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1. Abstract 
In coordinate-targeted superresolution microscopy, aligning the light patterns responsible for 
switching molecules between the signalling and non-signalling states is often a tedious and 
painstaking process for the user. However, the process is necessary, as image resolution is 
largely determined by the quality of the intensity distributions -- especially the minima. To aid in 
this process, we propose a neural network able to detect aberrations in the “donut”  PSF optically 
and transmit a corrective phase pattern from the predicted Zernike polynomials to a SLM in the 
beam path. We expand upon earlier work in this area ​[1,2]​ by creating a synthetic data generation 
pipeline, as well adding novel features such as the ability to train on cross-sections of the PSFs. 

2. Introduction 
Light microscopy can be used in combination with fluorescent labelling to distinguish molecular 
species with a high signal-to-noise (SNR) ratio. This, in addition to its ease of sample 
preparation, renders light microscopy immensely relevant for the life sciences. For several 
centuries, diffraction of light was believed to fundamentally limit the resolution of far-field light 
microscopy, but this historical limit has been circumvented by various super-resolution 
microscopies ​[3]​. 
 
High light intensities and optical aberrations hinder the separation of fine features in a specimen, 
even though the resolution is theoretically unlimited ​[4–6]​. In STED microscopy, a light pattern 
of alternating maxima and minima drives fluorescent molecules from the signalling excited state 
to the dark ground state. However, a tightly confined volume around intensity minima is not 
affected by this process and those fluorescent molecules remain “switched ON” ​[7]​. The most 
widely used light patterns are created using a vortex phase mask, resulting in a 
"doughnut"-shaped focus to constrict the fluorescent volume in the image plane (called ​xy​-STED 
here). Simulations that have this pattern are exquisitely sensitive to aberrations ​[8,9]​. 
Specifically, aberrations "filling" the zero intensities of the STED patterns result in a decrease of 
signal, increase of state cycling and phototoxicity ​[10]​. Since the image formation is strongly 
dominated by the intensity distribution in the STED beams ​[11]​, it is sufficient to correct 
aberrations in these ​[12]​. The required corrections are determined using either sensor-less 
iterative adaptive optics attempting to optimize suitable image quality metrics ​[13]​, or 
sensor-based approaches directly measuring the aberrated wavefront ​[14]​. 
 
It is possible to identify and correct for many aberrations through meticulous alignment of the 
microscope system before the start of an experiment. Many modern STED microscopes are 
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equipped with a spatial light modulator (SLM) displaying phase masks to create the STED 
intensity patterns ​[15]​, where it is straightforward to add aberration correction to the vortex or 
top-hat patterns ​[16]​ and adjust the overlay of the excitation and depletion beams ​[17]​. 
Routine alignment is usually performed using non-bleaching scattering gold beads which directly 
visualize the STED intensities.  
 
Aberration-induced changes of the point spread functions (PSF) may be subtle or easy to mistake 
for other misalignments ​[9]​, thus requiring an experienced operator. Even when aberrations are 
parametrized into orthogonal modes using, e.g. Zernike polynomials, the large number of free 
parameters makes alignment cumbersome and time-consuming.Therefore, a computational 
auto-alignment routine replacing, or at least aiding, the operator would be highly beneficial and 
could be easily established also in non-expert labs or microscopy facilities. 
 
Increasingly, there is growing interest in incorporating machine learning techniques into 
(super-resolution) microscopy ​[18,19]​. In one example, it has been used to find optimal 
acquisition parameters for STED imaging ​[20]​. In another, the genetic algorithm has been 
proposed to correct both system- and sample-induced aberrations in STED, but requires tens of 
iterations to produce adequate compensations ​[21]​. Another growing area of application for 
machine learning has been post-acquisition image restoration ​[22,23]​, whose goal is to restore 
low quality or undersampled images.  
 
Our problem is fundamentally one of regression: estimating the underlying Zernike polynomials 
of a given image of an aberrated PSF.  As such, some statistical method of estimation guided by 
a limiting cost function is required. The Convolutional Neural Network (CNN), a deep learning 
architecture, has revolutionized the field of computer vision and provided state-of-the-art results 
for tasks in which training data can be found in sufficient quantities ​[24]​. The main advantage 
rendered by a CNN for this particular problem statement is that its convolutional structure 
leverages compositional (spatiotemporal) information in the input image. As the underlying 
phenomenon (aberrations as parameterized by Zernike modes) has a noticeable visual impact on 
the image, we hypothesize that a CNN will be able to “notice” the visual effects of coma, trefoil, 
etc. on the PSF and be able to quantify its aberrations precisely.  
 
Our pipeline renders the creation of synthetic training data trivial, thus inviting the use of this 
simple yet powerful deep learning tool which often requires training data in the tens of thousands 
to be effective. We designed an automated, easy-to-use alignment suite for STED microscopy 
based on neural networks. All computationally intense operations are performed offline in order 
to ensure fast (on the order of seconds) online alignment of the microscope.  
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Training data were generated in-silico; the phase distribution in the back aperture of the objective 
lens was calculated by adding a vortex to a linear combination of Zernike polynomials (weighted 
randomly within a given range). The resulting aberrated STED PSF was calculated using vector 
diffraction ​[25]​. For alignment on scattering gold beads, a training data pair for the neural net 
[26]​ consisted of a vector containing the random weights of the Zernike polynomials, and the 
aberrated STED PSFs. During operation of the microscope, experimental PSFs were acquired 
using bead samples and the weights required for correction were determined by the trained 
model. The linear combination of Zernike polynomials was calculated and added onto the phase 
mask currently displayed on the SLM in the STED beampath.  

