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1 Introduction

Injection molding is characterized by injecting a polymer melt into
a cavity of a predefined geometry, where the material fills the do-
main and subsequently solidifies before it is ejected. Inevitably,
the process results in an inhomogeneous temperature distribution
within the product, causing warpage from residual stresses, result-
ing in differences between the mold shape and final product. The
relationship between the cavity’s shape, processing parameters, and
the final part geometry is highly nonlinear and surpasses engineer-
ing intuition. Thus, partial differential equations (PDEs)-based
simulation and numerical design have become an essential tool in
process design. While exploring the design space of industrial pro-
cesses, numerical design optimization requires many function eval-
uations. Solving the fully-resolved simulation is time-consuming
with a large design space; the computational time of design opti-
mization can grow to impractical values. A fast regression model
can allow the exploration of a large space at limited, yet sufficient
accuracy.

In many fields of engineering, product design typically targets a
global objective function. For example, in aerodynamics, optimiza-
tion efforts often focus on reducing drag, while topology optimiza-
tion focuses on minimizing compliance. In contrast, in injection
molding, the objective is to obtain the desired product shape, mak-
ing the number of design objectives as vast as the number of prod-
ucts. In addition, the design objectives are very localized. While
shrinkage warpage is generally undesirable, local regions of a prod-
uct may need to conform exactly to the target shape while other

2



3

regions are subject to larger tolerances. To account for this diver-
sity, as well as for general applicability to all common simulation
methods, the focus of this work is on the generation of black-box
– i.e., non-intrusive – reduced-order models for the fully-resolved
solution of PDEs.

In particular, we examine proper orthogonal decomposition (POD)
[4] as a model for a linear combination of basis vectors and graph
neural networks (GNNs) [17, 51] as an approach for nonlinear com-
bination. Using plastic injection molding as a use case, we com-
pare the performance, capabilities, and limitations of generating
non-intrusive reduced-order models with POD and GNNs. In par-
ticular, we focus on their ability to deal with varying simulation
settings and geometries, such as mesh types and sizes.



2 Material model

2.1 General continuum mechanics

Let x ∈ Ω denote a spatial coordinate in reference (or initial) con-
figuration of a spatial domain and x̃ ∈ Ω̃ denote a deformed me-
chanical configuration in equilibrium. The deformed spatial domain
results from a displacement of the initial spatial domain

x̃ = x + u . (2.1.1)

The deformation tensor F maps the initial to the deformed config-
uration

Fij = ∂x̃i

∂xj
= I + ∂ui

∂xj
, (2.1.2)

where J denotes the volumetric change

J = det F . (2.1.3)

The deformation tensor describes deformation on the domain and
is the basis for defining strain and stress. The Green-Lagrangian
strain tensor E quantifies the strain, i.e. the deviation from the
reference configuration

E = 1
2
(
FFT − I

)
. (2.1.4)

The first Piola-Kirchhoff stress tensor P describes material forces
and stresses in the deformed configuration, while the area’s domain
still corresponds to the initial configuration. Thus, it allows to
solve for integral equations in the deformed configuration, while
integrating over the reference equations.

4



2.2 Hyperelasticity 5

2.1.1 Balance equations

Every physical system must at all times obey the conservation of
linear momentum and energy. For a stationay system, the balance
of linear momentum in the Lagrangian description reads

0 = ∇ · P + b on Ω , (2.1.5)

where b are body forces. A domain changes its shape only if con-
straints are applied, which can be a prescribed displacement gu

(a Dirichlet boundary condition), a prescribed traction hτ (a Neu-
mann boundary condition), or prescribed forces as a body force
or a thermally induced force. The conservation of energy (Equa-
tion 2.1.5) is valid at every point, leading to the following boundary
value problem (BVP): ∫

Ω
div P + b dΩ = 0 (2.1.6)∫

ΓD

(ui − gu) dΓD = 0 (2.1.7)∫
ΓN

(Pijnj − hτ ) dΓD = 0 . (2.1.8)

2.2 Hyperelasticity

Hyperelastic materials have a strain energy function Ψ(FT F) that
describes the energetic state of a specific configuration. The equi-
librium corresponds to a minimum of this energy function. Hy-
perelastic materials are defined by the property, that the second
Piola-Kirchhoff tensor equals the derivative of the strain energy
with respect to the deformation tensor

P = ∂Ψ
∂F . (2.2.1)

In addition, the F has a number of invariants related to indifference
to the chosen frame (confer [30], p.233), which can be used to define
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material laws

I1 = tr(FT F) (2.2.2)

I2 = 1
2[tr(FT F)2 − tr((FT F)2)] = tr((FT F)−1) det(FT F) (2.2.3)

I3 = det(FT F) = J2 . (2.2.4)

2.2.1 Neo-Hook

The material law of interest is the compressible decoupled Neo-Hook
(confer [30] p. 247)

Ψ(J, Ī1, Ī2) = Ψvol(J) + c1(Ī1 − 3) . (2.2.5)

where Ψ refers to the overall strain energy function, Ψvol to the
volumetric contribution and the second term to the isochoric con-
tribution to the strain energy. Choosing the volumetric function
proposed by Simo and Miehe [50], the free energy reads

Ψ(J, Ī1, Ī2) = c1(Ī1 − 3) + 1
4(J2 − 1 − 2 ln J) , (2.2.6)

with material parameter c1. The first Piola-Kirchhoff tensor follows
from differentiation of the strain energy function

P = 2c1(F − F−T ) + 2λ

2 (J − 1)JF−T . (2.2.7)

2.3 Thermally-induced deformation
The thermal deformation can be included in the deformation tensor
as a multiplicative split [29, 37]

F = FθF̄ , (2.3.1)

where Fθ describes only the thermally induced part of the defor-
mation that can be described as

Fθ = exp
(∫ θF

θ

α(θ̂) dθ̂)
)

I . (2.3.2)
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Where α(θ) is the factor of thermal expansion, Θ is the final temper-
ature and Θ0 the initial temperature. Assuming constant thermal
expansion factor and isotropic material behaviour, the expression
can be evaluated to

Fθ = exp (θ − θ0) I . (2.3.3)

The first Piola-Kirchhoff tensor for the thermo-mechanical problem
follows directly from (2.2.7), where F includes the thermal contri-
bution.

2.4 Shrinkage-warpage

The shrinkage-warpage is modeled as deformation from an initial
inhomogeneous temperature field θ to an equilibrium at constant
temperature θ. The solution is derived by solving BVP Equa-
tion 2.1.6–2.1.8 with the corresponding thermally-induced stress
Equation 2.3.1 with the finite element method (FEM).



