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Abstract

The application of neural networks has gotten more attention over the past few years. This
trend affected research on contradiction detection, where the goal is to predict whether the
information contained in a premise and hypothesis entail or contradict each other. The most
novel and best performing approaches rely on neural networks. In this work, a comparison
of neural methods for Natural Language Inference with non-neural models is done. The
effects of certain input features to a model will be shown, as well as the prediction on
certain textual and linguistic phenomena for neural and non-neural models. Further, the
influence of the textual properties of the input of premise and hypothesis, such as sentence
length and similarity, are analyzed. The results show clearly that both the neural and non-
neural approaches have their advantages and perform better than the other in certain cases.
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1 Introduction

The author was allowed to stay at the Center for Intelligent Information Retrieval at the
University of Massachusetts, Amherst during the summer semester, from March to August.
This exchange is funded by the Austrian Marshall Plan Foundation.

The research department at the Salzburg University of Applied Sciences (SUAS) has a
high interest in the methodologies of Natural Language Processing (NLP) for extracting
informations from textual data. An example is the text annotation engine ARIE (Ferner et
al., 2017). NLP in general is an area from computer science and artificial intelligence that is
concerned with the human-machine interaction, in particular with a large amount of natural
language. Very often the input data is represented in some form of word-level. Examples
are Bag-of-Words or word-embeddings (Goldberg, 2017).

On the contrary, words can also be processed on word-level. This raw approach takes the
sequence of characters as the input to the further processing. A reason for using the input on
character-level is to be assumed, that here the algorithm can be adapted to another language
much easier as well as no dictionary needs to be present and the relationships among all
the words can be learned by a neural network during the training process. A disadvantage
might be a much longer training time. As an example, Zhang, Zhao, and LeCun (2015)
used a character-level input-encoding for text classification.

Here in this report, the result of the research during the exchange is described. The impact
of using character-level input-encodings for NLP was analyzed. Here the problem of Nat-
ural Language Inference (NLI) (MacCartney, 2009) is used. NLI, also called Recognizing
Textual Entailment (RTE), is the problem of identifying the semantic relation between two
natural language elements, and whether they can be reasonably inferred from each other.
The two elements of an NLI problem are called hypothesis h, and premise p, and can either
be represented on sentence or document level. In the following example from Williams,
Nangia, and Bowman (2017), the hypothesis is regarded to be contradicting to the premise.

Example 1.
p "we have provided an invoice to facilitate your gift."

h "there’s no invoice available for your gift."

The hypothesis h of Example 1. can be considered as contradicting to the premise p. Any-
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one who is presented the two sentences is very likely to confirm this assumption. Without
any doubt, the statement expressed in h provides different information from those that can
be found in p. A more formal description of contradiction is that there is no world in which
the two statements A and B are both true at the same time. In simple words, both events are
unlikely to be true simultaneously.

This report starts with a chapter (Chapter 2) with the fundamentals of the research. Here a
short overview of neural network models with an application on NLI and commonly used
embeddings for textual data is given. Chapter 3 shows the application of neural networks
for NLI. Several experiments to compare word- and character-based approaches for neural
methods are described in Chapter 4.



2 Background

This chapter will first introduce Neural Network (NN) models with usage on NLI (Sec-
tion 2.1). The question of how natural language is encoded and embedded for NNs, espe-
cially with respect to NLI, will be answered in Section 2.2. This section includes methods
of processing natural language character-wise or by means of word embeddings.

2.1 Neural Network Models

Over the last few years, the interest in the field of machine learning has rapidly grown.
Also, the field of applications has gotten more diverse, which has lead to the creation of a
rapidly growing new field of industry. Self-driving cars, speech recognizer, and enhanced
translators would not be possible without machine learning techniques and methodologies.
An approach to machine learning are Artificial NNs, which have a broad application in
natural language.

In this following Section 2.1.1 the easiest form of NN, the feed-forward NN, will be ex-
plained. Following that, an insight into a state of the art types of NNs with application
in NLI is given for Recurrent Neural Network (RNN) (Section 2.1.2) and Convolutional
Neural Network (CNN) (Section 2.1.3).

2.1.1 Feed-forward Neural Network

The simplest form of a NN is a purely linear combination of the input data, adapted by
coefficients. The parameters are learned through the training process. A simple three-layer
NN can be seen in Figure 2.1. This one consists of input, hidden- and output-layer.

The output is some form of encoding of the desired classification task of the NN that is to
be inferred from the training data.

A unit in a feed-forward network is called neuron. The output is calculated in two steps,
based on a linear discrimination function. First, the net activation (or net) is calculated,
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Figure 2.1: A simple three layer NN, consisting of four input nodes, four hidden nodes, and
three output nodes.

which is the weighted sum of the neurons input. An additional bias is added. In Equa-
tion (2.1), this net activation is formally defined. x as the input and w as the weights are
represented as vectors, where W,X ∈ Rn and wn and xn are the n-th element of W and X ,
respectively. b0 is the added bias (b0 ∈ R). In other literature (Bishop, 1995), the bias is
sometimes shown considered as the weight w0. The corresponding x0 value is set to 1.

net =<W T ,X >+b0 = b0 +
d

∑
i=0

wi · xi (2.1)

For making other than linear relationships explainable by NNs, a non-linear transfer func-

tion:

y = a(net), (2.2)

is applied to the net.

A simple two way linear activation function assigns the input to an output target that is
defined by the decision rule

sign(z) =

1, if z≥ 1

−1, if z < 0
(2.3)
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The activation depends on the field of application. In certain fields, other transfer functions

perform significantly better. The sigmoid (σ ) transfer function (also called logistic function)

σ(z) =
1

1+ e−z (2.4)

transforms its input according a S-shaped curve into the range [0,1]. This function was to
be considered as the choice for NNs. Currently it is stated to be deprecated, as other ones
prove to perform significantly better (Goldberg, 2017).

NLP tasks mostly rely on the tanh transfer function

tanh(z) =
e2z−1
e2z +1

. (2.5)

Each data point x is transformed into the range of [−1,1]. The Rectifier Linear Unit (ReLU),
also known as the ramp function, is another special type of transfer function

RELU(z) = max(0,z). (2.6)

CNNs (Section 2.1.3) often rely on ReLUs.

The illustration for the activation functions defined in Equation 2.3, 2.4, 2.5 and 2.6 can be
seen in Figure 2.2.

Figure 2.2: Different transfer functions as defined in Equation (2.3), (2.4), (2.5), and (2.6)
respectively.

In Figure 2.3, a schematic illustration of this stated two step process can be seen.
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Figure 2.3: A simple Neuron of a NN, consisting of an input vector x, an vector with the
weights w and a bias b0. This illustration’s formal definition can be found in
Equation (2.1) and Equation (2.2).
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For a fully connected layer, the definition becomes

netk =W T
k ·X +bk0 =

mH

∑
j=1

y j ·wk j +bk0, (2.7)

where k is the index for the unit in the output layer, and mH the number of hidden units per
layer. Analogous to a single unit, the transfer function for a layer looks like

yk = a(netk), (2.8)

analogously.

The network structure presented in Figure 2.1 is a very simple one. For modern architec-
tures, n hidden layers with varying mi units per layer i are applied. The number n needs
to be chosen carefully. The deeper the architecture of the model, the more training data
is usually needed in order to use the network to its full capabilities. When to little data
is available, the structure leads to over-fitting to the available training data. On the other
hand, flat structures with only a small number of layers, may not be able to compute com-
plex problems without using a very large and difficult to handle number of hidden nodes
(Goodfellow, Bengio, & Courville, 2016).

The Kolomogorov’s theorem states that any multi-variant, continuous function can be rep-
resented as a composition of a finite number of continuous functions with two parameters
(Tikhomirov, 1991). This theorem has an intresting relationship to NNs. Applied to NNs,
a continuous function y(x) with d input variables xi can be mapped to the output y by only
using a three-layered NN. To meet this theorem, the first layer needs d(2d + 1) and the
second 2d +1 dimensions (Bishop, 1995).

