

Deep Adaptive Optics:
A Machine Learning Method for Aberration

Correction in Coordinate-Targeted
Super-Resolution Microscopy

Work by:
Hope McGovern, Sc.B
Wiebke Jahr, PhD
Johann Danzl, PhD, MD

Authored by:
Hope McGovern, Sc.B

Table of Contents

Abstract 2

Introduction 3

Simulation of Aberrated STED PSFs using Vector Diffraction Theory 5
STED PSF 6

Convolutional Neural Networks 9
Components of CNN 9

Convolutional filter 9
Activation function 11
Dropout 11
Fully Connected Layer 11

Model Design 12
Deep Learning Framework 12
List of Model Architectures 12

Net12 12
MultiNet12 14
MultiOffsetNet14 14
Net11 14
OffsetNet13 15
MultiNet11 15
MultiOffsetNet13 15
OffsetNet2 15
MultiNetCat11 16

Training parameters 17
Loss fn 17
Learning rate 17
Optimizer 18
Epochs 18
Dataset class 18
Batch Size, Data Loaders, and Batch Normalization 20
Adding Noise During Loading 21
Saving the Model 21
Warm Start 21

1

Table of Contents (Cont.)

Training curve 22
Validation curve 22

Evaluation on Synthetic Data 22

In-Situ Data Collection 23
Handling Tip/Tilt 23
Handling Defocus 24
Quantitative Validation 24

Discussion 25

Acknowledgements 26

References 26

2

1. Abstract
In coordinate-targeted superresolution microscopy, aligning the light patterns responsible for
switching molecules between the signalling and non-signalling states is often a tedious and
painstaking process for the user. However, the process is necessary, as image resolution is
largely determined by the quality of the intensity distributions -- especially the minima. To aid in
this process, we propose a neural network able to detect aberrations in the “donut” PSF optically
and transmit a corrective phase pattern from the predicted Zernike polynomials to a SLM in the
beam path. We expand upon earlier work in this area ​[1,2]​ by creating a synthetic data generation
pipeline, as well adding novel features such as the ability to train on cross-sections of the PSFs.

2. Introduction
Light microscopy can be used in combination with fluorescent labelling to distinguish molecular
species with a high signal-to-noise (SNR) ratio. This, in addition to its ease of sample
preparation, renders light microscopy immensely relevant for the life sciences. For several
centuries, diffraction of light was believed to fundamentally limit the resolution of far-field light
microscopy, but this historical limit has been circumvented by various super-resolution
microscopies ​[3]​.

High light intensities and optical aberrations hinder the separation of fine features in a specimen,
even though the resolution is theoretically unlimited ​[4–6]​. In STED microscopy, a light pattern
of alternating maxima and minima drives fluorescent molecules from the signalling excited state
to the dark ground state. However, a tightly confined volume around intensity minima is not
affected by this process and those fluorescent molecules remain “switched ON” ​[7]​. The most
widely used light patterns are created using a vortex phase mask, resulting in a
"doughnut"-shaped focus to constrict the fluorescent volume in the image plane (called ​xy​-STED
here). Simulations that have this pattern are exquisitely sensitive to aberrations ​[8,9]​.
Specifically, aberrations "filling" the zero intensities of the STED patterns result in a decrease of
signal, increase of state cycling and phototoxicity ​[10]​. Since the image formation is strongly
dominated by the intensity distribution in the STED beams ​[11]​, it is sufficient to correct
aberrations in these ​[12]​. The required corrections are determined using either sensor-less
iterative adaptive optics attempting to optimize suitable image quality metrics ​[13]​, or
sensor-based approaches directly measuring the aberrated wavefront ​[14]​.

It is possible to identify and correct for many aberrations through meticulous alignment of the
microscope system before the start of an experiment. Many modern STED microscopes are

3

https://paperpile.com/c/UjyjEG/onRQ+4hVK
https://paperpile.com/c/UjyjEG/UCEr
https://paperpile.com/c/UjyjEG/Z6Ne+0npK+3sju
https://paperpile.com/c/UjyjEG/9f5I
https://paperpile.com/c/UjyjEG/52xM+8JDV
https://paperpile.com/c/UjyjEG/SyV7
https://paperpile.com/c/UjyjEG/q7I8
https://paperpile.com/c/UjyjEG/FEOo
https://paperpile.com/c/UjyjEG/4VCn
https://paperpile.com/c/UjyjEG/m6TE

equipped with a spatial light modulator (SLM) displaying phase masks to create the STED
intensity patterns ​[15]​, where it is straightforward to add aberration correction to the vortex or
top-hat patterns ​[16]​ and adjust the overlay of the excitation and depletion beams ​[17]​.
Routine alignment is usually performed using non-bleaching scattering gold beads which directly
visualize the STED intensities.

Aberration-induced changes of the point spread functions (PSF) may be subtle or easy to mistake
for other misalignments ​[9]​, thus requiring an experienced operator. Even when aberrations are
parametrized into orthogonal modes using, e.g. Zernike polynomials, the large number of free
parameters makes alignment cumbersome and time-consuming.Therefore, a computational
auto-alignment routine replacing, or at least aiding, the operator would be highly beneficial and
could be easily established also in non-expert labs or microscopy facilities.

Increasingly, there is growing interest in incorporating machine learning techniques into
(super-resolution) microscopy ​[18,19]​. In one example, it has been used to find optimal
acquisition parameters for STED imaging ​[20]​. In another, the genetic algorithm has been
proposed to correct both system- and sample-induced aberrations in STED, but requires tens of
iterations to produce adequate compensations ​[21]​. Another growing area of application for
machine learning has been post-acquisition image restoration ​[22,23]​, whose goal is to restore
low quality or undersampled images.

Our problem is fundamentally one of regression: estimating the underlying Zernike polynomials
of a given image of an aberrated PSF. As such, some statistical method of estimation guided by
a limiting cost function is required. The Convolutional Neural Network (CNN), a deep learning
architecture, has revolutionized the field of computer vision and provided state-of-the-art results
for tasks in which training data can be found in sufficient quantities ​[24]​. The main advantage
rendered by a CNN for this particular problem statement is that its convolutional structure
leverages compositional (spatiotemporal) information in the input image. As the underlying
phenomenon (aberrations as parameterized by Zernike modes) has a noticeable visual impact on
the image, we hypothesize that a CNN will be able to “notice” the visual effects of coma, trefoil,
etc. on the PSF and be able to quantify its aberrations precisely.

Our pipeline renders the creation of synthetic training data trivial, thus inviting the use of this
simple yet powerful deep learning tool which often requires training data in the tens of thousands
to be effective. We designed an automated, easy-to-use alignment suite for STED microscopy
based on neural networks. All computationally intense operations are performed offline in order
to ensure fast (on the order of seconds) online alignment of the microscope.

4

https://paperpile.com/c/UjyjEG/8ekR
https://paperpile.com/c/UjyjEG/R9jU
https://paperpile.com/c/UjyjEG/JZ69
https://paperpile.com/c/UjyjEG/8JDV
https://paperpile.com/c/UjyjEG/A7b4+cfOE
https://paperpile.com/c/UjyjEG/EnNx
https://paperpile.com/c/UjyjEG/6gb8
https://paperpile.com/c/UjyjEG/XRFo+P8QG
https://paperpile.com/c/UjyjEG/9cOy

Training data were generated in-silico; the phase distribution in the back aperture of the objective
lens was calculated by adding a vortex to a linear combination of Zernike polynomials (weighted
randomly within a given range). The resulting aberrated STED PSF was calculated using vector
diffraction ​[25]​. For alignment on scattering gold beads, a training data pair for the neural net
[26]​ consisted of a vector containing the random weights of the Zernike polynomials, and the
aberrated STED PSFs. During operation of the microscope, experimental PSFs were acquired
using bead samples and the weights required for correction were determined by the trained
model. The linear combination of Zernike polynomials was calculated and added onto the phase
mask currently displayed on the SLM in the STED beampath.