3 Data-Driven Methods

3.1 Proper Orthogonal Decomposition

One of the most popular methods for non-intrusive reduced or-
der models is the projection to a linear subspace of a dataset by
POD [10]. It follows the assumption that the underlying physics
of a spatio-temporal system takes place on a manifold, which is
much lower-dimensional than the degrees of freedom in the original
dataset. Under this assumption, the system can be transferred to a
basis where the first few basis functions carry the most important
information. POD is equivalent to applying singular value decom-
position (SVD) to aggregated data of a physical system (usually
generated by solving a PDE). The snapshot matrix X represents
solution of the discrete physical system as a collection of snapshots,
where each snapshot contains the solution to the system at a specific
parameter value µi

X =

 | | |
u1 u2 . . . um

| | |

 . (3.1.1)

The SVD is uniquely defined for any real or complex-valued matrix
X as

X = UΣV∗ . (3.1.2)

The result consists of the square matrix of left eigenvectors U, a
diagonal matrix of singular values ordered by magnitude Σ, and
the square matrix of right eigenvectors V∗. The columns of U can

8



3.2 Neural Networks 9

be interpreted as modes of the physical system. If the dataset lies
within a linear subspace, the eigenvalues decay exponentially, and
the k first eigenvectors of U form the optimal reduced basis for the
dataset

Ũ =

 | | |
ψ1 ψ2 . . . ψk

| | |

 . (3.1.3)

The reduced representation by this truncation reads

X̃ = ŨΣ̃V∗ . (3.1.4)

While the sole application of the SVD retains the original dataset,
the dimensional reduction introduces a projection error

ep(k) =
∥∥(I − ŨŨT

)
X
∥∥ . (3.1.5)

As ep(k) increases with decreasing k, a trade-off must be made be-
tween the degrees of freedom in the reduced system and the desired
accuracy. One approach to deciding for k is to set a certain re-
construction capability and choose the lowest k that satisfies the
requirement.

3.2 Neural Networks

The research effort put into NNs grew rapidly since their advent.
Due to the fast research progress and the problem-dependent nature
of data-driven models, this report reviews only the very basic ideas.
The topic is well explained on numerous websites, blogs and in
publicly available books, the author warmly recommends [5, 11, 23].
The following sections start by introducing the fundamental idea
behind NN architecture and training, before advancing to CNNs
and the GNNs approaches demonstrated (Section 3.2.5 and 3.2.4).
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3.2.1 Fully-connected / Vanilla Neural Networks

Biological findings inspired the historically first NN architecture,
which consist of fully connected neuron layers, connected by learn-
able transformations. Each layer maps its input X of size n × d

to output data y of size m × d′. The following equations describe
the problem for data with one feature, although they easily gen-
eralize towards higher dimension. The transformation is applied
by (1) multiplying the input with a weight matrix w with dimen-
sion m × n and adding bias b of dimension m, and (2) applying a
– generally nonlinear – activation function σ. Weights and biases
constitute the free parameters of the model, calculating the output

y = wT X + b . (3.2.1)

In the early stages of NN research, the logistic or sigmoid function
served as activation function, while over time rectified linear unit
(ReLU) and the hyperbolic tangent showed outdated sigmoid in
most applications [2]. At the time of writing, among a large number
of activation functions, ReLU and exponential linear unit (ELU)
are the most popular for regression tasks. However, the question of
the best activation function remains unanswered at this time and
may be problem-specific. Moreover, in general practice the identity
is chosen as activation function of the last layer, mapping to the
output.

In fact, a NN with only two layers corresponds to a Proper Or-
thogonal Decomposition basis [40]. Deep NNS contain at least
one hidden layer between input and output. They can nonlinear
combinations of the input at the cost of additional computational
effort.

Theoretically, NNs with only one hidden layer can approximate
continuous function up to any desired accuracy if enough hidden
neurons are available [31]. In practice however, computational lim-
itations may prohibit a sufficient number available neurons and, so
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Figure 3.2.1: Fully-connected NN with four layers, of which two are
hidden (pink) with five input and output neurons and
four hidden neurons.

far, no method is guaranteed to find the optimal parameters for
a specific network architecture. In view of limited computational
resources deep NNs with fewer neurons per layer and greater depth
may outperform shallow networks. They have been shown to reduce
datasets to a extraordinary small latent space, du to their nonlinear
combination of inputs [32].

The parameters that influence the flexibility of a network consist of
the number of layers, the number of neurons per layer, the choice
of activation function, and the training method. In the absence of
concrete theoretical results, practitioners typically approach these
questions through a mixture of expertise and experimentation.

The next section describes the state of the art for retrieving the
network weights and biases for a specific architecture.

Training

The capability of NNs to represent relationships in high-dimensional
and complex datasets stems from their ability to perform nonlinear
mappings. However, this property comes with the drawback of
having to find an optimal set of parameters for a high-dimensional



12 3 Data-Driven Methods

nonlinear function, which is realized via numerical optimization of
the respective function parameters.
This optimization requires an objective function (also called loss
function) L to measure the performance of a set of network param-
eters with the object of minimization

min
w,b

L(ỹ, y) . (3.2.2)

Most commonly in regression tasks, the mean squared error (MSE)
over all samples

MSE(ỹ, y) =
m∑

i=1
(ỹi − yi)2 (3.2.3)

quantifies the loss between a prediction ỹ and the original data y.
Random sampling of a normal distribution determines the initial
guess of the network parameters [22, 26]. The exact properties of
this distribution depend on the activation function, the types of
layers, and the networks depth. Gradient-descent numerical opti-
mization algorithms [41] iteratively attempt to find a global opti-
mum of the problem’s loss function L by following the direction of
steepest descent of the objective function. Focusing on one layer,
the prediction reduces to

h = σ(wT X + b) , (3.2.4)

or component-wise

hk = σ

(
n∑
i

wjkXj + bk

)
. (3.2.5)