The input data is applied to the input nodes of the network. These nodes are just cells that
take the input data and represent it. At this stage, no processing is done. Starting with the
input layer, this data is passed layer-wise through the whole network. Using exemplarily the
three-layer network in Figure 2.1, the input in the cells x1...4 is passed to the nodes h1...4 in
the hidden layer. Each unit computes its state according to its applied input and the known
weights. The result of each node is transformed using an activation function. Following,
the result is then passed from the hidden nodes h1...4 to the output nodes y1...3 in the same
manner as before, and the same approach as on the hidden nodes is applied, differing only
in the used weights. The output layer represents the network’s prediction. As the data is
always passed forward through the network, this type of network is called feed-forward

NN.
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The learning process of an NN is based on an error function. The goal is to minimize this
function value with respect to the used weights and biases in the sum of the network’s units.
A common approach is the so-called Error backpropagation (BP). Assuming, that the net-
works transfer functions are differentiable, the net of the output units become differentiable
functions of the input variables, and of the weights and biases. Applying a differentiable
error function to the network outputs leads to an error, which is itself a differentiable func-
tion of the network’s weights. The derivatives of the error can, therefore, be evaluated with
respect to these weights and are then used to find weight values that lead to a minimal out-
come of the error function. A common optimization method that is used, is the gradient
descent. This algorithm is called BP, as the propagation of error is evaluated backward
through the network. For a deeper insight into optimization methods in general, the reader
is referred to (Bishop, 1995, Chapter 7).

2.1.2 Recurrent Neural Network (RNN)

Applications, like language modeling, speech recognition, and machine translation, have
to deal with sequential data. The application of feed-forward networks or CNNs (Sec-
tion 2.1.3) is limited, as the length of the input data is constrained to a fixed size vector.
For modeling natural language, RNNs are now widely used. These have to be shown state-
of-the-art performance in many standard tasks (Mikolov, Kombrink, Deoras, Burget, &
Cernocky, 2011).

Like the feed-forward network, basic RNNs are unit based networks. Each unit is unidirec-
tionally connected to itself, which gives the unit knowledge about the previous step. This
recurrence is weighted by the vector W . If this is set to zero, it poses to have the same
characteristics as a multilayer perceptron. The activation for each unit is time-varying.
The most simple form of a RNN with the sense of ordering elements of a sequence is the
so-called Elman Network or Simple-RNN. It was applied for language modeling first by
Mikolov (2012).

A bottleneck of classical feed-forward is that they are not capable of capturing the data’s
history. The value of the calculation at time step t is only based on the applied input. Hence
it is not possible to use data or information from n previous time steps. RNNs ease this
bottleneck by considering the intermediate state of n previous time steps by its recurrent
feedback.

Another asset is that RNNs can represent more advanced data compared to feed-forward
NNs. As an example, in natural language it is quite common that certain word-based pat-
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(a) Simple RNN unit. (b) A RNN unit expanded to a sequence of order n.

Figure 2.4: The simple structure of RNN. Figure 2.4a shows a simple gate. The tr indicates
the delay of one step. This form can be also displayed in an unfolded form, as
can be seen in Figure 2.4b

terns are shown on variable positions within the word. The usage of RNNs allows capturing
those patterns, by remembering words in its hidden layers. In comparison, feed-forward
NNs would need additional parameters for the position of the word within the sentence and
much more training data.

An example of an RNN is illustrated in Figure 2.4a. RNNs have input, hidden and output
layers. For each input and the hidden states, weights are applied. These are trained and
represented by the vectors U , V and W respectively. As the data is fed sequentially, and
the hidden state is passed to the next layer, this can be also represented in an expanded way
(Figure 2.4b). But this still is just a representation, and the data is processed using a single
node with recurrent flow. The values for the hidden state s j(t) and output yk(t) is computed
as following, respectively:

s j(t) = σ(∑
i

xi(t) ·u ji +∑
l

sl(t−1) ·w jl) (2.9)

yk(t) = g(∑
j

s j(t) · vk j) (2.10)

Using a vector representation, Equation (2.9) and Equation (2.10) can alternatively also be
written as

s(t) = σ(U · x(t)+W · s(t−1)) (2.11)

and
y(t) = g(V · s(t)). (2.12)
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The used function σ(.) is already described in Section 2.1.1, and g(z) refers to the softmax

function

so f tmax(zi) =
ezi

k
∑
j=0

ez j

, (2.13)

for i = 0,1,2, . . . ,k.

Applying an input to an RNN cell, the first element of this input xi, as it appears in sequential
order, is fed into the cell. First, it is multiplied by its specific input weight u ji. The weighted
input is then added to the output of the state before, s(t− 1). If there was no proceeding
output, as this is the case for the first processed element, s(t − 1) is set to 0. The prior
state is separately adjusted by the weight w jl . On to the sum s(t) of these two elements,
the activation function σ is applied. The final result y(t) is computed by multiplying the
intermediate result after the activation function with the output weight vk j, followed by the
softmax function g(z). This result is the returned. In the next step the next element xi+1

can be processed accordingly, with the previously processed intermediate state s(t) as its
previous state s(t−1).

The network itself is trained by the method of stochastic gradient descent. Usually, a
BP or backpropagation through time (BPTT) algorithm is applied (Rumelhart, Hinton, &
Williams, 1986). On details, how the BPTT can be implemented, the reader is referred to
Bodén (2002).

A major drawback of RNNs is that they do not capture long-term dependencies. The gradi-
ents for RNN, captioning these relations, either tend to vanish or explode. For the first case,
learning long time lags takes a lot of time, or hardly work at all. For the latter, weights start
to oscillate and tend to be unstable. This phenomena was discussed by Hochreiter (1991)
and Bengio, Simard, and Frasconi (1994).

Long-Short Term Memory (LSTM)

To overcome the previous discussed restrictions to the RNN, Hochreiter and Schmidhu-
ber (1997) first introduced an adapted RNN architecture, the so called Long-Short Term
Memory (LSTM).

This adaption also included an appropriate gradient-based learning algorithm that keeps the
error within the cell constant.

The LSTM unit is more complex and is called memory cell. An example for such one can be
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seen in Figure 2.5. The cell embodies a constant error carrousel (CEC) in its architecture,
to keep the error flow through the network constant. The cell is denoted by c j, where j

is the index for the memory cell in the layer. In the center of the cell, the CEC is a fixed
linear, self-connected unit. Also an multiplicative input gate unit and output gate unit are
introduced. These protect the memory contents stored in c j from perturbation by irrelevant
input or protects others from likewise.

Figure 2.5: A simple LSTM cell, which embodies a CEC as the core and the activations g
and h in its architecture (Hochreiter & Schmidhuber, 1997).

An LSTM memory cell has three inputs. The first one, xc j , is the input for the cell c j.
Furthermore the cell is provided with input from the multiplicative units in j and out j, where
their activations yin j(t) and yout j(t) are defined by

yin j(t) = fin j(netin j(t)) (2.14)

yout j(t) = fout j(netout j(t)). (2.15)

The internal states netout j(t), netin j(t) and xc j(t) are calculated by

netin j(t) = ∑
u

win ju · y
u(t−1), (2.16)
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netout j(t) = ∑
u

wout ju · y
u(t−1), (2.17)

and
xc j(t) = ∑

u
wc ju · y

u(t−1) (2.18)

respectively. u are the connected units to the cell, in case there are such units. All the units
in the cell can contain useful information about the current state. As an example, the input
(or output) gate may use outputs from other gates to define if a state is stored in its cell or
not.

The output of the memory cell at time t is calculated by

yc j = yout j(t) ·h(sc j(t)). (2.19)

The state sc j(t), that is represented in the CEC, is defined by

sc j(t) =

0 if t = 0

sc j(t−1)+ yin j(t) ·g(xc j(t)) if t > 0
(2.20)

The second part of the equation yin j(t) · g(xc j(t)) denotes the internal state of the memory
cell. This one is only dependent on the current input. In Figure 2.5 this is shown in the
center of the memory cell, where the factor tr denotes the delay of one full cycle. The
function g and h are intended to squash xc j and scale the output of the internal state sc j

respectively.

A limitation posed by simple LSTM cells is that the internal state sc tends to grow during
the processing of a time series. This results in a cell state that is growing without limit.
A state of saturation of the output squashing function h may be the result. This saturation
affects the cell by either blocking the incoming errors, by making h’s derivate vanish and,
following, making the output equal to the output gate activation. This makes the whole
LSTM ineffective and reduces its functionality to a simple RNN gate (Gers, Schmidhuber,
& Cummins, 1999).