3. Simulation of Aberrated STED PSFs using Vector 
Diffraction Theory 
 
The use of high numerical aperture (NA) lenses in the microscopy process renders the traditional 
scalar diffraction assumptions too simplistic -- it is necessary to account for the polarization of 
light and consequently represent the electric field at some distance from the aperture as a vector. 
We therefore make use of so-called vector diffraction theory, as described in ​[25]​:  
 

 
 
Where  is a constant scalar,  is the input aperture function; in other words, the phase mask 

multiplied by an amplitude, which is constant in  for our use case. The vector  
represents the polarisation of the light.  The polarisation conversion matrix is given as: 

 

 
With this formula in mind, it is possible to calculate the focused PSF created by a given 
wavefront in the objective’s back aperture. We made use of code written to implement these 
calculations in order to create synthetic data for the training of our machine learning models. 
Two kinds of focused PSFs were simulated: Emission PSFs and STED PSFs. 
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3.1. STED PSF 
Fundamental to the process of simulating our data is the idea that aberrations can be 
parametrized by any set of orthogonal polynomials, but it is standard in the optics community to 
parametrize aberrations by a set of such orthogonal polynomials called Zernike polynomials 
[6,27]​. By changing the scalar multiplier of each polynomial term, we are able to simulate a 
different “mix” of aberrations, from coma to spherical to trefoil, etc. We use these weights of the 
Zernike modes to characterize the input image, and it is the predictions of these weights that are 
the output of the model.  
 
The full process for generating a synthetic data point is to (1) randomly generate a sequence of 
numbers, taken either from a uniform or a random distribution from a range determined to match 
a realistic setting, (2) use those numbers to generate a phase mask of Zernike modes. This is 
described ​[27]​ analytically as: 
 

  
 
Where  is an even-numbered Zernike mode,  is an odd-numbered Zernike mode, and 

 is the radial polynomial. Typically, we simulate phase masks of the 3rd-15th Zernike modes. 
It is important to note that the 0th-2nd Zernike modes are not considered, as the 0th mode is 
Piston, which is a constant offset with no effect on the PSF, and the 1st and 2nd modes are Tip 
and Tilt, respectively, which merely translate the PSF and do not affect its shape [9]. We also 
treat the 5th mode, Defocus, rather uniquely, as detailed in Section 7.  
 
Step (3) is that the phase mask of the aberrations is added to the vortex beam phase mask (the 
phase mask for the ideal PSF) and finally (4) the combined phase mask is run through the vector 
diffraction code, which integrates it and evaluates the integral at a given distance from the lens. 
The integration process depends on many real world parameters from the microscope itself that 
are read from a python dictionary that is stored in a text file and read. To replicate our procedure 
with a different microscope system or any variation in back aperture size, wavelength, laser 
power, polarization of incoming light, pulse length, etc. those would need to be modified before 
creating synthetic data. 
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Figure 1: (a) ​the ideal PSF, three ortho-sections seen. ​(b) ​aberrated STED PSF with a Zernike 
weight label of ​[-0.119, 0.156, -0.107, 0.152, 0.209, -0.3, -0.085, -0.156, 0.115, -0.02, 0.095] 

 
The PSF is a fully 3-dimensional object, but for convenience we tend to observe it through three 
“ortho-sections”, which are essentially cross-sections of the full 3D volume at the respective 
center of each axis (see Fig. 1). ​[2]​ uses only the xy ortho-section in their model, whereas we use 
all three to better characterize the aberrations, similarly to the model in ​[28]​ for flower 
classification with multiple different views of the input. It would perhaps be possible to 
incorporate more of the cross-sections, eventually analyzing the whole volume of the PSF, 
although it remains to be seen whether this addition would provide relevant data to arrive at a 
higher accuracy model or if it would merely slow down the training without adding particularly 
unique information. It may also be that when you feed in a series of overlapping 
spatiotemporally continuous data that a time-series model, like a Long Short-Term Memory 
(LSTM) network ​[29]​, would be better suited to the problem statement. For now, we limit 
ourselves to the three ortho-sections, assuming that each renders unique information that assists 
the model in converging.  
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Figure 2: (a) ​a phase mask with no offset and its corresponding (aberrated) PSF​ (b) ​a phase 

mask shifted by the vector ​[-0.117, 0.427] ​and its corresponding PSF. The difference in result 
despite the small shift of the phase mask renders determination of the offset very relevant. 

 
As an additional note, the phase mask is sometimes offset by a vector similarly drawn from a 
uniform distribution. For an illustration of the way in which a lateral shift of the phase mask 
changes the resulting STED PSF, observe Fig. 2. Because this shift affects the appearance of the 
PSF, it is important that we are able to distinguish it from regular Zernike aberrations. When this 
step is incorporated, the numbers are generated at the same time as those for the Zernike weights. 
Then, during Step (3), the phase mask is added to the vortex beam with the randomly generated 
offset from the center of the two images.  

