
Natural Language Set Expansion

Project Report

submitted to the

by

Florian Gwechenberger, BSc

Supervisor SUAS: DI Cornelia Ferner, BSc

Supervisor UMass: Prof. James Allan

Salzburg, September 2020

Details

Author Florian Gwechenberger, BSc

University Salzburg University of Applied Sciences

Degree Program Information Technology and Systems Management

Keywords Natural Language Processing,

BERT, Entity Set Expansion

Supervisor DI Cornelia Ferner, BSc

Abstract

This work elaborates on how contextualized word embeddings can be used to expand a set

of seeds given a predefined text corpus. Here, it is investigated how the so-called BERT

model can be used in a feature-based and a fine-tuned way for this particular problem.

The gained insights are subsequently used to design a complete pipeline that is able to

solve this problem even on a raw text corpus. The final experiments show that BERT

embeddings can successfully be used for such a task .They exceed all previous approaches

regarding precision and MAP score.

Contents ii

Contents

1 Introduction 1

2 Literature Review 4

2.1 Word Embeddings . 4

2.1.1 Word2Vec . 5

2.2 Contextualized Representations . 7

2.2.1 ELMo . 7

2.3 Attention . 10

2.3.1 Transformers . 11

2.3.2 Implementations of the Transformer 15

2.4 Bidirectional Encoder Representations from Transformers 16

2.4.1 BERT Input . 17

2.4.2 Fine-Tuning BERT . 18

2.4.3 Feature-Based BERT . 20

2.4.4 BERT Architecture . 20

3 Methodology 22

3.1 Problem Definition . 23

3.2 Extraction of Named Entities . 23

3.3 Feature-Based BERT Candidate Reducer 24

3.3.1 Implementation of the Reducer . 25

3.4 Fine-Tuned BERT as a Classifier . 28

3.5 Running the Pipeline in Production . 30

4 Experiments and Results 31

4.1 Dataset for Experiments . 32

4.1.1 Experiments on the Perfect Candidates 34

4.2 Extracting Candidates and Pre-Processing 34

4.3 KNN Candidate Reducer . 35

4.3.1 Analyzing Contextualized Embddings with tSNE 35

4.3.2 Recall of the Different Layers for the Reducer 38

4.3.3 Recall Curve of the Reducer . 40

4.4 Candidate Classifier . 42

4.4.1 Performance Measures . 42

4.4.2 Classifier on the Perfect Candidates 43

Contents iii

4.4.3 Classifier with the Reducer on the Perfect Candidates 44

4.5 KNN Baseline . 44

4.6 Complete Pipeline . 48

4.6.1 Choosing the Number of Candidates 48

4.6.2 Results of the System on all Candidates 49

5 Discussion 52

5.1 Examples of Entities for Correct and Wrong Results 53

6 Conclusion and Outlook 54

6.1 Future Steps . 54

List of Figures 56

List of Tables 58

List of Algorithms 59

References 60

Acronyms 66

1 Introduction

In the last years, the technologies behind Machine Learning (ML) algorithms, especially

in the field of Natural Language Processing (NLP), have improved beyond many expec-

tations. Because of that, a lot of research is currently trying to continually improve

state-of-the-art technologies, which can substitute past implementations. While in the

early work NLP was done by only using high-level features of a text, it further evolved

to neural methods, which are now further substituted by attention architectures. This

work describes how concepts like contextualized embeddings and attention mechanisms

can be applied to an unsolved problem, the so-called Entity Set Expansion (ESE) task

and outperform recent implementations.

ESE describes the task of expanding a predefined set of seeds with related entities to

expand the set. A simple example of such a system is illustrated in Figure 1.1. Here,

the input set contains the seeds ”Massachusetts”, ”Florida” and ”Texas”. This query set

seems to consist entirely of entities from the semantic group ”States in the USA”, thus

this set could be completed with the entities ”New York” or ”Ohio”. While this issue in

particular seems very trivial to solve, many sets can hardly be expanded without any

broader understanding of the context of the word. For instance, if the given set consists

of the countries ”France”, ”Great Britain” and ”Russia”, it can either be concluded that

the correct solution would be countries in Europe or allies in the second world war. In

previous work, there have been essentially two categories of approaches to this problem.

The first are web search-based applications like SEAL [1] or Lyretail [2], which rely on

an external search engine to parse documents for entities that match the same pattern as

the query seeds. The other approaches consider only a predefined text corpus of one or

multiple documents to expand the set. Thus the system needs to be more sophisticated

to recognize semantic similarities between the seeds. But on the contrary, the system can

solve a set in particular for this corpus and can also expand queries with unique seeds

that only appear in these documents.

Corpus-based set expansion applications are applied in various fields. For instance, they

can be a powerful tool to reduce the workload for other research projects in the area

of NLP. At this moment, creating a proper dataset is often done by humans, which is

a time-consuming, expensive as well as a cumbersome task. Furthermore, corpus-based

ESE systems are also used as a stand-alone application. For instance, as described in [3],

such a system is integrated into a recruiting tool to find the most suited employees or in

software development to find duplicates with a different description in error reports.

2

Corpus

Extract
Candidates

Candidate
Classifier

Massachusetts
Florida
Texas

New York
Ohio
· · ·

{ }

{ }

Figure 1.1: Entity Set Expansion pipeline visualized.

In the previous work, a corpus-based ESE basically consists of two components, as il-

lustrated in Figure 1.1. At first, candidates are extracted from a given corpus. These

candidates are then classified and all valid solutions are added to the set. In some of the

latter mentioned work, the extraction step is skipped and a set of proper candidates is

preselected. Therefore, these systems do not offer a concept for a complete pipeline, which

can be implemented for an actual system. These implementations solely focus on creating

a classifier optimized for these sets. Since the quality of the extracted candidates subse-

quently affects the results of the classifier, this work considers the candidate extractions

step as well. The remaining restriction is that the pipeline only expands sets containing

named entities. A named entity is a specific instance of a given group. For example,

”Canada” would be a named entity for the group countries, while ”David Bowie” would

be a named entity for the group musicians. Because the dataset provided to evaluate

the system consists merely of such named entities, the extraction step only parses named

entities. Still, the pipeline could also be used for different inputs.

Also, instead of using traditional technologies, this work employs state-of-the-art ML

technology called contextualized embeddings, already in the pre-processing as well as for

the final classifier, which leads to remarkable improvements of the results.

To establish a decent knowledge of this contemporary technology, the work elaborates in

Chapter 2 on the developments in the last years, which lead to the current technology

applied in this work. As the described work covers a variety of contemporary topics in this

field, the following work assumes basic knowledge of neural ML concepts from the reader

to keep this work as cohesive as possible. Here, the reader is referred to the additional

literature mentioned in the work. Based on these information, the subsequent Chapter 3

describes the architecture of the actual ESE system, while Chapter 4 shows the results

3

of the experiments of the system and investigates the impact of certain elements of the

pipeline.

2 Literature Review

Before any of the methods for the ESE task or the proposed findings can be further de-

scribed, it is important to introduce the related topics first. In Section 2.1, it is elaborated

on how the meaning words can be represented as embeddings and how these have been

utilized for the ESE task. Furthermore, it is demonstrated in Section 2.2 how the context

of words can be represented by a sequential Language Model (LM). In Section 2.3, a novel

attention network without any sequential elements called Transformer is presented, which

concepts are further developed in Bidirectional Encoder Representations from Transform-

ers (BERT) described in Section 2.4 to create strong contextualized embeddings.

2.1 Word Embeddings

Before text can be utilized in any NLP task, it needs to be processed into a suitable form

for applications. To create a more meaningful representation of the words than just simply

reading in each character after another, text is often converted into a distributed vector

representation, also referred to as embeddings. A common example of this is the bag of

word representation. A bag of words is defined over a predefined vocabulary and represents

the occurrences of each word in a sentence. Here, the binary representation of a word

is usually referred to as one-hot encoding. Although this representation seems intuitive,

it does not consider any relationship between the words themselves or the context they

appear in. In [4], it is elaborated how the textual context can be used to preserve the

similarities between words to some extend. If a word which is not common like ”tezgüino”

appears in the contexts ”A bottle of is on the table”, ”Don’t have before you drive”

and ” is made out of corn”, it can be inferred that this word might be some kind of

beverage. This assumption is especially useful for words that do not appear during the

training of a system.

The exact context matching of words is used in [5] for the ESE task. The authors propose

an unsupervised system called SetExpan, which is divided into two major steps. The

first extracts the exact context information from the seed entities out of the raw text.

Entities which share the exact same context are considered as candidates. The second

step is ranking the candidates based on how often the entities occur in these contexts.

SetExpan adds a solution after each iteration instead of ranking all the candidates at

once. Therefore, the seed set is growing and the performance of the system increases if

the solution is correct. But this does also allow the system to make incorrect assessments

2.1 Word Embeddings 5

CBOW Skip-gram

w(t+1)

w(t+2)

w(t-1)

w(t-2)

w(t+1)

w(t+2)

w(t-1)

w(t-2)

w(t) w(t)

INPUT OUTPUT INPUT OUTPUTPROJECTION PROJECTION

Figure 2.1: Word2Vec models illustrated as described in [6].

and thus, it might impair the precision of the system. This issue is named the semantic

thrift problem.

The SetExpan approach does only consider the lexical context information and ignores

any semantic information of the seed entities. Despite that this circumvents the problem

of polysemy words, there is no guarantee that each solution is represented in the exact se-

mantic matches. Especially in smaller corpora where candidates only appear very sparsely

in the whole corpus, it seems impracticable that there would be enough common contexts.

Therefore, the semantic information of the seeds itself should also be considered for the

ESE task.

2.1.1 Word2Vec

Mikolov et al. [6] proposes a neural word embedding representation, often referred to as

Word2Vec, which creates a single distributional representation for each word in the corpus.

It processes a vast amount of text into a low dimensional word embedding in a reasonable

amount of time while preserving the semantic similarities between words. Word2Vec

considers only a small context window for each word and can be trained on two different

tasks. As illustrated in Figure 2.1, one approach is skip-gram, which predicts the words

in the context with only the pivot word as input. The other is called the Continuous Bag

of Words (CBOW) approach and here, the model is trained on the context to predict the

pivot word. Here, the input and output of the model are represented as one-hot encoding

2.1 Word Embeddings 6

and the model for both objectives consists of a projection layer and a hidden layer. The

hidden layer consists of a single vector for each word in the vocabulary. In this embedding

space, words are closer to each other if they share similar semantic properties than others.

The vectors of the hidden layers are later used as word embeddings for other downstream

applications instead of the one-hot encoding. This procedure creates a valid representation

of words that only have a single distinctive meaning. It also makes it possible to pre-train

a model on a different and bigger text corpus to get a more generalized representation of

each word. Because of that, the use of Word2Vec or advanced models like Global Vectors

for Word Representation (GloVe) [7] or fastText [8] improved many NLP downstream

task, like word analogy tasks or Named Entity Recognition (NER).

However, the single context-independent representation is usually not desired for many

NLP applications and also not for the ESE task. There are a lot of scenarios where

a context-dependent representation is beneficial. A common issue while working with

single word representations are processing words that have multiple semantic meanings.

A trivial example of this is the word ”mouse”, which can be an animal or electric device.

In [3], SetExpander is proposed, which utilities the Word2Vec method for the set expan-

sion task. SetExpander tries to circumvent the issue of a single representation per word

by training multiple Word2Vec embeddings with different window size, to extract a repre-

sentation for each context window. Then, for every representation, the system calculates

the cosine distance to the centroid of all the seed embeddings. These metrics are then

forwarded into a Multilayer Perceptron (MLP) and ranked by the highest probability to

get the most likely candidates.

Based on the work in [5] and [3], CaSE is introduced in [9], which combines both the

context information as well as the semantics of the seeds. The candidates are extracted

by matching the context like in [5], though it uses a more sophisticated approach to

select more meaningful features of the context. Moreover, it also uses a one time ranking

of the words by comparing Word2Vec embeddings instead of iteratively increasing the

solution.

As mentioned before, for many downstream tasks, it is crucial to have a distinctive seman-

tic representation for every context. Since Word2Vec, there have been multiple approaches

to create representation from Word2Vec for each context. In [10], Word2Vec embeddings

are used to create a different static word representation for each word sense. But am-

biguous word meanings are not the only issues that come with the use of static word

embeddings. In [11], it is stated that a unique definition of similarity can not be ex-

plained by even monoseme words. For instance, the word ”cat” is closely related to the

2.2 Contextualized Representations 7

word ”dog” but also to the word ”tiger”. Therefore, it depends on the context of the word,

which of these proximities should be neglected.

2.2 Contextualized Representations

More recent work on embeddings in NLP focuses on contextualized representations, which

represent solely the semantic meaning of the context of a word and not the word itself.

