
Marshall Plan Report

Scientific Machine Learning for Injection
Molding Simulation

Wissenschaftliches maschinelles Lernen
in der Spritzgusssimulation

Project conducted at the
Computer Science Research Institute,

Sandia National Labratories,
Albuquerque, NM, US

Author Roxana Pohlmann TU Wien
Advisors Dr. Rekha Rao Sandia National Labratories

Assoc. Prof. Nat Trask University of Pennsylvania
Univ. Prof. Stefanie Elgeti TU Wien

Contents

Acronyms II

Symbols IV

List of Figures VIII

List of Tables 1

1 Introduction 2

2 Material model 4
2.1 General continuum mechanics 4

2.1.1 Balance equations 5
2.2 Hyperelasticity . 5

2.2.1 Neo-Hook . 6
2.3 Thermally-induced deformation 6
2.4 Shrinkage-warpage 7

3 Data-Driven Methods 8
3.1 Proper Orthogonal Decomposition 8
3.2 Neural Networks . 9

3.2.1 Fully-connected / Vanilla Neural Networks . 10
3.2.2 Convolutional Neural Networks 14
3.2.3 Graph Neural Networks 16
3.2.4 ChebNet . 21
3.2.5 Graph attention 22

3.3 Gaussian Process Regression 23

3

Project report I

4 POD-based model for shrinkage-warpage prediction 25
4.1 Problem statement 25
4.2 Non-intrusive POD-GPR model 25
4.3 Dataset . 27

4.3.1 Parametrization of the input 27
4.3.2 Boundary value problem 28

4.4 Results . 28
4.5 Discussion and Outlook 30

5 GNN-based shrinkage-warpage prediction 33
5.1 Problem statement 33
5.2 Data-driven model 34
5.3 Dataset . 35
5.4 Results . 38
5.5 Discussion and Outlook 41

6 Conclusion 42

7 Acknowledgement iii

A Appendix v
A.1 Hyperparameters . v

Bibliography vi

Acronyms

Acronym Phrase
BN batch norm
BS batch size
BVP boundary value problem
ChebConv Chebychev Convolution
CNN convolutional neural network
D dropout
ELU exponential linear unit
FEM finite element method
GAT Graph Attention Network
GNN graph neural network
GPR gaussian process regression
GRF gaussian random field
LEE numbers of layers of edge encoder
LNE numbers of layers of node encoder
LP numbers of layers of processor
MSE mean squared error
NHE number of hidden neurons in edge encoder
NHN number of hidden neurons in node encoder
NHP number of hidden neurons in processor
NN neural network
PDE partial differential equation
POD proper orthogonal decomposition
RBF radial basis functions
ReLU rectified linear unit

II

Project report III

Acronym Phrase
ROM reduced order model
SVD singular value decomposition

Symbols

Symbol Description

Continuum Physics
α Coefficient of Thermal Expansion
b Body force
c1 Material parameter for Neo-Hook
E Green-Lagrangian strain energy
F Deformation tensor
F̄ Isochoric part of F
Fθ Thermal part of F
gu Dirichlet boundary condition
Γ Boundary of Ω
Ξ Portion of Spatial Boundary Γ with Essential

Boundary Conditions
ΓD Boundary of Ω with Dirichlet boundary conditions
ΓN Boundary of Ω with Neumann boundary conditions
hτ Neumann boundary condition
J Volumetric change (det F
λ Material parameter for Neo-Hook
n Outward-Pointing Unit Normal Vector of Spatial

Boundary Γ
ν Poisson ratio
Ω Reference domain
Ω̃ Deformed domain
P First Piola-Kirchhoff tensor

IV

Project report V

Symbol Description
Ψ Free energy functional
Ψvol Free energy with volumetric change
θ Initial temperature
Θ Initial temperature field
θF Final temperature
u Displacement vector
U Displacement field
x Spatial coordinate in Ω
x̃ Spatial coordinate in Ω̃

GNN-based model
l Lenghtscale of gaussian random field (GRF)
NGeom Number of geometries in dataset

Graph
A Adjacency matrix
Aw Adjacency matrix
D Degree matrix
E Set of graph edges {e}
e Graph edge
f Arbitrary signal
fi Graph’s representation of an arbitrary signal
g Arbitrary signal
ĝ Arbitrary spectral signal
L Graph Laplacian
Λ Eigenvalues of L
λ Eigenvalue of L
NV Number of graph nodes
Ψ Eigenvectors of L
V Set of graph vertices {v}
v Graph node / vertex
ew Graph edge weight

VI Project report

Symbol Description
Neural Networks
a Edge attention mechanism
α Collection of neural network (NN) parameters
b NN bias
d Input data dimension
d′ Output data dimension
e edgeImporance
η Learnable polynomial multipliers
Φ Data-driven model
γ Localized spectral graph filter
Γ Learnable spectral multipliers
h Hidden features
L Loss
m Output data dimension
n Input data size
N Node neighborhood
⊕ Aggregation function
x Node features
Φ Learnable permutation-invariant function
Υ Learnable feature transformation
σ NN activation function
softmax Softmax function: softmax(xi) = exp xi/

∑
j exp xj

T Chebychev polynomial
ϑ Collection of NN parameters
w NN weights
Wa Attention weights
X Input data to NN layer
y Node output features
y Target output data

Proper Orthogonal Decomposition
X̃ Snapshot matrix of samples projected on Ũ

Project report VII

Symbol Description
X Snapshot matrix of samples
k Dimension of reduced problem
µ Parameters for one sample x
ep(k) Error of projecting the dataset X to a linear sub-

space.
ψ Eigenvector in U
Σ Diagonal matrix of singular values of X
Σ̃ Truncated diagonal matrix of singular values of X
U Matrix of left eigenvectors
Ũ Truncated matrix of left eigenvectors
V∗ Matrix of right eigenvectors
x Sample instance, vector in X

POD-GPR model
e Prediction error between predicted output ỹ and

output y
W Data for Essential Spatial Boundary Ξ
er Relative prediction error
ereg Regression error
µ Parameter vector containing the mean and covari-

ance of a bivariate Gaussian
Nsamples Number of samples
Ṽ Regressed operator from µ to U

V Mapping from µ to Θ
y Output
ỹ Predicted output

List of Figures

3.2.1 Fully-connected NN with four layers, of which two
are hidden (pink) with five input and output neurons
and four hidden neurons. 11

3.2.2 convolutional neural network (CNN) with five input
neurons and two convolutional filters of size three,
resulting in one output. 15

3.2.3 A graph with six vertices connected by undirected
and directed edges. 18

3.2.4 Main approaches to graph convolution, from [7] p. 78. 20
3.3.1 The prediction of a gaussian process regression (GPR)

with a prior of Standard Gaussian Processes before
(left) and after (right) conditioning, from [45], p.15. 24

4.3.1 Sample instance from dataset. 28
4.4.1 The Proper Orthogonal Decomposition yields expo-

nentially decreasing eigenvalues of the dataset (left)
and a projection error with similar behaviour (right). 29

4.4.2 The samples from the test set with the highest rela-
tive approximation error for different number of basis
vectors, resulting from different demanded projection
accuracy. 31

4.4.3 Approximation error on the test set, with the divi-
sion into error on projection (P) and regression (R)
for different projection accuracy. 31

5.3.2 Sample instance from dataset 37

VIII

Project report IX

5.4.1 Evaluation of the test and training error during pa-
rameter optimization. The models correspond to Ta-
ble A.1 and Table A.2. Solid lines display test error
and dotted lines training error. 39

5.4.2 A prediction on an unseen test sample with the true
solution (left) and prediction (right). 40

5.4.3 Each violin plot displays the relative error of the sam-
ple of one shape as well as their minimum, maximum
and median (horizontal lines). 41

List of Tables

4.1 Geometric bounds for dataset generation. 27

5.1 Split of training and test instances. 36
5.2 Geometric bounds for dataset generation, the param-

eters are represented in Figure 5.3.1a. 37

A.1 Hyperparameter sweep for Graph Attention Networks
(GATs) framework. The rightmost column indicates
the test loss after 1500 training epochs, see glossary
for an explanation of the hyperparameter abbrevia-
tions. v

A.2 Hyperparameter sweep for Chebychev Convolution
(ChebConv) framework. See glossary for label expla-
nation. As the architecture only allows scalar edge
weights, edge encoding does not apply. v

1

1 Introduction

Injection molding is characterized by injecting a polymer melt into
a cavity of a predefined geometry, where the material fills the do-
main and subsequently solidifies before it is ejected. Inevitably,
the process results in an inhomogeneous temperature distribution
within the product, causing warpage from residual stresses, result-
ing in differences between the mold shape and final product. The
relationship between the cavity’s shape, processing parameters, and
the final part geometry is highly nonlinear and surpasses engineer-
ing intuition. Thus, partial differential equations (PDEs)-based
simulation and numerical design have become an essential tool in
process design. While exploring the design space of industrial pro-
cesses, numerical design optimization requires many function eval-
uations. Solving the fully-resolved simulation is time-consuming
with a large design space; the computational time of design opti-
mization can grow to impractical values. A fast regression model
can allow the exploration of a large space at limited, yet sufficient
accuracy.

In many fields of engineering, product design typically targets a
global objective function. For example, in aerodynamics, optimiza-
tion efforts often focus on reducing drag, while topology optimiza-
tion focuses on minimizing compliance. In contrast, in injection
molding, the objective is to obtain the desired product shape, mak-
ing the number of design objectives as vast as the number of prod-
ucts. In addition, the design objectives are very localized. While
shrinkage warpage is generally undesirable, local regions of a prod-
uct may need to conform exactly to the target shape while other

2

3

regions are subject to larger tolerances. To account for this diver-
sity, as well as for general applicability to all common simulation
methods, the focus of this work is on the generation of black-box
– i.e., non-intrusive – reduced-order models for the fully-resolved
solution of PDEs.

In particular, we examine proper orthogonal decomposition (POD)
[4] as a model for a linear combination of basis vectors and graph
neural networks (GNNs) [17, 51] as an approach for nonlinear com-
bination. Using plastic injection molding as a use case, we com-
pare the performance, capabilities, and limitations of generating
non-intrusive reduced-order models with POD and GNNs. In par-
ticular, we focus on their ability to deal with varying simulation
settings and geometries, such as mesh types and sizes.

