Fachhochschul-Masterstudiengang

INFORMATION ENGINEERING & -MANAGEMENT ;l l

4232 Hagenberg, Austria

OBEROSTERREICH

Industrial-Scale Evolutionary Machine Learning:
Distributed Coevolutionary Learning
In Generative Adversarial Networks

Masterarbeit

zur Erlangung des akademischen Grades
Master of Science in Engineering

Eingereicht von

Tom Schmiedlechner, BSc

Betreuerin: Dr. Una-May O'Reilly
Massachusetts Institute of Technology

Begutachter: Dr. Gabriel Kronberger
Fachhochschule Oberdsterreich

Juni 2018

Iem nformation engineering und -management
IKM Fakultat Hagenberg

Eidesstattliche Erklarung

Ich erkldre eidesstattlich, dass ich die vorliegende Arbeit selbststandig und ohne fremde Hilfe
verfasst, andere als die angegebenen Quellen nicht benutzt und die den benutzten Quellen
entnommenen Stellen als solche gekennzeichnet habe. Die Arbeit wurde bisher in gleicher

oder ahnlicher Form keiner anderen Prufungsbehdrde vorgelegt.

Tom Schmiedlechner

Linz, 74. 6. 204 @;%J@/%\

Ort, Datum Name, Unterschrift

Contents

Acknowledgments iii
Abstract iv
1 Introduction 1
1.1 Motivation and Overview, 1
1.2 Methods e 2
1.3 Related work 2
1.4 Contributions 3
1.5 Thesis Outline 3

2 Background 4
2.1 Artificial Neural Networks 4
2.1.1 Neuroevolution oL 5

2.2 Generative Adversarial Networks 6
2.2.1 Notation e 6

2.2.2 Advantages and Applications 7

2.2.3 Disadvantages and Challenges 8

2.3 Coevolutionary Algorithms 9
2.3.1 Categories 11

2.3.2 Relation to GANs 12

2.4 Distributed Coevolutionary Systems 12
2.4.1 Topology e 12

2.4.2 Communication Back-End 14

3 Lipizzaner 16
3.1 System Design 16
3.1.1 Requirements 17

3.1.2 Architecture. 20

3.1.3 Coevolutionary Learning for GANs 23

Contents

3.2 Implementation
3.2.1 Technology Stacks
3.2.2 Distribution of Coevolutionary Systems
3.23 Trainerso e
3.24 Analysis

4 Experiments

4.1 Synthetic Data
4.1.1 Motivation e
4.1.2 Setup
4.1.3 Results e

4.2 TImage Data e
4.2.1 Gradient-Free Coevolutionary Algorithms
4.2.2 Gradient-Based Coevolutionary Algorithms

5 Conclusions and Future Work

5.1 Results. e e e e e
5.1.1 Diversity
5.1.2 Scalability
5.1.3 Improved GAN Variants

5.2 Conclusions

5.3 Future Work

A Experiment Configuration
A.1 Gradient-Free Trainers o v v v v v i i it e

A.2 Lipizzaner

References
Literature . . .
Online sources

26
26
31
39
46

52
52
53
53
54
56
58
60

67
67
67
68
68
69
69

71
71
72

Acknowledgments

First and foremost, I would like to thank Una-May O’Reilly for the chance to write this
thesis here at MIT. I am very grateful for the opportunity to participate in the research
work of her and her group, and learned a lot during my time here. I would also like
to thank Abdullah Al-Dujaili and Erik Hemberg very much for their constant support
throughout this project, and the many hours they have invested in planning, discussions
and reviews — because of their help, this work has become what it is now.

Special thanks also go to my supervisor, Gabriel Kronberger, who has made all this
possible by making contact with the ALFA group and contributed lots of improvement
suggestions.

Finally, I would like to thank my family and my girlfriend Magenta, who support
me in all my decisions and made me who I am today.

Abstract

Generative Adversarial Networks (GANs) have received remarkable interest in recent
research and generally show promising results in creating generative models with un-
supervised learning methods. However, GANs exhibit different critical behaviors like
mode and discriminator collapse due to their unstable adversarial nature — problems
that have not been fully resolved yet.

In this thesis, we introduce the gradient-based coevolutionary GAN training frame-
work Lipizzaner, which combines the advantages of coevolutionary algorithms with those
of sophisticated gradient-based trainers for neural networks. It therefore profits from
the strengths of both: on one hand, using coevolutionary algorithms leads to stability
against collapsing systems, as weak models receive lower fitness values and are ulti-
mately replaced by better performing individuals during the training process. On the
other hand, Lipizzaner is able to compete with the training times of non-population
based GAN implementations by using fast, gradient-based optimizers. In addition to
this, Lipizzaner was designed to run not only on multiple GPUs, but on a distributed
cluster of machines in a TCP/IP network. A spatial grid architecture, in which in-
stances only communicate with local neighborhoods of limited size, is used to achieve
linear scalability characteristics.

Experiments on commonly used datasets show that Lipizzaner is able to overcome
or even prevent otherwise critical collapses, competes with other state-of-the-art GAN
implementations in terms of training durations and accuracy, and scales very well in
large-scale scenarios.

Chapter 1

Introduction

1.1 Motivation and Overview

There has been great progress in the field of machine learning in the past years, particu-
larly as a result of the increasing usage of big data applications. The majority of current
work goes into further research in the field of deep learning [8] — and while this positively
affects progress in many sub-areas, training discriminative networks for classification or
regression is still far more investigated than creating generative networks, which learn
to create data from a specific target distribution.

Generative adversarial networks (GANs) aim to fill this gap by utilizing an opposing
network, called the discriminator, in the process of training the generator. The discrim-
inative network aims to distinguish real input data from samples that were created by
the generative network, while the generator attempts to create samples the discrimi-
nator believes to be real. This leads to an oscillation between the two networks, and
ultimately to optimized results for both of them. [19]

GANSs are currently primarily used for vision-specific tasks like image or video gener-
ation, or in gaming applications — with the clear focus on the generative network. How-
ever, we see further possibilities in using the resulting discriminator as well, especially
in security applications, or precisely the detection of malware. Training a discriminator
against a malware-generating counterpart could result in better generalization to unseen
examples, as a broader, varying search space is explored instead of a fixed training set
[32, 53].

While GANs generally demonstrate promising results and receive great attention
in current research, they still suffer from certain disadvantages, especially in regard of
their stability. Mode collapse and discriminator collapse are typical examples of either
the generator or the discriminator getting stuck in a local optimum, leading to no further
progress as gradient-based optimizers are not able to step out of these situations [41].
As global optimization techniques, evolutionary algorithms are population based and
able to select among collapsed and progressing GANs so that a population helps a GAN
recover. Additionally, the minimax dynamics of competitive coevolutionary algorithms

1. Introduction 2

are very similar to those of GANs [35] as well, making them an even better match.

However, using evolutionary algorithms to train neural networks is a complex task,
additionally increased by the complicated, not yet fully understood dynamics of GANs.
As utilizing gradient-based methods usually results in faster convergence, we aim to
combine the advantages of both them and evolutionary methods, introducing a coevo-
lutionary system that uses gradient-based optimizers to alter the neural network models
instead of applying mutation and crossover operators [38]. In combination with the ad-
vantages of populations of adversarial networks, this results in a stable and fast training
technique for GANs. To further improve the system, we utilize cooperative as well as
competitive approaches to evolve optimizer and mixture parameters.

Finally, coevolutionary algorithms have been shown to be highly parallelizable, as
individuals of the populations can reside either on multiple GPUs, or even on different
physical machines [46]. This allows the usage of large population sizes even for deep
neural networks that require large amounts of memory per model.

When summarized, the points above result in the following formal research question:

Research Question. How can coevolutionary algorithms and gradient-based optimizers
be combined to effectively train generative adversarial networks?

1.2 Methods

This work focuses on the steps necessary to apply coevolutionary, gradient-based search
to deep networks in GAN scenarios, and furthermore on the possibilities to distribute
this process over a large computation cluster.

1. First, a coevolutionary framework for training generative adversarial frameworks
is implemented and different options regarding the feasible evolutionary meth-
ods (e.g. genetic algorithms [18], natural evolution strategies [61], etc.) and ideal
gradient-based optimizers (e.g. plain stochastic gradient descent or Adam [36]) are
explored in a simplified problem domain.

2. In the second step, the previously introduced framework is extended to be dis-
tributable over multiple nodes in a cluster. This is in line with modern comput-
ing approaches (i.e. horizontal scaling), and allows the framework to both utilize
larger population sizes, and compute solutions for more interesting and complex
problems.

1.3 Related work

Coevolutionary concepts have never been applied to generative adversarial networks
in preceding research. However, population-like concepts have been used with GANs
in recent literature [5, 33|, although they are not exploiting adaptive search on these
populations. In contrast to the framework proposed in this thesis, these approaches are

1. Introduction 3

also limited to a single GPU and therefore not suitable for large-scale scenarios that
require distributed systems.

In terms of distributed evolutionary systems, there is interesting progress in utiliz-
ing genetic algorithms to train deep neural networks on highly distributed clusters, as
demonstrated in [54] and [45]. These approaches however differ from Lipizzaner as they
focus on using evolutionary algorithms to optimize a population of network weights
and/or topologies, whereas we use them to optimize a population of networks.

1.4 Contributions

In this thesis, the following contributions are reported:

1. A detailed background overview about generative adversarial networks, coevolu-
tionary algorithms, distribution architectures, and the technologies used during
this project.

2. The detailed description of both design and implementation characteristics of Lip-
izzaner, a distributable, coevolutionary framework to simultaneously train multi-
ple GANs with gradient-based optimizers.

3. Experiment results to evaluate the performance of Lipizzaner on relevant datasets
that are also used in recent GAN literature.

4. Finally, we provide the Lipizzaner framework and experiment code for public

1
usage.

1.5 Thesis Outline

The rest of this thesis is organized as follows: first, a comprehensive theoretical overview
about GANSs, coevolutionary algorithms, and related distribution strategies is given in
Chapter 2. Subsequently, the next chapter describes both the design and implementation
details of Lipizzaner, the framework developed during the work on this thesis. Finally,
the performance of Lipizzaner is shown in Chapter 4, followed by a discussion of the
produced results and the conclusions in Chapter 5.

"https://github.com/ALFA-group/lipizzaner-gan

https://github.com/ALFA-group/lipizzaner-gan

Chapter 2

Background

Lipizzaner combines multiple methods to make use of their combined advantages and
abilities. Since these methods have different characteristics that have to be considered
when using them, it is sensible to gather profound knowledge about them before dis-
cussing the design, architecture and implementation of this system.

This chapter therefore contains details about both the used methods and their under-
lying concepts. As artificial neural networks are a prerequisite of generative adversarial
networks, they are described at the very beginning, followed by GANSs themselves. Subse-
quently, coevolutionary algorithms and possible distribution topologies and technologies
are described as well.

2.1 Artificial Neural Networks

Artificial neural networks (or often only neural networks or NN) are a class of artificial
intelligence systems and loosely based on biological neural networks, i.e. the brains
of humans and animals. They are currently the most researched model of artificial
intelligence and neuroinformatics, and used for all kinds of machine learning tasks (such
as computer vision, speech recognition, video gaming, etc.). While the concept of neural
networks dates back to the 1940s, they experienced a revival in the last 10 years due to
recent advantages in computational power and increasing availability of data. This was
necessary, as training neural networks is an expensive task — especially in current fields
of research like deep- and reinforcement learning. [23]

Most currently used neural networks consist of multiple layers of neurons, with
each neuron having a weight and a bias value — which are used to parametrized the
neurons’ activation functions (e.g. sigmoid or tanh). The output value of neurons is
then generated by applying these activation functions to their respective inputs. An
example for a simple neural network is illustrated in Figure 2.1.

Neural networks are often trained with gradient-based methods, for example stochas-
tic gradient descent (SGD), a large class of different learning algorithm implementations.
They are based on the concept of learning from examples (or supervised learning) — i.e.

2. Background 5

Input Hidden Output

»

QGO
e d

Figure 2.1: Simple example of a neural network, or more specific, a multilayer perceptron.
It consists of three layers — three input and two output neurons, and one intermediate
hidden layer. Topologies in which connections are not cyclic are called feedforward net-
works.

optimizing the network to generate a desired output for specific input values. Therefore,
first labeled examples are propagated through the network. Then, the distance between
the expected and the real output (i.e. the error) of all layers is calculated and propagated
back through the network, adjusting weights and biases of the neurons. [23]

2.1.1 Neuroevolution

Gradient-based methods have become the most common approach to train neural net-
works during the last years — mostly because of the recent advances in terms of compu-
tational power, due to which the usage of deep neural networks became possible.

While SGD is known to outperform most other techniques in common scenarios [23],
it still suffers from an important drawback: it cannot be distributed easily to multiple
CPUs (due to the high number of small optimization steps) [12]. Even if this problem
has been partially solved by other gradient-based algorithms, other conceptual problems
— like getting stuck in local minima or saddle points — still persist. [57]

Neuroevolution differs from these gradient-based approaches by using concepts from
evolutionary algorithms to evolve either parameters of the network (i.e. neuron weights
and biases), or even complete network topologies. Neuroevolution has especially been
shown to work well in scenarios that are close to natural evolution, like generating
networks to control robots, or in game playing applications. [15, 58]

In recent research, neuroevolution was used to train deep neural networks, and has
been shown to match the performance of state-of-the-art gradient-based techniques in
the field of reinforcement learning [45, 54]. However, to perform well on this tasks, the
proposed systems require enormous amounts of computational power; for example, to
evolve the parameters of a neural network that plays Atari games with neuroevolutionary

2. Background 6

reinforcement learning (and match the results of gradient-based training), more than
5000 state-of-the-art CPU cores were needed, and the training still took around one
week [54]. This shows that distributed systems are an indispensable prerequisite for
the success of neuroevolution in industrial-scale real world scenarios, where typically
networks with many layers and millions of parameters are used.

