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1 Introduction

A competitive model of the labor market implies that the development of individual earnings

over the life cycle will follow the development of individual marginal productivity. Beside factors

such as on-the-job learning and better employer matches, which increase the productivity of

workers over time, shocks to aggregate labor demand - such as a major recession - can also have

an impact on wage rates. In a spot labor market, however, those temporary changes to labor

demand are relately short lived and should not influence wages over prolonged periods of time.

This view has been seriously challenged both by studies on cohort size effects (Welch, 1979)

and studies on the impact of early career problems on later outcomes. The general approach

taken by these studies is to assess the initial wage or employment penalties from entering the

labor market in a bad year and to test whether this initial impact persists over time. Raaum

and Roed (2006), e.g. show for Norway, that school leavers facing particularly depressed labor

market conditions at the start of their career face a higher risk of unemployment both initially

and after ten years. Oreopoulos et al. (2008) study careers of Canadian college graduates and

find a high initial wage penalty of entering in a recession, but the penalty fades away during the

first decade of a worker’s career. 1

In this paper we study a slightly different aspect of the impact labor market entry conditions

can have on career development. We depart from the traditional strategy of modeling wage

or employment outcomes at a particular point in time, but we focus on mobility throughout

the complete career path. Thereby our aim is twofold. First, we want to identify specific

career patterns that characterize the earnings development of individuals after entry in the labor

market. The idea is to extend the traditional mover/stayer classification to a wider variety of

career types. Intuitively, some individuals may be in stable employment relationships throughout

their working lives, while others are observed in more volatile jobs; still others could be considered

as social climbers with a consistent upward mobility, while others could be characterized as losers

with a high tendency of downward mobility. Our second goal is find out whether labor market

conditions at the start of one’s career have an impact on the type of career pursued over the

1Studies for Austria (Brunner and Kuhn, 2009), the UK (Burgess et al., 2003), Japan (Kondo, 2007), Sweden
(Kwon and Meyersson-Milgrom, 2007) or the US (Oyer, 2006; Kahn, 2009; Genda et al., 2010) use essentially the
same strategy.
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lifetime. While entering the labor market in a recession might impose an immediate penalty

in the form a lower starting wages, it might also influence the life-time career path; i.e. an

individual might be characterized by a different career-type when entering the labor market in

a recession as opposed to a boom period.

The statistical problem behind our empirical analysis consists of finding groups of similar

time series in a set or panel of time series that are unlabeled a priori. In this paper we introduce

new clustering techniques which determine subsets of similar time series within the panel. Com-

pared to cross-sections, distance-based clustering methods are rather difficult to define for time

series data. Frühwirth-Schnatter and Kaufmann (2008) demonstrated recently that model-based

clustering based on finite mixture models (Banfield and Raftery, 1993; Fraley and Raftery, 2002)

extends to time series data in quite a natural way. The crucial point in model-based cluster-

ing is to select an appropriate clustering kernel in terms of a sampling density which captures

salient features of the observed time series. Various such clustering kernels were suggested for

panels with real-valued time series observations by Frühwirth-Schnatter and Kaufmann (2008)

and Juárez and Steel (2010). The econometric methods we develop in this paper will also be of

interest in other areas of applied statistics like economics, finance or public health where it is

often desirable to find groups of similar time series in a set of a-priori unlabeled time series.

For discrete-valued individual level panel data such as the panel considered in this paper,

clustering kernels are typically based on first-order time-homogeneous Markov chain models.

For discrete-valued time series it is particularly difficult to define distance measures and model-

based clustering has been shown to be a useful alternative. Fougère and Kamionka (2003), for

instance, considered a mover-stayer model in continuous time which is a constrained mixture of

two Markov chains to incorporate a simple form of heterogeneity across individual labor market

transition data. Mixtures of time-homogeneous Markov chains both in continuous and discrete

time are also considered in Frydman (2005) including an application to bond ratings migration.

Pamminger and Frühwirth-Schnatter (2010) construct more general clustering kernels based on

first-order time-homogeneous Markov chain models to capture unobserved heterogeneity in the

transition behavior within each cluster. In this paper we further extend clustering of Markov

chain models based on discrete-valued data panel further by modeling the prior probability to

belong to a certain cluster to depend on a set of covariates via a multinomial logit model. The
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determinants we consider in our application are individual characteristics, such as the type of

skill and occupation, and local labor market characteristics at the time of entry.

For estimation, we pursue a Bayesian approach which offers several advantages compared to

EM estimation considered, for instance, in Frydman (2005). In particular, Bayesian inference

easily copes with problems that occur with ML estimation if for any cluster no transitions are

observed in the data for any cell of the cluster-specific transition matrix. A Bayesian approach to

Markov chain clustering has been used earlier by Pamminger and Frühwirth-Schnatter (2010),

and by Fougère and Kamionka (2003) for the special case of a mover-stayer model. In the

present paper we extend the two-block Markov chain Monte Carlo sampler of Pamminger and

Frühwirth-Schnatter (2010) to the mixture-of-experts extension of their method. To estimate the

parameters in the multinomial regression model describing group membership we use auxiliary

mixture sampling in the dRUM representation (Frühwirth-Schnatter and Frühwirth, 2010). This

method turned out to be superior to other MCMC methods such as Frühwirth-Schnatter and

Frühwirth (2007), Scott (2009) and Holmes and Held (2006) in term of the effective sampling

rate.

2 Data

Our empirical analysis is based on data from the Austrian Social Security Data Base (ASSD),

which combines detailed longitudinal information on employment and earnings of all private

sector workers in Austria since 1975 (Zweimüller et al., 2009).

The sample we consider consists of N = 49 279 male Austrian workers, who enter the labor

market for the first time in the years 1975 to 1985 and are less than 25 years old at entry. We do

not consider females in our sample, because hours of work are not observed. For non-Austrian

citizens it is not always clear, if we can measure the entry in the labor market correctly. We

extract yearly earnings observations measured by gross monthly wages in May of successive years

and observe wages for a time span between 2 to 31 years. The the median time an individual

is observed in our panel is equal to 22 years. Following Weber (2001), the gross monthly wage

is divided into six categories labeled with 0 up to 5. Category zero corresponds to zero-income,

i.e. unemployment or out of labor force. The categories one to five correspond to the quintiles
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of the income distribution which are calculated for each year from all non-zero wages observed

in that year for the population of all male employees in Austria. The use of wage categories

has the advantage that no inflation adjustment has to be made and that it circumvents the

problem that in Austria recorded wages are right-censored because wages that exceed a social

security payroll tax cap are recorded with exactly that limit only. We cut the time series of

workers who had zero income for more than five years. For individuals first observed in the data

as apprentices, we consider their first ”real” wage-income as the point job entry, because the

apprenticeship allowance is very low compared to average wages.

