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Preface

Dielectric elastomer transducers consist of elastomer membranes sandwiched between
compliant electrodes and can be considered as soft deformable capacitors. When voltage is
applied, the membrane thins down and expands in its area. As such, dielectric elastomers are
commonly used as actuators. On the other hand, a reduction of tensile force on a pre-stretched
and pre-charged dielectric elastomer membrane under open circuit conditions increases voltage,
allowing electric charges to be boosted from a low voltage source to a high voltage reservoir. In

this case, dielectric elastomers are used as generators:
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Working principle of dielectric elastomer transducers

As stated in the research proposal, the main focus of my research visit to Harvard
University should be on the modeling of electrode-free charge controlled actuators. The primary
research paper about this work was already sent for review at the time the research visit in the
USA should start. The second part of the research on electrode-free actuators was planned to
start after the final publication of the first paper. Due to the copious reviewing and revision time
in the renowned PNAS, the journal of the National Academy of Sciences of the United States of
America, the paper was not published until March 2010. (open access publication; displayed in

Appendix 2)



The refocusing of my research assignment was not difficult, as the group around
Professor Zhigang Suo started to work on dielectric elastomer generators, the second branch of
possible applications of dielectric elastomer transducers, besides actuator applications. The
results of this collaboration on “Dielectric Elastomer Generators: How much energy can be
converted?” shall be the main part of this research report. The paper is planned to be published
in a focused section on “Electroactive Polymer Mechatronics” of the “IEEE/ASME
TRANSACTIONS ON MECHATRONICS” (Paper submission April 1, 2010; final publication
after peer review process: February 2011; the “Scientific paper” part of this research report is
subject to copyright conditions of IEEE/ASME and should not be published elsewhere). In the
“Acknowledgement” section of this paper the Austrian Marshall Plan Foundation is mentioned:
“...Additionally the work was supported by the Austrian Science Fund and by the Austrian
Marshall Plan Foundation, through the sponsoring of a half-year visit of C Keplinger to
Harvard University...”

The work on dielectric elastomer generators was additionally presented at the 2010 MRS
spring meeting (April 5-9, 2010) of the Materials Research Society in San Francisco, California,
USA. The talk on the “Aptitude of Dielectric Elastomer Transducers for Energy Harvesting
Generators” combined our theoretical findings about dielectric elastomer generators with recent
findings from an experiment in our JKU Linz laboratory. The PowerPoint slides of the oral
presentation are displayed in Appendix 1. The logo of the Austrian Marshall Plan Foundation
was presented in the title slide.

Finally, I want to thank the Austrian Marshall Plan Foundation for sponsoring my six
month research visit to Harvard University. In compliance with the spirit of the Marshall Plan, I
was able to strengthen the fruitful collaboration between the US group around Professor Zhigang
Suo and the Austrian group around Professor Siegfried Bauer. The publication of the first joint

scientific paper is in process.



Scientific paper

Dielectric Elastomer Generators: How much energy can be converted?
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Abstract

Dielectric elastomer can serve as generators to convert mechanical energy into electrical energy.
While energy of conversion between 0.1 mJ/g and 400 mJ/g have been reported, it is not known
if these figures are limited by fundamental principles, or if there is room for improvement. One
may even wish to select and design materials specifically for dielectric elastomer generators but
currently, such efforts are largely made by performing experiments. This paper develops a
theoretical approach that plots limit states on work-conjugate operation maps, and computes
the maximum energy of conversion. The limit states are defined by well-established
mechanisms of failure. The effect of varying material parameters on the energy of conversion is
studied. Simple formulas are proposed to guide the selection and design of elastomers for
generators. It is found that natural rubber outperforms VHB elastomer as a generator at strains
less than 15%. Furthermore, a moderately stiff elastomer can convert energy at 1.0 J/g by using

a strain of operation of 100%.
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1. Introduction

A dielectric elastomer transducer consists of an elastomer membrane sandwiched
between compliant electrodes, and can be considered as a deformable capacitor [1,2]. When a
voltage is applied, the membrane thins down and expands in its area. The elastomer is
commonly used as an actuator, converting electrical energy into mechanical energy [2—-8]. On
the other hand, for a pre-stretched and pre-charged membrane under open circuit conditions, a
reduction of tensile force thickens the membrane and increases the voltage, boosting electric
charges from a low-voltage source to a high-voltage reservoir. In this case, the elastomer is used
as a generator, converting mechanical energy to electrical energy [9,10].

Dielectric elastomer generators (DEGs) are promising for small-scale energy harvesting
[11—13], as well as for large-scale energy generation [11]. They are ideally suited to harvest the
vast and concentrated amount of energy stored in ocean waves due to impedance match, low
cost, and reliability. Elastomers are at least 7 times lighter than piezoceramics and
ferromagnets. They are highly stretchable, which enables excellent force-coupling. Research
has shown that the electromechanical conversion efficiency is high [14]. Being a polymer
material, dielectric elastomers do not rust under the corrosive action of ocean sprays. Finally,
elastomer materials like natural vulcanized rubber and polyacrylate VHB 3M™ elastomers are
widely available and low in cost. All these advantages may translate to efficient generators that
are light-weight, cost-efficient, reliable and low in maintenance.

While dielectric elastomer actuators (DEAs) are extensively studied, research on its
counterpart as a generator is sparse. A limited number of experiments were conducted on
dielectric elastomer generators [9,11—13], with strain of operation often restricted to less than
100%. It is well-known that typical elastomers exhibit strains in excess of 500% [2,15—19]. In
one particular experiment, a very high energy of conversion of 0.4 J/g has been given, without
specification of the experimental conditions, preventing the repetition of the experiment.
Nevertheless, the experiment shows the large potential of dielectric elastomer generators,
possibly exceeding energy of conversion of piezoceramics and electrostrictive polymers by an
order of magnitude [20-22]. Even under moderate strain conditions, preferable when reliability
is a concern, elastomer generators may potentially be very attractive alternatives to
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piezoceramics and electrostrictive polymers. It will be interesting, therefore, to investigate how
dielectric elastomer generators perform in the whole strain region, from low strains preferable
for long time, reliable operation to high strains, outlining the full potential and also the limits of
the technique. Material models that capture the full range of elastomer stress-strain behavior
[15,16], including strain-stiffening at high stretches where the polymer chains approach their
extension limit, will enable us to determine the potential of the technology from low strain to
high strain and to determine the limits for the energy of conversion.

Based on a previous study [10], we present a theoretical framework to define the safe
operation regime for a given dielectric elastomer. This framework is based on the consideration
of limit states that will lead to irrecoverable failure of the elastomer. These limit states are
defined as a set of four well-known failure mechanisms for dielectric elastomer membranes —
electrical breakdown, electromechanical instability (or pull-in instability), loss of tension and
material rupture [10,18,23,24]. While the mechanisms for electromechanical instability, loss of
tension and material rupture are well-understood [18,24,25], the mechanisms leading to
electrical breakdown are complex, and remain poorly-understood. In our analysis, we shall
assume that the dielectric elastomer undergoes breakdown when the true electric field attains a
critical magnitude Egs, known as the dielectric strength. It has been shown experimentally that
Egsp can significantly dependent on stretch for VHB elastomers [17,18]. Imagine that one is able
to operate dielectric elastomer generators along these limit states, the amount of energy that can
be converted is at the theoretical maximum. These limit states are plotted on work conjugate
force-displacement, and voltage-charge planes, which enable fast and easy computation of the
energy of conversion. This framework will not be limited to specific material models, therefore
more detailed models can be used at any time when it is necessary to consider specific aspects
not covered by the models used at the present stage. New experimental findings can also be
incorporated.

We shall first use our model to compare the energy conversion performance between the
commonly used VHB elastomer and natural rubber. All the necessary mechanical material
properties are obtained from fitting experimental stress-strain curves with the Arruda-Boyce

model [16], which is based on the statistical physics of macromolecules, including the strain-
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stiffening part in the vicinity of the polymer chain extension limit. The maximum possible
stretch for the elastomer is therefore determined by the extension limit of polymer chains. The
electrical properties are taken from experimental results for VHB elastomer, where the dielectric
strength is fitted to a phenomenological model, incorporating the fact that the dielectric
strength is enhanced by stretching. The energy conversion performance for the entire range of
operational stretch, from very small strains (= 1%) up to the maximum possible stretch at the
extension limit, was compared for both materials. Between strains of operation of 1% and 500%,
we found that the maximum energy of conversion spans at least two orders of magnitude.
Following this, a study on the effect of varying characteristic mechanical and electrical

material parameters on the energy of conversion is conducted. We select the characteristic
stiffness ¢ and the Maxwell stress at electrical breakdown €E7;; as the material parameters to be

varied. A linear model for small strain operation and a general non-linear model for large
stretch operation are used to establish equations that predict the maximum energy of
conversion. These equations allow quick and reasonably accurate estimations of the maximum
energy of conversion once the relevant material parameters are known, which could aid in the

selection and design of new dielectric elastomer generator materials.

2. Limit State Analysis for a Dielectric Elastomer

Consider a dielectric elastomer sandwiched between two compliant electrodes as shown
in Fig. 1a. Subject to a voltage through its thickness and mechanical loading in the planar
directions, a dielectric elastomer thins down and expands in area (Fig. 1b). A prior study has
shown that equal-biaxial stretching converts more energy at a lower input voltage as compared
to uniaxial stretching [26], as such; we shall adopt this mode of stretching in our analysis.
Assuming incompressibility, Fig. 1 shows the dimensions of a dielectric elastomer subject to
equal-biaxial load at the reference (Fig. 1a) and the activated states (Fig. 1b). It is assumed that
the elastomer is a hyperelastic material, and can be satisfactorily described by a free-energy

function W(1), with its stress given by the equations-of-state. Dissipative effects like



viscoelasticity and dielectric relaxation are ignored in our analysis. In this section, we propose a

limit state model to compute the maximum energy of conversion for a dielectric elastomer.
Subject to the mechanical and electrical load configuration as shown in Fig. 1b, the

equation-of-state  for the elastomer at the activated state is given as:

0c-0,= (4/2)0W/04)=G(A1), where o is the equal-biaxial true stress in each planar direction,
0, is the true stress in the thickness direction and G(1) is the stress-strain relationship for the

elastomer. Assuming liquid-like dielectric response and ignoring the effects of dielectric
relaxation, the voltage applies an equivalent compressive mechanical stress in the thickness
direction, known as the Maxwell stress [1,27]. Adopting the expression of Maxwell stress given

in [27], the following force-balance and capacitive relations can be written:

P o\
_LH + S(ﬁj A= F(/’{/) (la)
Q_ 2
I 8( Hjﬂ“ (1b)

where P, 4 and ® are mechanical force, stretch and voltage respectively, as defined in Fig. 1, Q is

the magnitude of charge on each electrode due to @, £is the dielectric permittivity and e=¢,¢,,
where ¢, is the dielectric constant and &, is the dielectric permittivity of vacuum. F(1) is the
nominal stress-strain relationship, and AF(1)=G(1). There are four field variables in equation
(1): P,4,®,Q. One may choose to prescribe any two of the four field variables and, assuming
that F (/1) is known, solve the other two variables using equation (1). Equation (1) therefore

completely describes the electromechanical response of a dielectric elastomer transducer.

There are numerical limits whereby the four field variables can take. These limits are
either prescribed by the user, or determined by the failure modes of the dielectric elastomer.
Well-known failure modes include electrical breakdown, electromechanical instability, loss of
tension and material rupture [10,18,23,24]. These failure modes define operational limit states

for the dielectric elastomer. By plotting these limit states on work-conjugate planes of P-4 and

®-Q, the energy of conversion per cycle of operation can be computed by an area enclosed by a

-10 -



prescribed cycle on each plane. The limit states define the boundaries of operation. These plots
are termed the operation maps of a dielectric elastomer.

