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1 Introduction 

The influence of different decision parameters on the energy system in times, where a 

fundamental system break is needed, can be descripted only insufficiently by black box, top-

down econometric models. This is particularly true when long-lasting durable goods such as 

buildings and their components, with technical lifetimes often exceeding 30-100 years are 

examined. In such cases techno-economic models provide results that are more robust, since 

they comprise the functional correlation between cause and effect. When it comes to 

investment decisions in the built environment, it has to be acknowledged that decision maker 

in this particular area are not a homogenous but very heterogeneous group. On the one end of 

the spectrum, there are highly professional institutions. Such investment decisions are the core 

of their business, but they are often unable to gain fully from higher investment costs and the 

resulting higher earning or lower costs in the using phase, since in most cases they do not 

operate and use the building by themselves (investor-user-dilemma). A large number of non-

professional decision makers constitute the other end of the range. Decisions taken by this 

group are characterize by bounded rationality caused by bold lack of information and personal 

preferences (Braun, 2012, Liao and Chang, 2002). Therefore we can conclude that decision 

making isn’t solely based on a cost driven approach and the neoliberal approach of cost 

minimization fails. 

Within this project, two existing model used by the Energy Economics Group (EEG) 

and the Lawrence Berkeley National Laboratory (LBNL) has been compared and enhanced. 

The first model, which is used at the EEG (Vienna University of Technology), is the 

ERNSTL/EE-Lab Model (Müller and Biermayr, 2011) and the second is the buildings module 

of the SEDS Model (Stochastic Energy Deployment System), developed at the Lawrence 

Berkeley National Laboratory (Marnay and Stadler, 2008).  

The core decision methodology of both models is logit model, a well-established 

approach within the discrete choice framework. Discrete choice model are used to describe 

situation where decision makers must choose between mutually exclusive alternatives. The 

ERNSTL/EE-Lab model applies a nested-logit-approach (Train, 2003, belongs to GEV 

models), thus it is not bounded by the independence from irrelevant alternatives (IIA). The 

SEDS model uses a multinomial logit approach, which requires less data input. The ERNSTL 

/EE-Lab model applies a probability theoretical approach that deals with distributions as far as 

possible. The SEDS model uses the Monte Carlo Simulation techniques. 

Data related uncertainties arise inevitable when data (e.g. cost data, performance, 

energy demand profile, solar radiation, etc.) based on drawn samples are projected to the 

whole building stock or available technologies. In addition, future technological development, 

future cost and price data are uncertain. Algorithm-related uncertainties arise from the 



numerous variables that influence decisions makers and the fact, that they are not directly 

observable and model calibration relies on aggregate data only. 

The aim of this collaboration is to advance the used algorithms applied in the models 

described above, incorporate uncertainties, and thus, increase the robustness of the results and 

the reliability of the drawn conclusions. The following research questions and aspects are 

covered in this report: 

 Availability and empirical evidence on individual decision criteria and their importance 

on the decision. 

 Major approaches from the field of discrete choice theory, namely the multinomial logit, 

nested logit and probit approach are discussed and compared. 

 An analysis of the arising resulting uncertainties related to the data basis and the 

decision algorithm with a special focus on stochastic simulation. 

 The stability of the model results with respect to the underlining input data and the 

empirical non-observable model parameters respectively are evaluated.  

2 Empirical evidence on individual decision aspects 

In this chapter, the empirical evidence of individual decision calculus is investigated. 

To do so, literature on this issue is reviewed as well as an own survey, conducted within the 

Lifestyle 2030 project (Bogner et al., 2012) is assessed. 

Henning et al. (2011) analyzed based on expert judgments the importance of different 

decision criteria of various decision agents in the building sector. In the residential building 

sector, four categories of investor were defined:  

 Owners of small residential buildings using the building on their own 

 Owners of residential buildings renting out their building(s) 

 Community associations of apartment buildings 

 Public housing association 

Their conclusions are that the first three agents, even though there are some 

differences, weight their investment decision criteria in a similar way: Most important are the 

capital needs, furthermore rather stable energy prices and low annual energy costs are 

preferred. Pay-back-time and the total annual costs including the annuity of investment costs 

are playing a minor role in the decision process, however they are already covered in the 

criteria: capital needs and low energy costs which can be transformed into the later ones. 

Public housing associations apply a different decision calculus, allocating the value of 



buildings and the possibility to get higher rents a higher importance than the annual energy 

costs.  

At country study on heating systems for Austria, Finland, Sweden and the Netherlands 

done by Müller et al. (2011) comes to the conclusion that heating systems commonly installed 

in these countries have similar total heating costs (compared within a country) and belong to 

those heating systems which have low total annual costs. Thus, the authors conclude, the total 

heating costs to have a significant influence on the decision, yet costs might not be the not be 

the sole decision criteria.  

