recursive call we compute the strongly connected
components C1, C2, . . . , Cl of the resulting graph after all split operations, we execute
split (v,NC′) on some strong articulation point v from each strongly connected component
Ci, where NC′ are the neighbors of v that are contained in a singe arbitrary strongly
connected component C ′ in G[Ci] \ v, and we recursively call the algorithm on each
strongly connected component of the resulting graph. Before every recursive call we
initialize the lists L to contain the vertices that lost an edge during the last phase of the
parent recursive call. We keep this list in order to restrict the total number of searches
for small 1-vertex-out and 1-vertex-in components to O(m + n); after initially adding all
vertices into the list of the initial call, we only add the endpoints of deleted edges into
the lists (which is O(m)). Algorithm 2 contains the pseudocode of our algorithm.

Similarly to Algorithm 1 from Section 2.2, we now show the key property that al-
lows us to either find small sets that can be separated by a single vertex deletion or
conclude that there are at least two large components that get separated by at most
one strong articulation point. Every new 1-vertex-out component that appears in the
graph throughout the algorithm must have lost an outgoing edge that is not outgoing
from the separating vertex of the component (the only vertex that has outgoing edges
from a 1-vertex-out component). Respectively, every new 1-vertex-in component that
appears must have lost an incoming edge to a vertex other than the separating vertex
of the 1-vertex-in component. Therefore, we use the list L to keep track of the vertices
that have lost an edge and for each such vertex u we search for new small 1-vertex-out or
1-vertex-in components of u. If no such small components exist in a set of vertices C,
then we know that either (i) C is a 2-vertex-connected subgraph or (ii) we are guaranteed
that either two large sets of vertices are in separate strongly connected components of
the graph, or that every strong articulation point separates two large sets of vertices.
This property is summarized in the following lemma.

Lemma 21. Let C be a set of vertices in G. Each 1-vertex-out component (of some
vertex u ∈ C) in G[C] for which x is the only vertex that has outgoing edges to V \ C
and that is not a 1-vertex-out component in G must contain an endpoint z of an edge
incident to G[C], such that z 6= x. Moreover, if there is no 1-vertex-out or 1-vertex-in
component containing at most

√
m edges for any vertex u ∈ C in both G and G[C], then

one of the following holds.

• G[C] is a 2-vertex-connected subgraph.

• There are two sets A,B ⊂ C with |E(G[A])|, |E(G[B])| >
√
m that are disjoint

strongly connected components.

• For every strong articulation point x, there are two sets A,B ⊂ C with |E(G[A])|, |E(G[B])| >√
m that are separated in G[C] \ x.

Proof. We first show that every 1-vertex-out component 1V Out(u) of some vertex u ∈ C,
where x is the only vertex that has outgoing edges to V \ C, that is no 1-vertex-out

23

component in G must contain a vertex w ∈ 1V Out(u) \ {u, x} such that there is an edge
(w, y) ∈ G with y 6∈ C. Assume, by contradiction, that 1V Out(u) exists but there is no
such edge (w, y) in G with w ∈ 1V Out(u) \ {u,w} and y /∈ C. In this case, the very same
component 1V Out(u) is a 1-vertex-out component of u in G, since x is the only vertex
having outgoing edges to V \ C. The same argument on the reverse graph shows that
every 1-vertex-in component (of some vertex u ∈ C) in G[C] must contain an endpoind
of an edge incident to G[C].

Now we turn to the second part of the lemma. If G[C] is strongly connected and does
not contain an articulation point, then G[C] is 2-vertex-connected. If G[C] is not strongly
connected, then it contains (at least) two disjoint sets A,B ⊂ C such that both G[A]
and G[B] are strongly connected components of G[C] and G[A] has no outgoing edge in
G[C] (i.e., G[A] is a sink in the DAG of SCCs of G[C]) and G[B] has no incoming edge in
G[C] (i.e., G[B] is a source in the DAG of SCCs of G[C]). That is, in G[C] we have that
G[A] is a 1-vertex-out component of some u ∈ C and G[B] is a 1-vertex-in component of
some u′ ∈ C. Both can have the same property in G or be new such components in G[C]
compared to G. In any case it contradicts the assumptions if one of them has at most√
m edges and otherwise the lemma holds. If G[C] is strongly connected and contains an

articulation point v∗, an analogous argument can be made for two disjoint sets A,B ⊂ C
by considering the DAG of SCCs of G[C] \ v∗. In this case v∗ is the only vertex with
incoming edges of B and the only vertex with outgoing edges of A in G[C]. Thus the
statement of the lemma holds if its assumptions are satisfied.