Every NN layer applies linear combination of weights and biases
before the activation function, thus the analytic derivative with re-
spect to weights and biases follows from applying the derivative
chain rule to Equation 3.2.4. The selected loss function quadrati-
cally depends on the prediction ỹ, therefore the chain rule enables
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the computation of the derivative of the loss function with respect to
weights and biases. This property allows an efficient calculation of
the derivative even for a nonlinear model. An intuitive explanation
is to assign a fraction of the residual to each learnable parameter,
referred to as backpropagation [1, 14]. In practical implemen-
tation, a computational graph tracks the recursive combination of
input data, weights and biases [19].
In theory, backpropagation and gradient descent can perform their
steps on the whole dataset. However, the computation is memory
intensive, so today conventional NN training iterates the dataset
assuming that a subset of samples approximates the gradient [1],
which also allows parallelization.
The vanilla gradient descent algorithm performs one step in the
direction of reduced residual (with stochastic or deterministic gra-
dient)

ϑm+1 = ϑm − α∇L(Φϑm) . (3.2.6)

The primary obstacle in gradient descent optimization is avoiding
local minima, which requires careful selection of the learning rate
(also known as step size) α and appropriate initialization [22, 26].
If the parameters θm correspond to a local minimum of the loss
function, no directional derivative reduces the residual and the algo-
rithm does not progress further. The learning rate crucially affects
how prone an optimization problem is to local minima, where small
value can trap the optimizer in small “sink“, whereas a large value
may skip both local and global minima, and may even diverge.
The issues have been addressed by a series of optimization algo-
rithms, mainly by including a momentum term computed as mov-
ing average of gradients. The idea is based on rolling balls stor-
ing kinetic energy as momentum, which enables them to overcome
obstacles, if they collected sufficient momentum [43]. The proba-
bly most famous adaptor of the momentum method is the Adam
[33] optimizer, which also inspired a number of modified versions
[18, 35, 36].



14 3 Data-Driven Methods

Besides the risk of not performing well on a dataset, NNs can also
perform too well – when they overfit to a dataset. Overfitting is
when a model learns a structure that is not present in the data.
It indicates the chosen model is too complex and relates to the
variance-bias trade-off (confer [11], Section 2.2.2). The trade-off
describes how simple models tend to have bias, but deterministic
output for identical input data. Instead more complex models, i.e.
with a large number of parameters, accurately approximate the data
used for their fitting, however, slight changes in the training data
can result in considerably different model parameters. Various reg-
ularization methods target the reduction, e.g., randomly dropping
entries in the dataset [28], enforcing sparse weight matrices, e.g.,
by Lasso regularization [46], adding random noise to the input data
[53].

To identify the performance of statistical models on datasets with
unknown distributions, the dataset is randomly split into a training
and a test set. While gradient descent and backpropagation only
use the training set, the performance measurement only considers
the unknown test set, quantifying the generalization.

Despite the massive amount of research effort put into NNs weight
initialization and optimization, neural networks still suffer from an
uncertainty whether the optimal parameters for a certain architec-
ture have been reached.

3.2.2 Convolutional Neural Networks

Although this work does not apply CNNs, their success forms the
baseline for the development and understanding of graph convolu-
tion (Section 3.2.3).

Vanilla neural networks 3.2.1 come with the severe limitations of
overfitting to the training data and scaling the number of trainable
parameters with the size of the input data. After their invention [34]
CNNs fastly overtook the conventional design in image processing.
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Figure 3.2.2: CNN with five input neurons and two convolutional
filters of size three, resulting in one output.

As their name implies, they mimic a mathematical convolution of
two signals f, g, which in continuous Euclidean space yields

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t − τ) dτ , (3.2.7)

and instead a multiplication on discrete data

(f ∗ g)[n] =
∑

m=−∞
f [n − m]g[m] . (3.2.8)

CNN layers learn the second signal g as discrete convolution kernel.
The support of this kernel can be chosen and a local support – i.e.
smaller than the input data – guarantees local feature extraction.
In fact, small kernel sizes, as 3×3 or 4×4, show best generalization
capabilities, as local features can be combined to global features.
The number of learnable weights for one convolutional filter equals
the dimension of the filter and the weights are shared for all inputs.
Thus CNN layers decouple the number of weights from the input
size and enable processing large data sets on regularly spaced do-
mains. The application of CNNs on physical data also yielded
great success. A 3 × 3 convolutional layer on regularly structured
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physical data equals learning a finite difference stencil for the dis-
crete Laplace operator. Lee and Carlberg demonstrated how CNNs
successfully reconstruct a physical manifold for dynamical systems
and learn the optimal finite difference stencil for given PDE solu-
tions.

3.2.3 Graph Neural Networks

Graph Neural Networks expand the idea of NNs to spatially un-
structured data and were first introduced by Scarselli [47]. The
area of geometric deep learning changes rapidly due to a massive
amount of research invested. Bronstein and others [7, 8] give a great
overview of the state of the art at that time.
This type of network architecture operates on the geometric struc-
ture of a graph, i.e. the adjacency matrix defines the relation be-
tween vertices. NNs operating on structured data, e.g. image data,
are a special case of GNN. One of the key features of this architec-
ture is that the network is invariant to permutations of the vertex
order.
After the success story of CNNs on image and physical data, re-
searchers aimed to reproduce convolution on unstructured data.
Three main mechanisms of GNN layers with increasing generaliza-
tion evolved: (a) graph convolution, (b) graph attention, and (c)
message passing, where the latter generalizes the former ones.

Introduction to graphs

A (discrete) graph consists of a finite set of vertices (or nodes)
v ∈ V connected by a set of edges e ∈ E . In a finite weighted
graph, additionally, weights ew are associated to each edge. The
following paragraph summarizes the most important features of a
graph, while Grady gives a more extensive introduction [24].
The most fundamental quantity to describe a graph is the adjacency
matrix A, a matrix of dimensions NV × NV taking the values 0
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and 1. It indicates a directed edge from vertex A to vertex B with
value 1 at matrix position AAB, the row number corresponding to A
and the column number corresponding to B. Values on the diagonal
indicate self-loops on vertices. The adjacency matrix notation of an
undirected edge consists of two entries, i.e., a directed edge from A
to B and additional edge from B to A. If only undirected edges occur
in a graph, the adjacency matrix is symmetric and the graph is
called undirected. The weighted adjacency matrix Aw extends the
adjacency matrix by containing the edge weight at the respective
position instead of the value 1.
The degree matrix D of dimension NV × NV has only entries on its
diagonal equivalent to the number of edges adjacent to a vertex and
is calculated as Dii =

∑
j ew

j . Figure 3.2.3 displays an exemplary
graph with six nodes connected by undirected and directed edges,
its adjacency matrix corresponds to

A =

A
B
C
D
E
F



A B C D E F
0 1 0 0 0 1
1 0 1 0 0 1
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 0 0 1
1 1 1 0 1 0


. (3.2.9)

Analogous operators to derivatives on continuous functions have
been developed, where the graph Laplacian L expands the Lapla-
cian operator. It directly relates to the adjacency matrix and the
degree matrix via

L = D − A . (3.2.10)
The eigenvectors of the Laplacian form a Fourier basis Ψ, thus rep-
resenting the Laplacian as two orthogonal matrices and a diagonal
matrix Λ = diag(λi)

L = ΨΛΨT (3.2.11)
A graph represents a signal f as a vector of signal values fi on its
NV nodes.
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Figure 3.2.3: A graph with six vertices connected by undirected and
directed edges.