When the elastomer is highly-stretched, the polymer chains could uncoil to a point
where further stretch is not possible without undergoing material failure. One may also choose
to limit the range of operation to modest stretches, in order to improve durability and reliability
of operation. Define the maximum stretch as 4,,,, putting 4=4,_,, in equation (1), we have:

A=A, % =%(ng (2)

Under an exceptionally high electric field, the elastomer will experience electrical
breakdown (EB) [17,21,22]. The electric field that causes breakdown is known as the dielectric
strength. Under an experimental setting, the voltage that causes EB may be sensitive to material
imperfections like voids, inclusions or material inhomogeneities [28]. Experiments have shown
that the observed dielectric strength of polymers may be dependent on various physical
properties like stretch [17,18], small strain thickness [29] and material stiffness [30]. Define the
maximum electric field the elastomer can take before undergoing EB as E;, putting into (1):

- @ -
E=F(ﬂ)—€ﬂ EEB’ EZS(%j EEB (3)

Experiments can be conducted to determine the dielectric strength, and its dependence on
various physical properties. An analytical expression can be selected and optimally-fitted to the
experimental data.

As the voltage is increased, the elastomer reduces in thickness, so that the positive
feedback between a thinner elastomer and a higher true electric field may result in
electromechanical instability (EMI) [23,25,31]. However, it should also be noted that, due to
strain-stiffening of the polymer at large deformation, EMI can be eliminated by prestressing the
elastomer [32]. Mathematical equations for EMI to occur have been established previously [25],

and shall not be repeated here. Differentiating the intensive variables P and &, with respect to

the extensive variables 4 and Q, we have:
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At EMI, we have: 0®/dA=0, and from (4b): 0®/0Q=0. For a fixed P: dP/dA=0. From (4a)
and (1), we have:

i:F(ﬂ)_&a_F 2 _|[Q s 10F % (5)

LH 304’ H I 304
where A in the ®—Q expression can be replaced by Q using (1b).

For a dielectric elastomer membrane, it is desirable to keep the membrane in tension, as
any compressive stress in the planar directions will lead to the formation of wrinkles, which may
cause premature failure. This limiting condition (LT) is given as:

%
P, 2 21(22j A ©6)
LH H &\ L
where A in the ®—Q expression can be replaced by Q using (1b).

Finally, it should be noted that the fundamental thermodynamic stability condition:
0 <(4/2)0W/d1) must always be obeyed. The thermodynamic stability limit is given by the
nominal stress-strain relationship:

p

_ ®_Q_
E_F(ﬂ) at =0 (7)

H I*
The stress-strain relationship can be obtained experimentally, and an analytical function F(1)
can be selected and optimally-fitted to the experimental data.

Equations (2), (3), (5)—(7) collectively define the limit states which the dielectric
elastomer electromechanical transducer can operate in the P-4 and the ®—Q planes. Operating

along these limit states gives an energy conversion cycle that gives the maximum

electromechanical energy of conversion.
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3. Material Models
For a given dielectric elastomer, the stress-strain relationship, and the observed
dielectric strength can be obtained experimentally [15—-18]. EMI and LT are analytically

obtained from equations (5) and (6). 4,,, can either be prescribed, or simply allow the material

X

to stretch up to the rupture stretch. Therefore, to have a complete analytical representation of

the limit states, suitable material models for F (/l) and E,, in equations (7) and (3) must be

established.
A key objective of this work is to study the effect of basic hyperelastic material properties

like small strain shear modulus g, 4., and electrical properties like dielectric constant & and
dielectric strength E,, has on the maximum energy of conversion of a dielectric elastomer
generator. To that end, we have selected a model for F(1) that describes the hyperelastic

behavior based on the macromolecular network structure of the elastomer. The entire range of
stretch, including the strain-stiffening at high stretches is covered by the chosen model. This
enables us to at least have a qualitative insight to the stress levels required if one desires to
operate at high stretches, and also to study the significance of the stiffening part on the energy
conversion of a dielectric elastomer generator.

The Arruda-Boyce model [16] describes the molecular structure of a rubber-like material
with eight chains oriented in space, where the deformation behavior of each individual chain is
defined by Langevin chain statistics [33]. For the statistical mechanics description, a single
chain is defined as the part of a polymer chain between two successive chemical crosslinks. This
chain part is modeled as a chain of n freely-jointed, rigid, statistical links of equal length, the so
called “Kuhn length”. This length spans over a specific number of chemical bonds along the
polymer chain, depending on the material specific properties of these chemical bonds, like
rotation angle around single bonds and the ratio between double and single bonds. In any case
the Kuhn length has to be long enough to justify the assumption of freely-jointed links.

The free-energy density of the elastomer is given as [15,16,33]:

_ i 4
W_Nan(tanhg 1+log—sinh§’J (8)
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where kT is the temperature in the unit of energy, ¢ is the normalized force in each chain, and

N is the number of chains per unit volume. N is also proportional to the number of chemical
crosslinks. Based on Kuhn’s Langevin statistics [33], the stretch on each polymer chain A is

related to the normalized force ¢ as:

1 1

A= \/;( tanh _ZJ (9)

where n is the number of statistical links in the chain. For an elastomer subject to principal

stretches A, 4, and A,, Arruda and Boyce [16] proposed that:

AL+ 25+ A;
A= |————= (10a)
3

In the limit { — 0 the neo-Hookean model is recovered, with the small strain shear modulus
u=NkT .
For an incompressible elastomer subject to equal-biaxial stretch, equation (10a) becomes:

2 94
A= 24 AT (10b)
3

Based on the random-walk statistics [15,16,33], the polymer chain attains its fully-stretched
length when A = Jn . From (10b), this imposes a limit stretch ( 4;,,, ) by which the elastomer can
deform, given as:

2A5m + A5 =31 (11)
From equation (9), it could be seen that when A — Jn , { > . Hence, given n, the maximum

possible stretch can be solved from equation (11).

Equations (8)—(10) define a free-energy function W(/i) for an elastomer subject to
equal-biaxial stretch. Experiments often measure the nominal stress (P/LH ), instead of the
true stress ( PA/LH ) to plot the stress-strain data [15—-18]. Following this, we define the
nominal stress-strain relation F(1), given by the equation-of-state: F(1)=(1/2)0W/04). From

(8)—(10), we have:
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A

F(A)=pué\n (12)

_15
3A
Equation (12) establishes an analytical function for F (/1) in equations (1a) and (5)—(7).

From (12), the shape of the stress-strain relationship is governed by the number of
statistical links n in each chain, and the small strain shear modulus & The latter is proportional
to the density of chemical crosslinks N, and the ambient temperature 7. Fig. 2 shows the effects
n and u have on the stress-strain behavior of an elastomer. In general, n controls the limit
stretch and u controls the amount of load required to deform the elastomer to a specific stretch.
Fig. 3a shows the values for n and x# when the material model was optimally-fitted to
experimental data of natural rubber (NR) [15,16], and VHB acrylic elastomers (VHB) [18]. Two
observations can be made from Fig. 3a. First, the material properties n and u are not
significantly different when fitted to uniaxial and equal-biaxial data for NR. Second, the
maximum stretches for both VHB and NR under uniaxial stretch are similar, while the small
strain shear stiffness for VHB is about half-order magnitude smaller than NR. The first
observation allows us to transplant uniaxial stretch data for use in an equal-biaxial stretch
configuration, and make good qualitative conclusions on the equal-biaxial stress-strain behavior.
The second observation allows us to understand the energy conversion performance between a
soft elastomer (VHB) and a stiff elastomer (NR).

For an elastomer with a specific thickness, the dielectric elastomer experiences electrical

breakdown when its dielectric strength (Egs) is reached. We may write: E,, =®,, /h. E,, is

usually expressed as a constant, and h is the thickness at breakdown. But experimental data on
VHB dielectric elastomer shows that Ezs may be dependent on stretch [17,18]. The experimental

data are fit to:

Epp (/1): [EEB (/1 = 1)]/7~R (13)
where E ;(1=1) is the electric field required to cause electrical breakdown when the stretch is
fixed at 41=1.0, and R is the degree of sensitivity of dielectric strength towards stretch. R=0

implies that the dielectric strength is independent of stretch. Equation (13) establishes an

analytical function for equation (3). Fig. 3b shows the values for E ;(1=1) and R when
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equation (13) was optimally-fitted to experimental data for VHB elastomer with H =1.0 mm
[17,18]. The mechanism behind stretch-dependent dielectric strength is not well-understood.
Hence, the model that we proposed here is phenomenological rather than physical.

Putting equations (11)—(13) into equations (2), (3), (5)—(7), we can now plot the limit
states on work-conjugate P-4 and ®—Q planes. The maximum energy of conversion for a
dielectric elastomer can be computed from these plots.

In this section, we have described a simple formulation for the stress-strain relationship,
based on the molecular picture of an elastomer, and the observed dielectric strength of a
dielectric elastomer. This description allows useful information to be extracted for material
scientists and engineers to understand how operational and material parameters affect the
maximum energy of conversion. Theoretically-predicted mechanical material parameters for
the single chain deformability n and the small strain shear modulus # can be reproduced
experimentally by clearly-defined concepts. The parameter n is influenced by the Kuhn length
of specific polymer backbones and additionally by the average chain length, which itself is
proportional to the density of chemical crosslinks. The parameter x is proportional to the chain
density and accordingly, the chemical crosslink density N, and the ambient temperature T.
Consequently, under isothermal conditions, changing the crosslink density influences both the
single chain deformability n and the small strain shear modulus x Nevertheless it is still
possible to change n independently of ¢ by varying the stiffness of the polymer backbone what
results in a variation of the Kuhn length. Furthermore, the addition of side chains, which are
crosslinked to the polymer backbone but free on the other side, fills up the space in the polymer
network, influencing the number of configuration states for single chains. Moreover elastomers
of interpenetrating networks [34—38] may be considered for designing materials with desirable
stress strain characteristics. In the subsequent sections, we shall compare the energy
conversion performance of VHB and natural rubber as dielectric elastomer generators, and

explore how different material parameters like 1, & and E,, affect the conversion performance.
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4. Energy of Conversion for VHB and Natural Rubber

In this section, we select two distinct elastomers — VHB elastomer and natural rubber.
We will use our model to compute the maximum energy of conversion for both materials as
dielectric elastomer generators.

In the past decade, VHB elastomer has been extensively used in actuators and generators
[2—13,38]. As a dielectric elastomer generator, it has been experimentally claimed that a VHB
elastomer converts energy at a specific energy of 0.4 J/g, with the potential capability of
harvesting energy at 1.0 J/g [9]. On the other hand, natural rubber is the most primitive form of
elastomer, and it is abundant and cheap. No research was performed on natural rubber used as
a generator.

Using existing experimental data for VHB elastomer under fast mechanical uniaxial
loading (strain rate = 1.8 s*) [18], natural rubber under uniaxial and equal-biaxial loading
[15,16], and the stretch-dependent dielectric strength of a 1.omm thick VHB elastomer [17,18],
we have determined the material parameters for equations (12) and (13), based on least-squares

fitting (Fig. 3). The dielectric constants for VHB elastomer and natural rubber are ¢, =4.5 [39]
and &, =3.0 [40], respectively, and are assumed to be insensitive to stretch. These fitted

parameters were in excellent agreement with works performed by Plante [18] for VHB, and
Arruda and Boyce [18] for natural rubber (NR). Due to the absence of experimental data for the
stress-strain relationship for VHB under equal-biaxial loading, and the observed dielectric
strength for NR, we have transplanted the material parameters from experimental data fits of
uniaxial VHB stress-strain curves and used them for equal-biaxial stress-strain conditions. Also
we used the observed dielectric strength of VHB for NR. Fig. 3a shows that the material
parameters n and g were not significantly different when fitted to both uniaxial and biaxial
stretch data for NR, and that polymers in general have dielectric strengths between 107 and 108
V/m [38,40]. Therefore, we expect the transplanted parameters will not deviate significantly
from an actual set of experimental data when it becomes available. Nevertheless, we have

illustrated that equations (12) and (13) provided excellent fits to the existing experimental data
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in Fig. 3. Any new set of experimental data available can be easily fitted with optimal
parameters.