Braun (2010) analyzed the decision criteria for new heat supply systems in the 

German residential building sector using a multinomial logit model. The explanatory 

variables she used were the income, the number of household members, the average education 

level of the representative household members, the construction year and type of the building 

and the location of building. On a brother level the information used was whether or not the 

building is located in the former GDR; on a region level whether or not the building is located 

in rural or urban areas. Heating costs were not used as an explanatory variable. Conclusions 

from her analysis are that neither income, number of household members nor the average 

education level to have a major impact on the decision. A significant influence on the decision 

has the location of the building, which can be seen as an estimator of the availability of 

heating systems, and the construction period of the buildings. The Pseudo R² of her model on 

the full sample (7171 observations) is 0.1511. The very low explanatory value of the model 

reveals that the model misses some important explanatory variables. The author of this report 

concludes, based on other work done in this field of research, that the costs of heating systems 

have a major role. 

Henkel (2012) asked in an online-survey investor, which recently installed a new 

heating system in their homes, about the main reasons for their decision for a specific heating 

system. In case of newly installed conventional heating systems (oil and gas fuelled boilers) 

about 50% stated that the main reason was that this particular energy carrier has been used 

already before in the building. Other important criteria were economic reasons, and in case of 

oil the unavailability of natural gas. In case of alternative heating systems (wood pellets and 

heat pump with solar thermal systems) one third mentioned the high natural gas and heating 

oil prices as main reason for their decision. In case of pellet heating systems another 25% 

based their decision on economic reasons (incl. low operational costs), for the heat pump - 

solar thermal system combination, economic reasons where decisive for about 45%. 15% to 

20% mentioned environmental friendliness as their most important criteria. 

                                                 
1 The model for the sample subgroup of house owners only (3928 observations) results in a Pseudo R² of 0.065 
only. 



2.1 Influence of the affinity to a specific lifestyle group on building 

renovation and heating system decision process. 

Within the Outlook “Life Style 2030“ project, a survey was conducted, in which the 

energy consumption and appliances in households and information on the building along with 

the affinity to a certain lifestyle group of decision makers of those households, using the 

Sinus-Milieus® cluster (Figure 2.1), were asked (Bogner et al., 2012). The questionary was 

constituted by the project team groups: Austrian Energy Agency and Energy Economic Group 

on the Vienna University of Technology. The survey was done online and face-to-face (140 

interviews in order to reach the 60-85 year old target group) and was conducted by the market 

research institute Karmasin. Sample size was ~1000 household representatives within an age 

of 18 - 85 years. 

 

Figure 2.1. Sinus-Milieus® of the Austrian TV-Population in 2009   
(source: http://mediaresearch.orf.at/index2.htm?fernsehen/fernsehen_sinus.htm, 5.10.2009, translated) 

Based on the original Sinus-Milieus clusters shown above, the clusters condensed in 

this survey are: 

 Incurious group (with respect to energy consumption and environmental conservation) 

(LSG 1) 

 Environmental conservationists (LSG 2) 

 Discerning group (LSG 3) 

 Traditionalist (LSG 4) 

 Established group (LSG 5) 

 Alternative lifestyle group (LSG 6) 

 Pensioners and sedate lifestyle group (LSG 7) 



To assess the decision making process with respect to investments in (thermal) 

building renovation and heat supply systems, I focus in this work on the current installed 

systems und use this indicator as an approximation for future decision to make.  

Out of the sample of 1053, 94 sample had a valid indication to the age of the building 

in which they were living, 66 sample included the degree of renovation status of the building. 

The building age revealed that the groups can be distinguished in two clusters. The milieu 

clusters LSG 2, 3, 4, and 5 are living in buildings with an average age of 25-35 years, whereas 

the average building age of the remaining three milieu clusters are in the range of 50 to 55 

year and thus almost twice as old. The total share on partly or comprehensive buildings 

renovation of the sample having a valid answer, is about 80%. The only milieu group that 

inhabits rather older buildings as well as a lower share on comprehensive or partial renovated 

buildings is the Alternative lifestyle group (LSG 6). However, since the response rate for this 

question was very low (5%-7%, except for LSG 6: 11%), the results are not very solid. 

Therefore the hypotheses: differences in the building renovation status cannot be found, can 

neither be accepted nor dismissed.  

   

Figure 2.2. Renovation status (black bars) and average age of the inhabited building (green 
bars). 

For the assessment of heat supply systems, a sample of 960 (out of 1053) valid and 

useful (energy carrier is known and provided) answers is available. Therefore results stand on 

a solid ground for this analysis. The research hypothesis H0 runs as followed: Currently 

installed heating supply systems do not indicate that the different lifestyle groups, using the 

Sinus-Milieu Cluster concept, have individual preferences for the environmental image of the 

used energy carrier. The counter hypothesis H1 states, that such individual preference can be 

found in the data sample. 
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In this analysis I associate heat supply systems using biogenic energy carriers, heat 

pumps and solar thermal systems with a positive environmental image. In general, the use of 

district heating, even though associated with a positive environmental image, depends on the 

availability at the specific site and only to a minor degree on the individual preference of the 

decision maker. Thus the variance of district heating between different lifestyle groups is used 

as a reference and is compared against variance of heating systems with an environmental 

friendly image. If heating systems with an environmental friendly image have a significantly 

higher variance then district heating systems, it can be concluded that the data reveal some 

individual preferences for environmental friendly heating systems and hypothesis H0 has to 

be rejected. 