3. Simulation of Aberrated STED PSFs using Vector
Diffraction Theory

The use of high numerical aperture (NA) lenses in the microscopy process renders the traditional
scalar diffraction assumptions too simplistic -- it is necessary to account for the polarization of
light and consequently represent the electric field at some distance from the aperture as a vector.
We therefore make use of so-called vector diffraction theory, as described in ​[25]​:

Where is a constant scalar, is the input aperture function; in other words, the phase mask

multiplied by an amplitude, which is constant in for our use case. The vector
represents the polarisation of the light. The polarisation conversion matrix is given as:

With this formula in mind, it is possible to calculate the focused PSF created by a given
wavefront in the objective’s back aperture. We made use of code written to implement these
calculations in order to create synthetic data for the training of our machine learning models.
Two kinds of focused PSFs were simulated: Emission PSFs and STED PSFs.

5

https://paperpile.com/c/UjyjEG/BNvf
https://paperpile.com/c/UjyjEG/oiGy
https://paperpile.com/c/UjyjEG/BNvf
https://www.codecogs.com/eqnedit.php?latex=%20E(r_2%2C%5Cphi_2%2C%20z_2)%20%3D%20iC%20%5Cint_%7B%5COmega%7D%5Cint%20%5Csqrt%7B%5Ccos%7B%5Ctheta%7D%7D%5Csin%7B%5Ctheta%7DA_1(%5Ctheta%2C%20%5Cphi)V(%5Ctheta%2C%20%5Cphi)%20%5Ccdot%20%5Cbegin%7Bbmatrix%7D%20P_x%20%5C%5C%20P_y%20%5C%5C%20P_z%20%5Cend%7Bbmatrix%7D%20e%5E%7Bikn(z_2%20%5Ccos%7B%5Ctheta%7D%20%2B%20r_2%5Csin%7B%5Ctheta%7D%20%5Ccos%7B(%5Cphi-%5Cphi_2)%7D)%7Dd%5Ctheta%20d%5Cphi#0
https://www.codecogs.com/eqnedit.php?latex=C#0
https://www.codecogs.com/eqnedit.php?latex=A_1#0
https://www.codecogs.com/eqnedit.php?latex=(%5Ctheta%2C%20%5Cphi)#0
https://www.codecogs.com/eqnedit.php?latex=%5Coverrightarrow%7BP%7D#0

3.1. STED PSF
Fundamental to the process of simulating our data is the idea that aberrations can be
parametrized by any set of orthogonal polynomials, but it is standard in the optics community to
parametrize aberrations by a set of such orthogonal polynomials called Zernike polynomials
[6,27]​. By changing the scalar multiplier of each polynomial term, we are able to simulate a
different “mix” of aberrations, from coma to spherical to trefoil, etc. We use these weights of the
Zernike modes to characterize the input image, and it is the predictions of these weights that are
the output of the model.

The full process for generating a synthetic data point is to (1) randomly generate a sequence of
numbers, taken either from a uniform or a random distribution from a range determined to match
a realistic setting, (2) use those numbers to generate a phase mask of Zernike modes. This is
described ​[27]​ analytically as:

Where is an even-numbered Zernike mode, is an odd-numbered Zernike mode, and

 is the radial polynomial. Typically, we simulate phase masks of the 3rd-15th Zernike modes.
It is important to note that the 0th-2nd Zernike modes are not considered, as the 0th mode is
Piston, which is a constant offset with no effect on the PSF, and the 1st and 2nd modes are Tip
and Tilt, respectively, which merely translate the PSF and do not affect its shape [9]. We also
treat the 5th mode, Defocus, rather uniquely, as detailed in Section 7.

Step (3) is that the phase mask of the aberrations is added to the vortex beam phase mask (the
phase mask for the ideal PSF) and finally (4) the combined phase mask is run through the vector
diffraction code, which integrates it and evaluates the integral at a given distance from the lens.
The integration process depends on many real world parameters from the microscope itself that
are read from a python dictionary that is stored in a text file and read. To replicate our procedure
with a different microscope system or any variation in back aperture size, wavelength, laser
power, polarization of incoming light, pulse length, etc. those would need to be modified before
creating synthetic data.

6

https://paperpile.com/c/UjyjEG/3sju+VlEa
https://paperpile.com/c/UjyjEG/VlEa
https://www.codecogs.com/eqnedit.php?latex=%5Cbegin%7BBmatrix%7D%20Z%5Em_n(%5Crho%20%5Cphi)%20%3D%20R%5Em_n(%5Crho)%5Ccos(m%20%5Cphi)%5C%5C%20Z%5E%7B-m%7D_n(%5Crho%20%5Cphi)%20%3D%20R%5Em_n(%5Crho)%5Csin(m%20%5Cphi)%20%5Cend%7BBmatrix%7D#0
https://www.codecogs.com/eqnedit.php?latex=Z%5Em_n#0
https://www.codecogs.com/eqnedit.php?latex=Z%5E%7B-m%7D_n#0
https://www.codecogs.com/eqnedit.php?latex=R_n%5Em#0

Figure 1: (a) ​the ideal PSF, three ortho-sections seen. ​(b) ​aberrated STED PSF with a Zernike
weight label of ​[-0.119, 0.156, -0.107, 0.152, 0.209, -0.3, -0.085, -0.156, 0.115, -0.02, 0.095]

The PSF is a fully 3-dimensional object, but for convenience we tend to observe it through three
“ortho-sections”, which are essentially cross-sections of the full 3D volume at the respective
center of each axis (see Fig. 1). ​[2]​ uses only the xy ortho-section in their model, whereas we use
all three to better characterize the aberrations, similarly to the model in ​[28]​ for flower
classification with multiple different views of the input. It would perhaps be possible to
incorporate more of the cross-sections, eventually analyzing the whole volume of the PSF,
although it remains to be seen whether this addition would provide relevant data to arrive at a
higher accuracy model or if it would merely slow down the training without adding particularly
unique information. It may also be that when you feed in a series of overlapping
spatiotemporally continuous data that a time-series model, like a Long Short-Term Memory
(LSTM) network ​[29]​, would be better suited to the problem statement. For now, we limit
ourselves to the three ortho-sections, assuming that each renders unique information that assists
the model in converging.

7

https://paperpile.com/c/UjyjEG/4hVK
https://paperpile.com/c/UjyjEG/ZKj7
https://paperpile.com/c/UjyjEG/dXYK

Figure 2: (a) ​a phase mask with no offset and its corresponding (aberrated) PSF​ (b) ​a phase

mask shifted by the vector ​[-0.117, 0.427] ​and its corresponding PSF. The difference in result
despite the small shift of the phase mask renders determination of the offset very relevant.

As an additional note, the phase mask is sometimes offset by a vector similarly drawn from a
uniform distribution. For an illustration of the way in which a lateral shift of the phase mask
changes the resulting STED PSF, observe Fig. 2. Because this shift affects the appearance of the
PSF, it is important that we are able to distinguish it from regular Zernike aberrations. When this
step is incorporated, the numbers are generated at the same time as those for the Zernike weights.
Then, during Step (3), the phase mask is added to the vortex beam with the randomly generated
offset from the center of the two images.

4. Convolutional Neural Networks
CNNs build upon previous neural network structures such as multi-layer perceptron models and
have provided extraordinary performance gains for image classification and object detection
[24]​. This is because by maintaining the spatiotemporal continuity of the input (rather than
flattening it), CNNs can leverage compositional relationships to abstract not only low level
features like edges and gradients, but also higher level features like eyes or bicycles.

8

https://paperpile.com/c/UjyjEG/9cOy

As a deep learning algorithm, CNNs transform an input into a list of distinctive and identifiable
features that are present. The algorithm accomplishes this by passing the input through a series of
filters -- this process of passing a filter over an input array is known as convolution ​[26]​. CNNs
are based on the pattern of neurons in the human brain, in which individual neurons respond to
external stimuli in a restricted region, known as a receptive field, and multiple of these receptive
fields overlap to cover the entire visual field. Replicating this mathematically, we represent some
input, usually an image or a vectorization of text, as an array of numbers and multiply some
subset of this array by a filter array, then slide the filter array over the input like a sliding
window, and in this manner the most important features of the image are abstracted and used to
characterize the image.

