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Abstract
The typical regulatory process requires medical
interventions to move through multiple phases
of clinical trials. Passing a trial phase depends
on several factors, such as safety, efficacy, and
statistical significance, and can be influenced
by the trial design. Since fruitless clinical trials
are an unnecessary loss of money and time, we
investigated Clinical Trial Outcome Prediction
(CTOP). Previous CTOP-related works have
two issues. First, trials are labeled based on
their completion or termination status, which
does not indicate if a drug progresses through
the regulatory process. Second, the previous
models used data that is prone to introduce
look-ahead bias, as they rely on supplemen-
tary drug and trial information gathered in later
stages of the process. To address these issues,
we propose ChatCTP, the first attempt at us-
ing LLMs in CTOP. Our model, a fine-tuned
version of GPT 3.5, can predict if a drug will
transition from one clinical trial stage to the
next, solely based on the original textual de-
scription of the trial design. Furthermore, we
release the PhaseTransition Dataset with ac-
curate labels to benefit future research. Our
model shows an improvement of 4.20% on the
F1-Score over baselines and demonstrates that
fine-tuned GPT 3.5 can outperform specialized
baseline models, while the original GPT 3.5
does not.

1 Introduction

A clinical trial is a systematic investigation con-
ducted on human subjects to evaluate the safety
and efficacy of medical interventions, typically cat-
egorized into Phase I, II, and III stages, aiming to
obtain market approval. Phase transition prediction
in clinical trials refers to forecasting whether a trial
will progress from one phase to the next in the drug
development process, typically from early phases
(Phase I or Phase II) to later phases (Phase II or
Phase III), based on the available trial data. Pass-
ing a trial phase depends on several factors, such

Figure 1: A new treatment is typically tested in three
phases, starting with safety evaluation and dosage in
Phase I, then assessing efficacy in Phase II, and finally
confirming efficacy and safety in Phase III, before being
evaluated by the FDA. However, the treatment can drop
out in any phase for various reasons, wasting time and
resources. We propose ChatCTP, an LLM-based model,
to predict trial phase transitions, based solely on trial
protocols, before starting a trial.

as safety, efficacy, statistical significance, and the
trial design (see Figure 1). Previous research indi-
cates that trial protocol complexity, longer cycle
times, and increased investigative site work burden
also contribute to poor trial performance and failure
(Gayvert et al., 2016; DiMasi et al., 2015). There-
fore, predicting clinical trial phase transitions is
essential for relevant stakeholders to anticipate the
trajectory of drug development, allocate resources
efficiently, and make informed decisions regarding
further investment in promising treatments. Here,
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we develop a novel method based on large language
models (LLMs) to predict trial outcomes and phase
transition solely based on trial design. We also
present a combined deep and shallow learning ap-
proach as a cost- and resource-efficient alternative
that can be trained on most machines.

Two of the most comprehensive data sets of
clinical trial designs and drug characteristics avail-
able (the Aggregate Analysis of ClinicalTrials.gov,
AACT [34], based on https://clinicaltrials.gov/ and
Biomedtracker [26] data sets) were used for this
case study. ClinicalTrials.gov is a publicly avail-
able database of privately and publicly funded med-
ical research studies conducted in the US and over
203 other countries. The current version contains
information from over 481,000 studies and is main-
tained by the National Library of Medicine at the
National Institutes of Health. Each record for a clin-
ical trial includes information on over a hundred
characteristics of the trial protocol. The protocol
defines how the trial will be conducted and its de-
sign can be considered the first stage in the process
of a clinical trial. Given that this documentation
comprises textual descriptions of plans, objectives,
and recruitment criteria, Natural Language Process-
ing (NLP) can be leveraged to identify trial design
flaws.

Previous work in clinical trial outcome predic-
tion predominantly relied on data available at later
stages of the process, such as participant enroll-
ment details, or data limited to specific treatments,
such as drug molecular composition. However,
there remains a gap in approaches that effectively
perform from the protocol design stage across all
treatment types, including medical devices. Fur-
thermore, since phase transition data is not easily
available, previous approaches had to rely on al-
ternative metrics to identify trial success or failure.
As only phase transitions are a true indicator of suc-
cess, previous efforts not incorporating this metric
are inherently inaccurate predictors. Our objec-
tive is to address this shortcoming by introducing a
method that accurately predicts clinical trial phase
transitions at the earliest possible stage - the design
of the clinical trial protocol.

Using the trial protocol as input poses several
challenges. First, the complex nature of the text
and its domain-specific vocabulary requires an NLP
model that is pre-trained on medical data. Secondly,
the length of the texts exceeds the capabilities of
most transformer architectures, which are the back-
bone of the language models.

Previous approaches have circumvented these
challenges by relying on hand-picked features from
the trial protocols, such as the number of letters as
a complexity measure or focusing on drug toxi-
city. However, this solution disregards data rele-
vancy. Given the task’s complexity, models must be
able to autonomously extract information from the
text. Furthermore, to solve the problem of domain-
specific texts, previous approaches had to train their
models on additional medical datasets. This is not
only more resource-intensive but also poses other
risks. The specific datasets used in previous ap-
proaches are sourced from clinical trial results and,
therefore, pose the danger of introducing a look-
ahead bias to the model. Previously, the challenge
of labeling trials as successful or unsuccessful re-
lied on their completion status (completed or termi-
nated). However, this approach is unreliable, as a
trial may terminate prematurely due to significant
drug efficacy.

We propose the following two language models
to address the challenges posed by clinical trial
outcome prediction:

• ChatCPT. This model is an instruction fine-
tuned Large Language Model (LLM) that
harnesses the medical expertise embedded
within GPT-3.5 to effectively analyze domain-
specific texts encountered in clinical trials.
With an attention window size of 4096 tokens,
ChatCPT is equipped to comprehensively pro-
cess lengthy clinical trial descriptions, ensur-
ing a thorough understanding of the intricate
details inherent in trial protocols.

• BERT+RF. Introducing a novel architecture,
this model combines the capabilities of a med-
ical transformer with the predictive power of
a random forest classifier. By embedding
chunks of the trial description using the medi-
cal transformer, BERT+RF enables the collec-
tive processing of information, allowing for
a holistic analysis of trial data. This innova-
tive approach is particularly adept at handling
texts that surpass the processing capabilities
of traditional LLMs, thereby expanding the
scope and versatility of predictive modeling
in clinical trial analysis.

These models represent a significant advance-
ment in the field of clinical trial outcome prediction,
offering distinct approaches to address the complex-
ities inherent in analyzing trial data. By leverag-
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ing state-of-the-art language processing techniques
and innovative architectural designs, ChatCPT and
BERT+RF are poised to revolutionize the predic-
tive modeling landscape, paving the way for more
accurate and reliable predictions in clinical trial
research.