To overcome this effect, Gers et al. (1999) introduced an adaption to the LSTM memory
cell, by adding forget gates. The additional features can be seen in Figure 2.6. These gates
enable the cell to learn to reset memory blocks when the content is not seen as useful any-
more. The CECs constant delay of 1.0 is replaced by a multiplicative forget gate activation
yϕ j .
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Figure 2.6: An adapted LSTM cell that embodies an additional forget gate. This gate is
learned to trigger to reset the internal state to zero (Gers et al., 1999).
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Similar to the activations of a simple LSTM (Equation (2.14) . . . (2.17) ), the forget gates
activation yϕ j is calculated by

yϕ j(t) = fϕ j(netϕ j(t)) (2.21)

where
netϕ j(t) = ∑

u
wϕ ju · y

u(t−1). (2.22)

The forget gates activation is then used as a weight for the feedback connection of the
internal state sc j(t). The new equation for the internal state is

sc j(t) =

0 if t = 0

yϕ j(t) · sc j(t−1)+ yin j(t) ·g(xc j(t)) if t > 0.
(2.23)

Another limitation, that is posed by basic LSTMs, restricts the gates to rely on the output
of the cell. This means that the only information about its state a gate can observe is the
output of the cell. Hence, no prediction about the actual current internal state sc j can be
made. In the case that the gates are closed, no information can be seen (Gers, Schraudolph,
& Schmidhuber, 2003).

Gers et al. introduced "peephole" connections to allow all gates to get information on the
current cell state. As can be seen in Figure 2.7, weighted holes are connected from the CEC
to the gates of the same memory block (Gers et al., 2003).

The resulting output gates activation changes accordingly to

netin j(t) = ∑
u

win ju · y
u(t−1)+

s j

∑
v=1

win jcv
j
· scv

j
(t−1), (2.24)

netout j(t) = ∑
u

wout ju · y
u(t−1)+

s j

∑
v=1

wout jcv
j
· scv

j
(t−1), (2.25)

and

netϕ j(t) = ∑
u

wϕ ju · y
u(t−1)+

s j

∑
v=1

wϕ jcv
j
· scv

j
(t−1), (2.26)

whereas these equations replace Equation (2.16), (2.17), and (2.22), respectively.
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Figure 2.7: An adapted LSTM cell that embodies a forget gate and peepholes. The input
gates are connected to the internal state to get information about the cells current
state (Gers et al., 2003).
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−→
ht =

−−−→
LST M(w1, . . . ,wT ) (2.27)

←−
ht =

←−−−
LST M(w1, . . . ,wT ) (2.28)

ht = [
−→
ht ,
←−
ht ] (2.29)

LSTMs can also be used bidirectional. This kind of LSTM is called Bidirectional LSTM
(BiLSTM). Having a sequence of words, wt t=1,...,T , applied to a BiLSTM, this computes a
set of vectors ht t for t ∈ [1, . . . ,T ]. Each ht is a concatenation (Equation (2.29)) of an LSTM
used forward (Equation (2.27)) and backwards (Equation (2.28)).

2.1.3 Convolutional Neural Network (CNN)

Input Images are mostly represented pixel-wise in two dimensions. Since feed-forward
NNs are designed to handle vector shaped data, an application on these data would cause
the network to have many more parameters, resulting in a proportionally grown training
time. Additionally, in practice, more noise would be added during the training process. A
CNN takes advantage of the data’s multidimensionality.

CNNs combine three architectural ideas: local receptive fields, shared weights and spatial
or temporal sub-sampling. This concept ensures that a reasonable degree of shift, scaling
and distortion in the input does not need to be represented by the learned weights (LeCun,
Bottou, Bengio, & Haffner, 1998).

The architecture of a CNN in general contains several independent, layer-wise organized
steps. An example can be seen in Figure 2.8. The displayed network is designed to classify
handwritten digits. The network is comprised of two convolutional layers, each followed
by a sub-sampling layer, two fully connected layers, and a Gaussian connected layer.

The key component of the CNNs are the convolution layers. The convolution itself is a
mathematical operation on two functions, resulting in a third. The convolution operator is
an asterisk (∗). On continuous data, the convolution is defined as (Smith, 1997):

( f ∗g)(t) =
∫

∞

τ=−∞

f (τ) ·g(t− τ) dτ.
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Figure 2.8: The network architecture for LeNet-5 with convolutional-, sub-sampling-, fully
connected- and Gaussian connected layers. The networks purpose is to classify
handwritten digits (LeCun et al., 1998).

In simple terms, the convolution at time t, can be seen as a weighted average of the function
f (τ), where g(−τ) represents the weight. The discrete convolution of f and g is given by

( f ∗g)[i] =
M−1

∑
j=0

f [ j] ·g[i ·d− j],

where d is the stride. The discrete input function is f (x) ∈ [1, l]→ R and discrete kernel
function g(x) ∈ [1,k] → R. The output of the convolution results in ( f ∗ g) ∈ [1,b(l −
k/d)c+1]→ R.

The weights that are learned during the training process are the discrete kernel functions.
These filter kernels aim to extract features from the data, like edges, endpoints or corners.
In order to detect higher order features, these features are combined and further processed
by the succeeding layers.

Each layer consists of several planes, which all share the same weights. The output over
such units are called feature maps. To ensure that the three premises are fulfilled, the feature
maps are constrained to perform the same operation on different parts of the image. A full
convolution layer consists of several feature maps. For learning the weights during the
training process, the BP algorithm is used (LeCun et al., 1998).

When setting up an architecture for a CNN, two parameters needs to be defined. These two
define the filter kernel. The first parameter is the number of filters per layer. The second set
of parameters that needs to be set are the shapes of the kernel filters. The shapes of these
should be set according to the data fed into the convolution layer.

Passing the data through the network layers results in the necessity of a reduced dimen-
sionality of the features. This is done by a pooling- or sub-sampling layer, what can be
considered as a form of non-linear down-sampling. The most common pooling algorithm
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is the max pooling. For this, the data is split into non-overlapping fields and the maximum
value for each is selected. The same applies to the average pooling, as the average value of
the input in the selected window is returned. In Figure 2.9 an example for the max pooling

and the average pooling is shown. The result is used in the following layer. This reduction
of dimensionality can be applied, under the assumption that the location of a feature is not
relevant. When defining an architecture, one has to decide on the shapes of the pooling
windows. Common shapes are 2x2 or 4x4. Research has shown that non-overlapping fields
tend to show the best results (Scherer, Müller, & Behnke, 2010).

Figure 2.9: Graphical representation of the max pooling and the average pooling. Each
non-overlapping window is shown with its own color. The results are shown in
the corresponding fields, respectively.

After several convolution and pooling layers, fully connected layers are used to transform
the data at a high-level abstraction into a final classification. The first neuron in a fully-
connected layer is connected to all the outputs of the activation of the preceding layer.

As discussed in Section 2.1.1, the activation function that is mostly used with CNN is the
ReLU. Applying this function, non-linear properties of the decision function and the whole
network are increased. The receptive fields of the convolution layer are not affected. In
comparison to other activation functions, like the sigmoid- or hyperbolic-tangent, the ReLU
poses to be faster during training. Figure 2.10 shows the ReLU applied to sample data.

As already discussed, a benefit of CNNs is their capability of processing more dimensional
data. Secondly, CNNs are easier to train, due to their reduced number of parameters. In
comparison to feed-forward NN, fewer parameters are implemented, which results in a re-
duced training time. As a result of this lower number of parameters, less noise can influence
the performance of the network.
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Figure 2.10: The ReLU function shown in example. The function a(z) = max(0,z) is ap-
plied to every element.

2.2 Textual Input Encodings

As mentioned before, natural language can be presented in several forms. Mostly, one has
to deal with input in form of words, letters, part-of-speech (POS) tags or acoustic speech
(the latter one is not covered in this section). In this section, we will have a look into
approaches on how to transform this kind of data into a form that can be processed by a
statistical classifier or NNs.

2.2.1 One-hot encoding

An approach to convert textural data into a numeric representation is the application of a
1− o f −m (or "one-hot") representation. Here, each dimension of the result represents a
unique feature of the data. In this case, a word from the vocabulary is to be considered as
one feature and dimension in this vector.