2.2 Generative Adversarial Networks

Deep Learning has become one of the most used methods in machine learning, partic-
ularly because of the growing amount of available computational power and available
data. It has been proven to show great results especially on discriminative tasks like
speech and image recognition [8], as well as reinforcement learning [55]. However, cre-
ating well-performing generative networks that create samples from a specific target
distribution is still an open research task. Generative networks are for instance use-
ful to create images and 3D models, or objects in architecture, design, or video game
applications.

Generative Adversarial Networks (GANs) are a class of unsupervised learning tech-
niques [22] that aim to solve this problem, creating deep generative models by using an
adversarial scenario in which a generator G is trained to create fake data that fools the
discriminator (usually using an input vector from a latent space, i.e. random noise), and
a discriminator D evaluates them against data from a real dataset, i.e. tries to distin-
guish real and fake data. G therefore learns the distribution of the input data, while D
is concurrently trained to classify real and fake data as accurately as possible [19]. This
concurrency is crucial, as it makes both models constantly adjust to each other, and
therefore support the learning to occur incrementally in small steps. However, obtaining
generative models with such an adversarial approach is challenging and often the ap-
proach does not yield a satisfactory model, as we show in our experiments in Chapter 4.
The training process of GANSs is also illustrated in Figure 2.2.

The ultimate goal of GANs is to create a generative model that performs so well
that D is not able to distinguish real and fake data anymore, i.e. it resorts to merely
guessing with a success rate of 50%. However, this may already be the case earlier during
the training if both generator and discriminator perform equally badly. Measuring the
success of generative learning techniques hence is still an open research question — one
option is to compare G to an optimal discriminative model, if available.

2.2.1 Notation

Generative Adversarial Networks aim to learn two distributions: the generator G(z, ©¢)
aims to learn a distribution py(z) as close as possible to the real distribution P(x)
(from which we have some examples), with z defined as the latent input vector, and ©g
defined as the network parameters of G (i.e. the weights and biases). Respectively, the
discriminator is defined as D(x, ©p), with x as the input vector and ©p as the network

2. Background 7

[

Real data)
ol Discrimi Error
— »| Discriminator —V value
Generator »
| Fake data
- LY

Random input Propagate error back to

generator and discriminator

Figure 2.2: Simplified illustration of the behavior of generative adversarial networks
(GANSs). The discriminator D aims to maximize the distance between the recognized
labels of real and fake data, while the generator G has the objective of minimizing it.

parameters, and outputs a single scalar that gives the probability z is real. D is then
trained to maximize this probability, while G is coincidently trained to minimize it (i.e.
has the objective to minimize log(1 — D(G(z)))).

GANS can therefore be seen as two-player minimax games with the goal of finding
parameters u and v that optimize the value function

mgin mgX£(D7 g) - E:vm/pdam(x) [¢(D({B))] + E;cwpz(z) [¢(1 - D(g(z)))] (21)

with the concave objective function ¢(z) = log(z). [19]

2.2.2 Advantages and Applications

GANSs have several advantages over other techniques that can be used for generative
modeling. First and foremost, they are able to generate samples of higher quality than
most other established methods. Variational autoencoders, for example, tend to produce
blurry images if applied to visual datasets. [37]

Also, unlike other generative techniques, GANs do not rely on Monte Carlo approx-
imations and work better than other techniques such as Boltzmann machines [27] in
higher dimensional scenarios. [52]

Finally, GANs are able to learn their respective target distribution in a completely
unsupervised process, as no labeling of the data is needed and the generator is not
trained on the source dataset, but only on the discriminator’s error value (which it aims
to minimize for the generated examples). [19]

Even if GANs are currently primarily used for image generation tasks, there’s a wide

2. Background 8

application space for generative learning techniques overall. Such applications include
the creation of 3D models from images, computer games, and even more complex tasks
as creating “creative” new versions from a space of already existing objects, which can
be useful in architecture and design [19, 59, 64]. Although the concept of GANS is still
relatively new (introduced in 2014 by Goodfellow et al. [19]), they are already used in
real-world, large scale industrial scenarios, e.g. by Facebook to create predictive models
that allow deeper insights into their users’ actions [65].

While the usage of GANSs has been primarily explored for these generative settings,
the resulting discriminator models may also be of interest. In comparison to discrim-
inative models learned from a fixed data distribution, models trained in adversarial
scenarios receive different perturbations of the underlying distribution as well, and may
therefore generalize better to unseen target distributions. This behavior is especially
interesting in malware detection, where attackers may alter their code slightly to fool
the discriminator. [29]

2.2.3 Disadvantages and Challenges

While often performing better than other generative modeling techniques, GANs exhibit
typical weaknesses and vulnerabilities as well — often correlated to the nature of the
gradient-based training methods they rely on [4, 5, 41]:

Oscillation and Divergence One of the main disadvantages of GANs is that they the-
oretically rely on finding a Nash Equilibrium between G and D , i.e. a scenario where
both players take the optimal steps to reach their respective goals in the minimax game
described in 2.2.1, leading to a predictable optimal output. However, it is not guaranteed
to find this equilibrium, and in fact recent literature suggests that it does not even exist
[5]. This is presumably the primary reason for the often observed oscillating behavior
where both G and D perform equally bad and are unable to step out of this situation. In
a similar scenario, either G or D may converge to an optimal solution too fast, making
its opponents task impossible. [5]

Mode and Discriminator Collapse One of the most-observed failures of GANs in real-
world problems is mode collapse, which can occur when attempting to learn models from
highly complex distributions, e.g. images of high visual quality [4]. In this scenario, the
generator is unable to learn the full underlying distribution of the data, and attempts
to fool the discriminator by producing samples from a small part of this distribution.
Vice versa, the discriminator learns to distinguish real and fake values by focusing on
another part of the distribution — which leads to the generator moving its focus to this
area, and furthermore to oscillation in which neither G nor D is able to step out. [41]
Similarly, discriminator collapse is a phenomenon where G is able to fool D very well,
leading to the latter being stuck in a local minimum [41]. Due to the nature of gradient-
based approaches, methods like backpropagation are generally not able to escape these

2. Background 9

local minima without further enhancements.

Convergence Criteria Finally, for all generative modeling techniques, evaluating the
generated output quality of records sampled by G is still an open research task. As
previously stated, even seemingly converged GANs may produce bad results, leading to
the phenomena described above. Several measurements where introduced to quantify
the final output quality of the generator [30], mostly focusing on image generation (like
the inception score [52] or the Fréchet inception distance [25]). Another option is to use
a pre-existing discriminator that is known to work well on the underlying distribution
— however, such discriminators may not exist in unsupervised learning scenarios.

2.3 Coevolutionary Algorithms

Evolutionary algorithms are population-based optimization techniques based on natural
evolution. Generally, an evolutionary algorithm evolves a population of individuals, using
different operators to create new generations from the best-rated individuals of the
previous generation. To do so, each individual is evaluated against a fitness function —
i.e. the function that should be optimized. Then a specified number of parent individuals
is selected and used to create the next generation, usually using crossover and mutation
operators to combine and perturb these parent individuals. [6]

Competitive coevolutionary algorithms are a subclass of evolutionary algorithms,
with the difference that multiple populations (usually two) are simultaneously evolved
instead of a single one [26]. These populations are usually referred to as parasites and
hosts or solutions and tests, depending on the application scenario. Unlike the fitness
function of classic evolutionary algorithms, which is usually defining the fitness if a single
individual, coevolutionary algorithms use fitness functions that rate individuals accord-
ing to their respective opponent population — similar to natural evolution processes,
which also are strongly connected between different populations. Hence, parasites and
hosts are also denoted as predator and prey, especially in competitive coevolution (see
Section 2.3.1).

Formally, competitive coevolutionary algorithms can be described as Minimax prob-
lems [13], and therefore share common characteristics with the concept of GANs.

A coevolutionary framework is not bound to a specific evolutionary method, but
can host different ones according to the problem that should be solved; in Section 3.1.3,
we illustrate how the proposed system is able to host implementations of evolution
strategies as well as of genetic algorithms.

Advantages The major advantage of evolutionary algorithms is that the concept of
local optima is not valid for them, as there is no implied neighborhood structure that
is searched by a stepwise optimizer. As global optimizers that do not rely on gradients,
they are naturally not affected by local optima — unlike gradient-based methods, where
the user needs to take extra care of this case, it is assumed that beneficial properties of

2. Background 10

il

N!

‘ \\nv

\\m iy) ,.“ |
1\\\\\:;55,‘,,',1\\\3\\ ol

et® |

(a) Global landscape (b) Local landscape

Figure 2.3: Fitness landscape of the Griewank function [20] in different scales.’

solutions can be combined by crossover. A typical example of a function that is globally
concave, but has many local minima, is the Griewank function (as shown in Figure 2.3).
With suitable parameters (i.e. a learning rate that allows the algorithm to step out
of the local minima), evolutionary algorithms are able to perform well on this kind of
functions. [6]

This is especially helpful when dealing with black-box problems, i.e. problems where
no search gradient is available, or at least extremely hard to compute. An example for
a problem like this in a coevolutionary setting could be the training of two adversar-
ial encrypted neural networks, where both of them only provide an API to evaluate
their fitness and alter their parameters, but not to read them. Such a setting can be
used to hand over critical systems to clients without giving them the possibility to see
inside them, e.g. in malware detection scenarios. Cybersecurity is another related ap-
plication domain, in which one population contains attacks and the other one defensive
configurations [17].

Another characteristic of evolutionary algorithms is that, while being computation-
ally more expensive than typical gradient based methods, they can be easily parallelized,
as the evolution of a single individual independent of all other individuals. When applied
to large datasets that require the optimizer to be distributed to several nodes (e.g. in the
cloud), evolutionary systems therefore profit from fewer synchronization steps, which
leads to higher overall performance in this cases (for more details about distributed
evolutionary systems, refer to Section 2.4).

Additionally, coevolutionary algorithms have been shown to perform very well in
scenarios with a very broad or even changing search space, evolving solutions that can
not be easily found using only a simple, non-evolving objective. Due to the simultaneous
steps the algorithm makes, a broader solution space can be explored. [42]

"https:/ /dev.heuristiclab.com /trac.fegi/wiki/Documentation/Reference/Test Functions

https://dev.heuristiclab.com/trac.fcgi/wiki/Documentation/Reference/Test%20Functions

2. Background 11

Disadvantages While first drafted in the 1950s and 60s [7], evolutionary (and coevolu-
tionary) algorithms were not of great research interest, because they are generally very
computationally expensive. Due to their stochastic nature, evolutionary algorithms re-
quire multiple runs, each which expensive fitness evaluations, and revisit samples from
the underlying distribution multiple times [6]. With growing research interest in the last
years, several different methods to solve this issue were described, leading to a broad
space of possibilities in the field of evolutionary algorithms that target different appli-
cation scenarios (a fact that fits the No free lunch theorem [63]). Additionally, as stated
above, parallelizing evolutionary optimization systems to different CPU cores or even
nodes of a cluster has become an active field of research, also yielding different methods
and topologies.

In coevolutionary scenarios, the computational costs become even higher than in
classical evolutionary settings; due to the interdependent behavior of the individuals’
fitness functions, each individual needs to be evaluated against each individual of the
adversarial population, leading to a time complexity of (’)(n2) when implemented naively.
Possible solutions for this problem are illustrated in Section 2.4.

Evolutionary algorithms primarily rely on the diversity among their solution candi-
dates, which it than mutates and combines with crossover. Losing this diversity therefore
is a critical scenario that strongly resembles convergence to local optima of gradient-
based optimizers, and has to be prevented by selecting large population sizes and elab-
orated algorithm designs. [6, 60]

2.3.1 Categories

Coevolutionary algorithms can be divided into two different categories, depending on
the type of interaction between the populations:

o Competitive coevolutionary algorithms were the first described category. In com-
petitive CAs, individuals of a population are awarded with higher fitness if they
behave well against their respective opponent population, and vice versa, resem-
bling a predator-prey behavior [26]. Hillis et al. introduced them to evolve sorting
networks, were their individuals performed well if they were able to sort their op-
ponents in the correct order — while those opponents reached higher fitness scores
if they could confuse the sorting population’s individuals well. Competitive co-
evolutionary algorithms are also popular in game theory, were each population
represents a player of a two-player game [35].

o Cooperative coevolutionary algorithms follow a similar approach, but instead of
treating the opponent population as opponents, individuals receive higher fitness
values if they perform well in combination with their respective other population.
The two populations therefore share a common objective, instead of competing
with each other. They were shown to provide good results for complex optimization
problems by dividing them into separate parts. [47]

2. Background 12

While GANSs can be seen as examples of a competitive scenario, we make use of both
categories simultaneously in the proposed system, as described in Section 3.1.3.

2.3.2 Relation to GANs

As briefly mentioned above, both GANs and competitive coevolutionary algorithms use
the minimax formulation (which is described in Section 2.2.1) [24]. They therefore share
similar objectives and scenarios, in which each player (or population) aims to outperform
its respective opponents by developing better solutions or tests that perform well against
them.

However, unlike coevolutionary algorithms, GANs do not use populations, but use
exactly one generator and one discriminator. This is one of the main reasons of many
problems connected to GANS, recent research introduced several advanced GAN variants
that use techniques similar to populations, making the concepts even more similar [28].

2.4 Distributed Coevolutionary Systems

As already mentioned in the previous sections, high computational costs are a problem
for state-of-the-art implementations of coevolutionary algorithms. Despite the advan-
tages of these algorithms, gradient-based methods tend to converge faster, and are
therefore more commonly used in current research and industrial scenarios.