Both models exhibit remarkable proficiency in
predicting phase transitions, underscoring their ef-
ficacy in the realm of clinical trial outcome pre-
diction. The LLM achieves an F1 score of 0.737,
showcasing its ability in linking trial information
across various phases, thereby facilitating a com-
prehensive understanding of the trial trajectory. On
the other hand, BERT+RF not only demonstrates
superior efficiency in training but also outperforms
the LLM when trained on trials from a single phase.
Notably, when exclusively trained on Phase III tri-
als, BERT+RF achieves an exceptional F1 score
of 0.847, underscoring its capacity to discern nu-
anced patterns and trends within this specific phase.
BERT+RF presents a notable advantage due to its
accessibility, as it can be readily utilized and trained
on a wide array of computing platforms. This ac-
cessibility extends to various machines, enabling
flexibility in deployment and usage across diverse
computational environments. Consequently, users
can leverage BERT+RF’s capabilities without en-
countering significant barriers related to compat-
ibility or resource constraints, thereby enhancing
accessibility and facilitating widespread adoption
in clinical trial outcome prediction tasks.

Our contributions are as follows:

• Establish success of LLM in Clinical Trial
Phase Transition. We are the first to leverage
the capabilities of LLMs for the task of clin-
ical trial outcome prediction and introduce a
benchmark for future research. Our instruc-
tion fine-tuned model demonstrates superior
performance, outperforming comparable ap-
proaches.

• Release of a new dataset for CTOP. We in-
troduce the PhaseTransition Dataset, a new
resource specifically designed for the task of
clinical trial outcome prediction. This dataset
includes detailed information on trial phase
transitions linked to trial and drug information,
enabling researchers to evaluate and compare
prediction models effectively.

• Comprehensive experiments and a new
benchmark. As we present an improved task

definition for CTOP, rigorous evaluation is
necessary. Our extensive testing not only
demonstrates the efficacy of our proposed
method but also provides a solid foundation
for further advancements in this field of study.

• Novel labeling procedure for clinical trials.
We propose a novel method for labeling clin-
ical trial outcomes, which involves tracking
a medical intervention across multiple trials
and considering a trial successful if the inter-
vention reappears in a follow-up study. This
labeling approach provides a more accurate re-
flection of trial success and failure, addressing
the limitations of existing labeling metrics.

2 Related Work

2.1 Clinical Trial Outcome Prediction
Over the years, various strategies have emerged
aiming to reduce the attrition rate in clinical trials.
These approaches can generally be classified into
two main categories: reducing the risk by identify-
ing and preventing adverse events in the CT process
or evaluating the risks of a particular CT without
interfering with the process. Within the first cate-
gory, several approaches focus on eligibility criteria
classification to select more suitable participants
(refer to Li et al. (2022); Tian et al. (2021); Zeng
et al. (2021)), while others present methods to fa-
cilitate the design of successful CT protocols (refer
to Wang et al. (2022); Wang and Sun (2022)). For
the second category, the literature on CT outcome
prediction is considerably more extensive. Vari-
ous approaches exist, but all try to answer different
questions. For example, (Artemov et al., 2016) and
Gayvert et al. (2016)) link the outcome of the trial
to drug toxicity and side effects, Follett et al. (2019)
quantify the risk of trial termination through text
mining, while Qi and Tang (2019) leverage deep
learning to infer the outcome of Phase III trials by
analyzing a drug’s trough pharmacokinetic concen-
tration and connecting them to patient characteris-
tics. More and more machine learning approaches
utilize publicly available datasets, such as Clini-
calTrials.gov, and adjacent bodies of literature to
discover patterns in the clinical trial process hinting
at their outcome.

Fu et al. (2022) present a new graph-based neural
network called Hierarchical Interaction Network
(HINT). The model encodes multi-modal data, in-
cluding information on drug molecules, target dis-
eases, and trial eligibility criteria. These are then
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connected in a graph structure to capture interac-
tion effects between the domains. Ferdowsi et al.
(2023), focus on the historical evolution of the
trial protocol. By tracking significant changes in
trial protocols added during its run, they retrospec-
tively derivate one of three risk-related labels. Even
though they achieve good results, their method can
only asses the risk of trials mid-execution.

However, the efficacy of current trial outcome
prediction models is hindered by many constraints
and limitations, which warrant thorough consider-
ation and subsequent mitigation strategies. One
such limitation pertains to the reliance on data that
becomes accessible solely during or post-trial, as
highlighted in studies such as Feijoo et al. (2020)
and Ferdowsi et al. (2023). This temporal restric-
tion impedes the model’s ability to predict trial out-
comes, hindering its utility in informing decision-
making processes at earlier stages of drug develop-
ment. Additionally, prevalent models often rely
on hand-crafted features that demonstrate poor
generalizability when applied to textual data, as
evidenced by research conducted by Feijoo et al.
(2020), Fu et al. (2022), and Kavalci and Hartshorn
(2023). This limitation underscores the need for
more robust feature engineering techniques to effec-
tively capture the nuances inherent in clinical trial
descriptions, thereby enhancing predictive accu-
racy and reliability. Furthermore, existing models
often showcse a narrow scope, focusing exclusively
on predictions for specific diseases and trial phases,
as observed in studies such as Aliper et al. (2023)
and Feijoo et al. (2020). This restricted applica-
bility limits the model’s versatility and hampers
its potential to address broader challenges within
the clinical trial domain. Lastly, certain models
exclusively apply to molecular drugs with publicly
available chemical structures, as highlighted by Fu
et al. (2022). This constraint excludes a signifi-
cant portion of drug candidates from consideration,
thereby diminishing the model’s overall applicabil-
ity and relevance within the pharmaceutical land-
scape. Given these limitations, there is a pressing
need to create trial outcome prediction models that
are more comprehensive and adaptable, capable
of overcoming these constraints and providing im-
proved predictive capabilities across a wider range
of drug development scenarios.

