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Abstract

We examine the effect of fermionic exchange interactions on the dynamic structure function of
two-dimensional 3He within a manifestly microscopic theory of excitations. These exchanges have,
at different wave lengths and densities, different consequences: At low densities, exchanges are
decisive to determine whether the phonon is Landau-dampened or not. In the intermediate wave
number regime, exchanges are relatively unimportant but they become important again at short
wave length corresponding to about four times the Fermi wave number.

A very important further aspect is the inclusion of pair fluctuations. These are fluctuations of
the wave function that can not be described by the quantum numbers of a single particle. They do
not change the features of long wave length excitations, but induce & finite width to the collective
mode outside the particle-hole continuum. In the intermediate momentum regime, where one would
expect & “roton minimum” in a Bose fluid with the same interaction and density, pair fluctuations
cause a visible shift of the strength of the dynamic structure function towards lower energies and
cause a very sharp collective mode. The effect, which was reported by Godfrin et al., Nature 483,
576 (1012), is slightly enhanced by exchange corrections.

PACS numbers: 67.30.-n, 67.30.em



I. INTRODUCTION

The helium fluids are the prime example of both bosonic (*He) and fermionic (3He)
strongly correlated quantum many-body systems. Governed by a simple Hamiltonian, yet
very dense, they have been studied for decades and still offer surprises leading to new insights.
A new development in our understanding of liquid *He is the unexpected appearance of a
collective excitation at short wave lengths in quasi-two-dimensional 3He!. This mode was
discovered experimentally by neutron scattering experiments, and independently predicted
by a microscopic dynamic many-body calculation.

The main quantity describing the dynamics of the system is its dynamic structure function
S(g;w), which is closely related to the response of the system to a weak, time-dependent
perturbation. Experimentally, the dynamic structure function of *He is mostly determined
by neutron- or X-ray scattering, the theoretical and experimental understanding a decade
ago has been summarized in Ref. 2.

We report here microscopic calculations for the structure and the dynamics of two-
dimensional *He. In particular, we examine the importance of exchange interactions. The
next section gives a very brief compilation of our techniques. We deliberately refrain from
any explanation and refer to the original work and earlier review- and pedagogical material®*
for details. The basis of our dynamic theory® is the generalization of the work of Jackson,
Feenberg, and Campbell®®, who included pair-fluctuations in the dynamic wave function
of a Bose fluid, to Fermions. We have in Ref. 5 formulated a strategy for including such
pair-excitation effects in Fermi fluids. In our recent work! and in a related analysis® of
X-ray experiments on *He, we have used the simplest implementation of that theory. Two
potentially significant corrections have not been included in that work: dynamic self-energy
corrections and exchange effects.

Dynamic self-energy corrections play mostly & role at low energies. Due to spin fluctua-
tions, the effective mass around the Fermi momentum is strongly enhanced!®, our theoretical
calculations are in good agreement with experiments!'™'%. The effect dies out rapidly as a
function of energy, it should therefore be of minor importance for the results to be reported
here. Self-energy corrections should, of course, have important consequences for the spin-
structure function.

The second important effect is fermionic exchange. The implementation of our dynamic



many-body theory used in Ref. 1 deals with exchanges in a local approximation whose
quality is hard to assess from a general point of view. Thus, the purpose of this paper is a
theoretical study of the importance of exchange processes which were not included in our

previous work.

II. DYNAMIC MANY-BODY THEORY
A. Ground State Many-Body Theory

We base our calculations on the variational Jastrow-Feenberg theory, including corrections
from correlated basis functions (CBF) theory. The application of the theory to *He has been
described in Ref. 3, we have implemented exactly the same approach in two dimensions.