Therefore, contextualized representations make it possible to classify a word even if it

has never been seen before during training. Also, polyseme words can be distinguished

between their multiple meanings for each different context the word appears in. Figure

2.2 shows how the same word can have various contexts and therefore have different

proximities to other words.

data

columns set

array

rows
table

furniture

tableware
meal

restaurant

table

company

people entertain

game

table

mouse

mouse

mouse

mickey

disney

rat

computer
office

minney

pluto

keyboard
cursor

rodent

hamster

Figure 2.2: Ambigous meaning of words

2.2.1 ELMo

The mentioned approaches in Section 2.1 are either capable to represent the literal context

of a word or the syntax and semantic context like Word2Vec. Combining these two

elements already showed an increase of performance in [9].

Embeddings from Language Models (ELMo) introduced in [12] is a novel system that

creates contextualized representations by employing multiple Long Short-Term Memory

2.2 Contextualized Representations 8

(LSTM) networks [13]. Here, a bidirectional LSTM (biLSTM) is used to create an LM

from both sides of the context. This leads to the following probability distributions

p(t1, t2, t3, . . . , tN) =
N∏
k=1

p(tk|t1, t2, . . . , tk−1) (2.1)

p(t1, t2, t3, . . . , tN) =
N∏
k=1

p(tk|tk+1, tk+2, . . . , tN) (2.2)

where the probability for a sequence is predicted based on the previous context tokens.

The second LSTM has the same objective but in the reversed order.

ELMo is employing a deep biLSTM architecture, which means that there are several

LSTM layers stacked on each other. The output of the highest layer is then used for the

training of the LM task. This makes it possible to pre-train the model on a big training

dataset in an unsupervised way, which can be reused for many downstream applications.

Here, a context-independent representation can be used as input for the ELMo model.

Once the model is trained, it can be used to create a representation, as illustrated in

Figure 2.3. Here, the output of different layers, called the intermediate states of the

model, can be utilized to create a single representation that can then be used as the input

for the following application. The embedding is a combination of each of the intermediate

states. Therefore, the resulting representation is not representing a single word, it is

representing the complete context. This means that if the word itself gets replaced by a

word with a similar semantic meaning, the context should barely change. Therefore, this

representation is supposed to be reliable even for ambiguous words.

For a downstream application, the ELMo model is applied to create a contextualized

representation of each word in the corpus. As mentioned before, this makes it possible

to have multiple embeddings for the same word as input. This increases the number

of training data significantly compared to static word embeddings. The downstream

application is using this representation for supervised objectives, whereby the weights of

the ELMo model can either be frozen or trained together with the downstream task. The

second method is known as fine-tuning of a model. Because the ELMo weights are pre-

trained in an unsupervised manner, but the downstream task is then trained supervised,

it is stated in [12] that ELMo is a semi-supervised model.

There have been several approaches that are using biLSTM similar to context2vec de-

scribed in [14] or Contextualized Word Vectors (CoVe) in [15]. Despite that, ELMo

received more acknowledgment. It is one of the few implementations that increased the

2.2 Contextualized Representations 9

Layer 2

Layer 1

Encoding

biLSTM biLSTM biLSTM

biLSTM biLSTM biLSTM

ELMo

The fox jumped

Figure 2.3: ELMo illustration as described in [12].

performance for several different NLP tasks, including question answering, textual entail-

ment, semantic role labeling, NER and sentiment analysis.

Despite that ELMo has led to strong improvements, it still suffers from some major weak-

nesses. Although LSTMs have been a significant improvement to traditional Recurrent

Neural Network (RNN), they are still prone to the vanishing gradient problem described

in [16] and it is stated in [11] that the single representation for a context representation

causes a bottleneck problem. Also, even with a biLSTM, it is only possible to train an

LM in one direction. A recent development named self-attention promises to counteract

these problems.

2.3 Attention 10

2.3 Attention

Basically, an attention mechanism focuses stronger on particular elements of a given input.

For instance, in computer vision, attention might be drawn to a specific area of the image,

which is more relevant for a task than the rest. In NLP, attention architectures have been

trained on Neural Machine Translation (NMT) objectives. In language translation, one

of the key problems is that languages usually not only differ from their vocabulary but

also their grammar rules. Therefore, a simple mapping of words in the language is not

reasonable.

In [17] and [18], an encoder-decoder architecture is used in which a biLSTM creates a

single representation of one word in a sentence and an LSTM creates the translated word.

Therefore, all of the information needs to be stored in this single representation, which

neglects the information of the contexts. In [19], an encoder-decoder architecture with an

additional attention component in-between is proposed. Instead of only processing the

representation output of the word, it is taking the weighted sum of all representations in

the context. In other words, each weight draws different attention to each word in the

context. The trained model should be able to focus on weights that are related to the

word and ignore irrelevant ones. For instance, in the sentence ”The animal didn’t cross

the street because it was too tired.” for a model, it might not be clear if the pronoun

”it” describes the noun ”animal” or ”street”. Especially if a recurrent model is used, it is

difficult for a model to infer a connection to the word at the beginning of the text. As

illustrated in Figure 2.4, an attention mechanism is able to take words into account, which

are more distant. This clarifies the actual meaning of a word, which can further be used

in the other language as well.

In [21], this attention is referred to as soft-attention, whereas hard-attention weights

d
id

n
’t

c
r
o
s
s

T
h
e

a
n
im

a
l

b
e
c
a
u
s
e

itt
h
e

s
t
r
e
e
t

t
ir
e
d

.w
a
s

t
o
o

d
id

n
’t

c
r
o
s
s

T
h
e

a
n
im

a
l

b
e
c
a
u
s
e

itt
h
e

s
t
r
e
e
t

t
ir
e
d

.w
a
s

t
o
o

d
id

n
’t

c
r
o
s
s

T
h
e

a
n
im

a
l

b
e
c
a
u
s
e

itt
h
e

s
t
r
e
e
t

t
ir
e
d

.w
a
s

t
o
o

d
id

n
’t

c
r
o
s
s

T
h
e

a
n
im

a
l

b
e
c
a
u
s
e

itt
h
e

s
t
r
e
e
t

t
ir
e
d

.w
a
s

t
o
o

Figure 2.4: An illustration of the attention mechanism as described in [20].

2.3 Attention 11

each value as either true or false similar to a one-hot encoding. Here, attention is also

divided into global and local attention. While global attention takes the whole document

into account, local attention only processes a small context window. In [22], a model

is proposed that applies attention weights to the intra-relations of the current sequence.

This attention network is described as intra-attention, or nowadays usually referred to as

self-attention, is able to infer based on words that are distant in the previous sequence.

Although adding an attention mechanism to a recurrent network reduces the mentioned

bottleneck problem as well as the vanishing gradient problem, the architecture still suffers

from these problems caused by the LSTM.

2.3.1 Transformers

In 2017, Vaswani et al. [23] introduced the Transformer, which is an NMT encoder-decoder

architecture, without any recurrent or convolution layers. Instead, it employs so-called

self-attention layers, which do not process the context sequentially but utilize the whole

context unidirectional at once. For that, it uses the encoded input and applies the dot

product to three weighted matrices, subsequently generating three different matrices called

query, key and value.

In many systems, for instance, a database or a search engine, a certain query request

is used to retrieve a value. Here, the query is matched with the most likely key, which

then returns the corresponding value. In self-attention, the key and query should amplify

the corresponding value. Because the relationship between query, key and value is barely

elaborated in the paper and also due to that the Transformer is a relatively new technology,

there is currently no contemporary literature that covers the Transformer architecture in

detail. Therefore, the work also refers to the content of the blog article in [24], which

deconstructs the elements of the Transformer.

The weight matrices for query, key and value have the same shape, which is composed of

the sequence length times a predefined size for the embeddings. Each of these matrices

is multiplied with the input embedding, which creates the corresponding matrices Q, K,

and V . These matrices are combined as follows:

Attention(Q,K, V) = Softmax(
QKT√

dk
)V (2.3)

where K and Q are multiplied together to get the magnitude of the attention for every

word to each other. Taking the dot product of similar vectors lead to the highest value,

2.3 Attention 12

Scaled Dot-Product
Attention

Linear Linear Linear

Concat

Linear

Q K V

h

Figure 2.5: A multi-head attention layer as described in [23].

while vectors pointing in the opposite direction to the lowest negative score. To reduce

the magnitude of strong attention, the score is normalized by the dimensionality of the

embeddings. This score is put into a softmax function to get a probability distribution

of the words, and, therefore, the weights for each of the words. These weights are then

multiplied to the matrix V to get the attention score for each of the self-attention layers.

As a result of this architecture, the three weight matrices are the only trainable parameter

of the self-attention layer.

Vaswani [23] states that a single self-attention layer can not consider all facets of the

attention. A single layer would need to take all characteristics of a sentence into ac-

count and thus, the resulting attention would be an averaged attention lacking significant

information. To counteract this, the Transformer is employing, as illustrated in Figure

2.5, multiple self-attention layers, also referred to as attention heads. Here, each attention

head creates a smaller embedding, which is then concatenated into a single representation.

The model proposed in the Transformer paper consists of 8 attention heads. Therefore,

each head is creating an embedding with 64 dimensions so that the resulting embedding

has a dimensionality of 512 again.

This multi-head attention component itself consists only of matrices calculations and

linear functions. Therefore, it is not possible to train the parameter of the multi-head

attention layer without adding any additional non-linear component. Because of that, a

feedforward network is added to each multi-head attention layer in the architecture.

2.3 Attention 13

Multi-Head
Attention

Multi-Head
Attention

Input
Embedding

Add & Norm

Add & Norm

Inputs

Output
Embedding

Outputs

Masked
Multi-Head
Attention

Multi-Head
Attention

Add & Norm

Add & Norm

Multi-Head
Attention

Add & Norm

Fully Connected

Softmax

Output
Probabilities

Positional
Encoding

Positional
Encoding

Encoder

Decoder

Figure 2.6: The Transformer architecture as illustrated in [23].

As illustrated in Figure 2.6, the final architecture employs these multi-head-attention

layers in N encoder and decoder blocks. The encoder utilizes the input embedding and

the decoder the output embedding. Depending on the task, the output embedding can be

equal to the input or, for instance, in language translation, it can be the same text but in

a different language. The overall architecture of the transformer encoder consists of one

multi-head attention, a Fully Connected (FC) layer and for each of them a normalization

layer. The normalization layer reduces the co-variate shift by scaling the output of the

components.

The decoder of the Transformer, illustrated in Figure 2.6, is predicting the next token

based on the output of the last encoder layer, also referred to as the intermediate state,

and the output sequence before the current element. Therefore, the decoder adds an

additional multi-head attention layer to the input, which masks all future words. Also,

2.3 Attention 14

the normalized output of this masked multi-head attention layer is the input embedding

for the value and the intermediate state is the input for query and key. The output of the

last decoder block is then forwarded into a single dense layer to calculate the probabilities

for the next word in the sequence. To be able to efficiently train the model to predict

a sequence, a method described by Goodfellow et al. [25] as teacher-forcing is applied.

Here, instead of adding the predicted word to the output embedding, the correct solution

is added. Therefore, the model is able to learn to make correct assumptions. At test

time, with no reference output available, the model prediction is concatenated to the

sequence.

In a model that merely consists of non-recurrent elements, positional information about

the input sentence is not taken into account at all. Thus, the model is not able to keep

track of the relative position of the embeddings in the sentence, which might be useful in-

formation for inference. Therefore, the authors add an additional positional embedding to

the input representation. Instead of using simple positional information like incrementally

increasing a counter, the Transformer employs the two oscillating functions

PE(pos,2i) = sin(pos/100002i/dmodel) (2.4)

PE(pos,2i+1) = cos(pos/100002i/dmodel) (2.5)

where PE is not a scalar value, but an embedding of the size of the model. Also, the

first Equation 2.4 is concatenated to all even and Equation 2.5 to all odd embeddings.

The authors choose these functions since they assume that the Transformer is able to

process longer sequences in testing than in training with such a positional signal. It is

worth considering if adding the positional embedding to the input representation would

distort the information of the input. Usually, concatenating the embedding avoids this

issue. However, it seems that adding the positional embeddings has no negative effect on

the final results.

Also, even after adding this encoding, the positional information are distorted after each

layer. Therefore, to keep this positional encoding information also in the deeper layers,

each normalization layer is connected with a residual connection to its input.

Vaswani et al. [23] states that the Transformer does not only exceeds the performance

of many state-of-the-art systems. Its architecture can be better trained in parallel than

recurrent approaches because LSTMs are processing the inputs sequentially, making it

2.3 Attention 15

difficult to run them efficiently on a GPU. The Transformer circumvents this problem by

reading in the complete input at once. Also, using a Transformer architecture has direct

effects on the run-time of the model. While each layer of an LSTM has a computational

complexity of O(n · d2), where n is the sequence length and d the dimensions of the

embedding, the complexity of a self-attention layer is O(n2 ·d). Although longer sequences

have a stronger negative impact on the run-time of the Transformer architecture, it can

be used for much deeper architectures.