4. Convolutional Neural Networks 
CNNs build upon previous neural network structures such as multi-layer perceptron models and 
have provided extraordinary performance gains for image classification and object detection 
[24]​. This is because by maintaining the spatiotemporal continuity of the input (rather than 
flattening it), CNNs can leverage compositional relationships to abstract not only low level 
features like edges and gradients, but also higher level features like eyes or bicycles.  
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As a deep learning algorithm, CNNs transform an input into a list of distinctive and identifiable 
features that are present. The algorithm accomplishes this by passing the input through a series of 
filters -- this process of passing a filter over an input array is known as convolution ​[26]​. CNNs 
are based on the pattern of neurons in the human brain, in which individual neurons respond to 
external stimuli in a restricted region, known as a receptive field, and multiple of these receptive 
fields overlap to cover the entire visual field. Replicating this mathematically, we represent some 
input, usually an image or a vectorization of text, as an array of numbers and multiply some 
subset of this array by a filter array, then slide the filter array over the input like a sliding 
window, and in this manner the most important features of the image are abstracted and used to 
characterize the image.  
 

4.1. Components of CNN 
4.1.1. Convolutional filter 

A convolutional filter or convolution kernel is simply an array of values which are multiplied 
and summed over some subset of an input. The result of this is the extraction of distinguishing 
features from the input. Conventionally, the first convolutional layer is thought to extract low 
level features like edges or gradients ​[24]​, and every subsequent convolutional layer extracts 
higher level features (these may be more complex “objects” like eyes or dogs). After the filter is 
convolved with the first region of the input, it is moved like a “sliding window” at some stride 
until the entire input has been processed with overlapping fields. Sometimes the input is padded 
so that the convolved feature is not a reduced dimensionality compared to the input. See Fig. 3 
for an illustration of the convolutional process. 
 

            Image          ​3x3 Kernel Feature 

9 

https://paperpile.com/c/UjyjEG/oiGy
https://paperpile.com/c/UjyjEG/9cOy


   
Figure 3:​ ​(a)​ Illustration of an image as a 5x5 array of integer pixel values, a 3x3 convolutional 
kernel with which to convolve the image, and the resulting 3x3 convolved feature. ​(b)​ shows the 
sliding window approach to convolution, the kernel convolves a subset of the pixel values before 
sliding a step to an overlapping region. This is what allows a CNN to take advantage of 
compositional information in the image. ​(c)​ shows the process of building up the values of a 
feature. Each element is the sum of the matrix multiplication applied to the pixel subset 
highlighted in (b). Example extracted from ​[30]​. 
 

4.1.2. Activation function 
An activation function makes it possible for neural networks to represent complicated data by 
adding nonlinearities to the computational process ​[30]​. Without introducing any nonlinearities, 
passing information through a neural net would just be a series of linear combinations -- and 
linear combinations can always be represented by an equivalent, single combination. This would 
render a model unable to represent any non-linear relationship between input and output. The 
most commonly used activation function for CNNs is called the Rectified Linear Unit (ReLU), 
defined as: 
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Figure 4: ​plot of the Rectified Linear Unit (ReLU) function 

 
An activation function is typically applied to every convolutional kernel in a network with rare 
exceptions. It is typically not applied to ​fully connected layers​ ​[30,31]​. 

4.1.3. Dropout 
Dropout ​[32]​ is essentially a regularization technique: at specific points between layers, a 
percentage of connections between neurons are simply dropped. Sometimes users will choose to 
drop as much as 50% of the connections between neurons. This is done to prevent large neural 
network models from overfitting and forming irrelevant connections in the data. Following 
(Zhang et al. 2019)​, we apply a few dropout layers to our models, ranging between 10 and 20 
percent. 

4.1.4. Fully Connected Layer 
The ultimate, or sometimes penultimate, step in the CNN's architecture definition is the fully 
connected (fc) layer. After all of the feature maps have been generated by the convolutional 
kernel, they are flattened to one dimension and passed to an fc layer. If the problem statement 
requires a classification algorithm, the fc layer will be activated by a softmax function such that 
the most likely class of the input is the output of the model. Our project is one of multiple 
regression, so rather than the class of the input; we want the model to predict the weights of the 
Zernike modes themselves. To do this, we pass the flattened feature maps through several fully 
connected layers with no activation function, paring the dimensionality down until the final layer 
is a single vector which corresponds to the Zernike mode weights we are trying to predict.  
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5. Model Design 
5.1. Deep Learning Framework 

Many programmers would like to avoid writing all backend code for dropout layers, activation 
functions, etc. and instead opt to use a deep learning framework to provide built-in functions to 
vastly decrease the time to get a model up and running. Some of the most popular such 
frameworks are: Tensorflow, PyTorch, Caffe, and Theano. We choose to use PyTorch ​[33]​ as the 
deep learning framework for its ease of use and particularly its default eager execution mode. 
PyTorch is qualitatively the most “pythonic” of the available frameworks and therefore has the 
lowest learning curve for prior python users. Tensorflow, the other main framework of interest, 
does not use eager execution mode but rather defines types statically, which makes the 
underlying data structure more opaque to the user and thus harder to debug. However, 
Tensorflow includes useful visualization features natively such as Tensorboard ​[34]​, a dashboard 
to visualize input data, batching, loss curve during training, etc (See Sec 5.3-5.5). Although less 
elegant than native use, it is possible to use the Tensorboard visualization tools with PyTorch, 
and we choose to do so to monitor the training process. 

