Towards Differential-Based Continuous Code
Reviews

Mario Bernhart (bernhart@mit.edu)

31.09.2012

Introduction

This is a summary paper of the visiting research at the MIT Complex
Systems Research LakE] of Prof. Nancy LevesonE] to apply, elaborate and
evaluate the current results (method and tool) of the objective disserta-
tion Towards Differential-Based Continuous Code Reviews in the context of
aviation specific software engineering projects.

Software reviews are an integral part of critical software engineering
projects. Traditional approaches are acknowledged as effective, but not
very efficient quality assurance techniques. In the course of this disserta-
tion a method and tool for fine-grained process-integrative software code
inspections were designed and implemented. The continuous approach with
appropriate tool support shall reduce the effort of a rigorous application of
software code reviews. At the same time the traceability shall be improved.

The technical framework is the de-facto standard for code review tools
build for the popular open-source integrated development environment Eclipseﬂ
An international developer community especially from Austria, Germany,
USA and Canada is established and works actively on the further develop-
ment and improvement of the framework. The broad usage of the framework
and tool is an indicator for the validity of the approach.

In the course of the visiting research the method and tool are be ap-
plied, elaborated and evaluated in a safety critical context. The first chap-
ter summarizes the application context and the second chapter describes the
evaluation methodology.

!sunnyday.mit.edu/csrl.html
2esd.mit.edu/Faculty_Pages/leveson/leveson.htm
3www.eclipse.org/reviews

Chapter 1

Incremental Reengineering
and Migration of a 40 Year
Old Airport Operations
System

This chapter describes the challenges and experiences with the incremental
re-engineering and migration of a 40 year old airport operations system.
The undocumented COBOL legacy system has to be replaced within given
constraints such as limited downtime. A 3-step technical strategy is derived
and successfully applied to the re-engineering task in this project. The
incremental approach and resulting parallel operations of both systems are
the most significant technical drivers for complexity in this environment.
Furthermore, this report describes the process for planning, analyzing and
designing a replacement system that is backed by strong user acceptance.
The user interface design task of taking the system from VT100 to a web
interface was a critical success factor, as well as live testing with actual
production data and actual user interactions. Other aspects such as training
and end user documentation are discussed.

1.1 Introduction

The legacy AODB (Airport Operational Database) system recently cele-
brated it’s 40th birthday, but this is not exactly a reason to celebrate for
the IT-department of this 20-million passengers per year airport. License

cost for the Cobol processors are increased every year (since there are less
and less customers for these), the two last developers of the legacy system are
about to retire in the next 24 months and the market for COBOL developers
is not providing adequate personnel. In addition, a new terminal is planned
for the near future and the required adoptions would be a disproportional
risk and cost to implement in the legacy system.

In this report we describe the challenges and experiences with the suc-
cessful re-engineering and displacement of this system. In contrast to previ-
ous works of the authors [20] an incremental migration strategy was applied
instead of a big-bang. The undertaking took about 18 months to complete
and involved 31 full-time engineers. Two of them being the legacy develop-
ers, which was a critical success factor.

1.1.1 Problem and Constraints

The legacy Cobol GCOSS host system consists of a core system (the AODB)
and more other integrated subsystems such as the cargo management and
load-planning. All of them are part of one monolithic host instance only
separated by code separation and conventions. This report only describes
the re-engineering of the operational core. This part consists of 114 trans-
actional processing routines (TPR) and 819 library routines together with
about 250 KLOC Cobol code. Further 109 IDS-II database configurations
with 3500 LOC. The average load is 124 transactions per second and there
are about 1000 concurrent users connected with a VT'100 terminal.

The critical constraint in this context is the maximum downtime: During
regular traffic hours after 1 hour of downtime one of two runways has to be
closed and after 4 hours the airport shuts down. During nighttime there is
a 2-3 hours window of low traffic that can be handled manually without the
core system being online.

From a users perspective the main challenge is to migrate from a text-
based VT100 interface to a web interface. The legacy interface has a rela-
tively flat learning curve, but once the user is trained it is very efficient and
has very low response times.

Make or buy? Even if there is a range of commercial products for airport
operations software, this airport has a tradition of in-house development and
this was also imperative for this project.

Other User

Interfaces
i i

AODB Core System

Planning tools
Planning Services

AODB User Interface

)
<
g Operations Services §
o]
) ©
& Accounting Services Flights and 2
i_(/ Messages - - X IgData f_i
> Notification Engine 8 Flight Inform
S|\ V | N - .
5 - e Display
§ Message Processing E System (FIDS)
= /\
©
c Master "
5 Data Secgrlty Accounting
] Services Services

Figure 1.1: A generic and simplified AODB architecture similar to the one
in this report.

1.2 Strategy for an incremental migration

The main risk here is a potential downtime that exceeds the constraints
described in the previous section. This may lead to heavy traffic restrictions
for the 70 operating airlines and with this to a significant financial loss. To
address this risk an incremental strategy for development and migration was
chosen. Incremental approaches, in general, reduce the risk that comes with
a big-bang, but also add a substantial overhead. One key problem is how to
decompose the system into reasonable parts that may be migrated one after
the other. An ideal process would be a fine-grained incremental strategy,
but in practice the atomic decomposable modules are rather large (little big
bangs).

An incremental migration would also require the parallel operations of
the legacy system and the new system. This is a non-trivial challenge and
the whole process from planning, analysis, development and validation was
greatly influenced by this factor. An airport operations system is a complex
system by its own measures, but operating two systems at the same time
adds a significant factor for the interaction complexity. To achieve the re-
quired degree of functional and technical compatibility a strict one-to-one
strategy was implemented. This was an indispensable cornerstone for this
project.