Under equal-biaxial loading, the limit states for VHB and NR were plotted in Fig. 4. In
this figure, the dielectric elastomer generator was assumed to be stretched up to near limiting
stretch in its operation. The shaded regions in Fig. 4 define the allowable states that the
dielectric elastomer electromechanical transducer can operate without experiencing failure. By
operating along the limit states, the theoretical maximum energy of conversion can be realized
for the dielectric elastomer generator. As a generator, the cycle is described by a clockwise lap
around the shaded region on the P—A plane, and an anti-clockwise lap around the shaded region
on the ®—-Q plane. The theoretical limit for energy of conversion is given by the area bounded
by the allowable states on the work-conjugate P—A plane, or the ®—Q plane. For equal-biaxial
stress, neglecting dissipative effects, the shaded area on the ®—Q plane is two times of that in
the P-4 plane. For the VHB dielectric elastomer generator, the theoretical limit for maximum
energy of conversion is 1.7 J/g (Fig. 4a), while that for NR is comparable, at 1.3 J/g (Fig. 4b).
The voltage amplification when a pre-stretched and pre-charged elastomer is relaxed under the

open-circuit condition is given by the height of the allowable region on the ®—Q plane at various
nominal charge densities (Q/L* ). When the elastomers are highly-stretched, it is possible to

achieve a voltage amplification of more than 10 times when it is relaxed at a low charge
condition. Voltage amplification reduces with increasing charge due to higher input voltage.
This is because, with more charges on the electrodes, electrical breakdown will occur after a
smaller amount of relaxation. There exists an optimal input voltage that maximizes the amount
of energy that can be converted. One may design practical cycles within the allowable states,
and determine the optimal level of input voltage that maximizes the energy of conversion. This
has already been illustrated in a previous study [10], and shall not be repeated here.

To ensure long-term, reliable operation, one may wish to operate the dielectric elastomer
generators at modest levels of stretch. Fig. 5a shows a schematic of how the shaded area is

affected when A, is reduced. It is well-known that piezoelectric transducers are able to

X

convert energy at a maximum level of 1.0 mJ/g [20,21], subject to a strain of less than 1%.
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Experiments have also been conducted on electrostrictive polymers, subject to strains of about
30%, and converting energy in the region of 10 mJ/g to 20 mJ/g [22]. Recent experiments
conducted on dielectric elastomer generators were subject to maximum strains of about 100%,
with claimed energy of conversion between 50 mJ/g and 400 mJ/g [9,11—13]. Fig. 5b and 5¢
shows the allowable states when the range of operation is limited to 5% and 30% for natural
rubber. At the 5% range, both the stress-strain and voltage-charge response are approximately
linear, and the energy conversion plots resemble that for a piezoelectric generator [20,21]. For
the range of 30%, non-linearity shows up. Comparing Figs. 4b, 5b and 5¢, we observed that the
force P and the charge Q for small and large deformation differ by two or more orders of
magnitude. As expected, the energy of conversion is 2.1 mJ/g and 16.8 mJ/g for 5% and 30%
strain, respectively, which is two to three orders of magnitude smaller from the potential upper
bound, when the dielectric elastomer generator is stretched up to its limit. In the case where the
strain is 5%, the voltage amplification is small (< 50% boost). In the case where the strain is
30%, a voltage amplification up to two times is possible (> 100% boost).

Referring to Fig. 5a, by sweeping 4, line left-to-right on the P-4 plane, or rotating the

same line about the origin of the ®-Q plane, we may compute the maximum energy of
conversion at various levels of operational stretch. Fig. 6 demonstrates the huge variability of
energy conversion for a dielectric elastomer generator, spanning at least 2 orders of magnitude
over the entire spectrum of operating stretch. In Fig. 6, we plot the curves for VHB and natural
rubber (NR). Due to a lack of experimental data for the dielectric strength of NR versus stretch,

NR with similar stretch-dependent dielectric strength as VHB (that is: E ; =30MV/m ,
R=1.13), and NR with stretch-independent dielectric strength, where E ; =30MV/m, are

plotted. For strains smaller than 15%, we can see that NR performs better in terms of energy
conversion compared to VHB. For strains above 15%, the performance of NR is comparable to
VHB if they exhibit similar stretch-dependent dielectric strengths. If the dielectric strength of
NR is not improved by stretching, it performs poorer as compared to VHB. It appears that, in
terms of energy conversion, NR outperforms VHB as a dielectric elastomer generator at small

strains. At high stretches, the relative performance between them remains to be seen, as there
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are currently no experimental data available on the dielectric strength of highly-stretched NR.
To compare with existing technologies, to achieve comparable energy of conversion as
piezoceramics, we need to operate NR at 3% and VHB at 5.5% strain. To achieve that displayed
by electrostrictive polymers, strains between 20% and 30% are required. Exceeding the
operational strain to values above 30% gives an improved figure of merit in comparison to
piezoceramics and electrostrictive polymers. Reliability issues may favor elastomer generators,
even when operated at low strains, being well adapted to be used in off-shore environments.
Finally, it should also be noted that, although NR performs better than VHB at low strains, it is

five times stiffer than VHB, which requires five times more force to stretch (Fig. 4).

5. Exploring Material Parameters on the Energy of Conversion

The previous section illustrated the energy of conversion for dielectric elastomer
generators made from existing materials — VHB and natural rubber. We may then ask: What
effect does material parameters have on the energy of conversion? What are the material
parameters that we can look for in order to improve the amount of energy that can be converted?
We shall explore some answers to these questions in this section.

We shall begin answering these questions by first considering a simple case where the
operation is at small strain. In this case both the stress-strain and voltage-charge relations are
linear (Fig. 5b). Referring to Fig. 5b, we may compute the energy of conversion by evaluating
the shaded area on the P—A plane. The shaded area is bounded by the stress-strain line, the EB

line, the A _,, line, and the LT line. Let e be the strain, where e=A1-1, we may write an

equation for the EB line on Fig. 5b as follows:

P
T - He~€Ers (14)

define e, asthe maximum strain, we write the following equation for energy of conversion:

E2
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bearing in mind that the energy of conversion is two times the shaded area on the P—A plane,
and u is the small strain shear modulus. One may immediately see, from equation (14), that if
eE%; is too large, the internal stress of the dielectric elastomer will be compressive at EB. By
limiting the dielectric elastomer generator to take only tensile stress, there exists an absolute

maximum energy of conversion, given by: Y, =ue . This situation occurs when the
Maxwell stress at electrical breakdown (€E %) is so large that the material always loses tension

before it undergoes electrical breakdown (&€E;; > we, .. ). Hence, when the dielectric elastomer
generator is operating within the linear range, two types of materials (Types A & B) can be

identified. Type A is a dielectric elastomer with small ¢E%; such that ¢éE;; <ue, . . For the

type A material, Y, . increases linearly with e and saturates to 2¢E;ze . at high 4. Type B

max ? max
is a dielectric elastomer with large €E%,; such that €E;; > pe, ... For this type of material, Y.
increases linearly with x4, and quadratically with e . It appears that, for operation in the small
strain region, a stiff Type B elastomer is preferred.

For large deformation, we assume an arbitrary non-linear function F(1) that represents

the nominal stress-strain curve. One form for F(1) was already given in equation (12).

Assuming that the elastomer is sufficiently stiff so that EMT is averted at all levels of stretch (for

instance Fig. 4b and Fig. 5¢), we may write:

10 ﬂmax —
Y, =2IF(2)d2+2 I Mdg (16)
i LH

1
where A, is the stretch whereby the EB or EMI line crosses the LT line on the P-4 plane,

whichever is smaller. Physically, 4, is the critical stretch in a freely-expanding elastomer under

an increasing voltage that corresponds to either the onset of EMI for a soft elastomer, or EB for
a stiff elastomer. Based on previous studies, for a soft elastomer, EMI usually occurs in the

vicinity of 4, =1.3 [23,27]. Assuming that the elastomer undergoes irrecoverable breakdown

when EMI occurs, this imposes a maximum for A, at 1.3. Equation (12) suggests that F(1) may
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take the following form: F(1)=uf(1), where f(1) is the dimensionless nominal stress-strain

curve. Substituting (3) and (13) into (16), we have:

Ao

ForR = 0: Y, .. =2U j fA)dA+2eE2, log[ﬂ/‘{i‘J (172)
A /12R _/12R

For R > o: Y, . = 2ujf(ﬂ)dﬂ+ elEz(A=1)) [%J (17b)

For a soft elastomer such that EMI occurs over a specific range of stretch, the expression for
Y.... becomes very complex, and shall not be derived here. But as one may observe from Fig. 4a,
EMI simply cuts out a portion of the shaded area otherwise bounded by the EB boundary in a
soft elastomer. In this case, equation (17) will over-estimate Y, . For a very soft elastomer,
EMI will cut out a significant portion of the shaded area. For such an elastomer, the full
potential of its dielectric properties cannot be realized, as EMI always causes premature failure
at low stretches. To obtain Y, for such elastomers, numerical methods must be used to
compute the shaded area.

Assuming that 4, >> A4, , the first term on the right-hand-side becomes negligible.

Equation (17) suggests that Y, again varies with €E3;. For an elastomer with its dielectric

nax ). For an elastomer with

strength independent of stretch (R=0), Y, .. increases with log(4

its dielectric strength that is enhanced by stretch (R>0), Y, .. increases approximately with

12 R

max

/ R. In both cases, if the range of operation is in the high stretch region, the energy of

conversion (Y,,.) depends on the Maxwell stress at electrical breakdown (&E;;). Assuming

that the mechanical stiffness (x) is sufficient such that the elastomer always fail by EB, it will
play little or no part in enhancing Y, ... One may now conclude that ¢E;; plays a crucial part in

determining Y., in both the small strain and high stretch regions. We shall therefore explore

the effects of varying zand ¢E;z; on Y, .

Fig. 7 shows the effect of varying small strain shear stiffness ¢ on the maximum energy of

conversion Y, . In this plot, €E%; is assumed to be fixed, and do not vary with stretch. For the
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smaller value of ¢E}; =0.024 MPa (Fig. 7a), taken from the properties of natural rubber, Y,
saturates at small strains of operation at high g, and Y, can no longer be further increased
beyond x4 =100MPa for the entire spectrum of strain of operation. Therefore, natural rubber

appears to be at an optimal stiffness for energy conversion when operating at strains > 100%.

For small strain operation < 100%, marginal gains in Y, can be achieved with a stiffer

material. The expected theoretical maximum energy of conversion for natural rubber is
therefore 100 mJ/g. So are there better candidates than natural rubber for energy conversion?