Distributing evolutionary systems does not solve this problem, but drastically re-
duces its impact by sharing the computational nodes over several CPU/GPU cores, or
even nodes in a large computation cluster. With the recent advances in cloud computing
and the resulting low prices of processing power, this has become an even more suitable
option — but naturally, there arises the question of how to distribute these systems.
As the underlying problem exists since the invention of evolutionary computing, many
different distribution methods have been proposed; the following work therefore focuses
on the distribution coevolutionary algorithms only. [46, 62]

2.4.1 Topology

In the most naive setting for distributed systems imaginable, each node (i.e. each ma-
chine) communicates with each other, leading to an all-to-all communication pattern
(or n2, where n is the number of nodes). This has several disadvantages:

e A high, exponentially growing network load, which would lead to lower commu-
nication speed in a network with limited capacity. Currently, private TCP/IP
networks are often limited to transfer rates of one GBit/s, but high performance
standards that can reach up to 400 GBit/s exist as well.

e Even when executed in a high performance network, the capability of the clients
would further limit the expandability; with each added node, the load for all other
would grow as well. In coevolutionary systems, this affects both the communication

2. Background 13

(G) (D)
(G) (O)

&8 &8
€83

Figure 2.4: Two-dimensional figure of a spatial grid for distributed coevolution; each
cell holds two individuals of each population and interacts with a local neighborhood of
four other cells. [31]

component and the processing of the individuals (as each one would have to be
evaluated against each other; again, the time complexity would be O(n?)).

Therefore, selecting the appropriate network topology for a system is crucial.

Spatial Grids Spatial or toroidal grids are a common distribution topology for coevo-
lutionary systems that limit the required communication effort. Spatial/toroidal means
that the grid has no edges, but is completely connected in a three-dimensional space.
Therefore, each cell has the same number of neighbors.

In a spatial coevolutionary topology, both populations are split and distributed to
separate cells of the grid; in different implementations, each cells could either hold in-
dividuals from both populations, or an additional dimension could be added to create
a separate grid for each population. During the evolutionary process, each cell commu-
nicates only with its local neighbors — reducing the complexity of the communication
from O(nQ) to O(n * nieighborhood)' A neighborhood is defined as a number of adjacent
cells and specified by its size. In the simplest scenario, a neighborhood could therefore
theoretically even consist of only one cell; however, five cells per neighborhood (one
center and four adjacent cells) are a commonly used setting, as illustrated in Figure 2.4.
31]

The major advantage of this topology is that the complexity a neighborhood has to
deal with does not grow with increased grid size; it is therefore theoretically possible to
scale the system infinitely (while in practice, this is obviously limited by the amount of
available nodes). While this applies to the necessary computational power, extremely
large systems may need further steps to reduce the network load, e.g. by using subnets,
if the network performance becomes a bottleneck.

Additionally to these computational advantages, using spatial grids also leads to

2. Background 14

enhanced dynamics of the underlying coevolutionary framework; due to being logically
separated, different neighborhoods on the grid may evolve into different directions of the
fitness landscape, exploring a wider search space and therefore finding more solutions
than a non-distributed coevolutionary algorithm. As neighborhoods are overlapping,
these information can propagate through the grid as well. After the evolutionary process
has finished, neighborhoods can be either combined, or the best one can be selected,
depending on the problem scenario. This is usually done by an so-called orchestrator,
which is responsible for starting experiments, synchronizing them, and collecting their
results. [46, 62]

2.4.2 Communication Back-End

A crucial part of distributed systems is the underlying communication back-end. As
the amounts of data that those systems must be able to process are still constantly
growing, deploying all required instances of such a system on one machine is often not
an option. Therefore, network protocols like TCP/IP have to be used instead of single-
machine process synchronization, which could for instance be done via system calls.
Since TCP/IP is a low-level protocol, several higher level protocols and API specifica-
tions were introduced to abstract it; those can generally be categorized in two types, as
described in the following sections.

Regardless of the chosen solution, communication interfaces of a system should al-
ways be encapsulated into separate components, as future releases of a software may
have requirements that differ from those at design time; this is especially relevant for
prototypes, where communication speed is often not critical. However, this may change
with future development progress of the system, and therefore require the replacement
of the communication layer.

Web Services

Web services use a client-server architecture and utilize HT'TP methods to exchange data
between two machines. While these methods were initially not designed for machine-
to-machine communication, their semantics match the CRUD principles (Create, Read,
Update and Delete) very well, making them a very sophisticated and easy to use ab-
straction of TCP/IP communication. [1]

The main advantage of web services is their general availability — as the web is
based on HTTP, a broad variety of client and server implementations for all relevant
programming languages exist. Consequently, HT'TP is supported by all commonly used
systems and networks, and has been proven to work even under very high loads. Several
extensions like Representational state transfer (REST) further enhance the underlying
semantics of web services, making them easier to utilize in stable, reliable and compre-
hensible systems. [50]

Regardless these semantic options, resources in web services are generally uniquely
defined by an URL, often called an endpoint. These endpoints can offer different methods

2. Background 15

that can be either used to request, change or delete the specified resource.

Despite their advantages, web services however may not be applicable for high-speed
parallel communication. As stated above, the client-server architecture of TCP limits
communication to be between two machines exclusively — sharing resources over a whole
cluster would therefore require one request from each client. Basic implementations of
HTTP web services furthermore do not support bi-directional communication; however,
this problem can be solved by using the websockets protocol. Websockets are HT'TP
compatible and establish long-running connections between multiple machines — even if
they use TCP/IP underneath, so the issue of one-to-one communication persists. [14]

Message Brokers

In highly parallelized applications, where communication speed and throughput is a
critical factor, web services may not be the best option; especially in distributed settings
where one-to-all or all-to-all communication is required, HIT'TP is limited due to its
point-to-point architecture.

For use cases in which a system’s performance is limited by its communication speed,
message brokers may therefore be a more suitable solution. While implementations and
concepts vary strongly in this group of protocols and implementations, they usually
share some common ideas [10]:

o High-level abstraction of many-to-many communication strategies, like distribut-
ing or gathering messages from or to different nodes of a cluster.

e Memory optimization, i.e. the possibility to distribute messages to other processes
on the same node without copying them.

o Message queues to support non-blocking communication, which is needed by asyn-
chronous computation models.

While these advantages are especially interesting for systems in which reliability and
performance is crucial, message brokers have the disadvantage of being less lightweight
than web services. Even if communication between nodes is mostly done via TCP, the
additional runtimes often required by these communication frameworks may not be
usable in all types of execution environments (or at least require special environment
setups). Also, additional components may have to be included in the final software.

Chapter 3

Lipizzaner

In this chapter the main contribution of this thesis is presented: Lipizzanerl, a dis-
tributed coevolutionary system to train GANs with gradient-based optimizers. It is
introduced in two steps:

First, its general design principles and requirements are elaborated, with special
focus on the architecture of the resulting system, and the reasons behind it.

Second, the concrete implementation steps and decisions are shown, including the
used technologies, the implementation principles, and the functionality of the core com-
ponents — the underlying trainers and their subcomponents, the distribution topology,
and the analysis dashboard that was implemented to display the experiment results.

The full source code of the project, including additional user documentation and
sample experiments, is published on GitHub?.

3.1 System Design

Lipizzaner is a distributed, coevolutionary system with an underlying extensible frame-
work that allows users to train mixtures of generative adversarial networks with gradient-
based optimizers. It therefore combines the advantages of gradient-based GANs — like
fast, efficient convergence — with those of coevolutionary algorithms.

It utilizes both competitive and cooperative coevolutionary principles. Besides the
competitive nature of GANs themselves, the hyperparameters (e.g. the learning rates)
can be evolved as well in a competitive manner. A cooperative approach is used to
evolve the mixture parameters (or weights) that are later used to combine the results
of the distribution mixture. This is elaborated in more detail in Section 3.1.3 and 3.1.3.

The primary reasons behind this concept are:

e Overcoming the limitations of gradient-based optimizers, like mode- and discrim-
inator collapse, where either the generator or the discriminator get stuck in local

'"Named after the famous horses of the Spanish riding school in Vienna.
*https:/ /github.com /ALFA-group/lipizzaner-gan

16

https://github.com/ALFA-group/lipizzaner-gan

3. Lipizzaner 17

Input Output
Generator
mixture
Input dataset
Dlscrllmmator
mixture
Config
Lipizzaner Generated
output dataset

Figure 3.1: High-level overview about the data- and configuration flow through Lipiz-
zaner.

optima. While coevolutionary approaches are theoretically not guaranteed to solve
this issues, our experiments show that they perform well in GAN scenarios (as pre-
sented in Section 4.1).

e Both coevolutionary algorithms and GANs exhibit very complex dynamics and
are therefore hard and computationally expensive to train. To generate results
for industrial-scale scenarios, distributing a system therefore is a fundamental
prerequisite; while approaches have been shown to run multiple instances of GANs
on a single GPU [28], distributing them over multiple machines is still an open
topic in research. Coevolutionary algorithms are a possible option to solve this, as
they can be efficiently distributed on large scales [46].

o While GANs have been shown to generate promising results in many application
scenarios, a general problem is their convergence to final, optimal results [48].
An approach to overcome this problem could be the evolution of the optimizers
hyperparameters in a competitive manner, which should ideally lead to better
convergence, and therefore avoid infinite oscillation between good, but suboptimal
results.

3.1.1 Requirements

Lipizzaner is designed as a generic framework, with a special focus on extendability to
allow its usage in different scenarios. In general, users should be able to train the system
on an input dataset of their choice (specified by a respective configuration file that e.g.
contains data and network specifications), and receive an optimal performing mixture of
generators, discriminators and sample output data as a result (as shown in Figure 3.1).

In order to do so, one of the main requirements for the system was the support
of multiple, exchangeable trainer components — besides the gradient-based optimizer,
trainers for natural evolution strategies and genetic algorithms were implemented in
the initial release. To support a broad range of scenarios, all other components (such
as the data providing layer and the component for neural network creation) had to be
exchangeable as well.

Easy usage and configuration was another central requirement of Lipizzaner, along

3. Lipizzaner 18

with the functionality to provide repeatable results that can be comfortably analyzed
and compared.

Finally, the ability to be distributed over multiple machines was a crucial feature
as well, as training populations of GANs with coevolutionary algorithms is a computa-
tionally expensive task.

The concrete design choices arising from these requirements will be discussed in the
following sections.

Functionality and Interchangeability

To be prepared for future use cases, Lipizzaner was designed to run either as a frame-
work or a standalone system; this means that all components should be usable with as
few additional dependencies as possible, and the implementation generally follows the
principles of clean coding [44].

Regardless of its execution type, Lipizzaner’s core functionality is very similar to
that of traditional coevolutionary systems: input- and configuration data is injected
into the trainer component, which performs the evolutionary process on a population
of models it maintains — which in this case are both generator and discriminator neural
networks (more details about the supported functionality is described in Section 3.2.3).

Generally, great emphasis was placed on making Lipizzaner generic and configurable
with minimal effort. All components are fully exchangeable and loosely coupled, most
of them even at configuration file level (e.g. the used evolution methods can be changed
without altering any source code). The components are connected by injecting their
dependencies into the respective classes — a pattern often referred to as Inversion of
Control (IoC) [16].

Configurability

The ability to be configured without any changes of the source code is a crucial function-
ality for a distributed system. Specifying central configuration files makes it possible to
run experiments on large, distributed computing clusters without redeploying the soft-
ware and therefore leads to significantly increased usability.

However, as parts of this project may also be used as a framework inside other
systems, it is necessary to support two different kinds of configuration:

e Configuration files can be used to simplify the setup and execution of different
experiments, especially on multiple nodes (as described above). The configuration
parameters are stored in YAML files and passed to the application as a command
line argument. The configuration files used for our experiments can be found in
Appendix A, with their respective description in Chapter 4.

o Beside this, options can also be directly defined inside the source code, i.e. as
parameters of the classes’ constructors. When using this configuration method, no
additional YAML files are needed (although they still can be used, as a mixture
of both methods is possible).

3. Lipizzaner 19

8 &\ Lipizzaner 1 ,%L Lipizzaner 2

el Trainer o) Trainer
User ey
.
&‘- == Data == Data ‘Logs# CLJ
= e
Orchestrator “3” NN Model “3* NN Model Dashboard

Config Lipizzaner Swarm

Figure 3.2: High-level view of Lipizzaner’s distribution architecture.

Distribution

Distribution is a one of the most important requirements of most state-of-the-art ma-
chine learning systems, and even more in the domain of evolutionary computing. As
evolutionary algorithms are highly computationally expensive, finding well-performing
solutions for distributing them over multiple CPU/GPU cores, or even machines, is a
topic of great research interest.

As GANs are relatively new [19], most effort is currently put into tweaking their
results, and not into reducing the time they consume for training. To our knowledge,
research on “distributed” GANs has currently only been published with the limitation
of running them on a single GPU [5, 28]. However, we believe that — especially with
sizes of state-of-the-art datasets — distribution is necessary for GANs as well.

As distributing a system usually leads to increased complexity, a central requirement
of Lipizzaner was to provide a single point of configuration. Therefore, a master node
is used to control multiple clients by starting experiments, orchestrating their work,
and gathering results from them. A master session is unique and terminates after an
experiment has finished. In contrast, the client nodes have been implemented to act
as long-running services, permanently listening for incoming experiment commands. A
high-level overview about the distribution architecture is shown in Figure 3.2.

Finally, an important objective was to reduce the amount of transmitted data. Two
main points were considered regarding this: First, each client had to be implemented to
maintain its own representation of the trained models, and hold a non-shared dataset®.
Second, an intelligent communication pattern had to be selected, as all-to-all communi-
cation does not scale well in large scenarios and is therefore not feasible for industrial-
scale distributed systems. Limiting the communication to local, overlapping neighbor-
hoods that are only gathered at the end of the process drastically reduces the required

*While in current experiments each client uses the same dataset, the data layer had been designed
to support shared or partitioned datasets as well, e.g. by adding a data loader that pulls samples from
a network share or a data server.