2 Material model

2.1 General continuum mechanics

Let x ∈ Ω denote a spatial coordinate in reference (or initial) con-
figuration of a spatial domain and x̃ ∈ Ω̃ denote a deformed me-
chanical configuration in equilibrium. The deformed spatial domain
results from a displacement of the initial spatial domain

x̃ = x + u . (2.1.1)

The deformation tensor F maps the initial to the deformed config-
uration

Fij = ∂x̃i

∂xj
= I + ∂ui

∂xj
, (2.1.2)

where J denotes the volumetric change

J = det F . (2.1.3)

The deformation tensor describes deformation on the domain and
is the basis for defining strain and stress. The Green-Lagrangian
strain tensor E quantifies the strain, i.e. the deviation from the
reference configuration

E = 1
2
(
FFT − I

)
. (2.1.4)

The first Piola-Kirchhoff stress tensor P describes material forces
and stresses in the deformed configuration, while the area’s domain
still corresponds to the initial configuration. Thus, it allows to
solve for integral equations in the deformed configuration, while
integrating over the reference equations.

4

2.2 Hyperelasticity 5

2.1.1 Balance equations

Every physical system must at all times obey the conservation of
linear momentum and energy. For a stationay system, the balance
of linear momentum in the Lagrangian description reads

0 = ∇ · P + b on Ω , (2.1.5)

where b are body forces. A domain changes its shape only if con-
straints are applied, which can be a prescribed displacement gu

(a Dirichlet boundary condition), a prescribed traction hτ (a Neu-
mann boundary condition), or prescribed forces as a body force
or a thermally induced force. The conservation of energy (Equa-
tion 2.1.5) is valid at every point, leading to the following boundary
value problem (BVP): ∫

Ω
div P + b dΩ = 0 (2.1.6)∫

ΓD

(ui − gu) dΓD = 0 (2.1.7)∫
ΓN

(Pijnj − hτ) dΓD = 0 . (2.1.8)

2.2 Hyperelasticity

Hyperelastic materials have a strain energy function Ψ(FT F) that
describes the energetic state of a specific configuration. The equi-
librium corresponds to a minimum of this energy function. Hy-
perelastic materials are defined by the property, that the second
Piola-Kirchhoff tensor equals the derivative of the strain energy
with respect to the deformation tensor

P = ∂Ψ
∂F . (2.2.1)

In addition, the F has a number of invariants related to indifference
to the chosen frame (confer [30], p.233), which can be used to define

6 2 Material model

material laws

I1 = tr(FT F) (2.2.2)

I2 = 1
2[tr(FT F)2 − tr((FT F)2)] = tr((FT F)−1) det(FT F) (2.2.3)

I3 = det(FT F) = J2 . (2.2.4)

2.2.1 Neo-Hook

The material law of interest is the compressible decoupled Neo-Hook
(confer [30] p. 247)

Ψ(J, Ī1, Ī2) = Ψvol(J) + c1(Ī1 − 3) . (2.2.5)

where Ψ refers to the overall strain energy function, Ψvol to the
volumetric contribution and the second term to the isochoric con-
tribution to the strain energy. Choosing the volumetric function
proposed by Simo and Miehe [50], the free energy reads

Ψ(J, Ī1, Ī2) = c1(Ī1 − 3) + 1
4(J2 − 1 − 2 ln J) , (2.2.6)

with material parameter c1. The first Piola-Kirchhoff tensor follows
from differentiation of the strain energy function

P = 2c1(F − F−T) + 2λ

2 (J − 1)JF−T . (2.2.7)

2.3 Thermally-induced deformation
The thermal deformation can be included in the deformation tensor
as a multiplicative split [29, 37]

F = FθF̄ , (2.3.1)

where Fθ describes only the thermally induced part of the defor-
mation that can be described as

Fθ = exp
(∫ θF

θ

α(θ̂) dθ̂)
)

I . (2.3.2)

2.4 Shrinkage-warpage 7

Where α(θ) is the factor of thermal expansion, Θ is the final temper-
ature and Θ0 the initial temperature. Assuming constant thermal
expansion factor and isotropic material behaviour, the expression
can be evaluated to

Fθ = exp (θ − θ0) I . (2.3.3)

The first Piola-Kirchhoff tensor for the thermo-mechanical problem
follows directly from (2.2.7), where F includes the thermal contri-
bution.

2.4 Shrinkage-warpage

The shrinkage-warpage is modeled as deformation from an initial
inhomogeneous temperature field θ to an equilibrium at constant
temperature θ. The solution is derived by solving BVP Equa-
tion 2.1.6–2.1.8 with the corresponding thermally-induced stress
Equation 2.3.1 with the finite element method (FEM).

3 Data-Driven Methods

3.1 Proper Orthogonal Decomposition

One of the most popular methods for non-intrusive reduced or-
der models is the projection to a linear subspace of a dataset by
POD [10]. It follows the assumption that the underlying physics
of a spatio-temporal system takes place on a manifold, which is
much lower-dimensional than the degrees of freedom in the original
dataset. Under this assumption, the system can be transferred to a
basis where the first few basis functions carry the most important
information. POD is equivalent to applying singular value decom-
position (SVD) to aggregated data of a physical system (usually
generated by solving a PDE). The snapshot matrix X represents
solution of the discrete physical system as a collection of snapshots,
where each snapshot contains the solution to the system at a specific
parameter value µi

X =

 | | |
u1 u2 . . . um

| | |

 . (3.1.1)

The SVD is uniquely defined for any real or complex-valued matrix
X as

X = UΣV∗ . (3.1.2)

The result consists of the square matrix of left eigenvectors U, a
diagonal matrix of singular values ordered by magnitude Σ, and
the square matrix of right eigenvectors V∗. The columns of U can

8

3.2 Neural Networks 9

be interpreted as modes of the physical system. If the dataset lies
within a linear subspace, the eigenvalues decay exponentially, and
the k first eigenvectors of U form the optimal reduced basis for the
dataset

Ũ =

 | | |
ψ1 ψ2 . . . ψk

| | |

 . (3.1.3)

The reduced representation by this truncation reads

X̃ = ŨΣ̃V∗ . (3.1.4)

While the sole application of the SVD retains the original dataset,
the dimensional reduction introduces a projection error

ep(k) =
∥∥(I − ŨŨT

)
X
∥∥ . (3.1.5)

As ep(k) increases with decreasing k, a trade-off must be made be-
tween the degrees of freedom in the reduced system and the desired
accuracy. One approach to deciding for k is to set a certain re-
construction capability and choose the lowest k that satisfies the
requirement.

3.2 Neural Networks

The research effort put into NNs grew rapidly since their advent.
Due to the fast research progress and the problem-dependent nature
of data-driven models, this report reviews only the very basic ideas.
The topic is well explained on numerous websites, blogs and in
publicly available books, the author warmly recommends [5, 11, 23].
The following sections start by introducing the fundamental idea
behind NN architecture and training, before advancing to CNNs
and the GNNs approaches demonstrated (Section 3.2.5 and 3.2.4).

10 3 Data-Driven Methods

3.2.1 Fully-connected / Vanilla Neural Networks

Biological findings inspired the historically first NN architecture,
which consist of fully connected neuron layers, connected by learn-
able transformations. Each layer maps its input X of size n × d

to output data y of size m × d′. The following equations describe
the problem for data with one feature, although they easily gen-
eralize towards higher dimension. The transformation is applied
by (1) multiplying the input with a weight matrix w with dimen-
sion m × n and adding bias b of dimension m, and (2) applying a
– generally nonlinear – activation function σ. Weights and biases
constitute the free parameters of the model, calculating the output

y = wT X + b . (3.2.1)

In the early stages of NN research, the logistic or sigmoid function
served as activation function, while over time rectified linear unit
(ReLU) and the hyperbolic tangent showed outdated sigmoid in
most applications [2]. At the time of writing, among a large number
of activation functions, ReLU and exponential linear unit (ELU)
are the most popular for regression tasks. However, the question of
the best activation function remains unanswered at this time and
may be problem-specific. Moreover, in general practice the identity
is chosen as activation function of the last layer, mapping to the
output.

In fact, a NN with only two layers corresponds to a Proper Or-
thogonal Decomposition basis [40]. Deep NNS contain at least
one hidden layer between input and output. They can nonlinear
combinations of the input at the cost of additional computational
effort.

Theoretically, NNs with only one hidden layer can approximate
continuous function up to any desired accuracy if enough hidden
neurons are available [31]. In practice however, computational lim-
itations may prohibit a sufficient number available neurons and, so

3.2 Neural Networks 11

Figure 3.2.1: Fully-connected NN with four layers, of which two are
hidden (pink) with five input and output neurons and
four hidden neurons.

far, no method is guaranteed to find the optimal parameters for
a specific network architecture. In view of limited computational
resources deep NNs with fewer neurons per layer and greater depth
may outperform shallow networks. They have been shown to reduce
datasets to a extraordinary small latent space, du to their nonlinear
combination of inputs [32].

The parameters that influence the flexibility of a network consist of
the number of layers, the number of neurons per layer, the choice
of activation function, and the training method. In the absence of
concrete theoretical results, practitioners typically approach these
questions through a mixture of expertise and experimentation.

The next section describes the state of the art for retrieving the
network weights and biases for a specific architecture.

Training

The capability of NNs to represent relationships in high-dimensional
and complex datasets stems from their ability to perform nonlinear
mappings. However, this property comes with the drawback of
having to find an optimal set of parameters for a high-dimensional

12 3 Data-Driven Methods

nonlinear function, which is realized via numerical optimization of
the respective function parameters.
This optimization requires an objective function (also called loss
function) L to measure the performance of a set of network param-
eters with the object of minimization

min
w,b

L(ỹ, y) . (3.2.2)

Most commonly in regression tasks, the mean squared error (MSE)
over all samples

MSE(ỹ, y) =
m∑

i=1
(ỹi − yi)2 (3.2.3)

quantifies the loss between a prediction ỹ and the original data y.
Random sampling of a normal distribution determines the initial
guess of the network parameters [22, 26]. The exact properties of
this distribution depend on the activation function, the types of
layers, and the networks depth. Gradient-descent numerical opti-
mization algorithms [41] iteratively attempt to find a global opti-
mum of the problem’s loss function L by following the direction of
steepest descent of the objective function. Focusing on one layer,
the prediction reduces to

h = σ(wT X + b) , (3.2.4)

or component-wise

hk = σ

(
n∑
i

wjkXj + bk

)
. (3.2.5)

Every NN layer applies linear combination of weights and biases
before the activation function, thus the analytic derivative with re-
spect to weights and biases follows from applying the derivative
chain rule to Equation 3.2.4. The selected loss function quadrati-
cally depends on the prediction ỹ, therefore the chain rule enables

3.2 Neural Networks 13

the computation of the derivative of the loss function with respect to
weights and biases. This property allows an efficient calculation of
the derivative even for a nonlinear model. An intuitive explanation
is to assign a fraction of the residual to each learnable parameter,
referred to as backpropagation [1, 14]. In practical implemen-
tation, a computational graph tracks the recursive combination of
input data, weights and biases [19].
In theory, backpropagation and gradient descent can perform their
steps on the whole dataset. However, the computation is memory
intensive, so today conventional NN training iterates the dataset
assuming that a subset of samples approximates the gradient [1],
which also allows parallelization.
The vanilla gradient descent algorithm performs one step in the
direction of reduced residual (with stochastic or deterministic gra-
dient)

ϑm+1 = ϑm − α∇L(Φϑm) . (3.2.6)

The primary obstacle in gradient descent optimization is avoiding
local minima, which requires careful selection of the learning rate
(also known as step size) α and appropriate initialization [22, 26].
If the parameters θm correspond to a local minimum of the loss
function, no directional derivative reduces the residual and the algo-
rithm does not progress further. The learning rate crucially affects
how prone an optimization problem is to local minima, where small
value can trap the optimizer in small “sink“, whereas a large value
may skip both local and global minima, and may even diverge.
The issues have been addressed by a series of optimization algo-
rithms, mainly by including a momentum term computed as mov-
ing average of gradients. The idea is based on rolling balls stor-
ing kinetic energy as momentum, which enables them to overcome
obstacles, if they collected sufficient momentum [43]. The proba-
bly most famous adaptor of the momentum method is the Adam
[33] optimizer, which also inspired a number of modified versions
[18, 35, 36].