For illustration, let’s consider an example of a collection of documents. The vocabulary
that is created from this documents consists of 40,000 unique words. Using a Bag-of-Word

representation, the vector x will have a length of the vocabulary to consider. Let’s assume
a vocabulary v with 40,000 different words and a document with 25 words. The resulting
vector x will have 40,000 elements, with utmost 25 non-zero values. In this example, say
the word at index 34,768 correspond to cat and index 6415 corresponds to dog. The vector x

can clearly be considered as a sparse vector. An example, on how to construct an "one-hot"
vector can be seen in Figure 2.11a.

Having such sparse vector encodings causes that similarity between words cannot be cap-
tured anyhow. As an example, the features "think" and "thinking" are not linked, and have
the same relation to each other as to the word "car", for instance. This is easily illustrated
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by means of the dot product that can show the similarity between vectors:

think · thinks =

[0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]·

[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]T = 0

Additionally, words, that are rarely seen during training will be represented poorly. Words
that are not seen once during training cannot be classified later and will be treated as out-
of-vocabulary. Languages with extremely large vocabularies, as agglutinative languages1

(Finish and Turkish are being well studied), do get affected by this drawback (Bojanowski,
Joulin, & Mikolov, 2015).

In real-world scenarios, textual input data often contain spelling mistakes and typos. The
size of the vocabulary increases unnecessarily by adding several versions of the same word.

2.2.2 Dense Word representations

A milestone in the concept of representing data was done when moving to deeper non-
linear models. For this purpose, not each feature had its own dimension anymore. Here
the data is embedded into a fixed d dimensional vector space. A word is represented as
a vector from that. The representation is on a much lower dimensionality compared to
the sparse encoding. The dimensionality of this embedding space can vary and is usually
between 100 to 200. This results in a much smaller dimension than the number of features.
Such embedded representations are usually learned during the training, alongside other
parameters of the network (Goldberg, 2017).

Word embeddings can be used for a more dense representation. The term word embedding
is a collective term, containing a language model and feature learning techniques. Word
embeddings are learned by a NN that includes the rich representation of the corpus into the
new representation space. As a result, a word is mapped to a dense vector of real numbers.

Bengio, Ducharme, Vincent, and Janvin introduced the idea of learning a representation
of the words over a corpus using NNs (Bengio et al., 2003). Besides NNs, other ways
of creating dense representations include dimension reduction on word-level using the co-
occurrence matrix (Levy & Goldberg, 2014b), probabilistic models (Globerson, Chechik,
Pereira, & Tishby, 2007) or representation in terms of the word context (Levy & Goldberg,
2014a). An example of a word embedding is illustrated in Figure 2.11b. For this example,

1words that may contain different morphemes to determine their meanings
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a fictional 6 dimensional word embedding is shown.

One advantage of using dense representations is that the dimensionality of the vectors to
handle is much smaller. This causes the computation to be much faster, as NN toolkits
don’t work well with high dimensions. Another benefit that can be drawn from dense
representation, is that similarities between words or terms can be learned. Let’s assume a
corpus, where the word dog occurs more often compared to the word cat. If each word is its
own dimension, the word dog cannot say anything about the occurrence of cat. In a dense
representation, the two words may share statistical properties, which leads to a similarity
between those. This assumption, that during training the word cat has enough occurrences
that such a relation can be learned. On pre-trained word embeddings (Section 2.2.3), these
similarities can be observed (Goldberg, 2017).

2.2.3 Pre-trained Word Embeddings

Training an embedding only makes sense when there is a lot of training data available.
In the contradicting case, it will be hard or impossible to train a model. For such cases,
pre-trained embeddings that are trained on a huge amount of data can be used.

The first widely used word embedding algorithm was introduced by Collobert and Weston
(also called C&W). This showcase proved to improve performance when a word embed-
ding is trained on a large dataset that contains syntactic and semantic meaning (Collobert
& Weston, 2008). As described in Goldberg (2017), natural language models are the basis
of word embeddings, where the so f tmax is essential. To overcome computing this costly
function, a different objective function was used instead. The network is trained to output
higher scores for a correct sequence of words. Incorrect sequences should get a lower score.
To compare two sequences, a pairwise ranking-criterion was used. The resulting language
model produces embeddings with already known properties, like relating words that are
clustered together. Further details and an extensive explanation of the results can be found
in Collobert et al. (2011).

The WORD2VEC is based on a series of publications (Mikolov, 2012; Mikolov, Chen,
Corrado, & Dean, 2013). It is based on a language model that enables faster results. It uses
the CBOW (Continues Bag-of-Words) and SKIP-GRAM as the context representation and
Negative-Sampling and Hierarchical Softmax as optimization objectives.

Figure 2.12 illustrates the application of the CBOW and SKIP-GRAM. CBOW’s goal is, by
means of a center words context, to predict the word in the center. According to a window
around the center word, n words are used for the prediction. Using the Continues Bag-
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(a) A sparse representation of features, in form of a One-hot encoding.

(b) A dense representation of the data, by means of a word embedding.

Figure 2.11: The comparison of the usage of sparse (a) to dense (b) vectors. (a) shows the
concatenation of three "one-hot" vectors, describing the phrase I like food. (b)
represents the concatenation of the embeddings in a figurative example with 6
dimensions of the same two words as in (a) (Goldberg, 2017).
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of-Words Model, a probability for the center word is calculated. The SKIP-GRAM, on the
other hand, does exactly the opposite. Having a word, the model provides probabilities for
words that are likely to appear in the words context.

Figure 2.12: The usage of the CBOW (left) and SKIP-GRAM (right) applied on the
WORD2VEC embedding model Mikolov et al. (2013).

To reconstruct the linguistic context of words, models are trained. The architecture of the
models are shallow ones, with only two layers. With these models, two words sharing
the same context are then positioned in the vector space so that they are close to each
other. This relationship allows using these vectors to find similar relationships to other
word pairs. An example, taken from Mikolov et al. (2013) shows how the analogy of
"king is to queen as man is to woman" can be converted in the vector space to the equation
king−man+woman = queen. Another similar example shows how the capital cities are
related to their country: Paris−France+ Italy = Rome.

Pennington, Socher, and Manning (2014) introduced the GLOBAL VECTORS (GLOVE).
For this embedding, a specific weighted least squares model was introduced. This one
trains global word-word co-occurrences counts. This makes this model efficient to use.
The authors claim that this makes a meaningful structure within the learned embedding.
The model was trained on a huge amount of data from several sources, like Wikipedia,
crawled web data, and a Twitter dataset. Pre-trained GloVe embeddings are used in recently
published NLI models (Gong, Luo, & Zhang, 2018; Tay, Tuan, & Hui, 2018).

More recently, Facebook introduced FASTTEXT (Joulin, Grave, Bojanowski, & Mikolov,
2017). This can be seen as an extension to the WORD2VEC model, as words are broken into



2 Background 24

several n-grams (sub-words). After training, the embedding contains vectors for the sub-
phrases seen during training. An advantage that this approach poses is that rare words can
be represented, as their sub-phrases are more likely to appear in the trained vector space.

There are also embeddings published that do not focus explicitly on word-level. As an ex-
ample, M. Chen (2017) represents each document as a simple average of word embeddings,
thus ensuring a documents representation that captures semantic meanings during training.
Tweet2Vec (Vosoughi, Vijayaraghavan, & Roy, 2016) represents Tweets in a vector format.

Two of the most common word embeddings are WORD2VEC (Mikolov et al., 2013) and
GLOVE (Pennington et al., 2014). For further reading on pre-trained word embeddings in
general, the reader is referred to (Goldberg, 2017, Chapter 10).

The usage of word embeddings has lead to state-of-the-art results in sequential tasks on
textual data (LeCun, Bengio, & Hinton, 2015). Under certain conditions, traditional word
similarity models can perform as well as word embeddings (Levy & Goldberg, 2014a).

2.2.4 Character-wise Encodings

A very low-level approach of textual input features is the usage of documents on character-
level. Here the text is not preprocessed in any form. The sequence of text is fed as an input
feature to the NN in a one-hot character-wise encoding.

An advantage of character-level features is that they are language independent. The dataset
needs to provide enough data that semantic characteristics of the input language can be
learned during training. Furthermore, no tools for textual preprocessing, like a tokenizer or
lemmatizer, are needed.

Kanaris, Kanaris, Houvardas, and Stamatatos (2007) use bag-of-character n-grams for clas-
sifying spam in e-mail conversations. For this classification, just the content of the mail is
used, without knowledge about the sender, other recipients, or an attachment is needed.
Here they claimed, that the sparsity of data reduces when using character-level n-grams
over n-grams on word-level. The reduced sparsity is an effect of the highly reduced num-
ber of character combinations that need to be set to zero. But the representation still has a
significantly large feature set.

