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1 Introduction
Macromolecules in solution steadily undergo conformational changes at room temperature.1 Var-

ious structural studies on diverse model systems have shown that the conformational plasticity of

proteins plays a key role in molecular mechanisms such as catalytic activity,2 bio-molecular recog-

nition,3–5 and allosteric regulation.6 Thus, characterizing dynamics of biological macromolecules

is crucial to understand their biological activity and function.7, 8 Molecular dynamics (MD) sim-

ulations have proven to be an efficient tool to capture the flexibility of macromolecules.9 Yet,

state-of-the-art MD simulations routinely capture dynamics on the nanosecond to microsecond

time scale, while many biologically significant motions appear on the millisecond time scale or

slower.10 Inherent limitations in conformational sampling can either be overcome by usage of

dedicated simulation hardware11 or by application of enhanced sampling algorithms.12, 13 Accel-

erated MD (aMD) is a promising enhanced sampling technique, which improves the efficiency of

conventional MD (cMD) simulation without a priori knowledge of the potential energy surface.14

Introduction of a continuous, non-negative bias potential increases escape rates from local energy

basins. Thus, the conformational space is sampled more extensively at negligible computational

overhead costs.15, 16 Subsequently the original energy landscape can be reconstructed by Boltz-

mann reweighting.17–19

The versatile applicability of aMD simulations has repeatedly been proven on manifold macro-

molecular systems.20–25 Current aMD studies predominantly focus on analyzing the global dy-

namics of the obtained conformational ensembles.26–28 Yet, for a comprehensive understanding

of biomolecular properties it is crucial to be able to localize flexibility in specific protein do-

mains.29–33

Current approaches estimating local dynamics in aMD simulations are limited to expensive large-

scale calculations of amide order parameters from multiple aMD trajectories on various acceler-

ation levels.34, 35 Rather than approximations of NMR observables a straight forward approach

based on the thermodynamics of a system would be desirable. So far no metric is available to

directly quantify local flexibility from aMD trajectories based on the captured thermodynamics

of the system. We propose residue-wise dihedral entropy as first methodology to efficiently char-

acterize local dynamics of macromolecules from aMD simulations.36, 37 To confirm the validity

and efficiency of our approach we apply the metric to the model systems alanine dipeptide (Di-

Ala) and bovine pancreatic trypsin inhibitor (BPTI). The conformational dynamics of BPTI have

been investigated thoroughly in NMR experiments38–41 as well as in large-scale computer simu-

lations.11 It has already been demonstrated in previous studies that metrics for local flexibility in

a 1 ms cMD simulation of BPTI track the characteristic motions of BPTI, known from NMR and

global flexibility studies.29, 38–42
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Here we show that residue-wise dihedral entropies deriving from a 500 ns aMD and a 1 ms cMD

simulation of BPTI correlate remarkably. Application of our metric on aMD trajectories provides

a possibility to track low-frequency local dynamics on the millisecond time scale.

Additionally we apply our metric to cMD and aMD simulations of the major birch pollen allergen

Bet v 1.0101 (Bet v 1a). Bet v 1a is a highly immunogenic storage protein and most prominent

for causing seasonal pollen allergy in the northern hemisphere.43, 44 Despite a sequence similar-

ity of more than 95%45, 46 and minor differences in their 3D structures the more than 13 reported

isoforms of Bet v 1a vary strongly in their immunogenicity.47 Investigations on differences in

proteolytic stability and ligand binding of different isoforms and mutants of Bet v 1a suggest a

linkage between immunogenic potential and conformational flexibility.47–49

The accuracy of our results is underlined by comparison to NMR data,47 displaying analogous

trends in experimentally and computationally estimated flexibility. Our results show that dihedral

entropies from aMD simulations are an efficient tool to describe local protein dynamics on the

millisecond time scale.
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2 Theoretical Background
2.1 Accelerated Molecular Dynamics

In aMD a boosting potential ∆V (~r) is added to the original potential energy V (~r) to increase the

sampling efficiency. Decreased barriers between local minima enhance the escape rate for the

biased potential V ∗(~r).14

Definition 2.1.1 — The biased potential.

V ∗(~r) =V (~r)+∆V (~r) (2.1)

A threshold energy E is defined, which determines the biased potential.

V ∗(~r) =

V (~r), V (~r)≥ E,

V ∗(~r) =V (~r)+∆V (~r), V (~r)< E.
(2.2)

High-energy conformations, with energies greater than the threshold E, are sampled in the con-

ventional way. If an energy is lower than E a boosting potential ∆V (~r) is added.

Definition 2.1.2 — The boosting potential.

∆V =
(E −V (~r))2

α +E −V (~r)
(2.3)

α is the so called acceleration factor or tuning parameter. The more α approaches zero, the more

it enforces a rigorous acceleration of the simulation. Considering equation 2.3 the modified forces

acting on every atom i, for example, are given by

F∗
i =− d

d(~r)
[V ∗(~r) =V (~r)+∆V (~r)] = Fi ×

[
α2

(α +E −V (~r))2

]
(2.4)

The computational effort is comparable to conventional MD simulations. Yet the parameters E and

α have to be evaluated individually for each investigated system. The original potential energy

surface can be reconstructed by reweighting the trajectory with the Boltzmann-factor.15
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3 Methods
MD simulations were performed with the AMBER14 simulation package.50 All shown structures

were prepared in MOE (Molecular Operating Environment, Chemical Computing Group, version

2014.0901)51 using the protonate3D tool.52 With tleap of the AmberTools1550 package all three

systems were soaked into a truncated octahedral solvent box of TIP3P water molecules.53 For

Di-Ala the minimum wall distance was set to 12 Å, for BPTI and Bet v 1a to 10 Å. Parameters for

all three systems derive from the AMBER force field 99SB-ILDN.54 All systems were carefully

equilibrated using a multi step equilibration protocol.55 Precedent cMD simulations as well as all

aMD simulations were performed in NpT ensemble using pmemd.cuda.56 Bonds involving hy-

drogen atoms were restrained by applying the SHAKE algorithm,57 allowing a time step of 2.0 fs.

Atmospheric pressure of the system was preserved by weak coupling to an external bath using the

Berendsen algorithm.58 The Langevin thermostat59 was used to maintain the temperature during

simulations at 300 K for Di-Ala and BPTI and 310 K for Bet v 1a (human body temperature).

All shown aMD simulations were performed using the dual-boost protocol60 implemented in

pmemd.cuda.56 Thereby the total potential is accelerated and an extra boosting is applied to the

dihedral potential. It has been shown that dual-boost aMD simulations sample the diffusive sol-

vent motions more extensively. Ensemble averages as well as entropy estimates converge faster

than in dihedral-boost aMD simulations.26, 60 All simulations were analyzed using cpptraj61 in

AmberTools15,50 the reweighting protocol provided by Miao et al.18 and in-house scripts. The

free energy profile was reconstructed from the aMD simulations via Boltzmann reweighting using

a Maclaurin series expansion (up to the 10th order) as approximation for the exponential term, as

suggested in previous studies.15

The local backbone flexibility profiles were estimated from the resulting reweighted one-dimensional

free energy profiles, state populations respectively, of the backbone dihedrals Φ and Ψ. The en-

tropy is calculated by integration of the reweighted state populations of a given dihedral. A high

entropy of a residue backbone dihedral indicates high local backbone flexibility.29, 36

In the presented work we prioritized dihedral entropies SΨ over SΦ in the representation protein

dynamics as it captures the backbone dynamics more comprehensively.62, 63 Yet, SΨ alone does

not reflect the entire backbone dynamics and dihedral entropies SΦ were calculated as well (see

appendix).
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3.1 Alanine Dipeptide

For the reference cMD simulation of alanine dipeptide (Di-Ala) a 10 µs trajectory comprising

100 000 frames, previously performed in our group was reanalyzed.29 Residue-wise dihedral

entropies of the reference cMD simulations were calculated from probability density functions

reconstructed by non-parametric kernel density estimation.36, 37 As proposed by Botev et al.64

we optimize the bandwidth of the kernel function by cross validation, resulting in a continuous

probability density function for each dihedral. We periodically duplicate our data to minimize the

overestimated flexibility at the boundaries. The entropy for each dihedral Sx was calculated by

integration of kB·p(x)·log(p(x)) on its probability density function p(x) as described in Huber et

al.36, 37 The standard deviations were calculated by splitting the trajectory into 100 segments.

For the aMD calculations the solvated and equilibrated Di-Ala system was simulated for 1 µs

and stored as 500 000 equal-spaced snapshots (2 fs spacing). The aMD boosting parameters

were calculated as suggested in previous studies15 (see appendix for further information). To

minimize the statistical noise (and capture dynamics corresponding to 10 µs of cMD) the resulting

trajectory was divided into 200 segments of 5 ns each (2 500 frames) using the segments for

averaging (appendix Figure 13.4). From the reweighted dihedral populations a Ramachadran plot

was created to assure sufficient and accurate sampling of conformational space (appendix Figure

13.1).

To compare aMD and cMD free energies we calculated the free energy of the cMD trajectory

using the reweighting protocol by Miao et al.18 We investigated several different bin sizes and the

jaggedness of the cMD profile disappears only using a bin size above 20°(appendix Figure 13.2).

However, as also suggested by Miao et al.18 we also observe a bin size of 6°to be a reasonable

compromise between accuracy and statistical noise.

3.2 BPTI

D. E. Shaw Research kindly provided us with a long time scale 1.03 ms trajectory comprising 4

140 000 snapshots as a cMD reference.11 We used the same joint neutron/X-ray refined structure

of BPTI (PDB: 5PTI)38 as D. E. Shaw et al. as starting structure for our large scale cMD and

aMD simulations. A 500 ns aMD simulation was performed and the trajectory stored in 250 000

snapshots. The aMD boosting parameters were calculated as suggested by Pierce et al.15 and

can be found in the appendix. To localize the observed dynamic hot-spots we calculated dihedral

entropies as described earlier for 1 ms and 1 µs of cMD and 500 ns of aMD sampling time.
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3.3 Bet v 1a

Based on the crystal structure of Bet v 1a with PDB ID 4A8865 we sampled 3 µs of cMD simula-

tions on Bet v 1a. Suitable aMD boosting parameters for Bet v 1a were determined by a systematic

search (see appendix). We performed a 1 µs aMD simulation stored as 100 000 equally spaced

snapshots. The trajectory was split in 50 segments of 20 ns each (2 000 snapshots) and reweighted

as described above. Subsequently dihedral entropies were calculated and averaged over all 50

segments. NMR order parameters were kindly provided by Grutsch et al., the experimental setup

has been described elsewhere.47
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4 Results
4.1 Alanine Dipeptide

To establish our approach we calculated backbone dihedral entropies for Φ and Ψ of alanine dipep-

tide from 5 ns aMD sampling and used a 10 µs cMD simulation as a reference (Figure 4.1). We

find a significant reproduction of local minima and overall shape of the potential energy surface

for the backbone dihedral Φ of Di-Ala. As reported before18 we also observe a shift in the ex-

trema of backbone dihedral Ψ to smaller Ψ-values in aMD simulations. Exemplary, in the cMD

simulation an energy minimum is found at -24°, while the corresponding minimum in the aMD

results is recovered at -42°. Still the overall energy landscape of the reweighted aMD trajectory is

in reliable agreement with the cMD results.

Considering these errors, the resulting dihedral entropies, SΦ,aMD=41.03 (±2.95) J/(mol·K) and

SΨ,aMD=45.42 (±3.25) J/(mol·K), agree very well with those of the cMD ensemble SΦ,cMD=40.20

(±0.60) J/(mol·K) and SΨ,cMD=42.08 (±0.39) J/(mol·K).