14 3 Data-Driven Methods

Besides the risk of not performing well on a dataset, NNs can also
perform too well – when they overfit to a dataset. Overfitting is
when a model learns a structure that is not present in the data.
It indicates the chosen model is too complex and relates to the
variance-bias trade-off (confer [11], Section 2.2.2). The trade-off
describes how simple models tend to have bias, but deterministic
output for identical input data. Instead more complex models, i.e.
with a large number of parameters, accurately approximate the data
used for their fitting, however, slight changes in the training data
can result in considerably different model parameters. Various reg-
ularization methods target the reduction, e.g., randomly dropping
entries in the dataset [28], enforcing sparse weight matrices, e.g.,
by Lasso regularization [46], adding random noise to the input data
[53].

To identify the performance of statistical models on datasets with
unknown distributions, the dataset is randomly split into a training
and a test set. While gradient descent and backpropagation only
use the training set, the performance measurement only considers
the unknown test set, quantifying the generalization.

Despite the massive amount of research effort put into NNs weight
initialization and optimization, neural networks still suffer from an
uncertainty whether the optimal parameters for a certain architec-
ture have been reached.

3.2.2 Convolutional Neural Networks

Although this work does not apply CNNs, their success forms the
baseline for the development and understanding of graph convolu-
tion (Section 3.2.3).

Vanilla neural networks 3.2.1 come with the severe limitations of
overfitting to the training data and scaling the number of trainable
parameters with the size of the input data. After their invention [34]
CNNs fastly overtook the conventional design in image processing.

3.2 Neural Networks 15

Figure 3.2.2: CNN with five input neurons and two convolutional
filters of size three, resulting in one output.

As their name implies, they mimic a mathematical convolution of
two signals f, g, which in continuous Euclidean space yields

(f ∗ g)(t) :=
∫ ∞

−∞
f(τ)g(t − τ) dτ , (3.2.7)

and instead a multiplication on discrete data

(f ∗ g)[n] =
∑

m=−∞
f [n − m]g[m] . (3.2.8)

CNN layers learn the second signal g as discrete convolution kernel.
The support of this kernel can be chosen and a local support – i.e.
smaller than the input data – guarantees local feature extraction.
In fact, small kernel sizes, as 3×3 or 4×4, show best generalization
capabilities, as local features can be combined to global features.
The number of learnable weights for one convolutional filter equals
the dimension of the filter and the weights are shared for all inputs.
Thus CNN layers decouple the number of weights from the input
size and enable processing large data sets on regularly spaced do-
mains. The application of CNNs on physical data also yielded
great success. A 3 × 3 convolutional layer on regularly structured

16 3 Data-Driven Methods

physical data equals learning a finite difference stencil for the dis-
crete Laplace operator. Lee and Carlberg demonstrated how CNNs
successfully reconstruct a physical manifold for dynamical systems
and learn the optimal finite difference stencil for given PDE solu-
tions.

3.2.3 Graph Neural Networks

Graph Neural Networks expand the idea of NNs to spatially un-
structured data and were first introduced by Scarselli [47]. The
area of geometric deep learning changes rapidly due to a massive
amount of research invested. Bronstein and others [7, 8] give a great
overview of the state of the art at that time.
This type of network architecture operates on the geometric struc-
ture of a graph, i.e. the adjacency matrix defines the relation be-
tween vertices. NNs operating on structured data, e.g. image data,
are a special case of GNN. One of the key features of this architec-
ture is that the network is invariant to permutations of the vertex
order.
After the success story of CNNs on image and physical data, re-
searchers aimed to reproduce convolution on unstructured data.
Three main mechanisms of GNN layers with increasing generaliza-
tion evolved: (a) graph convolution, (b) graph attention, and (c)
message passing, where the latter generalizes the former ones.

Introduction to graphs

A (discrete) graph consists of a finite set of vertices (or nodes)
v ∈ V connected by a set of edges e ∈ E . In a finite weighted
graph, additionally, weights ew are associated to each edge. The
following paragraph summarizes the most important features of a
graph, while Grady gives a more extensive introduction [24].
The most fundamental quantity to describe a graph is the adjacency
matrix A, a matrix of dimensions NV × NV taking the values 0

3.2 Neural Networks 17

and 1. It indicates a directed edge from vertex A to vertex B with
value 1 at matrix position AAB, the row number corresponding to A
and the column number corresponding to B. Values on the diagonal
indicate self-loops on vertices. The adjacency matrix notation of an
undirected edge consists of two entries, i.e., a directed edge from A
to B and additional edge from B to A. If only undirected edges occur
in a graph, the adjacency matrix is symmetric and the graph is
called undirected. The weighted adjacency matrix Aw extends the
adjacency matrix by containing the edge weight at the respective
position instead of the value 1.
The degree matrix D of dimension NV × NV has only entries on its
diagonal equivalent to the number of edges adjacent to a vertex and
is calculated as Dii =

∑
j ew

j . Figure 3.2.3 displays an exemplary
graph with six nodes connected by undirected and directed edges,
its adjacency matrix corresponds to

A =

A
B
C
D
E
F



A B C D E F
0 1 0 0 0 1
1 0 1 0 0 1
0 1 0 0 0 1
0 0 1 0 1 0
0 0 0 0 0 1
1 1 1 0 1 0


. (3.2.9)

Analogous operators to derivatives on continuous functions have
been developed, where the graph Laplacian L expands the Lapla-
cian operator. It directly relates to the adjacency matrix and the
degree matrix via

L = D − A . (3.2.10)
The eigenvectors of the Laplacian form a Fourier basis Ψ, thus rep-
resenting the Laplacian as two orthogonal matrices and a diagonal
matrix Λ = diag(λi)

L = ΨΛΨT (3.2.11)
A graph represents a signal f as a vector of signal values fi on its
NV nodes.

18 3 Data-Driven Methods

Figure 3.2.3: A graph with six vertices connected by undirected and
directed edges.

Spectral graph convolution

The convolution of two signals or functions is defined as the inte-
gral of their product after reflecting and shifting one function. Its
application allowed great progress in signal processing and CNNs,
which motivated researchers to develop extensions to non-regular
spaces, such as graphs. In practice, convolutions are calculated after
a Fourier transform, as the convolution of two functions f and g is
a multiplication of their Fourier transforms in the spectral domain
(“Convolutional theorem“, see e.g. [15]).

One way to generalize the Fourier convolution to a graph uses the
convolutional theorem (confer [7], p.28, Equation (26)). Using the
discrete version of an inner product on a graph, the convolution of
two signals (f ∗ g) results in a multiplication of the eigenvectors of
the Laplacian with the spectral representation of a signal ĝ

(f ∗ g) = Ψdiag(ĝ)ΨT f . (3.2.12)

Thus, convolution on a graph represents a signal in the basis of
eigenvectors of the Laplacian of the graph. However, the Laplacian
eigenfunctions are not unique, as they are always defined only up
to a sign, and for multiple eigenvalues only up to an orthogonal
transformation [7].

3.2 Neural Networks 19

The first GNN convolutional layer followed directly from the spec-
tral representation by Bruna [9] as a multiplication of the eigenvec-
tors with learnable spectral multipliers Γ and the signal

gj = σ

 q∑
j=1

ΨΓj,iΨT f i

 . (3.2.13)

As in Section 3.1, the order of the eigenvectors corresponds to the
magnitude of their individual values, and the first eigenvectors re-
late to the smooth, low-frequency structures of the graphs. In most
cases, the first k Laplacian eigenvectors carry the relevant features
of an input signal and the remaining eigenvectors can be omitted.

This first definition of graph convolution comes with severe limi-
tations. As aforementioned, the Laplacian eigenfunctions and con-
sequently eigenvectors are not unique and especially the higher-
frequency eigenvectors can be unstable, and their computation is
expensive. If the graph lies on a manifold, i.e. a non-planar sur-
face within a volume, the result of the convolution depends on the
spatial position and does not generalize to new geometries. In ad-
dition, the number of learnable parameters for the layer defined in
(3.2.13) has the same order of magnitude as the number of input
nodes and thus still scales with the graph.

The localized feature extraction property of CNN filters with small
support can be translated to GNNs by using the Laplacian as local
filter. As a symmetric real-valued matrix, the Laplacian can be
decomposed into an orthonormal basis and a real-valued diagonal
matrix L = ΨΛΨT such that a polynomial on the Laplacian is
equivalent to a polynomial on its eigenvalues

Li = ΨΛiΨT . (3.2.14)

Since the Laplacian only acts on a 1-hop environment of each node
(i.e. within one edge), its i-th power operates maximally on an
i-hop environment. A linear combination of Laplace polynomials

20 3 Data-Driven Methods

Figure 3.2.4: Main approaches to graph convolution, from [7] p. 78.

preserves the property creating the localized learnable filter γ

γ(L) = Ψγ(Λ)ΨT (3.2.15)

γ(λ) =
r−1∑
j=0

ηjλj (3.2.16)

with polynomial coefficients η ∈ Rr.

Graph layers

As mentioned above, the state of the art in (graph) neural networks
is currently expanding at a rapid pace due to extensive research.
Most popular architectures today follow three main principles: (a)
convolution, (b) attention, and (c) message passing [7]. After a
brief explanation of these key ideas, the following paragraphs give a
detailed explanation of the network layers used in the result section.

Thus, this work limits its explanation to a brief summary of the
key ideas, before a detailed explanation of the network layers used
in the results section follows.