Based on existing experimental data, the Maxwell stress at electrical breakdown for isoprene

natural rubber was measured to be €E};; = 0.11 MPa, and natural muscle gives €E;; =0.35 MPa
[38]. Hence, if eE%; can be increased to ten times that of natural rubber, that is:

eE;p =0.24MPa (Fig. 7b), Y,.. is observed to increase about an order of magnitude if

ax

4>1.0MPa. Y . remains relatively unchanged for the soft elastomer ( # =0.05MPa) at strain

of operation < 20%, as it now fails predominantly by EMI in that region, and therefore, the full
dielectric potential cannot be realized. At higher strains of operation, due to strain-stiffening,
the soft elastomer is able to avert EMI, resulting in gains of an order of magnitude. The

theoretical maximum is now increased to 1.0 J/g.
What happens if ¢E}; is further increased? Using the reference materials of natural

rubber with a constant E  ; =30.0MV/m, and VHB elastomer with stretch-dependent E;, we
explore the effect of varying €E 3, over four orders of magnitude, for four different stiffnesses as
shown in Fig. 8. As a reference, VHB has ¢E;; =0.037MPa at low stretch, and
€E;; =2.12MPa at high stretch. It could be observed that, when the elastomer is not

sufficiently stiff to avert EMI, increasing €E7; does nothing to improve Y, at small to

X
moderate strains of operation. In all cases, strain-stiffening at high strains of operation

improves Y, ... We may summarize the roles of small strain shear stiffness x, and the Maxwell

stress at electrical breakdown €E7; as follows: At small strains of operation, eE7; > e, is
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preferred, and Y, ,, increases linearly with g At high strains of operation, a sufficiently stiff
elastomer such that EMI is averted at all strains of operation is preferred, and Y, .. increases
linearly with eE%,. From Fig. 8c, for a moderately stiff polymer ( x#=5.0MPa ), with

€E%; =1.0 MPa, it is possible to convert 1.0 J/g of energy at a strain of operation of 100%. This

could be realizable in the near future.

6. Conclusion

Limit state analysis is used to determine the theoretical maximum energy of conversion
for a dielectric elastomer generator. Our model enables realistic operation maps to be generated
for a given dielectric elastomer. The limits of operation and maximum energy of conversion can
be determined from the operation map. Operation maps for existing elastomers can also be
created to aid in material selection. They can be varied depending on the operating level of
stretch, and practical cycles can be designed within the allowable states. Equations were
established to estimate the maximum energy of conversion for a given material, with a pre-
determined strain of operation. These equations enable engineers and material scientists to
select and design suitable materials as dielectric elastomer generators. To ensure excellent
performance in terms of energy conversion a stiff elastomer with high Maxwell stress at
electrical breakdown is desired. This framework of understanding will serve as a valuable tool
for material scientists and engineers to select and design the best elastomer-type materials for
energy generation.

Using a similar framework, limit state analysis can also be performed for viscoelastic
dielectric elastomers. This will enable the efficiency of conversion to be known at various speeds
of operation. As most actuator and generator operation follows a periodic pattern, and it is
generally desirable to operate at a relatively high speed to maximize power, dynamic effects
must be considered in future works. Optimal operation speeds can therefore be determined that
maximizes power. Operation maps for actual geometries in both actuation (diamond actuators,
minimum energy configurations etc.) and energy generation (inflated membrane, rolled layers

of DE, balloons etc.) can also be studied. For experimentalists, this work has provided a strong
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motivation to characterize the electrical breakdown properties of various polymers (in particular,
natural rubber), especially at high levels of stretch. The fatigue threshold limit for various
elastomers can also be investigated, so that maximal energy of conversion can be determined for
long-term, reliable operation. The range of operation in terms of maximum material
deformation can also be studied using dynamic analysis, and impedance matching with external
excitations and different circuit configurations. Finally, using the theoretical framework
proposed in this paper, experimentalists and material scientists can work in-tandem to create
new materials which are stiffer, with improved dielectric constants and dielectric strengths. A
final culmination of all theoretical framework developed will greatly improve the design and

operation of existing dielectric elastomer generators as energy harvesters.
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Figures

Figure 1. Operation of a dielectric elastomer transducer. A membrane of a dielectric elastomer
is sandwiched between compliant electrodes. (a) In the reference state, the membrane is subject
to neither force nor voltage, and is undeformed. (b) In the activated state, the membrane is
subject to equal-biaxial force P in its plane and voltage ® through its thickness. The membrane
expands the area by a factor of £, and reduces the thickness to h=HA™. Electrons flow

through the external circuit, resulting in positive and negative electric charges, = Q, on the two

electrodes.
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Figure 2. The relation between the stretch A4 and the equal-biaxial nominal stress P/LH . (a)

The number of links in each polymer chain, n, sets the limit stretch A, . (b) The small-strain

modulus u sets the amplitude of the nominal stress.
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Figure 3. Experimental data fit of (a) force-displacement curves for natural rubber (NR,
Treloar, 1944) and VHB acrylic elastomer under fast uniaxial loading (VHB, Planté & Dubowsky,
2006), using the Arruda-Boyce 8-chain model (AB-8) and (b) stretch-dependent electrical

breakdown field for VHB (Kofod et. al., 2003; Planté & Dubowsky, 2006).

-30 -



3 | I i I 80 I | | |
(a) VHB ELASTOMER Y, ..=17J/g
3 S 60F -
S 2- Ao g
= \
= < 40 .
N 15 |
N LT F(2) E 20& EMI__]
I S
0 =< W A
1 2 3 4 5 6 001020304 0.5
! Q/L? (C/m?)
15 | | | | [
(b) NATURAL RUBBER |
~ N\
S 10 =
E ~
= =
.y =
~ L
~ O
> =)
0

| | |
00102030405
Q/L? (C/m®)

Figure 4. Limit states define a shaded region of allowable states on the force-displacement
plane, and the voltage-charge plane for (a) VHB elastomer and (b) natural rubber, under equal-

biaxial loading. The abbreviations on the plot refer to the following limit states: A, is

maximum stretch, EB is electrical breakdown, EMI is electromechanical instability, LT is loss of

tension, and F(A) is the nominal stress-strain curve, which defines the thermodynamic stability

limit. In these plots, it was assumed that the elastomer is stretched up to near its limit stretch
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during operation. The area of the shaded region gives the theoretical maximum energy of

conversion for the elastomer. These plots are termed operation maps.
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(a) The shaded area is reduced due to the leftward translation of the A_,,  line on the P—A plane,

and anti-clockwise rotation of the same line, about the origin on the ®—Q plane; (b) Operation

map for natural rubber (Fig. 4b) when the maximum stretch is limited to 4,,, =1.05 (5% strain)

and (c) Operation map for natural rubber when the maximum stretch is limited to 4,,, =1.3

(30% strain).
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as reference. For a fixed €E; , pis varied. (a) The value ¢E7; of natural rubber is used and (b)
The value €E7; of ten times that of natural rubber is used. A one order of magnitude increase in
Y.« is possible due to an equivalent increase in €E;;. For a soft elastomer (x=0.05MPa),

maximum energy for the higher ¢E7; is predominantly controlled by EMI.
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conversion Y, . The material parameters for natural rubber with E,; =30.0MV/m (dashed

-390 .-



line), and VHB elastomer (dotted line) are taken as references. For a fixed y, €E7; is varied.
Four stiffnesses were chosen (a) #=0.05MPa; (b) u=0.5MPa; (¢c) u=5.0MPa and (d)

1 =100 MPa.
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high energy density

— orders higher than parallel technologiesa®
light-weight, soft and compliant
economically interesting

— inexpensive materials

— rust free =>» offshore, low maintainance costs
wave energy harvesting

— concentrated energy stored in waves

— potential unclear

— good impedance matching
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lack of experiments

— to estimate full potential of the technology

— to improve basic understanding

well defined thermodynamic cycle

— in work conjugate voltage charge plots

What is the ideal deformation mechanism?

— theoretically, equibiaxial deformation is ideal

— how to realize experimentally?

Christoph Keplinger

— operate between two charge reservoirs of different electrical potential
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Inflation of a dielectric elastomer membrane

3M™VHB™4910 acrylic elastomer tape
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3M™VYHB™4910 acrylic elastomer tape
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current (UA)
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U (v [
V) —
Uout 4150 36.28 mJ

36.28 mJ
Uin 2000 159

24.19 mJ/g
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o
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= Energy of conversion for one cycle: 24.19 mJ/g
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How does that value compare?
3M™VHB™4910 acrylic elastomer tape
= Pelrine et al.: 400mJ/g ? [ > 4
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R. Pelrine et. al. (2001), Proc. SPIE 4329, 148
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competing technologies
— 130mJ/g advanced single crystal ceramics?

— electromagnetics: peak energy density 40mJ/g?

Where are the theoretical limits?
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Limits of operation — failure modes
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ultimate failure — destroys device

may lead to ultimate failure

» maximal stretch, rupture

* electrical breakdown

+ + + + + + + + + +
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* loss of tension
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« electromechanical instability —
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Theoretical limits for SM™VHB™4910 (biaxial)
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Summary

= fully PC controlled experimental setup with

biaxial and inhomogeneous deformation modes

= combination of theoretical and exp. investigations

— improve basic understanding

— experiment: well defined thermodyn. cycle, operates

between two charge reservoirs
= modeling results will predict optimal
operation conditions

— maximal energy of conversion

—
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The Team

Thank you for your attention!
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Appendix 2

Rontgen's electrode-free elastomer actuators
without electromechanical pull-in instability

Christoph Keplinger', Martin Kaltenbrunner, Nikita Arnold, and Siegfried Bauer

Soft-Matter Physics, Johannes Kepler University, Altenbergerstrasse 69, A-<4040 Linz, Austria

Communicated by Howard Reks, University of California, Los Angeles, CA, December 15, 2009 (received for review July 23, 2009).

Electrical actuators made from films of dielectric elastomers coated
on both sides with stretchable electrodes may potentially be
applied in microrobotics, tactile and haptic interfaces, as well as
in adaptive optical elements. Such actuators with compliant
electrodes are sensitive to the pull-in electromechanical instability,
limiting operational voltages and attainable deformations. Elec-
trode-free actuators driven by sprayed-on electrical charges were
first studied by Réntgen in 1880. They withstand much higher
voltages and deformations and allow for electrically clamped
(charge-controlled) thermodynamic states preventing electrome-
chanical instabilities. The absence of electrodes allows for direct
optical monitoring of the actuated elastomer, as well as for design-
ing new 3D actuator configurations and adaptive optical elements.

electroactive polymers | dielectric materials | dielectric breakdown |
adaptive optics | Maxwell stress

iclectric elastomer actuators (DEAs) consist of synthetic
elastomer films sandwiched between compliant electrodes.

For operation, the actuators are connected to a driving voltage
source. They emerged as one of the most promising technologies
for soft matter—based electromechanical transduction since their
discovery by researchers from Stanford Research Institute (1).
Coulomb forces between the electrodes squeeze the elastomer
in the thickness direction and cause the incompressible elastomer
to expand in area. Such “deformable capacitor” designs have
shown a cornucopia of potential applications, such as artificial
muscles (2) and other bionic applications (3), complex minimum-
energy actuators with three-dimensional movements (4-7),
energy harvesters (8, 9), adaptive optical elements (10), etc.; com-
mercially available adaptive optical elements are described, for
example, at http://www.optotune.com. Deformable capacitors
are always sensitive to the electromechanical pull-in instability
(11-14}), which has been first reported to limit the apparent
breakdown voltage of soft materials (15), and which has been
beautifully demonstrated with closely spaced soap films, which
casily deflect measurably under high voltages (16). When the
elastomer actuator is subject to a voltage, the elastomer thins
down. Thereby, the same voltage induces an increasing electric
field in the elastomer and so an increasing attractive force
between the oppositely charged electrodes. At the pull-in voltage,
this positive feedback causes the elastomer to thin down drasti-
cally, finally resulting in electrical breakdown. The pull-in
instability is prevented when the elastomer actuator is operated
in a charge-controlled mode, because in this case no positive
feedback mechanism increases the electric field in the elastomer.
Electrical deformation of solid materials was observed shortly
after the invention of the Leyden jar by Fontana, as noted by
Volta (17). Such electrical changes in the volume of the Leyden
jar were the subject of intense investigations in the late 19th
century. Quincke, for example, experimented with Leyden jars
made from natural caoutchouc and reported electrically induced
volume changes of the jar, which he ascribed to a volume increase
of the caoutchouc, roughly proportional to the square of the
potential difference between the inner and outer surface of
the jar (18). Rontgen criticized Quincke’s findings and intro-
duced a simple experiment that illustrates the electrical deforma-

www pnas.org/iogifdoil 10.1073/pnas 0913461 107

tion of a stretchable body (19). Rontgen used a 16cm-wide and
100cm-long stripe of natural rubber, prestretched by a weight to
twice its initial length. Upon electrification with sprayved-on elec-
triccharpes, he was able to observe length changes on the order of
several centimeters.