As we are interested in characterizing the wage path since the first job, we are including

only pre-determined variables, like age, education and type of first job; all other variables,

like job mobility or work experience or tenure are endogenous. As education is not directly

available in the data, we approximate it with apprenticeship education and age at entry in

the first job: We take young men who served more than 2.5 years as apprentice, as baseline.

We consider young men entering the labor market before their 18th birthday without having

finished apprenticeship as “unskilled”. Furthermore, those starting after their 18th birthday

without finishing apprenticeship are coded as “skilled”, because they are likely to have finished

some kind of higher education such as high school or university.

The period from 1975 to 1985 for which we observe labor market entries is characterized by

a fair amount of business cycle variation, ranging from a boom period in the mid 1970’s to the

recession in the early 1980’s. The state of the labor market is captured by the unemployment

rate across 65 counties, which is measured at the date of entry into the labor market.

3 Method

3.1 Mixtures-of-Experts Markov Chain Models

As for many data sets available for empirical labor market research, the structure of the data

introduced in Section 2 takes the form of a discrete-valued panel data. The categorical outcome

variable yit assumes one of K states, labeled by {1, . . . ,K}, and is observed for N individuals

i = 1, . . . , N over Ti discrete time periods, i.e. for t = 0, . . . , Ti. For each individual i, we

model the state of yit in period t to depend on past values of the outcome variable, e.g. on the
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state of yi,t−1 in a first order model. Furthermore, we allow the transition process to depend on

observable and unobservable covariates. Subsequently, yi = {yi1, . . . , yi,Ti} denotes an individual

time series, excluding the initial state yi0.

3.1.1 Markov Chain Clustering

Individual level transition data can be considered as a special case of a panel of discrete-valued

time series. To capture the presence of unobserved heterogeneity on the dynamics in a panel of

discrete-valued time series, Pamminger and Frühwirth-Schnatter (2010) extended model based

clustering as introduced by Frühwirth-Schnatter and Kaufmann (2008) to this type of time series.

They assume that H hidden clusters are present in the panel and a clustering kernel p(yi∣#ℎ)

with cluster-specific parameter #ℎ is used for describing all time series in group ℎ, ℎ = 1, . . . , H,

i.e. p(yi∣Si,#1, . . . ,#H) = p(yi∣#Si), where Si ∈ {1, . . . ,H} is a latent group indicator. To

capture the discrete nature of the data, Pamminger and Frühwirth-Schnatter (2010) considered

various clustering kernel p(yi∣#ℎ) based on Markov chains like Markov chain clustering, Dirichlet

multinomial clustering and clustering based on inhomogeneous Markov chains. Markov chain

clustering, for instance, is based on modeling separate transition processes for each group through

a first-order time-homogeneous Markov chain model with cluster-specific transition matrix »ℎ,

where »ℎ,jk = Pr(yit = k∣yi,t−1 = j, Si), j, k = 1, . . . ,K. Hence each row of »ℎ represents a

probability distribution over the discrete set {1, . . . ,K}, i.e. ∑K
k=1 »ℎ,jk = 1. The clustering

kernel p(yi∣»ℎ) reads with #ℎ = »ℎ:

p(yi∣»ℎ) =
Ti∏

t=1

p(yit∣yi,t−1, »ℎ) =
K∏

j=1

K∏

k=1

»
Ni,jk

ℎ,jk , (1)

where Ni,jk = #{yit = k, yi,t−1 = j} is the number of transitions from state j to state k observed

in time series i. Note that we condition in (1) on the first observation yi0 and the actual number

of observations is equal to Ti for each time series.

A special version of this Markov chain clustering method has been applied to labor market

transition data in Fougère and Kamionka (2003) who considered a mover-stayer model where

H = 2 and »1 is equal to the identity matrix while only »2 is unconstrained. Frydman (2005)

considered another constrained mixture of Markov chain models where the transition matrices
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»ℎ, ℎ ≥ 2, are related to the transition matrix »1 of the first group through »ℎ = I−Λℎ(I− »1)

where I is the identity matrix and Λℎ = Diag (¸ℎ,1, . . . , ¸ℎ,K) with 0 ≤ ¸ℎ,j ≤ 1/(1 − »1,jj)

for j = 1, . . . ,K. In contrast to these approaches, Pamminger and Frühwirth-Schnatter (2010)

assume that the transition matrices »1, . . . , »H are entirely unconstrained which leads to more

flexibility in capturing differences in the transition behavior between the groups.

3.1.2 Modeling prior group membership

Clustering as in Pamminger and Frühwirth-Schnatter (2010) is based on the standard finite mix-

ture model which assumes that the group indicators S = (S1, . . . , SN ) are a priori independent

with Pr(Si = ℎ) = ´ℎ such that
∑H

ℎ=1 ´ℎ = 1. In the present application this assumption implies

that each individual has the same prior probability to follow a particular group-specific career

dynamic, regardless of the individual’s observable characteristics or the circumstances at labor

market entry.

To obtain a more meaningful model for the data introduced in Section 2, an extension of

model-based clustering for discrete-valued panel data which allows pre-determined variables to

impact on group membership is suggested in this subsection. Specifically, we model prior group

membership Pr(Si = ℎ) through a multinomial logit model (MNL) for S:

Pr(Si = ℎ∣¯2, . . . ,¯H) =
exp (xi¯ℎ)

1 +
∑H

l=2 exp (xi¯l)
, (2)

where xi is a row vector of regressors, including 1 for the intercept and ¯2, . . . ,¯H are group-

specific, unknown parameters. This model is known as mixture-of-experts models, see e.g.

Frühwirth-Schnatter (2006) and has been applied in many different areas, see e.g. For identifia-

bility reasons we set ¯1 = 0, which means that ℎ = 1 is the baseline group and ¯ℎ is the effect

on log-odds ratio relative to the baseline. Mixture-of-experts models yield important insights

into the factors that determine group membership (Frühwirth-Schnatter and Kaufmann, 2008).

Model (2) allows us to capture the influence of individual characteristics, cohort effects, or

labor market conditions that are determined at time of the entry in the labor market on group

membership and thereby on mobility patterns. As will be demonstrated in Subsection 3.1.3, we

deal with the initial condition problem present in discrete-time dynamic panels by adding the
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initial wage category to the set of regressors appearing in xi.