4.2 BPTI

To benchmark our local flexibility metric we analyzed a 500 ns aMD simulation of BPTI and com-

pared it to a 1 ms cMD simulation provided by D. E. Shaw Research11 (Figure 4.2). It has been

demonstrated previously that 500 ns of BPTI aMD simulation cover a conformational space equiv-

alent to a 1 ms cMD.15 In addition to the findings of Pierce et al. we observe equal assessment of

local backbone flexibility for the 500 ns aMD and 1 ms cMD simulation. In the 1 ms reference

cMD maxima of SΨ are found in regions from residues 10–20, 32–44 and the C-terminal residues

from 54–58. Each flexibility hot spot is reproduced in SΨ from 500 ns of aMD sampling. The

high similarity of local flexibility in both simulation protocols is reflected in a Spearman rank cor-

relation over the protein length of r=0.93 for SΨ between cMD and aMD. Comparable agreement

between the aMD and reference cMD simulations is also found for SΦ (see SI Figure 13.3). In

contrast, when looking at dihedral entropies from a 1 µs cMD simulation notable differences are

found for SΨ in the regions of residues 10–14 and 32–44. In 1 µs of cMD sampling no elevation in

conformational plasticity is captured in these domains, though this is clearly observed on the mil-

lisecond time scale as well as in the aMD-derived ensemble. The deviation of the local dynamics

pattern results in a Spearman rank correlation of r=0.65 for SΨ in 500 ns of aMD and 1 µs cMD

sampling.

For the dihedral entropies SΨ and SΦ captured in 500 ns of aMD we find a correlation of r=0.77.

The high correlation of SΨ and SΦ supports the assumption that a similar extent of flexibility is

captured in both backbone dihedral angles. In Figure 4.3 the flexibility hot spots displayed as
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Figure 4.1: From a reweighted aMD trajectory to dihedral entropies of alanine dipeptide:
State populations p are calculated from free energy profiles of the backbone dihedral Ψ of a
10 µs cMD (black) and a reweighted 5 ns aMD (red) trajectory. Integration of the resulting
state populations leads to the dihedral entropy SΨ,cMD=42.08 J/(mol·K) and SΨ,aMD=45.42
J/(mol·K).

graph in Figure 4.2 are color coded and projected on the BPTI fold. The differences in flexibility

captured in 500 ns of aMD (B) and 1 µs cMD (C) are highlighted in (D). SΨ of the 1 µs cMD

simulation were subtracted from SΨ resulting from 500 ns aMD. Positive values (blue) indicate

domains, which are more flexible in the aMD than in the cMD simulation of the same sampling
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length. When looking at the structure the most prominent deviation between 500 ns of aMD and 1

µs cMD simulation lies in the local flexibility of the loop regions. Clearly, the dynamic nature of

the loop involving residues 32–44 found in the millisecond simulation is not adequately sampled

in 1 µs cMD, but accurately represented in aMD sampling of the same length.

Figure 4.2: Comparing local flexibility of BPTI captured in cMD and aMD simulations.
Residue-wise dihedral entropies SΨ from a 1 ms cMD simulation (black) and 500 ns aMD
simulation of BPTI (red) show remarkable rank correlation (r=0.93). Local flexibility ob-
served in a 1 µs cMD simulation (turquoise) clearly differs from the aMD results (r=0.65).

4.3 Bet v 1a

With 159 residues the major birch pollen allergen Bet v 1a is the largest system in our study. A

1 µs aMD simulation was split into 50 segments, 20 ns each. A 3 µs cMD simulation and order

parameters S2 from backbone amide NMR relaxation experiments47 act as references for our met-

ric to quantify local motions in aMD simulations (Figure 4.4). Order parameters range from zero

to one, indicating no or full constriction of internal mobility of backbone amide groups on the ps-

to ns-timescale.66 Thus, an anti-correlation is expected since high entropy indicates lower order.

As observed for the BPTI system, the aMD-derived ensemble shows higher backbone flexibility
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Figure 4.3: Flexibility hot spots of BPTI: Residue-wise dihedral entropies for Ψ (SΨ) from
the 1 ms cMD (A), 500 ns aMD simulation (B) and 1 µs cMD (C) are projected on the
structure of BPTI (PDB-ID: 5PTI). In Part A, B and C the color coding ranges from red
(SΨ ≤30 J/(mol·K)) via yellow, to green (SΨ ≥45 J/(mol·K)). Thus, the most rigid residues
are pictured in red, whereas the most flexible ones are colored green. Part D shows the
differences in SΨ between 500 ns aMD and 1 µs cMD (∆SΨ=B-C). The color coding in D
ranges from red (∆SΨ ≤15) to white, to blue (∆SΨ ≥15 J/(mol·K)), i.e., blue indicates regions
where the aMD simulation captures a higher local flexibility. Thus, the cMD simulation
clearly underestimates the conformational dynamics of BPTI in the region of residues 10–14
and 32–44.

for all residues compared to the cMD-derived one. The general flexibility patterns are conserved

for most parts of the protein in both simulations. However, especially in the region from α1 to

β2 (residues 15–45) enhanced dynamics are visible in aMD, which are not reflected in the cMD

simulation. Order parameters S2 show the expected anti-correlation with dihedral entropies of

the core domains, i.e., α3-helix and β -sheets 4–7 (residues 70–159). Yet in contrast to experi-

mental findings we obtain lowered local dynamics for the α1-helix and the β2-sheet, while for

the loop region in between elevated flexibility is observed. These opposing qualitative observa-

tions are reflected in a Spearman rank correlation between the Ψ dihedral entropies from aMD

simulations and amide order parameters S2 of r=–0.35 for the whole fold. When restricting the

correlation analysis to the core helix α3 and β -sheets 5–7 (residues 70–159) the rank correlation

is strengthened to r=–0.61.
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5 Discussion
Local flexibility is decisive for biomolecular recognition mechanisms like protein-protein interac-

tions and ligand binding, as well as for protein folding.2–4, 6 It has been shown that the flexibility

patterns of Bet v 1 are linked to its fold-stability49 and allergenicity.47 Furthermore, studies on

the dynamics of proteases found a remarkable correlation between substrate specificity and local

flexibility of protease active sites.5 The associated dynamics include motions from the nanosec-

ond to the millisecond time scale.10 Metrics to quantify the amount of global and local motions

are indispensable for a holistic understanding of macromolecular interactions.29 Several expe-

dient metrics have been developed to account for global and local flexibility in cMD simula-

tions, such as root-mean-square fluctuation, locally and globally aligned b-factors, or torsional

entropies.29, 36, 67 Dynamics from aMD simulations are currently predominantly described on a

global level only.26–28, 68 In our study on three model systems of increasing size, we establish an

alignment-free internal coordinate-based metric estimating local flexibility in aMD simulations.

As expected, enhanced local dynamics are captured using enhanced sampling. As demonstrated

for global movements, we are able to describe local protein flexibility on the millisecond time

scale after several hundred of nanoseconds of aMD sampling. The residue-wise quantification of

motion in a protein backbone is constructed from torsional free energy profiles of reweighted aMD

trajectories via calculation of dihedral entropies.36

Investigations on the smallest system in our study, Di-Ala, illustrate the applied work flow. As al-

ready outlined in a previous study18 we also find a shift of minima in the free energy landscape of

Ψ in the reweighted aMD trajectory compared to the cMD results. This deviation is most probably

generated by the reweighting step when using Maclaurin series of the 10th order as approximation

for the exponential. As shown by Miao et al. for alanine dipeptide, reweighting using cumulant

expansion to the second order reconstructs the free energy surface of aMD simulations accurately.

Yet, this approach requires the distribution of the boost potential to be exactly Gaussian.69 This

may be approximately the case for a small system like Di-Ala, but we observed that it is less suc-

cessful for larger biomolecular systems such as BPTI (appendix Figure 13.7). Previous studies

on BPTI and other proteins showed accurate results for Maclaurin series expansion of the 10th

order.15, 27 Thus we prefer to use Maclaurin series expansion for all systems in our study for con-

sistency.

Overall, a quantitative reproduction of the positions of the local extrema is not essential for our

methodology, since their exact location has no influence on the resulting entropies. The state

probability distribution is generally broader in the aMD ensemble, but results in statistically equal

dihedral entropies. Thus, the same dynamic tendencies are estimated from the aMD and reference

cMD simulation.
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BPTI is widely used as a test system for NMR and protein dynamics in general and has been

investigated thoroughly over the last decades.41 The group of D.E. Shaw performed large scale

computer simulations and extensive studies on the dynamics of this model system.11 We have

demonstrated in previous studies that metrics of local flexibility in a 1 ms cMD simulation of

BPTI capture characteristic motions, known from NMR and global flexibility studies.29 These

prominent movement motifs comprise the isomerization of a disulfide bridge involving Cys-14

and Cys-38. With our metric we quantified local flexibility for a 500 ns aMD and a 1 ms cMD

simulation of BPTI with a striking Spearman rank correlation of r=0.93 for SΨ. Thus, we are able

to quantify and localize millisecond dynamics with aMD simulations of several hundred nanosec-

ond length. When compared to a 1 µs cMD simulation it is evident that these results cannot be

obtained with state-of-the-art simulation protocols of the same length (r=0.65). The differences in

captured molecular motions in 500 ns aMD and 1 µs cMD sampling can be traced back to the loop

regions (residue 10–14 and 32–44), which comprise the switching disulfide bridge mentioned ear-

lier (see also appendix Figure 13.8). The isomerization of this bond, which is described by NMR

studies and the calculations of the Shaw group, implies an enhancement of local flexibility in the

surrounding region. The characteristic dynamics of the domain are evidently quantified by our

metric in 500 ns aMD sampling. These results show that the approach allows access to dynam-

ics of low-frequency motions. Additionally, our metric provides a tool to localize the origin of

elevated flexibility thereby identifying domains with prominent dynamics and allowing a residue-

wise interpretation.

Bet v 1a is the largest and thereby most challenging system in our study. The boosting parameters

for the Di-Ala and BPTI simulations were applied as suggested in previous studies.15, 18 For Bet v

1a we set up 6 simulations on different levels of acceleration to test the limit of applied accelera-

tion without unfolding the protein (see appendix). It has been shown that the choice of parameter

has crucial impact on the resulting trajectory and has to be evaluated carefully.16

To estimate the reliability of our findings we compared a 20 ns aMD trajectory to a conventional 3

µs MD simulation and NMR-derived NH order parameters S2. Flexibility patterns recovered from

aMD and cMD simulation are overall in good agreement. Characteristic deviations are observed

in the region from helix α1 to the sheet β2 (residues 15–45). These observations are reflected by

a Spearman rank correlation of r=0.51 between the aMD and cMD simulation. We hypothesize

that this rather low correlation can primarily be explained by the different time scales captured.

Extrapolating from previous studies on BPTI, where 500ns of aMD sampling cover the dynamics

of 1 ms cMD sampling, 20 ns of aMD should correspond to dynamics of around 40 µs. It can be

assumed that these flexibilities clearly deviate from motions captured in only 3 µs sampling time.

Comparison of the dihedral entropy profile to order parameters S2 of the backbone amide66 leads

to similar findings. NMR order parameters S2 are sensitive to ps- to ns-dynamics, capturing much
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faster than motions the shown aMD data. We expect a coupling between slow backbone dynam-

ics, profiled by aMD simulation, and fast motions, captured in NMR data.29 Thus, NMR order

parameters S2 represent a method to experimentally probe protein backbone dynamics on residue

resolution and an insightful reference to estimate the reliability of our approach. As expected we

observe and anti-correlation between the calculated diheral entropies and the experimental order

parameters. Again reasonable agreement is visible for the region reaching from residue 70 to the

C-terminus, while for the domain from helix α1 to the sheet β2 (residues 15–45) almost opposing

trends are found. These qualitative observations become apparent in a Spearman rank correlation

of r=–0.39 between the aMD dihedral entropies and S2 when considering the whole protein. This

is only a slight improvement over cMD simulations, where correlations of r=–0.23 for torsional

entropies and order parameters are obtained. This might result from dynamics captured by aMD

being beyond the scope of the NMR timescale. It has been shown in previous studies that the

region from α1 to β2 undergoes a noticeable rigidification upon ligand binding.47 Order param-

eters and relaxation dispersion profiles of the apo protein confirm the flexible nature of Bet v 1a

on a pico- to nanosecond as well as on a micro- to millisecond timescale. Residues from α1 to

β2 show elevated dynamics in both experiments. For the remaining parts of the protein (residue

70–159) a correlation of r=–0.61 is found between the aMD dihedral entropies and S2. Here the

correlation of cMD simulations and order parameters is still notably lower with r=–0.35.