Lemma 22. Algorithm 2V CS is correct.

Proof. First note that by assumption the initial call to the algorithm is on a strongly
connected graph and that recursive calls are only made on strongly connected subgraphs.
Thus whenever Algorithm 2V CS reports a 2-vertex-connected subgraph, then this is a
2-vertex-connected subgraph, since it is strongly connected and does not have any strong
articulation points. It suffices to show that 2V CS reports all the maximal 2-vertex-
connected subgraphs. Notice that this also implies that the reported 2-vertex-connected
subgraphs are maximal. Let C be a maximal 2-vertex-connected subgraph. We show that
C does not get disconnected by the algorithm, since this will ensure that the algorithm
eventually will recurse on C and report it as a 2-vertex-connected subgraph. Since there
is no vertex whose deletion separates any pair of vertices in C, any search for either a
1-vertex-out or a 1-vertex-in component of a vertex u, either returns a superset of C,
or it fails to identify such a set containing a subset of the vertices of C. Furthermore,
note that any deletion of an edge that does not have both endpoints in C does not affect
the fact that C is 2-vertex-connected. That is, unless an edge with both endpoints in
C is deleted, no strong articulation points appear in C. Thus, it is left to show that
no edge (x, y) such that x, y ∈ C is ever deleted throughout the algorithm. The edges
that are deleted are either edges between strongly connected components, two sets of
vertices A,B that get disconnected by a strong articulation point, or edges incident to
a 1-vertex-out or a 1-vertex-in component found during the course of the algorithm.
Since C is always fully included in such a component, no edge of C is deleted. Finally,

24

Algorithm 2: 2V CS(G,L)

Input: A strongly connected digraph G = (V,E) and a list of vertices L (initially
L = V)

Output: The 2-vertex-connected subgraphs of G

1 Let m0 be number of edges of initial graph
2 if |V | ≤ 2 then return ∅ // removing degenerate subgraphs

3 if G has no strong articulation point then
4 return {G} as 2-vertex-connected subgraph

5 while L 6= ∅ & G has more than 2
√
m0 edges do

6 Extract a vertex u from L
7 S ←1VertexOut(G, u,

√
m0)

8 SR ←1VertexOut(GR, u,
√
m0)

9 Pick non-empty set of S and SR if it exists
10 Let x be the common vertex in S resp. SR of all outgoing resp. incoming edges

(if it exists) and let N be the neighbors of x inside the set
11 Execute split(x,N) (if x exists)
12 Delete all edges incident to the selected set that are not adjacent to x and add

their endpoints to L

13 Compute strongly connected components C1, . . . , Cc of G
14 U ← ∅
15 foreach Ci, 1 ≤ i ≤ c do
16 Compute a strong articulation point v, and execute split(v,NC′), where NC′

are the edges between v and the vertices of a single arbitrary strongly
connected component C ′ of Ci \ v.

17 foreach SCC C of Ci do
18 Insert into L′ the vertices of C that have incident edge from resp. to

vertices outside of C
19 U ← U ∪ 2V CS(C,L′)

20 return U

notice that in each recursive call, unless the graph that is passed to the recursion is
2-vertex-connected, at least one strong articulation point that separates at least one pair
of vertices is computed and the algorithm recurses on each strongly connected component
(possibly containing a copy of the strong articulation point) after its removal. Thus,
finally there will be a recursive call for each strongly connected subgraph that does not
contain strong articulation points, including C.

Lemma 23. Algorithm 2V CS runs in O(m
√
m) time on a graph with m edges.