3.1.3 A simple solution to the initial conditions problem

Inference in Pamminger and Frühwirth-Schnatter (2010) is carried out conditional on the initial

condition yi0, by treating this variable as exogenous. In our dynamic model with unobserved

heterogeneity this assumption implies that the initial period earnings yi0 are independent of

group membership Si, which is apparently a very unsatisfactory assumption.

There is a long literature discussing the problem with initial conditions in non-linear dy-

namic models with unobserved heterogeneity. See Heckman (1981) for an early reference and

Wooldridge (2005) for a recent review. These papers focus on models where unobserved hetero-

geneity is captured through an individual effect Si following a continuous distribution. However,

the initial condition problem has also been addressed also in the case where Si follows a discrete

distribution as for model based clustering in a transition model.

To handle the initial condition problem, we recall that the joint distribution of yi0, . . . , yi,Ti

and Si may be formulated in a way that separates the choice of the clustering kernel density

p(yi1, . . . , yi,Ti ∣yi0, Si,µ) from the choice of a joint model for yi0 and Si:

p(yi0, . . . , yi,Ti , Si∣µ) = p(yi1, . . . , yi,Ti ∣yi0, Si,µ)p(yi0, Si∣µ), (3)

where µ contains all unknown model parameter.

Evidently, there exist two ways of formulating a joint distribution p(yi0, Si∣#) for yi0 and Si.

The first approach, which closely follows the suggestions discussed in Heckman (1981), specifies

a conditional model for the initial condition yi0 conditional on unobserved heterogeneity Si and

a marginal model for Si:

p(yi0, Si∣#) = p(yi0∣Si,#)p(Si∣#). (4)

For the choice of p(yi0∣Si,#) two approaches have been applied in the literature. One of them

relies on the existence of a stationary distribution of p(yi0∣#2) = ¼∞(yi0;#2). This assumption

is unattractive in our case, as starting wages usually are not drawn from a stationary wage

distribution. The other approach consists of directly modelling p(yi0∣Si,#) i.e. as a multinomial
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logit model where some parameters have to be group-specific (that is switching with Si) to

achieve dependence between yi0 and Si. In our case this would lead to a complicated parametric

structure, because in certain groups we may find only very few individuals in certain initial

states and thus run into problems with parameter identification.

For this reason, we prefer the second approach, which extends the “simple solution to the

initial conditions problem” suggested by Wooldridge (2005) to model-based clustering in dy-

namic panels. We specify p(yi0, Si∣µ) appearing in (3) by formulating a conditional model for

unobserved heterogeneity Si for a given initial condition yi0 and a marginal model for yi0:

p(yi0, Si∣#) = p(Si∣yi0,#)p(yi0∣#). (5)

In terms of our clustering procedure this means that the logit model used for modeling Si has

to be extended such that it depends on the initial conditions yi0. This is achieved by adding

indicator variables for the initial states to the covariate matrix xi of the MNL model introduced

for Si in (2).

Our approach is directly related to Wooldridge (2005)’s treatment of the Maximum Likeli-

hood case, where he models the mean of the random intercept distribution as being dependent

on the initial state. Under the assumption that p(Si∣xi,#1) and p(yi0∣#2) have no common pa-

rameters, the marginal distribution p(yi0∣#2) need not be specified explicitly, because it cancels

from all posterior distributions.

3.2 Model Specification

We specify the model for earnings dynamics of labor market entrants as a fist order Markov

model with group specific transition parameters:

Pr(yit = k∣yi,t−1 = j, Si = ℎ) = »ℎ,jk. (6)

The estimated parameters are »ℎ,jk with j, k ∈ {1, . . . ,K} and ℎ = 1, . . . ,H. Our model treats

the group membership indicator Si and the number of different groups H as latent parameters.

See the next subsection 3.4 for the procedure used to determine H.

Group membership, or Pr(Si = ℎ), is modeled by the multinomial logit model given by
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equation (2). To address the initial condition problem we model Pr(Si = ℎ∣xi, yi0) as outlined

in Subsection 3.1.3 we extend the list of covariates by variables z that capture the relationship

of unobserved heterogeneity with to the initial earnings categories

Pr(Si = ℎ∣¯2, . . . ,¯H) =
exp (xi¯ℎ + zi°ℎ)

1 +
∑H

l=2 exp (xi¯l + zi°l)
, (7)

The estimated parameters are ¯ℎ and °ℎ. Our choice of variables x includes factors that are

fixed at the time of labor market entry and which we assume to be relevant for the determination

of earnings mobility. We therefore include individual characteristics such as education and the

type of occupation as well as cohort effects, expressed by a set of dummies for the year of labor

market entry. The central variable measuring labor market characteristics at the time of entry

is the unemployment rate in the region and the year of labor market entry.

To allow for correlation of the unobserved group membership with initial earnings, the vari-

ables z are chosen to include a set of indicators for the initial wage category. Our model

specification implies that the only way that covariates impact on earnings trajectories is via

their effect on group membership. To allow for additional flexibility in the relationship between

covariates and initial earnings we include interaction terms between the regional unemployment

rate and earnings categories in the initial period in zi. We experimented with even more flexible

specifications, such as interactions of the initial earnings categories with education or leads and

lags or the unemployment rate. But they did not improve the fit of the model and are thus not

reported here.

Pamminger and Frühwirth-Schnatter (2010) performed an illustrative comparison of two

clustering kernels for discrete-valued time series, namely Markov chain clustering and Dirichlet

multinomial clustering, for a smaller and less well specified version of the panel data set in-

troduced in Section 2. Since this comparison revealed that both methods yielded comparable

results, we decided to focus subsequently on Markov chain clustering, because Bayesian inference

is computationally less demanding, see Subsection 3.3.
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3.3 Bayesian Inference for a Fixed Number of Clusters

In this paper we pursue a Bayesian approach toward estimation for fixed H. S is estimated

along with the group-specific parameters »1, . . . , »H and ¯2, . . . ,¯H from the data.

3.3.1 Prior distributions

We assume prior independence between »1, . . . , »H and ¯2, . . . ,¯H . All regression coefficients

¯ℎj are assumed to be independent a priori, each following a standard normal prior distribution.

The rows of »ℎ are independent a priori each following a Dirichlet distribution, i.e. »ℎ,j ⋅ ∼
D (e0,j1, . . . , e0,jK) for j = 1, . . . ,K with prior parameters e0,j⋅ = (e0,j1, . . . , e0,jK) = N0 × »∗j ⋅

where N0 = 10 and

»∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.7 0.2 0.025 0.025 0.025 0.025

0.15 0.6 0.15 0.03̇ 0.03̇ 0.03̇

0.03̇ 0.15 0.6 0.15 0.03̇ 0.03̇

0.03̇ 0.03̇ 0.15 0.6 0.15 0.03̇

0.03̇ 0.03̇ 0.03̇ 0.15 0.6 0.15

0.025 0.025 0.025 0.025 0.2 0.7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The choice of this prior takes into account that to stay in the same wage category is much more

likely than a transition to another wage category and transitions into adjacent categories are

more likely than into the other categories.