4.1. Components of CNN
4.1.1. Convolutional filter

A convolutional filter or convolution kernel is simply an array of values which are multiplied
and summed over some subset of an input. The result of this is the extraction of distinguishing
features from the input. Conventionally, the first convolutional layer is thought to extract low
level features like edges or gradients ​[24]​, and every subsequent convolutional layer extracts
higher level features (these may be more complex “objects” like eyes or dogs). After the filter is
convolved with the first region of the input, it is moved like a “sliding window” at some stride
until the entire input has been processed with overlapping fields. Sometimes the input is padded
so that the convolved feature is not a reduced dimensionality compared to the input. See Fig. 3
for an illustration of the convolutional process.

 Image ​3x3 Kernel Feature

9

https://paperpile.com/c/UjyjEG/oiGy
https://paperpile.com/c/UjyjEG/9cOy

Figure 3:​ ​(a)​ Illustration of an image as a 5x5 array of integer pixel values, a 3x3 convolutional
kernel with which to convolve the image, and the resulting 3x3 convolved feature. ​(b)​ shows the
sliding window approach to convolution, the kernel convolves a subset of the pixel values before
sliding a step to an overlapping region. This is what allows a CNN to take advantage of
compositional information in the image. ​(c)​ shows the process of building up the values of a
feature. Each element is the sum of the matrix multiplication applied to the pixel subset
highlighted in (b). Example extracted from ​[30]​.

4.1.2. Activation function
An activation function makes it possible for neural networks to represent complicated data by
adding nonlinearities to the computational process ​[30]​. Without introducing any nonlinearities,
passing information through a neural net would just be a series of linear combinations -- and
linear combinations can always be represented by an equivalent, single combination. This would
render a model unable to represent any non-linear relationship between input and output. The
most commonly used activation function for CNNs is called the Rectified Linear Unit (ReLU),
defined as:

10

https://paperpile.com/c/UjyjEG/JLyW
https://paperpile.com/c/UjyjEG/JLyW
https://www.codecogs.com/eqnedit.php?latex=%20f(x)%20%3D%20%5Cmax(0%2Cx)#0

Figure 4: ​plot of the Rectified Linear Unit (ReLU) function

An activation function is typically applied to every convolutional kernel in a network with rare
exceptions. It is typically not applied to ​fully connected layers​ ​[30,31]​.

4.1.3. Dropout
Dropout ​[32]​ is essentially a regularization technique: at specific points between layers, a
percentage of connections between neurons are simply dropped. Sometimes users will choose to
drop as much as 50% of the connections between neurons. This is done to prevent large neural
network models from overfitting and forming irrelevant connections in the data. Following
(Zhang et al. 2019)​, we apply a few dropout layers to our models, ranging between 10 and 20
percent.

4.1.4. Fully Connected Layer
The ultimate, or sometimes penultimate, step in the CNN's architecture definition is the fully
connected (fc) layer. After all of the feature maps have been generated by the convolutional
kernel, they are flattened to one dimension and passed to an fc layer. If the problem statement
requires a classification algorithm, the fc layer will be activated by a softmax function such that
the most likely class of the input is the output of the model. Our project is one of multiple
regression, so rather than the class of the input; we want the model to predict the weights of the
Zernike modes themselves. To do this, we pass the flattened feature maps through several fully
connected layers with no activation function, paring the dimensionality down until the final layer
is a single vector which corresponds to the Zernike mode weights we are trying to predict.

11

https://paperpile.com/c/UjyjEG/JLyW+04jq
https://paperpile.com/c/UjyjEG/vEda
https://paperpile.com/c/UjyjEG/4hVK

5. Model Design
5.1. Deep Learning Framework

Many programmers would like to avoid writing all backend code for dropout layers, activation
functions, etc. and instead opt to use a deep learning framework to provide built-in functions to
vastly decrease the time to get a model up and running. Some of the most popular such
frameworks are: Tensorflow, PyTorch, Caffe, and Theano. We choose to use PyTorch ​[33]​ as the
deep learning framework for its ease of use and particularly its default eager execution mode.
PyTorch is qualitatively the most “pythonic” of the available frameworks and therefore has the
lowest learning curve for prior python users. Tensorflow, the other main framework of interest,
does not use eager execution mode but rather defines types statically, which makes the
underlying data structure more opaque to the user and thus harder to debug. However,
Tensorflow includes useful visualization features natively such as Tensorboard ​[34]​, a dashboard
to visualize input data, batching, loss curve during training, etc (See Sec 5.3-5.5). Although less
elegant than native use, it is possible to use the Tensorboard visualization tools with PyTorch,
and we choose to do so to monitor the training process.

5.2. List of Model Architectures
The following is an exhaustive list of the models used for the project and their unique features.
Many are largely similar with a minor but significant change. Where reasonable to do so,
redundancies have been redacted from the report with ellipses and only changed lines are listed
(made evident by the line number).

5.2.1. Net12
The following model definition was the first model that was created during the course of the
project and was the prototype for all subsequent models. The architecture makes use of all the
features of a typical CNN: convolutional layers, fully connected layers, a ReLU activation
function, maximum pooling, and drop out. The number of layers and percentages of dropouts are
recreated from ​[2]​. The output vector has a dimension of 12 -- this accounts for the weights of
the 3rd-15th Zernike modes.

1​ import torch

2​ import torch.nn as nn

3​ import torch.nn.functional as F

4

5

6​ class​ Net12(nn.Module):

12

https://paperpile.com/c/UjyjEG/ljXZ
https://paperpile.com/c/UjyjEG/uu38
https://paperpile.com/c/UjyjEG/4hVK

7 ​"""

8​ A simple CNN based on AlexNet

9​ Architecture followed from Zhang et al.,

10​ "Machine learning based adaptive optics for doughnut-shaped beam" (2019)

11​ """

12 ​def​ __init__(self):

13 super(Net, ​self​).__init__()

14 ​self​.conv1 = nn.Conv2d(​1​, ​32​, kernel_size=​5​, stride=​1​, padding=​2​)

15 ​self​.conv2 = nn.Conv2d(​32​, ​32​, kernel_size=​5​, stride=​1​, padding=​2​)

16 ​self​.conv3 = nn.Conv2d(​32​, ​64​, kernel_size=​3​, stride=​1​, padding=​1​)

17 ​self​.conv4 = nn.Conv2d(​64​, ​64​, kernel_size=​3​, stride=​1​, padding=​1​)

18 ​self​.conv5 = nn.Conv2d(​64​, ​64​, kernel_size=​3​, stride=​1​, padding=​1​)

19

20 ​self​.fc1 = nn.Linear(​8​ * ​8​ * ​64​, ​512​) ​# 64 channels, final img size 8x8

21 ​self​.fc2 = nn.Linear(​512​, ​512​)

22

23 ​self​.fc3 = nn.Linear(​512​, ​12​)

24

25 ​def​ forward(self, x):

26

27 x = x.float()

28 x = F.dropout(F.max_pool2d(F.relu(​self​.conv1(x)), (​2​, ​2​)), p=​0.1​)

29 x = F.dropout(F.max_pool2d(F.relu(​self​.conv2(x)), (​2​, ​2​)), p=​0.1​)

30 x = F.relu(​self​.conv3(x))

31 x = F.relu(​self​.conv4(x))

32

33 x = F.max_pool2d(F.relu(​self​.conv5(x)), (​2​, ​2​))

34 ​# flatten

35 x = x.reshape(x.size(​0​), -​1​)

36 x = F.dropout(F.relu(​self​.fc1(x)), p=​0.2​)

37 x = F.dropout(F.relu(​self​.fc2(x)), p=​0.2​)

38 x = ​self​.fc3(x)

39 ​return​ x

5.2.2. MultiNet12
The modification of this model from the previous is that we consider the xz and yz ortho-sections
as well as the xy. Here, we simply stack the three ortho-sections before passing it as an input to
the model, treating each ortho-section as a different color channel.

13

14 ​self​.conv1 = nn.Conv2d(​3​, ​32​, ​5​, padding=​2​)

...

23 ​self​.fc3 = nn.Linear(​512​, ​12​)

5.2.3. MultiOffsetNet14
This model is created to train for the 3rd-15th Zernike modes (including Defocus) and offset. In
practice, none of the models which included defocus performed very well in real world testing,
so this model has been deprecated.