  

Figure 2.3. Share of heat supply system categories per lifestyle group 

The variance of the three heating system categories is calculated as shown in Equ. 1. The 

market share for district heating systems is based on the total number of observations, 

whereas the share of heating systems associated with a positive environmental image (PEI) is 

based on those heating systems, which were freely chosen, which means they do not including 

the samples were district heating is used.  
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The results of this analysis, shown in Table 2.1, do not indicate strong evidence that 

the shares of PEI heating systems vary to larger degree than district heating systems. If all 

clusters are considered, the variance of district heating is larger than the one of environmental 

friendly heating systems. If the environmental friendly lifestyle group (LSG 2), which shows 

an extra low share of district heating compared to other groups, is not accounted when 

calculating the variance of district heating, district heating still doesn’t have a lower variance. 

A further correction, in which the share of district heating is corrected by the share of 

dwellings compared to single and double family houses, gives a variance for district heating, 

which is slightly lower than those of heating systems associated with an environmental 

positive image.  

Table 2.1. Variance of share of heating system categories between Sinus-Milieu clusters. 

Sinus-Milieu Cluster 

 

all Clusters 

District heating: all 
clusters except 
environmental 
conservatives 

Exclude LSG 2, adjust 
availability of district heating 

by the building type:  
apartment versus 

single/double-family house 
²HSCat,environm. friendly image  11.6%2 
²district heating 16.7%2 11.6%2 10.7%2 

As comparison, the variance of PEI heating systems has been calculated, assuming a 

higher share (as a factor of the average share) of those systems in the environmental 

conservationist lifestyle group (LSG 2).   

 



Table 2.2. Variance of PEI heating system within different lifestyle clusters assuming a higher 
share of these systems in LSG 2. 

Share of PEI systems in LSG as factor of average share 
 110% 120% 130% 140% 150% 
²HSCat,environm. friendly image, ref  12.6%2 14.0%2 16.1%2 15.8%2 21.2%2 

Based on the results outlined above, I conclude that the data sample does not reveal a 

difference exceeding an individual preference of +10% compared against the average for 

heating systems with an environmental positive image. Therefore the hypothesis H0 cannot be 

rejected. 

3 The ERNSTL/EE-Lab Model 

The analyses descripted in the following are based on the ERNSTL/EE-Lab Model, 

which has been adopted and enhanced within the research grand. The ERNSTL/EE-Lab 

Modell is a dynamic bottom-up model. The core of the model constitute a module calculating 

energy demand and final energy consumption for space heating and domestic hot water of 

buildings on the one hand, and a module that anticipates heating related investment decisions 

on the other. These modules are connected to a data base, supplying information on relevant 

data, such as a detailed description of the building stock, heat supply technologies, energy 

prices, climate data, user behavior, etc.  

 

Figure 3.1. Hierarchical structure for the definition of buildings and their main properties 

Building segment b:
BC Building class: immutable
ECR Energy carrier region: immutable
Nb: number of buildings
HS: type heating system: Installation period, size, energy carrier, …
DISTRSH: type distribution system space heating: temperature level, auxiliary 

electricity demand, …
DISTRDHW: type distribution system DHW: temperature level, auxiliary 

electricity demand, …
SOL: tpe Solar thermal system: installation period, size, annual energy gain, … 
DHW system type: installation period, size, energy carrier, …

Building class BC:
BCA Building category: immutable
CR Climate region: immutable
Building geometry: shape, length, width, floor, immutable
Construction period, lifetime without refurbishments: immutable
Building envelope: U‐values, installation period, …
User profiles: operation days and hours, dhw demand, temperature level, 

ventilation rate, service factor parameters, …
Type of ventilation system

Building category BCA:
Distinguishes between primary building types

Policy instruments are defined per BCA
Demanded building stock is defined per BCA

Defines useful energy demand per building

Defines final energy demand



3.1 The decision tree structure 

Throughout the simulation period, decision anticipated by the model can be structured 

in a decision tree. For each building class and building segment, the share that undergoes 

some specific measures defines a new branch.  

 

Figure 3.2. Decision tree structure of the ERNSTL/EE-Lab model 

Without any restrictions, the number of building classes and building segments would 

increase exponentially. Given the number of available options and their combinations, such a 

process would exceed the computing capacity of most computers within a few simulation 

periods. 
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In order to control the number of additional building segments in each simulation 

period, new segments are only created, if the heated floor areas of buildings that would belong 

to these segments exceed a predefined minimal share on the total heated floor area. 
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Besides the defined parameter min share which is used to define the calculation 

precision, the heated gross floor area that a segment must exceed in order to be created 

depends not only on the total gross floor area of the building stock but also on the gross floor 

area of buildings which belong to the same building category. This approach represents a 

compromise between the calculation precision for the total building stock and the precision of 

the results for each building category and delivers both demands at low computation costs. 