3.3.2 MCMC estimation

For practical Bayesian estimation we extend the Markov chain Monte Carlo (MCMC) sampler

discussed by Pamminger and Frühwirth-Schnatter (2010) to the mixtures-of-experts formulation

introduced in (2). First, a step has to be added to sample the parameters appearing in (2)

conditional on knowing S. Second, model (2) acts as prior group membership in the classification

step:

(a) Sample the cluster-specific transition matrices »1, . . . , »H given S. The various rows »ℎ,j ⋅

of the transition matrices »1, . . . , »H are conditionally independent and may be sampled
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line-by-line from a total of KH Dirichlet distributions:

»ℎ,j ⋅∣S,y ∼ D
(
e0,j1 +Nℎ

j1(S), . . . , e0,jK +Nℎ
jK(S)

)
j = 1, . . . ,K, ℎ = 1, . . . , H, (8)

where Nℎ
j1(S) =

∑
i:Si=ℎNi,jk is the total number of transitions from j to k observed in

group ℎ and is determined from the transitions Ni,jk for all individuals falling into that

particular group.

(b) Sample parameters ¯2, . . . ,¯H given S: draw ¯ from the multinomial logit model (2)

using auxiliary mixture sampling in the dRUM representation (Frühwirth-Schnatter and

Frühwirth, 2010).

(c) Bayes’ classification for each individual i: draw Si, i = 1, . . . , N from the following discrete

probability distribution which combines the likelihood p(yi∣»ℎ) and the prior (2))

Pr(Si = ℎ∣yi,xi,¯, »1, . . . , »H) ∝ p(yi∣»ℎ)
exp (xi¯ℎ)

1 +
∑H

l=2 exp (xi¯l)
, ℎ = 1, . . . , H. (9)

For details on MCMC inference in general, we refer to standard monographs like Geweke (2005)

and Gamerman and Lopes (2006). In step (b), we apply a very efficient method of auxiliary

mixture sampling introduced by Frühwirth-Schnatter and Frühwirth (2010), see Appendix A for

details.

We start MCMC estimation by choosing initial values for the group-indicators S in one of

the following ways: non-random initial clustering such as S = (1, . . . ,H, 1, . . . ,H, . . .), random

initial clustering by sampling Si from (1, ...,H) with replacement, or k-means clustering (as

implemented in R) of the transition frequencies observed for each individual.

3.3.3 Dealing with Label Switching

Like for any finite mixture model, label switching may occur during MCMC sampling, see Jasra

et al. (2005) or Frühwirth-Schnatter (2006, Section 3.5) for a recent review. Pamminger and

Frühwirth-Schnatter (2010) followed Frühwirth-Schnatter (2006, p. 96f) to identify the finite

mixture model, by applying k-means clustering to all MH posterior draws of the vector zm,ℎ =

(»
(m)
ℎ,11, . . . , »

(m)
ℎ,KK)T containing the posterior draws of the group-specific persistence probabilities.
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Provided that the simulation clusters in the point process representation of the MCMC draws are

well-separated, the classification sequence (d
(m)
1 , . . . , d

(m)
H ) corresponding to (zm,1, . . . ,zm,H) is a

permutation of the labels {1, . . . , H}. This classification sequence is used for each m = 1, . . . ,M

to relabel the H MCMC draws (#1, ´1)
(m), . . . , (#H , ´H)(m). The same permutation is used to

relabel the MCMC draws S(m) = (S
(m)
1 , . . . , S

(m)
N ) of the hidden group indicators. Since this

method is unaffected by the mixture-of-expert extension, it may be applied without modifications

to our extension.

3.4 Selecting the Number of Clusters

Despite much research effort, it is still an open issue how to select the number H of clusters

in an optimal manner. The difficulties with identifying H are particularly well-documented for

the BIC criterion (Schwarz, 1978) BIC(H) = −2 log p(y∣µ̂H) + dH logn, where µ̂H is the ML

estimator of µH = (»1, . . . , »H ,¯2, . . . ,¯H), p(y∣µH) denotes the likelihood function, µ̂H is the

ML estimator, and dH is the number of parameters in a model with H clusters. Since the

mixture-of-experts model is applied to panel data it is not obvious how to choose the sample

size n (Kass and Raftery, Jun., 1995). As each time series is modeled independently, the number

N of time series is a natural choice for the sample size, i.e. n = N . On the other hand, since

multiple observations are available for each time series, one might prefer the total number of

observations as sample size, i.e. n =
∑N

i=1 Ti.

TheAIC criterion (Akaike, 1974) defined byAIC(H) = −2 log p(y∣µ̂H)+2 dH is independent

of the sample size, but is well-known to be inconsistent and leads to overfitting the number of

clusters H. BIC(H) is known to be consistent for the number of components, if the component

density is correctly specified (Keribin, 2000), although in small data sets it tends to choose

models with too few components (Biernacki et al., 2000). On the other hand, simulation studies

reported in Biernacki and Govaert (1997), Biernacki et al. (2000), and McLachlan and Peel (2000,

Section 6.11) show that BIC(H) will overrate the number of clusters under misspecification of

the component density.

Since BIC(H) is an asymptotic approximation to minus twice the marginal likelihood

−2 log p(y∣H), see e.g. Kass and Raftery (Jun., 1995), it is not surprising that selecting

H as to maximize the marginal likelihood p(y∣H) or the posterior probability distribution
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p(H∣y) ∝ p(y∣H)p(H) may not be adequate either, as demonstrated in various applications

of model-based clustering, see e.g. Frühwirth-Schnatter and Pyne (2010).

A criterion that was found to be able to identify the correct number of clusters even when

the component densities are misspecified is the approximate weight of evidence AWE(H) (Ban-

field and Raftery, 1993). Biernacki and Govaert (1997) expressed AWE(H) as a criterion

which penalizes the complete data log-likelihood function p(y,S∣µH) with model complexity, i.e

AWE(H) = −2 log p(y, Ŝ∣µ̂C

H) + 2 dH(32 + logn), where (µ̂
C

H , Ŝ) maximizes log p(y,S∣µH).