3. Lipizzaner 20

Instance 1
s Input Data .»_ Neural Network
c] pieted .]
2 | ™= Loader * Provider S
o b
—
. (O]
35
) g Trainer =
& £
5 ¥
O | Distribution Server | Distribution Client = .
()
A b
()]
(%2]
Qo
i‘ _______________ A 2 | S
| Distribution Client | Distribution Server :
|
| Instance 2 |
| (Simplified) |
- -

Figure 3.3: Detailed layer architecture of Lipizzaner. As the central component, the
trainer accesses both input data and neural network models, and uses its client to connect
to other instances’ servers and access their respective state. Configuration and log interface
are vertical layers, as they are used within all other components.

computation and network load, while also having positive effects on the coevolutionary
behavior (see Section 2.4)

3.1.2 Architecture

The Lipizzaner system consists of two parts; a main application, containing all com-
ponents of the gradient-based, coevolutionary GAN training framework, and a web
application dashboard that can be used to analyze experiment results. Both follow
layer-based implementation principles and are described in this section.

Lipizzaner Framework

This section describes the primary application presented in this thesis, the software
Lipizzaner. Its architecture was designed with the sophisticated component-based layer
approach, and fulfills the requirements specified above. The communication between the
layers and components is illustrated in Figure 3.3. It should be noted that all described
components in a distributed setup exist in each Lipizzaner instance (i.e. each application
process).

Input data loader This component provides the data samples the system is trained on,
i.e. the distribution the generator aims to reproduce, and provides an interface to access
this data. It can be configured to either return complete datasets, or split them into

3. Lipizzaner 21

mini-batches for reduced memory consumption (which is required in most experiment
scenarios). The data loader is independent of its underlying data source, which can be
an image folder, an online source, or anything else the user injects into it. This also
means that the system is not limited to images.

While the current implementations are limited to one dataset per Lipizzaner in-
stance, the DataLoader interface is designed to support central (or partitioned) datasets
as well.

In its current implementation, Lipizzaner contains multiple datasets by default: the
image datasets MNIST [40], CIFAR10 [39] and CelebA [43], and more generic datasets
that produce synthetic data points in a 2-dimensional space.

Neural network provider As Lipizzaner evolves the parameters of neural networks (i.e.
their weights and biases), a component that handles these neural network models is
needed. It exposes a factory class to create both generators and discriminators, as well
as public interfaces to manipulate these networks, e.g. to read, adapt and export their
parameters. It also hosts the functionality to compare neural networks based on their
performance on a given batch of data.

By default, Lipizzaner includes multilayer perceptrons of different sizes, as well as the
DCGAN architecture [48] that can be used for image datasets of higher dimensionality.

Training This layer hosts the central component of Lipizzaner and executes the train-
ing iterations of the evolutionary process itself. It accesses input data and the neural
network models from their respective components and uses them to evolve solutions,
with the settings provided by the configuration component. While the primary Lipiz-
zaner algorithm uses gradient-based optimizers to update these solutions, the training
component itself is independent from this behavior and can also be used with other,
gradient-free algorithms as well (for example, evolution strategies and natural evolution
strategies both are implemented as separate trainers in Lipizzaner).

Distribution server and client Consisting of two sub-components (client and server), the
distribution layer is responsible for sending and receiving data via a TCP/IP interface.
The server component offers a public web service API that can be used by the clients of
other instances, and provides endpoints for accessing the current state of the respective
instance — such as the parameters of the generator and discriminator individuals. Along
with the fitness values of these individuals, most gradient based optimizers also maintain
an internal state that has to be shared as well. While the state of some optimizers (like
standard SGD) is very lightweight and consists of only a few numeric values (e.g. the
learning momentum), more advanced optimizers like Adam require the transmission
of complex state objects. Beside the results of the gradient-based training, choosing
different optimizers therefore might also affect the communication speed of the system
as well.

3. Lipizzaner 22

Log Server

Backend Controller

Frontend Component

View

Figure 3.4: Layer architecture of the Lipizzaner dashboard. The components above the
dashed line are located on the server, while the components below it are rendered by the
client (i.e. the user’s web browser).

Configuration In contrast to the horizontal layered components discussed above, the
configuration component is aligned vertically over the whole system and therefore con-
nected to all other modules. All relevant parameters can be specified in configuration
files — this is crucial, as it allows users to run their experiments without having to manip-
ulate the code, or to execute different experiments on multiple nodes without constantly

having to redeploy the application itself to them.

Lipizzaner Dashboard

The Lipizzaner dashboard was designed to simplify the analysis of experiments results
produced with the previously described system. Large scale distributed systems natu-
rally create large amounts of log and result data that would be complicated to assess
without a central data collection and presentation application. The complex behaviors
we aim to monitor — for instance solutions propagating through the grid, oscillation
between generators and discriminators, etc. — are also very hard to explore without
assistance of a graphical user interface. The components of this dashboard application
and their interactions are illustrated in Figure 3.4 and described in this section in detail.

Log database The log database is a system-wide component and accessed by both
Lipizzaner — which writes data into it —, and the Lipizzaner dashboard — which reads and
presents this data. It was designed to contain information in two hierarchical levels: first,
details about the executed experiments, like the distribution topology, evolutionary and
optimizer settings, and runtime information. The second, even more relevant hierarchy
level stores detailed logs about each step of the experiment on each involved node —
like the current state of hyperparameters, mixture weights and loss values, as well as
the elapsed time and samples from the current generator distribution (e.g. generated

3. Lipizzaner 23

images).

Back-end controller The back-end controller is a server-side component that connects
the front-end to the log database. It therefore has to contain all necessary preprocessing
functionality and logic to convert the data into a format that is readable for this front-
end before offering it via a web service with endpoints for both experiments and results.

Front-end component and view The front-end component contains all logic needed to
access the experiment and result data from the back-end controller and to inject it into
the view, which then presents it in a human-readable (and understandable) manner; it
has to be possible to group data either by experiments only, or by both experiment and
grid node. The view constructs charts and figures for all evolving result values, namely
loss, hyperparameters, mixture weights and their respective quality. Additionally, it
displays the generated result data (e.g. generated images) for each iteration, if available,
and the consumed training time.

3.1.3 Coevolutionary Learning for GANs

As described in Section 2.1, neuroevolution has been shown to generate remarkable
results in a broad area of deep learning applications. It therefore seems reasonable to
apply these techniques to coevolutionary setups as well — specifically to train generative
adversarial networks, which resemble the scenario of coevolution very closely. Working
with GANs means to simultaneously train two ideally oscillating networks — genera-
tor and discriminator —, a task that is usually performed with classical gradient-based
methods like stochastic gradient descent (i.e. backpropagation), with the ultimate goal
of finding generators that create fake data which cannot be distinguished from real data.

This concept obviously shares some similarities to coevolution, where two popula-
tions are evolved in parallel as well, usually referred to as solutions and scenarios/tests,
or predators and prey in competitive coevolution. Both concepts particularly target
so-called minimax problems, as described in Section 2.3.

As we show in Section 4.1, gradient-free coevolutionary algorithms are able to per-
form well in low-dimensional synthetic GAN problems, and are able to avoid or escape
scenarios that would be critical for gradient-based optimizers (like mode and discrim-
inator collapse). However, our experiments also show that evolutionary algorithms are
unfortunately not applicable to higher-dimensional coevolutionary GAN problems with
reasonable resource consumption. In fact, global optimizers seem to be not suitable
to optimize millions of parameters in an adversarial setting at all. Additionally, the
computational costs — which are already very high in “normal”, non-competitive neu-
roevolution — are even larger for GANs. In combination with the fact that most GAN
application scenarios expose gradients, it is reasonable to utilize them as well.

To overcome the limitations of gradient-based approaches, Lipizzaner incorporates
these trainers into a coevolutionary framework. Additionally to the natural competitive

3. Lipizzaner 24

G G'
Selection P Variation > Fltness —» Replacement
evaluation
D D'

Gradient step

Mutation

Figure 3.5: Evolutionary process of competitive coevolutionary learning for GANS, il-
lustrating that both gradient and non-gradient variation is used in the process.

approach of GANs, Lipizzaner is able to both competitively evolve the optimizers’ hy-
perparameters as well as cooperatively alter the weights of the resulting generator and
discriminator mixtures. While this leads to several interesting effects, it hardly adds
any additional computation costs to the system. Both competitive and cooperative ap-
proaches are described in the remaining part of this section.

Competitive Coevolution of Networks and Hyperparameters

The competitive coevolutionary process in Lipizzaner consists of two different tasks:
aside from evolving the network parameters of the individuals in the generator and
discriminator populations (i.e. the weights and biases of their neurons), the optimizers
hyperparameters are evolved as well (see Figure 3.5).

Neural network parameters This primary part of the whole evolutionary process is re-
sponsible for updating biases and weights of the populations’ neural network models.
In contrast to classical coevolution, where global optimizers with evolutionary oper-
ators like mutation and recombination of the individuals would be used, Lipizzaner
performs these updates with gradient-based optimizer steps (i.e. backpropagation). As
stated above, this leads to considerably decreased training times, as no global search is
performed.

That said, it has to be noted that Lipizzaner includes algorithms that perform
gradient-free steps with evolution strategies or natural gradient-based steps with natural
evolution strategies as well. As this first approach has been shown to perform not well
enough on the high-dimensional problems we are interested in (see Chapter 4), these
trainers were furthermore merely used for comparison purposes.

Optimizer hyperparameters Improving the final convergence of solutions (i.e. reach an
equilibrium) is still an open topic in GAN research [5]. Some implementations reach
better convergence by using hard-coded conditions to decrease the optimizer’s learning
rate after a given number of epochs [48] — but even if it may work for specific experiment
scenarios, this approach requires manual elaboration of the best-fitting hyperparameters,
and does not generalize to other problems.

3. Lipizzaner 25

Np

Selection L Variation | Fitness Evaluation | Replacement P w' J

A 4

Mutation

Figure 3.6: Cooperative coevolution for GAN mixture weights.

Additionally to the networks parameters, we therefore evolve these hyperparameters
as well to create a self-optimizing system that may converge to lower learning rates
during training. In Lipizzaner, specific learning rates are bound to each individual,
effectively making them another parameter that is evolved in a separate step of the
evolutionary process.

Cooperative Coevolution of Mixture Parameters

While simultaneously evolving pairs of generators and discriminators works well with
the competitive approach described above, those separate individuals finally have to be
combined in a way that performs as well as possible after the training process finishes.
One way to combine or fuse neural networks is to gather them in a mixture (i.e. an
ensemble), in which one of the elements is selected to process a request each time it is
applied to an input. A probability vector for a neighborhood size of 3 could therefore be
[0.3,0.1,0.6] — meaning that the probability to draw a sample from the first individual
would be three times as high as drawing one from the second one, etc. For future uses,
Lipizzaner evolves discriminator mixtures as well, even if those are not used yet in our
current experiments.

It would have been possible to achieve this by using a mixture with equal proba-
bilities, resulting in an uniform random distribution when drawing samples from the
mixture. However, as some of the neural networks in the mixture may be very similar in
terms of their computed results (i.e. multiple generators may focus on the same mode
of the target distribution), those should be given lower weights — as the ultimate goal of
mixtures is to promote high diversity of the computed output. It is therefore reasonable
to include the weights of these mixture parts into the evolutionary process as well [4].

In each iteration, Lipizzaner therefore runs a cooperative evolutionary step (i.e.
evolves the weights in the mixture vectors) and computes a measurement quantifying
the performance of the current neighborhoods mixture (i.e. its fitness). After the training
process finishes, each neighborhood yields a mixture of a specific quality, allowing the
user to select the best-performing one (see Figure 3.6).

3. Lipizzaner 26

3.2 Implementation

This section contains information about how the relevant parts of the system design
described above are implemented in detail, including the used technologies and algo-
rithms.

For easier understanding, the contents of this section build on each other. At first,
basic knowledge about the used technologies is needed to understand their advantages
and limitations. This is followed by details about the implementation of the distributed
system, as this is a prerequisite of understanding how Lipizzaner works. Finally, the
result analysis tools are described.

3.2.1 Technology Stacks

As described above, Lipizzaner consists of two separate applications; the main applica-
tion that uses the underlying implemented framework to coevolutionary train GANS,
and the analytics application that was designed to review and analyze the results of our
distributed experiments.

While the training application was implemented in Python and using the PyTorch
machine learning framework, the analytics dashboard is an ASP.NET Core application
with an Angular frontend written in TypeScript. This polyglot approach was taken to
make use of both technology stacks advantages and strengths in their respective field.

Distributed Deep Learning with Python

Selecting the best technology stack for a system is a complicated process, as the def-
inition of best is very subjective and highly depends on the field of application, the
approached objectives of the project, and especially the experience of the developers
using it. However, in machine learning applications, Python is currently the by far most
used programming language [68] due to several reasons [49]:

e Many features of Python were especially designed for mathematical and scientific
applications — like the array indexing syntax, duck typing functionality, etc.

e Python is easy to learn and use, and therefore widely used in many educational
institutions and universities. As many machine learning applications are initially
developed in an academic or research context (or at least by people with a respec-
tive background), most developers are already used to it.

o Most relevant frameworks in the machine learning domain are primarily targeting
Python, and a high number of packages for all kinds of related requirements exist
(including well working, sophisticated package managers like Pip to obtain them).

e Python is platform-independent and runs on all kinds of environments, making it
even easier to use for different application scenarios (as industrial fields of appli-
cation may require different environments than those in research).

While Python therefore is well-suited for most machine learning applications, it also

3. Lipizzaner 27

comes with some drawbacks, especially when used to create large systems. Most con-
structs in Python, especially duck typing and lazy, unsafe evaluations, require careful,
failsafe implementations, and complicate the system by the necessity of many runtime
checks. Additionally, the Python threading system is hardly applicable in large, asyn-
chronous applications (as described below). These points were considered and accepted
as non-critical during the design of Lipizzaner, as it was planned to be a prototype
application that will primarily be used in a research context, and not in productive
industrial systems.