Neglecting options, which get a low share at all, would mean that the model would 

underestimate the potential market share of these alternatives. In this case, the final results 

would not be unbiased approximations of the model core algorithm and results would shift 

with decreasing calculation precision. To avoid this, in each decision situation, a stochastic 

algorithm randomly depicts an alternative out of all alternatives that don’t meet the minimum 

floor space threshold. 

Three decision situations are distinguished, in which a share of buildings doesn’t meet 

the threshold limit and the minimum floor space threshold applies: 

1. The share that undergoes measures doesn’t meet the threshold 

2. The share that doesn’t apply any measures doesn’t meet the threshold 

3. The average of both doesn’t meet the threshold  

If the third case applies, the segment is not allowed to be split again. This means that 

the whole segment will perform a certain measure or none of it will. A segment switches at all 

if the share that is supposed to perform a measure exceeds a uniformly distributed random 

number ub. 
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If case one or two applies, then at least nmin,BCA buildings must change or remain 

unchanged. 
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The random number ub is persistent to the building segment once it has been created. 

This ensures the share at which a segment switches is randomly distributed for all building 

segments and those not change over time. This is a necessary precondition to guarantee that 

the results are independent from the number of draws and the chosen time step of the 

simulation. 

Besides defining the share that undergoes measures, also the number of chosen 

alternatives by the logit model is restricted in a similar way. For each segment, the relative 

shares of all alternatives that don’t meet the minimum floor space threshold are used to define 

a distribution function for those options. Again a stochastic process depicts randomly an 

alternative for each segment which then gets the share sb,t,small, which is the sum of  all 

alternative not meeting the threshold within its own segment. 
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The algorithm descripted above ensures that model results are independently from the 

chosen calculation precision and simulation step. However, the model outcome is co-

determined by a stochastic process. As a result, the model outcomes are not deterministic 

anymore; multiple model runs are required to define expectation value and variance of the 

results with respect to the stochastic model algorithm.  

3.2 The decision algorithm of the ERNSTL/EE-Lab Model 

The basic methodology of the decision algorithm is a logit model, a well-established 

approach within the discrete choice theory. This approach has already been applied for 

modeling the heating sectors by other working groups (e.g. Giraudet et al. 2011, Henkel, 

2012, Marnay and Stadler, 2008); their results indicate that this approach is also pertinent for 

the specific research questions of this project. In a very simple form, and if the independence 

from irrelevant alternatives (IIA) (Marschak, 1960) is not violated, the share sMNLM,i of an 

alternative i within a building segment b in period t is derived by a multinomial logit model 

(MNLM): 
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The relative penalty for each alternative are derived based on the average penalty of 

alternative, weight by their market shares. 
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Figure 3.3. Market share of a technology 1 against a technology 2 described by a multinomial 
logit model, based on penalty ratio 1 against 2 and the scaled variance of the decision 

parameter  

The penalty function used to describe the investors preferences is based on adjusted 

heat generation costs, thus it is presume that in average, the heat generation costs are the 

dominant variable. The penalty function (adjusted costs) μ for alternatives is calculated using 

the long run marginal costs (LRMC) enhanced by monetary and non-monetary barriers for 



changing the type of heating systems and the willingness-to-pay (WTP) of decision makers. 

The LRMC include the consumption dependent (energy costs), consumption independent 

annual costs (fixed annual tariffs, maintenance, etc.) and the levelized investment costs. The 

consumption dependent energy costs are based on the energy demand presuming the norm 

indoor temperature in buildings (20°C for the case of Austria). Thus, in the decision making 

process, behavioral aspects which influence the annual energy demand are not taken into 

account. By doing so, different alternatives can be compared on the same level of comfort 

level on the first hand, on the other, especially in the case of building renovation, information 

on future energy savings due to thermal renovation might come from simple energy 

performance indicator calculates rather than from more complex methods that incorporate 

rebound effects. Furthermore it is assumed that the investor does not necessarily have full 

information about the effects of the supply line temperature of the heat distribution system on 

the annual efficiency of the heat supply system.  
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Two types of barriers, related to changing the type of the heating systems, are 

considered in the model. First, non-monetary barriers, basically associated with the comfort 

level the existing heating system provides, are considered. This means that a significant 

decrease of comfort level or degree of automation is not allowed:  

 If a heat distribution system is available, single stoves are excluded. 

 If a building central heating system is installed one-floor heating systems are 

excluded. 

 Coal and wood log boilers are only options in case that either coal or wood log is 

the existing main energy carrier. 

 If natural gas or electricity are the main energy carriers, oil based heating systems 

are excluded, too.  

 If a district heating is used, all other energy carriers are excluded. 

Besides these non-economic barriers, economic barriers as they might occur when the 

energy carrier is changed are also incorporate. Such costs are e.g. natural gas connection 

costs, oil tank, biomass storage, drilling costs for the bore hole of heat pumps with vertical 

heat exchangers. All barriers associated with the change of heating system type are 

summarized in a substitution matrix similar to Cost (2006), yet excluding the LRMC of the 

basic heating system. 