Proof. Let G0 = (V0, E0) be the input graph for the initial call to the algorithm. Let
n0 = |V0| and m0 = |E0|. First, notice that each time we search for a 1-vertex-out (or a
1-vertex-in component by searching in the reverse graph), we are searching either for a

25

component with at most
√
m0 edges where all outgoing edges have a common source or

for a component with no outgoing edges and at most 2
√
m0 edges. We can identify if

such components exist in time O(
√
m0) by using the algorithm of Section 3.1. We start

a search for every vertex that is added to the list L in some recursive call. Notice that
initially we add all vertices to L, and throughout the course of the algorithm we insert
the two endpoints of every deleted edge into the corresponding list L. The number of
edges does not increase by the split operations by Lemma 19. Therefore, the total time
spent on these calls is O((m0 + n0)

√
m0) = O(m0

√
m0).

Let G′ = (V ′, E′) be the graph passed to a recursive call. The algorithm spends
O(|E′|) time to test whether there are strong articulation points in the graph (line 3),
and additional O(|E′|) time to compute the strong articulation points, execute the split
operation on an arbitrary strong articulation point in each strongly connected component,
and recompute strongly connected components (lines 13–16). Since the recursive calls
are executed on subgraphs whose sets of edges are disjoint (since the split operator
simply partitions the edges incident to the vertex on which the operation is executed,
and moreover, all the strongly connected components are disjoint), it follows that the
total time spend for the above procedures in all instances at each recursion depth is
O(m0). Notice that the number of vertices does not exceed 2m0, by Lemma 19, after any
sequence of split operations, and thus this time bound holds for every recursion depth.

Let G′ be the graph at some recursive call. We show that the graph passed to each
child recursive call has at most max{|E(G′)| − √m0, 2

√
m0} edges, or G′ is a 2-vertex-

connected subgraph and thus the recursion stops. This implies a recursion depth of
O(
√
m0) as follows. If a graph passed to a recursive call has at most 2

√
m0 edges, it

means that also the number of vertices is at most 2
√
m0. Therefore, even if the algorithm

simply identifies a strong articulation point and executes the split operator on it in each
recursion and recurses on every strongly connected component of the resulting graph,
the total recursion depth is at most O(

√
m0). On the other hand, there can be at most√

m0 cases where the graph that is passed in a recursive call has
√
m0 fewer edges that

G′. Overall, this will prove that the recursion depth is bounded by O(
√
m0).

It remains to show the claimed bound on the size of the graph passed to a recursive call
in line 19. For every 1-vertex-out or 1-vertex-in component S (with less than 2

√
m0 edges)

that is discovered throughout the algorithm, the component has either no outgoing (resp.,
incoming) edges or we execute the split operation on the only vertex x that has outgoing
(resp., incoming) edges. We can execute the operation split in time proportional to the
edges incident to the neighbors of x in S, and we can charge this time to the process of
identifying the set S (that covers for the edges in G′[S]) and to the edges deleted from
the graph. By Lemma 20 every 1-vertex-out (resp., 1-vertex-in) component will be in a
separate strongly connected component with at most 2

√
m0 edges. Now, let C be the

set of vertices that were not included in any 1-vertex-out or any 1-vertex-in component.
This set did not contain any 1-vertex-out or any 1-vertex-in component S with less than√
m0 edges in G′ since otherwise such a set S would contain a vertex x that lost an

edge (and thus was added to L) and the algorithm would search for a 1-vertex-out or a
1-vertex-in component of x, identifying S in this way. This means, by Lemma 21, that
C either is a 2-vertex-connected subgraph, or there are two disjoint sets in A,B ⊂ C,

26

|E′(A)|, |E′(B)| > √m0 that are either not strongly connected to each other or separated
by at most one strong articulation point in G′[C]. If the later holds, A and B will be
separated in line 13, and every graph passed to a subsequent recursive call has at most
max{|E′(G′)| − √m0, 2

√
m0} edges.

The following theorem summarizes the result of this section.

Theorem 24. The maximal 2-vertex-connected subgraphs of a digraph can be computed
in O(m3/2) time.

4 Extensions

In this section we summarize results that are obtained by extending our algorithms to
k-edge-connectivity for k > 2. Most of the details are deferred to the full version of [2].