Microscopic many-body theory starts from a phenomenological Hamiltonian for N inter-

acting particles,

H=-3 591+ S vl 1

i<y
For strong interactions, CBF theory” has proven to be an efficient and accurate method to

obtain ground-state properties. It starts with a variational wave function of the form

F %)
o) = G FF o @
where @4(1,...,1,..., N) is 2 model state, normally a Slater-determinant, and “” is short

for both spatial and discrete (spin and/or isospin) degrees of freedom. The correlation
operator F'(1,...,N) is suitably chosen to describe the important features of the interacting

system. Most practical and successful is the Jastrow—Feenberg” form

F(l,...,N)=exp{%|: E ua(ri, T;) + Z ug(r,',rj,rk)—i—...J}. (3)

1<i<j<N 1<i<j<k<N
The correlation functions un(ry,...,r,) are ensured to be unique by imposing the “cluster
property”, uq(r1,...,ry) =0 if |r;—r;| — 0o, for any pair of coordinates r;, Tk

From the wave function (2), (3), the energy expectation value
Hoo = (Uo| H |¥,) (4)

can be calculated either by simulation or by integral equation methods. The hierarchy
of Fermi-Hypernetted-Chain (FHNC) approximations is compatible with the optimization
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problem, i.e. with determining the optimal correlation functions tn(r1,...,r,) through
functionally minimizing the energy

0Ho o
(57.1."(1‘1, v 1rn)

~0. (5)

'The results of diagrammatic many-body calculations provide necessary input for the anal-
ysis of the dynamics to be described below, most of them cannot be obtained from Monte
Carlo calculations. It is, of course, an important verification of our theory that those quan-
tities, that can be obtained from Monte Carlo calculations, are reproduced with acceptable
accuracy. We show in Fig. 1 a comparison of the FHNC-EL and Monte Carlo!!® results
for the energy, together with a breakdown into the contributions from the optimized Fermi-
Hypernetted-Chain (FHNC-EL) theory, triplet correlations, elementary diagrams, and CBF
corrections. The relative size of the individual corrections is comparable to those in both
two-dimensional “He as well as in 3He in three dimensions; CBF corrections are negligi-
ble except at very high densities. Considering the rather crude evaluation of elementary
diagrams, the agreement between FHNC-EL and MC results is actually quite satisfactory.
Note in particular that the total energy comes from a rather significant cancellation between
kinefic and potential energy which enhances small errors.

A similar observation applies to the static structure functions. Fig. 2 compares the sim-
plest FHNC-EL version, the version containing elementary diagrams and triplet correlations,
and simulation datal®, for two representative densities. In general, the agreement is good for
all practical purposes, in particular the results from the simplest FHNC-EL version match
the Monte Carlo data quite well.

Two observations are made at high density:

¢ The peak in S(k) predicted by the FHNC version with triplet correlations and elemen-
tary diagrams is visibly higher that the one obtained from Monte Carlo calculations.
At this point, we are not ready to attribute a higher reliability to one calculation
over the other. The peak in S(k) is related to long-ranged oscillations in the pair dis-
tribution function, caused by the impeding liquid-solid phase transition. To get this
peak right, one must have the pair distribution function at rather large distances; the
FHNC calculation has been carried out in a box of 280 A. Replacing g(r) forr > 10A
with its asymptotic value of 1 and calculating the Fourier transform, this peak is much

lowered.



3.0

Full theory —
25 | Tr%plets + Elementaries —.... i
Triplets
20 | simplest FHNC-EL _
| DMC S
<
E 1.5}
1.0
0.5
0-0 'y A '} 'l L
0.020 0.025 0030 0035 0040 0045
p A

0.050

FIG. 1. The figure shows the breakdown of the equation of state of two-dimensional *He into

contributions from the simplest FHNC-EL theory, triplet correlations, elementary diagrams and

CBF corrections. The line with markers shows the fit to the equation of state of 2D 3He obtained

from Monte Carlo calculations!®!3,
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FIG. 2. The figure shows the structure function S(g) for 2D 3He in FHNC-EL {long-dashed

lines), including triplet correlations and elementary diagrams (solid lines), and from Monte Carlo

calculations (crosses}'® for the two representative densities p = 0.032 A~2 and p=0.046 A-2. The

curves with the higher peak correspond to the higher density. The diamonds with error bars have

been obtained!” by integrating the experimental data of Ref, 1.



e A small “shoulder” of S(k) is observed for k < 0.3A~!, which reflects the fact that
S(k) < hk/2mc for small k, where c is the speed of sound. Since the inclusion of
elementary diagrams and triplet correlations adds binding to the system, the speed of

sound becomes smaller, the slope steeper, and the agreement becomes better.