Various criteria involve the entropy EN(H,µH) = −∑H
ℎ=1

∑N
i=1 tiℎ(µH) log tiℎ(µH), where

tiℎ(µH) = Pr(Si = ℎ∣yi,µH) is the posterior classification probability defined in (9). The

entropy is close to 0 if the resulting clusters are well-separated and increases with increasing

overlap of the clusters. The CLC criterion (Biernacki and Govaert, 1997), for instance, penalizes

the log likelihood function by the entropy rather than by model complexity, i.e. CLC(H) =

−2 log p(y∣µ̂H) + 2EN(H, µ̂H). However, the CLC criterion works well only for well-separated

clusters with a fixed weight distribution, hence its properties are not known for the more general

mixture-of-experts model.

The ICL-BIC criterion (McLachlan and Peel, 2000) penalizes the log likelihood function

both by model complexity and the entropy, i.e. ICL-BIC(H) = BIC(H) + 2EN(H, µ̂H).

Simulation studies in McLachlan and Peel (2000, Section 6.11) indicate that ICL-BIC may

identify the correct number of clusters for (multivariate) continuous data even under a misspeci-

fied multivariate normal clustering kernel. However, simulation studies in Biernacki et al. (2008)

show that this criterion tends to fail for discrete-valued data, even if the true model is used as

clustering kernel.

For discrete-valued data, Biernacki et al. (2008) recommend to use the (exact) integrated

classification likelihood (ICL) which is defined as ICL(H) =
∫
p(y, Ŝ∣µH)p(µH ∣y)dµH , where

p(y,S∣µH) is the complete-data likelihood function and Ŝ This criterion showed good perfor-

mance for latent class models. For Markov chain clustering with the mixture-of-expert extension

the ICL(H) reads:

ICL(H) = p(Ŝ)
K∏

j=1

Ã
Γ(

∑K
k=1 e0,jk)∏K

k=1 Γ(e0,jk)

)H H∏

ℎ=1

∏K
k=1 Γ(N

ℎ
jk(Ŝ) + e0,jk)

Γ(
∑K

k=1(N
ℎ
jk(Ŝ) + e0,jk))

, (10)
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where the integral p(Ŝ) =
∫
p(Ŝ∣¯2, . . . ,¯H)p(¯2, . . . ,¯H)d¯2, . . . ,¯H is approximated by im-

portance sampling where for each ℎ = 2, . . . , H a multivariate normal distribution is used as

a proposal density for ¯ℎ where the mean and covariance matrix are set to the corresponding

MCMC sample estimates.

4 Results

To identify groups of individuals with similar wage career, we applied Markov chain clustering

for 2 up to 5 groups. For each number H of groups we simulated 10 000 MCMC draws after a

burn-in of 5 000 draws with a thinning parameter equal to 5.

4.1 Model Selection and Clustering

The model selection criteria described in Section 3.4 are applied to select the number H of

clusters, see Figure 1.

AIC and BIC decrease with increasing H and suggests at least 5 components. However, as

outlined in Section 3.4, we cannot expect that the Markov chain model is a perfect description

of the component-specific distribution for time series in a real data panel. Thus it is likely that

BIC is overfitting and that two or even more components in the mixture model correspond to

a single cluster with rather similar transition behavior.

This hypothesis is supported by the other criteria; all of which suggest a smaller number of

clusters. As described in Section 3.4, the evaluation of these criteria is based on approximate

ML/MCL-estimators µ̂H and (µ̂
C

H , Ŝ) derived from all available MCMC draws. To check the

stability of model choice we repeated several independent MCMC runs (see Figure 1). CLC,

ICL-BIC and particularly the (exact) ICL indicate three clusters for different MCMC runs.

However, the AWE refers to a four-group solution which has also more importance from an

economic point of view. We can easily interpret four different wage-mobility groups, which are

characterized by the trend over time and the variability of earnings: an upward, a downward

group as well as a static and a mobile group.

In the following, we concentrate on the four-cluster solution in more detail because this

solution led to more sensible interpretations from an economic point of view. The model is
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identified as described in Subsection 3.3.3 by applying k-means clustering to the MCMC draws.

All classification sequences resulting from k-means clustering turned out to be permutations of

{1, . . . , 4} and allowed straightforward identification of the four-components model.

Individuals are assigned to the four wage mobility groups using the posterior classifica-

tion probabilities tiℎ(µH) = Pr(Si = ℎ∣yi,µH) for H = 4. The posterior expectation t̂iℎ =

E(tiℎ(µ4)∣y) of these probabilities is estimated by evaluating and averaging tiℎ(µ4) over the last

10 000 MCMC draws of µ4 with a thinning parameter equal to 5 (with effectively 2000 draws

remaining). Each employee is then allocated to that cluster which exhibits the maximum pos-

terior probability, i.e. Ŝi is defined in such a way that t̂i,Ŝi
= maxℎ t̂i,ℎ. The closer t̂i,Ŝi

is to 1,

the higher is the segmentation power for individual i.

4.2 Estimation Results

4.2.1 Analyzing Wage Mobility

To analyze wage mobility in the different clusters we investigate for each ℎ = 1, . . . , 4 the pos-

terior expectation of the group-specific transition matrix »ℎ. The four group-specific transition

matrices are best visualized in Figure 2 using “balloon plots” 2. The circles are proportional to

the size of the corresponding entry in the transition matrix. Based on these transition matrices,

we assign a labeling to each cluster, namely “upward”, “static”“downward”, and “mobile”.

A remarkable difference in the transition behavior of individuals belonging to different clus-

ters is evident from Figure 2. Consider, for instance, the first column of each matrix containing

the risk for an individual in income category j to drop into the no-income category in the next

year. This risk is much higher for the “downward” cluster than for the other clusters.

The probability to remain in the no-income category is located in the top left cell and is

again higher in the “downward” cluster than in the other ones. The remaining probabilities in

the first row correspond to the chance to move out of the no-income category. These chances are

smaller for the “downward” cluster than for the other clusters. In the “upward” cluster chances

are high to move into any wage category while in the “static” cluster only the chance to move

in wage category one is comparatively high.

2They are generated with the function balloonplot() from the R package gplots (Jain and Warnes, 2006).
Full numerical results together with standard deviations are in the Appendix.

16



For all matrices, the main diagonal refers to the probabilities to remain in the various wage

categories. Persistence is highest in the “static” cluster. Members of the “mobile” cluster

move quickly between the various wage categories. The upper secondary diagonal represents the

chance to move forward into the next higher wage category, which is higher in the “upward” and

“mobile” cluster than in the other clusters. On the other hand, the lower secondary diagonal -

representing the risk to move into the next lower wage category - is stronger in the “downward”

cluster.

Based on the posterior classification probabilities we can also calculate the size of the clusters:

29% of persons belong to the “static” cluster, 27% to the “upward” group and 25% to the

“mobile” cluster; only 20% of male workers starting a career fall in the “downward” trap.