To pre-evaluate the strategy and the process a template feature was se-
lected and implemented. As expected, the first attempt failed (mainly due
to the wrong cut through non-separatable system parts) and Brooks’ plan
to throw one away was as relevant as ever. The template feature had to be

4

External
Messages

This communication is either direct or with a simple protocol transformation component

Passive Flight

Legacy AODB Data Component

Primary System 1
[Business Logic]

[Transformation]

*

e e
Legacy Database New Database
-

Figure 1.2: Step 1 of the incremental migration strategy. The main element
is the Flight Data Component that listens on the legacy interface for flight
data updates and transforms that to a new model before forwarding it to
the primary systems.

functionally and technically representative, but not too large to limit the
time loss of failing attempts. In this case we chose the block-off operation
of an outbound aircraft for several reasons: It is a central step in the busi-
ness process of handling outbound flights with many calculations such as
the rotational delay and sending of external SITAE] messages such as the
movement departure message. The block-off also updates the position and
gate occupations data, which is a primary data structure for an airport and
usually relevant for accounting. The internal notifications system was also
strongly involved with sending and withdrawing a set of system messages.
From a technical perspective a step-wise migration was followed. This
separation allows the decoupling of input and output communication in
general. This concept was applied for the migration of each interfacing
component and the user interaction. Message-based input communication
(e.g. SITA or TATA messages from other airports or the near-surface radar
data), in general, was set up to be processed in parallel. The risk of potential
race conditions was considered to be of relatively low impact in this context.

1.2.1 Step 1: Flight Data Interfaces

The main feature of an AODB is to provide the so-called tactical traffic
image to all primary systems. Such a flight data interface is the lifeline of
every airport. The first step targets to encapsulate the data flow from the

"http://www.sita.aero/

External
Messages
Validating Service

Component

[Validations]

Passive Flight

Legacy AODB Data Component

Primary System 1

[Business Logic] [Transformation]

[

| i

e e
Legacy Database New Database
- -

Figure 1.3: Step 2 of the incremental migration strategy. The main element
is the Service Component that provides service interfaces with all relevant
validations, but not the business logic.

legacy core system to the primary systems (i.e. flight data consumers). In
this case there are about 20 of such consumers. The legacy system had only
one generic flight data interface so only one component was required. This
one size fits all strategy is often found in older systems, whereas nowadays
there is usually a variety of specific interfaces. Also typical for old AODB
systems, the legacy system pushes out nearly all information for a flight
instead of only the changed information. This is because some decades ago
a FIDS (Flight Information Display System) had no logic at all and was
typically directly connected to the AODB.

Step 1 builds the technical foundation by defining a data model and the
interfaces (XML over JMS) that are to replace the legacy interfaces (text-
based on a TCP socket). After Step 1 a primary system was able to receive
all actual flight data and operate with it on a read-only basis.

1.2.2 Step 2: Service Interfaces

In Step 2 a facading component provides the input interfaces to receive
any type of data or user input. The inputs are validated and transformed
to VT100 calls and forwarded to the legacy system. A set of functional
services are defined and exposed. The design of the interfaces is strongly
related to the legacy interfaces so that the mapping would be practicable.
The validation is critical to further separate the primary systems from the
legacy AODB. The validation logic needs to be part of the future AODB and
those validations are needed to provide the corresponding return codes for

External
Messages

Legacy AODB

External
Messages

New AODB

[Business Logic]

X

M—o

Legacy Database

[Business Logic]

—

:

e
New Database

Primary System 1

—

Figure 1.4: Step 3 of the incremental migration strategy. The two com-
ponents of Step 2 are now merged together and provide a fully functional
AODB. The legacy system is updated asynchronously to keep in sync.

the caller. Step 2 requires the actual flight data to perform the validations
and therefor Step 1 is a prerequisite.

With Step 2 there the input and output to and from the legacy system is
encapsulated, a primary system may be fully functional without a direct de-
pendency to the legacy system. Still the legacy system provides the business
logic and calculates the tactical traffic image.

1.2.3 Step 3: Master AODB

In Step 3 the two separate facading components of Step 1 and 2 are merged
together and the required business logic is implemented. Inputs are still
forwarded to the legacy system to keep both systems in sync. The forwarding
with Step 3 is asynchronous (i.e. after the transaction commit), this makes
the new core system the master node in the parallel operations. Information
flowing from the legacy system to the new core system is ignored or may be
used for verification purposes only.

1.3 Re-Engineering Process

The re-engineering process was adopted to follow the direction and con-
straints from the strategy in the previous section. This section describes
selected aspects and challenges of the planning, analysis, design, implemen-
tation and verification of this re-engineering effort.

1.3.1 Planning

Following the strategy from the previous section, the planning on the macro-
level was mainly about finding the right technical and organizational cuts
and defining incremental steps for the reengineering process. A total of 43
technical work packages were defined. Many of those are aggregating a set
of functional features to be released to a specific user group. Some were only
technical and provided preparations or intermediate steps before a feature
gets released to the user. Those work packages were distributed to five
major releases. Even with the goal of evenly distributing the complexity
and risk within all releases, the second last release was the most critical
part of all with a master-slave switch towards the new system for the core
feature set. To reduce the shift the risk towards the end of the project, the
final release was planned with relatively low technical risk. Some features
were implemented and tested and included into a release without enabling
it in production. To reduce the risk those features were enabled at a later
time, maybe between mayor releases. A complete list of feature-sets and
corresponding work packages would excess the length of this report and
is very specific for each project. In general, for an AODB the following
elements may be cut into separate parts to be released separately:

e Flight planning

e Inbound and outbound flight processing
e Accounting

e Message (Telex) receiving

e Message (Telex) sending

e User notifications

e Interfaces to primary systems

e Interface to FIDS

Any attempt of further splitting the inbound and outbound flight processing
(e.g. by regular procedures and irregularities) have been failed in a dual
operations setting with the legacy systems.

One other important planning aspect was the technical integration of
the core system with the other primary systems and interfaces. There was
a total of 26 system that depend on the core AODB and, the other way

around, there were 10 dependencies on other systems by the new AODB.
The ration between in and out dependencies is typical for a core system and
this anatomy of a core system had a significant influence on the planning
process.

1.3.2 Analysis

Following the one-on-one policy and having no documentation all the main
part of the analysis was to read the legacy code and to extract the functional
requirements from there. This is a time-intensive process, but since both
systems are running in parallel, there needs to be an exact understanding
of the structure and behavior of the legacy system. The code reading was
performed line-by-line for each TPR and the results were documented in
a human-readable pseudocode to a wiki. There was also an automatically
translated Java version of the legacy source, but using this for the analysis
was not feasible for the following reasons: 1. Every translation looses im-
portant details e.g. implicit design rules, naming conventions etc. and also
many technical language-specific aspects are not fully transferable from one
model to the other. 2. The legacy developers had no Java knowledge and
their support was key for performing the analysis especially with having no
documentation of the legacy system at all. Usage statistics of the last 3
months were used to support the code reading by identifying sections that
are never called. The code was also automatically analyzed to extract the
dependencies between TPRs.