In the ERNSTL/EE-Lab model, the described MNLM approach is extended by the 

following mechanism: 

Decision partly based on Energy prices in previous years  

Bauermann (2011) provides empirical evidence, that agents incorporate not only the 

current, but also energy price of previous periods in their decision making process. Thus 

running energy costs c of energy carriers en used to calculate the adjusted heating costs 

cen,t,decision are based on the energy price level of previous simulation periods:  
2

en,t ,decision en,t n n
n 0

0 1 2

c c f en, t
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Limitation of ultimate market share based on non-tradable restrictions 

Non-tradable restriction are considered to be restriction which are associated with the 

location of the building and are independent from the actual users, decision makers as well as 

the type of building. By estimating the ultimate market potential for each energy carrier in 

each sub region (e.g. urban, rural), non-tradable restrictions are taken into account. Such 

barriers are restrictions on the use of biomass and coal based heating systems in highly 

populated areas for reasons of transportation logistics and emission pollution, the limited 

availability of grid-bounded energy carriers such as natural gas and district heat in specific 

areas or the installation of ground source heat pumps with shallow horizontal heat exchangers 

in urban regions. In case of solar thermal systems, not only the share of buildings suitable are 

restricted (Novak et al. 2000) but also the maximum collector area per building is limited on 

the level of individual buildings, not allowing to use more of 40% of the roof area for 

buildings with span roofs (or similar) and 70% for buildings with flat roofs. 

The diffusion process has been implemented in the decision algorithm as followed. 

Based on the assumption that the set of buildings b that implements a specific measure in 

period t is a randomly chosen, statistical independent subset of the set of all buildings B with 

specific properties, the ultimate share a technology i can get, is described as followed: 
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This implies that in those buildings where a different technology is already installed, 

the ultimate market share for a technology i in building b is reduced by the currently (or 



previous) market share of this technology. If the same technology has been installed already 

in the building segment b, the ultimate market share in this case is set to 1 and whole segment 

b is allowed to reinstall the system again. 

Considering the ultimate market share for technologies, the market share for each 

technology i in building b and time period t can be described, based on the extended MNLM, 

by:       

 
I,k i

adapt,max,b,t,k MNLM,b,t ,k
adaptMNLM,b,t ,i MNLM,b,t,i adapt,max,b,t,i I,r k

k 1
adapt,max,b,t,r MNLM,b,t ,r

r 1

1 S s
s s S 1 b, t, i Equ. 4

S s

I ... Set of available options (technolog








  
         
    

  




ies)

 

The average market share of a technology i on a set of buildings B derives from: 

B
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Market diffusion of technologies 

The next enhancement of the decision process aims for the change rate in market 

shares of technologies. Based on historic data, it has been observed, that in many cases, the 

diffusion process of technologies shows specific patterns, which can be descripted by market 

diffusion models. Such a well know and widely applied model is the logistic diffusion process 

(Sultan et al., 1990; Grübler and Nakicenovic, 1991). According to the logistic diffusion 

model, the diffusion follows an S-shaped curve. Besides the ultimate market potential for 

alternatives, the curve is described by a parameter T, the characteristic diffusion time. This 

parameter defines the time span a technology needs to gain a market share of 99%, once it 

holds a market share of 1%. The big advantage of the model is it simplicity, only one 

parameter needs to be estimated. The drawback of the model is that it completely predefines 

the diffusion process based on the single parameter and a symmetric curve. To avoid this 

behavior, the diffusion process, as implemented in the ERNSTL/EE-Lab model only defines a 

valid corridor for the rate of change of market shares s for alternatives i in buildings segments 

b. Based on a logistic diffusion process, the limits for the change rate is defined by the current 

share an alternative i holds in a considered building category bj (e.g. single family houses) in a 

sub-region srk (e.g. urban areas), the share the alternative i holds in all buildings in the same 

sub-region srk and the share the alternative i holds in all buildings of the building category bj.  

In the current implementation, the upper growth rates as well as upper decline rates 

(negative growth) are defined based on the market shares in previous periods t-1 to t-n. The 



corridor spanned by these functions is asymmetrical, since the decline process, defined by 

Tdec, is typically faster than the positive growth process, described by Tinc.  

The upper growth rate defined by this process for an alternative i in period t is: 
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Smin defines the lowest market share, which is allowed in any case and is needed by the 

model to start the diffusion process for new alternatives, not holding shares in previous 

periods. Consequently, lowest market share an alternative must get is defined by:  
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To adjust the market share based on the logit model (Equ. 4) for the diffusion process 

described by the diffusion corridor (Equ. 5, 6), a correction factor fcorrLD is defined: 
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Finally, the shares are scaled again to account for the changed sum of market shares. 
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By doing so, share reduced to meet the diffusion corridor are eventually scaled up 

again in this step and vice versa. This allows technologies to growth faster than described by 



the diffusion model, if the logit model assigns them high shares. This behavior is shown in 

Figure 3.4 for the case of a simple two alternatives example, and different levels of upper 

market share in period Smax,t,i as an result of the diffusion model for alternative i. 