In Figure 3 these “balloon plots” are adjusted to show relative transition frequencies within

groups: the entries in each matrix sum to one. We can see easily that the mass of individuals’

transitions in the “upward” cluster lies in the bottom left corner, the reverse is true for the

“downward” cluster. For the “static” group most individuals are located in the center and the

lower quintiles, whereas in the “mobile” group the pattern is more diverse, but concentrated in

the upper quintiles.

These differences in the transition matrices between the clusters have a strong impact on the

long-run wage career of the group members, as shown by Figure 4. This figure starts for each

cluster ℎ with an initial wage distribution ¼ℎ,0 at t = 0 which is estimated from the initial wage

category yi0 observed for all individuals i being classified to group ℎ. The posterior expectations

E(¼ℎ,t∣y,¼ℎ,0) of the cluster-specific wage distribution ¼ℎ,t after t years (¼ℎ,t = ¼ℎ,0»
t
ℎ) are

shown for several periods as well as the steady state. 3

For t = 100, the wage distribution is already practically equal to the steady state ¼ℎ,∞ of

the transition matrix »ℎ, i.e. ¼ℎ,∞ = ¼ℎ,∞ »ℎ. In the “downward” cluster the steady state is

reached after only a few years, whereas in the other three clusters it takes one to two decades.

The wage distributions shown in Figure 4 are consistent with our labeling of the clusters

introduced earlier. Young men belonging to the “downward” cluster have a much higher risk

to start in the no-income category then any other young men. Furthermore, about 40% of the

3The posterior expectation is estimated by averaging MCMC draws of ¼ℎ,t obtained by computing ¼ℎ,t for
t = 1, . . . , 100 for the last 10000 MCMC draws with a thinning parameter equal to 5 (with effectively 2000 draws
remaining) of »ℎ.
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members of this group have no income in the long-run. For young men belonging either to the

“mobile” or the “upward” cluster there is little difference between the initial wage distribution

when they enter the labor market. However, in the long run the pattern diverges considerably:

while the members of the “upward” cluster gather themselves in the upmost quintiles, those

from the “mobile” cluster are to be seen in the middle of the wage distribution. Members from

the “static” cluster end up in a very balanced steady state.

4.2.2 Posterior Classification

Table 2 analyzes the segmentation power for the clustering method by reporting the quartiles

and the median of classification probabilities t̂i,Ŝi
defined in Subsection 3.3.3 within the various

groups as well as for all individuals. We find that the overall segmentation power is rather high.

3 out of 4 individuals are assigned with at least 63.8% to their respective groups. For 1 out

of 4 individuals assignment probability amounts to at least 97.5%. Segmentation power varies

between the clusters and is the highest for the “upward” cluster and the lowest for the “mobile”

cluster.

4.2.3 The Impact of Observables on Group Membership

The previous clustering analysis was more descriptive, specifying common mobility patterns

of certain groups in the labor market. From an economic point of view, it is interesting to

understand, what characteristics of a particular person makes him more prone to fall into one

or the other cluster. Moreover, our main question is: do random differences in the labor market

situation at the time of entry in the labor force have a long-run impact on mobility behavior of

workers? We model the prior probability of an individual to belong to a certain cluster by the

multinomial logit model specified in equation (7). The estimation results are presented using

the “upward” cluster as baseline.

As discussed above, we capture the general labor market situation at the time of entry into

the labor market by the unemployment rate in the district together with a set of yearly time

dummies to control for unspecified time trends. Further we allow for impacts of educational

categories and the type of occupation on mobility patterns. To model the correlation between

group membership and initial earnings categories in period zero, we add dummies for the wage

18



category at entry with non-employment or zero income serving as baseline. Correlation between

labor market entry conditiona and entyr wages are captured by interaction terms between these

dummies and the unemployment rate.

Bayesian inference for the regression parameters in this multinomial logit model is summa-

rized in Table 3, which reports the posterior expectations and the posterior standard deviations

of all regression parameters. The results show that, indeed, bad economic conditions at the time

of entry reduce the probability of an individual to end up in the favorable “upward” cluster.

Individuals are almost equally shifted towards one of the three other clusters. This result is re-

markable because other studies were primarily concerned with short-run impacts of a bad start,

whereas differen mobility patterns are a typical long-run phenomenon.

The other results are mostly according to expectations: individuals starting in white-collar

jobs are most likely to end up in “upward” clusters and least likely in “downward” clusters. The

picture is less clear for our skill categories: while skilled workers are most likely to be classified

in the “upward” cluster, the unskilled are most likely to be in the “static” cluster and least likely

to be in the “upward” and in particular the “mobile” cluster.

We include dummy variables to indicate in which wage quintile the worker started his first

job to control for initial conditions. The initial earnings category is an important determinant

of group membership, which implies that there is substantial correlation between unobserved

heterogeneity and initial conditions. The coefficients are fairly consistent in the sense that

starting in a high wage quintile makes it much less likely to end up in the “downward” or the

“static ” cluster; there is no consistent pattern relating the starting wage with either being in the

“mobile ” or the “upward” cluster, though. No clear pattern emerges from the interaction terms

between unemployment rate and initial earnings categories. Those terms are included mainly

to allow for arbitrary correlations between the initial conditions and the covariates influencing

group membership, therefore we do not give them any interpretation. We note, however, that

the inclusion of the interaction terms has a significant impact.
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5 Conclusions

In this paper we discussed an approach to model-based clustering of categorical time series

based on time-homogeneous first-order Markov chains with unknown transition matrices. In the

Markov chain clustering approach the individual transition probabilities are fixed to a group-

specific transition matrix.

We discussed in detail an application of this approach to modeling and clustering a panel of

Austrian wage mobility data describing the wage career of nearly 50 000 young men entering the

labor market between 1975 and 1985. Model choice indicated in terms of posterior probability

(approximated by BIC) that for this cohort the labor market should be segmented into three/four

groups. The group-specific transition behavior turned out to be very different across the clusters

and led to a meaningful interpretation from an economic point of view showing four types of

wage careers, namely “mobile” , “downward”, “upward”, and “static”.

We investigated the segmentation power of the four-group solution and found that it is rather

high. 3 out of 4 individuals are assigned with at least 63.8% probability to their respective cluster.

We conclude from our investigation that this clustering kernel is a sensible tool for model-

based clustering of discrete-valued panel data.

For other panels of discrete-valued time series other clustering kernels might be sensible.