During the code reading process several bugs were identified in the legacy
system. Some of them were critical for the parallel operations and had to be
either corrected in the legacy system or a workaround had to be implemented
in the new system. In general, a change in the legacy system is considered to
be of higher risk and the default strategy was to implement the workaround.
In some cases both options would be unfavorable - e.g. for a complex and
rarely used feature. In this case the users were informed of differences in
both systems and had to correct data manually. Only a very small group of
users were instructed and granted for corrective actions during operations.

1.3.3 User interface design

The migration from a VT100 client to a modern AJAX-enabled web interface
was one of the core design tasks in that scenario. The general acceptance
of the new AODB system is mainly influenced by the user interface as this
is the most obvious part of the system from a users perspective. A lack

of user acceptance would be a major risk and this aspect is also a often
cited critical success factor for any major re-engineering project. But this
is not only a hit or miss question. There are many tradeoffs and influencing
factors in such design tasks. The legacy system, for example, had a very
flat learning curve, but once the users were familiar with the typical three-
letter command and all those shortcuts it provides a very efficient and fast
interface. Figure [I.5] shows a legacy interface for assigning baggage belts
to incoming flights shortly after landing. Many modern web interfaces are
more intuitive, but the efficiency of a lean and responsive VT100 interface
is hard to match in todays design space. So learnability and efficiency are
two factors that may are mutually conflicting. The design goal was set to be
the best tradeoff between an intuitive yet efficient interface. To achieve this
goal the interaction design was very conservative and always followed the
given structure from the legacy system. To make use of todays technology
elements such as find-as-you-type or drag-and-drop were added as additional
input methods, but in addition to the commonly known structures. This
strategy was referred to as sugar on top.

A total of 1000 users from all ages and equal female/male distribution are
divided into 16 distinctive user groups - each of them performing a different
set of tasks. Dynamic navigation structures and filtering of Ul elements
support a more customized presentation of the user interface. This is more
specific to the actual task and reduces information overload and distraction.
The features are also sorted by the actual usage rates of each function.
Changes to the UI structure were not done at runtime but the technical
design allowed to do this with a very local change in the client code.

A contextual inquiry was performed for all identified user groups. To
investigate the working environment a the user’s site is an important pre-
condition for the design process. At an airport the users usually work with
more than one screen and more than a handful of different primary systems
all at the same time. A typical workflow at an airport includes the use of
a set of systems in very different environments such as the tower, apron or
CUTE environments at the boarding gates. Also the integration of voice
communication and telex printing have to be considered to get a complete
picture of the user’s perspective. The actual design process then followed a
rigorous four step approach:

1. Step: The first step in the process is to identify and understand the
legacy interface. As an example, figure [1.5] shows one of two interfaces
for assigning baggage belts for incoming flights. The second (not shown
in this report) is a text list - a notification system to show incoming

10

BELT 3
0S 9002 HERAKLION

BELT S5 BELT 6
0S 9470 ANTALYA TK 1891 ISTANBUL

PC 991 ISTANBUL SAB

Figure 1.5: UI Process Step 1: Analysis of existing legacy user interface.
This example shows the allocation of incoming flights to baggage belts.

flights when they are landed. When a flight lands, the user gets an
acoustic signal and switches to the list, marks down the flight number,
switches back to the main screen and enters the flight to assign a
baggage belt.

2. Step: This is the first actual design task. All functionalities are written
down on a set of cards that are provided to selected users that represent
a user group. With a mix of card selecting and free-form hand-noted
design the early design prototypes are shaped. Figure[I.6]shows a card
for the baggage belt main screen plus a notification inbox for incoming
flights on the side at the same time.

3. Step: Taking the low-fidelity prototypes from the previous step, in
Step 3 the interaction designers transform the input to a simple but
testable wireframe prototype. By interacting with the prototype, the
users further improve the interaction process. In this case the drag-
and-drop of notifications (landed flights) to the respective baggage
belts was added. Figure [I.7] shows the clickable prototype.

4. Step: The final step was to implement and test the prototypes. Many
details only surface after implementation, but in general the interac-
tion design was very mature at this point. Here the focus shifts more
towards the visual design. Figure shows the implementation of the
example.

11

Figure 1.6: UI Process Step 2: Paper-based prototype with card selection
and free form design.

1.3.4 Technical design

Following the strict one-for-one strategy the technical services were designed
to reflect the previously identified functional requirements. However, certain
features underwent a complete redesign in order to improve user/customer
benefit, such as

e The legacy host system provided a hard-coded difficult-to-reuse user
notification mechanism that informs the user ether that an event has
occurred (e.g. a landing) or that an event is missing (e.g. miss-
ing block-in after the maximum taxiing time). This was replaced by
an event-driven rule-based notification system. Its configuration can
be easily altered/extended at run-time via Java Expression Language
(EL) in the database.

e Hard-coded security and tenancy checks were replaced by a declar-
ative java annotation-driven approach that increases readability and
modifiability and reduces code duplication.

e Many processes of the legacy system are triggered by periodically re-
peated checks or batches (every minute or every five minutes). As
far as possible these functions were either inlined into the respective
service code in order to increase cohesion, readability and maintain-
ability or an event-based decoupling is implemented. The shift from
a batch-based to an event-based software design was one of the ma-
jor technical difficulties to overcome. Scheduled tasks are externalized
into a separate batch-like environment.