 

Figure 3.4. Market share sb,t,i of technology i against alternatives for different levels of upper 
market shares Smax,t,i based on to the diffusion model. 

Correct market share for previous installations used in the diffusion model sdecision,b,t,i,inc 

and sdecision,b,t,i,dec 

The market share of a specific technology in previous period used in the diffusion 

model represented by Equ. 5 and 6 is based on the following equation. 
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First, for each building segment, that undergoes a change, the historical market shares 

are calculated for three different set of building. The first set of buildings Bbca,ecr consists of 

buildings, which share the same type of “building category” (e.g. large apartment buildings) 

and the same “energy carrier region” (e.g. urban region). The two other building sets are the 

group of building, that do share only one of these characteristics, either the same building 

category or the same region type with the considered building segment b. This is done, to 

account for the fact, that the penalty function of a specific technology i compared to the 

average penalty and thus the previous market shares varies for different types of buildings 

(e.g. large versus small buildings) and regions (e.g. urban versus rural regions). For the upper 

diffusion corridor, it is presumed, that a high market share of the specific technologies i in 

similar buildings Bbca in different regions or different building types Becr in the same region 

support a higher market share. This consideration is asymmetrical, as it doesn’t mean that the 

market diffusion holds back if in other building types or regions the diffusion is slower than in 

the specific building segment. 
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Nested logit model 

If similar alternatives exist (e.g. gas boiler and gas condensing boiler, single stove 

versus central an on-floor heating systems, different options of solar thermal collectors against 

no solar collectors, different options of buildings refurbishment compared to maintenance 

without effects on thermal losses) the independence from irrelevant alternatives (IIA) doesn’t2 

hold. Therefore similar alternatives are grouped together to a so called nest, enhancing the 

MNLM to a nested logit model (NLM), which is the most widely used generalized extreme 

value (GEV) model. If all correlations (“similarities”) are zero, the GEV converts do a 

standard logit model. For the choice of heating systems a three-level NLM is applied. The top 

level nest defines whether or not thermal solar collectors are installed. The second level nest 

describes different heating systems categories; on the third level subclasses of heating systems 

(e.g. condensing and non-condensing gas boilers) are grouped together. The distribution of 

investment costs compared to the value for all technologies are used as a proxy for the 

similarity of alternatives within each nest. 

                                                 
2 Hausman test: Hausman, J. (1978): “Specification Tests in Econometrics“, Econometrica, 46, S.1251–1271; see 
also: Hausman, J. und D. McFadden (1984): ”Specification Tests for the Multinomial Logit Model“, 
Econometrica, 52, S. 1219–1240 
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Even though the nested logit model is not restricted by the IIA, it still faces two 

limitations: it can’t deal with random taste variations – not all decisions makers have same 

preference (Hausman and Wise, 1978) – and it cannot be used if unobserved variables 

correlated over time for each decision maker. Probit models can handle these limitations, 

however they demand unobserved variables to be normal distributed. In contrast to lognormal 

distributions, which are the basis for logit and GEV models, the normal distribution has 

densities larger than zero on both sides of the mean value. For price correlations, this implies 

that the share of decision makers that prefers higher prices equals the share preferring lower 

prices. This might be true in some cases, e.g. as more expensive technologies are often 

associated with better quality or more desirable features. Yet, this line of argumentation might 

not hold for energy prices. It is difficult to advocate that half of the population has a positive 

preference for higher energy prices. Mixed logit model finally are able to cope all mentioned 

limitations. In order to incorporate random taste variations, mixed logit models enhance the 

probability function for each alternative defined for logit models (Equ. 7) by introducing a 

density function for the decision coefficients f(). 
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Mixed logit models constitute a proper technique for implementing individual decision 

preference. Yet, based on the research briefly outlined in chapter 2, I conclude that the 

empirical evidence is not sufficient to profoundly calibrate such a model extension. 

Limitation of market share of technologies based tradable restrictions 

Finally, tradable restrictions for the use of energy carriers are considered by applying 

cost-resource-potential-curves (CRPC). It is assumed, that the market sets on single clearing 

price for each energy carrier. Therefore new consumers of an energy carrier pay the same 

energy price than existing consumers. 

Average penalty function per building 

Based on the equations depicted above, the mean penalty function used as reference 

technology (Equ. 3) for each building segment and measure (changing heating system, 

domestic hot water system or part of the building envelopment) can be calculated. 
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4 Results uncertainties arising from calculation precision and 
simulations step width 

4.1 Calculation precision min share  

As descripted in chapter 3.1, without any restriction on the calculation precision, the 

computation demand is going to increase exponentially and would exceed available 

computation power within a few simulation periods. Thus, a control parameter has been 

introduced to the model, which controls the computation precision and thus the computation 

demand. The method implemented to cope with market shares below the result precision is 

based on a stochastic algorithm. This means, that the model results are stochastic results as 

well and multiple model runs should be conducted to obtain meaningful results. From that, a 

conflict arises: on the one hand, a reduced computation precision decreases the calculation 

needs per model run to some extent, the introduces additional uncertainties on the other hand 

lead to higher number of model runs needed per scenario to obtain the similar low confidence 

interval of the model results. To get a first estimated of an rational calculation precision, that 

keeps calculation time and uncertainties low, a series of model runs, using a data set of a 

baseline scenario for the Austrian built environment from 2009 until 2030 is used. 