14 ​self​.conv1 = nn.Conv2d(​3​, ​32​, ​5​, padding=​2​)

...

23 ​self​.fc3 = nn.Linear(​512​, ​14​)

5.2.4. Net11
The small but highly significant change to this model compared to the vanilla Net12 is that the
Zernike mode describing Defocus (the 5th) has been removed from the training dataset and
therefore is also removed from the output vector, so the output reduces to an 11-dimensional
vector rather than a 12. This shift in process is detailed more in ​Section 8b​. All subsequent
models likewise drop this 5th Zernike mode, as we instead correct for it in situ rather than with
the model.

14 ​self​.conv1 = nn.Conv2d(​1​, ​32​, ​5​, padding=​2​)

...

23 ​self​.fc3 = nn.Linear(​512​, ​11​)

5.2.5. OffsetNet13
This model predicts the offset and Zernike mode weights of an aberrated phase mask, so the
output vector has a dimension of 13: 11 Zernike modes and 2 offset terms.

14 ​self​.conv1 = nn.Conv2d(​1​, ​32​, kernel_size=​5​, stride=​1​, padding=​2​)

...

23​ self​.fc3 = nn.Linear(​512​, ​13​)

14

5.2.6. MultiNet11
This model also has an 11-dimensional output vector, but treats the ortho-sections as the
different color channels of a single input, similar to MultiNet12.

14 ​self​.conv1 = nn.Conv2d(​3​, ​32​, ​5​, padding=​2​)

...

23 ​self​.fc3 = nn.Linear(​512​, ​11​)

5.2.7. MultiOffsetNet13
This model outputs a 13-dimensional vector: 11 Zernike modes and 2 offset terms, with the
additional feature that it operates on all three ortho-sections.

14 ​self​.conv1 = nn.Conv2d(​3​, ​32​, ​5​, padding=​2​)

...

23 ​self​.fc3 = nn.Linear(​512​, ​13​)

5.2.8. OffsetNet2
This model is designed to just predict the offset of the phase mask; accordingly, it has a
2-dimensional output vector. It is trained on a smaller training dataset (10% the size of the
typical dataset), in which the phase pattern for an ideal doughnut is shifted from center by some
offset and no Zernike modes are present. We used this model to verify that the offset was able to
be correctly predicted and that there was no interference of the offset prediction for the Zernike
prediction.

14 ​self​.conv1 = nn.Conv2d(​1​, ​32​, kernel_size=​5​, stride=​1​, padding=​2​)

...

23 ​self​.fc3 = nn.Linear(​512​, ​2​)

5.2.9. MultiNetCat11
Following ​[28]​, we also create a model that treats each of the three ortho-sections as separate
inputs rather than as three color channels of the same image. The ​xy​-, ​xz​-, and ​yz​- ortho-sections
are convolved with separate filters and at some point, concatenated prior to the fully connected
(predictive) layer. To date, no visible accuracy gains during have been noticed using this model
compared to the MultiNet11, but rigorous, quantitative comparison has not yet been conducted.

15

https://paperpile.com/c/UjyjEG/ZKj7

11 ​self​.conv1 = nn.Conv2d(​1​, ​32​, ​5​, padding=​2​)

...

25 ​def​ forward(self, img):

26

27 x = img[:, ​0​].unsqueeze(​1​) ​# adding dim of 0 after batch dim

28 y = img[:, ​1​].unsqueeze(​1​)

29 z = img[:, ​2​].unsqueeze(​1​)

30

31 x = x.float()

32 x = F.dropout(F.max_pool2d(F.relu(​self​.conv1(x)), (​2​, ​2​)), p=​0.1​)

33 x = F.dropout(F.max_pool2d(F.relu(​self​.conv2(x)), (​2​, ​2​)), p=​0.1​)

34

35 y = y.float()

36 y = F.dropout(F.max_pool2d(F.relu(​self​.conv1(y)), (​2​, ​2​)), p=​0.1​)

37 y = F.dropout(F.max_pool2d(F.relu(​self​.conv2(y)), (​2​, ​2​)), p=​0.1​)

38

39

40 z = z.float()

41 z = F.dropout(F.max_pool2d(F.relu(​self​.conv1(z)), (​2​, ​2​)), p=​0.1​)

42 z = F.dropout(F.max_pool2d(F.relu(​self​.conv2(z)), (​2​, ​2​)), p=​0.1​)

43 ​# concatenating the ortho-sections

44 a = torch.cat((x, y, z), dim=​1​)

45 a = F.relu(​self​.conv3(a))

46 a = F.relu(​self​.conv4(a))

47

48 a = F.max_pool2d(F.relu(​self​.conv5(a)), (​2​, ​2​))

49 ​# flatten

50 a = a.reshape(a.size(​0​), -​1​)

51

52 a = F.dropout(F.relu(​self​.fc1(a)), p=​0.2​)

53 a = F.dropout(F.relu(​self​.fc2(a)), p=​0.2​)

54 a = ​self​.fc3(a)

55 ​return​ a

5.3. Training parameters
5.3.1. Loss fn

While not technically considered a training parameter, the loss function is perhaps the most
important choice to be made about the training process, as it is the determination of how the

16

model calculates its deviation from the ground truth label ​[30]​. The cost function that we use is
the mean squared error (MSE) between the ground truth Zernike mode weight labels and the
vector that is the output of the model. This operation is done at the batch-level, and it is
important to note that when calculating the loss, we first average along the 0th dimension before
we sum across the vector. This way, minimising the error for each coefficient is privileged over
minimising the overall loss of the prediction vector.

During the training loop, the inputs are passed through the model (the series of matrices with
learned weights and non-linear activation functions defined in the network architecture), then the
MSE of the predicted labels to the ground truth is calculated. The parameter gradients are zeroed,
then the loss is propagated backwards.

1​ # Run the forward pass

2 outputs = model(images) ​# e.g. [32, 12] = [batch_size, output_dim]

3 loss = criterion(outputs, labels) ​# MSE

4 ​# sum of averages for each coeff position

5 loss = torch.sum(torch.mean(loss, dim=​0​))

6

7 ​# zero the parameter gradients

8 optimizer.zero_grad()

9 ​# backward + optimize only in train

10 loss.backward()

11 optimizer.step()

5.3.2. Learning rate
Learning rate is considered a key training parameter. The learning rate determines how quickly
the model adapts to the problem at hand. Sometimes a scheduler is used to monitor decreases in
the learning rate over the course of the training (for example, after 3 epochs the learning rate
decreases by a factor of 10). Presumably, this aids in zeroing in on a local minimum for the loss
[30]​. We use a learning rate of 1e-3, which is within the recommended range for the optimizer
we are using. There is no single ideal learning rate for every problem; rather, there is an ideal
operating range for every optimizer ​[35]​.

5.3.3. Optimizer
The general principle of training a machine learning model is iteratively updating randomly
initialized parameters to minimize a given cost function. When a model performs this update
after seeing just one sample, it is known as Stochastic Gradient Descent (SGD). SGD is
potentially the method of training that converges the fastest by updating the model parameters

17

https://paperpile.com/c/UjyjEG/JLyW
https://paperpile.com/c/UjyjEG/JLyW
https://paperpile.com/c/UjyjEG/sjhe

more frequently, but it consequently has a much higher variance in model parameters and may
overshoot the minimum loss value if the learning rate is not incrementally reduced during
training ​[36]​. If instead the model weights are updated only after an entire batch (a subset of the
data), it is known as Mini-Batch Gradient Descent ​[30]​.. Several other optimization techniques
have been proposed (AdaGrad, RMSprop, Adam, AdaDelta, Momentum, Nesterov Accelerated
Gradient) and is an active field of research. Different optimization algorithms all offer trade-offs
in terms of robustness, computational power, reliability, and time to converge. For image
classification and/or regression, the Adam, or Adaptive Moment Estimation ​[37]​, optimization
method seems to be the industry standard ​[38,39]​, and we use this optimizer for all of our
trainings.

5.3.4. Epochs
Epochs are, quite simply, the number of times that the training loop iterates through the entire
dataset. The balance to find here is to expose the model to train to be robust while not allowing it
to get too used to the data it has already seen. Our default was 15 epochs as, from empirical
trials, the training curve seems to level out around that time.