Additionally dihedral entropies were calculated from aMD simulations of varying length ranging

from 10 ns to 1 µs (see appendix Figure 13.10). Again, the resulting entropies show similar flex-

ibility profiles as experimental NMR studies, with exception of the discussed domain reaching

from α1 to β2. This emphasizes presence of complex conformational dynamics on multiple time

scales in this area.

With the presented metric we provide a tool to map low-frequency conformational dynamics of

biomolecules at residue level. With increasing system size reproduction of the original flexibil-

ity profile becomes more challenging. The decorrelation time of aMD and cMD data has been

investigated extensively in previous studies.16 It has been shown that the aMD generally reduces

the statistical inefficiency of a simulation. An extensive probing of the acceleration parameter is

crucial for the reliability of any aMD trajectory. Aggressive boosting enables extensive speedup

in conformational exploration, but can lead to a substantial loss of accuracy.16 Particularly the

reweighting step is a known, but yet not completely solved challenge.19 Some approaches, like

boosting of rotatable torsions only (RaMD),70 Gaussian aMD71 or selectively applied aMD,72

alleviate the impact of the reweighting error.
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6 Conclusion
With the present study we introduce and validate a metric to characterize local protein dynamics

on the millisecond time scale. Accelerated MD simulations provide access to time scales three

orders of magnitude beyond state-of-the-art sampling time. Subsequent calculation of dihedral

entropies from aMD trajectories quantifies backbone flexibility of each residue.

The general functionality of our approach is shown on the model system Di-Ala. We calculated

dihedral entropies from a 1 ms cMD simulation of BPTI,11 serving as reference to validate and

benchmark method and metric. We were able to show that dihedral entropies from only 500 ns of

aMD simulation identify the same flexibility hot spots, as observed in the 1 ms cMD trajectory.

The results are supported by previous NMR studies,41 which observe local conformational changes

in the same regions characterized as most flexible in our study. We applied the procedure on the

major birch pollen allergen Bet v 1a. Our study shows good agreement with local dynamics found

in a 3 µs cMD simulation as well as with NMR derived amide order parameters.47

We encourage the application of dihedral entropies as local flexibility metric on different aMD

protocols. We anticipate our novel metric to facilitate characterizing and thus understanding the

influence of molecular dynamics on biomolecular recognition and protein folding.
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7 Introduction
7.1 Computation and Drug Design

The drug discovery and development process has changed remarkably over the last decades. Back

in the 1950s researchers still relied solely on the results of in vivo testing.73 Since the 1980s large

scale protocols such as high-throughput in vitro screening (HTS) of extensive molecule libraries

became popular techniques for drug discovery.74 But the meager yields of hits combined with the

high costs has decreased the HTS enthusiasm of the 1990s.75 These days a typical drug discovery

campaign starts with the identification of a bimolecular target. The toolbox to identify and validate

biomolecular targets contains a plethora of gadgets ranging from classic gene knockout analysis

in mice over phenotypic screening76 to bioinformatic data mining protocols.77 Once the target is

classified a multidisciplinary team of scientists is delegated to design compounds that selectively

bind to the target.78 Again a vast variety of techniques intertwine to identify "hits", e.g. HTS,

virtual screening, biological assays and many more.79 A molecule usually is considered a hit at a

concentration of 50% inhibition (IC50) around 10µM. In the following hit-to-lead phase the IC50

is typically lowered 1 to 10 nm.78 If possible the 3D structure of a protein-ligand complex and/or

the apo target is determined, opening the door for "structure based drug design". The key idea in

structure based drug design is that a target receptor and a potent binder complement each other in

structure and chemical properties.80, 81 X-ray crystallography, NMR and computational method-

ologies work hand in hand, yielding in very efficient drug discovery and optimization routines.73

The roles computational methods in moder drug design are manifold. Already the structure refine-

ment relies on simulated annealing82 and the development of the underlying molecular mechanics

(MM) force fields. Virtual screens are used to scan colossal compound libraries and score each

molecule based on its interaction potential with a target. In the more recent past, molecular dy-

namics (MD) simulations were recognized as valuable tool for modern drug design.83 Altogether,

todays computer aided campaigns, perform comparably well as HTS.?, 78 This, a versatile appli-

cation of computational tools facilitates a more rapid and financially less intensive discovery and

optimization of novel drug canditates.

7.2 Molecular Docking and Dynamics

Molecular docking is a very efficient and valuable computational component in state-of-the-art

structure-based drug design. In virtual screens binding poses are predicted by a conformational

search. Subsequently these poses are ranked based on a scoring function.84 Usually the screened

libraries comprise several millions of compounds.? Given the relentless growth of synthetically

available chemical matter, scoring functions are bound to provide a rapid and distinct prioritization
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of potential binding poses.85 Consequently, they often lack accuracy due to partially neglected

chemical terms.86 There are various docking approaches and software packages using different

scoring functions,78 such as DOCK,87 FlexX88 and GOLD.89

Traditionally a flexible ligand is docked into a rigid target cavity.90 Recent approaches introduce

receptor flexibility by consideration of several binding site conformations.91–93 The sampling

as well as the weighting of these receptor conformations remain challenging yet.94 Neverthe-

less, the selection of a diverse set of target conformations enhances the search for new ligands.95

Molecular dynamics (MD) simulations have proven to be an efficient tool to capture dynamics of

macromolecules.9, 96, 97 Yet, as mentioned above, state-of-the-art MD simulations routinely cover

the microsecond time scale, while many biologically relevant motions appear on the millisecond

time scale or slower.11 Inherent limitations in conformational sampling can either be overcome

by usage of dedicated simulation hardware or by application of enhanced sampling algorithms.

Accelerated MD (aMD) is such algorithm and has been shown to extend the sampled conforma-

tional space drastically compared to conventional MD (cMD) simulation.21 Representative states

can be identified via clustering of the trajectory. Access to extended time scales of local dynamics

is known to be beneficial in encompassing target flexibility in docking screens.86

Another challenge in flexible receptor docking is combining the score of each pose in each recep-

tor conformation. The result in general is not a single scoring value but rather a scoring profile.

The final rank of a pose can either be obtained by considering only the best score or by averaging

over multiple scores.98 The latter strategy assumes a normal energy distribution, or alternatively a

Boltzmann distribution of scores which can lead to a reduction in accuracy.99, 100

When applying the best score strategy the possibility of assigning high ranks to high-energy con-

formations arises. Despite the elevated internal energies of an unfavorable state it is still possible

that it strongly binds the ligand.101 Thus, it is appealing to include an energy penalty term for each

receptor conformation in the scoring function.102 One strategy is to weight the receptor conforma-

tions based on their occurrence during a simulation.103, 104

The Shoichet group recently proposed the incorporation of experimentally deduced conforma-

tional energy penalties in docking scoring functions. Here, the Boltzmann-weighted energy penal-

ties directly derive from crystallographic state occupancies.94 This method decreases the predom-

inance of higher-energy conformations and allows a prediction of conformational changes in the

receptor upon ligand binding.

Many targets have been shown to undergo conformational changes upon ligand binding.105 Still,

for most of them no high-resolution crystal structures of the apo state exist in which several states

are modeled. As extension to ensembles from X-ray structures we propose MD simulations to

estimate the population of alternate receptor states. We probe our approach for the L99A mutant

of T4 lysozyme. (see Figure 7.1) The system is very well characterized by multiple structural and
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Figure 7.1: Structure of T4 Lysozyme (L99A) with three loop states modeled for the F-helix.
(PDB 4W57)

binding studies106, 107 A recent study pointed out conformational differences of the T4 lysozyme

cavity depending on the ligand bound.105 Yet, there is no crystal structure of the apo protein that

displays all three observed states. Altogether T4 lysozyme is an ideal candidate for our study.
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8 Theoretical Background
8.1 Docking Step-by-Step

Retrospective Screening

The initial challenge in every virtual screening campaign is setting up the system. Three dimen-

sional structures of proteins and DNA deriving from X-ray crystallography, NMR or electron

microscopy can be found in the protein databank (PDB). The target structure needs to be prepared

properly for docking, especially appropriate protonation of the binding site is crucial. In case a

number ligands is already known, it is advantageous to carry out retrospective sanity checks.? For

these screens each known ligand is complemented with 30-50 property matched decoys. DUDE108

is a convenient web-tool to generate a decoy library. For every molecule poses and interaction en-

ergies are calculated and scored. The aim is to find an enrichment of known ligands in the top

scoring compounds. Enrichment is mostly visualized in receiver operator curves (ROC).109 Using

a logarithmic scaling of the x-axis increases the weight on early enrichment. The adjusted area

under the half-logarithmic curve (LogAUC) is a convenient method to quantify the enrichment.

Here the LogAUC of a random enrichment (14.5%) is subtracted from the total LogAUC, so that

positive values indicate enrichment better than random.110

Prospective Screening

With the system all set, one is ready to screen extensive compound libraries, such as ZINC111, 112

for novel binders. ZINC is a free database containing over 100 million molecules. All compounds

in this library are commercially available and in a ready-to-dock, 3D format. Again potential

binding poses are generated and ranked for each molecule. Subsequently the top scoring molecules

need to inspected and evaluated carefully . Docking algorithms are usually designed to emphasize

on speed rather than accuracy.? Considering the simplicity of scoring functions and the extent of

screened molecules it is not surprising that many compounds are misrepresented and artificially

high-ranking. Thus, a careful manual curating of the list is an indispensable step.

Experimental Testing

Evaluation of the docking results with experimental testing of potential binders is essential. Ac-

tivity alone can be tested in binding and functional assays. Those have to be evaluated carefully as

they can be biased by experimental artifacts.113–116 Experimental determination of ligand binding

poses can be realized using X-ray crystallography and NMR.
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8.2 Working with DOCK 3.7

In this study the DOCK 3.7 suite was used to conduct all presented docking screens. The workflow

in DOCK is basically divided into two major parts:

• Orienting the ligand

• Evaluating the orientation

DOCK 3.7 is able to perform docking screens with or without a known crystal ligand. It can be

advantageous to start from a structure of the target in complex with a ligand, but it will also bias

the results towards the known ligand. The receptor pocket is represented with spheres, that are

modeled based on the shape of the site and the pose of the crystal ligand (if given).87 Poses gener-

ated by comparing the atom-atom distances to the distance between the sphere centers, following

the longest distance heuristic. Using this method reduces the number possible poses.117

The scoring of each pose is based on several interaction grids. On each grid point the contribu-

tion of the receptor to the score is calculated and stored. So each grid is generated only once,

which decreases the computational time. The calculation of Van der Waals interactions is based

on an AMBER force field using a Lennard Jones Potential.118 Electrostatics are approximated

with QNIFFT using a Poisson Boltzmann model.119, 120 Another grid scores effects deriving from

ligand desolvation.110

8.2.1 Flexible Receptor Docking with DOCK 3.7

In the flexible receptor (FlexRec) routine in DOCK 3.7 individual residues or loops are specified

as flexible while the rest of the binding site is treated as rigid.94 An invariant van der Waals and

ligand desolvation grid is calculated for the rigid parts receptor excluding flexible residues entirely.