A necessary precondition for the following analyses is that distribution of results is 

well distributed. Therefor it was tested whether or not model results resulting from different 

runs using the same input data are distribute according to a normal distribution or not. This 



has been done for the results variable energy demand per energy carrier after 22 simulation 

periods (2030) using a min share = 4. The results are shown in Figure 4.1 and suggest that this 

precondition is satisfied.  

 

Figure 4.1. Cumulative distribution function () for z-transformed model results (energy 

demand per energy carrier after 22 simulation periods, 12 simulation runs, 180 data points) 

compared to the  of the unit normal distribution N(0,1). 

As an estimator for the uncertainties arising from the stochastic algorithm the 

following two parameter EC and EC, BCA have been defined and their behavior analyzed:  
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The parameter EC is used as an estimator for results on a rather top level, where only 

the total the energy demand per energy carrier is considered. In contrast, parameter EC, BCA 

looks at the results on a higher level of details and considers the energy demand per energy 

carrier for each building category. It is obvious that the confidence interval needs to increase 
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with a higher degree of details. The results of this analysis are drawn in Figure 4.2. It can be 

seen that, for a specific level of uncertainties, the computation time tends to decrease with a 

lower calculation precision and a higher number simulation runs. 

 

Figure 4.2. Calculation time against the uncertainty indicator EC, (left graph) and EC,BCA, 

(right graph) of results as measured descripted above for the results after 22 simulation 
periods. 

In a further test, the model behavior has been analyzed; determine whether or not, and 

if to which degree, the results vary with the calculation precision, indicating that the 

stochastic algorithm introduces some systematic bias. To do so, the average results, based on 

12 simulation runs, for simulation using different values for the min share parameter are 

compared against each other. The behavior of the energy consumption per energy carriers are 

shown in Figure 4.3. It can be observed, that there appears to be some systematic bias. Yet, 

using a min share of 10 or less, the discrepancy is less in a range of 3% or less und thus neglect 

able. Furthermore, it has to be noted that, using 12 simulation runs, results do not tend to stay 

within the confidence interval, spanned by runs with a different min share. 
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Figure 4.3. Average energy consumption (for 22 simulation runs) per energy carrier against 

the results of simulation runs with min share = 1 

In Table 4.1 the results shown above are compared against a simpler, deterministic 

algorithm, which allows building measures only, if either the number of buildings exceeds 

nmin,BCA or more than half of the buildings within a segment (smeasure,b > 0.5) perform such a 

measure. As can be seen from this table, the described deterministic algorithm fails to derive a 

similar high quality model behavior and the more comprehensive implemented stochastic 

approach is superior. 

Table 4.1. Comparison of results derived from the implemented stochastic algorithm against a 
simpler deterministic algorithm. 

Energy carrier index 
(market share in 2030)  

Energy consumption in 2030 using deterministic 
approach (min share = 4) compared to stochastic 

algorithm using (min share = 1) 
EC 1 (4%) 70% 
EC 2 (4%) 65% 
EC 3 (29%) 96% 
EC 4 (11%) 118% 
EC 6 (7%) 103% 
EC 7 (3%) 51% 
EC 8 (7%) 59% 
EC 10 (1%) 53% 
EC 12 (8%) 103% 
EC 13 (8%) 104% 
EC 14 (8%) 101% 
EC 15 (6%) 92% 
EC 16 (1%) 46% 

A similar analysis is performed for the variable: number of buildings undergoing some 

sort of thermal renovation. Again, the model results should not shift significantly, if the 
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calculation precision changes. In this case, the algorithm fully meets the requirement, as can 

be seen in figure 4.4. In addition, the results of a simpler, deterministic algorithm are drawn 

(dashed lines), which again allows measures only if either the number of buildings exceeds 

nmin,BCA or more than half of the buildings within a segment (smeasure,b > 0.5) perform such a 

measure. As it can been seen, the behavior of second algorithm strongly depends on the 

calculation precision, with results eventually converging (close?) to the stochastic algorithm.  

 

Figure 4.4. Number of buildings performing thermal building renovation. Model results 

obtained using various calculation precision min share. The solid lines represent the 

implemented stochastic model algorithm. The dashed lines show results using a deterministic 
algorithm in which measures are only performed, if the number of buildings exceeds nmin,BCA 
or smeasure,b > 0.5. 