Spectral Graph Convolution (3.2.3) is directly inspired by the con-
volutional approach. An aggregation function ⊕ collects the fea-
tures xv in the direct neighborhood N u of node u, which are possi-
bly transformed by a function Υ and weighted by the edge weight
ew

uv. The aggregation function needs to be permutation-invariant,

3.2 Neural Networks 21

i.e. does not depend on the order of inputs. Common choices in-
clude the summed or mean value. A learnable function Φ computes
the output features yu at node u from the input node features xu

and the aggregated neighborhood features.

In the simplest (non-deterministic) case the layer collects the – pos-
sibly transformed – inputs from neighboring edges weighted by con-
stant edge weights ew. A learnable fully-connected layer represents
Φ with dim(hu) × dim(xu) shared weights, resulting in scalability
comparable to CNNs:

yu = Φ (xu, ⊕v∈N u
ew

uvΥ(xv)) (3.2.17)

Graph attention networks [6, 51] extend the convolutional ap-
proach with a learnable self-attention a(xu, xv) mechanism depen-
dent on the node features of the node itself and its neighborhood:

yu = Φ (xu, ⊕v∈N u
a(xu, xv)Υ(xv)) (3.2.18)

The most general notion – message passing [3, 20] – allows arbitrary
messages to be passed along edges:

yu = Φ (xu, ⊕v∈N u
Υ(xu, xv)) . (3.2.19)

Thus, the convolutional (Equation 3.2.17) and attentional (Equa-
tion 3.2.18) layers represent special cases of message passing (Equa-
tion 3.2.19). As the modeling flexibility increases, so does the num-
ber of learnable parameters and thus the complexity of successful
training.

3.2.4 ChebNet

The Chebyshev graph convolution [17] was among the first adap-
tations of the computationally efficient filter representation by the
graph Laplacian (Section 3.2.3). The Chebychev polynomials gave

22 3 Data-Driven Methods

their name to the method. They form an orthogonal basis with
respect to the inner product∫ 1

−1
T i(x)T j(x) dx√

1 − y2
. (3.2.20)

They are generated by the recurrence relation

T j(λ) = 2λT j−1(λ) − T j−2(λ) (3.2.21)
T 0(λ) = 1 (3.2.22)
T 1(λ) = λ . (3.2.23)

Since the relation holds only on the interval [0, 1], the Laplacian
eigenvalues need to be rescaled by

L̃ = 2λ−1
n L − I . (3.2.24)

In this work, the PyTorch Geometric implementation [19] of Cheb-
Conv was used. The motivation for choosing this method was its
control over the size of the local filter, by the maximal polynomial
exponent.

3.2.5 Graph attention

As already described in Section 3.2.3 GATs extend convolutional
networks by a learnable attention mechanism. Thus, the weighting
of each node (see Figure 3.2.4, middle) is not constant anymore, but
learnable. In contrast to the convolutional approach [54], GATs can
represent signals outside the span of the eigenvectors of their Lapla-
cian. The method originally proposed in [51] introduced attention
coefficients, which learn the importance of the features of neigh-
boring nodes to the node itself. The initial method suffered from
poor scaling, if one node’s features exceed the values of the others,
which Brody solved by rescaling [6]. With this improvement, the
learnable feature importance results to

e(xi, xj) = σ
(
aT (Waxi, Waxj)

)
, (3.2.25)

3.3 Gaussian Process Regression 23

with learnable attention weights a ∈ R2d′, Wa ∈ Rd′×d, where d

and d′ are the number of features in the input and output, and leaky
rELU is proposed as activation function. The output features follow
from the aggregation in the neighborhood N i

yi = σ (Wa, softmax(e(xi, xj))xj) . (3.2.26)

The PyTorch [19] implementation GATv2Conv [6] was used.

3.3 Gaussian Process Regression

One line of separation for data-driven models runs between para-
metric and non-parametric models. While the previous models,
Proper Orthogonal Decomposition and NN, have explicit parame-
ters, GPR comes from the group of non-parametric models. The
method assumes that the dataset follows an underlying multivari-
ate Gaussian distribution, represented by Gaussian Processes (Fig-
ure 3.3.1, left). An extensive explanation can be found in Ras-
mussen et. al. [45].

The key idea states that samples that are close in the input space,
should lead to close predictions in the output. The realization fol-
lows by a kernel function, which models the covariance among the
different variables and depends only on distance of the input. The
predictive model is derived by conditioning the distribution on the
input samples (called kriging), such that (1) samples in the train-
ing set are exactly predicted, and (2) the predictive output for the
test set consists of an estimated mean and standard deviation (Fig-
ure 3.3.1, right).

GPR developed to a popular regression method, as it can model
even complex functions, requiring few model assumptions and hy-
perparameters. In addition, the predictive variance made GPRs a
popular tool for error estimates.

24 3 Data-Driven Methods

Figure 3.3.1: The prediction of a GPR with a prior of Standard
Gaussian Processes before (left) and after (right) con-
ditioning, from [45], p.15.

In this work, the prior was chosen as a standard Gaussian process
with a Gaussian kernel as the covariance model. This kernel pre-
dicts an exponential decay of the correlation with increasing input
distance. The only parameter of freedom of this kernel is its length
scale, i.e., the rate of exponential decay with increasing distance.

4 POD-based model for
shrinkage-warpage
prediction

4.1 Problem statement

Assume V maps from a parameter vector µ ∈ Rn to a temperature
field Θ on a domain Ω. This temperature field enters a shrinkage-
warpage simulation, where the operator W : Θ → U maps the initial
temperature field to a displacement field. For a computationally
fast prediction, the composed operator V ◦ W shall be regressed. A
dataset of Nsamples describes the process discretely as

X = {µ, V ◦ W(µ}Nsamples
i=1 . (4.1.1)

This poses the minimization problem for the regressed operator Ṽ

min
Nsamples∑

i

∥Ṽ − W ◦ V(µi)∥ . (4.1.2)

4.2 Non-intrusive POD-GPR model

As elaborated in Section 3.1, the POD method determines the op-
timal linear subspace to a dataset. While the coefficients of the
reduced basis vectors for samples within the data set result from
a multiplication of the eigenvalues and the right eigenvectors, an
additional step is required to start the prediction.

25

26 4 POD-based model for shrinkage-warpage prediction

The mathematically most rigorous method solves the system of the
reduced basis functions and the system matrix [27, 52] and un-
der certain prerequisites even provides an error-bound. However,
this approach requires additional knowledge of the system matrix
and thus violates the requirement of maintaining non-intrusive, i.e.
solely data-driven.

The non-intrusive approach requires a regression model between
the input parameters and the coefficients of the basis vectors, and
any model connecting the two sets can serve the purpose. The
optimal choice depends on the dataset and its complexity. Popular
methods include radial basis functionss (RBFs) [12], NNs [23], GPR
[45], as applied in [13, 16], and quadratic polynomial regression
[48, 49]. The demands on robustness, flexibility, and computational
cost determine the optimal regressor choice for a specific dataset.

Considering the strong scaling of NNs with data availability and
the limitations of polynomial regression, GPR was selected as re-
gression model for the task at hand. Model generation consists
of (1) POD generation where the eigenvectors are truncated up to
a prescribed projection error (Equation 3.1.5), (2) regressing the
weights in the reduced basis with GPR. The prediction capability
of GPR regressed coefficient for new input parameters µi>Nsamples .
Following the results of [16], the input data undergoes mean re-
moval. Since the regression target consist of only one quantity,
feature scaling becomes obsolete.

A reconstruction performance on the original dataset determines
the number of preserved basis vectors k, i.e. a projection error
(Equation 3.1.5) of 1% corresponds to a 99% reconstruction of the
original dataset. As no clear theory on an optimal regression model
could be found, this work places particular focus on the approxima-
tion error introduced by projection and regression. Clearly the pro-
jection error (Equation 3.1.5) decreases with an increasing number
of preserved eigenvectors, however, this also expands the dimension
of the output in the regression problem. The author estimates re-

4.3 Dataset 27

Bounds meanx meany σx σy

Min. 0. 0. 0.0568 0.0538
Max. 1. 0.8 0.9958 0.9987

Table 4.1: Geometric bounds for dataset generation.

gression performance will decay with an increasing number of pre-
served eigenvectors, and poses a trade-off between the projection
error and the regression error. This assumptions will be examined
by investigating the performance of models with different thresholds
on the projection error on the training dataset.

4.3 Dataset

The data consists of the samples described in Equation 4.1.1 on a
double T-shaped domain. All samples share the same discretization
of the domain without transformations, consisting of 296 vertices
connected by triangular elements, and a set of Nsamples samples has
been chosen.

4.3.1 Parametrization of the input

Considering the application of injection molding, different input
temperate fields share their maximum close to the flow inlet with
smooth transitions to low-temperature regions. Bivariate Gaussian
distributions emulate varying inlet positions by shifting their mean
and covariance, such that the parameter consists of four parameters
describing each field.

Latin hypercube sampling [39] generated Nsamples = 100 samples
within the bounds stated in Table 4.1.

28 4 POD-based model for shrinkage-warpage prediction

0.0 0.5 1.0
0.00

0.25

0.50

0.75
Initial

0.0 0.5 1.0

Shrinkage-warpage

60 80
Initial temperature

0.1 0.2
Displacement norm

Figure 4.3.1: Sample instance from dataset.

4.3.2 Boundary value problem

A FEM simulation using compressible Neo-Hookean material law
(Section 2.2.1) is used to calculate the respective stress field and
deformation. Section 4.3.2 states the respective boundary value
problem for initial temperature and displacement.

The boundary conditions prevent rigid body movement by fixing the
position of the bottom-left corner of the geometry and the vertical
degree of freedom of the bottom-right corner. The material param-
eters were chosen as thermal expansion coefficient α = 2.5 · 10−3

and poisson ratio ν = 0.25. Figure 4.3.1 displays a sample from the
dataset.

4.4 Results

The first model step consists of applying Proper Orthogonal Decom-
position and determining the number of preserved left eigenvectors
in the basis. A linear combination of the truncated eigenvectors
can only represent the dataset sufficiently, if the eigenvalues’ mag-
nitude decays exponentially. Figure 4.4.1a displays the eigenvalues,
sorted by magnitude and normalized by the maximal value. In the
logarithmic scaling of the y-axis, exponential decay corresponds to
a decreasing line, which the decay in Figure 4.4.1a satisfies.

4.4 Results 29

0 20 40 60 80
Position by magnitude

10 13

10 10

10 7

10 4

10 1

Normalized eigenvalues

(a) The magnitude of eigenvalues,
normalized by 1.

0 20 40 60 80
Preserved eigenvectors

10 12

10 9

10 6

10 3

100

Pr
oj

ec
tio

n
er

ro
r

Threshold: 0.0500 yields 8 EVs
with proj. err.: 0.0423

Error
Threshold

(b) The corresponding projection er-
ror for different numbers of pre-
served eigenvectors.