Grids for the flexible domains of the receptor are calculated separately for each residue in each

state. Ligand desolvation and van der Waals interactions are additive, thus, the individual grids

can simply be added to the invariant grids.

Combining electrostatic terms is slightly more complex. To build the invariant electrostatic grid,

flexible residues or loops are included and modeled in their most occupied state. The individual

grids of each flexible residue in each state are calculated separately, while the rest of the flexible

residues is represented in their most occupied state. Subsequent subtraction of the invariant grid

leads to grids that reflect the impact of the movement on the electrostatics of each state.

The rank of each pose is ultimately the best score resulting from all possible combinations of

conformational states.
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9 Methods
9.1 Molecular Dynamics Simulations

Simulations from three different crystal structures of T4 Lysozyme (L99A) representing the closed,

intermediate and open state of the F-Helix (PDB 4W52, 4W57 and 4W59) were performed. As

described in part 1, MD simulations were performed with the AMBER14 simulation package.50

MOE (Molecular Operating Environment, Chemical Computing Group, version 2014.0901)51 and

the protonate3D tool52 were used to prepare the structures. With tleap of the AmberTools1550

package all systems were soaked into a truncated octahedral solvent box of TIP3P water molecules53

with a minimum wall distance was set to 10 Å. The parameters derive from the AMBER force field

99SB-ILDN.54 Each system was carefully equilibrated using a multi step equilibration protocol.55

Precedent cMD simulations as well as all aMD simulations were performed in NpT ensemble

using pmemd.cuda.56 Bonds involving hydrogen atoms were restrained by applying the SHAKE

algorithm,57 allowing a time step of 2.0 fs. Atmospheric pressure of the system was preserved by

weak coupling to an external bath using the Berendsen algorithm.58 The Langevin thermostat59

was used to maintain the temperature during simulations at 300 K.

All aMD simulations were performed using the dihedral as well as the dual-boost protocol60 imple-

mented in pmemd.cuda.56 The latter accelerates the total potential is and applies an extra boosting

to the dihedral potential. It has been shown that dual-boost aMD simulations sample the diffusive

solvent motions more extensively. Ensemble averages as well as entropy estimates converge faster

than in dihedral-boost only aMD simulations.26, 60 All simulations were analyzed using cpptraj61

in AmberTools15.50 The 1 µs cMD and aMD trajectories were stored as 100,000 equal-spaced

snapshots (2.0 fs spacing).

9.2 Conformational Energy Penalties from MD Simulation

A distance criterion was applied to distinguish between the individual loop state. Alanine 99 (A99)

is located in the rigid core of the binding pocket, while Alanine 112 (A112) is a central part of

the flexible loop. In the crystal structure of T4 lysozyme L99A in complex with n-butylbenzene

(PDB 4W57) all three loop states are modeled. The distance between the Cα of A99 and A112

in this structure is 11.94 Å for the closed, 13.12 Å for the intermediate and 14.92 for the open

state. We observe clear trends towards distinct loop states in the cMD simulations, whereas all

aMD simulations showed a very broad and noisy distance distribution. We used a hierarchical

agglomerative (bottom-up) approach to cluster the trajectories based on the A99-A112 distance.

No discrete loop state, similar to any of the crystal structure conformations, could be reconstructed

from the aMD trajectories. However, the 1 µs cMD simulation starting from the open state showed
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transitions between all three loop states and was therefore used for further evaluation.

Analyzing the cluster centroids, we find conformations of the F-helix similar to the three distinct

states of the known crystal structures (root mean square deviation (RMSD) less or equal to 0.62

Å, Figure 9.1). The closed loop conformation is represented by cluster 0, the intermediate by

cluster 1 and the open state by cluster 2 and 3. Figure 9.2 shows the sequence of visited clusters.

The simulation that starts from the open state (cluster 3) immediately collapsed into the closed

state (cluster 0). There are several transitions between the closed and intermediate state (cluster 1)

throughout the whole simulation. After 500 ns the open state (cluster 2) is revisited. The cluster

size is the normalized cluster occupancy, which derives from the number of frames sampled in

each cluster divided by the total number of frames (100 000). Through Boltzmann weighting of

the cluster size the receptor energy penalty for the docking runs was calculated. (Table 9.1)

Figure 9.1: Left: Binding site with all three loop states and distances A99-A112 (PDB
4W57) Right: RMSD between cluster and crystal structures of F-helix.

Figure 9.2: 1 µs cMD simulation. Left: Distance A99-A112 evolution in 1 µs cMD (sieved
to 10 000 frames). Right: Cluster occupancy over time µs cMD (sieved to 2 000 frames),
several transitions between all three states.
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Table 9.1: Normalized cluster occupancies and energy penalties from MD simulation

State Cluster number Clustersize Penalty /(kcal/mol)
closed 0 0.971 0.0177

intermediate 1 0.025 2.21
open 2, 3 0.005 3.18

9.3 Conformational Energy Penalties from Binding Free Energy

Previous studies on the L99A mutant of T4 Lysozyme showed significant differences in the in-

crease of binding affinity and water-octanole transfer energy for ligands growing from benzene,

to toluol, ethyl-, n-propyl and n-butylbenzene. Elongation of the alkyl chain raises the affinity

of the ligands to the hydrophobic pocket, yet only half as much as expected from water-octanol

transfer energies.105, 106 It has been proposed that the difference in free energy is consumed by the

conformational change needed to fit the larger ligand in the pocket.105

We calculated the free energy difference and related it to the crystallographic ligand occupancy of

each loop state.105 (Table 9.2) We introduced an "invisible state" i, which represents the uncer-

tainty in crystallographic occupancies. Solving the system of equations results in the contribution

of each conformation to the binding free energy. We thereby obtain a penalty energy of 0.81

kcal/mol for the closed state, 1.24 kcal/mol for the intermediate state and 3.37 kcal/mol for the

open state.

Table 9.2: Crystallographic ligand occupancies and differences in free energy.

Ligand Closed Intermediate Open Invisible state ∆∆G /(kcal/mol)
Benzene 0.7 0.3 2.284
Toluol 0.8 0.2 1.794

Ethylbenzene 0.55 0.35 0.1 1.514
n-Butylbenzene 0.6 0.3 0.1 0.874

9.4 Retrospective virtual screening

DOCK 3.7 was used for all presented docking screens. The energy penalties, calculated as de-

scribed above, were incorporated in the implemented flexible receptor docking protocol. We used

the crystal structure of T4 lysozyme in complex with n-butylbenzene (PDB 4W57), in which all

three loop states are modeled. For ligand enrichment calculations 127 known ligands and 6700

decoys generated with DUDE were docked.108

Further we performed standard rigid docking screens for each loop state. We used the most occu-
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pied loop state with benzene, n-butylbenzene and n-hexylbenzene bound as crystal ligands (PDB

4W52, 4W57, 4W59). The poses in each screen were scored and evaluated individually. Subse-

quently we applied the penalties described described above. The scores including the penalty were

combined and reevaluated. The last approach is further referred to as multiple receptor docking.
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10 Results
10.1 Conventional Rigid Docking

To benchmark the flexible receptor docking screens we carried out a conventional rigid docking

screen with each loop conformation. Poses for ligands and decoys were generated and scored

based on three different crystal structures. T4-Lysozyme in complex with benzene, n-butylbenzene

and n-hexylbenzene were chosen to represent the closed, intermediate and open state (PDB 4W52,

4W57 and 4W59). Docking screens using the closed and open state of the F-Helix yield similar

results (Figure 10.1). With a LogAUC of 25.85 for the closed and 26.22 for the open state, both

show weak enrichment compared to docking to the intermediate state which results in a LogAUC

of 39.74. Especially when looking at the early enrichment in the top 1% of docked compounds we

find very few of the known binders.

Figure 10.1: LogROC plot and adjusted LogAUC values. Left: Conventional rigid docking;
docking to the intermediate state (blue) leads to highest enrichment (LogAUC 39.74). Right:
Flexible Receptor Docking with penalties from MD simulations; incorporation of penalties
increases enrichment.

10.2 Penalties from MD Simulation

The distance between Alanine 99 (A99) and Alanine 112 (A112) was chosen as criteria to define

and distinguish the three loop states. Clustering of a 1 µs cMD simulation based on this dis-

tance led to the occupancy and subsequently the energy penalty of each state (see Methods). This

penalty was then applied to the flexible receptor algorithm implemented in DOCK 3.7 (FlexRec)



10.3 Penalties from Binding Affinity 35

by Fischer et. al.94 The LogROC and the according LogAUC show high and early enrichment

of known ligands. Compared to the best results from the conventional docking with a LogAUC

of 39.74 for the intermediate loop, the LogAUC increases 42.97 by using FlexRec docking. In

addition, more known ligands rank in the top 0.1% when using FlexRec compared to conventional

rigid docking.

To investigate the impact of the introduced penalty energies we also performed a FlexRec docking

without any penalty applied. We further "inverted" the original penalties by switching the highest

with the lowest penalty. In both cases we obtain less enrichment of known ligands, especially in

the top 0.1% of docked molecules. (Figure 10.1)

Besides enrichment of known ligands we also investigated the accuracy of pose and loop state

prediction abilities of the methodology. We compared docked poses of eight homologous ligands

to their crystal structures.105 The dominant receptor conformation in these complexes/structures

was found to shift from the closed to the open state with increasing ligand size. Loop states for

five out of eight of the best scoring poses agree with the most occupied states found in the crystal

structures. For n-propylbenzene two crystal ligand poses are observed and an occupancy of 60%

for the closed state. The best scoring pose in the FlexRec docking was found for the intermediate

state. More definite are the differences for n-pentyl- and n-hexylbenzene. Both bind exclusively

to the open conformation in the crystal structure, but score best in the intermediate state.

10.3 Penalties from Binding Affinity

10.3.1 Flexible Receptor Docking

The FlexRec docking screens using energy penalties based on binding affinity differences result

in a LogAUC of 37.99 (Figure 10.2). The LogROC shows less enrichment of ligands in the

top 0.1% compared to the results from MD simulation based penalties. Furthermore, we do not

observe significant differences in the enrichment results on applying no penalty at all or inverting

the weighting. Also introduction of a multiplier, as suggested by Fischer et al.,94 hardly changes

the results. Regarding the reproduction of crystal poses and preferred loop states the approach

performs similar to the MD-FlexRec protocol.

10.3.2 Multiple Receptor Docking

To customize the docking spheres used to sample poses in each loop state we extended the FlexRec

methodology to a multiple receptor docking scheme (see Methods). This approach leads to a

LogAUC of 35.40 for the binding affinity based penalties (Figure 10.3). Applying a multiplier of

m=2 as proposed by Fischer et al. 2014 increases the LogAUC to 41.34. Combining the scores

without penalties leads to a clear decrease of the LogAUC to 27.89. The significant impact of
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Figure 10.2: LogROC plot and adjusted LogAUC values of flexible receptor docking screens
using penalties estimated from binding affinity. Left: Incorporation of penalties slightly im-
proves enrichment. Right: Improvement of enrichment by applying a multiplier

the penalty is also apparent in the ligands found in the top 1% of docked molecules, as can be

seen in the LogROC. Docking based on three different loop structures is further the only approach

discussed that finds the correct loop state for n-pentyl and n-hexylbenzene. On the other hand it

falsely favors the intermediate over the closed state for n-propylbenzene and toluol.

Figure 10.3: LogROC plot and adjusted LogAUC values of multiple receptor docking
screens using penalties estimated from binding affinity.
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11 Discussion
Protein flexibility, i.e. the conformations of the binding site, plays a key role in ligand bind-

ing.9, 83, 98, 121, 122 In this work we compare various docking setups for the flexible binding site

of T4 lysozyme. We estimate the success of retrospective docking campaigns based on LogROC

plots, LogAUC, and the accuracy in reproduction of crystal ligand poses.