Characters are essential features for POS tagging. The goal of POS is to label a word
according to its lexical categories, like noun, verb, pronoun or preposition. dos Santos,
Nogueira and Zadrozny (2014) proposed a POS tagger that combines word- and character-
level features of the input. Their architecture incorporates convolutional layers, which ex-
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tracts character features from each word.

Zhang et al. (2015) explored how text classification can be applied on textual input in the
format of characters by means of CNNs. They claim that their method could work without
any need for features on word-level. Characters in the vocabulary are restricted to a cer-
tain set of 70 symbols, including 26 letters, 10 digits, 33 other symbols, and the newline
character:

abcde f ghi jklmnopqrstuvwxyz0123456789

−, ; .!? : ”/\|_@#$%ˆ&∗ ∼′ +−=<> ()[]

The sequence of characters is then transformed into 1− o f −m (or "one-hot") encoding.
Blank symbols (Padding) or characters in the sequence that do not occur in this vocabulary,
are all set to zero in the transformed vector. This research discovered that on large datasets,
not making a distinction between upper and lower case characters does perform better.

In contrast, Bojanowski et al. (2015) challenge RNNs with input on character level. First,
they introduce an architecture where they combine character and word-level information.
Second, an adapted RNN architecture (Char-RNN) is introduced to make the computation
on character level more sparse.

A character-aware language model was introduced by Kim, Jernite, Sontag, and Rush
(2016). This language model relies completely on character-based input. A Char-CNN
leverages the subword information. The resulting output is fed into an RNN language
model. Their implementation reduces the number of parameters by 60% and outperforms
various baselines on morphologically rich languages.

A more recent work on NLI incorporates character-level information into the set of features.
Gong et al. (2018) use a convolutional layer followed by a max pool layer (according to
Zhang et al. (2015)) to extract character-level features. The set of features contains pre-
trained word vectors, the character features, and syntactical features. The latter include POS
tagging and binary exact match feature. In Wang, Hamza, and Florian (2017), a character-
embedding is learned by a LSTM. The input is fed character-wise into the network. The
embedding is then learned jointly with other network parameters.



3 Neural Network Models for Contradiction
Detection

For the classification of NLI problems, several approaches are used. One of the earlier ones
is a rule-based approach. The premise and hypothesis are first translated into a logical, for-
mal form. The entailment classification is based on this representation. Examples for this
approach can be found in Chatzikyriakidis and Bernardy (2017); Hickl and Bensley (2007);
MacCartney and Manning (2007, 2009, 2014). The second one that is well discovered,
is a graph-based approach. Here the prediction is formulated as a graph matching prob-
lem, where the two sentences are represented as graphs derived from syntactic dependency
parses (Haghighi, Ng, & Manning, 2005). Both of these methods are not covered in this
chapter.

Since the introduction of corpora with a lot of data, the interest in applying machine learn-
ing methodology to the problem of NLI has grown. From there on it was possible to use
machine learning and neural models to find classifiers.

In this chapter, first, the general structure of a neural model with application to NLI will
be discussed. As neural models are an assembly of several components, the application of
NNs, introduced in Section 2.1, on NLI will be shown. Here the focus is set on the core
components of the neural models in recent publications (Section 3.2, 3.3 and 3.4). This
chapter closes with a discussion on the impact of network types in Section 3.5 and input
features in Section 3.6 of neural models .

3.1 Adapted NLP Four-Step Approach

For their architecture, all neural NLP models tend to follow a certain scheme. Honnibal
(2016) was the first to describe this scheme, the way it had already been used before. This
scheme has four steps: Embedding, Encoding, Attention and Prediction.

Almost all recent publications on NLI propose models according to a certain scheme (Bow-
man, Angeli, Potts, & Manning, 2015; Conneau, Kiela, Schwenk, Barrault, & Bordes, 2017;
Gong et al., 2018; Rocktäschel et al., 2015; Tay et al., 2018). In Figure 3.1 an adapted ver-
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sion of the NLP scheme can be seen. This one is influenced by the the generic NLI model
scheme (Conneau et al., 2017). The premise and hypothesis are on word-level, the classifi-
cation according to the three-way labeling.

Figure 3.1: The NLP four-step approach according Honnibal (2016), adapted to the NLI
problem. Premise and hypothesis are embedded and encoded separately. The
attention forms a common representation on which the prediction is done. The
adaption for NLI is based on the generic NLI model scheme (Conneau et al.,
2017).

The embedding is done by converting the input word-wise into its word-vectors. This is
done by means of word embeddings, as described earlier (Section 2.2.3). A very popular
word-embedding for NLI are the GloVe. These are used in several recent publications
on NLI (Q. Chen et al., 2017a, 2017b; Gong et al., 2018; Tay et al., 2018). Each word
is then represented by an individual vector. Additional features can be appended to this.
Gong et al. (2018) added additional features, like character features and syntactical features,
including POS tags and binary exact match features, to increase their model’s accuracy.
This composition of input features is illustrated in Figure 3.2. This results in a matrix with
the dimensions

d = nW × (le + l f ),

where nW is the number of words in the sentence, le the length of the word-embedding and
l f the length of the additional features. In order that each sentence is represented in a matrix
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with the same dimension, the sentence length is fixed to a certain length. Certain models
(Gong et al., 2018) insist on a fixed length, where sentences longer than nW are cropped
and sentences shorter are filled up with padding. Other models (Tay et al., 2018) just pad
the sentences to the length of the longest sentence in the batch.

Figure 3.2: The input features, as used in the DENSELY INTERACTIVE INFERENCE NET-
WORK (DIIN) (Gong et al., 2018). First, for each word, the GloVe vectors are
used. Character features, that are learned by a CNN, are appended. The final
part of this input feature are syntactical features, including POS tags and binary
exact match features.

Next, the embedded input will be encoded into a sentence representation. Till now, each
word represents itself. This encoding step combines the embedded features into one repre-
sentation. With the Stanford NLI (SNLI) corpus (Bowman et al., 2015) a simple baseline
was released. For this, the authors compared a neural-based encoding (RNN and LSTM)
with a simple averaging of the sentence’s word embeddings. Here the LSTM outperformed
in this competition.

LSTMs (Rocktäschel et al., 2015), BiLSTMs (Q. Chen et al., 2017b) or Highway Networks
(Tay et al., 2018) are used neural network types for this step. This step is done for premise
and hypothesis separately.

A crucial part is the attention. First introduced by Bahdanau, Cho, and Bengio (2015) for
machine translation and adapted to NLI (Rocktäschel et al., 2015), the attention allows the
model to attend over the past output. This enables to overcome the bottleneck of the LSTMs
on its internal state. In case of an NLI system, the attention enables the cell not to need to
capture the complete semantic information about the premise in its internal state. For that,
it is only needed to pass on the output of the LSTM cell for the premise to the other for the
hypothesis.

This attention step makes sure, that a final classification can be made. Therefore, the di-
mension of the previously encoded data must be reduced. For application on NLI, the two
sentences are combined during this step as well. For this purpose, several methods are used
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in literature. Q. Chen et al. (2017a) use a Local Inference Modeling. Tay et al. (2018) intro-
duce a Alignment Factorization, where the alignment to the sentence itself and to the other
is calculated. This is done by the alignment between the sentence itself and the other one.
For this purpose, a factorization method Ff m(x) (Rendle, 2010) of degree d = 2 is used

Ff m(x) = L(x)+P(x), (3.1)

where

L(x) = w0 +
n

∑
i=1

wi · xi

and

P(x) =
n

∑
i=1

n

∑
j=i+1

< vi,vj > ·xi · x j.

< ., . > indicates a dot product between two vectors, w0 ∈ R is a global parameter, w ∈
Rn and V ∈ Rn×k. Ff m(x) results in a scalar valued output. vi is a row within V and
describes the i-th variable with k factors, whereas k ∈ N+

0 defines the dimensionality of
the factorization. L(x) can be considered as a linear regression layer. P(x) learns pairwise
feature interactions. Therefore it factorizes the feature interaction matrix.

For combining the two sentences by means of heuristic, Mou et al. (2015) proposed an
approach, where the result of the attention, the two properties h1 and h2 are assembled in
to a vector m

m = [h1;h2;h1−h2;h1 ·h2].