PyTorch Even if it is theoretically possible to manually implement all required func-
tionality for training neural networks in plain Python, this would come with several
major drawbacks — in particular much higher implementation time, additional code
that has to be tested, and remarkably less features than a sophisticated external library
or framework. It is therefore reasonable to use an externally developed package for these
purposes, of which several exists — including PyTorch4. PyTorch is a relatively new ma-
chine learning framework for training neural networks, and developed as an Open Source
project primarily by Facebook. While older, more well-known frameworks like Tensor-
Flow® are more sophisticated than PyTorch, many of those are primarily designed to
perform as well as possible in production scenarios, leading to several drawbacks, in-
cluding a more complicated syntax and API, and more complex runtime requirements.

PyTorch was especially designed to be easy to use, and is therefore well-suited
for academic projects and prototypes. While it allows to implement applications very
quickly, PyTorch still suffers from typical “early open source project” problems, like
API instabilities and more bugs than well-established frameworks like TensorFlow — for
example, major version updates often lead to breaking changes of existing code. Also,
parts of PyTorch are less sophisticated than others, as described in the next section.

In Lipizzaner, PyTorch is widely used for all tensor operations — i.e. defining and
training neural networks, and generally working with data. As most operations on neu-
ral networks (like propagating data forward and errors backward through them) are
matrix multiplications, Lipizzaner highly profits from PyTorch’s GPU support for these
calculations, leading to reduced training times for deep GANs from several hours per
iteration to only minutes.

In contrast to the traditional concept of abstraction, some parts of PyTorch were
not totally encapsulated due to two reasons: First, the level of central concepts such as
the tensor implementation of PyTorch is integrated too deeply to be wrapped without
having to re-implement (or at least also wrap) major parts of the remaining framework.
Second, PyTorch is well-optimized for high performance applications, and encapsulating
this functionality (e.g. the GPU acceleration) would render these optimizations useless.
Therefore, PyTorch concepts are partly exposed to the user of the framework — however,
special emphasis was put on interchangeability of these parts as well.

*https://pytorch.org
®https:/ /www.tensorflow.org

https://pytorch.org
https://www.tensorflow.org

3. Lipizzaner 28

Distributing PyTorch applications PyTorch natively supports distribution over multiple
CPUs, GPUs and even machines in a network since 2017 — meaning that this is a
relatively new functionality. The torch.distributed package offers a communication
interface similar to MPI (Message Passing Interface, a messaging standard designed for
parallel computing), with typical operations to send and receive data among multiple
participants [66].

Using this functionality was the first approach while implementing Lipizzaner. How-
ever, as stated above, PyTorch is a relatively new framework, and the package for
distributed computing is even more recent.As a consequence, we faced several issues
and disadvantages during its implementation, which ultimately lead to the switch to
web services (as described in the next section). Among these issues, the most critical
were:

1. Due to the packages implementation design, using it requires a lot of additional
code and complex transformations for certain use cases. As it is only supported
to transmit single tensors at once, it is not possible to distribute objects or lists
without some additional effort to package or concatenate them to tensors. While
most of these operations are trivial, more complicated ones emerged as well. Ad-
ditionally, even transformation operations that are relatively simple individually
lead to a far more complex system when combined.

2. Distributing tensors stored on GPUs requires additional, third-party runtime en-
vironments that have to be installed on the client machines. Furthermore, enabling
distributed GPU support requires PyTorch to be manually built on each node, a
process that takes around one hour on state-of-the-art hardware.

3. Finally, errors are hard to find, as using the package prevents debugging in many
cases (it cannot handle the thread blocking that occurs when a breakpoint is hit).

While some of these issues could be worked around or solved, especially the first
one became critical for the development of Lipizzaner, as the system became highly
error-prone, a situation additionally aggravated by the inability to debug it.

Asynchronous web services with Flask As PyTorch’s distributed package has been shown
to be infeasible, different alternatives remained, including a global cache database all
nodes would access, or the usage of message buses. While those options would be feasible
for production systems, they suffer from similar disadvantages as PyTorch’s implemen-
tation; generally, the systems complexity would increase, as additional components or
servers would be required. As the communication is limited to only a few requests per
generation, web services were implemented as a lightweight alternative.

In its current implementation, each Lipizzaner application maintains a server and
a client component (shown in Figure 3.3), and is therefore able to both request and
transmit the current state of the instance’s populations and optimizers.

While requesting data from a server can be done in one statement using either
included Python functionality or the more versatile requests package, the available

3. Lipizzaner 29

solutions to implement the server differ. Lipizzaner uses Flask6, a lightweight framework
to implement HTTP web services in Python. It allows to specify multiple endpoints with
different HTTP methods (like GET, POST and DELETE) that can then be accessed by
HTTP clients. Flask is very easy to use and configure and requires nearly no additional
boilerplate code; defining the endpoints and starting the application are usually the only
required steps.

While this has been shown to work well in our scenario, it has a severe Python-
related disadvantage that requires special attention: HT'TP requests have to be handled
asynchronously, especially when the main thread of the client is busy for very long times
during heavy-weight, complex training processes. While this could be easily solved with
threading in most modern programming languages, Python follows a different approach
and does not provide true asynchronous threading (i.e. no usage of multiple cores or
threads, that most state-of-the-art machines would provide). Due to the GIL (Global
Interpreter Lock), only one thread can be executed in Python code at a time — which
is necessary because the memory access of CPython (the default python interpreter)
is not thread-safe. This leads to many computationally expensive context switches and
drastically reduced performance, when multiple threads try to execute high workloads
simultaneously.

There are multiple possible solutions or workarounds for this problem:

1. First, it would be possible to use processes instead of threads. As this issue is
a general problem in Python, the multiprocessing system was added, which sup-
ports spawning or forking additional processes and provides methods to interact
with them. However, sharing data between processes is complicated and slow, and
locking resources on process level requires system-wide mutexes — which again
significantly reduces performance [49, 67].

2. The most feasible workaround for us was to limit the workload of asynchronous
operations that are not executed in the main worker thread to perform very
lightweight operations only. Lipizzaner clients therefore constantly maintain two
representations of the current population and optimizer states; the PyTorch ten-
sors on the GPU that are used for the training process, and exchangeable, encoded
data objects that can be queried by other nodes at any time without additional
transformation effort. As this is only done once every time when an individual
changes, the workload is even more reduced for typical scenarios where four neigh-
bor nodes access each client. Additionally, allowing high timeouts or safely han-
dling failed requests is also crucial, as even these lightweight operations may not
be scheduled soon enough on very rare occasions.

The points above illustrate that running web services in Python is not really op-
timal, but sufficient for the scenario we currently use them in. As the communication
components are completely encapsulated, they might be exchanged by either message
buses or a global caching system in future versions of Lipizzaner.

6http://flask.pocoo.org

http://flask.pocoo.org

3. Lipizzaner 30

Single Page Applications with ASP.NET Core

Even if Python is well-suited for machine learning applications, it has several disad-
vantages regarding the requirements to web applications — like the non-asynchronous
threading described above. While it theoretically would have been possible to use it
for the analytics dashboard, the required implementation effort would have been sig-
nificantly higher than with a framework like ASP.NET Core, which was specifically
designed for this use case.

Like many web applications, the dashboard consists of both a back- and a front-end
component, with the first being responsible for accessing the experiment result data from
the log database, and the latter for loading this data from the back-end and presenting
it to the user with some additional control logic to select different experiments.

Developing such systems with the technology stack used here is highly simplified by
ready-to-use templates for most relevant technology stacks Microsoft distributes with
ASP.NET Core. Even if a Flask back-end could fulfill the same tasks as ASP.NET
Core, assembling the parts of the resulting application is much easier in ASP.NET Core
applications, as it is done completely automatically by a predefined environment setup
tool.

ASP.NET Core The back-end of the Lipizzaner dashboard was realized with ASP.NET
Core7, a relatively new framework for developing web applications. However, even if of
similar age as PyTorch, it is far more sophisticated as it was designed as a successor of
the ASP.NET framework, and therefore highly profits from the experience gained from
developing this.

While ASP.NET Core can technically run with the full stack .NET framework as
well, it was primarily designed to use the .NET Core runtime — which comes with the
advantage of being platform-independent, while the full stack framework is limited to
Windows. As PyTorch works best on Unix-like environments such as Linux and Mac
OS, supporting these operating systems is reasonable for the dashboard application as
well (even if it would not have been required, as the two parts of the Lipizzaner systems
are not interconnected by anything else than the database they both access).

When used with a Single Page Framework, ASP.NET Core fulfills two tasks:

1. Serving the static HI'ML, CSS and Javascript files the front end application con-
sists of. This is a trivial task and does not require any additional steps than
running a minimal web server.

2. Providing a HT'TP web service that offers endpoints for the data the client uses —
a task that is very similar to Flask’s purpose inside the Lipizzaner framework. To
do so, ASP.NET Core creates routes that define specific resources. Each time one
of these resources is accessed, the respective controller method is called that loads
data from the database, transforms it into the required output format, and sends
it to the client inside the HTTP response message. If the route is not defined,

"https:/ /docs.microsoft.com /en-us/aspnet /core

https://docs.microsoft.com/en-us/aspnet/core

3. Lipizzaner 31

ASP.NET Core either attempts to map it to a static resource (e.g. a file or an
image), or redirects to the main page and hands the task over to the client-side
router if no static resource is available as well.

Given the fact that these two tasks are very simple, the resulting back-end appli-
cation is expectably lightweight and consists merely of one controller and a few model
classes that define the structure of the data. All of the remaining application is either
defined inside the template, or —in most cases — implicitly assumed by the framework it-
self (as one of the design principles of ASP.NET Core is to require minimal configuration
effort for common application scenarios).

Angular Angular8 is a component based front-end framework to implement single-page
applications (or SPAs) with TypeScript. In contrast to traditional web sites, single-page
applications dynamically rewrite the content of the currently displayed page without
completely reloading it from the server. Client-side logic is executed in the user’s browser
and usually only loads required parts of the requested data from the HT'TP endpoints
the back-end provide, and injects them into its views.

Angular abstracts this concept and takes care of data binding and synchroniza-
tion, while providing functionality for most common use cases like requesting data from
HTTP endpoints as well. An Angular application consists of multiple components, each
containing both logic (in TypeScript, which is compiled to JavaScript during the build
process), and view markup and style definitions (in HTML and CSS). These components
can be grouped to modules to organize large applications — however, one module is usu-
ally enough for a relatively small application like the Lipizzaner dashboard. Like many
modern frameworks, Angular has dependency injection deeply integrated into all parts
of the framework — which makes it easy to encapsulate functionality into services and
share them between multiple components of the application (as shown in Figure 3.7).

3.2.2 Distribution of Coevolutionary Systems

As described in Section 3.1.1, distribution and especially scalability was one of the main
requirements of Lipizzaner. As the most trivial approach — an all-to-all communication
pattern, where each node communicates with each other — does not fulfill the latter
requirement, a more suitable solution was necessary. Beside the logical topology, the
overlying, physical communication structure had to be defined as well. The implemented
approaches to resolve these points are described in this section.

Spatial Grid Topology

Spatial (or toroidal) grids are a frequently used coevolutionary distribution architecture
and have been shown to scale very well for large-scale applications [31, 46], as they

®https://angular.io
“https://angular.io/guide/architecture

https://angular.io
https://angular.io/guide/architecture

3. Lipizzaner 32

Template
—> pate
HTML, CSS, Directives
Property Binding Event Binding
Component
pon —
. TypeScript
Injector

Service +
Service

Figure 3.7: Overview of the correlations between the different parts of an Angular appli-
cation. The component contains the background logic that is needed to populate the tem-
plate, which accesses the components data by binding element values to its properties. The
injector component provides services (like HT'TP requesting) to multiple components.9

limit the communication between nodes (i.e. grid cells) to local neighborhoods. Adding
additional nodes therefore does not increase the load on all other nodes, as it would in
all-to-all communication scenarios.

In Lipizzaner, each logical grid cell represents one instance of the application, which
can either run on the same or on multiple physical machines, as long as they are con-
nected via a TCP /IP network. When using workstations with state-of-the-art hardware,
our experiments have shown that running 4-6 cells per machine is possible, depending
on the size and complexity of the training dataset (more details about the experiment
configurations can be found in Chapter 4).

In addition to each cell’s local generator and discriminator populations, it also holds
the hyperparameters and mixture weights that are evolved as well. Figure 3.8 shows a
two-dimensional representation of a spatial grid as it is used in Lipizzaner. In a non-
two-dimensional perspective, each cell on the edge would be interconnected with the
cells on the respective other side of the grid, as by definition a spatial grid has no edges.

As Lipizzaner therefore evolves populations of GANs distributed over the grid in-
stead of a single generator and discriminator pair, each neighborhood returns one miz-
ture (or an ensemble) for both generators and discriminator after the training process
finishes. These mixtures consist of each best generator or discriminator of the respective
cells in the neighborhood (i.e. five generators and five discriminators would be returned
for a neighborhood size of five). To rate the quality of the resulting mixtures, Lipizzaner

3. Lipizzaner 33

eGV eok
Gy Dy

Weights Weights Weights

8. 6Bo. s 6o B Oo.
Gw Duw Gc Dc Ge D

B Bo.
Gs Ds

Figure 3.8: Two-dimensional representation of the spatial distribution grid used in Lip-
izzaner. Each cell holds one generator and discriminator pair, the individuals’ respective
hyperparameters, and the mixture weights that are evolved. While in this figure each cell
contains exactly one generator and discriminator individual, it is possible to use higher
cell population sizes as well. The colored cells show one of the 25 neighborhoods on this
grid (at position (2,2)).

uses either the Inception Score [52] or the Fréchet Inception Distance (or FID) [25], qual-
ity metrics that rate a model’s output both according to its variety and how meaningful
the generated images are. This is done by comparing the output to the inception model,
which is pre-trained on the ImageNet dataset [56]. In addition, the FID also measures
the distance to the original dataset.