Figure 4.4.1: The Proper Orthogonal Decomposition yields expo-
nentially decreasing eigenvalues of the dataset (left)
and a projection error with similar behaviour (right).

The number of preserved basis vectors is a design choice. In this
work, the projection error (Equation 3.1.5) serves as performance
measure, as it quantifies the difference between the original dataset
and the dataset projection on the selected basis in the L2 norm.
Figure 4.4.1b displays the projection error, behaving analogously
to the eigenvalue magnitude. Demanding a 95% reconstruction of
the original dataset results in a projection error of 4.23% and 8
basis vectors.
The approximation error for a given sample measures the differences
between the prediction ỹ and the FEM solution y in the L2 norm.

e = ∥ỹ − y∥L2
, (4.4.1)

while normalization by the L2 norm of the FEM solution delivers
the relative approximation error

er =
∥ỹ − y∥L2

∥y∥L2

. (4.4.2)

30 4 POD-based model for shrinkage-warpage prediction

If the reference solution x to a problem is known, e.g., from a test
set, the sample-wise projection error can be calculated as

ep(k) =
∥∥(I − ŨŨT

)
x
∥∥ , (4.4.3)

and can be interpreted as a lower bound for the approximation
error, if there was an ideal regression model. This notion introduces
a regression error, as the difference between the approximation error
and the projection error

ereg = e − er . (4.4.4)

Note that this additive split is an assumption and different relations
between the projection and regression error may exist.

Figure 4.4.2 collects the predictions with the largest relative approx-
imation error in the the test set. The relative error ranges between
1.63 − 2.00 · 10−1 and the number of used basis vectors increases
moderately from 7 to 11. The maximal point-wise error appears in
the top-left corner for all models.

In the exemplary instance, the additional basis vectors seem to
enhance the prediction accuracy, although the regression problem
maps 4 to 11 instead of only 7 coefficients. Figure 4.4.3 summarizes
the effect on all test instances. The blue bars indicate the projec-
tion error on the selected basis (ep(k)) and the green bars symbolize
the difference to the approximation error e. The overall error lies
in the same range for all thresholds sets, while the projection er-
ror decreases with the growing basis. This indicates the regression
contributes the largest part to the approximation error.

4.5 Discussion and Outlook

The dataset includes hyperelastic material behaviour and large geo-
metric deviations in the initial conditions exceeding realistic design

4.5 Discussion and Outlook 31

0.0 0.5 1.0
0.00

0.25

0.50

0.75
FEM

0.0 0.5 1.0

Pred. er=2.00e-01, k: 7

0.5 1.0
Displ. 1e 1

1 2
Error 1e 2

(a) ep(k) ≤ 0.1.

0.0 0.5 1.0
0.00

0.25

0.50

0.75
FEM

0.0 0.5 1.0

Pred. er=1.81e-01, k: 8

0.5 1.0
Displ. 1e 1

1 2
Error 1e 2

(b) ep(k) ≤ 0.05.

0.0 0.5 1.0
0.00

0.25

0.50

0.75
FEM

0.0 0.5 1.0

Pred. er=1.63e-01, k: 11

0.5 1.0
Displ. 1e 1

0.5 1.0 1.5
Error 1e 2

(c) ep(k) ≤ 0.01.

Figure 4.4.2: The samples from the test set with the highest rela-
tive approximation error for different number of basis
vectors, resulting from different demanded projection
accuracy.

0 2 4 6 8 10
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Error composition on test set

P, mean 1.46e-02
R, mean 8.49e-02

(a) ep(k) ≤ 0.1.

0 2 4 6 8 10
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Error composition on test set

P, mean 8.40e-03
R, mean 8.92e-02

(b) ep(k) ≤ 0.05.

0 2 4 6 8 10
0.000

0.025

0.050

0.075

0.100

0.125

0.150

Error composition on test set

P, mean 4.27e-03
R, mean 9.17e-02

(c) ep(k) ≤ 0.01.

Figure 4.4.3: Approximation error on the test set, with the division
into error on projection (P) and regression (R) for
different projection accuracy.

32 4 POD-based model for shrinkage-warpage prediction

deviations in injection molding. Despite this variation, POD man-
aged to projection the dataset to a subspace of only roughly 10%
of the original degrees of freedom even for a high reconstruction
accuracy. The projection error in the test set matches the order of
magnitude in the test set, which promises generalization. Thus, a
linear subspace seems suitable for approximating the problem.

In contrast, the overall relative approximation error is around 15%.
This indicates that the GPR does not satisfactorily recover the re-
lationship between parameters and basis function coefficients. In-
terestingly, the high regression error does not show sensitivity to
the dimension of output variables, i.e., the number of basis vectors.
Thus, the GPR might be an unsuitable regression model for the
task. As GPR by definition exactly predicts its training data, the
author estimates overfitting to the training data and proposes a
more deterministic model such as RBF.

5 GNN-based
shrinkage-warpage
prediction

Under realistic circumstances, a preceding simulation passes the ini-
tial temperature field to the shrinkage-warpage calculation, which
– in general – does not obey a closed-form parametrization, as used
in Section 4.2. A realistic data-driven model for shrinkage-warpage
maps from an arbitrary initial temperature field to a displacement
field.

In addition, the shape of the product affects the displacement re-
sult and design optimization aims at iterating multiple geometric
designs (Section 1). Ideally, the data-driven model is applicable to
a group of related geometries.

5.1 Problem statement

The aim stated in the former paragraph can be formally described
by operator regression. Assume the operator W : Θ → U maps
the input temperature field Θ on a domain Ω to the deformation
field U . The operator shall be regressed from a collection of training
samples of different initial temperatures on a collection of geometric
domains {Ωi}NGeom

i=1 , leading to the dataset

X = {θn, Ωn, W(θn, Ωn)}Nsamples
n−1 . (5.1.1)

33

34 5 GNN-based shrinkage-warpage prediction

We denote the true (unknown) operator as W and its data-driven
reconstruction as W̃. Operator regression aims at minimizing the
least squares error between the output of the regressed operator W̃
on the given dataset

min
N∑

n=1
∥Xn − W̃(θn, Ωn)∥ . (5.1.2)

5.2 Data-driven model

Most reduced order models (ROMs), e.g. the model presented in
the last chapter 4.2, extrapolate on a fixed geometric domain, or
on a parametrization of the fixed domain with the same number
of degrees of freedom. In contrast, GNNs learn the dataset with
respect to its edge weights and promise generalization across new
graphs. This capability motivated the choice of a GNN as data-
driven model for W̃.

While GNNs achieved great success in learning flow simulations
(Section 3.2.5), to the author’s knowledge, attempts to regress sta-
tionary elasticity are limited to the works of Löetzsch [38] and Glad-
stone [21]. The influence of the boundary condition on the complete
domain is a key feature of elliptic problems. Gladstone [21] finds an
unsatisfactory performance of the [42] architecture on their prob-
lem and speculate the local message passing fails at transmitting
boundary condition information fast enough. As a remedy, they
add new edges between random nodes within the domain. Instead
Lötzsch et. al. [38] investigate multiple existent GNN architec-
tures and find ChebConv performs best on their electro-magnetic
example problem.

Given these results, the following sections investigate the perfor-
mance of GAT and ChebConv as regression models W̃. The relation
to spectral graph convolution 3.2.3 motivates the choice for Cheb-
Conv with approximating global information passing by including

5.3 Dataset 35

up to the fifth exponential of the L. In contrast, overall GATs still
outperform ChebConv with their additional flexibility.

Following the general state of the art [21, 38, 42], each model con-
sists of

1. A GNN-based processor of one or multiple layers

2. A node encoder from the input features to number of hidden
neurons in node encoder (NHN) features

3. A node decoder from NHN encoded node features to the out-
put features

4. Only for GATs: An edge encoder from the edge attributes to
number of hidden neurons in edge encoder (NHE) encoded
edge features .

The goal of regression is to minimize the least squares error. How-
ever, the minimum of the MSE and the least squares error are iden-
tical. To avoid unnecessary backpropagation steps, the regression
models’s loss L function is selected as

Nsamples∑
n=1

L(yn, W̃(θn, Ωn) =
Nsamples∑

n=1
MSE

(
yn, W̃(θn, Ωn)

)
. (5.2.1)

The following sections describe the generated dataset and the per-
formance of the selected models.

5.3 Dataset

As the initial temperature field obeys the physical laws of the heat
equations, it seems reasonable to assume continuity with respect to
the geometric position. To cover a maximal span of initial temper-
ature field, a random model is used for their generation. Samples
from a GRF follow a Gaussian distribution while ensuring corre-
lation in a neighborhood of length-scale l. Small values of l yield
high-frequency white noise, whereas large values result in a smooth

36 5 GNN-based shrinkage-warpage prediction

Train set Test set Total

Number of samples 179 45 224
Number of geometries 23 6 28

Table 5.1: Split of training and test instances.

transition of values. For deformations to occur, l needs to be larger
than two element lengths, but smaller than the maximal length of
the geometry at hand.
The double T shape from Section 4.2 is used again as an example,
this time also adding geometric modifications. The parametriza-
tion displayed in Figure 5.3.1a defines an instance by the horizontal
length (L) and vertical length (h0) of the bottom box, the horizon-
tal (w1) and vertical (h1) length of the middle box along with its
horizontal center of mass (c1), and the horizontal (w2) and vertical
(h2) length of the top box. Although not relevant for the shape it-
self, the characteristic length of the triangular discretization of the
shape (∆m) adds another degree of freedom to the data generation.
Latin hypercube sampling [39] generated 28 different geometries,
visualized in Figure 5.3.1b within the parameter ranges displayed
in Table 5.2. On each geometry, the FEM computed solutions for
8 different initial temperature field generated by GRF with param-
eter l = 0.3. Boundary conditions, material law and parameters
correspond to the problem presented in Section 4.2 The resulting
244 samples were divided into training set (80%) and test set (20%)
(Table 5.1), where the shapes Ωi in the training set and test set are
distinct.
Figure 5.3.2 displays the initial temperature distribution (left) and
the resulting deformed shape (right) for one sample instance.
The input data contains the following features for each node

1. Spatial position
2. Value of initial temperature

5.3 Dataset 37

L
c1, w1

w2

h1

h2

h0

(a) Geometry parametrization of a
double-T shape.

(b) Distinct geometric shapes within
the dataset.

Bounds Nnodes L w1 w2 h0 h1 h2 ∆m c1

Min. 224 1.0 0.1500 0.3588 0.1500 0.2000 0.1500 0.1000 0.4157
Max. 473 1.0 0.2371 0.8986 0.2402 0.2894 0.2972 0.1988 0.5994

Table 5.2: Geometric bounds for dataset generation, the parameters
are represented in Figure 5.3.1a.