The standard rigid docking protocol performs fairly well for the intermediate loop state. This re-

sult is hardly surprising considering that the vast majority of known ligands was reported bound

to this state. Clustering of all T4 lysozyme structures in the PDB identified the intermediate state

as the most common one.105 Thus, the test set is presumably biased towards this conformation.

The target of this work is to provide an efficient methodology to increase the novelty in high rank-

ing ligands and decrease the bias to known structures. The original work from Fischer et al.94

on which this work is based upon, achieves this aim by using a high resolution room temperature

apo crystal structure of cytochrome C peroxidase. Here we aim to establish a robust protocol that

estimates receptor flexibility for proteins without the support of multi-state structural data.

MD simulations have been proposed to assist flexible receptor docking screens in several previ-

ous expedient studies.91, 123, 124 We envisaged to extend the covered conformational changes using

aMD. Unfortunately, we did not succeed in defining discrete receptor states from aMD trajecto-

ries. We observed the most significant increase of dynamics compared to the cMD simulations

in the N-domain of the protein far away from the binding site. For the F-helix itself we found a

broad range of conformations, but were not able to reconstruct the experimentally observed states.

These results indicate a too vigorous biasing of the simulations.

With a 1 µs of cMD simulation starting from the open state we were able to sample transitions

between all three loop states. This additionally indicates that the distinct states are accessible

without biasing the underlying potential.

The ratio of sampled states leads to energy penalties that result in very reasonable enrichment.

The very early enrichment of known ligands in the top 0.1% to 1% of docked molecules is clearly

improved by applying the penalty. We find comparable enrichment for docking to the rigid inter-

mediate state only. Similar findings were reported in the work of Fisher et al.94 In their study they

did not observe an increased enrichment of ligands, but an increase in the covered chemical space.

We anticipate that a prospective screen followed by experimental testing would lead to a similar

outcome for our protocol.

In a further approach we incorporated more experimental information in the estimation of the re-

ceptor penalties. Determining the bias of each conformation based on a binding affinity study

led to acceptable results with a LogAUC of 37.88. Yet, this docking screen is hardly any more

successful than applying no penalty at all, which results in a LogAUC of 36.50. Also when we
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introduce a multiplier of m=2 the impact of the weighted penalty is subtle. Yet, we observe a slight

improvement in enrichment when comparing the suggested penalty (LogAUC: 39.07) to the in-

verted ones (LogAUC: 37.11). In docking screens using inverted penalties the highest and lowest

energy are switched, penalizing the closed state the most. These results indicate that the ratio of

the penalties deriving from the binding affinity study might not be robust enough to prioritize the

individual states.

In both of the described protocols one sphere set was used to sample conformations of each loop

state. These spheres were based on the intermediate state of the F-helix. Ligands binding to

the open state hardly fit into this sphere set. We assume this is at least partially the reason why

the loop preferences were predicted incorrectly for the more bulky ligands like n-pentyl- and n-

hexylbenzene. To overcome this restraint we combined results from docking ligands to each loop

state individually. We added the binding affinity based energy penalty to each score and reevalu-

ated the enrichment. Using this protocol we found a major improvement on applying the penalty

(LogAUC: 35.40) compared to not prioritizing any state (LogAUC: 27.86). Increasing the weight

with a multiplier further increases the enrichment to a LogAUC of 41.14 for m=2 and 43.18 for

m=3. Thus, the results of the multiple receptor docking approach are comparable to the best rigid

docking and MD-FlexRec enrichment. Further we correctly predict the binding mode of n-pentyl-

and n-hexylbenzene. Yet, small ligands binding to the closed state are falsely predicted to bind to

the intermediate state. Further, we observe large ligands scoring significantly better, indicating a

bias towards high molecular weight. Altogether, we observe an acceptable enrichment and diver-

sity in high ranking ligands docking to multiple receptor conformations, but we also significantly

increase the calculation time.

12 Conclusion and Outlook
Incorporation of protein flexibility into DOCK 3.7 has shown to increase the chemical space of

newly discovered binders.94 In this work we perform and compare several flexible receptor dock-

ing protocols. We use MD simulations and binding studies to weight known conformational states

of T4 lysozyme L99A. The results are comparable to what was found for conformational penal-

ties from X-ray occupancies. Thus, in absence of appropriate experimental data MD simulations

represent a feasible method to prioritize receptor conformations for molecular docking.

We will continue the project to conduct prospective screens and experimental testing of com-

pounds. Numerous pharmaceutically highly relevant proteins, such as neuraminidases, have been

found to change their conformation upon ligand binding.105, 125 We envisage to extend our set of

model systems to test and substantiate our approach.



BIBLIOGRAPHY 39

Bibliography
[1] J. J. Falke, “A moving story,” Science, vol. 295, no. 5559, pp. 1480–1481, 2002.

[2] K. A. Henzler-Wildman, V. Thai, M. Lei, M. Ott, M. Wolf-Watz, T. Fenn, E. Pozharski,

M. A. Wilson, G. A. Petsko, M. Karplus, C. G. Huebner, and D. Kern, “Intrinsic motions

along an enzymatic reaction trajectory,” Nature, vol. 450, no. 7171, pp. 838–844, 2007.

[3] D. D. Boehr, R. Nussinov, and P. E. Wright, “The role of dynamic conformational ensem-

bles in biomolecular recognition,” Nat. Chem. Biol., vol. 5, no. 12, pp. 954–954, 2009.

[4] M. Fischer, R. G. Coleman, J. S. Fraser, and B. K. Shoichet, “Incorporation of protein flexi-

bility and conformational energy penalties in docking screens to improve ligand discovery,”

Nat. Chem., vol. 6, no. 7, pp. 575–583, 2014.

[5] J. E. Fuchs, R. G. Huber, B. J. Waldner, U. Kahler, S. von Grafenstein, C. Kramer, and K. R.

Liedl, “Dynamics govern specificity of a protein-protein interface: Substrate recognition by

thrombin,” PLoS One, vol. 10, no. 10, 2015. e0140713.

[6] J. R. Schnell, H. J. Dyson, and P. E. Wright, “Structure, dynamics, and catalytic function of

dihydrofolate reductase,” Annu. Rev. Biophys. Biomol. Struct., vol. 33, pp. 119–140, 2004.

[7] R. B. Fenwick, S. Esteban-Martin, and X. Salvatella, “Understanding biomolecular motion,

recognition, and allostery by use of conformational ensembles,” Eur. Biophys. J. Biophys.

Lett., vol. 40, no. 12, pp. 1339–1355, 2011.

[8] U. Hensen, T. Meyer, J. Haas, R. Rex, G. Vriend, and H. Grubmuller, “Exploring protein

dynamics space: The dynasome as the missing link between protein structure and function,”

PLoS One, vol. 7, no. 5, 2012. e33931.

[9] J. D. Durrant and J. A. McCammon, “Molecular dynamics simulations and drug discovery,”

BMC Biol., vol. 9, 2011. 1-9.

[10] K. Henzler-Wildman and D. Kern, “Dynamic personalities of proteins,” Nature, vol. 450,

no. 7172, pp. 964–972, 2007.

[11] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A.

Bank, J. M. Jumper, J. K. Salmon, Y. B. Shan, and W. Wriggers, “Atomic-level character-

ization of the structural dynamics of proteins,” Science, vol. 330, no. 6002, pp. 341–346,

2010.



40 BIBLIOGRAPHY

[12] R. C. Bernardi, M. C. R. Melo, and K. Schulten, “Enhanced sampling techniques in molec-

ular dynamics simulations of biological systems,” Biochim. Biophys. Acta, Gen. Subj.,

vol. 1850, no. 5, pp. 872–877, 2015.

[13] W. Wenzel and K. Hamacher, “Stochastic tunneling approach for global minimization of

complex potential energy landscapes,” Physical Review Letters, vol. 82, no. 15, pp. 3003–

3007, 1999.

[14] D. Hamelberg, J. Mongan, and J. A. McCammon, “Accelerated molecular dynamics: A

promising and efficient simulation method for biomolecules,” J. Chem. Phys., vol. 120,

no. 24, pp. 11919–11929, 2004.

[15] L. C. T. Pierce, R. Salomon-Ferrer, C. A. F. de Oliveira, J. A. McCammon, and R. C. Walker,

“Routine access to millisecond time scale events with accelerated molecular dynamics,” J.

Chem. Theory Comput., vol. 8, no. 9, pp. 2997–3002, 2012.

[16] C. A. F. de Oliveira, D. Hamelberg, and J. A. McCammon, “On the application of acceler-

ated molecular dynamics to liquid water simulations,” J. Phys. Chem. B, vol. 110, no. 45,

pp. 22695–22701, 2006.

[17] R. I. Cukier and M. Morillo, “A targeted reweighting method for accelerating the explo-

ration of high-dimensional configuration space,” J. Chem. Phys., vol. 123, no. 23, 2005.

[18] Y. L. Miao, W. Sinko, L. Pierce, D. Bucher, R. C. Walker, and J. A. McCammon, “Improved

reweighting of accelerated molecular dynamics simulations for free energy calculation,” J.

Chem. Theory Comput., vol. 10, no. 7, pp. 2677–2689, 2014.

[19] T. Y. Shen and D. Hamelberg, “A statistical analysis of the precision of reweighting-based

simulations,” J. Chem. Phys., vol. 129, no. 3, p. e034103, 2008.

[20] D. Bucher, B. J. Grant, P. R. Markwick, and J. A. McCammon, “Accessing a hidden con-

formation of the maltose binding protein using accelerated molecular dynamics,” PLoS

Comput. Biol., vol. 7, no. 4, p. e1002034, 2011.

[21] P. R. L. Markwick and J. A. McCammon, “Studying functional dynamics in bio-molecules

using accelerated molecular dynamics,” Phys. Chem. Chem. Phys., vol. 13, no. 45,

pp. 20053–20065, 2011.

[22] Y. Wang, P. R. L. Markwick, C. A. F. de Oliveira, and J. A. McCammon, “Enhanced

lipid diffusion and mixing in accelerated molecular dynamics,” Biophys. J., vol. 102, no. 3,

pp. 413A–413A, 2012.



BIBLIOGRAPHY 41

[23] K. Kappel, Y. Miao, and J. A. McCammon, “Accelerated molecular dynamics simulations

of ligand binding to a muscarinic g-protein-coupled receptor,” Q. Rev. Biophys., vol. 48,

no. 4, pp. 479–487, 2015.

[24] A. Kalenkiewicz, B. J. Grant, and C.-Y. Yang, “Enrichment of druggable conformations

from apo protein structures using cosolvent-accelerated molecular dynamics,” Biology,

vol. 4, no. 2, pp. 344–66, 2015.

[25] C. Mucksch and H. M. Urbassek, “Enhancing protein adsorption simulations by using ac-

celerated molecular dynamics,” PloS one, vol. 8, no. 6, p. e64883, 2014.

[26] D. D. L. Minh, D. Hamelberg, and A. McCammon, “Accelerated entropy estimates with

accelerated dynamics,” J. Chem. Phys., vol. 127, no. 15, 2007. e154105.

[27] J. R. Thomas, P. C. Gedeon, B. J. Grant, and J. D. Madura, “Leut conformational sampling

utilizing accelerated molecular dynamics and principal component analysis,” Biophys. J.,

vol. 103, no. 1, pp. L01–L03, 2012.

[28] Q. Bai, Y. Zhang, X. Li, W. Chen, H. Liu, and X. Yao, “Computational study on the inter-

action between ccr5 and hiv-1 entry inhibitor maraviroc: insight from accelerated molec-

ular dynamics simulation and free energy calculation,” Phys. Chem. Chem. Phys., vol. 16,

no. 44, pp. 24332–24338, 2014.