A common shortcoming of all aforementioned
methods is that they do not predict the true phase
transition of a clinical trial, which, to our knowl-
edge, has so far only been attempted by Feijoo

et al. (2020). Although the completion status of
a CT is publicly available, this information does
not indicate if an intervention for a specific disease
will progress to the next trial phase. Pharmaceuti-
cal companies may decide not to advance a drug
to the next trials for reasons unrelated to its effi-
cacy or safety. Factors such as changes in market
dynamics, competition, manufacturing challenges,
reassessed development priorities, financial consid-
erations, or the need for additional preclinical or
clinical data may influence this decision (Friedman
et al., 2015; Stallard et al., 2005). The actual phase
transition can solely be learned by following the
combination of drug and indication through several
trials, which is only possible with access to propri-
etary data. Similar to our approach, they combine
the data from ClinicalTrials.gov with the propri-
etary Biomedtracker database, allowing to monitor
a drug over several clinical trial phases and discover
trial terminations that cannot be caught through the
official database. They furthermore propose a sim-
ple approach to rate the complexity of eligibility
criteria, and their subsequent implementation of
a random forest (RF) classifier achieves an aver-
age accuracy of 80% for specific diseases. Despite
these results, their method is of limited use, as their
classifier is dependent on data only available after
trial completion (end date, trial duration, etc.) as
well as on hand-crafted features, which is prone to
introduce a human bias to the predicted outcome.
Our approach offers a more direct and proactive so-
lution by predicting phase transitions directly from
the trial protocol itself, eliminating the need to wait
for post-trial data availability and providing timely
insights into the potential progression of clinical
trials.

2.2 Large Language Models in the Clinical
Trial Domain

The integration of Large Language Models (LLMs)
within the clinical trial domain has been relatively
limited, with only a select few methodologies thus
far proposed. Among these, the CliniDigest model,
introduced by White et al. (2023), represents a no-
table advancement, leveraging the GPT-3.5 archi-
tecture to condense extensive clinical trial descrip-
tions, often spanning several thousand words, into
succinct 200-word summaries. Similarly, Zheng
et al. (2024) introduced an innovative approach to
outcome prediction, using an LLM to translate mul-
timodal clinical trial data into comprehensive natu-
ral language representations, subsequently classi-
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fied by a shallow learning approach. Even though
their approach and research goal aim to predict the
outcome of clinical trials, they do not employ the
LLM for this task. The LLM serves as pre-step in
their model pipeline and only converts statistical
trial information to textual data. The subsequent
outcome prediction is performed by a Mixture-of-
Experts model Zheng et al. (2024). Furthermore,
Jin et al. (2023) proposed TrialGPT, a novel LLM
architecture aimed at streamlining the matching
process between free-text patient notes and clini-
cal trial eligibility criteria, thereby enhancing the
efficiency of participant selection procedures. De-
spite these notable strides, a comprehensive and
robust approach leveraging LLMs for clinical trial
outcome prediction remains an area ripe for ex-
ploration and development. As such, there exists
significant potential for future research in investi-
gating the capabilities and applications of LLMs
within the realm of clinical trials, paving the way
for enhanced predictive modeling and decision-
making processes in the field.

3 Method

Our method aims to generate a model, represented
by a function f , that predicts the target trial out-
come yp ∈ R1 based on the input xD. Here, xD de-
notes the trial textual description, a concatenation
of several data elements. The approach consists of
two stages: dataset creation and model training.

• Dataset creation refers to compiling an ac-
curate CTOP dataset, providing xD, that in-
cludes trial protocol data labeled with phase
transition information inferred from drug per-
formance data.

• In model alignment, both our models
(BERT+RF and ChatCTP) are trained to pre-
dict the target phase transition according to
a given input trial description, as described
above.

It is important to highlight that the trial descrip-
tion is solely derived from textual data obtained
from the publicly accessible ClinicalTrials.gov
database. All used texts are created at the early
stages of the trial design process, ensuring that our
models can effectively predict the outcome of a
trial before FDA approval is sought.

3.1 Model Overview

We present two models for the phase transition
prediction task that differ in architecture, perfor-
mance, and complexity. We have chosen both an
LLM approach, as it represents the state-of-the-art
in NLP, and a combined deep and shallow learn-
ing approach, chosen due to its accessibility and
adaptability to a wide range of computing envi-
ronments. The decision to incorporate the LLM
approach stems from its capabilities to capture in-
tricate linguistic nuances and contextual dependen-
cies, making it an indispensable tool for tasks re-
quiring a sophisticated understanding of complex
natural language. In contrast, the combined deep
and shallow learning approach offers practical ad-
vantages, such as ease of implementation and scal-
ability, making it an attractive option for scenar-
ios where computational resources are limited or
when rapid prototyping and experimentation are
paramount. By focusing on the strengths of both
approaches, we aim to develop a robust predictive
framework capable of delivering accurate and re-
liable phase transition predictions across diverse
clinical trial datasets and computational settings.
These models are:

BERT+RF BERT, or Bidirectional Encoder
Representations from Transformers, represents a
groundbreaking advancement in natural language
processing (NLP) due to its distinctive bidirec-
tional text processing capabilities. Unlike tradi-
tional transformer models, which typically process
text in a unidirectional manner, BERT has the re-
markable ability to simultaneously consider both
the left and right context within a sentence during
training. This bidirectional approach empowers
BERT to develop a more comprehensive under-
standing of word meaning and context, enabling it
to capture rich and nuanced semantic information
embedded within textual data. By incorporating
bidirectional processing, BERT transcends the limi-
tations of previous NLP models, which often strug-
gled to fully grasp the intricacies of language due
to their unidirectional nature. Through its holis-
tic examination of text, BERT effectively captures
the interdependencies between words and phrases,
discerning subtle nuances in meaning and context
that might otherwise be overlooked. This enhanced
contextual awareness enables BERT to generate
more accurate representations of text, facilitating
tasks such as language understanding, sentiment
analysis, and information retrieval with unprece-

5



Figure 2: Overview of the two models. On the left is the BERT+RF approach, where the trial textual description
xD is divided into its entries, individually embedded by the clinical BERT, concatenated, and then inputted into
the RF classifier. On the right are the two steps of the ChatCTP approach. First, the instruction fine-tuning of the
base model f , using trial description xD, the continuous prompt hC , and the labels y as inputs to the fine-tuning
function Φ, resulting in the fine-tuned model, ChatCTP (f ). For an example of the continuous prompt, refer to Table
1. Below is the inference process, which only relies on the prompt and trial descriptions.