5.3.5. Dataset class
To organize and store the synthetic data while it is being manipulated in python, we write a
custom dataset as a subclass of PyTorch data class. This dataset is created from an h5py ​[40]​ file
that was used as a repository for the synthetic data. It returns the data marked for train,
validation, and test sets depending on a given ‘mode’ argument and has the ability to add
transformations such as normalization and added noise to the sample. By adding these transforms
to the __getitem__ function, it ensures they will happen when the dataset is iterated over, rather
than when the constructor call is given. See below our class definition for the PSFDataset class.

1 import h5py

2 import numpy as np

3 from torch.utils import data

4 import torch

5 from torchvision import transforms

6

7 class​ PSFDataset(data.Dataset):

8 ​""" Point Spread Function h5py Dataset. """

9

10 ​def​ __init__(self, hdf5_path, mode, transform=​None​):

11 ​"""

12 Args:

18

https://paperpile.com/c/UjyjEG/bFff
https://paperpile.com/c/UjyjEG/JLyW
https://paperpile.com/c/UjyjEG/akJ1
https://paperpile.com/c/UjyjEG/NQgh+uVSa
https://paperpile.com/c/UjyjEG/88NK

13 hdf5_path (str): Path to the hdf5 file

14 """

15 ​# Creates an h5py object from the given path

16 ​self​.file = h5py.File(hdf5_path, ​"r"​)

17 ​self​.transform = transform

18 ​# if training, loads the training and validation images and labels

19 ​if​ mode ==​'train'​:

20 ​self​.images = ​self​.file[​'train_img'​]

21 ​self​.labels = ​self​.file[​'train_labels'​]

22 ​elif​ mode == ​'val'​:

23 ​self​.images = ​self​.file[​'val_img'​]

24 ​self​.labels = ​self​.file[​'val_labels'​]

25 ​# if testing, loads the test images and labels

26 ​elif​ mode == ​'test'​:

27 ​self​.images = ​self​.file[​'test_img'​]

28 ​self​.labels = ​self​.file[​'test_labels'​]

29

30 def​ __len__(self):

31 ​return​ ​self​.images.shape[​0​]

32

33 ​def​ __getitem__(self, idx):

34 sample = {​'image'​: ​self​.images[idx], ​'label'​: ​self​.labels[idx]}

35

36 ​if​ ​self​.transform:

37 sample = ​self​.transform(sample)

38

39 ​return​ sample

5.3.6. Batch Size, Data Loaders, and Batch Normalization
As only a subset of the whole training dataset is used at one time, PyTorch offers built-in classes
called Dataloaders which only load in the examples contained in the relevant batch. We make
use of these to minimize the amount of data needed to be stored in memory during the training
loop.

19

At this stage, the data transformations described in the ​Batch Normalization​ and ​Adding Noise
During Loading​ sections are applied to each data point as it is loaded into the training loop by the
data loader.

Batch normalization is a method that is proven to help models converge to a solution more
quickly without suffering a loss in accuracy ​[41]​. The changes in the distribution of internal
nodes of a network are known as internal covariate shift, and eliminating this shift leads to faster
training. The motivating idea is that by removing irrelevant variations in the data, there is less
need for careful parameter initialization and small learning rates. This process is also considered
a form of regularization similar to dropout and may sometimes take the place of dropout in a
network ​[30]​. To implement this, we first iterate through the entire training set and calculate the
mean and standard deviation, then as each batch is loaded, each training example in the batch is
normalized, such that the mean of each training example is ~1 and the standard deviation of each
training example is ~0. Below is our implementation:

class​ Normalize(object):

 ​"""Given a mean and std with constructor call, it normalizes the input.

 Mean and std must be calculated first."""

 ​def​ __init__(self, mean, std):

 ​self​.mean = mean

 ​self​.std = std

 ​def​ __call__(self, sample):

 image, label = sample[​'image'​], sample[​'label'​]

 ​for​ channel ​in​ range(image.size(​0​)):

 image[channel] = (image[channel] - ​self​.mean[channel])/ ​self​.std[channel]

 ​return​ {​'image'​: image,

 ​'label'​: label}

5.3.7. Adding Noise During Loading
Adding noise to data should theoretically increase the robustness of the model ​[30]​. However, it
is not necessary to add noise to the training data itself, as it can be added when the batch is
loaded into the training loop. We add two types of noise, background noise and Poisson noise, to
the synthetic images to help them more realistically simulate real world data. Below, our
implementation of the add_noise function can be seen. The default arguments of background

20

https://paperpile.com/c/UjyjEG/CZ3B
https://paperpile.com/c/UjyjEG/JLyW
https://paperpile.com/c/UjyjEG/JLyW

noise and Poisson amount were determined experimentally by the Danzl group member who
contributed the function. We modified those slightly to better match visually the real world data
we obtained from the microscope, but the amounts have not yet been subjected to rigorous
testing to determine optimal amounts.

def​ add_noise(image, bgnoise_amount=​1​, poiss_amount=​350​):

 ​"""A fn to add background and poisson noise to an image, contributed by

 Julia Lyudchik, PhD student in the Danzl Group"""

 _, x0,y0 = image.shape

 ​#Background noise

 Nb = np.random.normal(​0​, ​0.001​, [x0,y0])

 final_Nb = image + Nb*bgnoise_amount

 final_Nb = (final_Nb-np.amin(final_Nb))/(np.amax(final_Nb) - np.amin(final_Nb))

 ​#Poisson noise

 final_poiss = np.random.poisson(final_Nb / np.amax(final_Nb) * poiss_amount) /

poiss_amount * np.amax(final_Nb)

 ​return​ final_poiss

5.3.8. Saving the Model
At the end of the training loop, the model “checkpoints” are saved. In reality, what is saved are
the learned weights of the convolutional filters. For the ability to continue the training of one
model using the weights of another model, as described in ​6.1.10​, it is also necessary to save the
optimizer state.

5.3.9. Warm Start
Rather than starting with random initialization of weights for a model, it is at times advantageous
to begin with the weights of a different trained model ​[30]​. This is known as a “warm start” and
can be used for transfer learning techniques, wherein a model is trained on one task and
evaluated on a different one. While we are not using transfer learning, it seemed useful to have a
way to continue the training of one model if the standard number of epochs proved to not be long
enough. Therefore, we added an option in the code the resume training from a previous model’s
final layer weights.

5.4. Training curve
We make use of Tensorboard to visualize the training process; specifically, we monitor the
model’s training curve. This curve is one of the most useful tools to qualitatively diagnose
problems that occur during training. At each step of the training loop, the batch loss is calculated

21

https://paperpile.com/c/UjyjEG/JLyW

and logged to a visualization graph. Presumably, if the model is “learning” this loss will show an
exponential decrease as the training continues.

5.5. Validation curve
During the creation of the dataset, 20,000 individual data points were split into three portions in a
80/10/10 split: 80% of the data was marked to be used during training, 10% was marked to be
used during testing (for the trained model), and 10% is marked for validation, which is a second
loop that happens intermittently during the training process. After the model parameters have
been updated and the optimizer has been incremented, the model enters eval mode and is
evaluated on the validation dataset. This step is used to indicate a model’s generalisability or its
lack thereof ​[30]​. If a model has a regular (exponential decay) training curve but a horrible
validation curve, the likelihood is high that the model has simply memorized the training data
rather than actually learning to extract important features from the input ​[30]​. The ideal situation
is exponential decay for both the training and validation curves. Often the lowest achieved loss
for the validation data prediction is higher than for the training data, as models typically perform
slightly less well on unseen data.

6. Evaluation on Synthetic Data
To provide a quick and simple test for the trained model, we test on that segment of the synthetic
data set aside for testing. Each test sample is passed through the model and outputs a vector
containing a numerical value for each Zernike mode coefficient and/or offset that it was trained
to predict. We can describe the accuracy of this prediction in a few quantitative ways. One of
these ways is by a simple mean squared error calculation between the prediction vector and the
ground truth vector, similarly to what was done during training, just without the updating of the
parameters based on this loss. A low mean squared error would imply a good prediction.