Spectral graph convolution

The convolution of two signals or functions is defined as the inte-
gral of their product after reflecting and shifting one function. Its
application allowed great progress in signal processing and CNNs,
which motivated researchers to develop extensions to non-regular
spaces, such as graphs. In practice, convolutions are calculated after
a Fourier transform, as the convolution of two functions f and g is
a multiplication of their Fourier transforms in the spectral domain
(“Convolutional theorem“, see e.g. [15]).

One way to generalize the Fourier convolution to a graph uses the
convolutional theorem (confer [7], p.28, Equation (26)). Using the
discrete version of an inner product on a graph, the convolution of
two signals (f ∗ g) results in a multiplication of the eigenvectors of
the Laplacian with the spectral representation of a signal ĝ

(f ∗ g) = Ψdiag(ĝ)ΨT f . (3.2.12)

Thus, convolution on a graph represents a signal in the basis of
eigenvectors of the Laplacian of the graph. However, the Laplacian
eigenfunctions are not unique, as they are always defined only up
to a sign, and for multiple eigenvalues only up to an orthogonal
transformation [7].
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The first GNN convolutional layer followed directly from the spec-
tral representation by Bruna [9] as a multiplication of the eigenvec-
tors with learnable spectral multipliers Γ and the signal

gj = σ

 q∑
j=1

ΨΓj,iΨT f i

 . (3.2.13)

As in Section 3.1, the order of the eigenvectors corresponds to the
magnitude of their individual values, and the first eigenvectors re-
late to the smooth, low-frequency structures of the graphs. In most
cases, the first k Laplacian eigenvectors carry the relevant features
of an input signal and the remaining eigenvectors can be omitted.

This first definition of graph convolution comes with severe limi-
tations. As aforementioned, the Laplacian eigenfunctions and con-
sequently eigenvectors are not unique and especially the higher-
frequency eigenvectors can be unstable, and their computation is
expensive. If the graph lies on a manifold, i.e. a non-planar sur-
face within a volume, the result of the convolution depends on the
spatial position and does not generalize to new geometries. In ad-
dition, the number of learnable parameters for the layer defined in
(3.2.13) has the same order of magnitude as the number of input
nodes and thus still scales with the graph.

The localized feature extraction property of CNN filters with small
support can be translated to GNNs by using the Laplacian as local
filter. As a symmetric real-valued matrix, the Laplacian can be
decomposed into an orthonormal basis and a real-valued diagonal
matrix L = ΨΛΨT such that a polynomial on the Laplacian is
equivalent to a polynomial on its eigenvalues

Li = ΨΛiΨT . (3.2.14)

Since the Laplacian only acts on a 1-hop environment of each node
(i.e. within one edge), its i-th power operates maximally on an
i-hop environment. A linear combination of Laplace polynomials
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Figure 3.2.4: Main approaches to graph convolution, from [7] p. 78.

preserves the property creating the localized learnable filter γ

γ(L) = Ψγ(Λ)ΨT (3.2.15)

γ(λ) =
r−1∑
j=0

ηjλj (3.2.16)

with polynomial coefficients η ∈ Rr.

Graph layers

As mentioned above, the state of the art in (graph) neural networks
is currently expanding at a rapid pace due to extensive research.
Most popular architectures today follow three main principles: (a)
convolution, (b) attention, and (c) message passing [7]. After a
brief explanation of these key ideas, the following paragraphs give a
detailed explanation of the network layers used in the result section.

Thus, this work limits its explanation to a brief summary of the
key ideas, before a detailed explanation of the network layers used
in the results section follows.

Spectral Graph Convolution (3.2.3) is directly inspired by the con-
volutional approach. An aggregation function ⊕ collects the fea-
tures xv in the direct neighborhood N u of node u, which are possi-
bly transformed by a function Υ and weighted by the edge weight
ew

uv. The aggregation function needs to be permutation-invariant,
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i.e. does not depend on the order of inputs. Common choices in-
clude the summed or mean value. A learnable function Φ computes
the output features yu at node u from the input node features xu

and the aggregated neighborhood features.

In the simplest (non-deterministic) case the layer collects the – pos-
sibly transformed – inputs from neighboring edges weighted by con-
stant edge weights ew. A learnable fully-connected layer represents
Φ with dim(hu) × dim(xu) shared weights, resulting in scalability
comparable to CNNs:

yu = Φ (xu, ⊕v∈N u
ew

uvΥ(xv)) (3.2.17)

Graph attention networks [6, 51] extend the convolutional ap-
proach with a learnable self-attention a(xu, xv) mechanism depen-
dent on the node features of the node itself and its neighborhood:

yu = Φ (xu, ⊕v∈N u
a(xu, xv)Υ(xv)) (3.2.18)

The most general notion – message passing [3, 20] – allows arbitrary
messages to be passed along edges:

yu = Φ (xu, ⊕v∈N u
Υ(xu, xv)) . (3.2.19)

Thus, the convolutional (Equation 3.2.17) and attentional (Equa-
tion 3.2.18) layers represent special cases of message passing (Equa-
tion 3.2.19). As the modeling flexibility increases, so does the num-
ber of learnable parameters and thus the complexity of successful
training.

3.2.4 ChebNet

The Chebyshev graph convolution [17] was among the first adap-
tations of the computationally efficient filter representation by the
graph Laplacian (Section 3.2.3). The Chebychev polynomials gave
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their name to the method. They form an orthogonal basis with
respect to the inner product∫ 1

−1
T i(x)T j(x) dx√

1 − y2
. (3.2.20)

They are generated by the recurrence relation

T j(λ) = 2λT j−1(λ) − T j−2(λ) (3.2.21)
T 0(λ) = 1 (3.2.22)
T 1(λ) = λ . (3.2.23)

Since the relation holds only on the interval [0, 1], the Laplacian
eigenvalues need to be rescaled by

L̃ = 2λ−1
n L − I . (3.2.24)

In this work, the PyTorch Geometric implementation [19] of Cheb-
Conv was used. The motivation for choosing this method was its
control over the size of the local filter, by the maximal polynomial
exponent.