dented precision.(Devlin et al., 2018). One notable
limitation for our specific use case is the restricted
attention window size of BERT models, which typ-
ically permits the processing of text containing up
to 512 tokens. This constraint poses a challenge
when dealing with lengthy clinical trial descriptions
that exceed the specified token limit, potentially
resulting in the truncation or omission of crucial
information during model training and inference.
As a result, there is a risk of information loss or
oversimplification, particularly in scenarios where
detailed descriptions are essential for accurate pre-
diction and analysis. This limitation underscores
the importance of devising strategies to effectively
manage and preprocess lengthy textual data to en-
sure compatibility with BERT-based models while
preserving the integrity and informativeness of the
original text. (Devlin et al., 2018; Dai et al., 2022).
To overcome this limitation, we employ a hybrid
approach by combining a clinical BERT embed-
ding with Random Forest (RF) classification. Each
trial’s different entry categories are embedded sep-
arately using sentence transformers (Reimers and
Gurevych, 2019), resulting in numerical representa-
tions. These representations are then concatenated
into an 8,488-dimensional feature vector on which
we train an RF classifier (see Section 3.3.1). This
hybrid method enhances predictive accuracy by ag-

gregating predictions from multiple decision trees.
In our experiments, the BERT+RF model exhibited
promising results, achieving an accuracy of 0.726
in predicting phase transitions across various clin-
ical trials, a performance comparable to the LLM
approach (see Table 2). Its prediction for specific
phases outperforms even the LLM model, with
an F1 score of 0.847 when trained to only predict
Phase III transitions (see Table 4). The encoding of
all 20.000 trial texts and training of the RF model
takes approximately 20 minutes on a single RTX
4090 GPU, with instantaneous inference. This ap-
proach can be considered a cost- and time-efficient
alternative to the LLM.

ChatCTP An issue of processing clinical trial de-
scriptions is the specificity and inconsistency of the
used vocabulary. Clinical trial documentation often
encompasses a diverse array of terminology, re-
flecting the multifaceted nature of medical research
and practice. This diversity presents a consider-
able challenge for NLP systems, which must con-
tend with the vast spectrum of medical terminology,
ranging from highly specialized technical terms to
colloquial expressions. Moreover, inconsistencies
in vocabulary usage across different trials further
compound this challenge, as variations in terminol-
ogy usage can lead to ambiguity and difficulty in
interpreting textual data. Consequently, addressing
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this issue requires developing robust NLP tech-
niques capable of effectively handling the nuanced
vocabulary present in clinical trial descriptions, en-
suring accurate and reliable analysis of trial data for
predictive modeling and decision-making purposes.
It is, therefore, preferred to fine-tune a model that is
already familiar with medical literature. While mul-
tiple dedicated medical large language models are
available to researchers, Zhou et al. (2024) demon-
strated that GPT-3.5 Turbo exhibits robust perfor-
mance on medical downstream tasks. The model
was instruction fine-tuned for three epochs with
the same continuous prompt (see Table 1) for all
data points. We determined that a balanced set of
4000 samples (around 3 Mio tokens) is adequate to
achieve a significant improvement in performance
over the baselines while maintaining low costs. The
fine-tuned model, ChatCTP, outperforms the base-
line by 0.042 on the F1 score for all-phase outcome
prediction (see Table 2), while further showcasing
rudimentary reasoning abilities (see Section 4.2).
The training took around 80 minutes through the
dedicated API with associated costs of about $70.

3.2 Dataset creation

To ensure the creation of a robust dataset capable
of effectively capturing the phase transitions of
clinical trials, we must carefully address two cru-
cial components: obtaining comprehensive clini-
cal trial protocols and establishing connections
between medical interventions across multiple
trials. These aspects serve as the cornerstone of
our dataset construction process, providing the nec-
essary foundation for accurate prediction of trial
outcomes. To achieve this, we gather data from two
sources: ClinicalTrials.gov and Biomedtracker.
This meticulous approach enables us to compile a
comprehensive dataset that accurately reflects the
dynamics of clinical trial progression, laying the
groundwork for insightful analysis and prediction.

• ClinicalTrials.gov (http://clinicaltrials.gov/)
is a publicly accessible repository maintained
by the United States National Library of
Medicine, offering comprehensive data on
clinical studies worldwide. It is a vital re-
source for researchers, clinicians, and the
broader medical community, offering a wealth
of information on clinical studies conducted
globally. With its user-friendly interface and
extensive database, ClinicalTrials.gov facili-
tates access to valuable data on a wide range

of medical interventions, including drugs,
devices, procedures, and behavioral thera-
pies. Researchers can explore detailed study
records, including information on study de-
sign, participant eligibility criteria, interven-
tion details, and outcome measures. More-
over, the platform provides transparency and
accountability by requiring trial sponsors to
register their studies and report key findings,
contributing to the integrity and reliability of
clinical research. Overall, ClinicalTrials.gov
plays a pivotal role in advancing medical
knowledge, fostering collaboration, and pro-
moting evidence-based decision-making in
healthcare. Presently, it houses 481,198 study
records from 223 countries, making it the
largest database of its kind globally.

• Biomedtracker
(https://www.biomedtracker.com/), is a
proprietary database compiled by Informa
Business Intelligence Inc. It is a compre-
hensive resource that tracks and analyzes
pharmaceutical and biotechnology industry
developments, including clinical trials,
regulatory milestones, drug approvals,
and market trends. It is considered an
indispensable tool for stakeholders across
the pharmaceutical and biotechnology
sectors, offering unparalleled insights into
industry dynamics and trends. By tracking
clinical trials, regulatory approvals, and
market developments, Biomedtracker enables
researchers, investors, and decision-makers
to make informed decisions and effectively
follow the development trajectory of novel
medical interventions. Its user-friendly
interface and comprehensive dataset provide
users with access to critical information on
drug development programs, enabling them
to assess risk, identify opportunities, and
navigate complex regulatory processes with
confidence. With its extensive coverage and
real-time updates, Biomedtracker serves as
a trusted resource for industry professionals
seeking to drive innovation and improve
patient outcomes. In summary, it provides
accurate insight into the progress of drug
development programs and enables us to track
a treatment’s performance through multiple
clinical studies. The version we used contains
information on 20,016 unique drugs.
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By merging information from Biomedtracker
and ClinicalTrials.gov based on a common Na-
tional Clinical Trial Identifier (NCT-ID) and ex-
cluding low-quality trials, we obtained an initial
dataset comprising 25,000 entries. This merged
dataset offers a comprehensive overview of clinical
trials, combining detailed insights from Biomed-
tracker with the extensive study records available
on ClinicalTrials.gov. By leveraging a common
identifier and implementing stringent quality crite-
ria, we ensured the accuracy and reliability of the
dataset, laying a solid foundation for subsequent
analysis and modeling efforts.