Repeating the experiment of Rontgen with today’s materials
not only provides an elegant experiment for visualizing the large
electrostatic deformations attainable in soft matter, it also allows
electrically clamped (charge-controlled) thermodynamic states
that are otherwise impossible to access with electrode-coated,
electrically free operating actuators (voltage-controlled; origi-
nally the term “electrically free” was defined for crystals where
the electric field £ was dictated by the applied voltage due to a
nearly constant thickness; this is not fully valid for soft materials,
but it is conventional to use the term in conjunction with “electri-
cally clamped™). Thereby, pull-ininstabilities are prevented, giving
a nearly unlimited actuation range for actuators (only restricted
by the materials breakdown strength). Electrode-free actuator
operation will be illustrated with a bending minimum-energy
elastomer actuator and a tunable optical lens.

Results

Experimental Analysis of Electrode-Free Elastomer Actuators. The
experimental setup for a quantitative analysis of the Rontgen ex-
periment is shown schematically in Fig. 1 and as a photo sequence
in Fig. 2. The framework uses an optical rail system where a char-
ging unit is able to move up and down along the elastomer. The
charging unit contains two opposed combs of needle electrodes
with a separation of 3 cm. Additionally, two opposed Trek Kelvin
probe heads are mounted below the needles to enable surface
potential measurements on the two surfaces of the elastomer,
as illustrated in Fig. S1. Between the optical rails a guideway
is placed to pilot an expanding elastomer strip prestretched by
the attached mass. Details of the experimental procedure and
measurement techniques are described in Materials and Methods
and in ST Text. Three charging cycles at each of the corona vol-
tages of 14, 17, 20, and 23 kV between the two needle setups were
initially used, giving stretch ratios up to 1.15, as depicted in Fig. 3.
By additionally employing three more charging cycles at 23 kV, a
stretch ratio exceeding 1.2 has been achieved. These experimen-
tal results reveal a drop of the surface potential difference with
increasing deformation after passing a maximum of about 17 kV.
This value would be the ultimate limit for conventional voltage-
controlled actuators because it would be followed by the pull-in
electromechanical instability destroving the actuator. Here, how-
ever, the electrically clamped operation enables further deforma-
tion and stable states bevond the limits of pull-in. The set of data
with the highest stretch ratio has more charges on the elastomer

Author contributions: SB. designed research; CK. and M.K. peformed research and
analyzed data; N.A. and 5.B. wrote the paper; and N.A developed theory.
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Fig. 1. Linear elastomer actuator geometry pioneered by W.C Rontaen in

1880. Charges are sprayed on the elastomer by needle combs under high
voltage.

than the set with the stretch ratio 1.15, although the voltage is
smaller. This results from the thinning of the elastomer (accom-
panied by the increase in its area); thereby, more charges on the
elastomer result in voltages lower than the pull-in value (illu-
strated in Fig. S2). Breakdown fields of elastomers are usually
measured with attached electrodes and are therefore limited
by the pull-in instability (16). Materials-related breakdown fields
are significantly larger, because our experiments show that stable
states bevond pull-in are experimentally accessible. In the subse-
quent theoretical part, these experimental results are analyzed
based on thermodynamic modeling.

To illustrate the extreme deformations achievable by spraying
charges onto the surfaces of an elastomer, we prestretched a
square piece (5 x 5 cm) of the tape to a rigid, circular frame with
a diameter of 10.4 cm (Fig. 4). Two needle electrodes were placed
near the surfaces of the elastomer, and a circular area in the cen-
ter of the frame was marked with a ballpoint pen to make small
deformations visible. To produce the image sequences in Fig. 4,
corona voltages of 0, 10, 15, and 25 kV were used from A o D.
From A4 to B, the marked ring expands visibly. In C regular sinu-
soidal wrinkles appear, and in D) the wrinkles become irregular. It
is obvious that state D can only be realized with an extremely

Fig.2. Theimage sequence shows the exparsion of the elastomer asa result
of gradual charging starting at the top. The charging voltage used to
produce the pictures was 25 kV.

4506 | www.pnas.org/cgifdoi'10.107 3pnas.0913451107
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Fig. 3. Secondary stretch i, resulting from an incremental increase of the
surface charge Q versus the potential difference measured with Kelvin
probes on both sides of the elastomer stripe. The colored triangles are sets
of data measured in different trials. The solid and dashed curve corresponds
to a fit by the second equation of Eq. 8 as explained in the text. Under
voltage-controlled, electrically free conditions only the solid line corresponds
to stable states limited by the pull-in electromedhanical instability. Charge-
controlled, electrically clamped conditions stabilize the equilibria even
beyond the pull-in limitation.

deformed elastomer. After removal of the corona, the wrinkles
disappear, and the initial configuration similar to 4 is restored
over several minutes. The experiment is visualized with a video
file Movie 51 provided in ST Text. In this video, a moderate
voltage with the opposite polarity is used for discharging, and
the relaxation takes only a few seconds.

Fig. 5 shows the operation of an electrode-free minimum-
energy bending actuator with large actuation range. In the bend-
ing actuator, a prestretched elastomer is glued on a flexible
frame. Upon release, the actuator bends by minimizing the total
free energy consisting of the bending energy of the frame (which

Fig. 4. Radially prestretched elastomer on a rigid frame of 52-mm radius,
charged by corona discharge from two needle electrodes. As the corona volk
tage increases from 0V in A up to approximately 25 KV in D, the elastomer
first thins and expands in lateral directions as indicated by an ink dot ring
(B). Regular wrinkles appear in C, and finally extreme irregular defor mations
become possible (D). After the removal of corona discharge, the wrinkles
disappear, and the initial configuration similar to A & restored.

Keplinger et al.
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Fig. 5. Photo sequence of an electrode-free minimum-energy bending
actuator with large actuation range. As the corona voltage increases from
0V in A up to approximately 20 kV in D, the elastomer thins and expands
laterally. After removal of the corona discharge, the initial configuration
(4) b restored.

increases with increase in the bending anple) and the stored elas-
tic energy of the prestretched elastomer (which decreases with
bending angle as this decreases elastomer deformation) (5, 6).
For the bending actuator to work, it is sufficient to place two
needle electrodes near the surfaces. In this case, electrostatic
energy adds to the total energy of the elastomer, which makes its
decrease with the bending angle less pronounced (5). Therefore,
the equilibrium bending angle decreases with the applied voltage.
In the image sequences in Fig. 5, we placed a goniometer behind
the actuator to demonstrate the large actuation angle of the
DEA. The corona voltage is increased from 00 Vin 4 to 14 kV
in B, to 17 kV in C, and to 20 kV in D. If the voltage is reset to
0 'V, the actuator returns to state 4 in a few seconds, which can
be accelerated by applying a moderate voltage of the opposite sign
(see video file Movie S2in ST Text). From Fig. S it isevident that the
total actuation angle is about 100°. The speed of the bending
operation is currently limited by our unipolar voltage source, which
prevents fast switching from positive to negative voltages. We
expect the operation frequency of the actuators to be limited to
a few hertz, sufficient for most of the anticipated applications
of such actuators,

Fig. 6 shows a sketch of an adaptive lens with variable focal
length and aperture, and two photos of the device. In the charged
state (Fig. 6 Right) the lens thins down, thereby increasing the
focal length from its initial value of 210 to 266 mm with a corona
voltage of 15 kV. The focal length has been obtained from the
known object distance and magnification. The lens is formed
by a water drop encapsulated between two elastomer layers. In
the images of the device also shown in Fig. 6, the voltage of
the corona needles is increased from 0 V (Fig. 6 Lefi) to
15 kV (Fig. 6 Right). When the voltage is removed, the lens re-
turns to its initial state in a few seconds. This process is acceler-
ated by applving moderate voltage of opposite sign to the needle
electrodes. The two images reveal the increase of both aperture
and focal length of the lens when actuated.

Thermodynamic Modeling. The experimental results shown in Fig. 3
are now analyzed in terms of a rigorous thermodynamic model
From the theoretical point of view, our approach to the linear
actuator setup proposed by Rontgen is similar to that of Zhao
and Suo (12). There exist, however, several differences of various
importance. We have chosen to use natural physical variables,
such as voltage U and charge . rather than nominal electric field

Keplinger et al.

prestretched HV=0

/ elastomer

—— corona needle

+
+4-

f
i liquid

-

Fig. 8. Adjustable lens with variable focal length and aperture. A drop of
water is enclosed between two layers of elastomer. As the corona veltage
increases from 0 V (Left) up to high voltage (HV) of approximately 15 KV
(Right), both the aperture and the focal length increase becawse of the
attraction between the elastomer layers.

and displacement that are proportional to them. Furthermore,
even when talking about voltage-controlled systems, we do not
consider charge as a separate variable. Rather, we consider it
as a “fast variable,” which “instantaneously” relaxes to its equili-
brium wvalue dictated by the applied voltage. In reality, this
happens over the resistor-capacitor (RC) time constant of the
system, which is much faster than the time scale of mechanical
deformations. With given voltage or charge, the number of
variables is reduced to two stretch ratios only, which facilitates
modeling. In the subsequent analysis, we proceed analytically
as far as possible, mainly by using equilibrium conditions before
and after corona charging.

Let the initial dimensions of the elastomer be x;. y;, and z; be-
fore the application of a weight with mass m, and x,, y,. and z,
after that (subscript p stands for prestretch) (an illustration can be
found in Fig. 53). Both sets of dimensions can be measured, but
the transition from the { to the p state occurs over a long time
scale and is partly viscoelastic. Therefore, i is not the reference
state for the prestretch in fast measurements with sprayed-on
charges. True prestretch takes place from the auxiliary state 0,
which is observed experimentally when the weight is removed
from the uncharged elastomer to let it relax on the fast time scale,
retaining only the viscoelastic deformation. This i experimentally
challenging, and the dimensions x;, v, and z, were not measured
directly.

For this reason, we use () rather than i as the initial reference
state in the general development of the theory, but the measur-
able p state for the definitions of physical parameters, such as
capacitance or deformation. The true prestretch 1, =x,/x
and similar ratios are important, as they define elastic energy.
‘We deduce them from indirect measurements as discussed below.
To refer the deformation to the state p, we explicitly separate the
overall stretch 4, =x/x, into a prestretch and a secondary stretch
(subscript §) de Sx/xp, so that 4, = Aude for all dimensions x, y,
and z. Of course, all derivations can be done equivalently in terms
of 4, only, as was done in ref. 12.

We use the neo-Hookean expression S(22 + 22 + 22 —3) for
the elastic energy density (21). Aswe factor out the viscoelastic
part of the prestretch, the shear modulus & here is the fast one.
Because of volume conservation, V' =0z = k3,2, = 5%, and
Aedyde = Apdppdpr = dadyd: = 1. The Poisson ratio of most

PNAS | March 9, 2010 | wol. 107 | no.10 | 4507
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elastomers is close to 0.5 (20); for the 3M™ VHB™ tape used. the
manufacturer claims at least 0.49; iterature values have indicated
a Poisson ratio of 0.499 (21). However, deviations from incom-
pressible conditions can be taken into account when necessary
by modifying the hyperelasticity function. Volume conservation
allows us to eliminate all = stretch ratios. We express the gravita-
tional energy of the attached weight using the stretch ratio with
respect o the p state: —mgr = —mgx, .. The mass m here in-
cludes also half of the mass of the elastomer itself, which is
usually small. Then, the (free) energy of the uncharged elastomer
can be written as
GV

2

i

(A3 + 825 + 20522052 —3) —mgr, A, (1]

Because of viscoelastic effects, we cannot take the prestretch ra-
tios 4, directly from the experiment, but they should minimize
the free energy at the equilibrium p state. Namely, the minimum
as a function of i, and A, should be achieved at values
Ag = Ay = 1. This results in

aF
i = 0= GV (A — Az2452) = mgx,

O |3, 2.=1 -

aF

oot =0 2 =il 121
d.'ll_‘. PR | JT- )lf

The first expression relates the prestretch to the applied weight
and elastic properties of the material. The second expression
merely signifies that the elastomer is uniaxially prestretched.