The figure also shows some experimental data that were obtained by calculating? the energy
integral (16) of the experimental data published in Ref. 1. They fall short of the theoretical
value at larger momentum transfers most likely due to a too low energy cutoff.

Given the uncertainty in the peak value of S(k) at high densities, we have used the results

from the simplest FHNC-EL version as input to our caleulations of the dynamics.

B. Equations of Motion

The dynamics of the system is treated with the logical generalization of the wave function
(2), (3) to dynamic correlations by writing the response of the system to a weak and time

dependent external field Hoy.(t) = 3~ 6heys(ry; t) in the form

B(2)) = ‘/iﬁe-wﬂ*/“ To(t)) ,

[To(t)) = Fed®® |85) | N = (To(t) | To(t)) - (6)

where F is taken from the ground state calculation, and §U(¢) is a sum of n—particle-n—hole

excitation operators:
2
U (t) = 26 (t)ala, +1 z 6u§,p),hh, ,a.h,ah +.o.. . (7)
prhl
As a convention, we will label “particle” (unoccupied) and “hole” (occupied) states with

p,? and h, W/, respectively. Discrete (e.g. spin) degrees of freedom are suppressed.

Equations of motion for the §ul)(t) are derived from the action principle!®19

5 dt<@(t){H+Hext() m,a ‘If(t)> (8)

To obtain a density-density response function, the equations of motion are linearized. The
analytic and diagrammatic manipulations to bring the resulting equations of motion into a
numerically tractable form are lengthy and delicate®, but the result is surprisingly simple

and can be cast into the familiar form of the time-dependent Hartree-Fock (TDHF') theory®
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with energy-dependent effective interactions. The induced density fluctuations are expanded

in terms of matrix elements of the density operator in the non-interacting system, pf’ on(r) =

(h|0p(r)|p).

QZ[po,ph 853 (@) + phpn(r) 63 ()] - (9)

The amplitudes 6c( )( w) are related by the THDF equations to the matrix elements A,
(i|hext|7) of the external field,

I.J_

A
Vp(h ;’h’( )+ (hw — eph)bph prr Vpﬁ)w.o (w) &cif;l), _ B (10)
B A =} - +
.‘/U{IP:Z’hh’ (w) V('h') ph( ) (’i"‘J + eph)aph,p’h’ &:;.‘113: h’hp

where Sppprhe = 80 and ey = e(p) — e(h) is the particle-hole excitation energy of the

correlated system,
e(g) = t(q) + Vi(g). (11)

t(q) = h’q®/2m is the kinetic energy of a free particle, and V;(q) the correlation correction?!.

Supressing a.rguments in the potentials, the response function is
-1

A B
x(aiw) = | 7o V”("'g” o (= el Vg Ao (12)
1 - B A " .
oo = Vo(.p;z'hh' Vp(’h') o — (Aw + €pn)Oph o pg,p’h’

In essence, the machinery of microscopic many-body theory leads to & definition of the
effective interactions Vph on(w) and Vpﬁ)hh, (w) appearing in the well-known TDHF equations

in terms of the correlation operator F' and the underlying microscopic Hamiltonian.

C. Effective interactions

The simplest approximation one can make for the matrix elements I/;,hp,h,( w) and

Vpgﬂh, (w) is that they are local,

5 Pty -
Vo () = RO GAB) g, ) (13)

If, furthermore, the effective interactions are assumed energy independent and equal in A
and B channel, i.e. V4 (q;w) = VOB)(q;w) = Vo—n(g), the theory collapses to the familiar

RPA form of linear response theory

)= xolgw)
X @ o) e
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Here, xo(g;w) is the Lindhard function, and 1I’Z,.,,(g,') is known as the “particle-hole interac-

tion” or “pseudo-potential®”. y(g;w) is related to the dynamic structure function

S(@) = - ~Smix(gw) 6(e) (15)

which satisfies, amongst others, the sum rules
mo(g) = 5(0) = [ dlw) S(gw), (16)
m@ = 5L = [ ) ho (g, )

where S(g) is the static structure factor. In the RPA, the sum rules (16) and (17) can be
used to define a local particle-hole interaction V,_y(q).