4.2 Simulation step width  

A different way of decreasing the simulation time is to increase the simulation step 

width. This means that results are not calculated and obtained for each simulation year but for 

e.g. every second, third or fifth year only. To validate the results, again it needs to be shown, 

that the systematic errors resulting from such a simplified calculation tend to be within 

tolerable range. Again, the average energy consumption per energy carrier (with a market 

share of 1% or more in 2030), using 12 simulation runs, are compared against the average 

energy consumption based using min share of 1 and a simulation step width of 1 year.  
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Figure 4.5. Average energy consumption (for 22 simulation runs) per energy carrier using a 

simulation step width of 2 years against the results of simulation runs with min share and 

simulation step width = 1 

Results obtained from this analysis indicate that the model algorithm delivers data, 

which basically do not shift with an increasing min share. The systematic bias (for the scenario 

analyzed) compared to scenario runs using an annual step width are in the range of 2,5% or 

lower, if an min share 10 or less is used. The comparison of uncertainty against simulation time 

reveals that using a simulation step width of 2 reduces the computation time by more than 

50% compared to a simulation step width of 1. 

 

Figure 4.6. Comparison of results uncertainties against simulation time using a simulation 
step width of 1 (solid lines) and a step width of 2 (dashed lines) 
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5 Uncertainties of results arising from non-observed model 
variables 

5.1 Scaled variance of the decision algorithm 

The  value (scaled variance) of the logit model is responsible for the slope of the 

selectivity and therefore important to the outcome of the scenarios. To test the sensitivity of 

the results on this value, we calculate the derivatives of the share of energy carriers with 

respect to the scaled variance . An indicator  has been defined which calculates the sum of 

squared derivatives for all energy carries.  
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Results derived for the Austria base line scenario after 22 simulation periods (2008-

2030), considering all restrictions, indicate a (local)3 minimum of the  parameter (for the 

Austrian built environment) in the range of 8-9 (see Table 5.1). 

Table 5.1. Sensitivity of the model results (share of energy carriers on the final energy 

demand) with respect to the scaled variance () of the decision parameter. 

                

                

                

                

                

 

                                                 
3 The global minimum of this function can be found at very high  values (the winner takes it all) with  ~ 0 



  

Figure 5.1. Sensitivity (t) of the model results to the scaled variance () of the decision 

parameter.  

5.2 Market penetration time of technologies tinc,i 

Many scientific publications underline, that diffusion processes often show an S-

shaped pattern. This behavior has been introduced in the decision algorithm and is steered by 

an exogenously defined variable: the market penetration time tinc,i. Since this variable cannot 

be observed directly and needs to be estimated based on comparable diffusion processes, the 

question arises, to which extent the model results are determined by this variable, and thus 

influenced by possible misestimations. A sensitivity analysis, in which this variable has been 

variety in range of +/- 50%, is used to test the stability of the results. The outcome (shown in 

Figure 5.2) reveals that the results for 12 and 22 period simulation runs are robust with respect 

to this variable. 

  

Figure 5.2. Sensitivity of the model results to changes in the penetration time of technologies 

tinc,i.  
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5.3 Penalty function b,t,i 

The decision algorithm of the multinomial logit model assigns market shares of newly 

installed systems based on penalty function b,t,i. This variable derives from annual heating 

costs, adjusted for the estimated willingness-to-pay of the market for each alternative. Thus it 

is presumed that in average, the heat generation costs are the dominant decision criteria. As 

described in section 2, there is not profound evidence to reject this assumption. However, 

qualitative analyses indicate that costs are not the only decision parameter. In order to analyze 

the effects of such an altered penalty function, a sensitivity analysis, by modifying the penalty 

function, has been performed.  

b,t ,n b,t ,mean
b,t ,n

b,t ,mean

r b, t
  

 


 

The results of the variance for the major energy carriers are shown in Figure 5.3. They 

indicate, that especially emerging (heat pumps, pellet heating systems) and vanishing (heating 

oil) technologies and energy carriers are sensitive to changes to penalty function. 

  

Figure 5.3. Sensitivity of the model results to changes in the penalty function used by the 
decision process.  

6 Conclusions 

Gaining insights in the stock changing behavior of the built environment are 

fundamental for evaluating the effects of policy options and policy framework conditions. 

This necessary to reach defined energy efficiency and greenhouse gas emission mitigation 

targets in an effective and efficient way. Computer model are able to improve the 

understanding of the behavior tremendously. However, it has to be advocated, that models are 
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not able to predict the future. They need to be seen as working tools only, in the same manner 

as hammers and saws don’t build furnitures either. In order to distinguish between results, 

raised by the individual model behavior (model artifacts) and effects that are inherent to the 

stock changing behavior, researchers are therefore compelled, to understand the model 

behavior and its outcome in detail. To do so, a larger number of scenarios, using different 

input parameter need to be drawn. This goes along with high computational needs. As shown 

in this report, stochastic algorithms are able to reduce the computation time by a great deal, if 

the algorithms reproduce the deterministic ones unbiased. Such algorithms have been 

developed, implemented and tested within this project. By applying them on recent research 

needs, these algorithms can help to design policy framework conditions, which are suited to 

reach energy efficiency and greenhouse gas emission mitigation targets, defined and 

demanded by the society. 
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