Electrostatic Energy. The derivation of the electrostatic energy is
discussed in detail in 57 Texs, because elastomers with sprayed-
on charges differ significantly from electrode-loaded capacitors.
Charges need not be symmetrical on both sides, so a careful ana-
lysis of the electrostatic problem is required. From experiments
we found that the voltage is about constant in the long (x)
direction and approximately parabolic in the y direction, with
a maximum value U in the middle and half of this value, I7/2,
at the edge. This results in an electrostatic energy:

W= [ Yy Ay
22 o 2 22, "
A=43/d0 G2
UZ
=22, 3]

Here, C, (or more accurately C,/4) has the meaning of the
elastomer capacitance before the start of corona charging. The
coefficient 4 is related to the inhomogeneity in voltage, or, more
generally, of thickness and dielectric constant as well. In practice,
C, is used as a fitting parameter within an admissible range.
For the charge-controlled case, the overall charge on each
surface stays constant. To keep the similarity with conventional
capacitors, we consider half of the total charge difference
between the surfaces, Q. It is related to the voltage via

1 ;
0~ [allag U0 [y Ly Uy g
b 27

Z
A=576

The energy can be written as the first expression in Eq. 3 (with
the opposite sign, because the system is closed and the
external source does not perform any work), but one has to group
together the terms that stay constant upon deformation:
Ay A g e expression in brackets stays con-
o
) =ponst
stant during the minimization of energy, but the total charge

4508 | woww.pnas.orgiogifdoi/10.107 3¥pnas. 0913461107

changes from measurement to measurement, together with the
measured voltage. If we exclude z stretch, this can be expressed
as follows:

2594 94

w= Gl ) 151
2. A=

Here, U? and the combination {4!4% in braces originate from
the constant charge and should not be differentiated when we
search for the equilibrium or study its stability. However, A,
and Ay should be treated as variables when we resolve the result-
ing equations to find the actual stretch values as a function of
measured voltage U or other parameters.

Using the equilibrium relations in Eq. 2, we can now exclude
Ay, and either mgy, or the product GV from the elastic energy
expression in Eq. 1. For brevity, we also omit the constant —3
term. Together with the charge-controlled electrostatic contribu-
tion from Eq. 5, this results in the following total free energy:

GViL
F = P (£x —2da) + 42 (45 + 4505 +24n)

+Q,U2{ifyl§.-}
9 R

[6]

The consideration of the voltage-controlled case in Eg. 3 is
similar. We pulled .Afu out of the square brackets to show how
it influences the elastic energy. The leading terms in the square
brackets are then related to the measurable secondary stretch ra-
tio 4. Using the equality GV{Aﬁr —,1].}1) = mgx,,, which follows
from Eq. 2, one can replace GV i3, — % The choice between

these two expressions is that of more physical fitting. The expres-
sion with the mass relies only on the quantities that are directly
measured. But in both cases we have to find 1., which cannot be
directly measured because of viscoelastic effects.

The equilibrium condition for the energy expression in Eq. 6
corresponds to its minimum with respect to A, and Ay:

% =0=> GV, — 1 + L1 - 1240 = CUAAA,
0= GV (1 ~43235 )y = C, Ui, 171

¥

By dividing these equations onto each other one can express 4,
via 4, in equilibrium and then write the transcendental equation
for A,:

Ay = An[1 + Zur (e — 1)]

: ’ 25 —142

2+ B0 = (1-3) 18]

Here, we itroduced the dimensionless combination
2 GV_—_ "™ . i g

At = oz =¢_T;{Fﬁ. It characterizes the ratio of the elastic
and electrostatic energies, and A is inversely proportional to
the applied voltage. It is worth noting that it does not depend
on the measured x, value (because C, is proportional to it).
Let us first consider the small voltage (large A) behavior. Taylor
expansion with small secondary strains g o Sdag — 11
results in
A +1

2

1
2445 +2)

O o U, By 8. [9]
This implies that the increases in both stretch ratios are propor-
tional to the voltage squared, which can be seen in Fig. 3. The
ratio of these increases (which can be measured) defines the real
nonviscoelastic prestretch 2,,. More accurately, it can be found
from the fitting of the first equation of Eq. 8 over a broad range
of voltages. From the fit, a value of 1, = 142 (for an initially
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S0-mm-wide elastomer tape) i obtained. The quality of the
fitting is documented in Fig. S4. The last experimental point lies
in the wrinkling regime, and the true extension 4 is actually high-
er, making the agreement even better. From the physical point of
view, the 4, value should lie between 1 and the ratio xp/x; ~ 3.
Another way to actually measure 4, is to let the uncharged elas-
tomer relax without weight to the 0 state on the fast time scale.
This results in a prestretch ratio 4, = x, /xy ~ 1.5 to 1.6, whichisa
reasonable agreement. This method is less accurate however, due
to difficulties of exactly defining the fast time scale. When 4, is
determined, the dependence of secondary stretch on the applied
voltage, Aq (L), should be found from the solution of the second
transcendental equation in Eq. 8. This is done in Fig. 3, which
shows two branches of equilibrium solutions as a function of
measured voltage. The overall charge increases along the curve
as shown by the arrow. The fitting parameter C, = 533 pF used
for the calculated curves is in reasonable agreement with typical
material values (£ =~ 4.2) and measured dimensions of the p state
given in Materials and Methods.

Voltage-Controlled Case. It is easy to verify, that the equilibrium
conditions in Eq. 7 are identical for the voltage-controlled case
with the electrostatic energy from Eq. 3. Thus, both cases have
the same dependence of equilibrium secondary stretch on mea-
sured voltage. This is understandable, because elastic and elec-
trostatic forces are fully determined by the geometry and
therefore balance each other in equilibrium at equal values of
variables. This argument does not, however, extend to the overall
behavior of energy in both systems. In particular, the number of
extrema for fixed controlled parameters, as well as their stability
[determined by the Hessian of the free energy with respect to 4,
and Ay (12)] is not the same in both cases. Straightforward,
though a bit tedious, calculations show that the charge-controlled
case always has a single stable equilibrium, whereas the voltage-
controlled case has one minimum and one (unstable) saddle
point. The latter becomes stable in the charge-controlled case
and corresponds exactly to the upper branch of solutions shown
by the dashed curve in Fig. 3. This i in full agreement with the
general results of Zhao and Suo (12). In fact, our results based on
2D Hessians are identical with those of Zhao and Suo where 3D
Hessians were used. All this can be generalized to arbitrary
Legendre-conjugate systems, which will be considered elewhere.

Discussion
We studied experimentally and analyzed theoretically electrode-
free DEAs first suggested by Rontgen (see the historical discus-
sion in Figs. 55 and 56). In this setup, charges from a corona
discharge are sprayed on both sides of an elastomer. The problem
of electrode degradation and cracking upon stretching i thereby
removed. The absence of electrodes and the trapping of charges
on the surface allow the system to withstand much higher voltages
and electric fields without a global breakdown that disrupts de-
vice operation. This allows one to achieve much higher deforma-
tions and try out complex 3D geometries with large actuation
range, leading to new actuator designs.

Conducting electrodes are inherently equipotential. A free
flow of charges along conducting electrodes automatically leads
to their concentration near the edges and (if present) corners and
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protrusions of the structure. In contrast, deposition of charges at
desired positions can be performed dynamically and quite inho-
mogeneously (22). This permits one (in principle) to achieve a
much wider scope of electrostatic contributions to the DEA en-
ergetics, which may become especially important for complex 3D
geometries. In particular, trapped charges (which do not redistri-
bute freely toward the edges of equipotential surfaces) may
contribute to additional lateral Maxwell stresses and larger
deformations.

The elastomer without electrodes is transparent and can be
monitored using optical techniques. In addition, it can be used
to build adaptive optical elements; as an example, we demon-
strated lenses with variable focus and aperture based on the
Rontgen setup.

From the theoretical point of view, such a setup represenis a
charge-controlled case, disconnected from the external source,
with thermodynamics and energetics different from that of
conventional DEAs. States with extreme deformations, which
are unstable when the electrodes are present, are stabilized
and become accessible for experimental observations. This can
be used for materials testing and characterization under severe
conditions essential for a safe operation of DEAs. Additional
lateral stresses and global potential energy terms may appear
because of the trapping of charges on the elastomer surface. This
has been addressed mathematically.

By comparing stretches in both lateral directions, we were able
to factor out viscoelastic effects and achieve a theoretical descrip-
tion that is virtually free of fitting parameters. Further work may
g0 toward lowering the voltage and miniaturization of the system
(for example, using thinner elastomers and carbon-nanotube
field emitters) and toward deeper analysis of 3D configurations,
including wrinkling.

Materials and Methods

The elastomer samples used for the measurements in corona-<charging
experiments were 100-mm-long, 50-mm-wide, and 1-mm-thick stripes of a
3MT™™VHE™ 4910 acrylic elastomer tape. Upon loading witha weight of mass
m = 150 g, they typically expand within 24 h to 310x 28x 0.576 mm. The
relaxation time of 24 h allows the viscoelastic drift of the VHE™ elastomer
tape to level off. The following experiments occur on short time scales
{minutes) where viscoelastic effects can be ruled out.

The corona needles were connected to a de high-voltage power supply
{model HCL 140-35000, provided by Fu.G. Elektronik GmbH). To maximize
the homogeneity of the surface charge distribution in the vertical direction,
we moved the charging unit up and down slowly (one cycle ~30 s). Repro-
ducibility has been chedked by three independent measurement sets.

The surface potential difference has been determined with a Trek Model
341A electrostatic voltmeter based on the Kelvin probe technique. (Further
information about the Kelvin probe technique and the setup is given in
5i Text.) The surface potential along and across the elastomer stripe was re-
corded on the two surfaces after each oyde. The potential distribution was
reproducible with a maximum inthe middle of the lateral direction dropping
to approximately half the maximum value at the borders. In the wertical
dimension, the potential difference was found to be constant within experi-
mental error. The voltage depicted in Fig. 3 refers to the maximum potential
difference in the middle of the elastomer stripe.

The elastomer used for the experiments depicted in Fig. 4 and applications
shown in Figs. 5 and & was the same as in corona-charging experiments.
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SI Text

Experimental Details. Fig. S1 (Lefi) illustrates the Kelvin probe
measurement to obtain the surface potential of the elastomer.
The vertical gray stripe depicts the cross section of the elastomer.
The blue and yellow squares illustrate the sprayed-on charges,
and the electric field is illustrated by small arrows. In addition,
equipotential lines are drawn. To assess the surface potential
of the elastomer via non-contact measurements, the housing of
the probe head (gray rectangle with yellow border) is driven to
a potential equal to the surface potential of the elastomer by ap-
proximately nulling the electric field in the gap. Fig. 51 (Right)
shows the experimental arrangement with two Kelvin probes
to measure the potentials gy » on both surfaces of the elastomer;
the voltage U between the two elastomer surfaces is then ob-
tained from the potential difference between the two Kelvin
probe readings.

In Fig. 3 it seems surprising that the voltage measured at the
highest stretch ratio of 1.25 is smaller than the voltage at the low-
er stretch ratio of 1.15, although there are more charges on the
elastomer at a stretch ratio of 1.25 as compared to the stretch
ratio of 1.15. Fig. S2 illustrates such a situation. Whereas on
the left side, with a thick elastomer the charge , is smaller than
the charge Q,, on the right side, with a thinner elastomer and a
larger area, the opposite is true for the voltages: [/, is larger
than U,.