The RPA (14) for x(g; w) displays the essential features of the dynamic structure function
S(g;w) qualitatively correctly: S(g;w) can be characterized as being a superposition of a
collective mode similar to the phonon-maxon-roton in *He, pius an incoherent particle-hole
band which strongly dampens this mode where it is kinematically allowed. However, the
RPA as defined here predicts a zero-sound mode that is significantly too high. This is
consistent with the same deficiency of the Feynman spectrum e(q) = A¢?/2m.S(q) in *He.

Our dynamic many-body theory cures this deficiency to a large extent by including pair-
fluctuations uf:,), () in the excitation operator. Among others, this introduces a frequency
dependence. In Ref. 5 we have derived working formulas for the effective interactions in
terms of a three-body vertex and a pair propagator, which are generalizations of the bosonic

version®®. The components of the energy-dependent interactions V.e(g;w) are

V(g;w) = Vounl) + 07 2 W (g w) + [07 1P W (g; —w) (18)
VO (g;w) = Voonl(g) + o}oy [W(q;w) +W(q; —w)] : (19)

with 0F = [Se(q) & S(q)]/2S(g). Here, V,_yn(q) is the static part of the particle-hole interac-
tion that is related to the stafic structure function through the RPA relationship (14) and
the two sum rules (16) and (17).

The energy dependent part of the interaction W(q; w) describes the splitting and re-
combination of phonons; it consists of a three-phonon vertex K, .~ and a two-phonon
propagator E~Y(¢, ¢"; w):

s 1 - _
W(gw) = aN E bqrq+a| Koaa[* E7Xd, 7 w) (20)
ql"qh‘



with the three-body vertex

Jr-{q.q”q” = % SF(;)‘( ;)(j,()q”)( ) [Q' q de(q’) +q-q" de(qﬂ) = 92'&3(% q,;qﬂ)] . (21)

Here, Se(g) is the static structure function of non-interacting fermions, X44(q) is the set of
“non-nodal” diagrams of the Fermi-hypernetted-chain theory, and us(g, ¢', ¢’ ) is the three-
body ground state correlation®,

The pair propagator is

00

B asw) = - [ 20 (g ) gy (22)
Klgsw) = ———28i) (23)

1+ hwlaa(g)ko(g; w)

with the “direct-direct” correlation function T'4q(q), and the partial Lindhard function:

. TipTth
H’O(q! N Z h&} _ eph + 11) (24)

For the execution of this version of the theory at that level we need only the static structure
function S(g). This is because the energy independent part of the particle-hole interaction
V,.,(q) can still be obtained from the sum rules (16) and (17): the dynamic correction W (g; w)
causes negligible change to these sum rules®. In fact, for bosons it has been proven® that
the dynamic corrections do not change the outcome of the energy integration at all.

It is clear, however, that the local approximations imply a rather crude treatment of
fermionic exchange. More general effective interactions are also readily derived from CBF

21,24

theory Keeping exchanges explicitly, the matrix elements appearing in the TDHF

equation are of the structure

Vi (@) = (ph| VP (1,2) |’ — (pk! [V (1, 2)|0'R)
Virano(@) = (o [V (1,2)|hR) — (o' |VEBY(1,2)| 'R (25)

The static, energy independent parts of all four of these operators have been evaluated in
terms of the diagrammatic elements of CBF theory?"%, they are in principle also non-local
but dominated by their local term which depends only on the distance between the particles.
These local terms are natural byproducts of an FHNC-EL calculation, specifically V..(q),
Via(g) and Vie(q) as defined in Ref. 3, Egs. (2.25) and (3.25). These interactions are not
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FIG. 3. The figure shows the local pseudopotential TZ_h(q) (solid line), the direct channel interaction
Vad(q) (dashed-dotted line) and the exchange-channel interaction Vi (g) (short-dashed line) for the
two different densities p = 0.02 A~ (left pane) and p = 0.04 A2 (right pane).