4.1 k-edge-connected subgraphs for digraphs

The high-level idea of the algorithm for computing the 2-edge-connected subgraphs in
a digraph easily extends to computing the k-edge-connected subgraphs. However, the
algorithm for finding 1-edge-out and 1-edge-in components of a vertex containing at most
∆ edges cannot be trivially adjusted to identify (k − 1)-edge-out and (k − 1)-edge-in
components. We therefore present a new algorithm for computing (k − 1)-edge-out and
(k − 1)-edge-in components with at most ∆ edges. Although the running time of the
algorithm is linear in ∆, the dependence on k is exponential:

Lemma 25. There is an algorithm that, for a given vertex u, computes in time O((2k)k+1·
∆) a (k − 1)-edge-out (resp., (k − 1)-edge-in) component containing u with less than
(2k − 1)(∆ + 1) edges, or concludes that every (k − 1)-edge-out (resp., (k − 1)-edge-in)
component of u has more than ∆ edges.

By using Lemma 25 we are able to apply the framework that was used in the algorithm
for computing the 2-edge-connected subgraphs to obtain an algorithm for computing
the k-edge-connected subgraphs of a digraph. Our result is summarized in the following
theorem. The extra log n factor follows from the fact that an edge cut of size at most
k − 1 can be computed in O(m log n) time for constant k [8].

Theorem 26. The maximal k-edge-connected subgraphs of a digraph with m edges and
n vertices can be computed in O(m3/2 log n) time for constant k.

4.1.1 k-edge-connected subgraphs for undirected graphs

The problems of computing the k-edge-connected subgraphs of an undirected graph
can be reduced to the equivalent problem for directed graphs in a straightforward way.
More specifically, for a given undirected graph we construct a directed graph with the
same vertex set, and replace every undirected edge with two bidirectional edges. On the

27

resulting digraph the set of vertices of the k-edge-connected subgraphs are equivalent to
the set of vertices of the k-edge-connected subgraphs in the original undirected graph.

The complexity of our algorithms is determined by the choice of the parameter ∆ in
the algorithm that searches for (k − 1)-edge-out and the (k − 1)-edge-in components of a
vertex. The parameter ∆ determines both the depth of the recursion, which is O(m/∆),
and the time we spend searching for small components, which is O((m + n)∆) in total.

The second factor that affects the complexity is the time spent identifying a cut at
every depth of the recursion. Note that the time spent searching for a cut will dominate
the O(m) time it takes to compute the strongly connected components before executing
the recursive call. This factor is multiplied by the maximum recursion depth in the time
complexity of the algorithm. The digraph on which we executed our algorithm originates
from an undirected graph, and we can use this to search for edge cuts of size at most
k − 1 faster. Thus, the time complexity of our algorithms is O(t · (m/∆) + n∆), where t
is the time required to identify a cut of size at most k − 1 in an undirected graph.

The edge cuts of size at most 2 can be identified in linear time [11, 19]. It is easy to
verify that the optimal choice of ∆ is therefore m/

√
n for k = 3. For constant k, we

can compute an edge cut of size at most (k − 1) in time O(m + n log n) [8]. We choose
∆ = m/

√
n for k-edge-connected subgraphs as well as for 3-edge-connected subgraphs.

We obtain the following result.

Theorem 27. The maximal k-edge-connected subgraphs of an undirected graph can be
computed in O((m+ n log n)

√
n) time on a undirected graph with m edges and n vertices.

For the maximal 3-edge-connected subgraphs, our algorithm runs in O(m
√
n) time.

References

[1] K. Chatterjee and M. Henzinger. Efficient and dynamic algorithms for alternating Büchi
games and maximal end-component decomposition. Journal of the ACM, 61(3):15:1–15:40,
2014. Announced at SODA’11 and SODA’12.

[2] Shiri Chechik, Thomas Dueholm Hansen, Giuseppe F. Italiano, Veronika Loitzenbauer, and
Nikos Parotsidis. Faster Algorithms for Computing Maximal 2-Connected Subgraphs in
Sparse Directed Graphs. In SODA, 2017. To appear.

[3] Robert F. Cohen, Giuseppe Di Battista, Arkady Kanevsky, and Roberto Tamassia. Reinvent-
ing the wheel: an optimal data structure for connectivity queries. In STOC, pages 194–200,
1993.