The geometry for the theoretical modeling is illustrated in
Fig. 53. The initial dimensions of the elastomer are denoted with
a subscript i; the dimensions p stand for the prestretched state.
The transition from the { to the p state is partly viscoelastic.
The reference state () can be obtained on a short time scale if
the mass m used for prestretching is removed. Stretching to the
final state after charging is described from the reference state (.

Fig. 54 illustrates the excellent fit used to obtain the prestretch
parameter Ay, = 142, as discussed in the main text.

Experiments shown in Figs. 4 and 5 of the manuscript are illu-
strated with two video files. In Movie 51 the reversibility of the
large deformations of an elastomer surface is demonstrated. Even
the huge irregular deformations visible in Fig. 4D fully recover to
the initial flat state.

Movie S2 illustrates the operation of the electrode-free bend-
ing actuator. The speed of operation is currently limited by the
used dc high-voltage power supply. In order to discharge the ac-
tuator, the polarity of the supply must be changed. This is only
possible by switching the device off, followed by a manual change
of polarity.

Theoretical Considerations on Elastomer Stripes with Sprayed-on
Charges. An elastomer with sprayed-on electrical charges differs
significantly from a deformable electrode coated capacitor. Con-
ducting electrodes are equipotential surfaces, and the free flow of
electrons along them concentrates the charges near the edges and
corners of the structure. In contrast, elastomers with sprayed-on
electrical charges may have charge distributions that are different
on the top and bottom surface of the elastomer. In the article we
have made the approximation that the energetics of an elastomer
with sprayed-on electrical charges is dominated by the usual
capacitor term.

In order to verify our approximations, we rigorously solve the
problem of a plane dielectric of finite thickness h with arbitrary
surface charge densities on both sides. The electrostatic energy
can be written in two equivalent forms (1) (centimeter-gram-
second Gaussian system is used here): W =g [EDdV =

Keplinger et al. www.pnasorg/cgifdoil10.107 ¥pnas 0913461107

i [@dg. The last integral can be over the volume, or surface,
or a mixture of both. Tt is usually simpler than the first expression,
especially when the integration should be done only over the
surface charges as in our case. To calculate the energy, we
solve a Poisson-type equation for the potential p, divD =
—div(egradp) = 4np everywhere; find the field £ = -Vyp and
the displacement D) = ¢E and calculate the energy using any of
the two aforementioned integrals.

The dielectric will occupy a layer 0 < z < h, and subscripts 0
and h refer to the corresponding z planes. Subscript e refers to the
elastomer. Because only surface charpge densities o are present,
the potential satisfies the Laplace equation A)p + @.. = 0 both
inside and outside of the elastomer. Here we mean under A the
partof the Laplacian in the (x,y) plane A, = d,, +d,. Applying a
Fourier transformation in the x-y plane (denoted by tilde, @) we
get —k*p+ G = 0 where k* = i + & is the square of the
Fourier wavevector, and the subscript z denotes differentiation.
The solutions of this equation outside and inside the elastomer
can be written as

P =c_ek,

L —_ —k{z—h)
@, =c,8 e

z=0; P, =1 4,07, 0=<z<h
z>h. [S1]

With such notations the conditions at infinities are satisfied
automatically, and the coefficients ¢, have the meaning of the
potentials on both surfaces: §p, =c_, @ = c,. The continuity
of the potential and the change in the normal derivative of
{(Fourier image of) the electric displacement D, = (1 or £)E, =
—(1 or £)¢. on both surfaces can be written as follows:
¢-(0)=g.(0) = c_ =1+,
| de
dz |, dz
Pa(h) = ph) = cp = 1 +oe™,

+amay =0 = ke — k() —ca) = 4nay,
o

di.

4.
dz

o dz

+dmdy =0 = key + h(cie® —cae™) = dnéy,.
h
[82]

This system of linear equations can be easily solved. Subse-
quently, we will often use symmetric and asymmetric parts of
the charge and potential distributions (or their Fourier trans-
forms), defined as follows:

- L = = (aF8)1/2
o=oytog d=ay—oy, which implies 7% (dfi)’;_’.
=g+ @ V=05 @, Pon = (Fv)/2

[83]

With these notations, the coefficients ¢, which are equal to the
surface potentials, are found to be

2x E a%lh%
cxEdor =7 | ——F . 54
R (1+e:h% e+m%) 1)

‘We use these formulas to relate charge densities and poten-
tials. Their symmetric and asymmetric parts separate and are
proportional to each other in Fourier space:
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The approximate expressions are Taylor expansions up to the
first meaningful order in (small) thickness k. It requires a differ-
ent number of terms in different formulas, as will become clear
from the energy expressions below. There exists subtlety in the
comparison between the different terms in the potential and
charge representation. If the characteristic in-plane size of the
system is a, the important wavevectors are k ~ 1 fa, and the small
parameter in the Taylor expansion is ik ~h/a < 1. From the
Fourier representation (Eq. S5) we get

& 1+eah®iy pha (S6]
5 etf TT 20
T

This means that the ratio of the symmetric/asymmetric terms
always has a different order of magnitude for charges and poten-
tials. For our experimental conditions it is always small for the
charges, but not necessarily small for the potentials. From the
experiment, we know that typically u < v. Correspondingly,
a < khé < 5. As shown below, the symmetric and asymmetric
parts separate in the energy expression in the Fourier space
(Eq. S13). The coefficient in the asymmetric potential term is
a factor of 1/kh larger than for the symmetric part. For this rea-
sonwe make a Taylor expansion up to zero order in the symmetric
terms, but up to the first order in asymmetric ones. Orders of
magnitude of the errors for the worst realistic case u~ v are
indicated in Eq. 85.

The approximate formulas for small thicknesses can be
analytically Fourier-inverted for arbitrary charge densities. The
two-dimensional (2D) (direct or inverse) Fourier transform (with
symmetric prefactor) has the following properties (2):

Fe=2fg. Af=-Kf  I87]
_ Here the asterisks stands for 2D convolution. The inversion of
k cannot be done in a similar fashion because of the singularities
involved. Using the first two properties, we can obtain a Fourier
inversion of the expression

k=1t

2 1
which is the single-layer potential @ =o .

[58]

s = _T;J

The Fourier inversion of the function f in combination with
different powers of k can be written as follows:

h=—uu

[59]
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This allows us to invert analytically the small thickness expres-
sions in Eg. 85

1 £ 2
g ———* A1, dm—V— *A v, W= —*a,
By 7t 27h snl = r
Znﬁ h?
—d LT S10
e OTa A (5101

For the surface potentials in terms of charge densities and vice
versa we pet

[T==Ta | :rh R
Pop =—— —ta.p( 4&*&*5)‘

LN
aF0 1 _f e 1 A
gy =— = ————+# — v ———s AV
0A =y oty TNdk Moatr L
1
= = A0 (0. h)F 4.'1 [S11]

One can recognize the global potential of the single layer g,,
the double layer capacitor term, and some addition related to the
in-plane inhomogeneity of the double layer in the simplified
expressions. Surface charge densities in terms of potentials are
given by the contributions from the global term for each surface
potential and the asymmetric capacitor contribution.

Total electrostatic energy. It is convenient to calculate the energy in
the Fourier space, because then the intermediate results are ex-
act. According to Parseval's theorem (2) (m unitary convention),
[fg*ds = ff‘gﬂ%‘k Here asterisk superscripts denote complex
conjugates. Thus, the energy can also be calculated as the integral
of the product of the Fourier images of the charges and poten-
tials. All our functions are real and even with respect tox andy (or
can be made even by quadrupling of their domain). Therefore,
their Fourier transforms are also real, and we can write for
the surface differential of the electrostatic energy:

iy = DL A gy T 4+ ¥8 45 -, Podo f"h"“‘-’“ dS,

[812]

Using the relationships in Eq. 85, this can be written in terms
of charges or potentials only, in exact or in approximate form.
Symmetric and asymmetric variables u o« &, v « § separate, and
the energy is always diagonal in terms of these variables:

k k)., e tthd
41V=E((1+em ) Y )m

Sthi
+ )d&‘k

=]

net | whd  ah’ks
=| — _ ds, S13
( TR T L R
— e
8 s (Kch s
s PETTYS

Under each term of the Taylor expansion, we indicated the
relation to the last term (lowest order correction in v and &), as-
suming the worst case u ~v. For u =cv the terms with « or o
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should be dropped. because omitted terms withv and 8 are larger.
But we always retain the leading correction inv and 8. The central
(capacitor) term is the largest unless u = v (almost equal charges
on both sides). In this case not all terms in Eq. S13 are meaning-
ful, but the largest term is related to the u or & expressions ( global
energy of a single layer). The transition to this regime occurs
with «* ~v2a fh.

Let us transform the approximate energy expression in Eqg. §13
written in terms of potentials using the approximate potential-
charge relations from Eq. 85. If we retain only the leading terms
after squaring, this results in

plobal & copaciior v global v
—~— —— ——
ki? a7 kit

dWx(E + Fars + E)dsﬁ
—_— - —_

<kt ()t o?

FS

from capacitor v

e e
75 | ahd kS | ahlks’
=2 — +—— - — |dSg
k 2e 2e*
Ry e
B st Kk jha? (At
2 AR ks
global o capacitor & global S=ghilal v—part capociior v
ﬂ_"‘__‘;\ ﬂ—*—Lz
( Tt = ahika dS.. [S14]
&L 2 4 ks
o’ e ey
E T s (k)&
SRhjAS =k | ™

Therefore, we recover the last expression (Eq. S13) obtained
by Taylor expansion of the energy in the charge representation.
The global u term related to the single layer potential always
transforms directly into the global ¢ term and vice versa. The glo-
bal 5 term related to the asymmetric charge distribution contains
the contribution from the capacitor v term. Conversely, in the
transformation from the charge to the potential representation,
the capacitor § term will contribute to both capacitor v and global
v terms.

The inversion of the approximate expressions in Eq. 813 can be
performed analytically for arbitrary potentials or charge profiles
using Parseval's theorem and properties of the Fourier inversion
(Eq. 89). We write the capacitor term in front and indicate the
order of magnitude of all terms assuming that typical sizes of the
elastomer rectangle are a (smaller side) and b (larger side).
Remember that ¢ ~khé ~ hijfa, and the convolution brings an
area integration factor ~ab:

v (ki) + (k)
Cid (m+ “wm e
e (Le A+ (e A ds
T\ 3222 -
—_—
vih fab /)l fa 15 e Via
rhéd 2nes  mhi(ks)d [815]
dW = ( 5 b oE T) dSy
5
——

1
= 2
(=, (Zra)e L PGeasp
2e 2 8e”
i (abb)a*<Fh* fa

):I'S.

The first term everywhere i the capacitor term. The second
term is the global term. As explained above, when one switches
between the charge and potential representations, the terms
transform into each other in a nontrivial way. Omitted terms

N —
W abfB) (8 fa® )~ 8H fa
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are smaller than at least one of the retained terms. These expres-
sions are not trivial. They involve the integration over the elas-
tomer area and indude convolutions and Laplacians. However,
orders of magnitude indicated for each term show that for a thin
elastomer with i /a < 1 we can restrict ourselves to the capacitor
terms in Eqgs. 3 or 5 employed in the main text. Note that there,
for practical convenience, we use the International System of
Units and the conventional notation U for the asymmetric part
of the potential (voltage) v, as defined in Eq. 83.