The ”− ” is the element-wise subtraction, · the element-wise multiplication and ; denotes
a concatenation of two vectors. This technique is used to combine properties during the
attention process.

An approach, that is slightly different from this scheme is introduced by Gong et al. (2018),
where a combination of an Interaction- and Feature Extraction Layer is used. As the calcu-
lation of the attention cannot be done on the basis of a single sentence or on each sentence
independently, the pair of sentences must be combined. This combination is part of the
attention step.

The last step is the classification itself. For this, either fully-connected feed-forward NN
(Q. Chen et al., 2017b; Gong et al., 2018; Tay et al., 2018), pooling-layer (Conneau et al.,
2017) or soft-max layer (Q. Chen et al., 2017a) are used.
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3.2 Feed-forward Neural Networks for NLI

In order to simply use a feed-forward architecture to classify a sentence pair, the sequence
of the two sentences must be combined into a fixed length vector. Due to this possible
cropping, information could get lost (Potts & Maccartney, 2016).

With the application in deep architectures, the feed-forward NN cannot be found in every
model. A bunch of models, like the CAFE (Tay et al., 2018), use a simple n-layered feed-
forward NN to classify the result of the attention layer. But, as discussed previously, other
approaches can be used too.

The only work that was found, that completely relies on feed-forward NNs, is by Parikh,
Täckström, Das, and Uszkoreit (2016). In this work, each word of the embedded premise
and hypothesis is attended first using a feed-forward NN with ReLU separately. Attention
weights are computed and afterwards compared with the initial representation. This com-
parison is also done by an NN of the same type. The results are aggregated and classified
by a feed-forward NN with linear activation.

3.3 Recurrent Neural Network for NLI

Plain RNNs can be used in two different ways. A simple classifier is built by just using one
RNN cell. The concatenated premise and hypothesis are fed into this one cell. On the other
hand, two chained gates can be used. Here each sentence has a separate input and hidden
weights. The RNN for the hypothesis is initialized by the state of the proceeding gates final
state. It is also possible to combine the output of the two RNN cells, like a concatenation
or other metrics like subtraction or multiplication (Mou et al., 2015; Potts & Maccartney,
2016).

As mentioned previously, in deep architectures RNNs, LSTMs more particularly, are often
used during the encoding of the embedding into a sentence representation. For instance,
CAFE (Tay et al., 2018) uses an LSTM right before the prediction. They encode the com-
plete list of extracted features into one representation, that is then fed to a pooling layer.
The result is then provided as input to the final classification.

Ghaeini et al. (2018) use for the same purpose a BiLSTM. An additional BiLSTM is used
during the inference phase. Here two sequences of computed matching vectors from the
attention phase are aggregated. The first to use LSTMs with an adaption on neural attention
were Rocktäschel et al. (2015).
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In recent publications (Gong et al., 2018; Yu et al., 2017) the usage of LSTMs was being
avoided. Compared to other approaches, RNN methods are very time consuming, as the
states of the memory cells and the attention weights must be computed at every time step
(Yu et al., 2017).

3.4 Convolutional Neural Network for NLI

In general, CNN based models can be divided into two categories: sentence encoding (SE)-
based or sentence interaction(SI)-based methods. The first type’s aim is basically to learn
a good representation of each sentence and apply a comparison function, which transforms
both sentences into one single representation (Mou et al., 2016; Yin & Schütze, 2015). The
second one directly models the interaction between the two sentences at the beginning and
results in a final representation on top of this output (Hu, Lu, Li, & Chen, 2014; Pang et al.,
2016).

Yu et al. (2017) analyzed both methodologies and combined them into one model. Their
hybrid CNN model (hCNN) combines an SE-based model and an SI-based Pyramid model.
The combination is performed by simply concatenating the results of the two models before
further analysis is performed.

A further model that includes an SE-based approach, was introduced by Gong et al. (2018).
The so-called DIIN model first creates a representation of the sentence. Additionally, an-
other convolutional layer is used in this model. This layer aims to extract features from
the result of the interaction layer. For this purpose a special network model is used, the
so-called DENSENET (Huang, Liu, van der Maaten, & Weinberger, 2017).

DENSENET was introduced by Huang et al. (2017). With this type of network, the authors
presented an approach, which connects each layer of the network with each layer to every
other layer in a feed-forward style. This approach enables networks to be much deeper,
but also improves accuracy and efficiency. The input of a layer are the feature-maps of the
connected ones.

CNNs can also be used to pre-process data. As shown in Gong et al. (2018) and Tay et
al. (2018), character features are extracted and appended to the list of input features. This
preprocessing step is done similar to Zhang et al. (2015).
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Model Development Accuracy
DIIN (Gong et al., 2018) 88.0%
CAFE (Tay et al., 2018) 88.5%

Table 3.1: Comparison of DIIN (Gong et al., 2018) and CAFE (Tay et al., 2018) on SNLI
(Bowman et al., 2015), as reported.

Model MATCHED MISMATCHED

DIIN (Gong et al., 2018) 78.8% 77.8%
CAFE (Tay et al., 2018) 78.7% 77.9%

Table 3.2: Comparison of DIIN and CAFE on the MULTI-GENRE NLI (MULTINLI)
(Williams et al., 2017) development sets, as reported.

3.5 Effect of Network Types on Neural Models

As all neural models for NLI are a composition of several different layers. It is hard to
compare the effect of a specific network type to the model. In order to explain the effects
of certain network types, two recent models with different architectural components were
selected. The DIIN (Gong et al., 2018) incorporates a convolutional structure for extracting
the features. In comparison, the CAFE (Tay et al., 2018) model uses an LSTM for the same
task. Booth models use the same types of input features and a three-way classification into
entailment / neutral / contradiction.

The accuracy that these models achieve on the SNLI and MultiNLI corpus can be seen in
Table 3.1 and 3.2, respectively. Here is shown, that the LSTM based CAFE model performs
0.5% better on the SNLI dataset, compared to the CNN based DIIN . Bot comparisons
exhibit almost negligible (in comparison to variance in the single experiment) differences.
Each of the models perform better on about 0.1% on one of the development sets.

The effect of certain components on a neural model can be shown, by replacing certain parts
from the architecture. For the CAFE network, this ablation study is reported in Table 3.3.

As mentioned in Section 3.1, CAFE (Tay et al., 2018) introduces an Alignment Factoriza-

tion, as described in Equation (3.1). In the first experiment, this factorization method Ff m is
replaced by regular fully connected layers. The result of 77.7% for the matched and 77.9%
for the mismatched development set shows the marginal impact of this method.

A more noticeable difference in the accuracy can be seen, when the intra-attention layer
is being removed (Experiment 2 in Table 3.3). This layer aims to learn an alignment of
sub-phrases between the premise and hypothesis. The difference from the original model
of 3.8%/3.3% show the importance of this layer.



3 Neural Network Models for Contradiction Detection 33

# Experiment Name MATCHED MISMATCHED

Original CAFE Model 79.0% 78.9%
1 replacing factorization method with fully-connected

layer
77.7% 77.9%

2 removing inter attention 75.2% 75.6%
3 replace highway layer prediction with fully-

connected layer
77.7% 77.9%

4 replace highway encoding with fully-connected layer 78.7% 78.7%
5 replace LSTM with a bidirectional LSTM 78.3% 78.4%
6 removing Character Embedding 78.1% 78.3%
7 removing syntactical Embedding 78.3% 78.4%

Table 3.3: Ablation study for CAFE on MultiNLI development sets. The accuracy of the
adaption is reported in comparison to the original model (Tay et al., 2018).

# Experiment Name MATCHED MISMATCHED

Original DIIN Model 79.2% 79.1%
8 removing convolutional feature extractor

(DENSENET)
73.2% 73.6%

9 removing encoding layer 73.5% 73.2%
10 removing self-attention and fuse gate 77.7% 77.3%
11 removing fuse gate 73.5% 73.8%

Table 3.4: Ablation study for DIIN on MultiNLI development sets. The accuracy of the
adaption is reported in comparison to the original model (Gong et al., 2018).

Experiment 3 and 4 show how the highway layer has a positive influence on the accuracy
of this network. Here the highway network of the prediction layer and for encoding of the
input is replaced by fully-connected layers. The results show a drop of 1.2%/1.0% for the
prediction layer (Experiment 3). The difference for experiment 4 (replacement of highway
network for the encoding) is only marginal with 0.3%/0.2%.