3.2.1 Labelling process
As previously noted, while all selected trials have
known outcomes (completed or terminated), rely-
ing solely on this as an indicator of success or fail-
ure oversimplifies the intricate drug development
process. Numerous external factors significantly
influence a drug’s trajectory, necessitating a more
nuanced approach to evaluation. For instance, even
if a Phase II trial is completed, it may not progress
to Phase III due to various market considerations or
evolving research needs. Conversely, terminating
a Phase II trial does not necessarily denote fail-
ure; the collected data could potentially support
concurrent Phase II trials testing the same interven-
tion, ultimately propelling it towards becoming a
market-ready product. Hence, it becomes evident
that the completion status alone is insufficient for
accurately labeling a trial. A more comprehensive
assessment of trial outcomes requires considera-
tion of the broader context, including external in-
fluences such as regulatory changes, competitive
landscape shifts, and emerging clinical evidence.
By adopting such an approach, stakeholders can
gain deeper insights into the factors driving trial
outcomes and make more informed decisions re-
garding drug development strategies.

A clinical trial is a rigorous examination of a
medical treatment’s efficacy in addressing a spe-
cific medical condition. This critical informa-
tion is encapsulated within the Drug-Indication
ID, providing a foundational basis for trial cate-
gorization and analysis. Leveraging the compre-
hensive database provided by Biomedtracker, we
are equipped to establish meaningful connections
between individual trials using this indicator. This
strategic approach enables us to label each trial
according to four distinct rules, facilitating a sys-
tematic and comprehensive assessment of their re-

spective outcomes and contributions to medical
research and innovation.

1. Successful Phase Transition: If, according
to Biomedtracker, a drug advances to a certain
ultimate phase, all trials in preceding phases
featuring the same Drug-Indication ID are
deemed successful.

2. Incomplete Phase Information: If, accord-
ing to Biomedtracker, a drug advances to a
certain ultimate phase, all trials of this phase
featuring the same Drug-Indication ID are
considered unsuccessful.

3. Termination Status and Trial Success: Tri-
als labeled as terminated on ClinicalTrials.gov,
even if considered successful, are considered
unsuccessful.

4. Completion Status and Trial Success: Tri-
als labeled as unsuccessful remain so, even if
labeled as completed on ClinicalTrials.gov.

See Figure 1. While the third rule appears to con-
tradict our earlier assertion regarding the potential
for terminated trials to contribute to a market-ready
product, we have opted not to categorize these trials
as successful for two compelling reasons. Firstly,
from a medical standpoint, the true impact of termi-
nated trials on the progression of a specific drug re-
mains uncertain and requires further investigation.
Secondly, from a technical perspective, overlook-
ing Rule 3 would lead to all trials being assigned
the same label up to the final phase, potentially in-
troducing bias into the model. Therefore, we have
adopted a more cautious and restrictive approach
in assigning the success label, prioritizing accuracy
and integrity in our classification methodology.

3.2.2 Synthesis
Upon successfully assigning each trial an accurate
phase transition label, identifying relevant trial in-
formation is the next step. Recognizing that exces-
sively long texts can impede the efficacy of Natural
Language Processing (NLP) models and consider-
ing the comprehensive nature of trial protocols that
may encompass up to a hundred different entry cat-
egories (sponsors, locations, recruitment criteria,
contact information, etc.), the necessity of craft-
ing a concise yet informative trial description be-
comes increasingly apparent. Through comprehen-
sive analysis, we have determined that certain entry
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Figure 3: Overview of the labeling method.

categories yield optimal performance while ensur-
ing that their combined length remains below 4096
tokens. This strategic selection process ensures
that the resulting trial descriptions strike a balance
between informativeness and computational effi-
ciency, thereby enhancing the overall effectiveness
of our predictive models. Additionally, by focus-
ing on key entry categories, we aim to provide our
models with the most relevant and impactful infor-
mation, enabling them to generate more accurate
predictions regarding trial outcomes. Moreover,
this approach facilitates a more streamlined and
efficient workflow, minimizing computational re-
sources while maximizing predictive performance.

Trial Name (xN ), Trial Brief (xB), Drug Used
(xDU ), Drug Class (xDC), Indication (xI ), Target
(xT ), Therapy (xTh), Lead Sponsor (xS), Criteria
(xC), Primary Outcome (xPO), and Secondary Out-
come (xSO). By concatenating these entries, we
create the final trial description xD according to

xD = (xN ⊕ xB...⊕ xSO). (1)

Let D be the resulting PhaseTransition dataset,
where each row consists of the input xD, with its
corresponding phase transition label y. We can
represent D as a set of ordered pairs as

D = {(xD1, y1), (xD2, y2), ..., (xDn, yn)}, (2)

with each ordered pair Di = (xDi, yi) representing
a data point. An example of a data point can be
seen in Table 5.

3.3 Model training
After introducing our two models in Section 3.1
and describing the creation of the PhaseTransition
Dataset in Section 3.2, in this section, we now
detail how we trained each model on the data.

3.3.1 BERT+RF
Let xN = (xN1 , xN2 , ..., xNn) be the name of the
clinical trial, where xi represents the ith token in
the text. We compute the embedding of the trial
name by using a clinical BERT model from the
sentence transformer library as

vN = BERT (xN ). (3)

With vN = (vN1 , vN2 , ..., vN768), since the spe-
cific clinical BERT model we used produces em-
beddings of size 768. The embedding process is
repeated for each data element in xD, with the
resulting embedding vectors being concatenated
similarly to Equation 1 as

vD = (vN ⊕ vB ⊕ ...⊕ vSO). (4)

Thus, vD = (vD1 , vD2 , ..., vD8,448) be the embed-
ded feature vector of xD. By representing the asso-
ciated label as a binary numerical value yB accord-
ing to

yB =

{
1, if label y = "Yes"
0, if label y = "No"

, (5)

we can rewrite the dataset used for the RF classifier
as

DRF = {(vD1, yB1), ..., (vDn, yBn)}. (6)
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Following the RF algorithm, we randomly select m
data points with replacement from the dataset DRF

to create B = 100 bootstrap samples D∗
b , where

b = 1, 2, ..., B. For each bootstrap sample D∗
b a

decision tree Tb is grown from a random subset of
features at each split until all leaves are pure, with
Gini impurity being the splitting criterion. For a
node t, if pi represents the proportion of samples
of class i in node t, then the Gini impurity G(t) is
defined as

G(t) = 1−
C∑
i=1

p2i , (7)

where C = 2 being the number of classes. Fi-
nally, the predictions of all decision trees are aggre-
gated using the majority voting aggregation func-
tion Agg, and the predicted phase transition label
yp is calculated by

yp = Agg({T1, T2, ..., TB}, vD). (8)