12

Reninder] [Flog aut 8eit mordnen @l

i, bl B]| | poo:[o5]m] serfi] oo

] [et Belt2 [Belt 3

05 958 Linz
05 964 Graz
0s 926 ‘Salzburg

1]
]

05 944 Kiogenfurt
s Um || 0 Belt kammex. 8 Finge
—————————— T || beinhalten, diese solften ohne

(362 oz scrollen inner schtbar sein

05 926 Salzburg
0s 944 Kiogenfurt

- Belt 4 Belt5 [Belt 6

Wenn ein Reninder auf einen Belt
per Drag and Drop gezogen wird,

sollte dieser gehighlightet werden
(Rahnen etwas dicker 0.A.).

| | eer7

Type change ol
Positon change G| s 958 Lz § 0598 Linz % e

05 964 Grax W 0594 Grax & Belt 7 kem mox. 6 Flige benhalten.
e oo ||

Figure 1.7: UI Process Step 3: Clickable wireframe prototype to test inter-
action design.

e A 2-flight re-landing model from the legacy system (i.e. reuse of ex-
isting flights in the database) was replaced by a 4-flight model (i.e.
creating new flights for the re-arrival and re-departure) witch is the
current state of the field. This is one of the most severe design changes
that also had to be adopted in the legacy system for parallel opera-
tions of both systems. In this special case, the high change effort was
rated lower than the risk of maintaining the 2-flight model in the new
System.

All code required to keep the legacy system synchronized was written
and structured so that it could be easily removed after the displacement
of the legacy system was completed. With high availability in mind the
application features a clustering mechanism ensuring that the processing of
incoming messages (SITA etc.) would be continued by another node without
human interaction if failure occurred at one or mode nodes.

The application provides exactly two input channels, REST-style HT'TP
calls and JMS. JMS is used for all asynchronous communication, e.g. telex-
es/messages from and to airlines, air traffic control and other airports. A
strict single service strategy was pursued: Both GUI and applications that
would communicate synchronously with the AODB use the same REST
calls, e.g. the flight block-off operation can be triggered manually in the
AODB or in a neighboring system. The GUI is written entirely in HTML
and JavaScript and communicates solely via REST calls with the servers.
This approach allows for future GUI implementations without necessitating
changes in the back end code. Updates to flights, e.g. landing or departure,

13

Figure 1.8: Ul Process Step 4: Implemented interface with visual design for
user acceptance testing.

are published via a JMS topic to other airport systems.

1.4 Verification and Validation

One of the most resource intensive tasks was the verification and validation
(or testing) of the new system. Again, the parallel operations here drives
the complexity. On the development level the common unit and integration
tests are performed automatically. Unit tests coverage was higher than 70
percent and integration test coverage (together with the unit tests) reaches
a near 90 percent. Integration tests include the driving of interfaces (e.g.
REST) and the verification of the JMS output. All developers tests are
integrated in the continuous integration setup after the build.

The main verification effort though went into the functional black-box
lab-tests. All features went through an extensive structured test process.
One of the key challenges was to prepare the test environment and provide
useful test data. The test stages of the legacy system had a nightly copy
of production data and as long as the new AODB was running in a passive
mode (compare ﬁgure and those states are automatically propagated
to the new components. Only after a component reached the active mode
(compare figure the test data had to be copied from production in the
new environment at the same time as this was done for the legacy system to
ensure a consistent data set. After the manual execution a good amount of
test cases were selected to be automated by a black-box automation frame-
work. To ensure the non-functional requirements, some specific tests were

14

Jul-2000 Sep-2010 Hov-2010 Jan-2011 Mar-2011 May-2011 Jul-2011 Sep-2011 Nov-2011 Jan-2012 Mar-2012

Figure 1.9: LOC development of the project (immediate jump in LOC is due
to merge and refactoring with a separate codebase). About two-thirds of the
artifacts are Java, but there is still a significant use of other technologies.

performed such as an automated performance test.

Key users were integrated in user tests throughout the process to validate
the work at different stages or maturity levels. In generally, the users tested
a set of features multiple times before the final acceptance was granted in a
formal acceptance test.

The most valuable tests were performed in a test stage, but with live
inputs from the production environment. Since the majority of system in-
puts at an airport is message-based all automated communication lines were
forked from production into the test environment to provide live updates.
For the manual inputs testers were located next to operational airport per-
sonnel and manually redoing their actual inputs in the test stage. After
such a test run both, the production and the test environment data were
compared to find unwanted variances.

On the development level, the most intensive, but effective verification
was done by continuous and differential code reviews. Whenever there was
a finished development task, one team member performs a code review of
all related source code changes. The application this specific technique was
subject to a comparative study against a traditional model of code reviews.

1.5 Conclusions

In this report we give an overview of challenges and experiences with the in-
cremental re-engineering and migration of an old airport operations system.

15

The incremental approach was dominating the strategy and has very differ-
ent attributes compared to a big-bang approach. The overhead that comes
with such an incremental migration is large, but in many environments the
risk of a big-bang is unacceptable. A perfect finer-grained distribution of
risk was not achieved, but the individual migration items were isolated to
the smallest yet coherent units. In this report we describe the strategy and
planning on the macro level, but the influence was even on very low level
tasks and decisions. Selected aspects may be part of future reports.

A strong focus on the user interface design task was a critical success
factor. The acceptance factor in the user base was high. The conserva-
tive interaction design and progressive visual design provided both, a good
learning curve and an effective usability.

Testing in an operational environment with actual production data and
live user interactions was effortful but highly valuable and surfaced many
issues that could not be found in a lab setting. Code reviews played a crucial
role in assuring the quality on the source code level.

16

Chapter 2

Applying Continuous Code
Reviews in Airport
Operations Software

Code reviews are an integral part of the development of a dependable sys-
tem such as for airport operations. It is commonly accepted that code
reviews are an effective quality assurance technique even if a rigorous appli-
cation is also a high cost factor. For large software systems a formal method
may be inapplicable throughout the whole codebase. In this study an air-
port operational database (AODB) is developed with the application of a
more lightweight approach to code reviews. A continuous, distributed and
change-based process is applied by the development team and evaluated in
comparison to team walkthroughs (IEEE-1028) as a baseline method.

The application showed to be highly useful, equally effective as the base-
line, but more efficient especially for the preparation, execution and rework
effort. The results show that continuous code reviews also support the un-
derstanding of the codebase and the concept of collective ownership. Such
processes may not completely substitute a more formal and effortful tech-
nique. Especially for reviewing critical design aspects or complex items a
traditional approach is still more appropriate. The main outcome is that
such lightweight code reviews may be used together with more formal ap-
proaches to ensure a high coverage and that the degree of formalism should
be adopted to the criticality of the item under review.