3.2.5 Graph attention

As already described in Section 3.2.3 GATs extend convolutional
networks by a learnable attention mechanism. Thus, the weighting
of each node (see Figure 3.2.4, middle) is not constant anymore, but
learnable. In contrast to the convolutional approach [54], GATs can
represent signals outside the span of the eigenvectors of their Lapla-
cian. The method originally proposed in [51] introduced attention
coefficients, which learn the importance of the features of neigh-
boring nodes to the node itself. The initial method suffered from
poor scaling, if one node’s features exceed the values of the others,
which Brody solved by rescaling [6]. With this improvement, the
learnable feature importance results to

e(xi, xj) = σ
(
aT (Waxi, Waxj)

)
, (3.2.25)
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with learnable attention weights a ∈ R2d′, Wa ∈ Rd′×d, where d

and d′ are the number of features in the input and output, and leaky
rELU is proposed as activation function. The output features follow
from the aggregation in the neighborhood N i

yi = σ (Wa, softmax(e(xi, xj))xj) . (3.2.26)

The PyTorch [19] implementation GATv2Conv [6] was used.

3.3 Gaussian Process Regression

One line of separation for data-driven models runs between para-
metric and non-parametric models. While the previous models,
Proper Orthogonal Decomposition and NN, have explicit parame-
ters, GPR comes from the group of non-parametric models. The
method assumes that the dataset follows an underlying multivari-
ate Gaussian distribution, represented by Gaussian Processes (Fig-
ure 3.3.1, left). An extensive explanation can be found in Ras-
mussen et. al. [45].

The key idea states that samples that are close in the input space,
should lead to close predictions in the output. The realization fol-
lows by a kernel function, which models the covariance among the
different variables and depends only on distance of the input. The
predictive model is derived by conditioning the distribution on the
input samples (called kriging), such that (1) samples in the train-
ing set are exactly predicted, and (2) the predictive output for the
test set consists of an estimated mean and standard deviation (Fig-
ure 3.3.1, right).

GPR developed to a popular regression method, as it can model
even complex functions, requiring few model assumptions and hy-
perparameters. In addition, the predictive variance made GPRs a
popular tool for error estimates.
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Figure 3.3.1: The prediction of a GPR with a prior of Standard
Gaussian Processes before (left) and after (right) con-
ditioning, from [45], p.15.

In this work, the prior was chosen as a standard Gaussian process
with a Gaussian kernel as the covariance model. This kernel pre-
dicts an exponential decay of the correlation with increasing input
distance. The only parameter of freedom of this kernel is its length
scale, i.e., the rate of exponential decay with increasing distance.



4 POD-based model for
shrinkage-warpage
prediction

4.1 Problem statement

Assume V maps from a parameter vector µ ∈ Rn to a temperature
field Θ on a domain Ω. This temperature field enters a shrinkage-
warpage simulation, where the operator W : Θ → U maps the initial
temperature field to a displacement field. For a computationally
fast prediction, the composed operator V ◦ W shall be regressed. A
dataset of Nsamples describes the process discretely as

X = {µ, V ◦ W(µ}Nsamples
i=1 . (4.1.1)

This poses the minimization problem for the regressed operator Ṽ

min
Nsamples∑

i

∥Ṽ − W ◦ V(µi)∥ . (4.1.2)

4.2 Non-intrusive POD-GPR model

As elaborated in Section 3.1, the POD method determines the op-
timal linear subspace to a dataset. While the coefficients of the
reduced basis vectors for samples within the data set result from
a multiplication of the eigenvalues and the right eigenvectors, an
additional step is required to start the prediction.

25
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The mathematically most rigorous method solves the system of the
reduced basis functions and the system matrix [27, 52] and un-
der certain prerequisites even provides an error-bound. However,
this approach requires additional knowledge of the system matrix
and thus violates the requirement of maintaining non-intrusive, i.e.
solely data-driven.

The non-intrusive approach requires a regression model between
the input parameters and the coefficients of the basis vectors, and
any model connecting the two sets can serve the purpose. The
optimal choice depends on the dataset and its complexity. Popular
methods include radial basis functionss (RBFs) [12], NNs [23], GPR
[45], as applied in [13, 16], and quadratic polynomial regression
[48, 49]. The demands on robustness, flexibility, and computational
cost determine the optimal regressor choice for a specific dataset.

Considering the strong scaling of NNs with data availability and
the limitations of polynomial regression, GPR was selected as re-
gression model for the task at hand. Model generation consists
of (1) POD generation where the eigenvectors are truncated up to
a prescribed projection error (Equation 3.1.5), (2) regressing the
weights in the reduced basis with GPR. The prediction capability
of GPR regressed coefficient for new input parameters µi>Nsamples .
Following the results of [16], the input data undergoes mean re-
moval. Since the regression target consist of only one quantity,
feature scaling becomes obsolete.

A reconstruction performance on the original dataset determines
the number of preserved basis vectors k, i.e. a projection error
(Equation 3.1.5) of 1% corresponds to a 99% reconstruction of the
original dataset. As no clear theory on an optimal regression model
could be found, this work places particular focus on the approxima-
tion error introduced by projection and regression. Clearly the pro-
jection error (Equation 3.1.5) decreases with an increasing number
of preserved eigenvectors, however, this also expands the dimension
of the output in the regression problem. The author estimates re-
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Bounds meanx meany σx σy

Min. 0. 0. 0.0568 0.0538
Max. 1. 0.8 0.9958 0.9987

Table 4.1: Geometric bounds for dataset generation.

gression performance will decay with an increasing number of pre-
served eigenvectors, and poses a trade-off between the projection
error and the regression error. This assumptions will be examined
by investigating the performance of models with different thresholds
on the projection error on the training dataset.

4.3 Dataset

The data consists of the samples described in Equation 4.1.1 on a
double T-shaped domain. All samples share the same discretization
of the domain without transformations, consisting of 296 vertices
connected by triangular elements, and a set of Nsamples samples has
been chosen.

4.3.1 Parametrization of the input

Considering the application of injection molding, different input
temperate fields share their maximum close to the flow inlet with
smooth transitions to low-temperature regions. Bivariate Gaussian
distributions emulate varying inlet positions by shifting their mean
and covariance, such that the parameter consists of four parameters
describing each field.