5.2. List of Model Architectures 
The following is an exhaustive list of the models used for the project and their unique features. 
Many are largely similar with a minor but significant change. Where reasonable to do so, 
redundancies have been redacted from the report with ellipses and only changed lines are listed 
(made evident by the line number). 

5.2.1. Net12 
The following model definition was the first model that was created during the course of the 
project and was the prototype for all subsequent models. The architecture makes use of all the 
features of a typical CNN: convolutional layers, fully connected layers, a ReLU activation 
function, maximum pooling, and drop out. The number of layers and percentages of dropouts are 
recreated from ​[2]​. The output vector has a dimension of 12 -- this accounts for the weights of 
the 3rd-15th Zernike modes. 
 

1​    import torch 

2​    import torch.nn as nn 

3​    import torch.nn.functional as F 

4 

5 

6​    class​ Net12(nn.Module): 
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7        ​""" 

8​        A simple CNN based on AlexNet 

9​        Architecture followed from Zhang et al., 

10​       "Machine learning based adaptive optics for doughnut-shaped beam" (2019) 

11​       """ 

12        ​def​ __init__(self): 

13         super(Net, ​self​).__init__() 

14         ​self​.conv1 = nn.Conv2d(​1​, ​32​, kernel_size=​5​, stride=​1​, padding=​2​) 

15         ​self​.conv2 = nn.Conv2d(​32​, ​32​, kernel_size=​5​, stride=​1​, padding=​2​) 

16         ​self​.conv3 = nn.Conv2d(​32​, ​64​, kernel_size=​3​, stride=​1​, padding=​1​) 

17         ​self​.conv4 = nn.Conv2d(​64​, ​64​, kernel_size=​3​, stride=​1​, padding=​1​) 

18         ​self​.conv5 = nn.Conv2d(​64​, ​64​, kernel_size=​3​, stride=​1​, padding=​1​) 

19  

20         ​self​.fc1 = nn.Linear(​8​ * ​8​ * ​64​, ​512​)  ​# 64 channels, final img size 8x8 

21         ​self​.fc2 = nn.Linear(​512​, ​512​) 

22  

23         ​self​.fc3 = nn.Linear(​512​, ​12​) 

24 

25     ​def​ forward(self, x): 

26  

27         x = x.float() 

28         x = F.dropout(F.max_pool2d(F.relu(​self​.conv1(x)), (​2​, ​2​)), p=​0.1​) 

29         x = F.dropout(F.max_pool2d(F.relu(​self​.conv2(x)), (​2​, ​2​)), p=​0.1​) 

30         x = F.relu(​self​.conv3(x)) 

31         x = F.relu(​self​.conv4(x)) 

32  

33         x = F.max_pool2d(F.relu(​self​.conv5(x)), (​2​, ​2​)) 

34         ​# flatten 

35         x = x.reshape(x.size(​0​), -​1​) 

36         x = F.dropout(F.relu(​self​.fc1(x)), p=​0.2​) 

37         x = F.dropout(F.relu(​self​.fc2(x)), p=​0.2​) 

38         x = ​self​.fc3(x) 

39         ​return​ x 

5.2.2. MultiNet12 
The modification of this model from the previous is that we consider the xz and yz ortho-sections 
as well as the xy. Here, we simply stack the three ortho-sections before passing it as an input to 
the model, treating each ortho-section as a different color channel.  
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14        ​self​.conv1 = nn.Conv2d(​3​, ​32​, ​5​, padding=​2​) 

... 

23    ​self​.fc3 = nn.Linear(​512​, ​12​) 

 

5.2.3. MultiOffsetNet14 
This model is created to train for the 3rd-15th Zernike modes (including Defocus) and offset. In 
practice, none of the models which included defocus performed very well in real world testing, 
so this model has been deprecated.  
 
 

14     ​self​.conv1 = nn.Conv2d(​3​, ​32​, ​5​, padding=​2​) 

... 

23     ​self​.fc3 = nn.Linear(​512​, ​14​) 
 

5.2.4. Net11 
The small but highly significant change to this model compared to the vanilla Net12 is that the 
Zernike mode describing Defocus (the 5th) has been removed from the training dataset and 
therefore is also removed from the output vector, so the output reduces to an 11-dimensional 
vector rather than a 12. This shift in process is detailed more in ​Section 8b​. All subsequent 
models likewise drop this 5th Zernike mode, as we instead correct for it in situ rather than with 
the model. 
 

14    ​self​.conv1 = nn.Conv2d(​1​, ​32​, ​5​, padding=​2​) 

... 

23    ​self​.fc3 = nn.Linear(​512​, ​11​) 

5.2.5. OffsetNet13 
This model predicts the offset and Zernike mode weights of an aberrated phase mask, so the 
output vector has a dimension of 13: 11 Zernike modes and 2 offset terms.  
 

14    ​self​.conv1 = nn.Conv2d(​1​, ​32​, kernel_size=​5​, stride=​1​, padding=​2​) 

... 

23​    self​.fc3 = nn.Linear(​512​, ​13​) 

14 



5.2.6. MultiNet11 
This model also has an 11-dimensional output vector, but treats the ortho-sections as the 
different color channels of a single input, similar to MultiNet12. 
 

14    ​self​.conv1 = nn.Conv2d(​3​, ​32​, ​5​, padding=​2​) 

... 