More complex clustering kernels could involve the use of kth order Markov chains in order to

extend the memory of the clustering kernel to the past k observations, see e.g. Saul and Jordan

(1999). MCMC estimation as discussed in this paper is easily extended to this case. Another

promising alternative is to use inhomogeneous Markov chains as clustering kernels. This method

could be based on modeling each row of the transition matrix through a dynamic multinomial

logit model with random effects.

Using a dynamic multinomial logit model with random effects as clustering kernel has the

advantage that it allows to include subject-specific as well as aggregate economic covariates

and, at the same time, is able to capture first or even higher order dependence by including past

observations of the time series as covariates.

However, MCMC estimation of a model where the clustering kernel is a dynamic multinomial

logit model with random effects is much more involved, because no explicit expression for the
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marginal distribution is available, and we leave this for future research.
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Frühwirth-Schnatter, S., Frühwirth, R., 2007. Auxiliary mixture sampling with applications to

logistic models. Computational Statistics and Data Analysis 51, 3509–3528.
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6 Tables

“upward”
0 1 2 3 4 5

0 0.3594(0.736) 0.1364(0.696) 0.0970(0.353) 0.1105(0.318) 0.1481(0.363) 0.1486(0.364)
1 0.1255(0.574) 0.5970(1.330) 0.1570(0.623) 0.0644(0.289) 0.0396(0.198) 0.0166(0.109)
2 0.0768(0.283) 0.0596(0.281) 0.4318(0.706) 0.3179(0.520) 0.0922(0.274) 0.0217(0.120)
3 0.0610(0.195) 0.0172(0.108) 0.0567(0.187) 0.4744(0.445) 0.3482(0.396) 0.0424(0.152)
4 0.0490(0.123) 0.0075(0.047) 0.0093(0.051) 0.0482(0.125) 0.6419(0.305) 0.2441(0.265)
5 0.0481(0.065) 0.0026(0.015) 0.0014(0.012) 0.0032(0.018) 0.0381(0.068) 0.9065(0.097)

“static”
0 1 2 3 4 5

0 0.3548(0.938) 0.4191(0.783) 0.1595(0.523) 0.0540(0.282) 0.0123(0.129) 0.0003(0.021)
1 0.1120(0.241) 0.7421(0.334) 0.1278(0.232) 0.0143(0.065) 0.0035(0.029) 0.0004(0.010)
2 0.0518(0.128) 0.0745(0.149) 0.7318(0.265) 0.1341(0.204) 0.0075(0.049) 0.0004(0.012)
3 0.0361(0.116) 0.0144(0.074) 0.0822(0.197) 0.7554(0.298) 0.1105(0.232) 0.0013(0.026)
4 0.0362(0.138) 0.0052(0.055) 0.0062(0.062) 0.0556(0.253) 0.8456(0.318) 0.0512(0.218)
5 0.0430(0.247) 0.0015(0.051) 0.0015(0.054) 0.0012(0.055) 0.0308(0.365) 0.9219(0.474)

“downward”
0 1 2 3 4 5

0 0.5749(0.334) 0.2456(0.320) 0.1027(0.183) 0.0527(0.134) 0.0209(0.088) 0.0032(0.034)
1 0.3523(0.509) 0.4834(0.643) 0.1161(0.290) 0.0344(0.125) 0.0126(0.068) 0.0011(0.020)
2 0.2699(0.454) 0.1678(0.348) 0.4084(0.611) 0.1263(0.311) 0.0253(0.137) 0.0024(0.039)
3 0.2406(0.521) 0.0794(0.287) 0.1746(0.444) 0.3804(0.660) 0.1172(0.410) 0.0077(0.093)
4 0.2196(0.701) 0.0580(0.373) 0.0607(0.372) 0.2167(0.687) 0.3967(1.078) 0.0483(0.396)
5 0.2551(1.884) 0.0275(0.625) 0.0367(0.711) 0.0805(1.039) 0.2365(1.825) 0.3638(2.740)

“mobile”
0 1 2 3 4 5

0 0.2914(0.809) 0.1469(0.509) 0.2381(0.535) 0.2078(0.423) 0.1074(0.308) 0.0084(0.087)
1 0.2143(0.639) 0.3524(1.054) 0.2901(0.631) 0.1048(0.341) 0.0356(0.179) 0.0027(0.046)
2 0.1006(0.242) 0.0797(0.205) 0.5315(0.530) 0.2478(0.350) 0.0381(0.134) 0.0023(0.030)
3 0.0666(0.148) 0.0198(0.072) 0.1037(0.168) 0.6153(0.352) 0.1907(0.232) 0.0039(0.032)
4 0.0531(0.120) 0.0080(0.043) 0.0154(0.061) 0.1233(0.192) 0.7341(0.277) 0.0662(0.155)
5 0.0453(0.285) 0.0042(0.079) 0.0103(0.123) 0.0215(0.179) 0.3432(0.983) 0.5755(1.111)

Table 1: Posterior expectation E(»ℎ∣y) and, in parenthesis, posterior standard deviations
SD (»ℎ∣y) (multiplied by 100) of the average transition matrix »ℎ in the various clusters.
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Markov chain clustering
1st Qu. Median 3rd Qu.

“upward” 0.7751 0.9552 0.9940
“static” 0.6009 0.7977 0.9558
“downward” 0.6272 0.8538 0.9727
“mobile” 0.6042 0.7851 0.9337

overall 0.6378 0.8532 0.9746

Table 2: Segmentation power of Markov chain clustering; reported are the lower quartile, the
median and the upper quartile of the individual posterior classification probabilities t̂i,Ŝi

for all
individuals within a certain cluster as well as for all individuals.

“static” “downward” “mobile”