Master/Client Architecture

While the spatial grid architecture leads to a fully scalable distributed system that can
be expanded as needed, using a completely distributed architecture without any central
master node would have made its usage very complicated, as it would have been neces-
sary to start each experiment manually on each node — which is practically impossible
in large scenarios. Using single-run client applications would furthermore drastically
increase the complexity of deployments and experiments, as it would be necessary to
manually copy configuration files and start the applications on each machine. Lipizzaner
clients therefore run as background services and only have to be started once.

Since Lipizzaner was primarily designed to scale very well in large scenarios, im-
plementing a master-client topology was therefore crucial to fulfill this requirement.

3. Lipizzaner 34

Long-running clients can be easily added to the ecosystem by just starting the appli-
cation on more nodes, running pre-configured virtual machines, or with Docker (see
Section 3.2.2). Using a single point of configuration furthermore simplifies the monitor-
ing of the system, as well as gathering results from it after the process finishes (as it is
only required to monitor the master node, and not the possibly high number of clients).
In this section, both the functionality of client and master — including their underlying
algorithms - is described.

Master As the Lipizzaner master (or orchestrator) is only meant to control a single
experiment, its life cycle is limited to this (in contrast to the client, which is running
as a background service and keeps listening for requests after an experiment has fin-
ished). The masters functionality can basically be grouped into three tasks, listed in
chronological order:

1. At the very beginning, the master has to parse the configuration the user injects
into it and determine the way to discover its clients. Their addresses can either be
specified hard-coded in the configuration file, or an auto-discovery mode can be
used to find all available clients in the network (this is done via a broadcast on a
specific port all clients are listening on). As soon as the clients are discovered, the
master furthermore checks if they are available, as they may currently be busy
with other experiments. If the result complies with the requirements (i.e. enough
clients are available, and the grid is a square), the master transmits the experiment
to all of them. If the requirements are not fulfilled, the experiment is terminated.

2. Assoon as the experiment is started on all clients, the master begins to periodically

check their state, i.e. to verify if the experiment has finished, or if the client may not
be reachable anymore. If the latter occurs, the master can currently be configured
to show two different behaviors: first, the missing client can be ignored, as some
missing nodes are often not critical for the result of an experiment, especially on
large grids (this is the default behavior). Second, it is possible to quit the entire
experiment on all nodes, which may be especially useful on smaller grids.
In future releases of Lipizzaner, the client could try to replace lost nodes, e.g.
by detecting new ones and transmitting the state of a neighboring node to the
newly connected one. This is especially interesting in combination with Docker, as
Docker Swarms (which are used in Lipizzaner) provide the functionality to restart
containers if they terminate unexpectedly (see Section 3.2.2).

3. When the experiment finished on all (remaining) nodes, the master gathers their
results — those include the generator and discriminator mixtures of each neigh-
borhood and their respective inception or FID scores — and saves them to its
hard disk in a restorable file format. The mixtures are finally ranked by their
scores, and sample images are created and presented to the user (as described in
Section 3.2.2).

The master application’s procedure is described in Algorithm 3.1.

3. Lipizzaner 35

Algorithm 3.1: Main procedure of the Lipizzaner master application.

1: LIPIZZANERMASTER(path) > path to config file
Runs the experiment on the specified clients, if available.
con fig < parseConfiguration(path)
if config.autoDiscover then
clients <find AvailableClients() > via broadcast
else

2
3
4
5
6: clients < config.clients
7 end if

8 if allAvailable(clients) # True then > request client status
9: return —1 > end process if one or more clients are not available
10: end if
11: for all client in clients do > start experiment on all clients
12: startExperiment(client, con fig)

13: end for

14: repeat

15: done < True

16: for all client in clients do

17: state <— requestState(client)

18: if state.isDead and config.cancelOnOutage then

19: cancelExperiments(clients.except(client)) > cancel experiment
20: return —2

21: else if state.done # True then

22: done < False

23: end if

24: end for

25: until done = True

26: results < loadResults(clients) > request results over HT'TP
27: saveResults(results)

28: end

All three tasks described above do not require much computation power, as the
master application is meant to run directly on the user’s machine. The minimal com-
putation effort also makes it possible to orchestrate multiple experiments at once from
a single point of configuration.

Client From a logical perspective, each client represents one cell in the spatial grid
topology. While the master applications are bound to single experiments, clients can
be compared to services or daemons, meaning that they are long-running background
applications that are constantly listening for experiment requests. Currently, for the sake
of simplicity, each instance of the client application can process only one experiment at
a time. However, it is possible to run multiple clients per host machine at once, either
as “normal” applications or inside multiple docker containers (see Section 3.2.2).

An experiment request contains all configuration options a user passes into the mas-

3. Lipizzaner 36

Program 3.1: Simplified excerpt of the class containing the HTTP endpoint definitions
of each Lipizzaner instances server component.

class ClientAPI:
app = Flask(__name__)

1
2
3
4 @staticmethod

5 Qapp.route('/experiments', methods=['POST'])
6 def run_experiment():

7 config = request.get_json()

8

9

lipizzaner = Lipizzaner ()

10 lipizzaner.run(config)
11

12 return Response()

13

14 @staticmethod
15 @app.route('/parameters/discriminators', methods=['GET'])
16 def get_discriminators():

17 discriminators = ConcurrentPopulations.instance().discriminators
18 data = json.dumps(discriminators)

19 return Response(response=data, status=200,

20 mimetype="application/json")

21

22 O@staticmethod
23 Q@app.route('/parameters/generators', methods=['GET'])
24 def get_generators():

25 generators = ConcurrentPopulations.instance() .generators
26 data = json.dumps(generators)

27 return Response(response=data, status=200,

28 mimetype="application/json")

29

30 def listen(self, port):

31 ConcurrentPopulations.instance().lock()

32 self .app.run(threaded=True, port=port, host="0.0.0.0")

ter application, as it is basically forwarded to the client — with the benefit that the client
applications do not have to be re-deployed for each changed experiment configuration.
These configurations for example include algorithmic parameters (such as learning rate,
population size, etc.), data loader specifications (the underlying dataset, batch size and
count), and information about the logical topology of the grid. The latter is needed
for the client to compute its position on the grid, and furthermore to determine its
neighboring nodes.
The typical behavior of the client can again be divided into three steps:

1. If no experiment is active, the client runs as a background service and listens for
experiment requests from a master on a specific port. As soon as an experiment

3. Lipizzaner 37

is requested, the client parses the received configuration file and executes the
specified training algorithm (see 3.2.3). It furthermore requests data from the
neighboring nodes each time the algorithm accesses the respective properties of
the ConcurrentPopulations class, which means that the algorithm itself does not
have to take care whether it is running in a distributed environment or not.

2. To make this possible, the Lipizzaner client provides HT'TP endpoints via the web
service mentioned in the previous step simultaneously to executing the training
process. Other clients can access these endpoints and therefore request the cur-
rent populations and optimizer parameters. As stated above, this can be critical
in Python, as it supports no real multi-threading — when extremely costly experi-
ments are running, accessing the interface may therefore be rather slow. This issue
can be worked around by reducing the computational effort of each request, and
preparing the required data packets in advance.

Program 3.1 shows a slightly simplified version of the HT'TP endpoints a Lipiz-
zaner client offers.

3. It is not necessary to actively notify the master application when an experiment
finishes, as the master has to monitor the clients activity by polling it anyhow to
make sure they are still alive. The master therefore notices that an experiment has
finished, and collects the results from the clients for further usage. After this, the
client changes its state from Busy to Idle and waits for new experiment requests.

The complete logs, resulting generator and discriminator models, and intermediate
states and data are preserved on the client, as this information may be necessary to
gain full insight into the results, especially if any error occurs during the training
process.

Docker

Orchestrating large experiments in a failsafe way is a complex task when it comes to
high numbers of clients, especially when working with non-persistent cloud platform
systems — as the environment setup takes some time for each experiment. There are
different ways this can be automated, either with scripts and vendor-specific command
line interface tools, or by using Docker'".

Docker is a software for container-based virtualization, an abstraction method where
applications are put into precompiled container images that can later be distributed
and executed on any host machine. In contrast to classical virtual machines, containers
are more lightweight, as they make use of virtualization functionality of the host’s
underlying operating system, and do not emulate physical hardware as virtual machine
hypervisors do. Container-based virtualization is therefore also called application-level
virtualization.

https: //www.docker.com

https://www.docker.com

3. Lipizzaner 38

Algorithm 3.2: Main procedure of the Lipizzaner client application.

1: LIPIZZANERMASTER
Listens for incoming requests to start experiments, retrieve the applications state, inter-
change populations, and query results, and hosts the underlying training algorithm.

2: isBusy < False
3: isDone < False
4: while True do > run as background service
5: isBusy < waitForExperimentRequest()
6: if request.type = startExperiment then > New experiment requested
7 master, con fig < parseRequest(request)
8: if isBusy = True then
9: sendDeclineMessage(master) continue
10: end if
11: 1sBusy < True
12: tsDone < False
13: results < async startExperiment() > asynchronously run the training algorithm
14: else if request.type = state Request then > master requests current state
15: respond(isBusy, isDone)
16: else if request.type = populationsRequest then > other client requests population
17: populations, optimizer Params < loadCurrentState()
18: respond(populations, optimizer Params)
19: else > master requests experiment results
20: if isDone = True then
21: respond (results)
22: isBusy < False > allow new experiment requests
23: else
24: respond(—1) > respond with error
25: end if
26: end if
27: end while
28: end

This behavior leads to drastically reduced overhead and makes Docker containers
similarly fast as non-virtualized applications. Docker therefore comes with several ad-
vantages, which are especially useful in the context of distributed systems:

o As stated above, Docker’s performance is comparable to that of non-virtualized
applications — but in contrast to those, Docker containers can be configured to ac-
cess only specific percentages of CPU cycles and memory, which simplifies running
multiple applications with different requirements on one node.

o Using container-based virtualization highly increases deployment speed and qual-
ity, as Docker containers are defined by Dockerfiles — plain text files that can be
put under version control. Besides their configuration, Docker containers have ver-
sions to guarantee reproducible results — which is an important feature for research
applications as well.

3. Lipizzaner 39

e Docker containers are portable to any other host system that run the Docker
daemon, making them independent from the host’s operating system. This reduces
the environment setup costs, as only docker has to be installed (a task that can
be done with docker-machine, a command line tool that works with most cloud
providers and creates ready-to-use Docker host virtual machines).

e Finally, Docker can be used in different ways to automate the orchestration of
complex systems with multiple instances of different container applications by
using swarms and the compose functionality.

Lipizzaner utilizes most of the above advantages, with especially the last one being
of high benefit. Both local GPU clusters and Amazon’s AWS! cloud platform have been
used to perform the experiments described in Chapter 4. Orchestrating large numbers of
nodes was a crucial part of the implementation itself. We used a combination of Docker
swarms — which allow the one-point orchestration of replicated services on multiple
connected swarm nodes — and docker-machine — a command line tool with drivers for
AWS (and other cloud platforms) that offers commands for fast deployments and the
setup of container hosts. Program 3.2 shows relevant parts of the deployment script
used to create AWS instances and deploy multiple Lipizzaner containers onto them.

3.2.3 Trainers

The trainer is the core component of each Lipizzaner instance, as it defines and hosts
the executed evolutionary process. The current implementation of Lipizzaner supports
two different types of trainers; gradient-free trainers for evolution strategies and NES,
and one trainer that updates the network parameters with gradient-based optimizers
(i.e. the “main” Lipizzaner algorithm).

All trainers of both types are incorporated into the coevolutionary framework and
were specifically implemented to train GANs, as they evolve populations of genera-
tors and discriminators. As initially stated, all components — including the trainers
themselves — are fully exchangeable, a feature that is especially interesting for large
experiments; additionally to networks and datasets, the type of the underlying GAN
can be changed as well. We used this possibility in our experiments to first explore the
system’s advantages to the classic GAN by Goodfellow et al. [19], and further used the
more stable Wasserstein GAN [3] for even better results as well. As most GAN types
primarily differ by the way they update the models’ weights and their fitness evaluation,
this can easily be done for other types as well by simply injecting the necessary func-
tionality into the respective trainer (as most training functionality is not class-specific,
but based on interfaces passed to the constructor — a concept known as Dependency
Injection, as described in Section 3.1.1).

While the exact training steps may differ slightly depending on the trainer and used
GAN type, all options share the same coevolutionary baseline procedure:

"https://aws.amazon.com

https://aws.amazon.com

3. Lipizzaner 40

(o]

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Program 3.2: Relevant parts of the script that deploys and runs a five by five Lipizzaner
grid with 25 instances on AWS.

#!/bin/bash
node_count=5; instances_per_node=5; instance_type=p2.xlarge; image_id=ami-XXXXX
create_vm() {
name=$1
docker-machine create -d amazonec2 --amazonec2-instance-type ${instance_type} --
amazonec2-ami ${image_id} ${name}
}
start_containers() {

docker pull alfa/lipizzaner:latest

for j in $(seq 1 ${instances_per_nodel})

do
docker run -d --rm -e role=client --runtime=nvidia --network lpz-overlay
tschmiedlechner/lipizzaner:latest

done

Create swarm manager
create_vm lpz-mgr
master_ip=$(docker-machine ip lpz-mgr)

eval $(docker-machine env lpz-mgr)

docker swarm init --advertise-addr ${master_ip}

docker network create -d overlay --attachable lpz-overlay
token=$(docker swarm join-token worker -q)
start_containers

Create nodes and add them to swarm
for i in $(seq 1 $((node_count-1)))
do
create_vm lpz-node-${i}
eval $(docker-machine env lpz-node-${i})
docker swarm join --token ${token} ${master_ipl}:2377

Start containers on client node
start_containers
done

1. Selection is used to create an intermediate population from individuals of the
previous generation. The default selection method in Lipizzaner is tournament
selection, where tournaments between multiple individuals determine if an indi-
vidual is used as a seed for the generation.