The other way we found it useful to evaluate the model was by using the same synthetic pipeline
to visualize the output of the model. For example, using the Net11 model described above, the
output of the model is an 11-dimensional vector where each number in the vector supposedly
corresponds to the weight of a Zernike mode of aberration present in the given input image. We
take the numbers output by the model and generate a phase mask with them, then add it onto the
phase mask of an ideal PSF and use the vector diffraction code to simulate the overall resulting
PSF. If the prediction is good, this reconstruction should be very similar to the input image. We
can know this computationally by calculating the Pearson correlation coefficient ​[42]​ between
the two images, as:

22

https://paperpile.com/c/UjyjEG/JLyW
https://paperpile.com/c/UjyjEG/JLyW
https://paperpile.com/c/UjyjEG/gWnC

Where is the correlation coefficient between two samples, X and Y, is theρXY ov(X , Y)c
covariance of X and Y, and is the product of the standard deviations of X and Y.σσX Y

7. In-Situ Data Collection
Although accuracy on synthetically created test data is a good sanity check to have, the most
useful evaluation comes from the model’s performance on data collected from the microscope in
a real imaging session. Establishing this procedure was at times tedious, as it required a good
understanding of the existing code provided by the microscope’s developer as well as the
hardware of the microscope itself.

The first step of the data collection is to mount a gold bead sample immersed in oil onto the
microscope system, manually focus on one bead, and try to make sure it is relatively centered
within the field of view. The process of actually correcting for aberrations present in the image
happens through the Spatial Light Modulator (SLM) in the beam path. All gratings, offsets, and
phase masks are loaded onto the SLM, which shifts the incoming light beam appropriately. The
result is monitored electronically on the viewing station. The vector diffraction code simulates
this transformation from phase mask to focused PSF that the imaging optics completes in the real
microscope setup.

7.1. Handling Tip/Tilt
The second step of data collection is correcting for the aberration we have not trained the models
to predict. The first two Zernike modes were not included in any of the trained models. This is
because these modes, known as Tip and Tilt or X-Tilt and Y-Tilt, only translate the PSF along
the X-/Y- axis, but do not affect its shape.

When imaging, we calculate the center of mass of the image and find its offset from the
pixel-wise center of the image (for example, [32.5, 32.5] for a 64 x 64 pixel image). The offset
from the center of mass is then scaled by other system parameters (namely, wavelength, back
aperture, and focal length) and used to create a phase mask which is then loaded onto the SLM.
Accordingly, the image shifts to be practically in the center of the field of view (there are some
rounding errors present).

Theoretically, each Zernike mode is orthogonal to every other mode, meaning that they do not
interfere with one another and can be predicted independently. This may not always be true in

23

practice, and we found that without this centering step, the performance of any model decreased
significantly.

7.2. Handling Defocus
Defocus, the 5th Zernike mode also does not affect the shape of the 3D PSF, but translates it
along the optical axis. Previous work using CNNs to predict Zernike modes has only been
applied to the ​xy​ ortho-section, where the apparent PSF changes, but the sign of defocus is
visually indeterminate. ​[1]​, to counteract this problem, applies the model predictions twice --
once with positive defocus and once with negative defocus -- and chooses the best option by
comparing the resulting intensity of the image. By virtue of the fact that we incorporate all three
ortho-sections of the gold bead (the ​xy​ view, the ​yz​, and the ​xz​ view), we are able to analytically
calculate defocus external to the model and center the measured PSF also along the optical axis.
Subsequently, we are able to leave it out of the training.

The process of calculating defocus is similar to calculating tip or tilt; it is some scaling of the
offset of the center of mass of a PSF ortho-section. This time, the scaled offset calculation is
performed on both the ​xz ​and ​yz​ ortho-sections, and the result is averaged. Like before, once the
coefficient of defocus has been determined, a phase mask is generated and passed to the SLM.

7.3. Quantitative Validation
To obtain the amount of data on the scale necessary to prove reproducibility, we must automate
the data collection process. To do this, we write a loop that first zeros the SLM, acquires an
image from the software, fits the center of mass and then centers the stage via hardware controls.
This is to counteract the likelihood of a bead “walking off” the field of view after a period of
time imaging it. After that, the regular process of correcting tip/tilt, correcting defocus, and then
loading the phase mask generated by the model’s prediction onto the SLM. This process, while it
eventually is ended by the bead walking off, has allowed us to obtain a few hundred data points
for several of the trained models.

8. Discussion
The project is in an on-going state and therefore a full analysis of our results is not provided.
However, to briefly summarize, this project is the creation and implementation of an
auto-alignment system for coordinate-targeted super-resolution microscope techniques to replace
a tedious human alignment process. The determination of the aberrations present in an acquired
image is done through a CNN, which leverages compositional information in the image to
predict the weights of Zernike modes. The model is trained for this kind of prediction on a large

24

https://paperpile.com/c/UjyjEG/onRQ

synthetic dataset generated by vector diffraction theory that simulates real-world acquired
images.

We focus most of our energy on the xy-STED PSF use case in this report, but the main
advantage of our approach is its transferability; once implemented, all that is required to generate
data, train, and evaluate a model for a different use case is to change out the specific data
generation function. For example, our pipeline would work with little or no modification for
z-STED or for fluorescence (also known as effective PSF). Using this pipeline for the effective
PSF would require slight modification because, rather than imaging one effective PSF at a time,
many are present within the field of view and therefore would require some kind of averaging or
segmentation script. Many other patterns would be possible as well; e.g. the overlay of xy/z
STED or coherent hybrid STED.

One of the most interesting further use cases to us is the Fluorescence PSF, as in practice, our
group acquires better images when using the Fluorescence PSF to align rather than the STED
PSF. The process for generating a synthetic effective PSF, alternatively called a fluorescence
PSF, is quite similar to the above except in that rather than the phase mask of the aberrations
being added onto the phase mask describing the ideal donut shape, it is added onto the phase
mask of a Gaussian beam. With our pipeline in place, this is trivial to do. In fact, it would be
trivial to simulate any desired pattern of minima and maxima that could be used in STED
microscopy.

9. Acknowledgements
This work would not have been possible without the support and guidance of many people.
Firstly, I’d like to acknowledge the Fulbright-Marshall Plan donors, who graciously funded this
project, as well as the Fulbright Austria Commission, particularly Darrah Lustig and Dune
Johnson, who helped facilitate my time as a Fulbright scholar. Secondly, I’d like to thank my
Principal Investigator, Dr. Johann Danzl, for his guidance and support for the duration of the
project and for his willingness to be my institutional sponsor during the Fulbright application
process. This work certainly would not have been successful on any scale if it weren’t for the
troubleshooting efforts, day-to-day guidance, and endless support of Dr. Wiebke Jahr, the
postdoctoral researcher associated with this project. Beyond that, I’d like to thank the rest of the
Danzl Lab: Dr. Sven Truckenbrodt, Dr. Philipp Velicky, Dr. Giulio Abagnale, Dr. Caroline
Kreuzinger, Marek Suplata, Julia M. Michalska, Nathalie Agudelo Dueñas, Jakob Vorlaufer,
Mojtaba Tavakoli, and Julia Lyudchik. Special thanks to Rishabh Sahu for his vector diffraction
code, which we incorporated into our data generation pipeline, to Julia L. for the contribution of
function to generate sample noise, and to Marek and Jakob for various technical and project
input and hardware support.

25

10. References
1. Y. Jin, Y. Zhang, L. Hu, H. Huang, Q. Xu, X. Zhu, L. Huang, Y. Zheng, H.-L. Shen, W. Gong, and

K. Si, "Machine learning guided rapid focusing with sensor-less aberration corrections," Opt.
Express ​26​, 30162–30171 (2018).

2. Y. Zhang, C. Wu, Y. Song, K. Si, Y. Zheng, L. Hu, J. Chen, L. Tang, and W. Gong, "Machine
learning based adaptive optics for doughnut-shaped beam," Opt. Express ​27​, 16871–16881 (2019).