23    ​self​.fc3 = nn.Linear(​512​, ​11​) 
 

5.2.7. MultiOffsetNet13 
This model outputs a 13-dimensional vector: 11 Zernike modes and 2 offset terms, with the 
additional feature that it operates on all three ortho-sections.  
 
14    ​self​.conv1 = nn.Conv2d(​3​, ​32​, ​5​, padding=​2​) 

... 

23    ​self​.fc3 = nn.Linear(​512​, ​13​) 

5.2.8. OffsetNet2 
This model is designed to just predict the offset of the phase mask; accordingly, it has a 
2-dimensional output vector. It is trained on a smaller training dataset (10% the size of the 
typical dataset), in which the phase pattern for an ideal doughnut is shifted from center by some 
offset and no Zernike modes are present. We used this model to verify that the offset was able to 
be correctly predicted and that there was no interference of the offset prediction for the Zernike 
prediction.  
 

14    ​self​.conv1 = nn.Conv2d(​1​, ​32​, kernel_size=​5​, stride=​1​, padding=​2​) 

... 

23 ​self​.fc3 = nn.Linear(​512​, ​2​) 

5.2.9. MultiNetCat11 
Following ​[28]​, we also create a model that treats each of the three ortho-sections as separate 
inputs rather than as three color channels of the same image. The ​xy​-, ​xz​-, and ​yz​- ortho-sections 
are convolved with separate filters and at some point, concatenated prior to the fully connected 
(predictive) layer. To date, no visible accuracy gains during have been noticed using this model 
compared to the MultiNet11, but rigorous, quantitative comparison has not yet been conducted.  
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11    ​self​.conv1 = nn.Conv2d(​1​, ​32​, ​5​, padding=​2​) 

... 

25    ​def​ forward(self, img): 

26  

27        x = img[:, ​0​].unsqueeze(​1​) ​# adding dim of 0 after batch dim 

28        y = img[:, ​1​].unsqueeze(​1​) 

29        z = img[:, ​2​].unsqueeze(​1​) 

30 

31        x = x.float() 

32        x = F.dropout(F.max_pool2d(F.relu(​self​.conv1(x)), (​2​, ​2​)), p=​0.1​) 

33        x = F.dropout(F.max_pool2d(F.relu(​self​.conv2(x)), (​2​, ​2​)), p=​0.1​) 

34  

35        y = y.float() 

36        y = F.dropout(F.max_pool2d(F.relu(​self​.conv1(y)), (​2​, ​2​)), p=​0.1​) 

37        y = F.dropout(F.max_pool2d(F.relu(​self​.conv2(y)), (​2​, ​2​)), p=​0.1​) 

38 

39 

40        z = z.float() 

41        z = F.dropout(F.max_pool2d(F.relu(​self​.conv1(z)), (​2​, ​2​)), p=​0.1​) 

42        z = F.dropout(F.max_pool2d(F.relu(​self​.conv2(z)), (​2​, ​2​)), p=​0.1​) 

43    ​# concatenating the ortho-sections 

44        a = torch.cat((x, y, z), dim=​1​) 

45        a = F.relu(​self​.conv3(a)) 

46        a = F.relu(​self​.conv4(a)) 

47 

48        a = F.max_pool2d(F.relu(​self​.conv5(a)), (​2​, ​2​)) 

49        ​# flatten 

50        a = a.reshape(a.size(​0​), -​1​) 

51  

52        a = F.dropout(F.relu(​self​.fc1(a)), p=​0.2​) 

53        a = F.dropout(F.relu(​self​.fc2(a)), p=​0.2​) 

54        a = ​self​.fc3(a) 

55        ​return​ a 

5.3. Training parameters 
5.3.1. Loss fn 

While not technically considered a training parameter, the loss function is perhaps the most 
important choice to be made about the training process, as it is the determination of how the 
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model calculates its deviation from the ground truth label ​[30]​. The cost function that we use is 
the mean squared error (MSE) between the ground truth Zernike mode weight labels and the 
vector that is the output of the model. This operation is done at the batch-level, and it is 
important to note that when calculating the loss, we first average along the 0th dimension before 
we sum across the vector. This way, minimising the error for each coefficient is privileged over 
minimising the overall loss of the prediction vector.  
 
During the training loop, the inputs are passed through the model (the series of matrices with 
learned weights and non-linear activation functions defined in the network architecture), then the 
MSE of the predicted labels to the ground truth is calculated. The parameter gradients are zeroed, 
then the loss is propagated backwards.  
 

1​    # Run the forward pass 

2    outputs = model(images) ​# e.g. [32, 12] = [batch_size, output_dim] 

3    loss = criterion(outputs, labels) ​# MSE 

4    ​# sum of averages for each coeff position 

5    loss = torch.sum(torch.mean(loss, dim=​0​)) 

6  

7    ​# zero the parameter gradients 

8    optimizer.zero_grad() 

9    ​# backward + optimize only in train 

10   loss.backward() 

11   optimizer.step() 

5.3.2. Learning rate 
Learning rate is considered a key training parameter. The learning rate determines how quickly 
the model adapts to the problem at hand. Sometimes a scheduler is used to monitor decreases in 
the learning rate over the course of the training (for example, after 3 epochs the learning rate 
decreases by a factor of 10). Presumably, this aids in zeroing in on a local minimum for the loss 
[30]​. We use a learning rate of 1e-3, which is within the recommended range for the optimizer 
we are using. There is no single ideal learning rate for every problem; rather, there is an ideal 
operating range for every optimizer ​[35]​.  