2.3.2 Implementations of the Transformer

Because the Transformer architecture introduced many innovative concepts, it has in-

spired a new area of research. Recent work is experimenting with the components of

the Transformer in a variety of ways to improve the performance for specific downstream

applications. For instance, a Transformer architecture called Transformer-XL is proposed

in [26], which can process much longer context windows by adding recurrence to the

Transformer and therefore mitigating the run-time problem of long input sequences afore-

mentioned.

In 2018, researchers of the institution OpenAI proposed in [27] a Transformer network,

which is nowadays known as Generative Pretrained Transformer (GPT). The authors

propose a transformer network, which is merely using the decoder blocks of the original

paper. Furthermore, the model is composed of only the masked multi-head attention

layer, due to that it receives no intermediate state from an encoder block, which makes the

second multi-head attention head obsolete. Here, similar to the ELMo model described in

Section 2.2.1, the model is initially pre-trained on the LM task to increase the performance

of the system. Later, the pre-trained system is fine-tuned for each downstream task.

However, all of these models are processing the input in an undirectional LM, where the

task remains directional. To counteract this issue, BERT offers a different approach,

which leads to significant improvements.

2.4 Bidirectional Encoder Representations from Transformers 16

2.4 Bidirectional Encoder Representations from Transformers

In 2018, a language representation architecture called BERT had drawn major attention

because it added only some simple conceptional modifications to the Transformer model,

which lead to significantly better results for wide fields of tasks like question answering,

sentence-pair completion or the General Language Understanding Evaluation (GLUE)

score described in [28]. The BERT model is introduced in [29] and in contrast to the

vanilla implementation of the Transformer, the model solely consists of encoder blocks

to create contextualized embeddings. Since the findings on BERT are relatively recent,

the following elaboration relies strongly on the original publication of BERT described in

[29].

As mentioned before, contextualized embeddings of a pre-trained model have successfully

been used in a feature-based approach, like in ELMo described in Section 2.2.1 or a fine-

tuned matter like in GPT described in Section 2.3.2. Although BERT can be applied for

both of these approaches, the model is often fine-tuned on a specific task. As mentioned in

the sections before, the predecessors of BERT are only trained on a directional LM task,

which is contrary to the actual concept of context in text. Finding a suited nondirectional

task is more difficult than it seems in the first moment because observing a task like next

word prediction from both directions at the same moment would already give away the

solution.

The BERT paper proposes a training method that combines two different tasks. The first

task is inspired by the so-called cloze task, which describes the challenge of predicting

masked out words in a text. Therefore, the model is referred to in the paper as Masked

Language Model (MLM). This task makes the training completely undirectional and thus,

the model learns both sides of the context. The second task is the so-called Next Sentence

Prediction (NSP) task. Here, two sentences are given to the model, and the classifier

decides whether the second sentence is subsequent to the previous one. The original paper

states that LM lacks the ability to capture relationships between sentences. Adding the

NSP task should counteract this issue. This statement is further discussed in Chapter 5.

Both tasks make it possible to pre-train BERT in a completely unsupervised manner on an

unlabeled text corpus. The paper describes that although MLM have a marginally longer

convergence time compared to classical left to right models, they increase the performance

significantly.

2.4 Bidirectional Encoder Representations from Transformers 17

Despite its slightly misleading name, a sentence in BERT does not necessarily represent

a valid sentence but rather a longer text sequence. To keep the sentence consistent with

the paper, the phrasing sentence is also used in the work.

2.4.1 BERT Input

As depicted in Figure 2.7, BERT requires a modified input to train on the two described

tasks. The authors convert the input to a specific sequence, referred to as the token em-

bedding. Every sequence starts with a classifier token, the two sentences are separated

by a separation token, as well as the second sentence ends with another separation to-

ken. As an addition to the MLM task, 15% of the tokens are predicted during training

simultaneously. From these training tokens, 80% are replaced by a mask token, 10% by

an arbitrary token and for the remaining 10% the tokens are not replaced at all. This

permutation increases the bias towards the actual word, while other terms still cannot be

neglected completely.

In contrast to the previously described models, BERT does not use the representation

of the whole words as input. As it is inefficient to train a model on a vocabulary that

contains any possible combination of characters, BERT utilizes subword-tokens instead.

Therefore, words with similar meaning like ”reading”, ”reads”, ”reader” can be split up

into ”read” and the suffix of the word and subsequently trained together. To tokenize

words into subwords, BERT employs the pre-trained WordPiece model. As described in

[30], the WordPiece model has a fixed vocabulary that is created once. At first, the model

is initialized with all possible characters to create the complete vocabulary. Therefore

each word is tokenized into single characters. Next, an LM is trained on these tokens and

all possible combinations of the vocabulary are combined together to predict the most

likely solution for the LM. This token-pair is then added to vocabulary and this process

is repeated until the vocabulary reaches a predefined size. This model can then be used

to tokenize words. If a word is still not present in the vocabulary, it gets split up into

smaller subwords. Therefore the WordPiece model can process any arbitrary word.

Because the WordPiece model is pre-trained, the segmentation of the words is determin-

istic, which means that a word, no matter in what context it appears in, will always be

tokenized the same. Alternatively, in [31], the SentencePiece model is described, which

tokenizes words based on the sentence they appear in. Therefore, SentencePiece is only

deterministic if words are used in the same context. However, SentencePiece requires only

a fraction of the vocabulary size to create similar results.

2.4 Bidirectional Encoder Representations from Transformers 18

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11

E[CLS] E[SEP]Emy EisEdog E[SEP]Eis ElikesEcute E##ing E[SEP]

EA EAEA EBEA EBEA EBEA EB EB

[CLS] my dog is cute he likes play ##ing

+ + + + + + + + + + +

+ + + + + + + + + + +

Positinal
Embeddings

Segment
Embeddings

Token
Embeddings

Input [SEP] [SEP]

Figure 2.7: BERT token input illustration as described in [29].

Similar to the Transformer architecture, a positional embedding is added to the tokenized

embedding. While the positional embedding serves the same purpose for BERT as in the

Transformer described in 2.3.1, it is not using a predefined signal. Instead, the positional

embedding of BERT is randomly initialized and subsequently trained to create compatible

positional embeddings for the model.

The authors of the paper also add the so-called segment embedding to increase the ability

to distinguish the input between the two sentences based on the separation token. There

are only two different types of segment embeddings. The first is added to each token

before the first separation token and the second for the rest of the tokens. Both are

randomly initialized embeddings with the shape of maximum sequence length times the

size of the embedding.

This complete input is forwarded through the BERT model to create a contextualized

embedding for each input token, including the special tokens.

2.4.2 Fine-Tuning BERT

After the complete BERT model is trained on the NSP and the MLM task, the model can

be applied to different downstream tasks. For that, the pre-trained model is extended by

other components to be able to fulfill the task. For instance, as illustrated in Figure 2.8,

in NSP classification, an additional FC Layer is added on top of the output of the last

layer of the model. Since the classifier token represents a combination of all the token

embeddings in the previous layer, it is possible to neglect all other output embeddings of

the sequence.

It is currently unknown how the classifier token can represent the complete sequence. One

2.4 Bidirectional Encoder Representations from Transformers 19

[CLS] [SEP] [SEP]Tok 1 Tok N Tok NTok 1... ...

E[CLS] E[SEP] E ′
[SEP]E1 EN E ′

NE ′
1

... ...

Encoder Encoder Encoder Encoder

Encoder Encoder Encoder Encoder

C T[SEP] T ′
[SEP]T1 TN T ′

NT ′
1

... ...

FC

Figure 2.8: BERT fine-tuned for sentence classification described in [29].

of the authors of the paper Jacob Devlin pointed out1 that it is unclear how the classifier

token is representing the sentence. He suspects that the classifier token is some kind of

average pooling over the embeddings of the sentence. Therefore, it seems not reasonable

to compare the representations of solely the classifier token of a different sentence like it

is done with words in Word2Vec described in 2.1.

For other tasks like NER, the pre-trained BERT model is fine-tuned differently. Here, the

output embedding of each token is used for the classification because the system is not

classifying the complete sequence rather than certain subword sequences of the sentence.

In contrast to the classifier token, single subword tokens can be directly compared to other

subword tokens.

During training, the weights of the BERT model can either be frozen and only the weights

of the FC layer can be trained or the complete model can be trained for the downstream

task. Because BERT consists of many trainable parameters, the first approach does

require fewer resources, while training the complete model does not necessarily lead to

better results.

1https://github.com/google-research/bert/issues/164#issuecomment-441324222

2.4 Bidirectional Encoder Representations from Transformers 20

2.4.3 Feature-Based BERT

Besides fine-tuning the complete BERT model for a specific task, it is also possible to

extract token representations from different layers. The original paper states that BERT

can also be used as a feature-based model for downstream tasks similar to ELMo described

in Section 2.2.1. For this approach, the weights of the pre-trained model are frozen and

after the input is forwarded through the model, the embeddings can be extracted from

each layer. These embeddings are latter used for the downstream task. It is also possible

to combine multiple of these intermediate embeddings, which can achieve even better

results than with embeddings from the top layer.

In order to provide a better understanding of why some layers might be more suitable for

certain downstream than others, the attention weights for the layers are further elaborated.

In [32], the behavior of the underlying attention mechanism for different layers of BERT

is investigated. The authors state that attention heads can capture syntactic and co-

reference attributes without any label data during training. This might be an indicator,

why the performance of BERT exceeds other models. They also describe that attention

heads in the same layer often focus on these attributes in a similar way. While attention

heads in the early layers focus more generally on all tokens, the later layers focus stronger

on specific tokens or patterns. For instance, attention heads in the last layer focus strongly

on the punctuation tokens of a sentence. Despite that this behavior might be important

for the NSP task, it could also explain why other downstream tasks perform better from

features from previous layers.

2.4.4 BERT Architecture

As mentioned before, the BERT architecture is closely related to the original Transformer

architecture. However, because BERT is only creating the contextualized embedding of

the input sequence, it is only using the encoder blocks. Also, BERT increases the number

of parameters to be able to create more extensive representations. The original BERT

paper proposes two models, the BERT base model and the BERT large model. As shown

in Table 2.1, the base model has, to make it more comparable, the same parameter as the

GPT model described in Section 2.3.2. The BERT large model does require much more

parameter and thus more resources to train. Still, this leads to a remarkable increase in

the performance of the system and therefore, it might be reasonable to choose the more

complex architecture after-all.

2.4 Bidirectional Encoder Representations from Transformers 21

Parameter GPT BERT Base BERT Large

Encoder Blocks 12 12 24
Embedding Dim 768 768 1024
Attention Heads 12 12 16

FC Neurons 3072 & 768 3072 & 768 4096 & 1024∑
Parameters 117 million 110 million 340 million

Table 2.1: Parameters of Transformer based models in comparison as described in [29].

The BERT paper also states that a higher number of parameters consequently increases

the performance of the model. Recent work investigating the complexity of the model

showed that a model with much less parameter could lead to similar results. Also, a

model with the same number of parameters can be utilized more efficiently to exceed

results. In [33], a BERT architecture called distilBERT is proposed. This model requires

only 60% of the parameters, making it 60% faster, while 97% of the original performance

is retained. Here, the original BERT model is distilled, which means that the model with

less parameter is trained based on the results of the original model and, therefore, only

recreates the model’s behavior. While the final model is much smaller, it still requires a

pre-trained BERT model, as training the distilBERT architecture from scratch does not

lead to satisfying results.

The rapid improvements of the BERT model have also been applied to previous architec-

tures to fortify the approaches. The aforementioned GPT model is further optimized in

[34], now known as GPT-2. As a comparison, the GPT-2 architecture adopts the idea of

a tokenized input, but instead of using the WordPiece tokenization, it applies the Byte

Pair Encoding (BPE) algorithm described in [35]. The algorithm is in essence identical

to the to WordPiece, with the exception that it adds the most frequent subword pairs

instead of the most likely one.

3 Methodology

After elaborating over the recent developments in the field of NLP, from static word em-

bedding to contextualized BERT models, this chapter proposes a novel ESE pipeline. This

system combines the previously mentioned technologies which exceed the performances

of all other compared implementations. Further, the pipeline is able to run as a real-time

application on any text corpus, after the corpus is pre-processed. This chapter describes

the inner-working of each component of the pipeline and how they are finally used in an

application.

As mentioned in the previous chapters, an ESE system is composed of two major com-

ponents, a candidate extraction tool as well as a candidate ranker or classifier. Despite

that this structure leads to descent results, the described methods suffer from extracting

entities only based on lexical patterns in the corpus, especially in small datasets. This

work proposes a system that extracts all possible named entities in the corpus. There-

fore, the recall in the extracting step of entities should be maximized. Unfortunately,

the system extracts a humongous amount of candidates, which can not be classified by

any state-of-the-art classifier. Thus, a new component, an entity reducer, is added to

the system depicted in Figure 3.1 to remove unlikely candidates and therefore be able to

employ any classifier. For this purpose, this work processes contextualized embeddings

to reduce the number of candidates as far as necessary and employs a more sophisticated

classifier, a fine-tuned BERT architecture, to rank the remaining candidates. The first

tests described in Section 4 on two datasets have already shown the potential of such a

setup.