2. Variation is used to alter individuals in the coevolutionary process. Depending

3. Lipizzaner 41

on the algorithm, this is either done by mutation, a natural gradient step, or a
stochastic gradient step.

3. Fitness evaluation determines the quality of an individual. In GANS, the fitness
depends on the respective opponent individual (e.g. a discriminator for a generator
individual, and vice versa). This fitness evaluation is one of the main reasons for
the complex and often unpredictable dynamics of GANSs.

4. Replacement is the final step performed in each generation, where the algorithm
decides if an individual is promoted to the next generation or discarded due to
worse performance than the previous individuals showed.

As GANSs often exhibit a near-oscillating behavior, tuning the replacement step is
crucial for coevolutionary GANs. Promoting only individuals with higher fitness
than previous ones might ultimately lead to premature convergence because of
rapid loss of diversity. Lipizzaner supports different methods that are partially
elaborated in the experiments described in Chapter 4. However, our experiments
showed that replacing large parts of the population leads to good results, as this
behavior is most similar to typical GAN behavior. In spatial distributions, where
we use a population of only one individual <per grid cell, we replace the individual
regardless of its fitness value.

Additionally, all implemented trainers split the dataset into mini batches (usually
around 100 data samples per batch), which is a commonly used approach to fit the
training data into the memory of the used system.

Gradient-Free Trainers

Previous research has shown that large-scale neuroevolution for reinforcement learning
is able to match the performance of state-of-the-art gradient-based algorithms [54].
Consequently, the initial idea behind Lipizzaner was to elaborate the possibilities of
training GANs with gradient-free methods as well. This is primarily interesting due to
several advantages of evolutionary methods, especially their ability to be parallelized
and distributed easily.

While our experiments show that plain gradient-free approaches show partial success
on low-dimensional problems, GAN dynamics seem to be too complex to train with
global optimizers. Evolutionary searches for larger networks with approximately 3.5
million parameters per model did not show any progress even with long runtimes and
high computational effort.

This section contains details about the two gradient-free approaches Lipizzaner sup-
ports: evolution strategies and natural evolution strategies (NES). In contrast to the
Lipizzaner algorithm, which is distributed using a logical spatial grid, both algorithms
described here are only locally parallelized, as most effort was put into the gradient-
based trainer during implementation after the drawbacks of using plain gradient-free
methods became apparent.

3. Lipizzaner 42

Evolution Strategies Evolution strategies (ES) are a subclass of evolutionary algorithms
that are primarily used to evolve real-valued problem representations [9]. Evolution
strategies have been shown to be able to perform well in neuroevolution in previous
research, e.g. for reinforcement learning [51].

This trainer is based on (i, A) evolution strategies; this means that the trainer main-
tains a population of p individuals, of which it creates A child elements per generation
by adding Gaussian noise to the parent that got selected (e.g. by tournament selection).
These children are then ranked according to their fitness, and the p best individuals
are kept for the next generation, etc. Similarly, the Lipizzaner algorithm uses (1 + 1)
evolution strategies to evolve hyperparameters and mixture weights (as described in
Section 3.2.3).

Two different versions of the ES trainer were implemented in Lipizzaner to explore
their different behaviors [34]:

e The sequential version of this trainer takes turns in evolving generators and
discriminators; each population therefore competes with the newest generation of
its respective opponent. Even if both populations take one step after another, it is
possible to perform larger steps for each one before the respective other is updated;
a possibility we use in the Lipizzaner algorithm as well, as our experiments show
that faster convergence can be reached by skipping generator steps (similar to the
approach the Wasserstein GAN uses [3]).

e In contrast to this behavior, the parallel evolution strategies trainer evolves both
populations concurrently in each step, with the advantage of simpler behavior and
reduced implementation effort.

Program 3.3 shows the sequential implementation of the training algorithm as it is

implemented in Lipizzaner. Details of the parallel version are accessible via the source
. . 12
code repository on GitHub “.

As we elaborate in Chapters 4 and 5, ES exhibit interesting behavior on low-
dimensional problems, such as estimating a model containing a small number of Gaus-
sian distributions. However, for larger problems that require the usage of more complex
neural networks, ES do not show signs of convergence during the training in our exper-
iments.

Natural Evolution Strategies Natural evolution strategies (NES), as introduced by Wier-
stra et al. in 2008 [61], rely on the general concept of evolution strategies. In contrast to
them, NES aim to estimate the natural gradient and updates individuals with respect to
the fitness values of each offspring individual. Using the natural gradient instead of the
plain gradient has the advantage of adjusting the convergence speed to the current slope
of the fitness landscape [2]. This approach takes all offspring individuals into account,
instead of only selecting the one with the currently optimal fitness, which also prevents
early convergence to local optima.

12 https://github.mit.edu/ALFA-CSec/lipizzaner__gan_distributed_tom

https://github.mit.edu/ALFA-CSec/lipizzaner_gan_distributed_tom

3. Lipizzaner 43

Algorithm 3.3: Sequential ES trainer, as implemented in Lipizzaner. Input:

X : Input dataset L : Loss function ~ : Population size

0 : Mutation rate [: Mutation probability =~ 7 : Tournament size

1: SEQUENTIALES

2 Gy, Dy < initializePopulations(v)

3 fort=1;t<T;t++ do > for each generation
4 G, +— G4

5: D, <+ D,_4

6 for batch in X do > process mini batches
7 G’ + select(G,,) > tournament select generators
8 G’ «— mutate(G’, 9, B) > Gaussian mutation
9 sort(G")
10: if £(Gg) < L(G,,) then
11: Gy Gy > replace worst generator with best new one
12: end if
13:
14: D' « select(D,,) > tournament select discriminators
15: D' « mutate(D’, 5,) > Gaussian mutation
16: sort(D")
17: if £(Dy) < L(D,,) then
18: D, « Dy, > replace worst discriminator with best new one
19: end if
20: sort(Gy)
21: sort(Dy)
22: end for
23: end for
24:
25: return G, o, D; o > return best GAN pair
26: end

In Lipizzaner, the initial implementation of NES [61] was altered in two different

ways, enabling its usage in sequential and parallel coevolutionary setups [34]:

e The sequential implementation evolves one population after another, i.e. uses
the resulting element of population g as an opponent during the fitness calcula-
tion for all individuals of the next generation of population d. The advantage of
this approach is its lower number of function evaluations, as only one previous
individual competes with the ones from the new generation. Its disadvantage lies
in the comparatively smaller search space, as population pairs that would perform
best together may not be found (as only one individual of each step is kept).

e The parallel coevolutionary implementation of NES is similar to the sequential
one, with the difference that populations are evolved synchronously and each in-

3. Lipizzaner 44

dividual is compared to each one of the opposing population. This leads to higher

chances of finding well-matching pairs, with the cost of a higher number of function
. 2

evaluations (O(n”) versus O(n)).

As before, only the formalization of the slightly more complex sequential implemen-

tation of coevolutionary NES is shown in Algorithm 3.4. The implementation of the
respective parallel version again can be found in the GitHub repository of Lipizzanerlg.

Algorithm 3.4: Sequential NES trainer, as implemented in Lipizzaner.

Input:
X : Input dataset L : Loss function A : Population size
6 : Mutation rate [: Mutation probability
1: SEQUENTIALNES
2 Gy, Dy < initializeGAN(0) > initialize a single GAN pair
3 fort=1;t<=T;t++ do > for each generation
4 for batch in X do > process mini batches
5: G’ + mutate(Gy, 6, 3, \) > create generators by Gaussian mutation
6 Yo + L(G', D)) > calculate reward for each generator
7 G, +summarize(G', V) > update with weighted permutations
8
9 D' « mutate(D,,d,3,)\) © create discriminators by Gaussian mutation
10: vp — L(D',G,) > calculate reward for each discriminator
11: D, <—summarize(D’, vp) > update with weighted permutations
12: end for
13: end for
14: return Gp, Dy > return resulting GAN pair
15: end

Lipizzaner Algorithm

Neuroevolution has been shown to achieve remarkable results even for complex tasks
such as reinforcement learning in recent literature [51, 54]. While the initial objective
of Lipizzaner therefore was to train GANs with completely gradient-free trainers, our
first experiments showed that neuroevolution is not applicable for most mid- to large-
scale scenarios. Solving the complex adversarial dynamics of GANs with more than 3.5
million parameters per neural network seems to be unachievable with unguided global
optimization in reasonable time. This aligns with the results of previous research, in
which extreme amounts of computational power and time were needed to compete with
gradient-based optimizers even for non-adversarial use cases [54].

However, our experiments showed as well that coevolutionary algorithms are able to
overcome critical behaviors that typically occur when GANs are trained with gradient-

"https://github.mit.edu/ALFA-CSec/lipizzaner_gan_distributed_tom

https://github.mit.edu/ALFA-CSec/lipizzaner_gan_distributed_tom

3. Lipizzaner 45

based algorithms: mode collapse — a scenario in which the generator focuses on certain
modes of the target distribution, and the discriminator distinguishes real from fake data
by the remaining modes, and discriminator collapse — where the discriminator gets stuck
in local optima. The objective of Lipizzaner therefore ultimately was to combine the
advantages of coevolutionary algorithms with gradient-based optimizers to benefit from
their respective strengths:

o Gradient-based optimizers like Adam [36] have been shown to work very well in
numerous applications of GANs [19, 28] in terms of training performance and
time. As Lipizzaner is implemented to supported interchangeable trainers, using
different optimizers is supported as well. This is required, as other GAN imple-
mentations like the Wasserstein GAN rely on those optimizers [3].

o Coevolutionary algorithms have two advantages we are primarily interested in.
First, their population-based approach is able to prevent otherwise critical GAN
behavior like mode and discriminator collapse. Second, coevolutionary systems
have been shown to scale very well, especially in combination with a spatial grid
distribution. As Lipizzaner is meant to be used in large-scale scenarios in which
datasets might be too large for single nodes, this feature is crucial for the system
as well.

The resulting algorithm combines these advantages and is loosely based on the previ-
ously introduced sequential evolution strategies algorithm, which was altered in several
aspects:

e The previously unguided mutation operator was changed to increment the weights
with the gradient-step delta computed by the optimizer instead of random Gaus-
sian noise. This leads to drastically increased convergence speed and makes it
possible to utilize recent advantages of gradient-based optimizers [36].

e The majority of the most commonly used optimizers rely on hyperparameters
such as the learning rate, which is usually fixed during the whole training process.
However, even if many momentum-based optimizers like Adam take steps to avoid
overstepping optima in the fitness landscape, reducing the learning rate as the
training progresses has been shown to improve the quality of the results by even
better convergence [48]. In Lipizzaner, these individual-bound hyperparameters
are therefore included into the evolutionary process as well and evolved mutually
with the neural network parameters.

e Finally, to combine the resulting mixtures of generators, the algorithm evolves
weights that determine the probability of drawing samples from the respective
individual. In contrast to the previously described behavior, the mixture weights
are not bound to individuals, but to respective nodes (i.e. each cell on the grid
contains one vector of mixture weights, which are then evolved cooperatively).

This behavior is described in detail in Program 3.5.

3. Lipizzaner 46

Algorithm 3.5: Lipizzaner: Evolve distributed populations of generators G and dis-
criminators D and the hyperparameters competitively, and the separate evolution of
mixture weights w.

Input:
T : Number of iterations E : Grid cells & : Neighborhood size
Or 4 : Parameters for stepMixtureEA O-opy : Parameters for stepGANCoev
1: parfor c € E do > Asynchronous parallel execution of all cells in grid
2: t« 0
3: n,w <+ initializeNeighborhood AndMixtureWeights(c, k) > Uniform initialization of
settings
4 for t <T do > Iterations
5 n < stepGANCoev(n,0copy) > Coevolve GAN using Alg. 3.6
6: w < stepMixtureEA(w,n, 0) > EA for mixture weights, Alg. 3.7
T t—t+1
8: end for
9: end parfor
10: return (n,w)” > Cell with best generator mixture
3.2.4 Analysis

In contrast to monitoring applications that run only a single instance of a program,
analyzing distributed systems is often a difficult task that cannot be solved by manually
interpreting log files and console outputs. Lipizzaner therefore includes a separate web
application to display both current and previous experiment results and states, the
Lipizzaner dashboard.

As mentioned above, a different technology stack than for the Lipizzaner framework
itself was used to implement this application. Using ASP.NET Core in combination with
predefined templates greatly simplified this task and allowed to focus most development
effort on the framework, i.e. the main contribution of this thesis.

In addition to the description of the dashboard, this section also contains implemen-
tation details about the central log server (which connects the Lipizzaner framework
and dashboard), and the used tooling — as this is often crucial in web development.

Log Server

When running multiple distributed experiments in different execution environments —
local machines, public clouds, etc. — it soon becomes apparent that a more sophisticated
logging system than using plain textual log files is required. Lipizzaner therefore uses a
MomgoDB14 database server for these purposes due to several reasons:

e The primary reason to use MongoDB to store logs is the fact that it is schemaless,

i.e. not bound to table definitions as for SQL databases. This is advantageous, as
log messages are hard to generalize; additional fields may be necessary for specific

“https://www.mongodb.com

https://www.mongodb.com

3. Lipizzaner 47

Algorithm 3.6: stepGANCoev: Evolve distributed populations of generators G and
discriminators D and the hyperparameters o competitively.
Input:

7 : Tournament size ~ : Replacement size X : Input dataset

£ : Mutation probability — n : Cell neighborhood

1: n' + select(n,) > Select based on fitness (£)
2: B « getMiniBatches(X) > Load minibatchs
3: for B € B do > Loop over batches
4: a + mutateLearningRate(«,) > Update with with gaussian mutation
5: D < getRandomOpponent(n',) > Get uniform random discriminator
6: for G € ng; do > Evalute generators
T V¢ < computeGradient(G, D,ag) > Compute gradient for neighborhood center
8: G + updateNN(G, Vs, B) > Update with gradient
9: end for
10: > Now for discriminator
11: G < getRandomOpponent(ng) > Get uniform random generator
12: for D € n’p do > Evalute discriminator
13: Vp < computeGradient(D,G,ap) > Compute gradient for neighborhood center
14: D « updateGAN(D, Vp, B) > Update with gradient
15: end for
16: end for
17: for G, D € ng x np do > Evalute GANS
18: Lp ¢ < evaluate(D, G, B) > Evaluate GAN
19: end for
20: L + min(L. ;) > Fitness is the worst loss (£)
21: Lp < min(Lp) > Fitness is the worst loss (£)
22: ng < replace(ng, ne, v) > Replace the worst generator
23: np + replace(np, np,) > Replace the worst discriminator

24: return n

Algorithm 3.7: stepMixtureEA: Evolve mixture weights w.