[4] Ran Duan and Seth Pettie. Connectivity oracles for graphs subject to vertex failures. In
SODA, 2017. To appear, available at http://arxiv.org/abs/1607.06865.

[5] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification—a technique for
speeding up dynamic graph algorithms. Journal of the ACM, 44(5):669–696, September
1997. Announced at FOCS’92.

[6] Y. M. Erusalimskii and G. G. Svetlov. Bijoin points, bibridges, and biblocks of directed
graphs. Cybernetics and Systems Analysis, 16(1):41–44, 1980.

[7] S. Even. An algorithm for determining whether the connectivity of a graph is at least k.
SIAM Journal on Computing, 4(3):393–396, 1975.

28

[8] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
Journal of Computer and System Sciences, 50(2):259–273, 1995.

[9] H. N. Gabow. Using expander graphs to find vertex connectivity. Journal of the ACM
(JACM), 53(5):800–844, 2006.

[10] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences, 30(2):209–221, 1985.

[11] Z. Galil and G. F. Italiano. Reducing edge connectivity to vertex connectivity. SIGACT
News, 22(1):57–61, March 1991.

[12] L. Georgiadis. Testing 2-vertex connectivity and computing pairs of vertex-disjoint s-t paths
in digraphs. In Automata, Languages and Programming, 37th Int’l. Coll., ICALP 2010,
Bordeaux, France, July 6-10, 2010, Proceedings, Part I, pages 738–749, 2010.

[13] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-vertex connectivity in directed
graphs. In Proc. 42nd Int’l. Coll. on Automata, Languages, and Programming, pages 605–616,
2015.

[14] L. Georgiadis, G. F. Italiano, L. Laura, and N. Parotsidis. 2-edge connectivity in directed
graphs. ACM Trans. Algorithms, 13(1):9:1–9:24, 2016. Announced at SODA’15.

[15] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[16] Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Efficient algorithms
for computing all low st edge connectivities and related problems. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages 127–136. Society for
Industrial and Applied Mathematics, 2007.

[17] M. Henzinger, S. Krinninger, and V. Loitzenbauer. Finding 2-edge and 2-vertex strongly con-
nected components in quadratic time. In Proc. 42nd Int’l. Coll. on Automata, Languages, and
Programming, pages 713–724, 2015. Full version available at http://arxiv.org/abs/1412.6466.

[18] M. R. Henzinger, V. King, and T. Warnow. Constructing a tree from homeomorphic subtrees,
with applications to computational evolutionary biology. Algorithmica, 24(1):1–13, 1999.

[19] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM
Journal on Computing, 2(3):135–158, 1973.

[20] G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation
points in linear time. Theoretical Computer Science, 447:74–84, 2012.

[21] R. Jaberi. On computing the 2-vertex-connected components of directed graphs. Discrete
Applied Mathematics, 204:164–172, 2016.

[22] Arkady Kanevsky and Vijaya Ramachandran. Improved algorithms for graph four-
connectivity. Journal of Computer and System Sciences, 42(3):288–306, 1991.

[23] D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76, 2000.
Announced at STOC’96.

[24] K. Kawarabayashi and M. Thorup. Deterministic global minimum cut of a simple graph in
near-linear time. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 665–674, 2015.

[25] S. Makino. An algorithm for finding all the k-components of a digraph. Int’l Journal of
Computer Mathematics, 24(3-4):213–221, 1988.

29

[26] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.

[27] H. Nagamochi and T. Watanabe. Computing k-edge-connected components of a multi-
graph. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, E76–A(4):513–517, 1993.

[28] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

[29] R. E. Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica, 6(2):171–
85, 1976.

[30] M. Thorup. Fully-dynamic min-cut. Combinatorica, 27(1):91–127, 2007. Announced at
STOC’01.

30

	Introduction
	Preliminaries

	Maximal 2-edge-connected subgraphs of a digraph
	1-edge-out and 1-edge-in components
	Computing the 2-edge-connected subgraphs.

	Maximal 2-vertex-connected subgraphs in directed graphs
	1-vertex-out and 1-vertex-in components.
	Computing the 2-vertex-connected subgraphs.

	Extensions
	k-edge-connected subgraphs for digraphs
	k-edge-connected subgraphs for undirected graphs