5.3.3. Optimizer 
The general principle of training a machine learning model is iteratively updating randomly 
initialized parameters to minimize a given cost function. When a model performs this update 
after seeing just one sample, it is known as Stochastic Gradient Descent (SGD). SGD is 
potentially the method of training that converges the fastest by updating the model parameters 
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more frequently, but it consequently has a much higher variance in model parameters and may 
overshoot the minimum loss value if the learning rate is not incrementally reduced during 
training ​[36]​. If instead the model weights are updated only after an entire batch (a subset of the 
data), it is known as Mini-Batch Gradient Descent ​[30]​.. Several other optimization techniques 
have been proposed (AdaGrad, RMSprop, Adam, AdaDelta, Momentum, Nesterov Accelerated 
Gradient) and is an active field of research. Different optimization algorithms all offer trade-offs 
in terms of robustness, computational power, reliability, and time to converge. For image 
classification and/or regression, the Adam, or Adaptive Moment Estimation ​[37]​, optimization 
method seems to be the industry standard ​[38,39]​, and we use this optimizer for all of our 
trainings.  

5.3.4. Epochs 
Epochs are, quite simply, the number of times that the training loop iterates through the entire 
dataset. The balance to find here is to expose the model to train to be robust while not allowing it 
to get too used to the data it has already seen. Our default was 15 epochs as, from empirical 
trials, the training curve seems to level out around that time.  

5.3.5. Dataset class 
To organize and store the synthetic data while it is being manipulated in python, we write a 
custom dataset as a subclass of PyTorch data class. This dataset is created from an h5py ​[40]​ file 
that was used as a repository for the synthetic data. It returns the data marked for train, 
validation, and test sets depending on a given ‘mode’ argument and has the ability to add 
transformations such as normalization and added noise to the sample. By adding these transforms 
to the __getitem__ function, it ensures they will happen when the dataset is iterated over, rather 
than when the constructor call is given. See below our class definition for the PSFDataset class.  
 

1 import h5py 

2 import numpy as np 

3 from torch.utils import data 

4 import torch 

5 from torchvision import transforms 

6  

7 class​ PSFDataset(data.Dataset): 

8   ​""" Point Spread Function h5py Dataset. """ 

9 

10   ​def​ __init__(self, hdf5_path, mode, transform=​None​): 

11       ​""" 

12       Args: 

18 

https://paperpile.com/c/UjyjEG/bFff
https://paperpile.com/c/UjyjEG/JLyW
https://paperpile.com/c/UjyjEG/akJ1
https://paperpile.com/c/UjyjEG/NQgh+uVSa
https://paperpile.com/c/UjyjEG/88NK


13           hdf5_path (str): Path to the hdf5 file 

14       """ 

15       ​# Creates an h5py object from the given path 

16       ​self​.file = h5py.File(hdf5_path, ​"r"​) 

17       ​self​.transform = transform 

 

18       ​# if training, loads the training and validation images and labels 

19       ​if​ mode ==​'train'​: 

20           ​self​.images = ​self​.file[​'train_img'​] 

21           ​self​.labels = ​self​.file[​'train_labels'​] 

22       ​elif​ mode == ​'val'​: 

23           ​self​.images = ​self​.file[​'val_img'​] 

24           ​self​.labels = ​self​.file[​'val_labels'​] 

25       ​# if testing, loads the test images and labels 

26       ​elif​ mode == ​'test'​: 

27           ​self​.images = ​self​.file[​'test_img'​] 

28           ​self​.labels = ​self​.file[​'test_labels'​]  

29  

30   def​ __len__(self): 

31       ​return​ ​self​.images.shape[​0​] 

32  

33   ​def​ __getitem__(self, idx): 

34       sample = {​'image'​: ​self​.images[idx], ​'label'​: ​self​.labels[idx]} 

35  

36       ​if​ ​self​.transform: 

37           sample = ​self​.transform(sample) 

38 

39       ​return​ sample 

 

5.3.6. Batch Size, Data Loaders, and Batch Normalization 
As only a subset of the whole training dataset is used at one time, PyTorch offers built-in classes 
called Dataloaders which only load in the examples contained in the relevant batch. We make 
use of these to minimize the amount of data needed to be stored in memory during the training 
loop. 
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At this stage, the data transformations described in the ​Batch Normalization​ and ​Adding Noise 
During Loading​ sections are applied to each data point as it is loaded into the training loop by the 
data loader.  
 
Batch normalization is a method that is proven to help models converge to a solution more 
quickly without suffering a loss in accuracy ​[41]​. The changes in the distribution of internal 
nodes of a network are known as internal covariate shift, and eliminating this shift leads to faster 
training. The motivating idea is that by removing irrelevant variations in the data, there is less 
need for careful parameter initialization and small learning rates. This process is also considered 
a form of regularization similar to dropout and may sometimes take the place of dropout in a 
network ​[30]​. To implement this, we first iterate through the entire training set and calculate the 
mean and standard deviation, then as each batch is loaded, each training example in the batch is 
normalized, such that the mean of each training example is ~1 and the standard deviation of each 
training example is ~0. Below is our implementation: 
 

class​ Normalize(object): 

   ​"""Given a mean and std with constructor call, it normalizes the input. 