3. S. W. Hell, S. J. Sahl, M. Bates, X. Zhuang, R. Heintzmann, M. J. Booth, J. Bewersdorf, G.
Shtengel, H. Hess, P. Tinnefeld, A. Honigmann, S. Jakobs, I. Testa, L. Cognet, B. Lounis, H. Ewers,
S. J. Davis, C. Eggeling, D. Klenerman, K. I. Willig, G. Vicidomini, M. Castello, A. Diaspro, and T.
Cordes, "The 2015 super-resolution microscopy roadmap," J. Phys. D Appl. Phys. ​48​, 443001
(2015).

4. M. J. Booth, "Adaptive optics in microscopy," Philos. Trans. A Math. Phys. Eng. Sci. ​365​,
2829–2843 (2007).

5. J. A. Kubby, ​Adaptive Optics for Biological Imaging​ (CRC Press, 2013).
6. M. J. Booth, "Adaptive optical microscopy: the ongoing quest for a perfect image," Light: Science &

Applications ​3​, e165–e165 (2014).
7. S. W. Hell and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission:

stimulated-emission-depletion fluorescence microscopy," Opt. Lett. ​19​, 780–782 (1994).
8. S. Deng, L. Liu, Y. Cheng, R. Li, and Z. Xu, "Investigation of the influence of the aberration induced

by a plane interface on STED microscopy," Opt. Express ​17​, 1714–1725 (2009).
9. B. R. Patton, D. Burke, R. Vrees, and M. J. Booth, "Is phase-mask alignment aberrating your STED

microscope?," Methods Appl Fluoresc ​3​, 024002 (2015).
10. W. Jahr, P. Velicky, and J. G. Danzl, "Strategies to maximize performance in STimulated Emission

Depletion (STED) nanoscopy of biological specimens," Methods ​174​, 27–41 (2020).
11. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, "Resolution scaling in

STED microscopy," Opt. Express ​16​, 4154–4162 (2008).
12. M. Booth, D. Andrade, D. Burke, B. Patton, and M. Zurauskas, "Aberrations and adaptive optics in

super-resolution microscopy," Microscopy ​64​, 251–261 (2015).
13. T. J. Gould, J. R. Myers, and J. Bewersdorf, "Total internal reflection STED microscopy," Opt.

Express ​19​, 13351–13357 (2011).
14. M. G. M. Velasco, M. Zhang, J. Antonello, P. Yuan, E. S. Allgeyer, D. May, O. M’Saad, P. Kidd, A.

E. S. Barentine, V. Greco, J. Grutzendler, M. J. Booth, and J. Bewersdorf, "3D super-resolution
deep-tissue imaging in living mice," 790212 (2019).

15. E. Auksorius, B. R. Boruah, C. Dunsby, P. M. P. Lanigan, G. Kennedy, M. A. A. Neil, and P. M. W.
French, "Stimulated emission depletion microscopy with a supercontinuum source and fluorescence
lifetime imaging," Opt. Lett. ​33​, 113–115 (2008).

16. M. O. Lenz, H. G. Sinclair, A. Savell, J. H. Clegg, A. C. N. Brown, D. M. Davis, C. Dunsby, M. A.
A. Neil, and P. M. W. French, "3-D stimulated emission depletion microscopy with programmable
aberration correction," J. Biophotonics ​7​, 29–36 (2014).

17. T. J. Gould, E. B. Kromann, D. Burke, M. J. Booth, and J. Bewersdorf, "Auto-aligning stimulated
emission depletion microscope using adaptive optics," Opt. Lett. ​38​, 1860–1862 (2013).

18. C. Belthangady and L. A. Royer, "Applications, promises, and pitfalls of deep learning for
fluorescence image reconstruction," Nat. Methods ​16​, 1215–1225 (2019).

19. L. Möckl, A. R. Roy, P. N. Petrov, and W. E. Moerner, "Accurate and rapid background estimation

26

http://paperpile.com/b/UjyjEG/onRQ
http://paperpile.com/b/UjyjEG/onRQ
http://paperpile.com/b/UjyjEG/onRQ
http://paperpile.com/b/UjyjEG/onRQ
http://paperpile.com/b/UjyjEG/onRQ
http://paperpile.com/b/UjyjEG/4hVK
http://paperpile.com/b/UjyjEG/4hVK
http://paperpile.com/b/UjyjEG/4hVK
http://paperpile.com/b/UjyjEG/4hVK
http://paperpile.com/b/UjyjEG/UCEr
http://paperpile.com/b/UjyjEG/UCEr
http://paperpile.com/b/UjyjEG/UCEr
http://paperpile.com/b/UjyjEG/UCEr
http://paperpile.com/b/UjyjEG/UCEr
http://paperpile.com/b/UjyjEG/UCEr
http://paperpile.com/b/UjyjEG/UCEr
http://paperpile.com/b/UjyjEG/Z6Ne
http://paperpile.com/b/UjyjEG/Z6Ne
http://paperpile.com/b/UjyjEG/Z6Ne
http://paperpile.com/b/UjyjEG/Z6Ne
http://paperpile.com/b/UjyjEG/0npK
http://paperpile.com/b/UjyjEG/0npK
http://paperpile.com/b/UjyjEG/0npK
http://paperpile.com/b/UjyjEG/3sju
http://paperpile.com/b/UjyjEG/3sju
http://paperpile.com/b/UjyjEG/3sju
http://paperpile.com/b/UjyjEG/3sju
http://paperpile.com/b/UjyjEG/9f5I
http://paperpile.com/b/UjyjEG/9f5I
http://paperpile.com/b/UjyjEG/9f5I
http://paperpile.com/b/UjyjEG/9f5I
http://paperpile.com/b/UjyjEG/52xM
http://paperpile.com/b/UjyjEG/52xM
http://paperpile.com/b/UjyjEG/52xM
http://paperpile.com/b/UjyjEG/52xM
http://paperpile.com/b/UjyjEG/8JDV
http://paperpile.com/b/UjyjEG/8JDV
http://paperpile.com/b/UjyjEG/8JDV
http://paperpile.com/b/UjyjEG/8JDV
http://paperpile.com/b/UjyjEG/SyV7
http://paperpile.com/b/UjyjEG/SyV7
http://paperpile.com/b/UjyjEG/SyV7
http://paperpile.com/b/UjyjEG/SyV7
http://paperpile.com/b/UjyjEG/q7I8
http://paperpile.com/b/UjyjEG/q7I8
http://paperpile.com/b/UjyjEG/q7I8
http://paperpile.com/b/UjyjEG/q7I8
http://paperpile.com/b/UjyjEG/FEOo
http://paperpile.com/b/UjyjEG/FEOo
http://paperpile.com/b/UjyjEG/FEOo
http://paperpile.com/b/UjyjEG/FEOo
http://paperpile.com/b/UjyjEG/4VCn
http://paperpile.com/b/UjyjEG/4VCn
http://paperpile.com/b/UjyjEG/4VCn
http://paperpile.com/b/UjyjEG/4VCn
http://paperpile.com/b/UjyjEG/m6TE
http://paperpile.com/b/UjyjEG/m6TE
http://paperpile.com/b/UjyjEG/m6TE
http://paperpile.com/b/UjyjEG/8ekR
http://paperpile.com/b/UjyjEG/8ekR
http://paperpile.com/b/UjyjEG/8ekR
http://paperpile.com/b/UjyjEG/8ekR
http://paperpile.com/b/UjyjEG/8ekR
http://paperpile.com/b/UjyjEG/R9jU
http://paperpile.com/b/UjyjEG/R9jU
http://paperpile.com/b/UjyjEG/R9jU
http://paperpile.com/b/UjyjEG/R9jU
http://paperpile.com/b/UjyjEG/R9jU
http://paperpile.com/b/UjyjEG/JZ69
http://paperpile.com/b/UjyjEG/JZ69
http://paperpile.com/b/UjyjEG/JZ69
http://paperpile.com/b/UjyjEG/JZ69
http://paperpile.com/b/UjyjEG/A7b4
http://paperpile.com/b/UjyjEG/A7b4
http://paperpile.com/b/UjyjEG/A7b4
http://paperpile.com/b/UjyjEG/A7b4
http://paperpile.com/b/UjyjEG/cfOE

in single-molecule localization microscopy using the deep neural network BGnet," Proc. Natl. Acad.
Sci. U. S. A. ​117​, 60–67 (2020).