The following sections describe each of these three components in more detail and elab-

orate on how the state-of-the-art technology explained in the previous chapter has been

applied to solve this task. It is also briefly discussed why certain technologies have been

chosen and also the reasons why certain setups lead to better results.

Corpus

Extract
NER

Entity
Reducer

Candidate
Classifier

Figure 3.1: Entity Set Expansion pipeline

3.1 Problem Definition 23

3.1 Problem Definition

In this work, the ESE problem is also defined as extracting a list of named entities Ê

from a predefined text corpus T . The pre-processing of the list Ê resolves into a set of

entities E. Further, the system is reducing the vast number of entities E to a candidate

set CS based on a query seed set S, while CS ⊂ E and CS * S. After that, the candidates

CS are ranked and the top nc candidates are selected as set CE. Finally, the seed set is

expanded as Sexpanded = S ∪ CE.

3.2 Extraction of Named Entities

As described before, the first step of the system is to retrieve all possible named entities Ê

from the text corpus. Because this can be a time-consuming task, it is important to use a

lightweight module, which is still extracting enough relevant entities. Due to that, it seems

beyond the purpose of this work to implement a complete NER tool. Thus, a third-party

module is chosen to extract the entities from the text corpus. Here, the module spaCy2 is

included in the system, which applies a Convolutional Neural Network (CNN) architecture

with an attention mechanism. Since CNN implementations are highly scalable, spaCy has

a fast run-time and in addition to that, it offers an intuitive Application Programming

Interface (API) to integrate the module into other systems. It also achieves similar recall

values as, for instance, the well-known Stanford Core NLP Toolkit3, which employs a

Conditional Random Fields (CRF) architecture described in [36]. For further details on

using CNN in NLP, the reader is referred to [37].

The extracted seeds Ê are then further pre-processed to filter out obvious misclassifications

and also duplicate entities are merged together, resulting into a smaller set E. Though the

reducer element filters out implausible candidates, it still important to scale the number

of candidates as good as possible, considering each of these candidates has a direct effect

of O(#E) on the run-time of the subsequent system.

2https://spacy.io/
3https://stanfordnlp.github.io/CoreNLP/ner.html

3.3 Feature-Based BERT Candidate Reducer 24

3.3 Feature-Based BERT Candidate Reducer

As elaborated earlier, the entity extraction component retrieves a vast amount of candi-

dates. Many of these candidates E are valid named entities. However, they are not related

to most of the seeds in the set S. Therefore, the vast number of candidates severely slow

down the system and can also impair its precision. Because of that, an ESE system ben-

efits if a scalable component is added, selecting only candidates related to the given seed

sets.

A common way to solve such a problem is to group data with a fast clustering algorithm.

To be able to cluster the candidates, it is first necessary to create some kind of repre-

sentation for the candidates. Here, many implementations use Word2Vec embeddings

described in Section 2.1 to create a static embedding for each candidate. However, first

experiments with these representations do not lead to satisfying results.

In the following section, the more novel BERT embeddings are further investigated to

approach this problem. However, it is not possible to directly use BERT as representations

for specific words. As described in Section 2.2, contextualized embeddings from models like

BERT are representing the examined context, rather than single words. A straightforward

approach to create a representation for the words with a contextualized model would

be to merely use the tokenized candidate without any context as input and create a

joined representation out of the output tokens. Nevertheless, this approach completely

contradicts the concept of contextualized models and would not lead to satisfying results.

Therefore, it is essential to process the full context of a candidate, even if only a few

tokens are relevant.

In [38], a baseline is implemented for the ESE task, which classifies contextualized BERT

embeddings with a K-Nearest Neighbors (KNN) classifier to select the best candidate.

Here, the context of every appearance of an entity is joined to a single embedding. In-

tuitively, creating a single embedding out of many contextualized embeddings seems to

stand in contrary to the basic concept and the benefits of contextualized embeddings

elaborated in Section 2.2. However, it is described in [39] that although contextualized

representation can scatter over the complete 768-dimensional embedding space, words

from a similar context still tend to cluster in a certain area of the space. Based on this

assumption, words can be grouped together depending on their position in the embedding

space, but especially for polyseme words, losing information might be unavoidable.

Since candidates usually appear several times in a corpus and the WordPiece model splits

up the candidates into several tokens, it is necessary to join these words somehow to-

3.3 Feature-Based BERT Candidate Reducer 25

gether. In the proposed pipeline, these embeddings are united by simply averaging all

of these embeddings to keep the classifier as fast as possible, instead of using a more

complex pooling method. At first, averaging high dimensional embeddings appear to be

too trivial. Nonetheless, as elaborated in [40], averaging WordPiece token leads to the

best results, compared to other approaches like max-pooling or just selecting the first

token. Furthermore, as mentioned in Section 2.4.2, one of the authors suspects that the

classifier token in BERT is merely applying something similar as an average pooling over

the complete sentence. There has also been work which inspected the effect of averaging a

different kind of embeddings. Here, as described in [39], it can be sufficient to just average

unrelated embeddings.

Based on these findings, in the reducer, each appearance of a candidate is forwarded

through the BERT model and the corresponding embeddings of the candidates are then

averaged to a single embedding, which are then ranked by a KNN classifier. First imple-

mentations of this concept already showed some adequate results, although the system

misclassifies entities that are quite similar to each other. However, this setup barely loses

any recall by reducing a lot of unrelated entities to only a few candidates. These findings

indicate that this feature-based BERT approach can also be used as a very fast entity

reducer.

As introduced earlier, it is also possible to select the intermediate embeddings for the

BERT model for downstream tasks. To investigate this idea further, this work analyses

the performance of each layer of a pre-trained distilBERT model in Section 4.3.2. The

gathered results show that processing the embeddings from an intermediate layer of the

model, instead of the last layer, increases precision significantly. Therefore, the final model

uses the embedding of the fourth layer from the distilBERT model.

3.3.1 Implementation of the Reducer

The following section describes the implementation of the reducer in more detail. For

that, Algorithm 1 outlines the procedure in a simplified form in pseudo-code.

Since the BERT model can only process a fixed sequence length, the input is utilized in

sentences, as shown in line 2. This makes it also possible to run the following steps of

the reducer in parallel. As described in line 3, the whole sentence is tokenized into a list

by the WordPiece model, described in Section 2.4.1. If the length of this list exceeds the

BERT model’s predefined input length, this list is split into smaller parts. The tokens are

then forwarded through the model, which results in a list of embeddings.

3.3 Feature-Based BERT Candidate Reducer 26

Algorithm 1 BERT KNN Reducer
Input:
E . . . Extracted Entities
S . . . Query Seeds
T . . . Text Corpus
nc . . . Number of Candidates
Output:
CS . . . Set of Candidates

1: function create candidate set
2: for sentence ∈ T do
3: tokens← [CLS] + WordPiece(sentence) + [SEP]
4: embeddings← BERT (tokens)
5: for e ∈ E do
6: if sentence contains e then
7: posistions← find WordPiece(e) in tokens
8: sumembe ← sumembe + sum(embeddings[positions])
9: countere ← countere + length(positions)

10: for e ∈ E do
11: avgembe ← sumembe/countere

12: for s ∈ S do
13: CS ← CS add nearest neighbors(s, ei, k = nc) : ei in E ∧ E 6* S

Because named entities in the input are usually split into several tokens, it is necessary

to assign the entities to the tokens they are composed of. Thus, it is possible to trace the

embeddings to the entities later. As shown from line 5 to line 7, the token positions are

obtained for every entity which appears in the sentence. In line 8, the embedding of each

position of the entity is summed and subsequently added to another embedding. After

the complete text corpus is processed, in line 11, the summed embedding for a specific

embedding is divided through the number of appearances of the entities in the overall

text corpus to get a single averaged embedding for the entity finally.

Subsequently, these averaged embeddings can be utilized to find the nc nearest neighbors

in a similar way as for word embeddings explained in Section 2.1.1. Here, the euclidean

distance is calculated instead of other similarity measures like the cosine distance. Eval-

uating the cosine distance can not be optimized and thus requires a brute-force approach

with a run-time of O(N2). In contrast, the run-time of the euclidean distance can be

reduced by applying an optimization algorithm like the ball algorithm described in [41],

which leads to a run-time of O(N logN). The run-time of the reducer makes a significant

difference in the run-time of the whole pipeline. The number of entities might increase

significantly, severely impacting the usability of the entire system. Also, the reducer al-

3.3 Feature-Based BERT Candidate Reducer 27

Tom Han ##ks was born Tom Han ##ks was born

Tom Han ##ks was born

e1 e2 e3 e4 e5 tTomHanks

avg(e1, e2, e3)

BERT

Tom Han ##ks was born

t1 t2 t3 t4 t5

e4 e5

t4 t5

Tom Han ##ks was born

tTomHanks t4 t5

Figure 3.2: Lookup of entities split into several WordPiece tokens.

ways mitigates the set of candidates to almost the same number of entities, no matter how

many entities are given as input. Therefore, the run-time of the classifier is not affected

by the actual number of inputs. After checking for redundancies in the set, the candidates

are used for the classification task.

The previously described algorithm is merely a simplification of the actual implementa-

tions and therefore, it does not consider many details. For instance, in the implementation,

a lookup list is created, as illustrated in Figure 3.2, to make it more efficient to find the

embedding of the entities in the tokenized list. Here, the tokenized list tokens are dupli-

cated. For each position of an entity, the WordPiece token is replaced by a unique token

id for this entity, which is higher than the highest valid WordPiece token id. After the

original tokens are forwarded through the BERT model, it is only necessary to consider

tokens that exceed the WordPiece model’s vocabulary and average them.

Further, the reducer is divided into several steps to make the system more efficient. At

first, the complete text corpus is tokenized and all of the entities are matched within the

tokenized list. The following step is to calculate the average embeddings and subsequently,

the last step is to find the nearest neighbors.

3.4 Fine-Tuned BERT as a Classifier 28

BERT

S 1

E

C

FC

[CLS] [seed] [seed] [SEP] [SEP]S 2 S 3

Figure 3.3: Input for fine-tuned BERT classifier.

3.4 Fine-Tuned BERT as a Classifier

As established in Section 2.4, recent work showed promising results in employing a fine-

tuned BERT model as a classifier. This work, therefore, explores the potentials of using

such a model as a final classifier for the ESE task.

As explained previously, the performance of Transformer networks like BERT benefit if

the information from the context is utilized. Thus it is important to process candidates

with contexts they appear in instead of simply using only the entities. Therefore, each

entity is extracted inside a particular context window to capture a specific context. Here,

the size of the window is an important parameter. While too small windows do not capture

enough information about the context, bigger context windows might capture too much

unrelated context information and thus lead to misleading inferences. It is also important

to capture the context information of all the query seeds, due to that a single seed can

usually not be addressed to only one semantic group. Another requirement is that a

classifier should also be able to process multiple inputs without changing the architecture

or even retraining the system to a specific number of input seeds.

To fulfill all of these criteria, this work proposes a fine-tuned BERT model, illustrated in

Figure 3.3. Here, the input for a BERT classifier consists of several seeds in a textual

context as the first sentence and one candidate in a context as the second sentence. The

context is extracted in the same step as the reducer extracts the average embedding for

the candidates. Additionally, a new special token, a seed token, is placed between each of

the seed contexts. This token supports the model to recognize different contexts and make

it more convenient to vary in the number of input seeds without retraining the complete

model. Therefore, the candidates are classified based on their context, while the number

of input seeds remains flexible.

3.4 Fine-Tuned BERT as a Classifier 29

It is quite common that entities appear multiple times inside a corpus. An intuitive ap-

proach would be to predict the probability of a candidate by combining each combination

of the input context and then, for instance, averaging the results or choosing the highest

value. For example, if a query consists of 3 seeds and each entity appears 100 times in

the corpus, the system needs to predict the value 1.000.000 times before making a final

classification. Hence, only a few contexts should be selected from all possible contexts.

Experimenting with an additional classifier to predict the best context has not improved

the results. Therefore, the textual contexts of the values are chosen randomly.

To be able to fine-tune the described model, it is necessary to add a classifier to the model.

For that, a simple FC layer is used to process the embedding of the classifier token. The

training of this architecture is based on the Cross-Entropy (CE) described in [42], which

is in essence defined as

CE(x) = −
∑
k

pk(x) · log(qk(x)) (3.1)

where p describes the actual distribution and q the prediction distribution for each class

k. The model itself is trained on the so-called Binary Cross-Entropy (BCE), which is

merely considering two possible classes, 0 and 1. For the optimizer, Adam, with an initial

learning rate of 0.00002, is applied.

Since each test set only consists of a few entities, it is necessary to sample the dataset.

Otherwise, the model learns to classify all entities as 0. Because of that, in each epoch,

only twice as many incorrect entities are selected then the correct ones. It is also possible

to weight the given contexts to circumvent the class imbalance problem. The BCE loss

in the implementation uses the loss function from the PyTorch library4. This offers a

parameter to weight the impact for specific input. This would make it possible to train

one context of every entity in each epoch.