   Mean and std must be calculated first.""" 

   ​def​ __init__(self, mean, std): 

       ​self​.mean = mean 

       ​self​.std = std 

 

   ​def​ __call__(self, sample): 

       image, label = sample[​'image'​], sample[​'label'​] 

  

       ​for​ channel ​in​ range(image.size(​0​)): 

           image[channel] = (image[channel] - ​self​.mean[channel])/ ​self​.std[channel] 

 

       ​return​ {​'image'​: image, 

               ​'label'​: label} 

 

5.3.7. Adding Noise During Loading 
Adding noise to data should theoretically increase the robustness of the model ​[30]​. However, it 
is not necessary to add noise to the training data itself, as it can be added when the batch is 
loaded into the training loop. We add two types of noise, background noise and Poisson noise, to 
the synthetic images to help them more realistically simulate real world data. Below, our 
implementation of the add_noise function can be seen. The default arguments of background 
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noise and Poisson amount were determined experimentally by the Danzl group member who 
contributed the function. We modified those slightly to better match visually the real world data 
we obtained from the microscope, but the amounts have not yet been subjected to rigorous 
testing to determine optimal amounts. 
 
def​ add_noise(image, bgnoise_amount=​1​, poiss_amount=​350​): 

   ​"""A fn to add background and poisson noise to an image, contributed by 

   Julia Lyudchik, PhD student in the Danzl Group""" 

   _, x0,y0 = image.shape 

   ​#Background noise 

   Nb = np.random.normal(​0​, ​0.001​, [x0,y0]) 

   final_Nb = image + Nb*bgnoise_amount 

   final_Nb = (final_Nb-np.amin(final_Nb))/(np.amax(final_Nb) - np.amin(final_Nb)) 

   ​#Poisson noise 

   final_poiss = np.random.poisson(final_Nb / np.amax(final_Nb) * poiss_amount) / 

poiss_amount * np.amax(final_Nb) 

   ​return​ final_poiss 

5.3.8. Saving the Model 
At the end of the training loop, the model “checkpoints” are saved. In reality, what is saved are 
the learned weights of the convolutional filters. For the ability to continue the training of one 
model using the weights of another model, as described in ​6.1.10​, it is also necessary to save the 
optimizer state. 

5.3.9. Warm Start 
Rather than starting with random initialization of weights for a model, it is at times advantageous 
to begin with the weights of a different trained model ​[30]​. This is known as a “warm start” and 
can be used for transfer learning techniques, wherein a model is trained on one task and 
evaluated on a different one. While we are not using transfer learning, it seemed useful to have a 
way to continue the training of one model if the standard number of epochs proved to not be long 
enough. Therefore, we added an option in the code the resume training from a previous model’s 
final layer weights. 

5.4. Training curve 
We make use of Tensorboard to visualize the training process; specifically, we monitor the 
model’s training curve. This curve is one of the most useful tools to qualitatively diagnose 
problems that occur during training. At each step of the training loop, the batch loss is calculated 
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and logged to a visualization graph. Presumably, if the model is “learning” this loss will show an 
exponential decrease as the training continues.  

5.5. Validation curve 
During the creation of the dataset, 20,000 individual data points were split into three portions in a 
80/10/10 split: 80% of the data was marked to be used during training, 10% was marked to be 
used during testing (for the trained model), and 10% is marked for validation, which is a second 
loop that happens intermittently during the training process. After the model parameters have 
been updated and the optimizer has been incremented, the model enters eval mode and is 
evaluated on the validation dataset. This step is used to indicate a model’s generalisability or its 
lack thereof ​[30]​. If a model has a regular (exponential decay) training curve but a horrible 
validation curve, the likelihood is high that the model has simply memorized the training data 
rather than actually learning to extract important features from the input ​[30]​. The ideal situation 
is exponential decay for both the training and validation curves. Often the lowest achieved loss 
for the validation data prediction is higher than for the training data, as models typically perform 
slightly less well on unseen data.  

6. Evaluation on Synthetic Data 
To provide a quick and simple test for the trained model, we test on that segment of the synthetic 
data set aside for testing. Each test sample is passed through the model and outputs a vector 
containing a numerical value for each Zernike mode coefficient and/or offset that it was trained 
to predict. We can describe the accuracy of this prediction in a few quantitative ways. One of 
these ways is by a simple mean squared error calculation between the prediction vector and the 
ground truth vector, similarly to what was done during training, just without the updating of the 
parameters based on this loss. A low mean squared error would imply a good prediction. 
 
The other way we found it useful to evaluate the model was by using the same synthetic pipeline 
to visualize the output of the model. For example, using the Net11 model described above, the 
output of the model is an 11-dimensional vector where each number in the vector supposedly 
corresponds to the weight of a Zernike mode of aberration present in the given input image. We 
take the numbers output by the model and generate a phase mask with them, then add it onto the 
phase mask of an ideal PSF and use the vector diffraction code to simulate the overall resulting 
PSF. If the prediction is good, this reconstruction should be very similar to the input image. We 
can know this computationally by calculating the Pearson correlation coefficient ​[42]​ between 
the two images, as: 
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Where is the correlation coefficient between two samples, X and Y,  is theρXY ov(X , Y )c   
covariance of X and Y, and is the product of the standard deviations of X and Y.σσX Y  

7. In-Situ Data Collection 
Although accuracy on synthetically created test data is a good sanity check to have, the most 
useful evaluation comes from the model’s performance on data collected from the microscope in 
a real imaging session. Establishing this procedure was at times tedious, as it required a good 
understanding of the existing code provided by the microscope’s developer as well as the 
hardware of the microscope itself.  
 