17

L — 1h
se =z &= 1B . | I
Nov-2010

Jul-2010 Sep-2010 K Jan-2011 Mar-2011 May-2011 Jul-2011 Sep-2011 Nov-2011 Jan-2012 Mar-2012

. java . s . sql xml . .Css . _properties _html usd . ohj . Other

Figure 2.1: LOC per filetype (immediate jump in java LOC is due to merge
and refactoring with a separate codebase). About two-thirds of the artifacts
are Java, but there is still a significant use of other technologies that are
review items as well.

2.1 Introduction

Code reviews play an important role in the quality assurance of dependable
systems such as for airport operations [9]. In this study an Airport Opera-
tional Database (AODB) system of an medium-sized (20 million passengers
per year) airport was developed in incrementally set into operations within
18 months. A team of 8 software engineers had developed the system based
on a set of 106 functional requirements (e.g. register for deicing) derived
from the legacy system that was to be replaced. The system has about 300
KLOC and the distribution of filetypes is shown in figure

The common practice of code reviews in this environment is a team-
walkthrough as defined in the IEEE-1028 standard [I] at the end of each
development iteration. The high overhead and some other drawbacks, as
described in the following section, motivated the development team to adopt
the code reviews towards a more lightweight and continuous process that
is strongly related to the common practice in open-source projects. Such
processes and the supporting tools are covered by earlier research of the
authors [2] and [3] and is referred to as Delta-Continuous-Review (DCR).
The main properties of the applied method are:

e Distributed: As in [19] and [15] many code review processes and tools
support distributed or global software development. In this case the

18

team was mainly located at one site, but the process and tool used
allowed to perform the reviews and rework remotely.

Asynchronous: In contrast to a traditional approach as in IEEE-1028
chapter 7 there is no synchronous or face-to-face meeting of reviewers
at any time in the process. All tasks are independent but have to
follow a distinct order.

Differential-Based: (or Delta-based) The main property of the ap-
plied code review procedures is that the item under inspection is not a
structural element - such as module - but a set of changes. In this case
all changes that relate to one specific functionality are aggregated. A
functional entity may consist of changes in multiple structural enti-
ties e.g. processing of a new datatype in an airport message causes
changes in the message processing module and the core services mod-
ule. Technically this is a set of changed lines of code (LOC) that has
one or more diffs per item. When reviewing, the reviewer inspects
the changed LOCs. Figure shows a diff-view in the development
environment that is used to perform the code reviews. In general, one
change is also significantly smaller that a traditional review item. As
the review item is only a delta to the previous version, the reviewer is
required to have an overall knowledge of the codebase.

Continuous: The reviews are done continuously to attain a high cov-
erage of code with the reviews and to keep the delta between reviews
small. Also the application of low-overhead and continuous methods
is very typical in modern software engineering approaches e.g. contin-
uous integration in especially promoted by the open-source communi-
ties.

A total of 114 code reviews have been executed and evaluated. Sec-
tion [2.4] explains the procedures how the reviews are performed.

2.2 Related work

Laitenberger and DeBaud [14] published a comprehensive meta-study that
summarizes many different code review approaches and work out a common
taxonomy. They also summarize the empirical results such as an average
code review effectiveness of about 57%. Further Kollanus et al. [13] cat-
egorized many publications in the field from 1991 until 2005. Ciolkowski,
Laitenberger and Biffl [7] published a survey about the state of the practice.

19

[3] Java Source Compare [N
svn:f/myslice.at/dip tr action/Up Action java [Rev:375] svn:f/myslice.at/dip tr action/Up Action java [Rev:374]
Tpackage org.revienclipse.action; Tpackage org.reviewclipse.action;

3public class UpdatelisersAction { 3public class UpdatelsersAction {

57 private final Lag log - LogFactory.getlog(getClass()); 5T B0verride

6 6 protected IStatus run(IProgressMonitor monitor) {

7T d0verride UpdateHistoryAction action - new UpdateHistoryActio
8 protected IStatus run{IProgressMonitor moniter) { 8 history, file);

) UpdateHistaryAction action - new UpdateHistoryAction(p) try {

ho history, file); ho action. run(ronitor);

1 try { L 10g.debug(action. getStatus(). getMessage());

2 action. run(ronitor); 2 return action.getStatus();

i} log.debug(action.getStatus(). getMessage()); L2 } catch (InvocationTargetException ¢) {

i return action.getStatus(); la log.error(e.getMessage());

iE } catch (InvocationTargetException e} { s return new Status(IStatus.ERROR, ReviewPlugin.p|
he log.error(e.getMessage()); he getMessage());

ik return new Status(IStatus.ERROR, ReviewPlugin.PLUGL — [17 } catch (InterruptedException e) {

hs getMessage()); he 0g.error(e. getMessage());

iE] } catch (Interruptedixception e) { o return new Status(IStatus.ERROR, ReviewPlugin.P|
2o log.error(e.getMessage());) getMessage());

21 return new Status(IStatus.ERROR, ReviewPlugin.PLUGL /oL ¥

getMessage()); 2 3
} catch (Exception €) {
log.error(e. getMessage();
return new Status(IStatus.ERROR, ReviewPlugin.PLUGI
getMessage());
3
1

Figure 2.2: Compare Editor for Reviews is used for the reviews. The re-
viewer opens a change in this view in the integrated development environ-
ment (IDE; in this case Eclipse) to investigate the differences to the previous
version of one item in the changeset.

They state that the review process should be tailored and integrated in the
development process and executed regularly.

Stein et al. [19] and Meyer [15] worked on distributed asynchronous code
reviews that are also properties of this work. Remillard discusses tools that
support differential reviewing [16].

The open source communities contribute to the field of code reviews
and their practical, sometimes very large-scale application. The contribu-
tion and upstreaming process of Linux is the most prominent example of
that. Other include Google which developed Gerrit [I0] as a GIT-based
code patch review tool for the Andriod Open Source Project (AOSP). It is
used to review the contributions to Andriod in the form of patches (diffs to
the reference codebase). Gerrit is a successor of the Google in-house tool
Mondrian that has very similar properties as the applied method in this re-
port. Kersten and Murphy [11] presented Mylyn. A task-based interface to
connect review systems (or more generally any task management system) to
the popular integrated development environment (IDE) Eclipse. One recent
development is the Mylyn Gerrit connector [8] where the authors of this
report actively participate as project lead and committers. One aspect of
this work is to converge the more lightweight approaches from open source
with the common practices in dependable systems engineering.