4https://pytorch.org/docs/master/generated/torch.nn.BCEWithLogitsLoss.html

3.5 Running the Pipeline in Production 30

3.5 Running the Pipeline in Production

The proposed system can also be implemented as an actual application. Here, as illus-

trated in Figure 3.4, the candidate extraction step, as well as the embedding and context

extraction part from the reducer, can be considered as pre-processing. It is only necessary

to run this pre-processing step initially a single time. The subsequent steps, the KNN

reduction of the candidates and the actual BERT classifier, are considered the applica-

tion. As mentioned before, these are the only necessary elements to train the classifier

and latter to expand the seed set. Since the pre-processing consists of the by far most

time-consuming steps, the actual application is quite fast.

KNN
Reducer

Candidate
Classifier

Corpus

Extract
NER

Create
AVG Emb

&
Context

{ } { }

Pre-Processing

Application

SolutionsSeeds

Figure 3.4: Proposed Entity Set Expansion pipeline in two steps.

4 Experiments and Results

This chapter gives an overview of the conducted experiments and the corresponding re-

sults. First, the hardware and the dataset used for the tests are explained in more detail.

Furthermore, this chapter analyses the candidate extraction component in Section 4.2,

the subsequent candidate reducer component in Section 4.3 and the fine-tuned classifier

in Section 4.4. The results of this pipeline are compared to a baseline introduced in

Section 4.5 to show the final classifier’s impact. The actual results are then shown and

analyzed in Section 4.6.

The following results are implemented and executed on two different clusters provided

by the Center for Intelligent Information Retrieval, which is a research facility of the

University of Massachusetts Amherst.

Especially for a bigger dataset with many named entities, applying the whole pipeline

can require a lot of resources. Therefore, the pipeline is split up into smaller steps and

all elements of the pipeline except for the classifier can be run in parallel on different

clusters.

Gypsum Swarm2

number nodes 25 100
GPU Tesla M40 -

CPU Xeon E5-2620 v3
Xeon E5-2680 v4
Xeon Gold 6240

number CPUs 5 10
GB/CPU 10 15

Table 4.1: Clusters used for the experiments.

The two clusters described in Table 4.1 are used for the experiments. The Gypsum

cluster can run jobs on a GPU, while the Swarm2 cluster is designed solely to run CPU

intensive jobs. Therefore, to limit the CPU load on the Gypsum cluster, the spacy NER

with the subsequent pre-processing, the tokenization of the sentence, the NER lookup

in the sentence and the context extraction required for the classifier are executed on the

Swarm2 cluster. The remaining steps, the forwarding of the tokenized sentence to create

the averaged embedding and the final training and testing of the model, are run on the

Gypsum cluster.

4.1 Dataset for Experiments 32

The system itself is implemented in Python with the following third-party software tools:

Software Vesion

Python 3.7.4
CUDA 9.2.88
cuDNN 5.0
spaCy 2.2.4

scikit-learn 0.22
Hugging Face Transformers 2.5.1

PyTorch 1.4.0

Table 4.2: Information about software used in the experiments.

As already mentioned before, the pipeline integrates the spaCy library for the NER task.

Further, it applies the scikit-learn library5 for the KNN classification of the reducer.

Here, the algorithm option is set to ”auto”, which automatically chooses the fastest KNN

algorithm for the given data. Further, the pre-trained un-cased distilBERT model is

integrated from the Hugging Face library6, which is used for the reducer element as well as

for the fine-tuned classifier. The classifier itself is fine-tuned with the PyTorch library7.

4.1 Dataset for Experiments

The following sections elaborate on the text corpus and the corresponding labeled sets on

which the systems are trained and tested on.

For the final evaluation, two datasets are processed through the complete pipeline de-

scribed in Chapter 3. Both datasets are provided by the Text REtrieval Conference

(TREC)8. The first corpus is referred to as AP89. It is composed of a collection of news

articles of Associated Press from the year 1989. The second dataset, called WaPo contains

news and blog articles from the years 2012 until 2017 from The Washington Post. These

datasets have already been used in previous publications, making the retrieved results

better comparable to other systems.

Generating a fair test dataset for a specific corpus to evaluate an ESE application can be

an extensive task. The test data should contain as many sets as possible. In contrast,

5https://scikit-learn.org/stable/modules/neighbors.html
6https://huggingface.co/transformers/model doc/distilbert.html
7https://pytorch.org/
8https://trec.nist.gov/

4.1 Dataset for Experiments 33

the sets should not tend to a specific semantic topic and the solutions should remain

reasonable considering the given query seeds. Also, because text documents are usually

quite massive, creating a test dataset manually can not be considered as a valid option.

For instance, previous work, as in [38], is evaluating the whole system on 40 sets for the

wiki corpus and 15 for the AP89 corpus. The author did not release the used dataset,

which makes it hard to assess if the sets are valid.

This work employs a toolkit called DBpedia9, which is further fortified by a research

group at the CIIR for a similar project in this field. Here, DBpedia is creating, based on

the current information on Wikipedia, a graph-based ontology that links entities to their

semantic group. DBpedia can also be used to annotate entities from any text corpus,

which is further utilized to create the entity sets. However, this entity extraction toolkit

is considered as web-based set and not as a corpus-based set expansion because it extracts

information from an external source, in this case, Wikipedia.

AP89 WaPo

size 147MB 1.5GB
sets 120 528

sets > 8 60 242
sets > 10 48 197

Table 4.3: Information about the entity sets used for the final evaluations

As illustrated in Table 4.3, applying the toolkit to the two datasets extracts a descent

amount of sets.

Still, extracting labeled sets from the documents lead to several issues. One is the so-

called co-reference problem, which essentially describes the issue that different words can

have the same meaning. For instance, ”John F. Kennedy” is also often referred to as

”JFK”. Therefore, even if an ESE system predicts the correct named entity, there may

be a different name for the entity used in the test dataset. Also, because the DBPedia

parses the topic name of a Wikipedia page and not the actual extracted entity from the

text corpus, the used name of some solutions do not even appear in the text corpus.

Another issue by evaluating the ESE system with these sets is that entities are grouped

based on the current information from DPedia. For instance, the AP89 dataset contains

the entity ”Donald Trump” who was already a known entity back in 1989 but was not a

politician. Still, in the test set, he is a correct solution for the queries ”Republican Party

9https://wiki.dbpedia.org/

4.2 Extracting Candidates and Pre-Processing 34

Presidents of the United States”. Here, a perfect corpus-based ESE system would not

expand this set correctly.

However, every system tested on these documents is also affected by this issue. Thus the

co-reference problem is neglected.

4.1.1 Experiments on the Perfect Candidates

Specific components of the system are first applied on a small selection of candidates to

create a better understanding of the effect on each component of the pipeline. This makes

it easier to evaluate the performance of one specific component. For instance, employing

the classifier to all candidates would not only impair the performance of the classifier, but

it would also take an enormous amount of time to finally get results.

For that reason, the set of candidates for some experiments consist solely of entities, which

are the correct solution in at least one set. Therefore, this list is referred to in the following

sections as ”perfect candidates”. Although applying these sets leads to good results, the

results are not representative for the final application. To get similar results for the actual

system, both the entity extractor and the reducer would need a recall of 100%.

4.2 Extracting Candidates and Pre-Processing

Before named entities can be extracted from the provided text corpus, the original file

must be transformed into a generic text file format. In the case of the AP89 dataset, the

provided file was in an XML format, while the WaPo was in a JSON format. Here, to get

merely the relevant text, any tags or meta-information are discarded. While the resulting

text is processed in the following NER step, both the reducing as well as the classification

step are processing a lowercased version of the text.

As mentioned before, the test set of correct solutions consists of names for entities that

do not appear in the original text corpus. Many of the given entity names do not appear

in the corpus at all, while the NER tool also misses some entities. Due to that, the recall

is even before the reducer is applied already below 0.931 for the AP89 and 0.806 for the

WaPo dataset.

Furthermore, after the reducer is applied, a simple pre-processing is done to remove ob-

vious incorrect or redundant candidates. For instance, if one of the query seeds is ”New

York” an allegedly obvious correct solution for the pipeline is the candidate ”the New

4.3 KNN Candidate Reducer 35

York”. The NER tool is not supposed to have any meta-information of any named enti-

ties. Therefore, it is not aware that ”New York” is the actual named entity and makes

based on a misleading context a wrong assumption. Since both entities occur in very

similar contexts, the reducer considers it as a valid candidate and thus, the final ranker

classifies it as a correct solution. This particular problem can easily be circumvented by

simply removing every candidate, which contains a seed entity.

This entity extraction step is applied to both AP89 and the WaPo dataset. This subse-

quently leads to 335.009 entities for AP89 and 2.575.017 entities for the WaPo dataset.

Despite that the content of the two datasets is completely different, it almost seems that

there is a linear correlation between the size of the dataset shown in Table 4.3 and the

number of extracted entities.

4.3 KNN Candidate Reducer

The section analysis the performance of the entity reducer, which is described in more

detail in Section 3.3. In essence, the reducer’s main purpose is to mitigate the number of

candidates that would otherwise impair the classifier’s performance while preserving the

correct solutions. This is done by averaging and subsequently clustering the contextualized

embeddings of each word.

Based on the actual test data, this section shows how the candidates are reduced to

only a few candidates. This process is recreated visually with a t-Distributed Stochastic

Neighbor Embedding (tSNE) to create a more general understanding of this process. After

that, the actual performance of the reducer is analyzed. For the reducer, the more crucial

information is the number of remaining candidates, rather than the ratio between correct

and wrong candidates. Therefore, the reducer is evaluated on the recall.

4.3.1 Analyzing Contextualized Embddings with tSNE

Section 3.3 already discussed the question, how the concept of averaging embeddings

introduced is sufficient. To further demonstrate that these assumptions apply for this

particular task, the contextualized embeddings are further investigated. For that, the 768

dimensional embeddings are illustrated with a tSNE introduced in [43]. The following

plots only consist of the 648 perfect candidates of the smaller AP89 dataset, to keep the

plot as clear as possible.

4.3 KNN Candidate Reducer 36

At first, the contextualized embedding of each appearance of a word is illustrated in Figure

4.1. In the scatter plot, each color represents a different perfect candidate.

Figure 4.1: A tSNE visualization of all contextualized embeddings of the entities from the 648 perfect
candidates of the AP89 dataset.

It is visible that especially entities that frequently appear in the corpus create a big, but

still consistent cluster. This supports the assumption that the average embedding is, for

most clusters, a valid representation of all the contextual embeddings.

Even for the perfect candidates, there are clusters that consist of embeddings from many

different entities. Also, as described in Section 4.1, in the complete pipeline, many wrong

assumptions are candidates that are often closely related to the correct solution or even a

different name for the same entity. These incorrect solutions are often part of the entity

clusters.

After the embeddings are combined to a single representation, the word representations

are clustered. The illustration Figure 4.2 shows a tSNE for word representations with the

corresponding semantic group from the test dataset as the color for this specific word.

4.3 KNN Candidate Reducer 37

30 20 10 0 10 20 30

40

30

20

10

0

10

20

30

40

Figure 4.2: A tSNE visualization of all averaged contextualized embeddings of the entities. Each color
represents a semantic group, to which the entity belongs to.

Despite that many words of the same semantic group are in the same cluster, many cluster

consist of multiple semantic groups. For many smaller clusters, this might be an accurate

visualization, since many entities might be valid solutions for several different seed sets.

Also, there are several bigger clusters that contain several smaller sub-clusters. Here, a big

cluster represents geographic entities and a smaller cluster represents geographic entities

in Europe.

In order to better illustrate these big clusters, Figure 4.3 shows the same scatter plot with

only a few selected semantic groups. The plot shows that the bigger cluster on the bottom

left consists of people entities, while the cluster on the top-right consists of geographical

entities.

4.3 KNN Candidate Reducer 38

30 20 10 0 10 20 30

30

20

10

0

10

20

30

40

presidents of the united states
cecil b. demille award golden globe winners
countries in africa
countries in europe
capitals in europe

Figure 4.3: A tSNE visualization of the averaged embeddings from the five biggest semantic groups.

This illustration also reveals that entities closely related but do not belong to the semantic

group, like countries to their capitals, still tend to be near each other. This behavior leads

to many misclassifications, even if only the perfect candidates are considered.

4.3.2 Recall of the Different Layers for the Reducer

Since the intermediate layer’s features have increased the performance of other applica-

tions in NLP, the recall values are also investigated for the reducer in more detail. For

that, the recall values of every layer are compared in Figure 4.4. The plots reveal that the

use of the intermediate layer’s embeddings can increase performance. If only the reducer

is considered, the layers four and five lead to the best recall. However, in the final pipeline,

in which all components are put together, the fourth layer leads to the best results. It is

also visible that the recall values for the AP89 dataset are up to about 10% higher than

for the WaPo dataset.