the same, ﬁﬁd(‘i‘) does not contain nodal diagrams whereas f/ex(q) does. Also, the direct term
Via(g) can no longer be obtained through the sum rules (16) and (17) because exchange terms
contribute to the static stricture function. Viq(gq) is therefore also different from the Vs(q)
introduced above. The two different interactions are shown, for the densities p = 0.02 A2
and p = 0.04 A-2? in Figs. 3, for completeness we also show the exchange-channel potential
Vix(g). Evidently the three functions are rather similar and basically differ only in their
long-wavelength part. This is not surprising since they describe basically the same physics
(see Ref. 22: core exclusion, a slight swelling of the core due to the kinetic energy that
comes from bending the wave function, and long-ranged correlation’s manifested in the
long-wavelength limit. All the short-ranged features, which appear in momentum space as
oscillations ranging out to large momenta, of the three effective potentials are the same,
the three potentials differ only in their long-wavelength parts. In particular, long-ranged
correlations appear to be less important at low densities, therefore I-/dd(q) and l}ax(q) are
practically the same at p = 0.02A~2. In an exact theory, ¥.,(0+) = m(c? — c2) where c is
the speed of sound, and cr is the Fermi velocity. Note that V,,(0+) < 0 at the small density
which is a signature that the sound mode is Landau dampened.

In this work, we supplement the direct term with the energy-dependent phonon-splitting
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corrections spelled out in Egs. (18) and (19), i.e. we have
Vi (@) = Vaalg) + 107 P W (g ) + o7 P W*(q; ~w) (26)
Vit (@:0) = Vaala) + o o7 [Wigiw) + W*(g;—w)] - (27)
When we include exchange contributions, to be consistent2® the single-particle energies ey,

must contain correlation corrections which are just the Fock terms of the exchange potential
‘?ex(q) ?
Vi(g) = =) {gh|Vex|Ra) . (28)
3

III. DYNAMIC STRUCTURE OF TWO-DIMENSIONAL HE

We have carried out a comprehensive array of calculations of § (g; w) for two-dimensional
3He in the density regime between densities of p = 0.02A~2 and p = 0.05A~2 and wave
numbers up to ¢ = 4kp (kp = /2mp is the Fermi momentum).

We have carried out four levels of calculations:

o (“RPA”) A simple RPA calculation that omits exchange effects and determines the
direct interaction IZ.h(q) from the static structure function S(k) through the sum rules
(16) and (17).

o (“xRPA”) We have then added exchange effects to the equations of motion. In that
case, we solve Eq. (10). The interactions in the “direct” and “exchange” channels,
f/dd(q) and vex(q) respectively, are taken from FHNC calculations. The modification
of the direct channel interaction is necessary in order to satisfy the sum rules (16) and
(17) when exchanges are included. The dynamic response function no longer has the

simple form (14).

e (“2p2h”) Alternatively, we have added the energy-dependent corrections to the direct-
channel interactions, i.e. used the direct channel interactions (18) and (19) and left
out exchanges. This corresponds to our calculations of Refs. 1 and 9. The direct

channel interaction is then V_(q).

o (“x2p2h”) Finally, we have added exchanges to the energy dependent interactions.
The direct channel interactions, which are then given by Eqs. (18) and (19) but with
V. .(q) replaced by Viq (q).

11
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FIG. 4. The figure shows S(g;w) for a sequence of wave numbers k = 0.1kp, ...k = 3.0kp in steps
of Ak = 0.1kp with increasing y-offset for the density p = 0.02 A=2. The dashed lines indicate the
boundaries of the 1p — 1A continuum, outside of it the S{g;w)-curves are drawn in gray. Note that
due to pair-fluctuations S(g; w) # 0 at the boundaries and therefore the dashed line coincides with

the projection of the curve to its offset x-axis.