20. A. Durand, T. Wiesner, M.-A. Gardner, L.-É. Robitaille, A. Bilodeau, C. Gagné, P. De Koninck, and
F. Lavoie-Cardinal, "A machine learning approach for online automated optimization of
super-resolution optical microscopy," Nat. Commun. ​9​, 5247 (2018).

21. L. Wang, W. Yan, R. Li, X. Weng, J. Zhang, Z. Yang, L. Liu, T. Ye, and J. Qu, "Aberration
correction for improving the image quality in STED microscopy using the genetic algorithm,"
Nanophotonics ​7​, 1971–1980 (2018).

22. M. Weigert, U. Schmidt, T. Boothe, A. Müller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C.
Broaddus, S. Culley, M. Rocha-Martins, F. Segovia-Miranda, C. Norden, R. Henriques, M. Zerial,
M. Solimena, J. Rink, P. Tomancak, L. Royer, F. Jug, and E. W. Myers, "Content-aware image
restoration: pushing the limits of fluorescence microscopy," Nature Methods ​15​, 1090–1097 (2018).

23. W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer, "Deep learning massively accelerates
super-resolution localization microscopy," Nature Biotechnology ​36​, 460–468 (2018).

24. A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, "Deep Learning for Computer
Vision: A Brief Review," Comput. Intell. Neurosci. ​2018​, 7068349 (2018).

25. B. Richards, E. Wolf, and D. Gabor, "Electromagnetic diffraction in optical systems, II. Structure of
the image field in an aplanatic system," Proc. R. Soc. Lond. A Math. Phys. Sci. ​253​, 358–379
(1959).

26. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional
neural networks," Communications of the ACM ​60​, 84–90 (2017).

27. V. Lakshminarayanan and L. Srinivasa Varadharajan, "Zernike Polynomials," Special Functions for
Optical Science and Engineering (n.d.).

28. K. I. Bae, J. Park, J. Lee, Y. Lee, and C. Lim, "Flower classification with modified multimodal
convolutional neural networks," Expert Syst. Appl. ​159​, 113455 (2020).

29. Y. Chen, "LSTM recurrent neural network prediction algorithm based on Zernike modal
coefficients," Optik ​203​, 163796 (2020).

30. S. Saha, "A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way,"
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-w
ay-3bd2b1164a53.

31. V. Jain, "Everything you need to know about “Activation Functions” in Deep learning models,"
https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-lea
rning-models-84ba9f82c253.

32. S. Cai, Y. Shu, G. Chen, B. C. Ooi, W. Wang, and M. Zhang, "Effective and Efficient Dropout for
Deep Convolutional Neural Networks," arXiv [cs.LG] (2019).

33. "PyTorch," ​https://pytorch.org/.
34. "TensorBoard," ​https://www.tensorflow.org/tensorboard.
35. D. Mack, "How to pick the best learning rate for your machine learning project,"

https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5
acb418f9b2.

36. S. Doshi, "Various Optimization Algorithms For Training Neural Network,"
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6.

37. D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," arXiv [cs.LG] (2014).
38. N. S. Keskar and R. Socher, "Improving Generalization Performance by Switching from Adam to

SGD," arXiv [cs.LG] (2017).
39. S. Bock, J. Goppold, and M. Weiß, "An improvement of the convergence proof of the

ADAM-Optimizer," arXiv [cs.LG] (2018).
40. A. Collette and Others, "h5py: HDF5 for Python, 2018," URL www. h5py. org (n.d.).

27

http://paperpile.com/b/UjyjEG/cfOE
http://paperpile.com/b/UjyjEG/cfOE
http://paperpile.com/b/UjyjEG/cfOE
http://paperpile.com/b/UjyjEG/cfOE
http://paperpile.com/b/UjyjEG/EnNx
http://paperpile.com/b/UjyjEG/EnNx
http://paperpile.com/b/UjyjEG/EnNx
http://paperpile.com/b/UjyjEG/EnNx
http://paperpile.com/b/UjyjEG/EnNx
http://paperpile.com/b/UjyjEG/6gb8
http://paperpile.com/b/UjyjEG/6gb8
http://paperpile.com/b/UjyjEG/6gb8
http://paperpile.com/b/UjyjEG/6gb8
http://paperpile.com/b/UjyjEG/6gb8
http://paperpile.com/b/UjyjEG/XRFo
http://paperpile.com/b/UjyjEG/XRFo
http://paperpile.com/b/UjyjEG/XRFo
http://paperpile.com/b/UjyjEG/XRFo
http://paperpile.com/b/UjyjEG/XRFo
http://paperpile.com/b/UjyjEG/XRFo
http://paperpile.com/b/UjyjEG/P8QG
http://paperpile.com/b/UjyjEG/P8QG
http://paperpile.com/b/UjyjEG/P8QG
http://paperpile.com/b/UjyjEG/P8QG
http://paperpile.com/b/UjyjEG/9cOy
http://paperpile.com/b/UjyjEG/9cOy
http://paperpile.com/b/UjyjEG/9cOy
http://paperpile.com/b/UjyjEG/9cOy
http://paperpile.com/b/UjyjEG/BNvf
http://paperpile.com/b/UjyjEG/BNvf
http://paperpile.com/b/UjyjEG/BNvf
http://paperpile.com/b/UjyjEG/BNvf
http://paperpile.com/b/UjyjEG/BNvf
http://paperpile.com/b/UjyjEG/oiGy
http://paperpile.com/b/UjyjEG/oiGy
http://paperpile.com/b/UjyjEG/oiGy
http://paperpile.com/b/UjyjEG/oiGy
http://paperpile.com/b/UjyjEG/VlEa
http://paperpile.com/b/UjyjEG/VlEa
http://paperpile.com/b/UjyjEG/ZKj7
http://paperpile.com/b/UjyjEG/ZKj7
http://paperpile.com/b/UjyjEG/ZKj7
http://paperpile.com/b/UjyjEG/ZKj7
http://paperpile.com/b/UjyjEG/dXYK
http://paperpile.com/b/UjyjEG/dXYK
http://paperpile.com/b/UjyjEG/dXYK
http://paperpile.com/b/UjyjEG/dXYK
http://paperpile.com/b/UjyjEG/JLyW
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.
http://paperpile.com/b/UjyjEG/04jq
https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-learning-models-84ba9f82c253.
https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-learning-models-84ba9f82c253.
http://paperpile.com/b/UjyjEG/vEda
http://paperpile.com/b/UjyjEG/vEda
http://paperpile.com/b/UjyjEG/ljXZ
https://pytorch.org/
http://paperpile.com/b/UjyjEG/uu38
https://www.tensorflow.org/tensorboard.
http://paperpile.com/b/UjyjEG/sjhe
https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2.
https://medium.com/octavian-ai/which-optimizer-and-learning-rate-should-i-use-for-deep-learning-5acb418f9b2.
http://paperpile.com/b/UjyjEG/bFff
https://towardsdatascience.com/optimizers-for-training-neural-network-59450d71caf6.
http://paperpile.com/b/UjyjEG/akJ1
http://paperpile.com/b/UjyjEG/NQgh
http://paperpile.com/b/UjyjEG/NQgh
http://paperpile.com/b/UjyjEG/uVSa
http://paperpile.com/b/UjyjEG/uVSa
http://paperpile.com/b/UjyjEG/88NK

41. S. Ioffe and C. Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift," arXiv [cs.LG] (2015).

42. J. Benesty, J. Chen, Y. Huang, and I. Cohen, "Pearson Correlation Coefficient," in ​Noise Reduction
in Speech Processing​, I. Cohen, Y. Huang, J. Chen, and J. Benesty, eds. (Springer Berlin Heidelberg,
2009), pp. 1–4.

28

http://paperpile.com/b/UjyjEG/CZ3B
http://paperpile.com/b/UjyjEG/CZ3B
http://paperpile.com/b/UjyjEG/gWnC
http://paperpile.com/b/UjyjEG/gWnC
http://paperpile.com/b/UjyjEG/gWnC
http://paperpile.com/b/UjyjEG/gWnC
http://paperpile.com/b/UjyjEG/gWnC