4.3 KNN Candidate Reducer 39

0 1 2 3 4 5 6

Layer
0.00

0.05

0.10

0.15

0.20

0.25

Re
ca

ll
3 seeds
5 seeds

(a) AP89

0 1 2 3 4 5 6

Layer
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Re
ca

ll

3 seeds
5 seeds

(b) WaPo

Figure 4.4: Recall of the reducer for around 100 candidates applied to all candidates for both datasets.
The bar plots show the results for two different query sizes three and five seed.

4.3 KNN Candidate Reducer 40

4.3.3 Recall Curve of the Reducer

In this section, the recall-candidate curves for the fourth layer are interpreted in detail.

Inspecting these curves should create a better understanding of which interval the reducer

is losing relevant entities. Therefore, it should be possible to determine the optimum

number of candidates.

As mentioned in Section 4.1, not all valid solutions exist in the original corpus. Thus,

the pipeline can not reach a recall value of 100%. Therefore, the pipeline, as well as the

reducer, are independently analyzed. At first, the recall curve of the reducer is further

inspected. Since the recall drops the most for the last thousand entities, the first plot

is depicted logarithmic. Figure 4.5a shows this plot for both datasets using three query

seeds, while the experiments for using four and five query seeds lead to similar conclusions.

The plot illustrates that the reducer can keep higher recall values for the AP89 corpus

than the WaPo corpus. This is likely caused since the WaPo dataset consists of about

eight times more entities than the smaller AP89 dataset. Therefore, the reducer curve is

shifted to the right. Furthermore, the plot also illustrates that the reducer can remove

many irrelevant entities without losing a lot of entities for the AP89 dataset. For instance,

for the AP89 if the candidates are reduced to 1000 candidates per seed, 99.75% of the

candidates are removed. However, only 25% of the relevant information is lost.

The results from the experiment can also be used to determine how many candidates

would be favorable considering merely the reducer. An intuitive approach for choosing

the number of candidates would be to examine the plot with linear scales of the same

results illustrated in Figure 4.5b. Here, the resulting graph can be described as ”elbow-

plot”. For such a graph a heuristic approach to determine the best value can be edge

before the plot is stagnating. Based on this assessment, for these datasets, the optimal

number of candidates would be between 1000 and 2000 candidates.

4.3 KNN Candidate Reducer 41

101 102 103 104 105

Number of Candidates

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

AP89 - Complete Pipeline
AP89 - Reducer
WaPo - Complete Pipeline
WaPo - Reducer

(a) Logarithmic plot of the recall

0 1000 2000 3000 4000
Number of Candidates

0.2

0.4

0.6

0.8

Re
ca

ll

AP89 - Complete Pipeline
AP89 - Reducer
WaPo - Complete Pipeline
WaPo - Reducer

(b) Linear plot of the recall

Figure 4.5: Plots of the recall for both datasets. The plots show both the recall curve of considering only
the data provided from the NER as well as the actual recall on the actual test dataset. The
features are extracted from the fourth layer of the pre-trained distilBERT model.

4.4 Candidate Classifier 42

4.4 Candidate Classifier

In this section, the final element of the pipeline, the fine-tuned classifier, is further inves-

tigated. As mentioned earlier, it is not reasonable to apply the classifier to all extracted

candidates. To still be able to examine the performance of merely the classifier, the per-

fect candidates are used instead of all candidates. This makes these results completely

independent from the entity reducer. This section, therefore, shows how the different

context sizes of the classifier affect the performance. It also elaborates on the question,

how much context is already captured by the entity reducer.

4.4.1 Performance Measures

It is more important for the classifier to evaluate the ratio of correct entities in the

extracted set, rather than how many entities from the solutions are remaining. Thus,

instead of considering a metric like the recall, the precision is calculated instead. Here,

the precision for the first k elements of a set is denoted as P@k.

Since the entity set expansion task can also be described as a ranking problem, the Mean

Average Precision (MAP) score mentioned in [44] is compared as well. The MAP score

measures the precision of different recall steps. Here the average precision of the result

can be described as

AP =
1

|Rel|

k∑
i=1

relevant(i) · P@i (4.1)

where k denotes the size of the set of correct solutions. The function relevant(i) describes

if the entity at position i is correct. If the entity is valid, the corresponding value is 1,

otherwise, it is 0. As mentioned before, P@i is the precision for the first i entities and

|Rel| describes the total number of relevant entities.

Entities that do not appear in the solution set are considered a precision of 0. Therefore,

the MAP score increases if the number of elements grows since the set might capture more

entities. For multiple queries, the mean of the average precision is calculated as

MAP =
1

N

N∑
i=1

APi (4.2)

where N denotes the number of queries.

4.4 Candidate Classifier 43

In the previous work like SetExpand [5] or in [38], solely the MAP score is used to analyze

the performance of the system. But in these papers, the MAP score decreases from a

very high score continuously to lower values, if the size N increases. This indicates that

in these papers, entities that are outside the range of the set are ignored. If that is the

case, the described scores would be higher as they actually are. Thus, the results can

hardly be interpreted. For instance, if the system is only able to expand only one value

correct, but classifies it correctly on the first position, it seemingly performs better than

a system that recognizes all values but places an incorrect solution on the first position.

Furthermore, as results in [9] show that the results of SetExpan [5] and SetExpander [3]

are much lower than in the original papers.

4.4.2 Classifier on the Perfect Candidates

As already mentioned, the classifier can not be used on all the extracted candidates on

its own. However, it is still important to investigate the effect of the reducer on the final

classification. Furthermore, it is also relevant to show how the behavior of the classifier

changes if it is applied to a vast number of candidates. Therefore, this section analyzes the

classifier’s results if it ranks the perfect candidates from both datasets. Here, two models

are trained with different context sizes. One model is trained on the biggest context

possible for three seeds and one solution. The second employs a smaller context of the

size of 40 tokens.

Metrics MAP@100 P@5 P@10

Query Seeds 3 5 3 5 3 5

Classifier Small Context 0.264 0.324 0.404 0.387 0.465 0.438
Classifier Big Context 0.184 0.227 0.281 0.268 0.330 0.308

Table 4.4: Results for the fine-tuned classifier trained on three seeds, which is applied to the perfect
candidates for the AP89 dataset.

Compared to other approaches, the results shown in Table 4.4 seem to be already quite

promising. In comparison, in [9], SetExpander, SetExpan and CaSE have been tested on

the same dataset and lead to noticeable lower results than the proposed classifier.

Further experiments showed that combining the two different contexts can increase the

precision of the classifier. The reason behind this might be that while the bigger context

captures the context well, it also gets a lot of unrelated context information. The smaller

4.5 KNN Baseline 44

context is not affected by the misleading context information, but on the other hand,

might lack information for the broader context.

4.4.3 Classifier with the Reducer on the Perfect Candidates

After showing the precision of the entity classifier based on different context sizes, the effect

of the reducer on the subsequent classifier is further investigated. Table 4.5 illustrates the

precision for the same two models, as in Table 4.4, after the perfect candidates are reduced

to 100 candidates.

Interestingly, although the perfect candidates set consists only of a few candidates, adding

the reducer seems to increase the performance noticeably. This behavior indicates that

the reducer already captures information of the bigger context, which is beneficial for the

classifier that can only process the smaller context.

Metrics MAP@100 P@5 P@10

Query Seeds 3 5 3 5 3 5

Classifier Small Context 0.351 0.387 0.496 0.522 0.465 0.475
Classifier Big Context 0.319 0.340 0.432 0.427 0.421 0.418

Table 4.5: Results for the fine-tuned classifier and the entity reducer applied to the perfect candidates for
the AP89 dataset.

4.5 KNN Baseline

The following section describes a baseline, which is essentially an abstraction of the pro-

posed system. Therefore, the baseline is more lightweight but still exceeds many of the

previous methods.

As described in Chapter 3, utilizing merely the features of BERT can already lead to

reasonable results for entity reducer. Therefore, this work compares the results of a

simple KNN classifier as a baseline to the more sophisticated pipeline. Since the baseline

is less complex than the complete pipeline, the proposed method should at least slightly

exceed the results of the baseline.

The algorithm of the baseline is similar to the one of the reducer described in Section

3.3 except that instead of considering the nearest neighbors of each seed individually,

the solutions are the nearest candidates to all query seeds. All seeds are combined to a

4.5 KNN Baseline 45

single embedding by averaging the embedding of each query seed. Calculating neighbors

like this reduces the run-time of the classifier substantially since it is only necessary to

calculate the required K candidates. In contrast, considering the nearest entities to all

seeds requires calculating the distances to all candidates for each seed. The baseline

algorithm leads to better results if it is applied as a classifier. However, the approach

mentioned in Section 3.3 still has better recall values, especially if a larger number of

candidates are considered.

The parameters of the baseline are optimized as well, to make the baseline results better

comparable to the final pipeline. However, the only adjustable parameter for the baseline

is the used embedding layer, from which the features are extracted. For that, the precision

for each layer are further analyzed and are shown in Figure 4.6. Both plots show that

for the AP89 as well as for the WaPo dataset, the features of the fourth layer lead to the

best performances considering the precision for the classifier. Therefore, the embeddings

of this layer are employed for the final classification task.

Besides that, the plots also reveal that the baseline results improve if fewer query seeds

are provided. This is surprising because it seems more natural that the ESE task becomes

easier if more seeds are provided. A possible explanation for this is that with a higher

number of seeds, it is more likely that at least one embedding of a seed differs too much

and distorts the averaged embedding. Also, since there are a finite number of solutions for

each seed set, a bigger query set leads to less possible valid answers, making the expansion

task harder.

The baseline classifier is also applied to only the perfect candidates, which results are

illustrated in Figure 4.7. The plots show that the baseline classifier has the marginally

best performance if the fifth layer’s embeddings are used. This indicates that the lower

layers of such a model can better separate between noise and the perfect candidates. In

contrast, if the given candidates only consist of valid candidates, the layer does not have

a big effect on the classifier anymore.

4.5 KNN Baseline 46

0 1 2 3 4 5 6

Layer
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ec

isi
on

3 seeds, P@5
3 seeds, P@10
5 seeds, P@5
5 seeds, P@10

(a) AP89

0 1 2 3 4 5 6

Layer
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pr
ec

isi
on

3 seeds, P@5
3 seeds, P@10
5 seeds, P@5
5 seeds, P@10

(b) WaPo

Figure 4.6: Precision of the baseline applied on all candidates for both datasets. The bar plots show
the results for two different query sizes, with three and five seeds, and the precision values
considering five and ten solutions.

4.5 KNN Baseline 47

0 1 2 3 4 5 6

Layer
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

3 seeds, P@5
3 seeds, P@10
5 seeds, P@5
5 seeds, P@10

(a) AP89

0 1 2 3 4 5 6

Layer
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ec

isi
on

3 seeds, P@5
3 seeds, P@10
5 seeds, P@5
5 seeds, P@10

(b) WaPo

Figure 4.7: Precision of the baseline applied on perfect candidates for both datasets. The bar plots show
the results for two different query sizes, with three and five seeds, and the precision values
considering five and ten solutions.

4.6 Complete Pipeline 48

4.6 Complete Pipeline

After analyzing each element of the pipeline individually, the following section evaluates

the system’s performance if every component, the entity extractor, the KNN reducer and

the classifier are put together. To be able to analyze this pipeline’s performance, the

system is compared to the KNN BERT baseline described in Section 4.5. For the final

evaluation, only the pipeline and the baseline are applied to all candidates.

4.6.1 Choosing the Number of Candidates

For the complete system, the number of remaining candidates after reducing the extracted

entities has a direct effect on the classifier performance. As already introduced in Section

4.4.2 and Section 4.4.3, applying the classifier to all candidates can decrease the precision,

since it is possible that a correct solution is coincidentally in a rather unsuited context.

Also, especially if there are many candidates, it is possible that an incorrect candidate

is put in a perfect context. However, selecting only a few candidates might remove too

many candidates.

To assess the number of candidates fairly, the system is first tested on some of the training

data. These tests indicated that around 100 candidates would be the optimum number of

candidates. Running the same experiments on the actual test data support this assump-

tion. As illustrated in Figure 4.8, the pipeline reaches a peak at around 50 candidates

and the precision continuously decreases as the number of candidates increases. However,

evaluating the system on 100 candidates seems to lead only to slightly worse precision for

the optimal number of candidates for these test data. This shows that the approximation

of 100 candidates is a valid value.

First observations of the MAP score indicate that the score increases if more candidates

are selected. This can be caused since it is more important for the MAP score to capture

all entities. However, this work is more interested in a system that can expand a set

correctly rather than expanding it with all solutions. Therefore, the system is optimized

to the precision, not on the MAP score.

4.6 Complete Pipeline 49

0 250 500 750 1000 1250 1500 1750 2000 2250 2500
Number of Candidates

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

Pr
ec

isi
on

 @
 1

0

3 Seeds - Baseline
3 Seeds - Pipeline
5 Seeds - Baseline
5 Seeds - Pipeline

Figure 4.8: Plot of trade-off between precision for the pipeline trained on five seeds considering the top
10 results and the number candidates. The constant baseline precision line is applied on all
candidates and not on the reduced number of candidates.