3.3.2 ChatCTP
In contrast to the BERT+RF model, which we
train from scratch, ChatCTP is created by instruc-
tion fine-tuning GPT-3.5 Turbo on 4000 random
samples from D. Furthermore, we introduce the
concept of a continuous prompt hC (see Table 1),
which serves as the model instructional component
concatenated with xD. The fine-tuning step is de-
fined as

f(hC , xD) = (Φ ◦ f0)(hC , xD, y), (9)

whereby f0 represents the base model, Φ denotes
the fine-tuning operation, while f being the final
phase transition prediction model. Thus, phase
transition predictions are inferred by

yp = f(hC , xD). (10)

4 Experimental Results

To comprehensively evaluate the performance of
our two models, we conducted cross-testing of the
dataset on two related architectures: Longformer
and LLama. This rigorous assessment allowed us to
gain deeper insights into the comparative strengths
and weaknesses of our models in relation to al-
ternative approaches. By subjecting our models
to rigorous scrutiny against these benchmarks, we
aimed to provide a thorough and robust evaluation

of their predictive capabilities. This holistic ap-
proach ensures a nuanced understanding of their
performance across different architectural frame-
works, ultimately enhancing the reliability and ap-
plicability of our findings in real-world settings.

4.0.1 Longformer
The Longformer model emerges as a transforma-
tive adaptation of the ubiquitous Transformer ar-
chitecture, meticulously engineered to confront the
formidable challenges inherent in processing ex-
tensive textual sequences. Departing from the con-
straints of conventional models like BERT, which
are encumbered by rigid attention window sizes,
the Longformer introduces a revolutionary global
attention mechanism. This dynamic feature endows
the Longformer with the unparalleled capability
to discern intricate dependencies spanning the en-
tirety of input sequences, regardless of their expan-
sive length (Beltagy et al., 2020). By transcending
traditional limitations, the Longformer becomes
uniquely equipped to unravel intricate relationships
between tokens dispersed across vast expanses of
textual data (Beltagy et al., 2020), making it an
ideal candidate for our specific task. Our exhaus-
tive efforts entailed the meticulous training of a
specialized clinical iteration of the Longformer (Li
et al., 2022) over a span of seven epochs. This ardu-
ous endeavor consumed approximately 2.5 hours
of computational resources on a singular RTX 4090
GPU. Despite the substantial investment of time
and computational power, the model yielded a mod-
est accuracy of 0.668, positioning it as the least
performing among our cohort of models (refer to
Table 2).

4.0.2 Llama 2
Llama 2 by Meta in 2023 marked a significant
milestone, offering variants with 7B, 13B, and 70B
parameters (Touvron et al., 2023). For our investi-
gation, we deliberately chose to use the 7B model
to mitigate memory overhead and expedite train-
ing duration. However, our initial attempts at fine-
tuning this base model on the complete dataset for
a duration of five epochs yielded suboptimal out-
comes, as elucidated in Table 2. This outcome led
us to an insightful realization: the inherent struc-
ture of the base model lacks the requisite medical
domain understanding. Consequently, we ventured
into an exploration of the 7B version of AlpaCare,
a refined iteration of Llama 2 that underwent self-
instruction on medical queries (Zhang et al., 2023).
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System Prompt

You are a medical expert who specializes in analyzing clinical trials. Your role is to help the user predict whether a clinical trial will
progress to the next phase.

Answer only with ’Yes’ if it progresses to the next phase or ’No’ if it doesn’t.

Table 1: LLM system prompt used for fine-tuning and inference.

Remarkably, this strategic adjustment heralded a
noteworthy upswing in performance metrics, cul-
minating in a prediction accuracy of 0.713 (as illus-
trated in Table 2). However, upon closer scrutiny of
its phase-specific predictive prowess, it became evi-
dent that its capabilities lagged significantly behind
those exhibited by our meticulously crafted models
(refer to Table 3). The process of fine-tuning the
model on the entire corpus of 20,000 samples en-
tailed a considerable investment of computational
resources, necessitating 18 hours of computation
time on a single A1000 GPU. This laborious under-
taking underscores the formidable computational
demands associated with model refinement. Addi-
tionally, the prospect of fine-tuning either the 13B
or 70B versions, while potentially promising su-
perior results, remains largely unattainable due to
logistical constraints and computational feasibility
considerations.

Model Accuracy F1 Score

BERT + RF 0.726 0.682
Longformer 0.668 0.675
LLaMA 2 7B 0.567 0.535
LLaMA 2 7B (AlpaCare) 0.713 0.695
GPT 3.5 fine-tuned 0.728 0.737

Table 2: Comparison of model performances trained on
trials from all phases.

4.1 Ablation Study

Here, we conduct an extensive ablation study to
showcase the efficacy of our approach. The com-
mon path in CTOP is creating separate models for
each phase, trained only on trials from the desig-
nated phase. This robs the models of any knowl-
edge about previous trials and treatment perfor-
mance. Our approach differs as we do not sep-
arate the training data into phases. However, to
demonstrate the superiority of GPT-3.5 Turbo over
all baselines, we have also trained each model on
single-phase data, using only Phase III trials (see

Table 4). Even though BERT+RF’s F1 score is
better by 0.019 points, it should be noted that GPT-
3.5 Turbo was fine-tuned on only 35% of the data,
while all other models were trained on the complete
set of Phase III trials.
Compared to ChatCTP (see Table 3), which was

trained on 4000 trials from all three phases, the
dedicated Phase III version of GPT-3.5 Turbo only
outperforms it by 0.025 points on the F1 score. Of
the 4000 trials, 1120 belonged to Phase III. In com-
parison, the dedicated Phase III model was trained
on 2000 trials. A 44% increase in training data.
However, if we fine-tune GPT-3.5 Turbo on only
the 1120 Phase III trials, the F1 score drops to
0.760. From this, we can conclude that the remain-
ing 2880 Phase I and Phase II in ChatCTP’s training
data hold valuable information on predicting the
transition from Phase III to Approval. Therefore,
any outcome prediction model should be trained
across phases and not be constrained to a single
phase.

4.2 Reasoning Experiment

Using an LLM to predict a trial phase transition
gives us the novel possibility of inquiring into the
model’s decision-making process and asking about
the pivotal factors in the trial description. As there
is no way to fact-check the model’s answer, we
trained a second version of ChatCTP on a modified
dataset. This dataset included trials from Clinical-
Trials.gov that provided explanations for trial termi-
nation, ranging from detailed descriptions to gen-
eral reasons such as ’Strategic Decisions.’ Despite
the variability in information quality, we concate-
nated these explanations with the ’No’ label. Dur-
ing the fine-tuning process, we instructed the model
that whenever it predicts a trial will not transition
to the next phase, it should provide an explanation
of why. Since information on why a particular trial
succeeded is typically unavailable, the labeling and
prediction process for positive cases (’Yes’ label)
remains unchanged.