[29] J. E. Fuchs, B. J. Waldner, R. G. Huber, S. von Grafenstein, C. Kramer, and K. R. Liedl, “In-

dependent metrics for protein backbone and side-chain flexibility: Time scales and effects

of ligand binding,” J. Chem. Theory Comput., vol. 11, no. 3, pp. 851–860, 2015.

[30] J. E. Fuchs, S. von Grafenstein, R. G. Huber, H. G. Wallnoefer, and K. R. Liedl, “Speci-

ficity of a protein-protein interface: Local dynamics direct substrate recognition of effector

caspases,” Proteins: Struct., Funct., Bioinf., vol. 82, no. 4, pp. 546–555, 2014.

[31] M. J. Edgeworth, J. J. Phillips, D. C. Lowe, A. D. Kippen, D. R. Higazi, and J. H. Scrivens,

“Global and local conformation of human igg antibody variants rationalizes loss of thermo-

dynamic stability,” Angew. Chem., Int. Ed., vol. 54, no. 50, pp. 15156–15159, 2015.

[32] N. Sinha and S. J. Smith-Gill, “Molecular dynamics simulation of a high-affinity antibody-

protein complex - the binding site is a mosaic of locally flexible and preorganized rigid

regions,” Cell Biochem. Biophys., vol. 43, no. 2, pp. 253–273, 2005.



42 BIBLIOGRAPHY

[33] N. Sinha, S. Mohan, C. A. Lipschultz, and S. J. Smith-Gill, “Differences in electro-

static properties at antibody-antigen binding sites: Implications for specificity and cross-

reactivity,” Biophys. J., vol. 83, no. 6, pp. 2946–2968, 2002.

[34] L. Salmon, L. Pierce, A. Grimm, J.-L. O. Roldan, L. Mollica, M. R. Jensen, N. van Nuland,

P. R. L. Markwick, J. A. McCammon, and M. Blackledge, “Multi-timescale conformational

dynamics of the sh3 domain of cd2-associated protein using nmr spectroscopy and acceler-

ated molecular dynamics,” Angew. Chem., Int. Ed., vol. 51, no. 25, pp. 6103–6106, 2012.

[35] P. R. L. Markwick, C. F. Cervantes, B. L. Abel, E. A. Komives, M. Blackledge, and J. A.

McCammon, “Enhanced conformational space sampling improves the prediction of chem-

ical shifts in proteins,” J. Am. Chem. Soc., vol. 132, no. 4, pp. 1220–1221, 2010.

[36] R. G. Huber, C. Eibl, and J. E. Fuchs, “Intrinsic flexibility of nlrp pyrin domains is a key fac-

tor in their conformational dynamics, fold stability, and dimerization,” Protein Sci., vol. 24,

no. 2, pp. 174–181, 2015.

[37] R. G. Huber, J. E. Fuchs, S. von Grafenstein, M. Laner, H. G. Wallnoefer, N. Abdelkader,

R. T. Kroemer, and K. R. Liedl, “Entropy from state probabilities: Hydration entropy of

cations,” J. Phys. Chem. B, vol. 117, no. 21, pp. 6466–6472, 2013.

[38] A. Wlodawer, J. Walter, R. Huber, and L. Sjolin, “Structure of bovine pancreatic trypsin-

inhibitor - results of joint neutron and x-ray refinement of crystal form-ii,” J. Mol. Biol.,

vol. 180, no. 2, pp. 301–329, 1984.

[39] G. Wagner, A. Demarco, and K. Wuthrich, “Dynamics of aromatic amino-acid residues

in globular conformation of basic pancreatic trypsin-inhibitor (bpti) .1. h-1 nmr-studies,”

Biophys. Struct. Mech., vol. 2, no. 2, pp. 139–158, 1976.

[40] G. Wagner, D. Bruhwiler, and K. Wuthrich, “Reinvestigation of the aromatic side-chains in

the basic pancreatic trypsin-inhibitor by heteronuclear two-dimensional nuclear-magnetic-

resonance,” J. Mol. Biol., vol. 196, no. 1, pp. 227–231, 1987.

[41] G. Otting, E. Liepinsh, and K. Wuthrich, “Disulfide bond isomerization in bpti and

bpti(g36s) - an nmr-study of correlated mobility in proteins,” Biochemistry, vol. 32, no. 14,

pp. 3571–3582, 1993.

[42] Y. Xue, J. M. Ward, T. Yuwen, I. S. Podkorytov, and N. R. Skrynnikov, “Microsecond time-

scale conformational exchange in proteins: Using long molecular dynamics trajectory to

simulate nmr relaxation dispersion data,” J. Am. Chem. Soc., vol. 134, no. 5, pp. 2555–

2562, 2012.



BIBLIOGRAPHY 43

[43] H. Ipsen and H. Lowenstein, “Isolation and immunochemical characterization of the ma-

jor allergen of birch pollen (betula-verrucosa),” J. Allergy Clin. Immunol., vol. 72, no. 2,

pp. 150–159, 1983.

[44] R. Moverare, K. Westritschnig, M. Svensson, B. Hayek, M. Bende, G. Pauli, R. Sorva,

T. Haahtela, R. Valenta, and L. Elfman, “Different ige reactivity profiles in birch pollen-

sensitive patients from six european populations revealed by recombinant allergens: An

imprint of local sensitization,” Int. Arch. Allergy Immunol., vol. 128, no. 4, pp. 325–335,

2002.

[45] F. Ferreira, K. Hirtenlehner, A. Jilek, J. GodnikCvar, H. Breiteneder, R. Grimm, K. Hoff-

mannSommergruber, O. Scheiner, D. Kraft, M. Breitenbach, H. J. Rheinberger, and

C. Ebner, “Dissection of immunoglobulin e and t lymphocyte reactivity of isoforms of

the major birch pollen allergen bet v 1: Potential use of hypoallergenic isoforms for im-

munotherapy,” J. Exp. Med., vol. 183, no. 2, pp. 599–609, 1996.

[46] I. Swoboda, A. Jilek, F. Ferreira, E. Engel, K. Hoffmannsommergruber, O. Scheiner,

D. Kraft, H. Breiteneder, E. Pittenauer, E. Schmid, O. Vicente, E. Heberlebors, H. Ahorn,

and M. Breitenbach, “Isoforms of bet-v-1, the major birch pollen allergen, analyzed by

liquid-chromatography, mass-spectrometry, and cdna cloning,” J. Biol. Chem., vol. 270,

no. 6, pp. 2607–2613, 1995.

[47] S. Grutsch, J. E. Fuchs, R. Freier, S. Kofler, M. Bibi, C. Asam, M. Wallner, F. Ferreira,

H. Brandstetter, K. R. Liedl, and M. Tollinger, “Ligand binding modulates the structural

dynamics and compactness of the major birch pollen allergen,” Biophys. J., vol. 107, no. 12,

pp. 2963–2972, 2014.

[48] R. Freier, E. Dall, and H. Brandstetter, “Protease recognition sites in bet v 1a are cryptic,

explaining its slow processing relevant to its allergenicity,” Sci. Rep., vol. 5, p. 12707, 2015.

[49] Y. Machado, R. Freier, S. Scheiblhofer, T. Thalhamer, M. Mayr, P. Briza, S. Grutsch,

L. Ahammer, J. E. Fuchs, H. G. Wallnoefer, A. Isakovic, V. Kohlbauer, A. Hinterholzer,

M. Steiner, M. Danzer, J. Horejs-Hoeck, F. Ferreira, K. R. Liedl, M. Tollinger, P. Lackner,

C. M. Johnson, H. Brandstetter, J. Thalhamer, and R. Weiss, “Fold stability during en-

dolysosomal acidification is a key factor for allergenicity and immunogenicity of the major

birch pollen allergen,” J. Allergy Clin. Immunol., pp. 1525–34, 2015.

[50] D. Case, J. Berryman, R. Betz, D. Cerutti, T. Cheatham, III, T. Darden, R. Duke, T. Giese,

H. Gohlke, A. Goetz, N. Homeyer, S. Izadi, P. Janowski, J. Kaus, , A. Kovalenko, T. Lee,



44 BIBLIOGRAPHY

S. LeGrand, P. Li, T. Luchko, R. Luo, B. Madej, K. Merz, G. Monard, P. Needham,

H. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, D. Roe, A. Roitberg, R. Salomon-Ferrer,

C. Simmerling, W. Smith, J. Swails, R. Walker, J. Wang, R. Wolf, X. Wu, D. York, and

P. Kollman, AMBER 2015, University of California, San Francisco.

[51] “Molecular operating environment (moe), 2014.09.” Chemical Computing Group Inc., 1010

Sherbooke St. West, Suite 910, Montreal, QC, Canada, H3A 2R7.

[52] P. Labute, “Protonate3d: Assignment of ionization states and hydrogen coordinates to

macromolecular structures,” Proteins: Struct., Funct., Bioinf., vol. 75, no. 1, pp. 187–205,

2009.

[53] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Com-

parison of simple potential functions for simulating liquid water,” J. Chem. Phys., vol. 79,

no. 2, pp. 926–935, 1983.

[54] K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J. L. Klepeis, R. O. Dror, and D. E.

shaw, “Improved side-chain torsion potentials for the amber ff99sb protein force field,”

Proteins: Struct., Funct., Bioinf., vol. 78, no. 8, pp. 1950–1958, 2010.

[55] H. G. Wallnoefer, K. R. Liedl, and T. Fox, “A challenging system: Free energy prediction

for factor xa,” J. Comput. Chem., vol. 32, no. 8, pp. 1743–1752, 2011.

[56] R. Salomon-Ferrer, A. W. Goetz, D. Poole, S. Le Grand, and R. C. Walker, “Routine mi-

crosecond molecular dynamics simulations with amber on gpus. 2. explicit solvent particle

mesh ewald,” J. Chem. Theory Comput., vol. 9, no. 9, pp. 3878–3888, 2013.

[57] G. Ciccotti and J. P. Ryckaert, “Molecular-dynamics simulation of rigid molecules,” Com-

put. Phys. Rep., vol. 4, no. 6, pp. 345–392, 1986.

[58] H. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. Dinola, and J. R. Haak,

“Molecular-dynamics with coupling to an external bath,” J. Chem. Phys., vol. 81, no. 8,

pp. 3684–3690, 1984.

[59] S. A. Adelman and J. D. Doll, “Generalized langevin equation approach for atom-solid-

surface scattering - general formulation for classical scattering off harmonic solids,” J.

Chem. Phys., vol. 64, no. 6, pp. 2375–2388, 1976.

[60] D. Hamelberg, C. A. F. de Oliveira, and J. A. McCammon, “Sampling of slow diffusive

conformational transitions with accelerated molecular dynamics,” J. Chem. Phys., vol. 127,

no. 15, p. e155102, 2007.



BIBLIOGRAPHY 45

[61] D. R. Roe and I. Cheatham, Thomas E., “Ptraj and cpptraj: Software for processing and

analysis of molecular dynamics trajectory data,” J. Chem. Theory Comput., vol. 9, no. 7,

pp. 3084–3095, 2013.

[62] G. N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, “Stereochemistry of polypep-

tide chain configurations,” J. Mol. Biol., vol. 7, no. 1, pp. 95–99, 1963.

[63] M. J. Wood and J. D. Hirst, “Protein secondary structure prediction with dihedral angles,”

Proteins: Struct., Funct., Bioinf., vol. 59, no. 3, pp. 476–481, 2005.

[64] Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel density estimation via diffusion,”

Ann. Math. Stat., vol. 38, no. 5, pp. 2916–2957, 2010.

[65] S. Kofler, C. Asam, U. Eckhard, M. Wallner, F. Ferreira, and H. Brandstetter, “Crystallo-

graphically mapped ligand binding differs in high and low ige binding isoforms of birch

pollen allergen bet v 1,” J. Mol. Biol., vol. 422, no. 1, pp. 109–123, 2012.