20

2.3 Research question

Code reviews are a principal quality assurance technique for dependable
systems. As systems are constantly growing in size, complexity and degree
of integration methods of developing and assuring must be scaleable to keep
in pace. While 300 KLOC are not overly large, it is still a challenge to apply
a traditional code review with a high coverage. In this report the software
development unit typically applies team code walkthroughs according to the
TEEE-1028 chapter 7. Those are considered to be very effective but cause
a high overhead. Developers also reported some drawbacks in the process
such as the following:

e Many software modules exceed the size of code that is coverable by
one review session

e Reviewers have to prepare (i.e. read and understand the code) them-
selves to participate in the review with significant effort

e Reviewers have to be physically present
e Timing of the review is critical:

— If review is late in the process, the errors detection and resolution
is expensive

— If review is early in the process, the review does not cover the
changes made later

To overcome those issues the development team adopted the code review
process according to the elements as described in the introduction. The main
research question that arises from such a methodical shift is if the adopted
approach is still a valid and useful. The development team was competent
to change that process at any time in accordance with the development team
leader and the one person who was in charge to supervise the overall quality
assurance concept. Since this was not the case, the general applicability is
considered to be given.

To following questions are deduced from the application and shall be
investigated through this research:

e 1. Evaluation: How useful and appropriate is the applied code review
method in this context?

e 2. Comparison: How does the applied code review method compare
to the baseline?

21

The goal of this work is to obtain basic evaluation results from a practical
application and to guide further research i.e. through deviation of hypothe-
ses and possible further more formal and controlled experimentation.

2.4 Methodology

2.4.1 Code reviews

A total of 114 code reviews have been performed and evaluated. There is
a near 1:1 relationship between the 106 functional requirements and the
performed reviews. Some functional items were large and therefor split into
sub-items. The development process was feature-driven, so that each feature
(or functional requirement) represents one coherent work-package with a set
of directly related development tasks. The basic steps involved in the code
review were performed as follows:

1. Develop a function. Each change in the source code repository is linked
to a specific function. When one function is finished, proceed to step
2.

2. One developer (randomly chosen for each review and other than the
original authors) chooses the code review and aggregates all changes
that are made within the context of one functional entity. The de-
velopment infrastructure as shown in figure [2.3| support the linking
between functions and the related changes.

3. The reviewer open all changes in a compare view within the devel-
opment environment (compare figure [2.2) and documents the review
results.

4. The original authors get notified and may immediately start the re-
work. (Re-inspection after rework is not formally covered)

The assignment of one reviewer to a specific review was done by the
developers themselves by unrestricted pulling a review task. Most of the
development work is done in pairs. It is standing to reason that the original
authors and all pair partners are excluded from doing the code review. This
is for two reasons: First, the original authors should never do the review on
their own and second, this supports the knowledge distribution within the
team.

22

R - : <covers Task <covers Revi
equirement — o0 as 1 0.n eview
result
oln 0 rewevvler
|
OJI.FI
|
1|.n 0 1,.n
V'erS|on 7 n 1n F'Qe.wsmn
versionNr revisionNr
1].n
Change

diff

Figure 2.3: Data model for reviews for linking between entities is supported
by the development environment services. Horizontal relations are for the
traceability to the requirements and vertical relations support the link to the
code. The link between the review and the revision is logical. Technically
this is resolved via the task.

2.4.2 Study methodology

The study is performed as an expert evaluation in the form of a a-posteriori
survey. All 8 developers of the system take part as subjects. Table shows
the number of reviews per developer related to their experience. Since in this
context there is quantitative or qualitative empirical data for the baseline
model, the study could not be comparative on data with statistical tests.
For each primary research question a set of survey questions is derived. For
rating questions a 6-step Likert-scale is used to express the accordance. For
each question the subject should also give a textual explanation for the rating
answer. The following questions or measures are defined for the evaluation:

e Q1.1: The applied method is appropriate and useful (1: true, 6: false)
e Q1.2: Estimated code coverage (in percent)
e Q1.3: Estimated personal effort (in percent)

e Q1.4: Estimated effectiveness (in percent)

23

’ Subject ‘ Experience in years | Number of reviews

A 6 15
B 11 4
C 4 25
D 3 33
E 12 5
F 6 21
G 1 4
H 1 8
| SUM | 114

Table 2.1: Subjects and number of reviews

e Q1.5: Result quality (1: high, 6: low)
e Q1.6: Effect on understanding the code (1: high, 6: low)
e Q1.7: Effect on collective ownership (1: high, 6: low)

e Q1.8: There are preconditions and limiting factors under which the
application of the applied review method is useful (1: true, 6: false)

The following questions or measures are defined for the comparison (all
1: high, 6: low):

e (Q2.1: Efficiency compared to baseline

o (Q2.2: Effectiveness compared to baseline

e (Q2.3: Rework efficiency compared to baseline
e (Q2.4: Replaceability of baseline

After the design and pre-test with two subjects, the survey was executed
18 months after the begin of the adoption. Each subject answered the survey
individually and had access to all recorded review data and artifacts of the
project.

Notes on validity

Rating (especially comparative ratings) and estimations are always subjec-
tive and are apparently weaker than measured data. Further, the subjects

24

Figure 2.4: Data shows the distribution of code reviews during the develop-
ment period of 18 months

in this study motivated the adoption of the process and may be biased ac-
cording to the results. The findings of this study may be generalized, but
as the related work sections shows, there is not a strongly related research.
However, there is a practical relevance since the applied method is com-
monly used in major open source communities. The authors encourage the
research community to repeat the study, possibly in a different context.

2.5 Results

This section provides the rating and estimations of the survey questions
in the corresponding tables with basic statistical values. In addition, the
textual results are summarized in a coded form (item and count) as a result
of a qualitative analysis. The raw data would exceed the length of this
publication. Textual results for question 1.6 and 1.7 are skipped due to
lower relevance to the original research questions. All study material and
raw result data is available upon request. Please contact the authors. Figure
shows the distribution of reviews during the development period.