The first step of the data collection is to mount a gold bead sample immersed in oil onto the 
microscope system, manually focus on one bead, and try to make sure it is relatively centered 
within the field of view. The process of actually correcting for aberrations present in the image 
happens through the Spatial Light Modulator (SLM) in the beam path. All gratings, offsets, and 
phase masks are loaded onto the SLM, which shifts the incoming light beam appropriately. The 
result is monitored electronically on the viewing station. The vector diffraction code simulates 
this transformation from phase mask to focused PSF that the imaging optics completes in the real 
microscope setup.  

7.1. Handling Tip/Tilt 
The second step of data collection is correcting for the aberration we have not trained the models 
to predict. The first two Zernike modes were not included in any of the trained models. This is 
because these modes, known as Tip and Tilt or X-Tilt and Y-Tilt, only translate the PSF along 
the X-/Y- axis, but do not affect its shape.  
 
When imaging, we calculate the center of mass of the image and find its offset from the 
pixel-wise center of the image (for example, [32.5, 32.5] for a 64 x 64 pixel image). The offset 
from the center of mass is then scaled by other system parameters (namely, wavelength, back 
aperture, and focal length) and used to create a phase mask which is then loaded onto the SLM. 
Accordingly, the image shifts to be practically in the center of the field of view (there are some 
rounding errors present).  
 
Theoretically, each Zernike mode is orthogonal to every other mode, meaning that they do not 
interfere with one another and can be predicted independently. This may not always be true in 
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practice, and we found that without this centering step, the performance of any model decreased 
significantly. 

7.2. Handling Defocus 
Defocus, the 5th Zernike mode also does not affect the shape of the 3D PSF, but translates it 
along the optical axis. Previous work using CNNs to predict Zernike modes has only been 
applied to the ​xy​ ortho-section, where the apparent PSF changes, but the sign of defocus is 
visually indeterminate. ​[1]​, to counteract this problem, applies the model predictions twice -- 
once with positive defocus and once with negative defocus -- and chooses the best option by 
comparing the resulting intensity of the image. By virtue of the fact that we incorporate all three 
ortho-sections of the gold bead (the ​xy​ view, the  ​yz​, and the ​xz​ view), we are able to analytically 
calculate defocus external to the model and center the measured PSF also along the optical axis. 
Subsequently, we are able to leave it out of the training.  
 
The process of calculating defocus is similar to calculating tip or tilt; it is some scaling of the 
offset of the center of mass of a PSF ortho-section. This time, the scaled offset calculation is 
performed on both the ​xz ​and ​yz​ ortho-sections, and the result is averaged. Like before, once the 
coefficient of defocus has been determined, a phase mask is generated and passed to the SLM. 

7.3. Quantitative Validation 
To obtain the amount of data on the scale necessary to prove reproducibility, we must automate 
the data collection process. To do this, we write a loop that first zeros the SLM, acquires an 
image from the software, fits the center of mass and then centers the stage via hardware controls. 
This is to counteract the likelihood of a bead “walking off” the field of view after a period of 
time imaging it. After that, the regular process of correcting tip/tilt, correcting defocus, and then 
loading the phase mask generated by the model’s prediction onto the SLM. This process, while it 
eventually is ended by the bead walking off, has allowed us to obtain a few hundred data points 
for several of the trained models. 

8. Discussion 
The project is in an on-going state and therefore a full analysis of our results is not provided. 
However, to briefly summarize, this project is the creation and implementation of an 
auto-alignment system for coordinate-targeted super-resolution microscope techniques to replace 
a tedious human alignment process. The determination of the aberrations present in an acquired 
image is done through a CNN, which leverages compositional information in the image to 
predict the weights of Zernike modes. The model is trained for this kind of prediction on a large 
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synthetic dataset generated by vector diffraction theory that simulates real-world acquired 
images.  
 
We focus most of our energy on the xy-STED PSF use case in this report, but the main 
advantage of our approach is its transferability; once implemented, all that is required to generate 
data, train, and evaluate a model for a different use case is to change out the specific data 
generation function. For example, our pipeline would work with little or no modification for 
z-STED or for fluorescence (also known as effective PSF). Using this pipeline for the effective 
PSF would require slight modification because, rather than imaging one effective PSF at a time, 
many are present within the field of view and therefore would require some kind of averaging or 
segmentation script. Many other patterns would be possible as well; e.g. the overlay of xy/z 
STED or coherent hybrid STED. 
 
One of the most interesting further use cases to us is the Fluorescence PSF, as in practice, our 
group acquires better images when using the Fluorescence PSF to align rather than the STED 
PSF. The process for generating a synthetic effective PSF, alternatively called a fluorescence 
PSF, is quite similar to the above except in that rather than the phase mask of the aberrations 
being added onto the phase mask describing the ideal donut shape, it is added onto the phase 
mask of a Gaussian beam. With our pipeline in place, this is trivial to do. In fact, it would be 
trivial to simulate any desired pattern of minima and maxima that could be used in STED 
microscopy. 
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