4.6.2 Results of the System on all Candidates

After comparing the pipeline to the previous approaches, the actual pipeline is applied to

all candidates. Based on the findings from Section 4.3.2 and Section 4.4.3, the fourth layer

of the pre-trained model is employed for the reducer and the classifier is solely trained on

a single smaller context window. The model itself is trained on 150 epochs and on three

and five seeds as input. The results from the final evaluation of the pipeline are compared

in Table 4.6 to the KNN baseline.

4.6 Complete Pipeline 50

Metrics MAP@100 P@5 P@10

Query Seeds 3 5 3 5 3 5

KNN Baseline 0.141 0.150 0.364 0.347 0.374 0.358

Pipeline trained on 3 seeds 0.227 0.158 0.347 0.311 0.155 0.176
Pipeline trained on 5 seeds 0.216 0.2680 0.380 0.415 0.383 0.427

(a) AP89

Metrics MAP@100 P@5 P@10

Query Seeds 3 5 3 5 3 5

KNN Baseline 0.034 0.045 0.137 0.1442 0.142 0.151

Pipeline trained on 3 seeds 0.049 0.046 0.131 0.090 0.128 0.116
Pipeline trained on 5 seeds 0.044 0.054 0.137 0.141 0.125 0.145

(b) WaPo

Table 4.6: Table shows the final results for the pipeline and the KNN baseline for all extracted candidates.
Here, the pipeline results, is trained on either trained on three or five seeds, are described.

The results show that the performances of the pipeline trained on five seeds exceed the

precision of all other compared methods for the AP89 dataset. The ESE pipeline with a

classifier trained on five query seeds adds almost 7% precision to the results than the sole

baseline. Still, compared to the previously published papers, the baseline itself is able

to outperform all other, much more complex and cumbersome methods. Reviewing the

presented results further, it becomes evident that the model trained on five seeds can also

be used with fewer query seeds, while the precision remains adequate. On the contrary,

if a model is trained on only three query seeds, classifying more than three seeds heavily

impacts the model’s performance. An explanation for this might be that a model with

more query seeds is trained on more combinations of the contexts with five seeds than a

model with three seeds. Also, the model with fewer input seeds is not trained to process

more than three seeds.

Among the pipeline results and the baseline, the precision for the WaPo dataset is only

a fraction of the AP89 dataset’s precision. Two findings indicate why the results for

the WaPo dataset are lower. First of all, as described in Section 4.1, the WaPo dataset

consists of many more entities. This can subsequently affect the performance of the

complete system. Furthermore, observing the test data reveals that the AP89 dataset

contains more geographical entities like countries. Completing a set of countries seems to

be easier than a set of musicians where there are extensive related answers. Also, these

4.6 Complete Pipeline 51

sets are more impaired by the aforementioned co-reference problem and inaccuracies in

the pre-processing.

In addition to that, the table also shows that for the WaPo dataset, the results for the

pipeline and the baseline are about the same. However, to reduce the time of the eval-

uation, the pipeline’s parameters, like the optimum number of candidates, epochs and

context size, are optimized based on the AP89 training data. In contrast, the baseline is

optimized for the WaPo dataset as well. Adapting the parameter for the WaPo dataset

might increase the performance of the pipeline remarkably.

Interestingly, all the other described methods described in Section 2.1 have the worst

performance for the AP89 dataset, since these approaches benefit from a larger quantity

of contexts. However, the proposed approach, especially the reducer component, can also

make strong embeddings even with a few contexts. Also, since the classifier’s context is

chosen arbitrarily, the current implementation does not benefit from multiple contexts.

In comparison to the results retrieved in Section 4.4.2 and Section 4.4.3, applying the

baseline and the complete pipeline on the extracted candidates leads to a stronger dis-

crepancy between the MAP score and the precision. This can be caused by the loss of

correct entities after reducing the candidates. For instance, as described before in Section

4.3, the reducer has a recall of 0.25 for the AP89 dataset. This has a stronger effect on

the MAP score since it takes all candidates into account.

It is also worth mentioning that if a human expands a given seed set, it should be easier

to identify the correct solutions if more query seeds are provided. However, compared

to all other models, the proposed model seems to be the only model that can utilize the

gained information from several seeds.

5 Discussion

The experiments in this work demonstrate that contextualized embeddings can be used

for the ESE task. They show that they exceed all compared methods. Nonetheless, the

proposed system can still be further developed.

First of all, the system utilizes the embeddings of the distilBERT model since it only

consists of six layers, which makes analyzing the effects of the layers more efficient. How-

ever, for future experiments in this field and for productive implementations, it might

be reasonable to use a more sophisticated pre-trained model. Besides the original BERT

model, a model with the same number of parameters but with better results is introduced

in [45]. The authors state that the original BERT model has several weaknesses. First of

all, the paper shows that the BERT model is severely under-trained. Further, the authors

suggest that the NSP task of BERT does not have any effect on the final results.

Another point of discussion is the processing of the contextualized embeddings. It is elab-

orated in Section 3.3 as well as in Section 4.3.1, how multiple contextualized embeddings

can be utilized for the ESE task. Despite that averaging the embeddings already lead

to satisfying results, there are still many weaknesses in this approach. For instance, the

co-reference problem strongly affects the final results, since many reduced entities are

duplicates of other solutions or even the query seeds. This issue not only leads to wrong

candidates, but it also makes it harder for the reducer to select valid candidates. Another

issue is that some embeddings of the same word are scattered in multiple clusters, as illus-

trated in Figure 4.2. Averaging these embeddings can only lead to completely satisfying

results if the embeddings are clustered together.

Also, the KNN clustering of the reducer seems quite trivial. Here, the seeds are analyzed

independently from each other. However, taking all seed tokens simultaneously into ac-

count might be beneficial. Here, it might be necessary to consider other features than

only the contextualized embeddings.

Figure 4.8 shows that there is a big gap between the optimum number of candidates for

the classifier and the reducer. Mitigating this gap might be an opportunity to increase

the system’s performance.

5.1 Examples of Entities for Correct and Wrong Results 53

5.1 Examples of Entities for Correct and Wrong Results

As already mentioned, the system is able to expand certain sets better than others. Table

5.1 shows some examples for the AP89 dataset. Here, the strengths and weaknesses can

be better interpreted. As mentioned earlier, geographic entities like the query in the first

row are easier to expand than others since there are fewer alternatives to how a set can be

expanded. For example, in the second row of Table 5.1, the seed ”Frank Sinatra” is given,

who used to be a famous musician, but also an awarded actor. Yet, the system cannot

differentiate this ambiguity and, therefore, adds musician to the seed set. The following

row reveals two other issues. The first issue leads to the solution ”George Clinton”, former

vice president of the united states. This solution is closely related to the semantic group

and also very similar to the input seed ”Bill Clinton”. The second wrong expansion would

be valid. However, it is misclassified because of the co-reference problem. Since the test

data only contain ”George W. Bush” and ”George H. W. Bush”, there is no literal match

for ”George Bush” and the solution is neglected. However, it seems valid to accept this

entity as a correct solution. Therefore, the actual precision of each system can be increased

if the validation accepts multiple names for the same solution.

Semantic Group Query Set Correct Wrong

Countries in Europe

Romania

Bosnia and
Herzegovina

Iceland

Serbia
Croatia
Estonia
Austria
Bulgaria

Cecil B. Demille Award
Golden Globe winners

Frank Sinatra

Red Skelton

George Clooney

Smokey Robinson
Billy Joel
Elton John
Keith Moon
Lee Marvin

Presidents of
the United States

Bill Clinton

Harry S. Truman

George Washington

Jimmy Carter

Franklin D.
Roosevelt

Ulysses S. Grant

George Clinton

George Bush

Table 5.1: Examples of expansion on all extracted candidates for the AP89 dataset. The table represents
the results for P@5 given three query seeds.

6 Conclusion and Outlook

This report summarizes the research on the effectiveness of contextualized embeddings

for the expansion of predefined sets based on a single corpus. Therefore, the work elabo-

rates on the benefits of the recently introduced BERT model compared to the previously

implemented approaches. It further describes the basic design for an approach using such

a system, so it can not only be applied in a research setup but also for a production

scenario.

Based on the gathered findings, it has been described how the BERT model can not only

be implemented as a classifier but also as an entity reducer. Here, the entity reducer

utilizes features of the BERT model to remove unlikely candidates and thus increase the

subsequent classifier’s performance. The proposed classifier is a fine-tuned BERT model,

which processes multiple candidates within its context to identify which of the candidate

entities are the most likely solutions.

These findings inspired a combination of all these elements resulting in a new pipeline,

which only utilizes these contextualized embeddings. The conducted experiments show

that this pipeline exceeds previous results and a simplification of the system as a baseline.

Further, since the final expansion tool is lightweight, it seems to be the only approach

that is able to classify a vast number of candidates. These findings indicate that future

work in this area might benefit if components like the entity reducer or the final classifier

are further developed.

6.1 Future Steps

Although the proposed system already creates satisfying results, there are still several

potentials to improve the system.

Despite that averaged embeddings are already creating solid representations of the words,

they still suffer from several issues. The co-reference problem makes it difficult to use

this system for even bigger corpus reliably. This can be counteracted by combining a

countermeasure like described in [46] with simple features like the edit-distance. Therefore,

several entities, which names and contextualized embeddings are quite similar, are joined

to a single entity.

It is also worth thinking about a more sophisticated way to cluster the averaged em-

beddings than just applying KNN. Also, by averaging the contexts, it is not possible to

6.1 Future Steps 55

process the complete meaning of ambiguous candidates. A possible countermeasure for

that would be to create a separate entity of the same word for each of its meaning.

Furthermore, the classifier is only using an arbitrary context for each query seed. There-

fore, there is no guarantee that the contexts of the seeds relate to each other. However,

as already mentioned, choosing the contexts based on the contextualized embeddings for

this certain context does not increase the performance. Here, the aforementioned multiple

entities for every word sense might already lead to more suitable contexts. Also, there

can be a better way to choose the correct context for the seed, for instance, by making a

literal match of the context like in the previous work of SetExpan or CaSE.

List of Figures 56

List of Figures

1.1 Entity Set Expansion pipeline visualized. 2

2.1 Word2Vec models illustrated as described in [6]. 5

2.2 Ambigous meaning of words . 7

2.3 ELMo illustration as described in [12]. 9

2.4 An illustration of the attention mechanism as described in [20]. 10

2.5 A multi-head attention layer as described in [23]. 12

2.6 The Transformer architecture as illustrated in [23]. 13

2.7 BERT token input illustration as described in [29]. 18

2.8 BERT fine-tuned for sentence classification described in [29]. 19

3.1 Entity Set Expansion pipeline . 22

3.2 Lookup of entities split into several WordPiece tokens. 27

3.3 Input for fine-tuned BERT classifier. 29

3.4 Proposed Entity Set Expansion pipeline in two steps. 30

4.1 A tSNE visualization of all contextualized embeddings of the entities from

the 648 perfect candidates of the AP89 dataset. 36

4.2 A tSNE visualization of all averaged contextualized embeddings of the en-

tities. Each color represents a semantic group, to which the entity belongs

to. 37

4.3 A tSNE visualization of the averaged embeddings from the five biggest

semantic groups. 38

4.4 Recall of the reducer for around 100 candidates applied to all candidates

for both datasets. The bar plots show the results for two different query

sizes three and five seed. 39

4.5 Plots of the recall for both datasets. The plots show both the recall curve

of considering only the data provided from the NER as well as the actual

recall on the actual test dataset. The features are extracted from the fourth

layer of the pre-trained distilBERT model. 41

4.6 Precision of the baseline applied on all candidates for both datasets. The

bar plots show the results for two different query sizes, with three and five

seeds, and the precision values considering five and ten solutions. 46

4.7 Precision of the baseline applied on perfect candidates for both datasets.

The bar plots show the results for two different query sizes, with three and

five seeds, and the precision values considering five and ten solutions. . . . 47

List of Figures 57

4.8 Plot of trade-off between precision for the pipeline trained on five seeds

considering the top 10 results and the number candidates. The constant

baseline precision line is applied on all candidates and not on the reduced

number of candidates. 49

List of Tables 58

List of Tables

2.1 Parameters of Transformer based models in comparison as described in [29]. 21

4.1 Clusters used for the experiments. 31

4.2 Information about software used in the experiments. 32

4.3 Information about the entity sets used for the final evaluations 33

4.4 Results for the fine-tuned classifier trained on three seeds, which is applied

to the perfect candidates for the AP89 dataset. 43

4.5 Results for the fine-tuned classifier and the entity reducer applied to the

perfect candidates for the AP89 dataset. 44

4.6 Table shows the final results for the pipeline and the KNN baseline for all

extracted candidates. Here, the pipeline results, is trained on either trained

on three or five seeds, are described. 50

5.1 Examples of expansion on all extracted candidates for the AP89 dataset.

The table represents the results for P@5 given three query seeds. 53

59

List of Algorithms

1 BERT KNN Reducer . 26

60

References

[1] R. C. Wang and W. W. Cohen. “Language-Independent Set Expansion of Named

Entities Using the Web”. In: Seventh IEEE International Conference on Data Min-

ing (ICDM 2007). 2007, pp. 342–350.