Latin hypercube sampling [39] generated Nsamples = 100 samples
within the bounds stated in Table 4.1.
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Figure 4.3.1: Sample instance from dataset.

4.3.2 Boundary value problem

A FEM simulation using compressible Neo-Hookean material law
(Section 2.2.1) is used to calculate the respective stress field and
deformation. Section 4.3.2 states the respective boundary value
problem for initial temperature and displacement.

The boundary conditions prevent rigid body movement by fixing the
position of the bottom-left corner of the geometry and the vertical
degree of freedom of the bottom-right corner. The material param-
eters were chosen as thermal expansion coefficient α = 2.5 · 10−3

and poisson ratio ν = 0.25. Figure 4.3.1 displays a sample from the
dataset.

4.4 Results

The first model step consists of applying Proper Orthogonal Decom-
position and determining the number of preserved left eigenvectors
in the basis. A linear combination of the truncated eigenvectors
can only represent the dataset sufficiently, if the eigenvalues’ mag-
nitude decays exponentially. Figure 4.4.1a displays the eigenvalues,
sorted by magnitude and normalized by the maximal value. In the
logarithmic scaling of the y-axis, exponential decay corresponds to
a decreasing line, which the decay in Figure 4.4.1a satisfies.
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Figure 4.4.1: The Proper Orthogonal Decomposition yields expo-
nentially decreasing eigenvalues of the dataset (left)
and a projection error with similar behaviour (right).

The number of preserved basis vectors is a design choice. In this
work, the projection error (Equation 3.1.5) serves as performance
measure, as it quantifies the difference between the original dataset
and the dataset projection on the selected basis in the L2 norm.
Figure 4.4.1b displays the projection error, behaving analogously
to the eigenvalue magnitude. Demanding a 95% reconstruction of
the original dataset results in a projection error of 4.23% and 8
basis vectors.
The approximation error for a given sample measures the differences
between the prediction ỹ and the FEM solution y in the L2 norm.

e = ∥ỹ − y∥L2
, (4.4.1)

while normalization by the L2 norm of the FEM solution delivers
the relative approximation error

er =
∥ỹ − y∥L2

∥y∥L2

. (4.4.2)
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If the reference solution x to a problem is known, e.g., from a test
set, the sample-wise projection error can be calculated as

ep(k) =
∥∥(I − ŨŨT

)
x
∥∥ , (4.4.3)

and can be interpreted as a lower bound for the approximation
error, if there was an ideal regression model. This notion introduces
a regression error, as the difference between the approximation error
and the projection error

ereg = e − er . (4.4.4)

Note that this additive split is an assumption and different relations
between the projection and regression error may exist.

Figure 4.4.2 collects the predictions with the largest relative approx-
imation error in the the test set. The relative error ranges between
1.63 − 2.00 · 10−1 and the number of used basis vectors increases
moderately from 7 to 11. The maximal point-wise error appears in
the top-left corner for all models.

In the exemplary instance, the additional basis vectors seem to
enhance the prediction accuracy, although the regression problem
maps 4 to 11 instead of only 7 coefficients. Figure 4.4.3 summarizes
the effect on all test instances. The blue bars indicate the projec-
tion error on the selected basis (ep(k)) and the green bars symbolize
the difference to the approximation error e. The overall error lies
in the same range for all thresholds sets, while the projection er-
ror decreases with the growing basis. This indicates the regression
contributes the largest part to the approximation error.

4.5 Discussion and Outlook

The dataset includes hyperelastic material behaviour and large geo-
metric deviations in the initial conditions exceeding realistic design
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Figure 4.4.2: The samples from the test set with the highest rela-
tive approximation error for different number of basis
vectors, resulting from different demanded projection
accuracy.
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Figure 4.4.3: Approximation error on the test set, with the division
into error on projection (P) and regression (R) for
different projection accuracy.
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deviations in injection molding. Despite this variation, POD man-
aged to projection the dataset to a subspace of only roughly 10%
of the original degrees of freedom even for a high reconstruction
accuracy. The projection error in the test set matches the order of
magnitude in the test set, which promises generalization. Thus, a
linear subspace seems suitable for approximating the problem.

In contrast, the overall relative approximation error is around 15%.
This indicates that the GPR does not satisfactorily recover the re-
lationship between parameters and basis function coefficients. In-
terestingly, the high regression error does not show sensitivity to
the dimension of output variables, i.e., the number of basis vectors.
Thus, the GPR might be an unsuitable regression model for the
task. As GPR by definition exactly predicts its training data, the
author estimates overfitting to the training data and proposes a
more deterministic model such as RBF.



5 GNN-based
shrinkage-warpage
prediction

Under realistic circumstances, a preceding simulation passes the ini-
tial temperature field to the shrinkage-warpage calculation, which
– in general – does not obey a closed-form parametrization, as used
in Section 4.2. A realistic data-driven model for shrinkage-warpage
maps from an arbitrary initial temperature field to a displacement
field.

In addition, the shape of the product affects the displacement re-
sult and design optimization aims at iterating multiple geometric
designs (Section 1). Ideally, the data-driven model is applicable to
a group of related geometries.

5.1 Problem statement

The aim stated in the former paragraph can be formally described
by operator regression. Assume the operator W : Θ → U maps
the input temperature field Θ on a domain Ω to the deformation
field U . The operator shall be regressed from a collection of training
samples of different initial temperatures on a collection of geometric
domains {Ωi}NGeom

i=1 , leading to the dataset

X = {θn, Ωn, W(θn, Ωn)}Nsamples
n−1 . (5.1.1)

33
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We denote the true (unknown) operator as W and its data-driven
reconstruction as W̃. Operator regression aims at minimizing the
least squares error between the output of the regressed operator W̃
on the given dataset

min
N∑

n=1
∥Xn − W̃(θn, Ωn)∥ . (5.1.2)

5.2 Data-driven model

Most reduced order models (ROMs), e.g. the model presented in
the last chapter 4.2, extrapolate on a fixed geometric domain, or
on a parametrization of the fixed domain with the same number
of degrees of freedom. In contrast, GNNs learn the dataset with
respect to its edge weights and promise generalization across new
graphs. This capability motivated the choice of a GNN as data-
driven model for W̃.

While GNNs achieved great success in learning flow simulations
(Section 3.2.5), to the author’s knowledge, attempts to regress sta-
tionary elasticity are limited to the works of Löetzsch [38] and Glad-
stone [21]. The influence of the boundary condition on the complete
domain is a key feature of elliptic problems. Gladstone [21] finds an
unsatisfactory performance of the [42] architecture on their prob-
lem and speculate the local message passing fails at transmitting
boundary condition information fast enough. As a remedy, they
add new edges between random nodes within the domain. Instead
Lötzsch et. al. [38] investigate multiple existent GNN architec-
tures and find ChebConv performs best on their electro-magnetic
example problem.