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

Initial layout

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

Shrinkage-warpage

0 5 10 15 20 25 30 35

Initial temperature

0.02 0.04 0.06 0.08 0.10

Displacement norm

Figure 5.3.2: Sample instance from dataset

38 5 GNN-based shrinkage-warpage prediction

3. Boolean, whether the node lies on the geometric boundary
∂Ωi

4. Distance to the next node on a geometric boundary (0 if the
latter Boolean is True)

5. Boolean, whether the node is subject to a Dirichlet boundary
condition

6. Distance to the next node subject to a Dirichlet boundary
condition

vertex position, The data is scaled feature-wise to the interval [0, 1],
where the bounds are extracted only from the training split. Edge
weights (for ChebConv) correspond to the L2 norm of an edge be-
tween two nodes, edge attributes (for GAT) additionally contain
the distance vector itself.

5.4 Results

The performance of NN-based models on a specific dataset may
largely vary under the choice of different hyperparameters (see Sec-
tion 3.2.1). A number of random parameter combinations from
predefined options serve as an estimate of the model’s sensitivities
to its architecture. Table A.1 and A.2 list the choices for GAT and
ChebConv, which where were based the findings in [38].
The training for each network architecture was performed for 1500
epochs using the Adam optimizer [33] with a constant learning rate
of 10−4 and β = (0.9, 0.999). Figure 5.4.1 displays the test er-
ror (solid line) and training error (dotted) for ChebConv (left) and
GAT (right) processing units. The final test error with the Cheb-
Conv layers ranges from 2.019 − 2.619 · 10−3 (Table A.2). All mod-
els smoothly and monotonically decrease the loss during training,
although Figure 5.4.1a reveals how a subset of models converge
faster than others. The GAT model yields a lower final loss be-
tween 1.887 − 2.194 · 10−3 (Table A.1) with an equal order of mag-
nitude. The decrease of the loss functions occurs monotonically

5.4 Results 39

0 500 1000 1500

Epoch

0.00

0.25

0.50

0.75

1.00

1.25

M
S

E

Training process

M-0-test

M-1-test

M-2-test

M-3-test

M-4-test

M-5-test

(a) ChebConv architecture

0 500 1000 1500

Epoch

0.00

0.25

0.50

0.75

1.00

1.25

M
S

E

Training process

M-0-test

M-1-test

M-2-test

M-3-test

M-4-test

M-5-test

M-6-test

(b) GAT architecture

Figure 5.4.1: Evaluation of the test and training error during pa-
rameter optimization. The models correspond to Ta-
ble A.1 and Table A.2. Solid lines display test error
and dotted lines training error.

(Figure 5.4.1b), but less smooth than in the previous examples.
Importantly, for all tested model, the lines of test error and train
error run very close or align, which is an indicator of generalization.

Although the MSE measures the loss during training, ultimately
the relative error between the regressed solution and true solution
determines the performance

erel = ∥y − ỹ∥
∥y∥

. (5.4.1)

Since scaling transformed the data to smaller than one, the relative
error compares unfavorably to the MSE. Figures 5.4.2a and 5.4.2b
show predictions for the sample sample with the best-performing
models from the previous hyperparameter exploration (Table A.1,
Table A.2). The relative error in the predictions is 0.61/0.55 with
point-wise values up to 0.09. While the ChebConv prediction yields
the lower overall error, point error fluctuate among neighboring
nodes and does not deliver a smooth deformation field. In contrast,

40 5 GNN-based shrinkage-warpage prediction

−0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.5

FEM Solution

−0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.5

GNN prediction with error ey = 0.61

0.00

0.01

0.02

0.03

0.04

0.05

D
is

p
la

ce
m

en
t

n
or

m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
rr

o
r

n
or

m

(a) ChebConv

−0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.5

FEM Solution

−0.25 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.5

GNN prediction with error ey = 0.55

0.00

0.01

0.02

0.03

0.04

0.05

D
is

p
la

ce
m

en
t

n
or

m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

E
rr

o
r

n
or

m

(b) GAT

Figure 5.4.2: A prediction on an unseen test sample with the true
solution (left) and prediction (right).

the GAT solution predicts smooth deformations, deviate less form
the initial configuration and underestimate this sample.

Generalization across multiple geometries initially motivated the
choice of GNNs. For an estimate of its success, we summarize the
relative error on each geometic shape individually. Figure 5.4.3
displays the error distribution, its minimum, maximum and median
(horizontal line) on each shape in the train set (top) and test set
(bottom) with the ChebConv (left) and GAT model (right). Note
that the samples in geometry number 22 have been split, such that
it appears in both sets. Among the geometries significant outliers
to the top are present and the distribution show significant variance
within each geometric shape. The median error, however, is roughly
constant within the geometries, even the unseen ones. No huge
differences between the two prediction models (left and right) are
visible.

We caution that although the training process appeared to be con-
vergent, the models were fitted to only 179 sample instances with
224 to 473 nodes with multiple output features per instance.

5.5 Discussion and Outlook 41

0 1 2 3 4 5 6 7 8 910111213141516171819202122

0.5

1.0

1.5

Training set, mean error: 0.62

22 23 24 25 26 27

0.5

1.0

1.5

Unseen set, mean error: 0.64

(a) ChebConv

0 1 2 3 4 5 6 7 8 910111213141516171819202122

0.5

1.0

1.5

Training set, mean error: 0.58

22 23 24 25 26 27

0.5

1.0

1.5

Unseen set, mean error: 0.60

(b) GAT

Figure 5.4.3: Each violin plot displays the relative error of the sam-
ple of one shape as well as their minimum, maximum
and median (horizontal lines).

5.5 Discussion and Outlook

During training, the test losses for the different layer architectures
reached the same order of magnitude, while the GAT model slightly
outperformed the ChebConv model. This contradicts the authors
expectations, as the flexibility of the architecture and the edge en-
coder also increased the number of trainable parameters. A reason
for the outperformance could be the availability of the edge at-
tributes, which explicitly provide the spatial relation between two
nodes.
It is remarkable how the results do not show signs of overfitting, al-
though one sample instance contains more degrees of freedom than
the number of instances passed to training. As the overall pre-
diction error remains intolerably high, the results do not yet allow
judgments on the generalization capabilities. However, a resem-
blance in the error distribution of test set and train set permits op-
timism. As found in numerous works related to NNs and reported
in previous work on physics prediction with GNNs ([21, 38, 42], this
kind of model improves with a large amount of training data, which
motivates investigations on a larger dataset.

6 Conclusion

Injection molded products come in a wide range of shapes tailored
to different applications and design goals. In addition, the behavior
of polymer materials varies significantly between crystalline, semi-
crystalline, and amorphous forms, as well as within each group.
Given the complexity of these physical processes, it’s not easy for
engineers to determine the optimal shape and process parameters
for a desired design. Design optimization algorithms can streamline
this process by increasing efficiency and effectiveness.
This work targets the development of data-driven models, which
predict the shrinkage-warpage of a product for new initial condi-
tions. Because of the widely varying objectives and materials, the
generalization capability of the model was emphasized at the price
of more complex models.
The first POD-based model (Section 4.2) predicts solutions within
a linear subspace of the given dataset with regression. The Proper
Orthogonal Decomposition projection reached a reconstruction ac-
curacy of 1% to 10% while reducing the number of degrees of free-
dom by around 90%. Even though the current model for initial
temperature distribution (bivariate Gaussian) is highly simplified,
the low projection error in both training and test set indicates a
linear combination of eigenvectors can successfully represent the
occurring deformations.
While the predicted deformations visually correspond to the ref-
erence solution, the regression of coefficients causes a considerable
inaccuracy. In the future, this may be circumvented by (1) dropping
the non-intrusive character of the model and solving the problem in

42

i

the reduced basis, (2) investigation of different regression methods
between input parameters and basis coefficients.

Overall, the linear base model gave promising results on a limited
dataset size for a fixed geometric shape. Proper Orthogonal Decom-
position-based models can also account for shape changes that affect
only the position of vertices and not the connectivity of the dis-
cretization. In this case, the geometric transformation must appear
in the input parameters. The limitation to discretization-consistent
parameterized geometric modifications motivated the second GNN-
based model.

Applying NN architectures allows for complex nonlinear bases with
more flexibility, but brings greater risk of overfitting the dataset.
In Section 5.2, the performance of NN architectures on a dataset
is evaluated. The model inherently allows for (1) arbitrary input
fields, and (2) different graphs as input domains. The loss func-
tion decreases monotonically during training to the same order of
magnitude for all architectures and hyperparameter combinations
tested. The overall prediction error e remains unacceptably large
at around 0.62. However, it is noteworthy that all models predict
the test and training sets with roughly the same error, even for new
geometries. Although the training set contains only 144 instances
with about 200 vertices each, the results do not indicate overfitting.

Two strategies are proposed to reduce the prediction error: (1)
pass more training data, (2) pass additional physical information
to the network. Considering the size of the datasets in analogous at-
tempts [21, 38], it seems reasonable to assume that a larger dataset
could reduce the approximation error. For the latter choice, physi-
cal knowledge can be transferred to the network as a residual term
[44]. However, this approach requires the explicit implementation
of a constitutive law and the additional need to weight residual and
data-induced loss. In contrast, structure-preserving models follow
the laws of exterior calculus and can satisfy energy conservation
without an explicit constitutive model [25]. In future research,

ii 6 Conclusion

purely data-driven models will be compared with the structure-
preserving model.

7 Acknowledgement

My stay in Albuquerque has been a blast, both professionally and
on a personal level, thanks to the contribution of so many people
to whom I would like to pay tribute.

First of all, I would like to thank my host, Rekha Rao. She made all
the organisational efforts to make the stay possible and continuously
supported my research and well-being. In the same way, I am very
grateful to have had my supervisor Stefanie Elgeti at my side. Not
only did she arrange the stay, but she also gave me all the flexibility
I needed and was a great help with funding and all organisational
matters. Thank you to Nat Trask for hosting me at CSRI and being
a great mentor both online and while visiting UPenn. In addition,
Dan Bolintineanu was a great support both organisationally and
personally.

I received incredible hospitality at CSRI. Special thanks go to Elise
Walker, Anthony Gruber, Jonas Actor, Pete Bosler, Eric Cyr and
the management. I also felt very much welcomed into the GOMA
Group, where Weston Ortiz and Helen Cleaves, in particular, con-
tinued to support me as I worked.

In addition to the work in the laboratory, I also had the opportunity
to explore the culture of New Mexico. I am very grateful to my
climbing crew – Austin, Maggie, Raven, Nick and Marshall – for
making me feel at home away from home. In addition, I would
like to thank – my roommates James and Jack, Marsaya, Mark,
Cleveland and Veena – for the good times we have had and for
your constant support.

iii

iv 7 Acknowledgement

I am very grateful for this opportunity, and I would like to thank the
Sandia National Laboratories, the Marshall Plan Foundation, and
the Vienna University of Technology for making this stay possible.