[66] A. Mittermaier and L. E. Kay, “Review - new tools provide new insights in nmr studies of

protein dynamics,” Science, vol. 312, no. 5771, pp. 224–228, 2006.

[67] A. Kidera and N. Go, “Normal mode refinement - crystallographic refinement of protein

dynamic structure .1. theory and test by simulated diffraction data,” J. Mol. Biol., vol. 225,

no. 2, pp. 457–475, 1992.

[68] Y. Miao, S. E. Nichols, and J. A. McCammon, “Free energy landscape of g-protein coupled

receptors, explored by accelerated molecular dynamics,” Phys. Chem. Chem. Phys., vol. 16,

no. 14, pp. 6398–6406, 2014.

[69] Z. Jing and H. Sun, “A comment on the reweighting method for accelerated molecular

dynamics simulations,” J. Chem. Theory Comput., vol. 11, no. 6, pp. 2395–2397, 2015.

[70] U. Doshi and D. Hamelberg, “Improved statistical sampling and accuracy with acceler-

ated molecular dynamics on rotatable torsions,” J. Chem. Theory Comput., vol. 8, no. 11,

pp. 4004–4012, 2012.

[71] Y. Miao, V. A. Feher, and J. A. McCammon, “Gaussian accelerated molecular dynamics:

Unconstrained enhanced sampling and free energy calculation,” J. Chem. Theory Comput.,

vol. 11, no. 8, pp. 3584–3595, 2015.

[72] J. Wereszczynski and J. A. McCammon, “Using selectively applied accelerated molecular

dynamics to enhance free energy calculations,” J. Chem. Theory Comput., vol. 6, no. 11,

pp. 3285–3292, 2010.



46 BIBLIOGRAPHY

[73] B. E. Maryanoff

[74] J. G. Lombardino and r. Lowe, J. A., “The role of the medicinal chemist in drug discovery–

then and now,” Nat Rev Drug Discov, vol. 3, no. 10, pp. 853–62, 2004.

[75] R. Lahana, “How many leads from hts?,” Drug Discovery Today, vol. 4, no. 10, pp. 447 –

448, 1999.

[76] G. Kurosawa, Y. Akahori, M. Morita, M. Sumitomo, N. Sato, C. Muramatsu, K. Eguchi,

K. Matsuda, A. Takasaki, M. Tanaka, Y. Iba, S. Hamada-Tsutsumi, Y. Ukai, M. Shiraishi,

K. Suzuki, M. Kurosawa, S. Fujiyama, N. Takahashi, R. Kato, Y. Mizoguchi, M. Shamoto,

H. Tsuda, M. Sugiura, Y. Hattori, S. Miyakawa, R. Shiroki, K. Hoshinaga, N. Hayashi,

A. Sugioka, and Y. Kurosawa, “Comprehensive screening for antigens overexpressed on

carcinomas via isolation of human mabs that may be therapeutic,” Proceedings of the Na-

tional Academy of Sciences, vol. 105, no. 20, pp. 7287–7292, 2008.

[77] Y. Yang, S. J. Adelstein, and A. I. Kassis, “Target discovery from data mining approaches,”

Drug Discovery Today, vol. 14, no. 3–4, pp. 147 – 154, 2009.

[78] W. L. Jorgensen, “The many roles of computation in drug discovery,” Science, vol. 303,

no. 5665, pp. 1813–1818, 2004.

[79] J. Hughes, S. Rees, S. Kalindjian, and K. Philpott, “Principles of early drug discovery,”

British Journal of Pharmacology, vol. 162, no. 6, pp. 1239–1249, 2011.

[80] P. M. Dean and P.-L. Chau, “Molecular recognition: optimized searching through rotational

3-space for pattern matches on molecular surfaces,” Journal of Molecular Graphics, vol. 5,

no. 3, pp. 152–158, 1987.

[81] I. D. Kuntz, “Structure-based strategies for drug design and discovery,” Science, vol. 257,

no. 5073, pp. 1078–1082, 1992.

[82] C. D. Schwieters, J. J. Kuszewski, N. Tjandra, and G. M. Clore, “The xplor-nih nmr molec-

ular structure determination package,” Journal of magnetic resonance, vol. 160, no. 1,

pp. 65–73, 2003.

[83] C. F. Wong and J. A. McCammon, “Protein flexibility and computer-aided drug design,”

Annu Rev Pharmacol Toxicol, vol. 43, pp. 31–45, 2003.

[84] A. R. Leach, B. K. Shoichet, , and C. E. Peishoff, “Prediction of protein-ligand interactions.

docking and scoring: Successes and gaps,” Journal of Medicinal Chemistry, vol. 49, no. 20,

pp. 5851–5855, 2006.



BIBLIOGRAPHY 47

[85] M. Stahl and M. Rarey, “Detailed analysis of scoring functions for virtual screening,” Jour-

nal of medicinal chemistry, vol. 44, no. 7, pp. 1035–1042, 2001.

[86] W. Sinko, S. Lindert, and J. A. McCammon, “Accounting for receptor flexibility and en-

hanced sampling methods in computer-aided drug design,” Chemical Biology & Drug De-

sign, vol. 81, no. 1, pp. 41–49, 2013.

[87] I. D. Kuntz, J. M. Blaney, S. J. Oatley, R. Langridge, and T. E. Ferrin, “A geometric ap-

proach to macromolecule-ligand interactions,” J Mol Biol, vol. 161, no. 2, pp. 269–88,

1982.

[88] M. Rarey, B. Kramer, T. Lengauer, and G. Klebe, “A fast flexible docking method using an

incremental construction algorithm,” Journal of molecular biology, vol. 261, no. 3, pp. 470–

489, 1996.

[89] G. Jones, P. Willett, R. C. Glen, A. R. Leach, and R. Taylor, “Development and validation

of a genetic algorithm for flexible docking,” Journal of molecular biology, vol. 267, no. 3,

pp. 727–748, 1997.

[90] S.-Y. Huang and X. Zou, “Ensemble docking of multiple protein structures: Considering

protein structural variations in molecular docking,” Proteins-Structure Function and Bioin-

formatics, vol. 66, no. 2, pp. 399–421, 2007.

[91] C. B-Rao, J. Subramanian, and S. D. Sharma, “Managing protein flexibility in docking and

its applications,” Drug Discovery Today, vol. 14, no. 7-8, pp. 394–400, 2009.

[92] P. R. L. Markwick and J. A. McCammon, “Studying functional dynamics in bio-molecules

using accelerated molecular dynamics,” Physical Chemistry Chemical Physics, vol. 13,

no. 45, pp. 20053–20065, 2011.

[93] N. Bansal, Z. Zheng, and K. M. M. Jr., “Incorporation of side chain flexibility into protein

binding pockets using {MTflex},” Bioorganic and Medicinal Chemistry, pp. –, 2016.

[94] M. Fischer, R. G. Coleman, J. S. Fraser, and B. K. Shoichet, “Incorporation of protein flexi-

bility and conformational energy penalties in docking screens to improve ligand discovery,”

Nature Chemistry, vol. 6, no. 7, pp. 575–583, 2014.

[95] M. Rueda, M. Totrov, and R. Abagyan, “ALiBERO: Evolving a Team of Complementary

Pocket Conformations Rather than a Single Leader,” Journal of Chemical Information and

Modeling, vol. 52, no. 10, pp. 2705–2714, 2012.



48 BIBLIOGRAPHY

[96] C. S. Tautermann, D. Seeliger, and J. M. Kriegl, “What can we learn from molecular dy-

namics simulations for gpcr drug design?,” Computational and structural biotechnology

journal, vol. 13, pp. 111–121, 2015.

[97] L. E. W. LaConte, V. A. Voelz, W. D. Nelson, and D. D. Thomas, “Molecular dynamics sim-

ulation of site-directed spin labeling: Experimental validation in muscle fibers,” BiophysJ,

vol. 82, 2002.

[98] S. von Grafenstein, J. E. Fuchs, and K. R. Liedl, “(how to) profit from molecular dynamics-

based ensemble docking,” in Application of Computational Techniques in Pharmacy and

Medicine (L. Gorb, V. Kuz’min, and E. Muratov, eds.), vol. 17 of Challenges and Advances

in Computational Chemistry and Physics, pp. 501–538, Springer Netherlands, 2014.

[99] L. S. Cheng, R. E. Amaro, D. Xu, W. W. Li, P. W. Arzberger, and J. A. McCammon,

“Ensemble-based virtual screening reveals potential novel antiviral compounds for avian

influenza neuraminidase,” Journal of Medicinal Chemistry, vol. 51, no. 13, pp. 3878–3894,

2008.

[100] J. L. Paulsen and A. C. Anderson, “Scoring Ensembles of Docked Protein:Ligand Inter-

actions for Virtual Lead Optimization,” Journal of Chemical Information and Modeling,

vol. 49, no. 12, pp. 2813–2819, 2009.

[101] M. Fischer, B. K. Shoichet, and J. S. Fraser, “One crystal, two temperatures: Cryocooling

penalties alter ligand binding to transient protein sites,” ChemBioChem, vol. 16, no. 11,

pp. 1560–1564, 2015.

[102] X. Barril and X. Fradera, “Incorporating protein flexibility into docking and structure-based

drug design,” Expert Opinion on Drug Discovery, vol. 1, no. 4, pp. 335–349, 2006.

[103] J. Lin, A. Perryman, J. Schames, and J. McCammon, “Computational drug design ac-

commodating receptor flexibility: The relaxed complex scheme,” Journal of the American

Chemical Society, vol. 124, no. 20, pp. 5632–5633, 2002.

[104] R. E. Amaro, R. Baron, and J. A. McCammon, “An improved relaxed complex scheme for

receptor flexibility in computer-aided drug design,” Journal of Computer-Aided Molecular

Design, vol. 22, no. 9, pp. 693–705, 2008.

[105] M. Merski, M. Fischer, T. E. Balius, O. Eidam, and B. K. Shoichet, “Homologous ligands

accommodated by discrete conformations of a buried cavity,” Proceedings of the National

Academy of Sciences of the United States of America, vol. 112, no. 16, pp. 5039–5044,

2015.



BIBLIOGRAPHY 49

[106] A. Morton and B. W. Matthews, “Specificity of ligand binding in a buried nonpolar cavity of

t4 lysozyme: Linkage of dynamics and structural plasticity,” Biochemistry, vol. 34, no. 27,

pp. 8576–8588, 1995.

[107] A. Morton, W. A. Baase, and B. W. Matthews, “Energetic origins of specificity of lig-

and binding in an interior nonpolar cavity of t4 lysozyme,” Biochemistry, vol. 34, no. 27,

pp. 8564–8575, 1995.

[108] M. M. Mysinger, M. Carchia, J. J. Irwin, and B. K. Shoichet, “Directory of useful decoys,

enhanced (dud-e): Better ligands and decoys for better benchmarking,” Journal of Medici-

nal Chemistry, vol. 55, no. 14, pp. 6582–6594, 2012.

[109] A. Nicholls, “What do we know and when do we know it?,” J Comput Aided Mol Des,

vol. 22, no. 3-4, pp. 239–55, 2008.

[110] M. M. Mysinger and B. K. Shoichet, “Rapid context-dependent ligand desolvation in

molecular docking,” J Chem Inf Model, vol. 50, no. 9, pp. 1561–73, 2010.

[111] T. Sterling and J. J. Irwin

[112] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, and R. G. Coleman

[113] C. H. Arrowsmith, J. E. Audia, C. Austin, J. Baell, J. Bennett, J. Blagg, C. Bountra, P. E.