[2] Zhe Chen, Michael Cafarella, and H. V. Jagadish. “Long-Tail Vocabulary Dictionary

Extraction from the Web”. In: Proceedings of the Ninth ACM International Confer-

ence on Web Search and Data Mining. WSDM ’16. San Francisco, California, USA:

Association for Computing Machinery, 2016, pp. 625–634.

[3] Jonathan Mamou, Oren Pereg, Moshe Wasserblat, Alon Eirew, Yael Green, Shira

Guskin, Peter Izsak, and Daniel Korat. “Term Set Expansion based NLP Architect

by Intel AI Lab”. In: Proceedings of the 2018 Conference on Empirical Methods in

Natural Language Processing: System Demonstrations. Brussels, Belgium: Associa-

tion for Computational Linguistics, Nov. 2018, pp. 19–24.

[4] Jacob Eisenstein. Introduction to Natural Language Processing. Adaptive Compu-

tation and Machine Learning series. Cambridge, MA, USA: MIT Press, 2019.

[5] Jiaming Shen, Zeqiu Wu, Dongming Lei, Jingbo Shang, Xiang Ren, and Jiawei

Han. “SetExpan: Corpus-Based Set Expansion via Context Feature Selection and

Rank Ensemble”. In: Machine Learning and Knowledge Discovery in Databases -

European Conference, ECML PKDD 2017, Skopje, Macedonia, September 18-22,

2017, Proceedings, Part I. Vol. 10534. Lecture Notes in Computer Science. Springer,

2017, pp. 288–304.

[6] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient Estimation of

Word Representations in Vector Space”. In: 1st International Conference on Learn-

ing Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013, Work-

shop Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2013.

[7] Jeffrey Pennington, Richard Socher, and Christopher Manning. “Glove: Global Vec-

tors for Word Representation”. In: Proceedings of the 2014 Conference on Empir-

ical Methods in Natural Language Processing (EMNLP). Doha, Qatar, Oct. 2014,

pp. 1532–1543.

[8] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. “Enriching

Word Vectors with Subword Information”. In: Transactions of the Association for

Computational Linguistics 5 (2017), pp. 135–146.

61

[9] Puxuan Yu, Zhiqi Huang, Razieh Rahimi, and James Allan. “Corpus-Based Set Ex-

pansion with Lexical Features and Distributed Representations”. In: Proceedings of

the 42nd International ACM SIGIR Conference on Research and Development in

Information Retrieval. SIGIR’19. Paris, France: Association for Computing Machin-

ery, 2019, pp. 1153–1156.

[10] Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and Andrew McCallum.

“Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector

Space”. In: Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP). Doha, Qatar: Association for Computational Lin-

guistics, Oct. 2014, pp. 1059–1069.

[11] Yoav Goldberg and Graeme Hirst. Neural Network Methods in Natural Language

Processing. CA, USA: Morgan & Claypool Publishers, 2017.

[12] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. “Deep Contextualized Word Representations”.

In: Proceedings of the 2018 Conference of the North American Chapter of the As-

sociation for Computational Linguistics: Human Language Technologies, Volume 1

(Long Papers). New Orleans, Louisiana: Association for Computational Linguistics,

June 2018, pp. 2227–2237.

[13] S Hochreiter and J Schmidhuber. “Long Short-Term Memory”. In: Neural Compu-

tation 9.8 (Nov. 1997), pp. 1735–1780.

[14] Oren Melamud, Jacob Goldberger, and Ido Dagan. “context2vec: Learning Generic

Context Embedding with Bidirectional LSTM”. In: Proceedings of The 20th SIGNLL

Conference on Computational Natural Language Learning. Berlin, Germany: Asso-

ciation for Computational Linguistics, Aug. 2016, pp. 51–61.

[15] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher. “Learned

in Translation: Contextualized Word Vectors”. In: Advances in Neural Information

Processing Systems 30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.

Fergus, S. Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017, pp. 6294–

6305.

[16] Bengio Yoshua, Patrice Simard, and Paolo Frasconi. “Learning long-term dependen-

cies with gradient descent is difficult”. In: IEEE Transactions on Neural Networks

5.2 (1994), pp. 157–166.

62

[17] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. “Learning Phrase Representations

using RNN Encoder–Decoder for Statistical Machine Translation”. In: Proceed-

ings of the 2014 Conference on Empirical Methods in Natural Language Process-

ing (EMNLP). Doha, Qatar: Association for Computational Linguistics, Oct. 2014,

pp. 1724–1734.

[18] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to Sequence Learning with

Neural Networks”. In: Advances in Neural Information Processing Systems 27. Ed.

by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger.

Curran Associates, Inc., 2014, pp. 3104–3112.

[19] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine transla-

tion by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473

(2014).

[20] Jakob Uszkoreit. Transformer: A Novel Neural Network Architecture for Language

Understanding. https://ai.googleblog.com/2017/08/transformer-novel-

neural-network.html. Accessed: June 26, 2020.

[21] Thang Luong, Hieu Pham, and Christopher D. Manning. “Effective Approaches

to Attention-based Neural Machine Translation”. In: Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing. Lisbon, Portugal:

Association for Computational Linguistics, Sept. 2015, pp. 1412–1421.

[22] Jianpeng Cheng, Li Dong, and Mirella Lapata.“Long Short-Term Memory-Networks

for Machine Reading”. In: Proceedings of the 2016 Conference on Empirical Meth-

ods in Natural Language Processing. Austin, Texas: Association for Computational

Linguistics, Nov. 2016, pp. 551–561.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is All you Need”. In:

Advances in Neural Information Processing Systems 30. Ed. by I. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Cur-

ran Associates, Inc., 2017, pp. 5998–6008.

[24] Jay Alammar. The Illustrated Transformer. http : / / jalammar . github . io /

illustrated-transformer/. Accessed: June 26, 2020.

[25] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. Cambridge, MA, USA: MIT Press, 2016.

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
http://www.deeplearningbook.org
http://www.deeplearningbook.org

63

[26] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le, and Rus-

lan Salakhutdinov. “Transformer-XL: Attentive Language Models Beyond a Fixed-

Length Context”. In: CoRR abs/1901.02860 (2019).

[27] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. “Improving

language understanding by generative pre-training”. In: (2018).

[28] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel

Bowman. “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural

Language Understanding”. In: Proceedings of the 2018 EMNLP Workshop Black-

boxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium:

Association for Computational Linguistics, Nov. 2018, pp. 353–355.

[29] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding”. In: Pro-

ceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,

June 2019, pp. 4171–4186.

[30] M. Schuster and K. Nakajima. “Japanese and Korean voice search”. In: 2012 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

2012, pp. 5149–5152.

[31] Taku Kudo and John Richardson. “SentencePiece: A simple and language indepen-

dent subword tokenizer and detokenizer for Neural Text Processing”. In: Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing: Sys-

tem Demonstrations. Brussels, Belgium: Association for Computational Linguistics,

Nov. 2018, pp. 66–71.

[32] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning.“What

Does BERT Look at? An Analysis of BERT’s Attention”. In: Proceedings of the

2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks

for NLP. Florence, Italy: Association for Computational Linguistics, Aug. 2019,

pp. 276–286.

[33] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. “DistilBERT,

a distilled version of BERT: smaller, faster, cheaper and lighter”. In: ArXiv

abs/1910.01108 (2019).

[34] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

“Language Models are Unsupervised Multitask Learners”. In: (2019).

64

[35] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural Machine Translation

of Rare Words with Subword Units”. In: Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin,

Germany: Association for Computational Linguistics, Aug. 2016, pp. 1715–1725.

[36] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.“Conditional Ran-

dom Fields: Probabilistic Models for Segmenting and Labeling Sequence Data”. In:

Proceedings of the Eighteenth International Conference on Machine Learning. ICML

’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 282–289.

[37] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,

and Pavel Kuksa. “Natural Language Processing (Almost) from Scratch”. In: J.

Mach. Learn. Res. 12.null (Nov. 2011), pp. 2493–2537.

[38] Jiaxin Huang, Yiqing Xie, Yu Meng, Jiaming Shen, Yunyi Zhang, and Jiawei

Han. “Guiding Corpus-Based Set Expansion by Auxiliary Sets Generation and Co-

Expansion”. In: Proceedings of The Web Conference 2020. WWW ’20. Taipei, Tai-

wan: Association for Computing Machinery, 2020, pp. 2188–2198.

[39] Joshua Coates and Danushka Bollegala. “Frustratingly Easy Meta-Embedding –

Computing Meta-Embeddings by Averaging Source Word Embeddings”. In: Pro-

ceedings of the 2018 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 2 (Short

Papers). New Orleans, Louisiana: Association for Computational Linguistics, June

2018, pp. 194–198.

[40] Yijin Liu, Fandong Meng, Jinchao Zhang, Jinan Xu, Yufeng Chen, and Jie Zhou.

“GCDT: A Global Context Enhanced Deep Transition Architecture for Sequence

Labeling”. In: Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics. Florence, Italy: Association for Computational Linguistics,

July 2019, pp. 2431–2441.

[41] Stephen M. Omohundro. Five Balltree Construction Algorithms. Tech. rep. Interna-

tional Computer Science Institute Berkeley, 1989.

[42] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. Cambridge, MA,

USA: The MIT Press, 2012.

[43] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In:

Journal of Machine Learning Research 9 (2008), pp. 2579–2605.

[44] Stefan Büttcher, Charles Clarke, and Gordon V. Cormack. Information Retrieval:

Implementing and Evaluating Search Engines. Cambridge, MA, USA: The MIT

Press, 2010.

65

[45] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. “RoBERTa: A Robustly

Optimized BERT Pretraining Approach”. In: CoRR abs/1907.11692 (2019). arXiv:

1907.11692.

[46] Thibault Févry, Livio Baldini Soares, Nicholas FitzGerald, Eunsol Choi, and Tom

Kwiatkowski. Entities as Experts: Sparse Memory Access with Entity Supervision.

2020. arXiv: 2004.07202 [cs.CL].

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2004.07202

Acronyms 66

Acronyms

API Application Programming Interface

BCE Binary Cross-Entropy

BERT Bidirectional Encoder Representations from Transformers

biLSTM bidirectional LSTM

BPE Byte Pair Encoding

CBOW Continuous Bag of Words

CE Cross-Entropy

CNN Convolutional Neural Network

CoVe Contextualized Word Vectors

CRF Conditional Random Fields

ELMo Embeddings from Language Models

ESE Entity Set Expansion

FC Fully Connected

GloVe Global Vectors for Word Representation

GLUE General Language Understanding Evaluation

GPT Generative Pretrained Transformer

KNN K-Nearest Neighbors

LM Language Model

LSTM Long Short-Term Memory

Acronyms 67

MAP Mean Average Precision

ML Machine Learning

MLM Masked Language Model

MLP Multilayer Perceptron

NER Named Entity Recognition

NLP Natural Language Processing

NMT Neural Machine Translation

NSP Next Sentence Prediction

RNN Recurrent Neural Network

TREC Text REtrieval Conference

tSNE t-Distributed Stochastic Neighbor Embedding

27.10.2020 Zimbra

https://connect.fh-salzburg.ac.at/zimbra/h/printmessage?id=93998&tz=Europe/Berlin&xim=1 1/1

From : Cornelia Ferner <cornelia.ferner@fh-salzburg.ac.at>
Subject : Freigabe MPS Paper Gwechenberger (ITS)

To : Amelie Arrer <amelie.arrer@fh-salzburg.ac.at>
Cc : Florian Gwechenberger <fgwechenberger.its-m2018@fh-

salzburg.ac.at>

Zimbra amelie.arrer@fh-salzburg.ac.at

Freigabe MPS Paper Gwechenberger (ITS)

Wed, Sep 23, 2020 08:14 AM

Liebe Frau Arrer,

die Forschungsarbeit wurde von Florian Gwechenberger zur vollsten Zufriedenheit ausgearbeitet und ist für
den Upload auf die MPS-Homepage freigegeben.

Vielen Dank und liebe Grüße

Cornelia Ferner

DI Cornelia Ferner, BSc
Lecturer
Informationstechnik & System-Management (its)

Fachhochschule Salzburg GmbH
Salzburg University of Applied Sciences
Urstein Süd 1, 5412 Puch/Salzburg, Austria
Gerichtsstand Salzburg, FN166054y

+43 50 2211-1329
cornelia.ferner@fh-salzburg.ac.at
www.fh-salzburg.ac.at
facebook.com/Fachhochschule.Salzburg
twitter.com/fhsalzburg
instagram.com/fhsalzburg

mailto:martina.mustermann@fh-salzburg.ac.at
http://www.fh-salzburg.ac.at/
http://www.facebook.com/Fachhochschule.Salzburg
http://twitter.com/fhsalzburg
http://instagram.com/fhsalzburg