During evaluation, it became evident that the
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BERT + RF LLaMA 2 7B (AlpaCare) ChatCTP

Phase Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Phase I 0.713 0.631 0.572 0.572 0.659 0.658
Phase II 0.675 0.646 0.588 0.586 0.618 0.619
Phase III 0.737 0.778 0.739 0.723 0.812 0.803

Table 3: Prediction accuracies per phase.

Model Accuracy F1 Score

BERT + RF 0.815 0.847
Longformer 0.788 0.780
Clinical Longformer 0.780 0.790
LLaMA 2 7B 0.567 0.535
LLaMA 2 7B (AlpaCare) 0.729 0.735
GPT-3.5 Turbo 0.825 0.828

Table 4: Comparison of model performances trained
only on Phase III trials.

fine-tuned reasoning model was biased towards at-
tributing trial termination to safety and efficacy con-
cerns. However, there are also some cases where
the model exhibits interesting reasoning abilities.
Examples are given in Table 6. It is important to
note that these findings lack validation and should
be approached with caution. Nonetheless, they
present an intriguing avenue for future research.
Further investigation into the model’s reasoning
mechanisms and validation of its outputs could
shed more light on its reliability and potential ap-
plications in clinical trial analysis. Additionally,
exploring how the model’s reasoning aligns with
real-world clinical insights could enhance its prac-
tical utility and trustworthiness.

5 Conclusion

In this comprehensive study, we embarked on a
critical endeavor to address the urgent demand for
accurate prediction models in the realm of clini-
cal trial outcome prediction (CTOP). Our primary
objective was to combat the prevalent high failure
rates and substantial resource wastage associated
with unsuccessful trials, thereby aiming to revo-
lutionize the landscape of clinical trial research.
To achieve this goal, we introduced ChatCTP, a
groundbreaking initiative marking the inaugural
utilization of Large Language Models (LLMs) in
CTOP. Concurrently, we developed a non-LLM-

based approach, BERT+RF, to offer a diverse range
of methodologies for comparison and evaluation.

Central to our methodology was the innovative
labeling procedure for trial outcomes, which en-
abled us to track medical interventions across a
multitude of trials. This approach afforded us a
deeper and more nuanced understanding of the intri-
cate dynamics surrounding trial success and failure.
Leveraging the curated PhaseTransition Dataset,
we conducted a series of comprehensive experi-
ments to evaluate the efficacy and performance of
our proposed methodologies thoroughly.

Despite the significant strides made in advancing
our understanding and predictive capabilities, we
recognize the need for further investigations into
the impact of terminated trials on the efficacy of
medical interventions in ongoing trials. Such en-
deavors are imperative to enhance the accuracy and
reliability of outcome labels, ultimately facilitating
more informed decision-making processes.

An inherent advantage of employing Language
Model-based approaches lies in the potential for
enhanced model interpretability. Leveraging LLMs
enables us to delve deep into the inner workings of
the model, allowing for the extraction of valuable
insights into its decision-making processes. This,
in turn, offers the tantalizing prospect of gaining
a comprehensive understanding of the rationale
behind the prediction of trial outcomes. While our
initial forays into extracting reasoning from the
model show promising results, we acknowledge
the necessity for further refinement to achieve a
level of interpretability that furnishes actionable
insights for stakeholders involved in clinical trial
decision-making.

Looking ahead, our study lays a solid foundation
for future research endeavors in CTOP, offering
invaluable insights into the untapped potential of
LLMs and alternative methodologies in enhanc-
ing prediction accuracy. By addressing key chal-
lenges and introducing innovative methodologies
and datasets, we aspire to catalyze the development
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of more robust and reliable prediction models in the
dynamic and ever-evolving landscape of clinical
trials.

Limitations

Predicting the outcome of a clinical trial is an im-
portant topic. Previous has mostly focused on using
ClinicalTrials.gov, currently the largest database in
the clinical trial domain, in combination with vari-
ous supporting databases for specific topics. Even
though ClinicalTrials.gov has more than 450,000
entries, we can only use a fraction of them. On
the one hand, we are limited by the quality of the
data. Sponsors and investigators are responsible for
submitting their data to ClinicalTrials.gov. Ideally,
the key information is registered at the start of the
trial and updated regularly during its run, with the
entry being closed as the study ends (Tse et al.,
2018). In practice, the adherence to these require-
ments is inadequate, meaning that a large portion
of entries lacks accurate and complete information
(Tse et al., 2018). We are further limited by the
second database, the BioMedTracker, as we can
only use trials that are also featured in its much
smaller collection. The nature of the trial report
system introduces another limitation. Our approach
focuses on predicting the outcome of a clinical trial
from data available before the trial is started. This
data is, in theory, available on ClinicalTrials.gov.
However, the responsible parties can add, edit, or
delete information at any time (Tse et al., 2018);
therefore, not all trial descriptions we used might
reflect the initial trial protocol created.

We further want to emphasize that the reasoning
examples given in the experiment section are solely
provided for exploratory purposes. While we tested
the reasoning capabilities of the LLM we built, it
is important to note that this aspect of the model
was not the primary focus of our study. Further
studies with this focus have to be conducted to
create LLM’s capable of stating reason for their
predicted outcome.

Ethics Statement

Our study presents a predictive framework for clin-
ical trial outcomes, offering insights into potential
trajectories; however, it refrains from offering pre-
scriptive advice on interpreting or acting upon these
predictions. While our models showcase promising
accuracy, it’s crucial to acknowledge the inherent
risks associated with their application. The possi-

bility of disproportionately attributing significance
to predictions looms large, given the inherent lim-
itations of predictive modeling, thus warranting
cautious utilization of our approach. At their cur-
rent developmental stage, our models aren’t suit-
able for definitively determining trial success or
anticipating phase transitions. We acknowledge
the potential for false positives or negatives, which
could lead to misguided conclusions. Hence, we
advocate for the use of our models as complemen-
tary tools alongside clinical judgment rather than
sole determinants in decision-making processes.

Regarding data sourcing, our dataset relies on
proprietary data from BioMedTracker, yet all in-
formation published in our study is meticulously
sourced from publicly available data. While the
labeling process entails the use of restricted infor-
mation, stringent measures ensure that no confi-
dential data is divulged in its raw form. This re-
stricted data is exclusively employed for inference
and labeling within our study, underscoring our
commitment to upholding the confidentiality and
integrity of proprietary information provided by
BioMedTracker. Additionally, we adhere to ethical
standards of transparency and accountability in our
research methodology, thereby ensuring scientific
integrity and responsible data usage in the devel-
opment and dissemination of predictive models for
clinical trial outcomes.