For extraction of the final features before the prediction, CAFE uses an LSTM followed by
a max- and avg-pooling layer. In a further experiment 5, this used LSTM is replaced by
a bidirectional LSTM. By changing this one component exclusively in this layer, accuracy
drops about 0.7%/0.5%.

The ablation study for the DIIN (Gong et al., 2018) can be seen in Table 3.4. For experiment
8, the convolutional feature extractor, based on DENSENET (Huang et al., 2017), is being
replaced by a max-pooling of the sentence representation over time. The feature vectors
for premise p and hypothesis h are then combined by [p;h; p−h; p ·h] into the final feature
vector for classification. The result of this experiment is comparable to other models, that
are sentence encoding based (73.2%/73.6%).
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The absence of the encoding layer is analyzed in experiment 9. When removing the whole
layer, the accuracy drops to 73.5%/73.2%. Similar for experiment 10, the self-attention
layer + fuse gate were removed. Experiment 11 just analyses the influence of the removed
fuse gate. These experiments result in 77.7%/77.3% and 73.5%/73.8% respectively. As
can be seen, interestingly the accuracy is better if both self-attention and fuse gate are
removed, compared to just removing the fuse-gate.

3.6 Effect of Input Features on Neural Models

Similar to Section 3.5, a comparison can also be made for the input features of a network.
For this analysis, the results of the CAFE network (Tay et al., 2018) are being considered.

This network uses, inspired by the DIIN (Gong et al., 2018), a concatenation of input
features. As already discussed in Section 3.1 and illustrated in Figure 3.2, the list consists
of GloVe word-vectors for each word, followed by character features obtained by an CNN
and syntactical features. The results for the experiments on the CAFE network, can be seen
in Table 3.3.

Experiment 6 and 7 show the effect of the character and syntactical features, respectively.
The results for experiment 6 show that the absence of the character features drops the ac-
curacy down to 78.1%/78.3%, which is a marginal reduction of 0.9%/0.6% to the original
model. The impact of the syntactical features is lower, compared to the character features.
With their absence, the model poses an accuracy of 78.3%/78.4% accuracy (difference of
0.7%/0.5%).



4 Exploring Contradiction with Neural Models for
Natural Language Inference

As mentioned earlier, the era of NN with an application on NLI started with the introduction
of larger corpora. Formerly, mostly non-neural approaches were used. Since then, the inter-
est in applying neural methods rose (Bowman et al., 2015; Williams et al., 2017). Following
this trend, the question arises, in what kind of form should the input be presented?

In the following chapter, an analysis of several kinds of inputs of neural models is con-
ducted. Firstly, Section 4.1 describes the model used. In Section 4.2 the setup for the
experiments is explained. The experiments are described in Section 4.3, where the effect of
different types of input features are shown.

4.1 The Neural Model

A novel neural approach is introduced with the DENSELY INTERACTIVE INFERENCE NET-
WORK (DIIN) (Gong et al., 2018). The DIIN is a multi-layer network, predicting the en-
tailment of two sentences, premise and hypothesis. The prediction is done according to a
three-way classification into "Entailed", "Neutral" or "Contradicting".

The DIIN is an attention-based model. The architecture is split into five layers, and de-
signed according to the generic NLI scheme (see Section 3.1). Each layer of the architec-
ture is named after its responsibilities, namely embedding, encoding, interaction, feature
extraction, and output layer.

At the embedding layer, each sentence, premise, and hypothesis separate, is converted into
a concatenation of word embedding, character feature, and syntactical features. For the
word-embedding, the pre-trained GloVe is used. The character-embedding features for
each word are obtained by a convolutional network, followed by a max pooling over the
inputs character vectors. The syntactic feature set contains one-hot POS tagging and binary
exact match features. The latter indicates the index of the shared words.

The following encoding layer takes the concatenated list of embeddings and passes it
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through a two-layered highway network. An intra-attention is applied on to the new rep-
resentation. This one enables the network, to take the word order and context information
into account. This is done for premise and hypothesis separately.

A common representation is formed by the Interaction Layer. The encoded representation
of premise (Penc) and hypothesis (Henc) result in

Ii j = β (Penc
i ,Penc

j ) ∈ Rd,∀i ∈ [1, ..., p],∀ j ∈ [1, ...,h],

where Penc
i denotes the i-th row vector of Penc, and Henc

j the j-th row vector of Henc respec-
tively. β is solely implemented as the element-wise product

β (a,b) = a ·b,

instead of the format used in other models and explained before (Section 3.1).

As already mentioned in Section 3.4, for the feature extraction, a DENSENET is used. The
flattened result is classified by a linear layer using a three-way classification.

The reported results with this model on the SNLI (88.0%) and on MultiNLI (78.8%|77.8%)
demonstrates its power in the competition.

4.2 Experimental setup

For the DIIN , the authors implementation is available online1. For the purpose of the
experiments, this implementation was used without modifications. As the optimization
algorithm, an Adadelta optimizer is used, with ρ = 0.95 and ε = 1e−8.

The learning rate is set initially to 0.5 and the batch-size is chosen to be, as in the reference
implementation (Gong et al., 2018), to 70. Dropouts are used after the word-embedding and
before each linear layer. In this implementation, a decay rate is applied for the dropout keep
rate. First, 1.0 is used, after every 10,000 steps, this rate is multiplied by 0.977. For the
word-embedding, pre-trained GloVe vectors are used. The 300D GloVe 840B is being used.
Out-of-vocabulary words are initialized randomly, as well as the character embedding. All
weights are set according to a L2 regularization. For further details on the implementation
of this regularization, the reader is referred to Gong et al. (2018). For the training of the
models, no data from the SNLI corpus was used, as done in Gong et al. implementation.
The training completely relies on the MultiNLI training data.

1https://github.com/YichenGong/Densely-Interactive-Inference-Network

https://github.com/YichenGong/Densely-Interactive-Inference-Network
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The used implementation of the DIIN (Gong et al., 2018) did not provide exactly the same
results, as reported. The accuracy that was achieved is 77.90%|77.03%, compared to the
reported 78.8%|77.8%. This difference is probably caused as the reference implementation
uses 15% of the training data from the SNLI corpus. The achieved accuracy was used as
the baseline in all the experiments.

4.3 Experiments

In this section the experiments are discussed.Different types of input features applied to the
DIIN model, are applied and discussed.

As described in Section 2.2, there are several ways of supplying a model with input data.
Different kinds of input features have different effects on the prediction. An example can
be seen in Section 3.5, where the ablation study for the CAFE network shortly analyzes the
impact of the different kinds of input features. In this section, the analysis will become
deeper and consider different kinds of input formats.

As already described in Section 3.1, the DIIN uses three types of input features: for each
word in the sentence the word embedding is used with character- and syntactical-features,
including POS tags and binary exact match features. This, in the following, also called
original feature-set, is used as the baseline (see Table 4.1) in the following experiments.

The first comparison (Experiment 1) is done by exclusively considering the used GloVe
word-embeddings. For experiment 2, the character features, that are learned through a
CNN are skipped. Experiment 3 uses the original feature-set without the POS tagging and
binary exact matching features.

A different set of features, that has so far not been used in the studies, is applied for Ex-
periment 4. Here the input is used on character-level. Similar to Zhang et al. (2015), each
character in the input is converted into a one-hot encoded vector, with the length of the
vocabulary. For this experiment, a reduced vocabulary is used, compared to Zhang et al.
(2015). This consists of 53 characters, including 26 letters, 10 digits, 18 other symbols:

abcde f ghi jklmnopqrstuvwxyz0123456789

−, ; .!? : ”/′$%()[]

Other characters, including the space, are set to all zero. The selection was made by using
all the characters in the train and development-set of the MultiNLI corpus, that have an
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occurrence higher than 1000. The length of sentences is restricted to 278 characters. This
number was chosen, as this length covers exactly the same amount of sentences in the whole
MultiNLI corpus as used in the default setting on word-level. Sentences that are longer
than the 278 characters are cropped and sentences that are shorter are padded with all zero
vectors. Following these two constraints, the resulting input matrix for each sentence has
the dimensions 278× 53. This causes a sparsity level of 278

278·53 = 1.887%, whereas the
original setup has one of roughly 100%.