2.5.1 Evaluation

’ Question ‘ mean ‘ median ‘ stdev ‘ min ‘ max ‘
Q1.1 1,13 1,00 0,35 1,00 | 2,00
Q1.2 (%) 81,25 82,50 9,45 | 65,00 | 90,00
Q1.3 (%) 5,38 5,00 2,50 1,00 | 10,00
Q1.4 (%) 28,21 30,00 12,81 | 10,00 | 50,00

QL5 1,75 2,00 0,71 | 1,00 | 3,00
QL6 1,50 1,00 0,76 | 1,00 | 3,00
QL.7 2,00 2,00 0,03 | 1,00 | 3,00
QL8 1,63 1,50 0,74 | 1,00 | 3,00

Table 2.2: Evaluation results

The following coded textual results are provided for question 1.1:

e Low overhead for preparation and execution (4)

25

Short turnaround time (3)

High review coverage/depht achievable (2)

Helps to check for conformance to development standards (1)

Supports knowledge sharing/distribution (1)

Prevents personal exhaustion during review (1)

e Results in even workload distribution within the team (1)

e Aligned with agile principles (1)

The following coded textual results are provided for question 1.8:

e (Qualification of reviewers should be high and evenly distributed within
the team (4)

e Specific regulations, industry standards and law e.g. for safety-critical
software may restrict the application (2)

e Feature-driven development process and proper development infras-
tructure (2)

e Reviewer needs the have initial /prior knowledge of codebase (1)
e Application should be short-cycled (1)
e Advantageous for less complex projects, where team discussion is less

required (1)

2.5.2 Comparison

’ Question ‘ mean ‘ median ‘ stdev ‘ min ‘ max ‘

Q2.1 1,75 2,00 0,71 | 1,00 | 3,00
Q2.2 2,50 2,50 1,20 | 1,00 | 4,00
Q2.3 2.00 1,50 0,41 | 1,00 | 5,00
Q2.4 2.00 1,50 0,41 | 1,00 | 5,00

Table 2.3: Comparison results (all rated 1: high, 6: low)

The following coded textual results are provided for question 2.1:

e With DCR there is less overhead for execution (5)

26

With DCR there is less overhead for preparation (3)

e DCR is more flexible in application, because it is asynchronous (2)

With DCR a higher coverage is achievable with less effort (2)

With DCR there is less overhead for documentation (1)

With walkthroughs there is less code to review, because reviewing all
changes (in sum) is more volume than only finished items (1)

The following coded textual results are provided for question 2.2:

e DCR more effective, because scope of each review is smaller (4)

DCR is less effective, because only changes are observed (2)

e DCR more effective, because it is more flexible i.e. reviewer can indi-
vidually focus on error prone parts (1)

No relevant difference (1)

e Team (walkthrough) is more effective than singe reviewer (1)

The following coded textual results are provided for question 2.3:

e DCR rework is more efficient, because of reduced turnaround time (5)

e Smaller scope of DCR results in smaller rework tasks and those are
more efficient in sum (1)

e With DCR due to the faster feedback similar issues can be prevented

(1)

e DCR rework is less effective because inline comments may not be suf-
ficient to communicate review result (1)

The following coded textual results are provided for question 2.4:

e Different scope, strengths and weaknesses: reasonable application for
both methods (4)

e Replaceable because comparable and more efficient (3)

e Limited practical applicability of baseline due to high overhead and
thus (even if not exactly comparable) DCR are an alternative (2)

27

2.6 Analysis

. In this section we interpret and discuss the findings from the data section
in the context of the two research questions: 1. Evaluation: How useful
and appropriate is the applied code review method in this context? And
2. Comparison: How does the applied code review method compare to the
baseline?

2.6.1 Evaluation

The result from Q1.1 shows that the application was appropriate and useful.
This was not surprising since the development team followed the process over
the whole development period even if the team was authorized to change the
process at any time. The main factor seems to be a good cost/benefit ratio
of the applied code reviews and the developer’s preference to smaller work
items. The results show that the applied process helps to understand the
code and supports the concept of collective ownership (Q1.6 and Q1.7) The
estimated review coverage of code (Q1.2) is above 80 percent which would
be a sufficient or even desired value in most settings. In comparison to that
the personal effort was estimated to be around 5 percent of the developers
overall effort (Q1.3). This value is also very consistent with the time track-
ing data. This value seems very low, but even in more formal environments
the code reviews make only a fraction of the developers effort. Together
with the high coverage value a good cost/benefit ratio is given. One of the
most relevant metrics in code reviews is the effectiveness (Percentage issues
found by review compared to all issues or likelihood to find an issue). Lit-
erature reports that the typical effectiveness is about 57 percent [14]. Even
if the result quality was considered to be very good (Q1.5) and the compar-
ative rating to the baseline was positive (Q2.2), the estimated effectiveness
of this application is only about a half of what literature predicts. The es-
timated value of around 30 percent was spot-testet against recorded issue
data and showed to be valid. The most obvious reason seems to be a lower
performance of the applied method compared to the state-of-the-art. But as
the applied method is a very lightweight process it seems still to be a very
reasonable cost/benefit ratio. There are several other factors that might
have an influence on the effectiveness such as the examples below. It can be
assumed that the effectiveness is context dependent to a certain degree.

e All other assurance techniques (such as integration testing and func-
tional testing) are also performed very short-cycled, therefor the code
reviews had a stronger focus on issues that may not be revield by other

28

techniques such as compliance to coding standards and maintainability
of code.

e The operational complexity in this case was especially high, because
the developed AODB system is operated in parallel with the legacy
AODB to provide an incremental migration path for the system inter-
faces. A significant share of such (hard to test before) issues related
to that factor was found in operations.

The application is generally universal and motivated by but not limited to
the application domain. Yet, several limiting factors and/or preconditions
are stated in the results. The application mainly depends on a high qualifi-
cation of the reviewers.

2.6.2 Comparison

The results from Q2.1 show that the applied method is clearly highly efficient
mainly because of a low overhead for preparation and execution. Also the
rework efficiency (Q2.3) is rated much better for DCR, because of typically
a very short turnaround time (= time between original development and
review). It is commonly accepted that the shorter the time between the
error injection and the error identification, the less is the removal effort [5].

The effectiveness (Q2.2) though is more questionable and yield a more
differentiated result. Even if the result very positive on average, there is a
larger range and the qualitative analysis contains facts that support the base-
line method in being more effective. Most frequently it is stated that DCR
is more effective because of smaller review units. Still very valid counter-
arguments are that reviewing only the changes may not reveal some errors.
Also a team review (as in the baseline) has a very positive collaborative
effect and would be more effective most probably for complex review items.