Moreover, it’s essential to recognize that predic-
tive modeling in the context of clinical trials is a
rapidly evolving field. As such, our study repre-
sents just one step in a larger journey toward devel-
oping more accurate and reliable prediction models.
Future research endeavors should focus on refin-
ing existing methodologies, exploring novel ap-
proaches, and incorporating additional data sources
to further enhance prediction accuracy and robust-
ness. Collaborative efforts between researchers,
clinicians, and industry stakeholders will be instru-
mental in driving progress in this area and ulti-
mately improving the efficiency and success rates
of clinical trials.

Additionally, while our study leverages propri-
etary data from BioMedTracker, it’s imperative
to acknowledge the broader ethical considerations
surrounding data usage in predictive modeling. En-
suring data privacy, transparency, and equitable
access to information are paramount concerns that
must be addressed to foster trust and accountability
within the research community. As such, we advo-
cate for greater transparency in data sourcing and
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sharing practices, along with the development of
clear guidelines and ethical frameworks to govern
the use of proprietary and publicly available data in
predictive modeling research. By upholding these
principles, we can ensure that predictive modeling
continues to advance scientific understanding and
benefit society while maintaining ethical integrity.
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A Appendix

Even though we state that the regulatory process
consists of three phases, we want to clarify that
additional steps are involved in bringing a drug
to market. Following the completion of Phase III
trials, researchers analyze the data collected from
the trials to give a final assessment of the drug (or
device) safety and efficacy (Friedman et al., 2015).
If the results are favorable and meet the predefined
endpoints established by regulatory agencies, the
sponsor submits a New Drug Application (NDA)
or a Biologics License Application (BLA) to the
regulatory authority for approval (Friedman et al.,
2015).

Afterward, the responsible regulatory agency,
commonly the U.S. Food and Drug Administra-
tion (FDA), carefully reviews the NDA or BLA to

evaluate the clinical trial data, manufacturing pro-
cesses, labeling, and proposed indications for use
(Friedman et al., 2015). This review process en-
sures that the drug or device meets stringent safety
and efficacy standards before being approved for
market authorization. In some cases, the FDA con-
venes an advisory committee of independent ex-
perts to review the clinical trial data and provide
recommendations regarding approving the drug
or device (Friedman et al., 2015). The commit-
tee considers factors such as the risk-benefit pro-
file, potential safety concerns, and unmet medical
needs. If the data demonstrate that the benefits
outweigh the risks and the product meets regula-
tory requirements, the agency may grant market-
ing approval (Friedman et al., 2015; Kavalci and
Hartshorn, 2023).

Once approved, the drug or device can be
launched into the market for widespread use by
healthcare providers and patients. At this stage, the
last phase of the clinical trial process, Phase IV, is
launched, also known as post-marketing surveil-
lance trials or post-market studies. Unlike earlier
phases of clinical trials, which primarily focus on
establishing safety and efficacy for regulatory ap-
proval, Phase 4 trials aim to monitor the drug or de-
vice’s long-term safety profile and effectiveness in
real-world settings (Friedman et al., 2015). Phase
4 trials typically involve larger and more diverse
patient populations than earlier phases and may
last for several years. They aim to identify rare or
long-term adverse effects that may not have been
detected during earlier clinical trials, as well as to
gather additional data on the drug’s efficacy in spe-
cific patient populations or clinical settings (Fried-
man et al., 2015). These trials often compare the
new treatment with existing treatments or placebo
to assess its relative benefits and risks in real-world
conditions (Friedman et al., 2015).

The results of Phase 4 trials can lead to important
updates to product labeling, changes in prescribing
guidelines, or even the withdrawal of a drug or
device from the market if serious safety concerns
arise. Overall, Phase 4 trials are crucial in ensuring
the ongoing safety and effectiveness of medical
interventions once they are available to the general
population.

In conclusion, the entire process, from pre-
clinical development to the end of Phase IV, can
span over ten years, with significant variability de-
pending on the specific product and the associated
regulatory requirements (Friedman et al., 2015).
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Trial Description

TRIAL NAME: Phase II - X2202;
BRIEF: The purpose of this study was to determine if BVS857 is safe, tolerable and increases thigh muscle thickness in patients
with spinal bulbar and muscular atrophy (SBMA).;
DRUG USED: BVS857;
DRUG CLASS: New Molecular Entity (NME);
INDICATION: Spinal Bulbar Muscular Atrophy (SBMA, Kennedy’s Disease, X-linked spinal muscular atrophy type 1);
TARGET: IGF-1R (Insulin-like Growth Factor-1 Receptor);
THERAPY: Monotherapy;
LEAD SPONSOR: Novartis Pharmaceuticals;
CRITERIA: Key Inclusion Criteria: - Genetic diagnosis of SBMA with symptomatic muscle weakness - Able to complete 2-minute
timed walk - Serum IGF-1 level less than or equal to 170 ng/mL Key Exclusion Criteria: - Medically treated diabetes mellitus
or known history of hypoglycemia - History of Bell’s palsy - Treatment with systemic steroids >10 mg/day (or equivalent dose);
androgens or androgen reducing agents; systemic beta agonists; or other muscle anabolic drugs within the previous 3 months -
History of cancer, other than non-melanomatous skin cancer - Retinopathy - Papilledema Other protocol-defined inclusion/exclusion
criteria may apply;
PRIMARY OUTCOME: Number of Patients With Adverse Events (AEs), Serious Adverse Events (SAEs) and Deaths as a Measure
of Safety and Tolerability;
SECONDARY OUTCOME: Mean Change From Baseline in Score on the Adult Myopathy Assessment Tool (AMAT) in Part B,
Cohort 5

Phase Transition

No

Table 5: Example dataset entry. The field ’Trial Description’ is the input the model receives. It holds the most
important information on the clinical trial while not exceeding the 4096 token limit. The field ’Phase Transition’
holds the associated label. In this example, the trial ’X2202’ did not transition from Phase II to Phase III.

Reasoning Examples

Label: No. VTL-308 failed to meet its primary endpoint, all follow up studies were terminated.
Predicted label: No. This clinical trial did not transition to the next phase. The reason is that the sponsor, Vital Therapies, Inc.,
discontinued the ELAD program, including the VTL-308 trial, due to lack of efficacy in previous studies.

Label: No. Strategic
Predicted label: No. This trial will not transition to the next phase. The reason is that the lead sponsor, Gilead Sciences, has not
shown any involvement in oncology-related clinical trials involving CYT997 or glioblastoma multiforme.

Table 6: Reasoning examples.
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