Brennan, P. J. Brown, M. E. Bunnage, C. Buser-Doepner, R. M. Campbell, A. J. Carter,

P. Cohen, R. A. Copeland, B. Cravatt, J. L. Dahlin, D. Dhanak, A. M. Edwards, M. Fred-

eriksen, S. V. Frye, N. Gray, C. E. Grimshaw, D. Hepworth, T. Howe, K. V. Huber, J. Jin,

S. Knapp, J. D. Kotz, R. G. Kruger, D. Lowe, M. M. Mader, B. Marsden, A. Mueller-

Fahrnow, S. Muller, R. C. O’Hagan, J. P. Overington, D. R. Owen, S. H. Rosenberg,

B. Roth, R. Ross, M. Schapira, S. L. Schreiber, B. Shoichet, M. Sundstrom, G. Superti-

Furga, J. Taunton, L. Toledo-Sherman, C. Walpole, M. A. Walters, T. M. Willson, P. Work-

man, R. N. Young, and W. J. Zuercher, “The promise and peril of chemical probes,” Nat

Chem Biol, vol. 11, no. 8, pp. 536–41, 2015.

[114] B. K. Shoichet, “Screening in a spirit haunted world,” Drug Discov Today, vol. 11, no. 13-

14, pp. 607–15, 2006.

[115] J. B. Baell and G. A. Holloway, “New substructure filters for removal of pan assay inter-

ference compounds (pains) from screening libraries and for their exclusion in bioassays,” J

Med Chem, vol. 53, no. 7, pp. 2719–40, 2010.



50 BIBLIOGRAPHY

[116] W. P. Walters and M. Namchuk, “Designing screens: how to make your hits a hit,” Nat Rev

Drug Discov, vol. 2, no. 4, pp. 259–66, 2003.

[117] D. A. Gschwend, DOCK version 3.5 reference manual.

[118] D. A. Pearlman, D. A. Case, J. C. Caldwell, G. L. S. GL, and U. C. S. et al. ., AMBER 4.0.

[119] K. Gallagher and K. Sharp, “Electrostatic contributions to heat capacity changes of dna-

ligand binding,” Biophys J, vol. 75, no. 2, pp. 769–76, 1998.

[120] K. A. Sharp, “Polyelectrolyte electrostatics: Salt dependence, entropic, and enthalpic con-

tributions to free energy in the nonlinear poisson–boltzmann model,” Biopolymers, vol. 36,

no. 2, pp. 227–243, 1995.

[121] H. Zhao and A. Caflisch, “Molecular dynamics in drug design,” Europen Journal of Medic-

inal Chemistry, vol. 91, no. SI, pp. 4–14, 2015.

[122] A. Babakhani, T. T. Talley, P. Taylor, and J. A. McCammon, “A virtual screening study of

the acetylcholine binding protein using a relaxed-complex approach,” Comput Biol Chem,

vol. 33, 2009.

[123] M. Totrov and R. Abagyan, “Flexible ligand docking to multiple receptor conformations: a

practical alternative,” Current Opinion in Structural Biology, vol. 18, no. 2, pp. 178–184,

2008.

[124] J. Hritz, A. de Ruiter, and C. Ostenbrink, “Impact of Plasticity and Flexibility on Docking

Results for Cytochrome P450 2D6: A Combined Approach of Molecular Dynamics and

Ligand Docking,” Journal of Medicinal Chemistry, vol. 51, no. 23, pp. 7469–7477, 2008.

[125] S. von Grafenstein, H. G. Wallnoefer, J. Kirchmair, J. E. Fuchs, R. G. Huber, M. Schmidtke,

A. Sauerbrei, J. M. Rollinger, and K. R. Liedl, “Interface dynamics explain assembly de-

pendency of influenza neuraminidase catalytic activity,” Journal of Biomolecular Structure

& Dynamics, vol. 33, no. 1, pp. 104–120, 2015.



51

13 Appendix
13.1 Calculation of aMD Parameters

All parameters were calculated according to the formulas below.

EthreshD = ĒDIHED +a1 ·NRES (13.1)

αD = a2 ·
NRES

5
(13.2)

EthreshP = ĒTOT +b1 ·NATOMS (13.3)

αP = b2 ·NATOMS (13.4)

ĒDIHED is the average dihedral and ĒTOT the total potential energy resulting from previous cMD

simulations. NRES and NATOMS are the number of residues and atoms respectively, in each system.

The variables a1,a2,b1 and b2 were altered systematically for each system to optimize the boosting

level. The applied values for the aMD simulations are shown in table 13.1. For Bet v 1a we

Table 13.1: Parameters for aMD simulation of each system.

System a1 a2 EthreshD αD b1 b2 EthreshP αP

Di-Ala 3.5 3.5 18.7 1.4 0.175 0.175 -343 532.2
BPTI 4 4 837.8 46.4 0.16 0.16 -40754 2198.6

Bet v 1a 3 3 2189.2 95.4 0.30 0.16 -73135 4333.6

systematically tested 5 sets of boosting parameters. Further we set up an aMD simulation in

which we only boosted the dihedral potential. We started with a set of boosting parameter that we

considered to only cause a slight boosting effect and slowly increased the intensity of the boosting

until the protein would unfold (Set 5). We chose to continue with the most aggressive boosting

parameters, that would not unfold the protein after 1 µs of aMD simulation. Despite the awareness

of the resulting increase in inaccuracy we tried to maximize the effect of the aMD method. We

considered this approach to give us the most information on potential slow conformational changes

in Bet v 1a, as well as on the robustness of our metric.
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Table 13.2: Parameters tested for aMD simulation of Bet v 1a.

Set a1 a2 EthreshD αD b1 b2 EthreshP αP

1 4 4 2348.2 127.2 0.30 0.20 -73135 8125.5
2 4 4 2348.2 127.2 0.20 0.20 -75843 5417
3 3 2 2189.2 95.4 0.20 0.20 -75843 5417
4 3 3 2189.2 95.4 0.30 0.16 -73135 4333.6
dh 3 3 2189.2 95.4 - - - -

13.2 Alanine Dipeptide

Figure 13.1: Conformational space sampled in 1 µs of aMD. Blue regions indicate the most
favorable states with the lowest energy. Unfavorable torsional states with a free energy higher
than 6 kcal/mol (red) are depicted in white.
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Figure 13.2: Free energy of Ψ calculated using a bin size of 6°(black) and 20°(turquoise).
The increase of bin sizes smoothens the free energy surface but causes a shift of minima. The
jaggedness of the profile using a bin width of 6°is most likely due to the limited number of
recorded frames (100 000).

Figure 13.3: Free energy and state populations of Φ in Di-Ala. Left: Free energy distribution
of Φ from a 10 µs cMD (black) and 5 ns aMD (red) simulation of Di-Ala. Rarely or not
visited dihedral states showing highly unfavorable free energies were cut off at 6 kcal/mol.
Right: State populations calculated from the free energies of Φ as shown in Figure 1
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Figure 13.4: Reweighted free energies of Di-Ala. A 1 µs trajectory was split into 200 seg-
ments of 5 ns each (2 500 frames) using the segments for averaging. (red) The free energy
landscape of Ψ was reconstructed using reconstructed using Maclaurin series in the reweight-
ing protocol. As a reference the free energy surface of Ψ from a 10 µs cMD simulation
(black) is shown. The standard deviation of the aMD trajectory shows the stability of the
results in well sampled areas and highlights strong fluctuations for less sampled ones.
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13.3 BPTI

Figure 13.5: Comparing local flexibility of BPTI captured in cMD and aMD simulations.
Residue-wise dihedral entropies SΦ from a 1 ms cMD simulation (black) and 500 ns aMD
simulation of BPTI (red) show remarkable rank correlation. Local flexibility observed in a 1
µs cMD simulation (turquoise) clearly differs from the aMD results.

Comparing dihedral entropies from Φ and Ψ we find a Spearman rank correlation r=0.77

between SΨ and SΦ of BPTI. For Bet v 1a we observe correlation of r=0.86. These results support

the assumption of a similar extent of motions captured in both backbone dihedrals phi and psi.

When considering the information displayed in Ramachandran plots of single amino acids, the

Ψ-axis generally shows a broader distribution than the Φ-axis.62 So most amino acids secondary

structure elements, such as alpha-helices and beta-sheets, can be distinguished solely by looking

at the psi-distribution.63 Hence, not the whole backbone dynamics are reflected by the Ψ angle.

Φ dihedral distribution were calculated as well. Yet, for the representation of protein dynamics

based on dihedral entropies we prioritized Ψ over Φ as it captures the backbone dynamics more

comprehensively.
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Figure 13.6: Benchmarking sampling time of BPTI. Dihedral entropies of BPTI were evalu-
ated after 10, 50, 100, 200 and 500 ns aMD simulation time. TOP: 200 ns and 500 ns result
in similar flexibility patterns, while shorter sampling runs capture only small increase of flex-
ibility from residues 10–20 and 32–44. BOTTOM: Comparison of dihedral entropies from
200 ns (blue) and 500 ns (red) aMD to 1 ms cMD (black) sampling. In both aMD simulations
the same regions are captured as flexible, yet after 500 ns the shape of the 1 ms simulation is
reproduced more accurately.
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Figure 13.7: Probing different reweighting protocols. Dihedral entropies SΨ were calculated
from the same 500 ns trajectory of BPTI using Maclaurin series (red) and cumulant expansion
(blue) to approximate the exponential in the reweighting protocol. Using cumulant expansion
we find a Spearman rank correlation of r=0.85 between the 1 ms control (black) and 500 ns
aMD simulation. Reweighting with Maclaurin series increases the correlation between aMD
and cMD results to r=0.90.
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Figure 13.8: Isomerization of disulfide bridge CYS14-CYS38. During 500 ns aMD sim-
ulation the dihedral of the disulfidebridge between CYS14 and CYS38 switches multiple
times between values around 100 degrees to -100 degrees. The two populated dihedral states
represent the cis- and trans-conformation of the disulfide bridge.
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13.4 Bet v 1a
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Figure 13.9: Probing different levels of acceleration in Bet v 1a aMD simulations. Dihedral
entropies SΨ for two sets of aMD parameter are shown (r=0.80) one with less boosting (blue,
set 1) and a more aggressively boosted one (red, set 4). The error shown in the bottom derives
from trajectory splitting. The 1 µs trajectories are split into 50 segments, resulting in the
shown average and standard deviation representing 20 ns of aMD sampling. It is clear to see
that the error of an aMD simulation is strongly dependent on the chosen boosting parameters,
i.e. level of acceleration.
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Figure 13.10: Benchmarking sampling time of Bet v 1a. Evaluation of local flexibility in
Bet v 1 a on different time scales of aMD simulation. Most notable differences in the three
aMD simulations are found from residue 15-45.


	Part I — Localizing Millisecond Dynamics
	1 Introduction
	2 Theoretical Background
	2.1 Accelerated Molecular Dynamics

	3 Methods
	3.1 Alanine Dipeptide
	3.2 BPTI
	3.3 Bet v 1a

	4 Results
	4.1 Alanine Dipeptide
	4.2 BPTI
	4.3 Bet v 1a

	5 Discussion
	6 Conclusion

	Part II — Protein Dynamics and Molecular Docking
	7 Introduction
	7.1 Computation and Drug Design
	7.2 Molecular Docking and Dynamics

	8 Theoretical Background
	8.1 Docking Step-by-Step
	8.2 Working with DOCK 3.7

	9 Methods
	9.1 Molecular Dynamics Simulations
	9.2 Conformational Energy Penalties from MD Simulation
	9.3 Conformational Energy Penalties from Binding Free Energy
	9.4 Retrospective virtual screening

	10 Results
	10.1 Conventional Rigid Docking
	10.2 Penalties from MD Simulation
	10.3 Penalties from Binding Affinity

	11 Discussion
	12 Conclusion and Outlook
	13 Appendix
	13.1 Calculation of aMD Parameters
	13.2 Alanine Dipeptide
	13.3 BPTI
	13.4 Bet v 1a