The baseline method is considered to be substitutable with DCR (Q2.4)
to a certain degree. If the application of a more formal code review method
is not feasible (e.g. due to time and resource constraints) the application
of a more lightweight method may still be reasonable and beneficial. In
general different strengths and weaknesses of both approaches are stated in
several questions of the survey and this supports the finding that there is a
reasonable application for both methods.

29

2.7 Summary

This report shows the successful application of continuous, asynchronous
and distributed code reviews in an industrial context. The applied method
was evaluated by the development team and found be be very useful and
efficient. Especially the low overhead of the process and the small size of
each review item are major factors for the developer acceptance. Also the
positive effect for understanding the code and the support for the concept of
collective ownership has been shown. The effectiveness has not reached the
typical values found in literature. The causes may be investigated further.
Still a positive cost/benefit ratio is given.

The comparative rating against the baseline model showed that the
preparation and execution effort was rated better with the applied method.
Especially the rework effort was considered to be lower because of the short
turnaround time. Since both compared approaches are very different in the
way the code is examined (individual vs. team) or read (deltas vs. structural
item) we conclude that both methods are less comparable in for effective-
ness and propose to use a combination where DCR is used to archieve a
high review coverage at a relatively low cost and more formal approaches
are used relative to the criticality and complexity of one carefully selected
review item.

The results from this work are used to the elaborate the process and
the tools (as we are actively participating in tool development [§]). Fur-
ther investigations may include empirical studies on further questions e.g.
the application in maintenance processes eventually in a more controlled
environment.

30

Bibliography

1]
2]

IEEE standard for software reviews. Technical report, 1998.

Mario Bernhart, Andreas Mauczka, and Thomas Grechenig. Adopting
code reviews for agile software development. In Proceedings of the 2010
Agile Conference, AGILE ’10, pages 44-47, Washington, DC, USA,
2010. IEEE Computer Society.

Mario Bernhart, Stefan Reiterer, Kilian Matt, Andreas Mauczka, and
Thomas Grechenig. A task-based code review process and tool to com-
ply with the do-278/ed-109 standard for air traffic managment software
development: An industrial case study. In Taghi M. Khoshgoftaar, ed-
itor, HASFE, pages 182-187. IEEE Computer Society, 2011.

J. Bisbal, D. Lawless, Bing Wu, and J. Grimson. Legacy information
systems: issues and directions. 16(5):103-111, 1999.

Barry W. Boehm. Software engineering economics. Software Engineer-
ing, IEEE Transactions on, SE-10(1):4 —21, jan. 1984.

G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tramontana. Migrat-
ing interactive legacy systems to web services. In Proc. 10th European
Conf. Software Maintenance and Reengineering CSMR 2006, 2006.

Marcus Ciolkowski, Oliver Laitenberger, and Stefan Biffl. Software
reviews: The state of the practice. IEEE Software, 20(6):46-51, 2003.

Eclipse Mylyn Reviews Gerrit Connector.
http://www.eclipse.org/reviews/gerrit/. Accessed: 2012-10-01.

Radio Technical Commission for Aeronautics (RTCA) and the Euro-
pean Organization for Civil Aviation Equipment (EUROCAE). DO-
278/ED-109: Guidelines for Communication, Navigation, Surveillance,

31

and Air Traffic Management (CNS/ATM) Systems Software Integrity
Assurance, 2002.

Gerrit in the Adroid Open Source Project.
http://source.android.com/source/life-of-a-patch.html. Accessed:
2010-11-09.

Mik Kersten and Gail C. Murphy. Using task context to improve pro-
grammer productivity. In Michal Young and Premkumar T. Devanbu,
editors, SIGSOFT FSE, pages 1-11. ACM, 2006.

R. Khadka, G. Reijnders, A. Saeidi, S. Jansen, and J. Hage. A method
engineering based legacy to soa migration method. In Proc. 27th IEEE
Int Software Maintenance (ICSM) Conf, pages 163172, 2011.

Sami Kollanus and Jussi Koskinen. Survey of software inspection re-
search: 1991-2005. Computer science and information systems reports,
working papers (wp-40), University of Jyvéskyld, Jyvéskyld, Finland,
2007.

Oliver Laitenberger and Jean-Marc DeBaud. An encompassing life cycle
centric survey of software inspection. Journal of Systems and Software,
50(1):5-31, 2000.

Bertrand Meyer. Design and code reviews in the age of the internet.
Commun. ACM, 51(9):66-71, 2008.

Jason Remillard. Source code review systems. IEEE Software, 22(1):74—
77, 2005.

H. Sneed. Integrating legacy software into a service oriented architec-
ture. In Proc. 10th European Conf. Software Maintenance and Reengi-
neering CSMR 2006, 2006.

H. Sneed. Migrating from cobol to java. In Proc. IEEE Int Software
Maintenance (ICSM) Conf, pages 1-7, 2010.

Michael Stein, John Riedl, Séren J. Harner, and Vahid Mashayekhi. A
case study of distributed, asynchronous software inspection. In ICSE,
pages 107-117, 1997.

Stefan Strobl, Mario Bernhart, Thomas Grechenig, and Wolfgang
Kleinert. Digging deep: Software reengineering supported by database
reverse engineering of a system with 30+ years of legacy. In ICSM,
pages 407-410, 2009.

32

[21] Y. Zou. Quality driven software migration of procedural code to object-
oriented design. In Proc. 21st IEEE Int. Conf. ICSM’05 Software Main-
tenance, pages 709-713, 2005.

33

	Incremental Reengineering and Migration of a 40 Year Old Airport Operations System
	Introduction
	Problem and Constraints

	Strategy for an incremental migration
	Step 1: Flight Data Interfaces
	Step 2: Service Interfaces
	Step 3: Master AODB

	Re-Engineering Process
	Planning
	Analysis
	User interface design
	Technical design

	Verification and Validation
	Conclusions

	Applying Continuous Code Reviews in Airport Operations Software
	Introduction
	Related work
	Research question
	Methodology
	Code reviews
	Study methodology

	Results
	Evaluation
	Comparison

	Analysis
	Evaluation
	Comparison

	Summary