Although the capacitor term looks deceptively simple, its spa-
tial inhomogeneity accounts for one more subtle and important
effect. In plane DEAs with conducting equipotential electrodes,
there are no lateral electrostatic forces acting on the elastomer,
whereas for nonconducting elastomers with fived charges they are
present and should be reflected in the electrostatic energy. The
obtained formulas show that within the approximations made,
such forces are taken into account simply by the capacitive energy
expression with a variable voltage. Indeed, the potential varies
along the surface exactly because the charge distribution is
different from that on the equipotential plates of conventional
capacitors. The charge distribution might be rather homogeneous
in the beginning of the corona spraying cycle. This creates an ele-
vated potential in the center, which deflects subsequently arriving
ions toward the edge of the stripe as the charging proceeds. As a
result, the final charge density is higher toward the edges, but is
not as high as for conducting electrodes. The elevated potential
(and voltage) in the middle of the stripe were indeed measured
experimentally.

Additional Historical Information. For the interested reader we have
copied a few pivotal parts of Quincke’s and Rontgen’s work in the
original German version together with translations in English. In
the translation we have tried to keep the initial intent and siylistic
flavor of the authors.

Translation of extracts from Quincke’s work titled “On eleciri-
cal expansion” (original German version compiled in Fig. $5) (3):

One will learn from this that solid and liquid isolators
change their volume, if they are, similarly to the glass
of a Levden jar, exposed to electrical forees. The volume
can increase thereby, what is the most typical, but it can
also decrease. The volume change does not originate
from electrical compression. The expansion of the glass
caused by the electrical forces is homogeneous in all di-
rections, like a thermal expansion, but it does not origi-
nate from warming. Simultaneously with the dimensions,
also the elastic force of the isolator changes under the
influence of the electrical forces. One set of substances
shows a decrease here, another set shows an increase.
Thermometer capacitors made of caoutchouc were fab-
ricated in such a way, that in one end of a long, black
caoutchouc hose a capillary tube with a fused-in platinum
wire was cemented with Shellac and Canada balsam,
whereas in the other end a short tube of flint glass was
drawn to a needle and similarly fixed.

From these experiments one can learn that the volume
increase of caoutchouc is, like it is true for glass and glim-
mer, almost proportional to the square of the electric po-
tential difference between the capacitor electrodes.
Under equal conditions the increase for fresh caocutchouc
is ten times higher than for glass; for caputchoue, which
was in contact with water for two days, values are similar
to glass.

Translation of extracts from Rontgen’s work titled “On the
shape- and volume changes of dielectric bodies caused by elec-
tricity” (original German version compiled in Fig. S6) (4):
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Finally, to those colleagues, who may wish to see an elec-
trical deformation of a solid body without attempting to
quantify the process, I would like to recommend the fol-
lowing experiment, which I carried out in 1876, and which
I on occasion presented to the assembly of natural scien-
tists in Baden-Baden (1879) among other findings. An
approximately 16 em wide and 100 cm long, rectangular
stripe of thin, red caoutchouc is clamped between two
small wooden ledges at the top and the bottom; the upper
clamp is attached to some kind of arm or hook in such a
way, that the caoutchouc stripe hangs freely; the bottom
clamp is loaded with weights, which stretch the stripe
approximately to the double length. After having waited
till the elastic aftereffect has become imperceptible, one
observes the position of the bottom end of the stripe, for
example on a paper scale placed nearby, while the
caoutchouc is electrified by an assistant. For that purpose
the assistant holds in each hand an isolated comb of
needles, where one of them is connected by a conductor
to the positive and the other to the negative electrode of a
strong Holtz influence machine; the caoutchouc stripe

{Pergamon, New York), 2nd Ed., Course of Theoretical Physics, Vol. 8.

. Landau LD, Lifshitz EM, Pitzewkil LP (1984) Electrodynamics of Continuous Media 3

hangs between the parallel held combs, but the former
is not touched by the needles. As the assistant starts
for example at the top and gradually lowers both combs,
a larger and larger part of the caoutchouc becomes elec-
trified; accordingly one observes a continuous increase of
the length of the band, which finally, when the whole
stripe is electrified, amounts to several centimeters. Since
dry caoutchouc is a good kolator, this lengthening per-
sists for a long time afterward. It can, however, at least
to a large degree, be removed by discharging the stripe,
which is done in a similar way to the charging process; but
the combs have to be now connected to the ground.
Mr. Quincke has ako published (1880) similar experi-
ments and believes that one is allowed to conclude from
them, that the elasticity of solid bodies is changed by elec-
trical forces; I, from my side, regard this conclusion as
rather daring, and after an assessment of Quincke’s
experiments [ didn’t find an inducement to share his
opinion; however, since I am worried that this article
would get too long, I prefer to refrain from disclosing
the motives for my negatory attitude.

Quincke G (1880) Ueber electrsche Ausdehnung. Ann Phys Chem 10:1863-203,

374-414, 513-553.

Kom GA, Kom TM (2000} Msthematical Handbook for Scientists and Engineers 4 pamgen WC (1880) Ueber die durch Electricitit bewirkten Form—und
?eglr;;mm. Theorems, and Formulas for Reference and Review (Dover, New York), Volumendnderungen von dielectrischen Kérpern. Ann Phys Chem 117 71-786.
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Fig. 51. (Left) Nustration of the Kelvin probe technigue for measuring the surface potential. In the Réntgen experiment two Kelvin probes are used to

monitor the surface potential on both sides of the film. (Right): Scheme of the experimental setup with two Kelin probes for measuring the potential
on both surfaces of the elastomer.
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Fig. 52. Schematicillustration of the charges on the elastomer and of the voltages acrossthe elastomer in a thick state with a low stretch ratio and in a thin
state with a high stretch ratio, which also has larger area. Whereas the Left state can be stable under voltage-controlled conditions, the Right state is in the
pull<in region. In the charge-controlled operation mode, both states are thermodynamically stable.

fast timescale
.
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Fig. 53. lllustration of the different deformation dimensiors used in the text. The initial state | is characterized by the dimensions x;, y;, and 2;, and the
weight-loaded state p has sizes x,, ¥ and z,. The transition from the i to p state takes several hours and is partly viscoelastic. State 0 with dimensions
Xa, Vo, and 2, is an auxiliary starting state, which dicards viscoelastic effects. The prestretches Ay, ,, .. characterize the transition from 0 to p. The charged
state has the dimensions x, , and z and is characterized by the secondary stretches 2, o, .. referred to the p state.
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1.3  prestretch A= 142
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secondary stretch ratio i

1.0 =

1.0 14 1.2
secondary stretch ratio A

Fig.54. Relation between the lateral secondary stretches 2, and 1. It allows one to deduce real nonviscoelastic prestretch A, experimentally. The solid curve,
fit with the first equation of Eq. 8, uses a prestretch value of 4,, =142,
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G. Quineke. 165

Man wivd davaus ersehen, dass feste und flissige Iso-
latoren ihr Volumen Hndern, wenn man sie, Hhulich wie
das Glas einer Lieydener Flasche, electrischen Kriften aussetat.

Das Volumen koann dabei vermehrt werden, was das ge-
wohnlichste ist, oder such vermindert werden. Die Volumen-
#nderung rithrt nieht von electrischer Compression her.

Die von electrischen Kriften hervorgerufeme Ansdeh-
nung des Glases erfolgt nach allen Richtungen gleichmilesig,
wie dureh Erwirmung, rithrt sher nicht von Brwlrmung her.

Gleichzeitig mit den Dimeneionen dndert sich auch die
elpstische Kraft des Isolators unter dem Binlusse der elec-
trischen Eriifte. Bei einer Reihe Substanzen nimmt sie da-
durch ah, bei einer andern Reihe zu.

§ 18, Thermometercondensatoren aus Kaui-
schuk worden in der Weise hergestellt, dass in dew einen
Eﬂe eines langen, schwarzen Eautschukschlauchs sine CUa-
pillarréhre mit eingeschmolzenem Platindraht, in dem andern
Tnde ein kurges, in eine Bpitze susgezogenes Flintgluswols
mit Hehellack und Canadsbalsam eingekittet wurde.

Aus diesen Versuchen geht bLervor, dass die Volumen-
zunabme des Kautschuks wie bei Glas und Glimmer nahezu
proportional ist dem (Quadvate der electrischen Potential-
differenz nuf beiden Belegungan des Condensators, Bel sonst
gleichen Umstiinden ist die Zunalme filr frischen Kantschule
mehr als zehnmal grisser als bel Glas; fir Kautschulk, der
zwei Tuge mit Wasser in Beribrung gewesen, etwa ehenso
gross wie bei Glas. -

Fig. §5. Extracts from Quincke’s original work in German.

Keplinger et al. www. pnas.org/egi/doi 0.1073pnas 0913451107
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786 W. C Rintgen.

Zuin Schluss mtchte ich denjenigen Fachgenossen, welche
vielleicht eine elsctrische Deformation eines fasten Kbrpers zu
sehen witnschen, ohne dieselbe messend vérfolgen zu wollen,
folgenden Versuch empfeblen, den ich im Jahr 1878 angestallt
md bei Gelegenheit der Naturforscherversammbung za Baden-
Buden (1878) nnter anderen mitgetheilt habe.) Hin lll'Eth.ﬂfx]J.l'
16 cm breiter und 100 om langer, rechteckiger Streifen aus

1) Riéntgen, Tageblatt der 62, Versammlung, p. 184 1878,
e, & Phye u Chem. . B XL 50

diinpem, rothem Fautschulk wird oben und unten gwischen je
awei Holzleistehen festgeklemmt; die obere EKlemme wird an
irgend einem Aym oder Haken so befestigt, dass das Kant-
gelmkband frei heranterhiingt; an die untere Klemme werden
(Gewichte gehfmgt, welche den Streifen ungefihr auf die dop-
pelte Linge ansdebnen. Nachdem man gewartet bat, bis die
¢lpstiscke Nachwirkmg wumerklich geworden ist, beobachted
man den Stend des untern Endes des Streifems, etwa an einer
daneben anfgestellten Papierscaln, undiiest mun den Kantsohule
von einem Gebiilfen electrisiren, Der Gehillfe hiilt su disgem
Zweck in jeder Hand einen isolivten Spitzenkamm, von denen
der eine mit der positiven, der andere mit der negativen Elec-
trode einer kriftigen Holtz'schen Maschine in leitender Ver-
bindung steht; zwischen den pavallel gehaltenen Kimmen hingt
das Kautsehukband, dasselbe wird aber micht von den Spitzen
beriilwt, Indem nun der Gebiilfe etwa am obern Ende an-
fingt und allmithlich wit beiden Kimmen herunterfilrt, wird
gin immer grdissersr Theil des Mauntschuks electrisirt; dem
entsprechend beobachtet man eime fortwiilrende Lingenmu-
nehme des Bandes, welche schissslich, wenn der ganze Streifen
clectrisivt ist, mehwere Centimeter betrigt. Da trockener Kaut-
schuk ein guter Isolator ist, danert diese Verlangerung lingera
Zeit. Dieselbe kann aber, wenigstens zum grissern Theil auf-
gehoben werden, indem man den Streifen entladet, was in Ahn-
licher Weise geschicht wie das Laden; pur missen jetst beide
Eimmes zur Erde abgeleitet sein.

Aunch Hery Qumincke hat (1880) dhnheche Versuche ver-
difentlicht tnd glaubt ans denselben schliessen zu dinfen, dass
die Elpsticitit der festen Edrper durch electrische Krfifte ge-
indert werde; ich halte eine solehe Schlussfolgerung wiederum
fitr sehr gewagt und haba nach einer Pritfang der Quinclke’-
schen Versuche keine Veranlasyng gefunden, diese Audlzssung
an der meinigen zu machen; do ich jedoch befiirchte, dass der
vorliegende Aufsatz eine on grosse Ausdehnung erhalten wirds,
so michie ich die Mitthellang der Motive zu meinsm ableh-
nenden Verhalten unterlassen,

Griessen, September 188(.

Fig. 6. Extracs from Rontgen's original work in German.
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Movie 51. lllustration of the reversibility of the large deformations of an elastomer surface with sprayed-on electrical charges.
Movie 51 (MPG)

Mowvie 52, |llustration of the operation of the electrode-free bending actuator.

Movie 52 (MPG)
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