An overview of our results is shown in Figs. 4 - 6. In all of these calculations we have
included both dynamic interactions and exchanges.

At all densities, we see the typical RPA picture of a collective mode, and a particle-hole
continuum. At low densities, we do not see much of the “roton-like” excitation that was
reported in Ref. 1. The mentioned feature appears very clearly at high densities.

A second effect that has not been observed in 3D *He is that the phonon is Landau
damped at low densities. Landau damping occurs when the speed of sound is less that the
Fermi velocity.

Taking the fit

E/N = Ap + Bp* + Cp® (29)

for the energy per particle at density p, with A = 15.5227KA2, B = —720.04 KA* and
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FIG. 5. Same as Fig. 4 for a density of p = 0.04 A~2.
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FIG. 6. Same as Fig. 4 for a density of p = 0.05 A~2.
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C = 1.6953 x 10*KA® from Ref. 15 to calculate the hydrodynamic speed of sound, and
comparing with the Fermi velocity vp = fikp/m, one concludes that Landau damping occurs
at densities below p = 0.032 A~2. This agrees with our results. We note, however, that the
Fermi velocity is lowered by an effective mass larger than 1. If a more realistic single particle

spectrum??

were used, the theory might indeed predict, at low densities and very long wave
lengths, a stable collective excitation. The effective mass enhancement at the Fermi surface
is, however, known to die out very quickly with energy. In the momentum regime where
neutron scattering measurements can be done, the effective mass enhancement is not visible.
Thus, a more detailed study of this momentum regime should await experimental progress.

From a theoretical point of view, it is of interest to determine the importance of individual
physical effects. A major point of our previous work was that single-particle excitations
and pair fluctuations do not have much to do with each other, and that the energy of the
apparent “roton minimum” is unrelated to the location of the particle-hole band, but rather
determined by Auctuations of the wave function at a scale of the inter-particle distance. This
is quite plausible because the same effect, namely the lowering of the roton energy relative
to the Feynman spectrum, is also observed in *He which does not have a particle-hole band
yet strong pair fluctuations. Of course, if a “collective mode” merges with the particle-hole
band it is strongly Landau damped.

Let us start with the discussion of the detailed results at the higher density p = 0.04 A-2,
The dynamic many-body correlations add, as a qualitatively new feature, a multipair con-
tinuum outside the particle-hole band. Adding an exchange term to the single particle
spectrum (11) also modifies the boundaries of the particle-hole band as pointed out above;
this modification should not be considered to be quantitative below perhaps hw =2 0.5¢p.

Figs. 7 and 8 show S(q;w) at selected long and short wave lengths for the four types
of calculations outlined above. The particle-hole band extends, for ¢ < 2kr, down to zero
energy. At wave numbers up to the Fermi wave number kg, all calculations prediet sharp
collective modes. Outside the particle-hole band, the curves of RPA and xRPA have been
artificially broadened to make them visible. It appears that xRPA pushes the collective mode
to slightly larger energies. The dynamic theory also predicts collective modes outside the
1p-1h continuum. These modes are, however, naturally broadened by the 2p-2h background.
As the momentum transfer increases, the effect of pair fluctuations lowers the energy of that

collective excitation. Around g = 1.5 kr we observe the transition of the collective excitation
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into the 1p-1h band, the details depend on the specifics on the calculation and the position
of the 1p-1h band.

The situation changes drastically around twice the Fermi wave number, see Fig. 8. The
strengths predicted by both the RPA and the xRPA calculation are consistently at higher
wave numbers than those obtained by the dynamic calculations. The latter predicts a rapid
drop in the location of the maximum of S(g;w) as a function of momentum transfer. Around
g &~ 2.5kp, the effect is enhanced by exchanges, whereas exchanges seem to push the strength
again upwards at shorter wave lengths.