A Appendix

A.1 Hyperparameters

Model batch norm (BN) batch size (BS) dropout (D) numbers of layers of edge encoder (LEE) numbers of layers of node encoder (LNE) numbers of layers of processor (LP) NHE NHN number of hidden neurons in processor (NHP) L · 10−3

M-1 F 16 0.05 1 1 1 16 64 64 2.250
M-2 T 4 0.05 0 1 3 8 32 32 2.019
M-3 T 8 0.01 1 2 2 8 32 32 2.066
M-4 T 16 0.10 0 1 2 8 64 32 2.270
M-5 T 4 0.05 1 1 1 8 32 64 2.025
M-6 F 8 0.05 0 2 1 8 32 32 2.112
M-7 F 16 0.01 1 2 3 8 64 64 2.619

Table A.1: Hyperparameter sweep for GATs framework. The right-
most column indicates the test loss after 1500 training
epochs, see glossary for an explanation of the hyperpa-
rameter abbreviations.

Model BS D LNE LP NHN NHP L · 10−3

M-1 4 0.01 2 4 32 64 1.887
M-2 16 0.01 1 3 64 64 2.160
M-3 16 0.10 2 4 64 32 2.175
M-4 16 0.05 1 3 32 64 2.194
M-5 16 0.10 2 4 64 64 2.200
M-6 8 0.10 2 3 32 32 2.131

Table A.2: Hyperparameter sweep for ChebConv framework. See
glossary for label explanation. As the architecture only
allows scalar edge weights, edge encoding does not apply.

v

Bibliography

[1] Shun-ichi Amari. Backpropagation and stochastic gradi-
ent descent method. Neurocomputing, 5(4):185–196, June
1993. ISSN 0925-2312. doi: 10.1016/0925-2312(93)90006-O.
URL https://www.sciencedirect.com/science/article/
pii/092523129390006O.

[2] Raman Arora, Amitabh Basu, Poorya Mianjy, and Anirbit
Mukherjee. Understanding Deep Neural Networks with Rec-
tified Linear Units. CoRR, abs/1611.01491, 2016. URL
http://arxiv.org/abs/1611.01491. arXiv: 1611.01491.

[3] Peter Battaglia, Jessica Blake Chandler Hamrick, Victor
Bapst, Alvaro Sanchez, Vinicius Zambaldi, Mateusz Mali-
nowski, Andrea Tacchetti, David Raposo, Adam Santoro,
Ryan Faulkner, Caglar Gulcehre, Francis Song, Andy Ballard,
Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey Allen,
Charles Nash, Victoria Jayne Langston, Chris Dyer, Nicolas
Heess, Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol
Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive
biases, deep learning, and graph networks. arXiv, 2018. URL
https://arxiv.org/pdf/1806.01261.pdf.

[4] G Berkooz, P Holmes, and J L Lumley. The Proper Or-
thogonal Decomposition in the Analysis of Turbulent Flows.
Annual Review of Fluid Mechanics, 25(1):539–575, 1993.
doi: 10.1146/annurev.fl.25.010193.002543. URL https://
doi.org/10.1146/annurev.fl.25.010193.002543. _eprint:
https://doi.org/10.1146/annurev.fl.25.010193.002543.

vi

https://www.sciencedirect.com/science/article/pii/092523129390006O
https://www.sciencedirect.com/science/article/pii/092523129390006O
http://arxiv.org/abs/1611.01491
https://arxiv.org/pdf/1806.01261.pdf
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1146/annurev.fl.25.010193.002543

Bibliography vii

[5] Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer, 1 edi-
tion, 2007. ISBN 0-387-31073-8.

[6] Shaked Brody, Uri Alon, and Eran Yahav. How Attentive are
Graph Attention Networks?, 2022. _eprint: 2105.14491.

[7] Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. Geometric Deep Learn-
ing: Going beyond Euclidean data. IEEE Signal Processing
Magazine, 34(4):18–42, July 2017. ISSN 1558-0792. doi: 10.
1109/MSP.2017.2693418. URL https://ieeexplore.ieee.
org/document/7974879. Conference Name: IEEE Signal Pro-
cessing Magazine.

[8] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar
Veličković. Geometric Deep Learning: Grids, Groups, Graphs,
Geodesics, and Gauges, 2021. _eprint: 2104.13478.

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun. Spectral Networks and Locally Connected Networks on
Graphs. In Yoshua Bengio and Yann LeCun, editors, 2nd Inter-
national Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings, 2014. URL http://arxiv.org/abs/1312.6203.

[10] Steven L. Brunton and J. Nathan Kutz. Data-Driven Science
and Engineering: Machine Learning, Dynamical Systems, and
Control. Cambridge University Press, Cambridge, 2019. doi:
10.1017/9781108380690.

[11] Michael R. Buche and Meredith N. Silberstein. Statistical
mechanical constitutive theory of polymer networks: The in-
extricable links between distribution, behavior, and ensem-
ble. Physical Review E, 102(1):012501, July 2020. doi: 10.
1103/PhysRevE.102.012501. URL https://link.aps.org/

https://ieeexplore.ieee.org/document/7974879
https://ieeexplore.ieee.org/document/7974879
http://arxiv.org/abs/1312.6203
https://link.aps.org/doi/10.1103/PhysRevE.102.012501
https://link.aps.org/doi/10.1103/PhysRevE.102.012501

viii Bibliography

doi/10.1103/PhysRevE.102.012501. Publisher: American
Physical Society.

[12] Martin D. Buhmann. Radial Basis Functions: Theory and Im-
plementations. Cambridge Monographs on Applied and Com-
putational Mathematics. Cambridge University Press, 2003.

[13] Artūrs Bērzin, š, Jan Helmig, Fabian Key, and Stefanie El-
geti. Standardized Non-Intrusive Reduced Order Modeling Us-
ing Different Regression Models With Application to Complex
Flow Problems, 2021. _eprint: 2006.13706.

[14] Yves Chauvin and David E. Rumelhart, editors. Backpropa-
gation: Theory, architectures, and applications. Backpropaga-
tion: Theory, architectures, and applications. Lawrence Erl-
baum Associates, Inc, Hillsdale, NJ, US, 1995. ISBN 0-8058-
1258-X (Hardcover); 0-8058-1259-8 (Paperback). Pages: x,
561.

[15] Steven B. Damelin and Jr Miller, Willard. The Mathematics of
Signal Processing. Cambridge Texts in Applied Mathematics.
Cambridge University Press, Cambridge, 2011. ISBN 978-1-
107-01322-3. doi: 10.1017/CBO9781139003896.

[16] Boukje M. de Gooijer, Jos Havinga, Hubert J. M. Geijse-
laers, and Anton H. van den Boogaard. Evaluation of POD
based surrogate models of fields resulting from nonlinear FEM
simulations. Advanced Modeling and Simulation in Engi-
neering Sciences, 8(1):25, November 2021. ISSN 2213-7467.
doi: 10.1186/s40323-021-00210-8. URL https://doi.org/
10.1186/s40323-021-00210-8.

[17] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering. In D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,

https://link.aps.org/doi/10.1103/PhysRevE.102.012501
https://link.aps.org/doi/10.1103/PhysRevE.102.012501
https://link.aps.org/doi/10.1103/PhysRevE.102.012501
https://doi.org/10.1186/s40323-021-00210-8
https://doi.org/10.1186/s40323-021-00210-8

Bibliography ix

editors, Advances in Neural Information Processing Systems,
volume 29. Curran Associates, Inc., 2016. URL https:
//proceedings.neurips.cc/paper_files/paper/2016/
file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf.

[18] Timothy Dozat. Incorporating Nesterov Momentum into
Adam. In Proceedings of the 6th International Confer-
ence on Learning Representations (ICLR 2016), Febru-
ary 2016. URL https://openreview.net/forum?id=
OM0jvwB8jIp57ZJjtNEZ.

[19] Matthias Fey and Jan Eric Lenssen. Fast Graph Repre-
sentation Learning with PyTorch Geometric, 2019. _eprint:
1903.02428.

[20] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol
Vinyals, and George E. Dahl. Neural Message Passing for
Quantum Chemistry. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, pages 1263–1272.
PMLR, July 2017. URL https://proceedings.mlr.press/
v70/gilmer17a.html. ISSN: 2640-3498.

[21] Rini Jasmine Gladstone, Helia Rahmani, Vishvas Suryakumar,
Hadi Meidani, Marta D’Elia, and Ahmad Zareei. GNN-based
physics solver for time-independent PDEs, 2023. _eprint:
2303.15681.

[22] Xavier Glorot and Yoshua Bengio. Understanding the diffi-
culty of training deep feedforward neural networks. In Pro-
ceedings of the Thirteenth International Conference on Arti-
ficial Intelligence and Statistics, pages 249–256. JMLR Work-
shop and Conference Proceedings, March 2010. URL https://
proceedings.mlr.press/v9/glorot10a.html. ISSN: 1938-
7228.

[23] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/04df4d434d481c5bb723be1b6df1ee65-Paper.pdf
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.mlr.press/v9/glorot10a.html

x Bibliography

[24] Leo J. Grady and Jonathan R. Polimeni. Discrete Calculus.
Springer, London, 2010. ISBN 978-1-84996-289-6 978-1-84996-
290-2. doi: 10.1007/978-1-84996-290-2. URL http://link.
springer.com/10.1007/978-1-84996-290-2.

[25] Anthony Gruber, Kookjin Lee, and Nathaniel Trask. Re-
versible and irreversible bracket-based dynamics for deep
graph neural networks. In Procedings of the Thirty-
seventh Conference on Neural Information Processing Systems,
November 2023. URL https://openreview.net/forum?id=
4SoTUaTK8N.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034,
2015. URL http://openaccess.thecvf.com/content_iccv_
2015/html/He_Delving_Deep_into_ICCV_2015_paper.html.

[27] Jan S Hesthaven, Gianluigi Rozza, and Benjamin Stamm.
Certified Reduced Basis Methods for Parametrized Par-
tial Differential Equations. SpringerBriefs in Mathe-
matics. Springer International Publishing, Cham, 2016.
ISBN 978-3-319-22469-5 978-3-319-22470-1. doi: 10.1007/
978-3-319-22470-1. URL https://link.springer.com/10.
1007/978-3-319-22470-1.

[28] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R. Salakhutdinov. Improving neu-
ral networks by preventing co-adaptation of feature detectors,
2012. _eprint: 1207.0580.