Given these results, the following sections investigate the perfor-
mance of GAT and ChebConv as regression models W̃. The relation
to spectral graph convolution 3.2.3 motivates the choice for Cheb-
Conv with approximating global information passing by including
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up to the fifth exponential of the L. In contrast, overall GATs still
outperform ChebConv with their additional flexibility.

Following the general state of the art [21, 38, 42], each model con-
sists of

1. A GNN-based processor of one or multiple layers

2. A node encoder from the input features to number of hidden
neurons in node encoder (NHN) features

3. A node decoder from NHN encoded node features to the out-
put features

4. Only for GATs: An edge encoder from the edge attributes to
number of hidden neurons in edge encoder (NHE) encoded
edge features .

The goal of regression is to minimize the least squares error. How-
ever, the minimum of the MSE and the least squares error are iden-
tical. To avoid unnecessary backpropagation steps, the regression
models’s loss L function is selected as

Nsamples∑
n=1

L(yn, W̃(θn, Ωn) =
Nsamples∑

n=1
MSE

(
yn, W̃(θn, Ωn)

)
. (5.2.1)

The following sections describe the generated dataset and the per-
formance of the selected models.

5.3 Dataset

As the initial temperature field obeys the physical laws of the heat
equations, it seems reasonable to assume continuity with respect to
the geometric position. To cover a maximal span of initial temper-
ature field, a random model is used for their generation. Samples
from a GRF follow a Gaussian distribution while ensuring corre-
lation in a neighborhood of length-scale l. Small values of l yield
high-frequency white noise, whereas large values result in a smooth
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Train set Test set Total

Number of samples 179 45 224
Number of geometries 23 6 28

Table 5.1: Split of training and test instances.

transition of values. For deformations to occur, l needs to be larger
than two element lengths, but smaller than the maximal length of
the geometry at hand.
The double T shape from Section 4.2 is used again as an example,
this time also adding geometric modifications. The parametriza-
tion displayed in Figure 5.3.1a defines an instance by the horizontal
length (L) and vertical length (h0) of the bottom box, the horizon-
tal (w1) and vertical (h1) length of the middle box along with its
horizontal center of mass (c1), and the horizontal (w2) and vertical
(h2) length of the top box. Although not relevant for the shape it-
self, the characteristic length of the triangular discretization of the
shape (∆m) adds another degree of freedom to the data generation.
Latin hypercube sampling [39] generated 28 different geometries,
visualized in Figure 5.3.1b within the parameter ranges displayed
in Table 5.2. On each geometry, the FEM computed solutions for
8 different initial temperature field generated by GRF with param-
eter l = 0.3. Boundary conditions, material law and parameters
correspond to the problem presented in Section 4.2 The resulting
244 samples were divided into training set (80%) and test set (20%)
(Table 5.1), where the shapes Ωi in the training set and test set are
distinct.
Figure 5.3.2 displays the initial temperature distribution (left) and
the resulting deformed shape (right) for one sample instance.
The input data contains the following features for each node

1. Spatial position
2. Value of initial temperature
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(a) Geometry parametrization of a
double-T shape.

(b) Distinct geometric shapes within
the dataset.

Bounds Nnodes L w1 w2 h0 h1 h2 ∆m c1

Min. 224 1.0 0.1500 0.3588 0.1500 0.2000 0.1500 0.1000 0.4157
Max. 473 1.0 0.2371 0.8986 0.2402 0.2894 0.2972 0.1988 0.5994

Table 5.2: Geometric bounds for dataset generation, the parameters
are represented in Figure 5.3.1a.
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Figure 5.3.2: Sample instance from dataset
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3. Boolean, whether the node lies on the geometric boundary
∂Ωi

4. Distance to the next node on a geometric boundary (0 if the
latter Boolean is True)

5. Boolean, whether the node is subject to a Dirichlet boundary
condition

6. Distance to the next node subject to a Dirichlet boundary
condition

vertex position, The data is scaled feature-wise to the interval [0, 1],
where the bounds are extracted only from the training split. Edge
weights (for ChebConv) correspond to the L2 norm of an edge be-
tween two nodes, edge attributes (for GAT) additionally contain
the distance vector itself.

5.4 Results

The performance of NN-based models on a specific dataset may
largely vary under the choice of different hyperparameters (see Sec-
tion 3.2.1). A number of random parameter combinations from
predefined options serve as an estimate of the model’s sensitivities
to its architecture. Table A.1 and A.2 list the choices for GAT and
ChebConv, which where were based the findings in [38].
The training for each network architecture was performed for 1500
epochs using the Adam optimizer [33] with a constant learning rate
of 10−4 and β = (0.9, 0.999). Figure 5.4.1 displays the test er-
ror (solid line) and training error (dotted) for ChebConv (left) and
GAT (right) processing units. The final test error with the Cheb-
Conv layers ranges from 2.019 − 2.619 · 10−3 (Table A.2). All mod-
els smoothly and monotonically decrease the loss during training,
although Figure 5.4.1a reveals how a subset of models converge
faster than others. The GAT model yields a lower final loss be-
tween 1.887 − 2.194 · 10−3 (Table A.1) with an equal order of mag-
nitude. The decrease of the loss functions occurs monotonically
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Figure 5.4.1: Evaluation of the test and training error during pa-
rameter optimization. The models correspond to Ta-
ble A.1 and Table A.2. Solid lines display test error
and dotted lines training error.

(Figure 5.4.1b), but less smooth than in the previous examples.
Importantly, for all tested model, the lines of test error and train
error run very close or align, which is an indicator of generalization.

Although the MSE measures the loss during training, ultimately
the relative error between the regressed solution and true solution
determines the performance

erel = ∥y − ỹ∥
∥y∥

. (5.4.1)

Since scaling transformed the data to smaller than one, the relative
error compares unfavorably to the MSE. Figures 5.4.2a and 5.4.2b
show predictions for the sample sample with the best-performing
models from the previous hyperparameter exploration (Table A.1,
Table A.2). The relative error in the predictions is 0.61/0.55 with
point-wise values up to 0.09. While the ChebConv prediction yields
the lower overall error, point error fluctuate among neighboring
nodes and does not deliver a smooth deformation field. In contrast,
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Figure 5.4.2: A prediction on an unseen test sample with the true
solution (left) and prediction (right).

the GAT solution predicts smooth deformations, deviate less form
the initial configuration and underestimate this sample.