In order to conduct this experiment, the number of layers in the self-attention encoding
was set to zero. As this layer intends to calculate the similarity between each word in a
sentence, this does not apply to character-level. In the case of this experiment, one feature
on character-level has only a probability of 1

53 , as this is on word-level, depending on the
used vocabulary, lower than 1

640 billion .

With these adoptions, the model still needs to do a convolution on the vocabulary in a two-
dimensional space. As the vocabulary increases about five times, the need for memory
grows quadratically. In order to still compute this memory intense experiments, the batch
size was reduced to 18.

Experiment 5 is a modification of experiment 4, with fewer characters used. All non-
alphabetic and non-numeric characters are omitted, so that just

abcde f ghi jklmnopqrstuvwxyz0123456789

are used.

As discussed before in Section 2.2.1, each feature in a one-hot encoded dataset is a own
dimension. This causes it to consume a lot of memory. For experiment 6, the previously
characterized input data is altered. In order to make the input sparse data representation
easier to compute, an autoencoder is applied to the data to reduce dimensions. During this
step, the dimensions of the data are reduced and another representation is learned. The
autoencoder uses one feed-forward hidden layer. The hidden layer has a dimension of
50 and the output of 20. For each one-hot vector, the two subsequent vectors are taken,
concatenated and fed into the autoencoder. The input of the autoencoder results in a vector
with 159 dimensions. The resulting matrix has the dimensions of 276×20.

For the last experiment, the highway-layer is removed. Here it is assumed, that this layer
learns a representation of the input data for this classification task. To still be able to learn
a representation, the GloVe embedding used was set to be trainable.
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# Experiment Name MATCHED MISMATCHED

original feature-set 77.90% 77.03%
1 only GLOVE word embedding 77.09% 76.36%
2 without character features 77.83% 77.29%
3 without syntactic features 77.42% 76.88%
4 sparse character-level features 65.12% 66.00%
5 sparse character-level features (less characters) 65.09% 65.87%
6 less-sparse character-level features 65.81% 66.38%
7 no highway-layer and updating word embedding 75.81% 75.81%

Table 4.1: Applying the the MULTINLI (Williams et al., 2017) development-sets in differ-
ent formats of the Input Features on to the DIIN (Gong et al., 2018) network. All
the experiments are done on the original model, with only modifying the input
or as stated.

The results for all the experiments can be seen in Table 4.1. As mentioned in Section 4.2, it
was not possible to get the reported accuracy, even with the original implementation of the
DIIN . The maximal achieved accuracy is reported as the baseline with the original feature
set.

Disabling all features and using solely the word-embedding, lets the accuracy drop to about
−0.81%| − 0.67%. Without the usage of the character embedding, the accuracy changes
to 77.83%|77.29%. The absolute difference is −0.07%|+0.26% and means an increase in
accuracy for the mismatched test set. Ignoring the syntactical features, the accuracy changes
to 77.42%|76.88%, which means a difference of −2.48%|−0.15%.

A significant drop in the accuracy can be observed when using one-hot character encoding.
The resulting accuracy of 65.12%|66.00% is about −12.78%|− 11.03% lower, compared
to the baseline with the original feature set. The training of the model with this set of
features did take roughly about four times the training time of the DIIN baseline with the
full feature list. However, it has to be considered, that the pre-training of the embedding
models used should be taken into account for a fair comparison.

The results are very similar for experiment 5. With an accuracy of 65.09%|65.87%, it is
−0.03%| − 0.13% lower compared to experiment 4. This shows that the reduction of the
vocabulary has only a little effect on the prediction. The difference of the baseline with the
whole feature-set is −12.81%|−11.16%.

Trying to minimize the sparsity of the data from the character-level encoding, an autoen-
coder is applied for experiment 6. This causes a drop in the accuracy to 65.81%|66.38%.

The result of experiment 7 shows the impact of setting the embeddings trainable and re-
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moving the highway layer. Here the accuracy drops, compared to the baseline, about
−2.09%| − 1.22%. This result shows, that the highway layer creates another and better
representation that boosts the performance of the classification task. Whereas it seems that
the highway layer is capable of creating a representation, the word embedding is already
biased in a way. The retraining does not perform as well, as the intermediate representation.

In order to judge the previously trained input features on the DIIN in terms of linguistic, a
further analysis of the previously reported results was conducted.

For the MultiNLI annotations exist, based on linguistic phenomena. These annotations in-
dicate conditionals, active/passive, paraphrasing, coreferences, quantifiers, modals, belief,
overlapping words, negations, antonyms, long sentences, tense differences and quantity or
time reasoning. Whereas 1731 sentences of the MultiNLI development-sets are annotated
with labels, just 340 of those only have one. These are split up into 182 for the matched,
and 158 for the unmatched development-set. In the following experiment, only those 340
sentences are being considered, that have exclusively one tag. Otherwise, it would be not
possible to lead back a classification decision to a certain phenomenon. In the other case,
an entailment or contradiction decision could be based on a combination of the annotations.

The results can be seen in Figure 4.1 and 4.2 for word-level and character-level features,
respectively.

It can be seen with the overall results, that the model trained with no character features and
no syntactical features perform roughly the same as the baseline. The model with only word
embedding does just slightly worse and the model with one-hot character features about 8%
worse. The same applies for the mismatched development-set.

In case of the active/passive annotations, the feature-sets with no character-embedding and
no syntactical features perform the best. The negation profits the most from the original
feature-set. By considering the word overlap, the set without character-feature tends to
perform the best. Here, the classification really benefits from using either the syntactical
features or the character-embedding, but both contradict each other. By removing the High-
way Layer, similar results to the original setup are achieved. A significant difference in
favor this setup can only be observed for active/passive and long sentence on the matched

and for tense difference for the mismatched development set.

The one-hot character embedding performs similarly to the other models on word-level
or worse. An example, where this feature captures a phenomenon significantly worse, is
paraphrasing. It is assumed, as word-embeddings are close for similar words, this relation
can be captured. As this information is missing, the performance on this task is worse. On



4 Exploring Contradiction with Neural Models for Natural Language Inference 41

(a) Annotation Types n MultiNLI Development Matched for each of the categories of input features

(b) Annotation Types n MultiNLI Development Mismatched for each of the categories of input fea-
tures

Figure 4.1: Results for the analysis of linguistic phenomena on the MultiNLI dataset on
each word-level feature set of the DIIN . 4.1a shows the results for the matched,
and 4.1b for the mismatched development-set. The numbers in the brackets in
the categories indicate the number of sentence pairs that are being considered
for this analysis.
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(a) Annotation Types n MultiNLI Development Matched for each of the categories of input features

(b) Annotation Types n MultiNLI Development Mismatched for each of the categories of input fea-
tures

Figure 4.2: Results for the analysis of linguistic phenomena on the MultiNLI dataset on
each character-level feature set of the DIIN . 4.2a shows the results for the
matched, and 4.2b for the mismatched development-set. The numbers in the
brackets in the categories indicate the number of sentence pairs that are being
considered for this analysis.
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the other hand, this feature-set and the original feature-set on the coref and long sentence

annotations perform equally.

As can be seen in Figure 4.2a, all the experiments on character-level perform similarly.
The model with less characters can outperform the others of its kind on paraphrasing and
tense difference on the matched and on belief on the mistmachted development set. In only
three categories, the less-sparse approach is able to achieve an better accuracy: quantifier,
negation and belief (matched) and paraphrase and word overlap (mismatched).



5 Conclusion

This report concludes the author’s research conducted from March to August 2018 at the
Center for Intelligent Information Retrieval at the University of Massachusetts, Amherst.
The initial goal was to take a look at different types of input encoding of the textual data
used in novel NLP approaches. In the survey conducted, several types of input encodings
and input features were selected and compared. Here, a more detailed look was taken on
character-based encodings.

For the analysis of different types of input features, the DIIN model was used. The exper-
iments showed that the selected features, as used with the model, clearly provide the best
results on the training data. Adding a learned character-embedding and syntactical features
pose a minor gain in the accuracy. Using only a one-hot character-embedding performs
significantly worse on the overall results. The analysis of the linguistic phenomena shows
that the character-embedding performs similarly to the one on word–level.

In a future work, it would be interesting to analyze the reason for the gap of the accuracy.
Here the effect of an increased size of training data would be interesting. It is assumed
that a better accuracy would be possible with much more training data. Furthermore, the
resulting changes to the analysis of linguistic phenomena would give interesting insights.
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