Intercept 1.08723 (0.11849) 0.80076 (0.11773) 1.10707 (0.13555)
Unemployment rate in district 0.14118 (0.02449) 0.13051 (0.02434) 0.12481 (0.02743)
Unskilled 0.27972 (0.07014) 0.95308 (0.06825) -0.79275 (0.09425)
Skilled -1.30045 (0.04716) -1.05160 (0.04638) -1.98995 (0.05165)
White collar -1.63902 (0.04242) -2.25963 (0.04712) -2.27425 (0.05522)
Start in wage category 1 0.79487 (0.10522) 0.24602 (0.10373) 0.74447 (0.12897)
Start in wage category 2 -0.05383 (0.12918) -0.12639 (0.12353) 0.72716 (0.14039)
Start in wage category 3 -0.85094 (0.17030) -0.80229 (0.16030) 0.46321 (0.15584)
Start in wage category 4 -0.93842 (0.33328) -0.80421 (0.21876) 0.21289 (0.19899)
Start in wage category 5 -0.80603 (0.69196) -0.72659 (0.44669) 0.65145 (0.38215)
Start in year 1976 -0.49488 (0.09674) -0.26228 (0.10153) -0.56900 (0.10585)
Start in year 1977 -0.24680 (0.09231) -0.07513 (0.09935) -0.39870 (0.09816)
Start in year 1978 -0.26623 (0.09484) -0.03402 (0.10175) -0.29910 (0.10375)
Start in year 1979 -0.19094 (0.09744) 0.02542 (0.10636) -0.34746 (0.11084)
Start in year 1980 -0.07144 (0.09559) 0.19426 (0.10330) -0.24927 (0.10355)
Start in year 1981 -0.21170 (0.10248) 0.16996 (0.10996) -0.47084 (0.11714)
Start in year 1982 -0.44602 (0.12702) -0.08256 (0.13638) -0.63841 (0.14005)
Start in year 1983 -0.62936 (0.14637) -0.18905 (0.15402) -0.69356 (0.15943)
Start in year 1984 -0.40915 (0.15154) 0.00586 (0.15988) -0.67097 (0.16587)
Start in year 1985 -0.56454 (0.15508) 0.00686 (0.16393) -0.54190 (0.16968)
U rate * Wage C 1 -0.07307 (0.01972) -0.08631 (0.01881) -0.05062 (0.02365)
U rate * Wage C 2 -0.12715 (0.02388) -0.16707 (0.02276) -0.08512 (0.02563)
U rate * Wage C 3 -0.11664 (0.03391) -0.13907 (0.03131) -0.09320 (0.03023)
U rate * Wage C 4 -0.46343 (0.12115) -0.22873 (0.04621) -0.17130 (0.04005)
U rate * Wage C 5 -1.02326 (0.44505) -0.39920 (0.11977) -0.44577 (0.10191)

Table 3: Multinomial logit model to explain group membership in a particular cluster (baseline:
“upward” cluster); the numbers are the posterior expectation and, in parenthesis, the posterior
standard deviation of the various regression coefficients.
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upward static downward mobile

0 15942 19369 57258 20060
1 18446 82325 43848 19575
2 15578 62597 23428 43057
3 22503 43974 14124 65905
4 47775 30495 6542 69959
5 125286 8840 987 9688

sum 245530 247600 146187 228244

Table 4: Marginal Distribution: Row sums of absolute transition frequencies within each group.

upward static downward mobile

0 6.49 7.82 39.17 8.79
1 7.51 33.25 29.99 8.58
2 6.34 25.28 16.03 18.86
3 9.17 17.76 9.66 28.87
4 19.46 12.32 4.48 30.65
5 51.03 3.57 0.68 4.24

sum 100.00 100.00 100.00 100.00

Table 5: Marginal Distribution: ’Relative’ row sums of absolute transition frequencies within
each group.
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Figure 1: Model selection criteria for various numbers H of clusters.
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Figure 2: Visualization of posterior expectation of the transition matrices »1, »2, »3, and »4
obtained by Markov chain clustering. The circular areas are proportional to the size of the
corresponding entry in the transition matrix. The corresponding group sizes are calculated
based on the posterior classification probabilities and are indicated in the parenthesis.
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Figure 3: Balloonplots of relative transition frequencies (relative contingency table) within
groups (each matrix sums to one!) to visualize the relevance of each single transition within
each group.
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Figure 4: Posterior expectation of the wage distribution ¼ℎ,t over the wage categories 0 to 5
after a period of t years in the various clusters.

A Details on MCMC Estimation of the Mixture-of-Experts Mod-

els

A.1 Writing the MNL as Random Utility Model

The interpretation of an MNL as a random utility model (RUM) was introduced by McFadden

(1974). Let yuℎi be the utility of choosing category/group ℎ, which is assumed to depend on
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covariates xi:

yuℎi = xi¯ℎ + ±ℎi, (11)

Si = ℎ ⇔ yuℎi = max
l∈1,...,H

yuli. (12)

If ±1i, . . . , ±Hi are i.i.d. following a type I extreme value distribution, then the MNL (2) results

as the marginal distribution of Si.

An alternative way to write the MNL as an augmented model involving random utilities is

as a differenced RUM (dRUM), which is obtained by choosing a baseline category (here ℎ0 = 1)

and considering the model involving the differences of the utilities: zℎi = xi¯ℎ + "ℎi, where

zℎi = yuℎi − yu1i. Marginally, the errors "ℎi = ±ℎi − ±1i follow a logistic distribution but are no

longer independent across categories.

It has been shown by Frühwirth-Schnatter and Frühwirth (2010) that for each ℎ, the MNL

has the following representation as partial (binary) dRUM:

zℎi = xi¯ℎ − log(
∑

l ∕=ℎ

¸li) + "ℎi, (13)

where "ℎi, ℎ ∕= 1 are now i.i.d. following a logistic distribution.

A.2 2-Block Auxiliary Mixture Sampling

The logistic distribution can be approximated by a finite scale mixture of normal distributions

with zero means and parameters (s2r, wr). Using this approximation and conditinal on the latent

utilities z = {z2i, . . . , zHi, i = 1, . . . , N} and indicators R = {r2i, . . . , rHi, i = 1, . . . , N} the

dRUM (13) reduces to a Gaussian regression model:

zℎi = xi¯ℎ − log(
∑

l ∕=ℎ

¸li) + "i, "i∣rℎi ∼ N (0, s2rℎi). (14)

Based on this representation, step (b) of the MCMC scheme introduced in Subsection 3.3.2

is implemented in the following way:

(b-1) Sample the regression coefficients ¯2, . . . ,¯H conditional on z and R based on the normal
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regression model (14). Using a normal prior (with known hyperparameters) the conditional

posterior of ¯ℎ is also given by a multivariate normal density.

(b-2) Sample the latent variables zℎi and rℎi conditional on ¯2, . . . ,¯H and S for i = 1, . . . , N

and ℎ = 2, . . . , H with ¸ℎi = exp (xi¯ℎ):

(b-2-1) Sample all utilities z2i, . . . , zHi simultaneously for each i from:

zℎi = log(¸∗
ℎiUℎi + I{Si = ℎ})− log(1− Uℎi + ¸∗

ℎiI{Si ∕= ℎ})

where Uiℎ ∼ U [0, 1] and ¸∗
ℎi = ¸ℎi/(

∑
l ∕=ℎ ¸li).

(b-2-2) Sample the component indicators rℎi conditional on zℎi from:

Pr(rℎi = j∣zℎi,¯ℎ) ∝
wj

sj
exp

{
−1

2

(
zℎi − xi¯ℎ + log(

∑
l ∕=ℎ ¸li)

sj

)2
}

To start the MCMC scheme, one has to select starting values for z and R.
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