Generalization across multiple geometries initially motivated the
choice of GNNs. For an estimate of its success, we summarize the
relative error on each geometic shape individually. Figure 5.4.3
displays the error distribution, its minimum, maximum and median
(horizontal line) on each shape in the train set (top) and test set
(bottom) with the ChebConv (left) and GAT model (right). Note
that the samples in geometry number 22 have been split, such that
it appears in both sets. Among the geometries significant outliers
to the top are present and the distribution show significant variance
within each geometric shape. The median error, however, is roughly
constant within the geometries, even the unseen ones. No huge
differences between the two prediction models (left and right) are
visible.

We caution that although the training process appeared to be con-
vergent, the models were fitted to only 179 sample instances with
224 to 473 nodes with multiple output features per instance.
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Figure 5.4.3: Each violin plot displays the relative error of the sam-
ple of one shape as well as their minimum, maximum
and median (horizontal lines).

5.5 Discussion and Outlook

During training, the test losses for the different layer architectures
reached the same order of magnitude, while the GAT model slightly
outperformed the ChebConv model. This contradicts the authors
expectations, as the flexibility of the architecture and the edge en-
coder also increased the number of trainable parameters. A reason
for the outperformance could be the availability of the edge at-
tributes, which explicitly provide the spatial relation between two
nodes.
It is remarkable how the results do not show signs of overfitting, al-
though one sample instance contains more degrees of freedom than
the number of instances passed to training. As the overall pre-
diction error remains intolerably high, the results do not yet allow
judgments on the generalization capabilities. However, a resem-
blance in the error distribution of test set and train set permits op-
timism. As found in numerous works related to NNs and reported
in previous work on physics prediction with GNNs ([21, 38, 42], this
kind of model improves with a large amount of training data, which
motivates investigations on a larger dataset.
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Injection molded products come in a wide range of shapes tailored
to different applications and design goals. In addition, the behavior
of polymer materials varies significantly between crystalline, semi-
crystalline, and amorphous forms, as well as within each group.
Given the complexity of these physical processes, it’s not easy for
engineers to determine the optimal shape and process parameters
for a desired design. Design optimization algorithms can streamline
this process by increasing efficiency and effectiveness.
This work targets the development of data-driven models, which
predict the shrinkage-warpage of a product for new initial condi-
tions. Because of the widely varying objectives and materials, the
generalization capability of the model was emphasized at the price
of more complex models.
The first POD-based model (Section 4.2) predicts solutions within
a linear subspace of the given dataset with regression. The Proper
Orthogonal Decomposition projection reached a reconstruction ac-
curacy of 1% to 10% while reducing the number of degrees of free-
dom by around 90%. Even though the current model for initial
temperature distribution (bivariate Gaussian) is highly simplified,
the low projection error in both training and test set indicates a
linear combination of eigenvectors can successfully represent the
occurring deformations.
While the predicted deformations visually correspond to the ref-
erence solution, the regression of coefficients causes a considerable
inaccuracy. In the future, this may be circumvented by (1) dropping
the non-intrusive character of the model and solving the problem in

42
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the reduced basis, (2) investigation of different regression methods
between input parameters and basis coefficients.

Overall, the linear base model gave promising results on a limited
dataset size for a fixed geometric shape. Proper Orthogonal Decom-
position-based models can also account for shape changes that affect
only the position of vertices and not the connectivity of the dis-
cretization. In this case, the geometric transformation must appear
in the input parameters. The limitation to discretization-consistent
parameterized geometric modifications motivated the second GNN-
based model.

Applying NN architectures allows for complex nonlinear bases with
more flexibility, but brings greater risk of overfitting the dataset.
In Section 5.2, the performance of NN architectures on a dataset
is evaluated. The model inherently allows for (1) arbitrary input
fields, and (2) different graphs as input domains. The loss func-
tion decreases monotonically during training to the same order of
magnitude for all architectures and hyperparameter combinations
tested. The overall prediction error e remains unacceptably large
at around 0.62. However, it is noteworthy that all models predict
the test and training sets with roughly the same error, even for new
geometries. Although the training set contains only 144 instances
with about 200 vertices each, the results do not indicate overfitting.

Two strategies are proposed to reduce the prediction error: (1)
pass more training data, (2) pass additional physical information
to the network. Considering the size of the datasets in analogous at-
tempts [21, 38], it seems reasonable to assume that a larger dataset
could reduce the approximation error. For the latter choice, physi-
cal knowledge can be transferred to the network as a residual term
[44]. However, this approach requires the explicit implementation
of a constitutive law and the additional need to weight residual and
data-induced loss. In contrast, structure-preserving models follow
the laws of exterior calculus and can satisfy energy conservation
without an explicit constitutive model [25]. In future research,
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purely data-driven models will be compared with the structure-
preserving model.
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A Appendix

A.1 Hyperparameters

Model batch norm (BN) batch size (BS) dropout (D) numbers of layers of edge encoder (LEE) numbers of layers of node encoder (LNE) numbers of layers of processor (LP) NHE NHN number of hidden neurons in processor (NHP) L · 10−3

M-1 F 16 0.05 1 1 1 16 64 64 2.250
M-2 T 4 0.05 0 1 3 8 32 32 2.019
M-3 T 8 0.01 1 2 2 8 32 32 2.066
M-4 T 16 0.10 0 1 2 8 64 32 2.270
M-5 T 4 0.05 1 1 1 8 32 64 2.025
M-6 F 8 0.05 0 2 1 8 32 32 2.112
M-7 F 16 0.01 1 2 3 8 64 64 2.619

Table A.1: Hyperparameter sweep for GATs framework. The right-
most column indicates the test loss after 1500 training
epochs, see glossary for an explanation of the hyperpa-
rameter abbreviations.

Model BS D LNE LP NHN NHP L · 10−3

M-1 4 0.01 2 4 32 64 1.887
M-2 16 0.01 1 3 64 64 2.160
M-3 16 0.10 2 4 64 32 2.175
M-4 16 0.05 1 3 32 64 2.194
M-5 16 0.10 2 4 64 64 2.200
M-6 8 0.10 2 3 32 32 2.131

Table A.2: Hyperparameter sweep for ChebConv framework. See
glossary for label explanation. As the architecture only
allows scalar edge weights, edge encoding does not apply.
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