[29] G. A. Holzapfel and J. C. Simo. Entropy elasticity of
isotropic rubber-like solids at finite strains. Computer Meth-
ods in Applied Mechanics and Engineering, 132(1):17–44,
May 1996. ISSN 0045-7825. doi: 10.1016/0045-7825(96)

http://link.springer.com/10.1007/978-1-84996-290-2
http://link.springer.com/10.1007/978-1-84996-290-2
https://openreview.net/forum?id=4SoTUaTK8N
https://openreview.net/forum?id=4SoTUaTK8N
http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
http://openaccess.thecvf.com/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html
https://link.springer.com/10.1007/978-3-319-22470-1
https://link.springer.com/10.1007/978-3-319-22470-1

Bibliography xi

01001-8. URL https://www.sciencedirect.com/science/
article/pii/0045782596010018.

[30] Gerhard A. Holzapfel. Nonlinear Solid Mechanics: A Con-
tinuum Approach for Engineering. Wiley, April 2000. ISBN
978-0-471-82304-9. Google-Books-ID: _ZkeAQAAIAAJ.

[31] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Uni-
versal approximation of an unknown mapping and its deriva-
tives using multilayer feedforward networks. Neural Networks,
3(5):551–560, January 1990. ISSN 0893-6080. doi: 10.1016/
0893-6080(90)90005-6. URL https://www.sciencedirect.
com/science/article/pii/0893608090900056.

[32] Kenji Kashima. Nonlinear model reduction by deep autoen-
coder of noise response data. In 2016 IEEE 55th Confer-
ence on Decision and Control (CDC), pages 5750–5755, De-
cember 2016. doi: 10.1109/CDC.2016.7799153. URL https:
//ieeexplore.ieee.org/document/7799153.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings, 2015. URL http://arxiv.org/
abs/1412.6980.

[34] Yann Lecun. Generalization and network design strategies. In
R. Pfeifer, Z. Schreter, F. Fogelman, and L. Steels, editors,
Connectionism in perspective. Elsevier, Zurich, Switzerland,
1989.

[35] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xi-
aodong Liu, Jianfeng Gao, and Jiawei Han. On the Variance
of the Adaptive Learning Rate and Beyond. In Proceedings of
the 8th International Conference on Learning Representations
(ICLR 2020), August 2019.

https://www.sciencedirect.com/science/article/pii/0045782596010018
https://www.sciencedirect.com/science/article/pii/0045782596010018
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://www.sciencedirect.com/science/article/pii/0893608090900056
https://ieeexplore.ieee.org/document/7799153
https://ieeexplore.ieee.org/document/7799153
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

xii Bibliography

[36] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay
Regularization. In International Conference on Learning Rep-
resentations, 2019. URL https://openreview.net/forum?
id=Bkg6RiCqY7.

[37] S. C. H. Lu and K. S. Pister. Decomposition of deformation
and representation of the free energy function for isotropic
thermoelastic solids. International Journal of Solids and Struc-
tures, 11(7):927–934, July 1975. ISSN 0020-7683. doi: 10.1016/
0020-7683(75)90015-3. URL https://www.sciencedirect.
com/science/article/pii/0020768375900153.

[38] Winfried Lötzsch, Simon Ohler, and Johannes S Otterbach.
Learning the Solution Operator of Boundary Value Problems
using Graph Neural Networks. ICML 2022 2nd AI for Science
Workshop, 2022.

[39] M. D. McKay, R. J. Beckman, and W. J. Conover. A Compari-
son of Three Methods for Selecting Values of Input Variables in
the Analysis of Output from a Computer Code. Technometrics,
21(2):239–245, 1979. ISSN 0040-1706. doi: 10.2307/1268522.
URL https://www.jstor.org/stable/1268522. Publisher:
[Taylor & Francis, Ltd., American Statistical Association,
American Society for Quality].

[40] Michele Milano and Petros Koumoutsakos. Neural Net-
work Modeling for Near Wall Turbulent Flow. Journal
of Computational Physics, 182(1):1–26, October 2002.
ISSN 0021-9991. doi: 10.1006/jcph.2002.7146. URL
https://www.sciencedirect.com/science/article/pii/
S0021999102971469.

[41] Jorge Nocedal and Stephen Wright. Numerical Optimiza-
tion. Springer Series in Operations Research and Finan-
cial Engineering. Springer New York, 2006. ISBN 978-0-

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.sciencedirect.com/science/article/pii/0020768375900153
https://www.sciencedirect.com/science/article/pii/0020768375900153
https://www.jstor.org/stable/1268522
https://www.sciencedirect.com/science/article/pii/S0021999102971469
https://www.sciencedirect.com/science/article/pii/S0021999102971469

Bibliography xiii

387-30303-1. doi: 10.1007/978-0-387-40065-5. URL http:
//link.springer.com/10.1007/978-0-387-40065-5.

[42] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and
Peter W. Battaglia. Learning Mesh-Based Simulation with
Graph Networks, 2021. _eprint: 2010.03409.

[43] Ning Qian. On the momentum term in gradient descent
learning algorithms. Neural Networks, 12(1):145–151, Jan-
uary 1999. ISSN 0893-6080. doi: 10.1016/S0893-6080(98)
00116-6. URL https://www.sciencedirect.com/science/
article/pii/S0893608098001166.

[44] Maziar Raissi, Paris Perdikaris, and George Em Karni-
adakis. Physics Informed Deep Learning (Part I): Data-
driven Solutions of Nonlinear Partial Differential Equations.
arXiv:1711.10561 [cs, math, stat], November 2017. URL
http://arxiv.org/abs/1711.10561. arXiv: 1711.10561.

[45] Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian processes for machine learning. Adaptive compu-
tation and machine learning. MIT Press, 2006. ISBN 0-262-
18253-X.

[46] Fadil Santosa and William W. Symes. Linear Inversion of
Band-Limited Reflection Seismograms. SIAM Journal on Sci-
entific and Statistical Computing, 7(4):1307–1330, 1986. doi:
10.1137/0907087. URL https://doi.org/10.1137/0907087.
_eprint: https://doi.org/10.1137/0907087.

[47] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagen-
buchner, and Gabriele Monfardini. The Graph Neural Network
Model. IEEE Transactions on Neural Networks, 20(1):61–
80, January 2009. ISSN 1941-0093. doi: 10.1109/TNN.2008.
2005605. URL https://ieeexplore.ieee.org/document/
4700287. Conference Name: IEEE Transactions on Neural
Networks.

http://link.springer.com/10.1007/978-0-387-40065-5
http://link.springer.com/10.1007/978-0-387-40065-5
https://www.sciencedirect.com/science/article/pii/S0893608098001166
https://www.sciencedirect.com/science/article/pii/S0893608098001166
http://arxiv.org/abs/1711.10561
https://doi.org/10.1137/0907087
https://ieeexplore.ieee.org/document/4700287
https://ieeexplore.ieee.org/document/4700287

xiv Bibliography

[48] Christian Schwarz, Patrick Ackert, and Reinhard Mauermann.
Principal component analysis and singular value decomposi-
tion used for a numerical sensitivity analysis of a complex
drawn part. The International Journal of Advanced Manu-
facturing Technology, 94(5):2255–2265, February 2018. ISSN
1433-3015. doi: 10.1007/s00170-017-0980-z. URL https:
//doi.org/10.1007/s00170-017-0980-z.

[49] Christian Schwarz, Thomas Kropp, Christian Kraus, and Welf-
Guntram Drossel. Optimization of thick sheet clinching tools
using principal component analysis. The International Journal
of Advanced Manufacturing Technology, 106(1):471–479, Jan-
uary 2020. ISSN 1433-3015. doi: 10.1007/s00170-019-04512-5.
URL https://doi.org/10.1007/s00170-019-04512-5.

[50] J. C. Simo and C. Miehe. Associative coupled thermo-
plasticity at finite strains: Formulation, numerical anal-
ysis and implementation. Computer Methods in Ap-
plied Mechanics and Engineering, 98(1):41–104, July 1992.
ISSN 0045-7825. doi: 10.1016/0045-7825(92)90170-O.
URL https://www.sciencedirect.com/science/article/
pii/004578259290170O.

[51] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Liò, and Yoshua Bengio. Graph Attention
Networks, 2018. _eprint: 1710.10903.

[52] K. Veroy and A. T. Patera. Certified real-time solution
of the parametrized steady incompressible Navier–Stokes
equations: rigorous reduced-basis a posteriori error
bounds. International Journal for Numerical Meth-
ods in Fluids, 47(8-9):773–788, 2005. ISSN 1097-0363.
doi: 10.1002/fld.867. URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/fld.867. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.867.

https://doi.org/10.1007/s00170-017-0980-z
https://doi.org/10.1007/s00170-017-0980-z
https://doi.org/10.1007/s00170-019-04512-5
https://www.sciencedirect.com/science/article/pii/004578259290170O
https://www.sciencedirect.com/science/article/pii/004578259290170O
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.867
https://onlinelibrary.wiley.com/doi/abs/10.1002/fld.867

Bibliography xv

[53] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Ben-
gio, Pierre-Antoine Manzagol, and Léon Bottou. Stacked de-
noising autoencoders: Learning useful representations in a
deep network with a local denoising criterion. Journal of ma-
chine learning research, 11(12), 2010.

[54] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty,
Tao Yu, and Kilian Weinberger. Simplifying Graph Convolu-
tional Networks. In Proceedings of the 36th International Con-
ference on Machine Learning, pages 6861–6871. PMLR, May
2019. URL https://proceedings.mlr.press/v97/wu19e.
html. ISSN: 2640-3498.

https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html

	Acronyms
	Symbols
	List of Figures
	List of Tables
	1 Introduction
	2 Material model
	2.1 General continuum mechanics
	2.1.1 Balance equations

	2.2 Hyperelasticity
	2.2.1 Neo-Hook

	2.3 Thermally-induced deformation
	2.4 Shrinkage-warpage

	3 Data-Driven Methods
	3.1 Proper Orthogonal Decomposition
	3.2 Neural Networks
	3.2.1 Fully-connected / Vanilla Neural Networks
	3.2.2 Convolutional Neural Networks
	3.2.3 Graph Neural Networks
	3.2.4 ChebNet
	3.2.5 Graph attention

	3.3 Gaussian Process Regression

	4 POD-based model for shrinkage-warpage prediction
	4.1 Problem statement
	4.2 Non-intrusive POD-GPR model
	4.3 Dataset
	4.3.1 Parametrization of the input
	4.3.2 Boundary value problem

	4.4 Results
	4.5 Discussion and Outlook

	5 GNN-based shrinkage-warpage prediction
	5.1 Problem statement
	5.2 Data-driven model
	5.3 Dataset
	5.4 Results
	5.5 Discussion and Outlook

	6 Conclusion
	7 Acknowledgement
	A Appendix
	A.1 Hyperparameters

	Bibliography