To assess the validity of these findings, we point out that he form of the pair propagator
(20) still assumes a RPA-like spectrum of the intermediate states, this is most easily seen
in the Bose limit. In a more self-consistent calculation, one should also add self-energy
corrections to the pair propagator. We know from bosons that this lowers the spectrum and
leads, among others, to the to the Pitaevskii-plateau?®, which would not have the right energy
within the present implementation of our theory. A similar effect is expected for Fermions.
The issue is, of course, a little speculative and basically means that our calculations lose
reliability with at wave lengths significantly beyond the roton. On the other hand, higher-
order fluctuations are known to lower the roton minimum in “He; the Bose limit of our theory
brings the roton minimum of the Feynnman spectrum, which is at about 18 K, down to 11.7
K which still falls short of the experimental value of 8.7 K. To summarize, we expect that our
method somewhat underestimates the downward shift of the roton that this underestimate
becomes more severe with increasing wave number.

*He in two dimensions is a gas, and therefore does not undergo a spinodal decomposition.
This means that one can, in principle, carry out measurements at low densities. We have
already discussed that one can expect, depending on the spectrum, Landau damping of the
zero-sound mode at long wave lengths. In our case, the influence of exchange interactions is
apparently so large that an effective collective mode can appear through shift of the particle-
hole band. We note here that, at such long wave lengths, spin-fluctuations cause a further
enhancement of the effective mass, hence a sharp collective mode should exist. On the
other hand, pair fluctuations have practically no quantitative consequence. The observation

persists throughout all wave vectors, see Fig. 9.
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FIG. 7. (color online) The figure shows, for selected long wave lengths, a comparison of different

“RPA”, “xRPA”, “2p2h” and “2p2h” described above, and as marked in the figure. Also shown
are the boundaries of the particle-hole band with and without exchanges (vertical lines, solid for
xRPA and dashed for RPA). The RPA and xRPA results were artificially broadened, the (x)2p2h

results have a natural width due to pair fluctuations.
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Shown are the four types of calculations
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FIG. 8. (color online) Same as Fig. 7 for high wave numbers. The slight wiggles in the calculations

containing exchange diagrams are numerical artifacts.
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FIG. 9. (color online) Same as Fig. 7 for a density of p = 0.02 A—2.



IV. SUMMARY

We have in this paper presented a study of the influence of exchange effects in the
dynamic structure of two-dimensional *He. The essential findings have been mentioned
in our discussion of the results. Let us reiterate here first the basic theoretical objectives
of our work: The key to a quantitatively correct description of the dynamics of 3He -
and, therefore, other strongly correlated Fermi many-body systems — is the fact that, for
excitations at atomic wave lengths, the short-ranged structure of the wave function is time
dependent. The intermediate states can be described only in terms of the quantum numbers
of at least two particles. With that strategy we have achieved a remarkably good agreement
with experiments’®,

Evidently we are quite satisfied with the determination of ground state properties using
the FHNC-EL scheme. In fact, from the comparison with FHNC-EL results® for ®He in
three dimensions, our results are better than expected.

In the description of the dynamics, we have included exchange as well as pair-excitations.
We found that exchange effects may have some consequence for the dispersion of a potential
collective mode at long wave lengths, in particular the possibility of a Landau-damped col-
lective mode. Unfortunately, these momentum transfers are presently outside experimental
reach. The most exciting aspect of our work, namely the appearance of a sharp mode at the
edge or below the particle-hole continuum is hardly modified by the inclusion of exchanges.

There are two points where we see the potential of improvement: First, the influence of
spin-fluctuations on the low-energy single-particle spectrum. The spectrum (11) is rather
smooth and misses the strong peak in the effective mass around the Fermi wave number
caused by spin-fluctuations. Hence, to make statements at these low energies, as they will
be needed when measurements of the spin-structure function become available, the single
particle spectrum (11) will have to be replaced by a dynamic self-energy.

The second point of improvement is the structure of the energy denominator. As discussed
above, every correction towards a self-consistent picture should bring the energetics of the
spectrum further down. The possibility to find the analog of a “Pitaevskii plateau” in either
2D or 3D *He makes this point a challenge for further work.
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