Input:
w : Mutation rate n : Cell neighborhood w : Mixture weights
1: w' < mutate(w,) > Gaussian mutation of mixture weights
2: w} + evaluateMixture(w’, n) > Evaluate generator mixture inception score
3: w <+ max(w’,w) > Replace if new mixture weights are better
4: return w

events that are not used for other log entries. SQL databases can be tuned to
support this use case as well, but this usually leads to drawbacks like empty fields
or non-atomic field values.

e MongoDB is very lightweight and easy to install, especially when the available
preconfigured Docker image is used. This drastically reduces the effort for setting
up the database to a single command line call.

3. Lipizzaner 48

Program 3.3: Writing an experiment entry to MongoDB with its Python connector
library.

1 def create_experiment(self, settings):

2 master_ip = local_ip_address()

3 name = settings['general']['distribution']['start_time']
4 grid_size = len(settings['general']['distribution']['client_nodes'])
5

6 experiment = {

7 'name': name,

8 'master': master_ip,

9 'topology': {

10 'type': 'grid',

11 'grid_size': grid_size

12 1,

13 'settings': settings

14 %

15

16 database = MongoClient(server_address, serverSelectionTimeoutMS=CONNECTION_TIMEQUT
) .lipizzaner_db

17 collection = database.experiments

18

19 return str(collection.insert_one(experiment).inserted_id)

e Finally, like most NoSQL databases, MongoDB is generally very fast, as it does not
have to enforce consistency or data type constraints. While this was not necessary
for the small- to medium-scale experiments we describe in Chapter 4, it may be
relevant for upcoming work that involves even higher numbers of clients and larger
datasets.

Both the Lipizzaner framework and dashboard access the log database, with the main
difference that the framework is only writing data, while the dashboard is primarily
reading it — with the exception of marking experiments as deleted. This is done by
adding an additional deleted flag into the respective entry, and not by actually deleting
the record. This behavior guarantees that no relevant data is irretrievably lost in case
of a faulty operation and is generally considered a good practice when working with
databases [11].

As MongoDB offers native connector libraries for both Python and C#, imple-
menting the database communication logic is a simple task in both environments. Pro-
grams 3.3 and 3.4 display the usage of both libraries in Lipizzaner.

Dashboard

Similar to most state-of-the-art web applications, the Lipizzaner dashboard is composed
of two loosely coupled components: the back-end that serves static files and dynamic
data, and the front-end, which is responsible for the presentation of data to the user.

3. Lipizzaner 49
Program 3.4: Reading a strongly typed list of experiments from MongoDB with its C#
connector library from a Web API controller method.

1 [HttpGet]
2 public IEnumerable<Experiment> GetExperiments()

34

4 // Exclude experiment results, as they are mot needed here
5 var builder = Builders<Experiment>.Projection;

6 var fields = builder.Exclude(d => d.Results);

7

8 // Connect to the 'experiments' collection

9 var db = GetDatabase();

10 var collection = db.GetCollection<Experiment>("experiments") ;

11

12 // Return only non—deleted experiments

13 return collection.Find(x => !x.IsDeleted) .Project<Experiment>(fields).ToList();
14 }

Back-end The Lipizzaner dashboard uses an ASP.NET Core web application for its
back-end tasks, with the underlying .NET Core framework. Using .NET Core is ad-
vantageous over building new web applications on the full .NET framework, as it is
platform-independent and more lightweight to implement in general. Only if previous
components would exist that have to be included into a web project, NET Core might
not be an option — however, this is not the case in Lipizzaner, as the dashboard was
built without any pre-existing dependencies.

The logic contained in the back-end application is very simple and contains only one
web API controller — i.e. one group of API endpoints that serves experiment and log
entry data. ASP.NET Core maps relative paths like api/experiments to their respective
methods, which then return the requested data as JSON. An example for a controller
method is shown in Program 3.4.

The Lipizzaner back-end controller directly pulls the log data from MongoDB, which
makes it possible to monitor the current state and health of experiments while they are
running. As several experiments were executed on AWS, monitoring the state was crucial
to detect errors and blocked experiments and therefore reduce the costs incurred.

Front-end The dashboard’s front-end — which is responsible for presenting the experi-
ments to the user — is an Angular Single Page Application (SPA) and implemented in
TypeScript. In contrast to the back-end logic, which is executed on a server machine
primarily because of security reasons, as databases should never be directly accessed
from client computers, the resulting JavaScript code the compiler generates is executed
and rendered directly in the user’s browser — with the advantage of reducing additional
load on the server machine. A screenshot of the user interface is shown in Figure 3.9.

3. Lipizzaner 50

Lipizzaner Dashboard

[Generator [Discriminator
Log server address Experiment Current iteration: 50

128.5218199:27017 A 2018-06-05_13-35-19 B o M

: : Begin: 6/5/18, 1:35 PM, End: -
Experiment grid Overall duration: 18:41 hours o

NN~~~ NN\
o
N 25 56510 IO O SO O PRI PP PP PP SRS PP PN PO RS Bl B
Hyperparameters
[Generatr- i [piscrminaor -
000008
000005
000004
000008
o000z
000001
.
SNus s esAsesa CRTCR NI RaOIw proe SRR Yy

Score
[iopton score

150

400

350

300

250

20

150

Figure 3.9: Screenshot of the Lipizzaner dashboard web application. The navigation
component is rendered on the left, the details component on the right side of the screen.

The front-end application consists of one Angular module, which is furthermore
grouped into two (visual) components:

e The grid navigation component is responsible for loading and displaying the
experiment selection dialog elements, and furthermore — if an experiment was
selected — shows details about its configuration, topology, and execution time
frame. If an experiment has finished, samples from the resulting mixtures are
shown in this component as well.

Additionally, it is possible to scroll through training generations while displaying
a live heat map of the grid. This was implemented to monitor if individuals prop-
agate through the grid, a behavior we explored during the experiments described
in Chapter 4.

e When a grid cell of a specific experiment is selected, the details component is
loaded and displays drill-down information about the whole experiment history
of the respective Lipizzaner application instance. This includes charts for loss,
hyperparameters, mixture weights and score values. Intermediate generator output
images for each generations are displayed as well, together with real data from the
input dataset — which is helpful to visually rate the current experiment state.

As briefly mentioned above, a characteristic feature of SPAs is that the website is
not reloaded during navigation. The Lipizzaner dashboard therefore uses the Angular
routing package to dynamically update the website.

3. Lipizzaner 51

Tooling Because of the immensely growing number of frameworks, libraries and pack-
ages available to implement web applications, using specific tools to compose and handle
those dependencies has become necessary to focus on the development process instead
of manually organizing references. The Lipizzaner dashboard is based on the ASP.NET
Core SPA template for Angular, which includes a full development environment for both
back- and front-end applications:

e The .NET Core CLI is a command line tool that supports all development
steps of .NET core applications, e.g. building, packaging and deploying them, and
pulling and installing packages. The CLI is invoked with the dotnet command,
and is also used to run the deployed application on the production environment
by providing a minimal web server that can be executed on all relevant platforms
(Windows, Linux, Mac OS, etc.).

o Similar to this, the Angular CLI — with the ng command — basically provides
the same functionality for building, deploying and packaging Angular front-end
SPAs.

e NuGet and NPM are package managers, with the former being responsible for
back-end .NET packages, and NPM being used for front-end packages like the
Bootstrap web style framework and Angular itself. While NPM has to be sepa-
rately invoked with the npm command, NuGet is directly embedded into the .NET
Core CLI.

The template furthermore combines all these functionalities into pre-defined dotnet
build steps, and even invokes the Angular CLI to build and deploy the front-end. The
whole application can therefore be built and run by invoking dotnet run from the root
directory.

Chapter 4

Experiments

This chapter contains configuration details and results of the experiments that were
conducted both in preparation for implementing Lipizzaner and to evaluate its final
performance on state-of-the-art problems and datasets. It is organized as follows:

1. The first section of the chapter covers the steps taken to evaluate the applicability
and advantages of coevolutionary algorithms on GAN problems.

2. The second section contains details about the results Lipizzaner yielded on im-
age datasets like MNIST [40], CIFAR10 [39] and CelebA [43]. In the first part,
the experiments conducted with gradient-free coevolutionary trainers are elabo-
rated; the second part covers information about promising results we achieved by
combining gradient-based optimizers with a coevolutionary framework.

The respective experiment configuration files are listed in Appendix A.

Overall, the results show that Lipizzaner’s combination of gradient-based optimizers
and coevolutionary algorithms is able to perform very well on the conducted experi-
ments. Lipizzaner is able to overcome or even prevent otherwise critical behavior and
collapsed GANs even at very small grid sizes, and scales well to larger sizes without
noticeably increasing the required runtime.

4.1 Synthetic Data

Preceding the implementation of Lipizzaner, experiments were conducted to elaborate
the applicability of coevolutionary algorithms on GAN training. We thereto make use
of a similar setup as described by Li et al. [41], where the generator has the objective
of estimating two Gaussian distributions in a one-dimensional space, while the discrim-
inator aims to distinguish real and generated fake data by changing its boundaries (the
method is described in more detail in Section 4.1.2).

As those experiments yielded promising results in this small scale, they can be seen
as the foundation of the work realized afterwards.

52

4. Experiments 53

0.3 mm [left0, right0] 0.3
I [left1, right1]

m [left0, right0]
I [leftl, right1]

p(x)=q(x)
p(x)=q(x)
o
°

-100 -75 =50 -25 0.0 2.5 5.0 7.5 10.0 -100 -75 =50 -25 0.0 25 5.0 7.5 10.0
x x

(a) Generation 1 (b) Generation 100

Figure 4.1: (a) Preliminary stage of discriminator collapse. Both boundaries are set to
a local minimum of the fitness function, so training algorithms would have to initially
decrease the fitness even more to step out of this scenario. (b) Coevolutionary algorithms
are able to escape this situation without further optimizations.

4.1.1 Motivation

The main motivation behind the experiments described in this section was to elaborate
if coevolutionary algorithms are able to stabilize of GANs regarding otherwise critical
behaviors in a small, analyzable scale before the implementation of a larger system.

As the dynamics of GANSs are still not completely understood [41], these behaviors
are often hard to reproduce and even harder to fully understand and associate to their
theoretical foundations. Using a simplified setup without underlying neural networks
made it possible to eliminate incalculable factors and focus on the behavior of interest
— namely mode- and discriminator collapse.

Mode collapse describes a phenomenon in which the generator focuses on specific
modes of the target distribution — in the scenario used in these experiments, this is equal
to focusing either only on pq or py. On the other hand, discriminator collapse occurs
in scenarios where the generator is able to fool the discriminator very well, leading to
the latter being stuck in a local minimum of the fitness landscape. Figure 4.1a shows
the preliminary stage of this phenomenon; the discriminators objective is to maximize
the positive area it covers in the given scenario, but to do so, it firstly would have to
increase this area to overcome the local minimum.

4.1.2 Setup

To investigate coevolutionary dynamics for GAN training, we make use of the sim-
ple problem introduced in [41], in which no neural networks are used. Instead, the
generator’s objective is to estimate two Gaussian distributions N (i, 1) and N (g, 1).

4. Experiments 54

Table 4.1: Setup of GAN dynamics experiments.

Generations 100
Mutation rate 1
Mutation probability 0.7
Population size 10

Tournament selection size | 2

Number of replacements 5

Initialization range [-0.2, 0.2]
Discriminator boundaries | [-10, 10]
11 -2

113 2

Formally, the set of possible generators is therefore defined as

6 = { N1+ 1) | e B2 (@)

On the other hand, the discriminator set is expressed as follows.
2
D = {H[él»rl] +]1[327742] | E,’r € R” s.t. Zl < 1 < EQ < 7”2} . (42)

Given a true distribution G, with parameters p*, the GAN objective of this simple
problem can be written as

min max L(p,£,7), where
BooLr

E(/J/vﬁv T') = Ewa* [De,r(ﬂf)] + E$~G“[1 - Df,r(x)] . (43)

While being easy to understand and demonstrate, this simplified GAN variant ex-
hibits the relevant dynamics we are elaborating. Unless stated otherwise, we ran each
experiment of this group for 120 runs, each with 100 generations and a population size
of 10. We also use Gaussian mutation with a learning rate of 1 as the only genetic op-
erator, as no others were needed to succeed in the respective tasks. The full experiment
setup is shown in Table 4.1.

4.1.3 Results

This sections shows the results gathered from the conducted experiments, and puts
them into relation to comparable work done with pure gradient-based GANs on similar
or equal tasks [5, 41]. Overall, the results illustrate that gradient-free coevolutionary
algorithms are reliably able to escape both mode and discriminator collapse, including
scenarios where gradient-based optimizers are guaranteed to fail.

4. Experiments 55

-=- lefto 175

81 ——- leftl

right0 15.0

right1 h_ v

— 125

u2

41 — 1 10.0
—_

=== leftd

=== leftl
right0

P A rightl

PR A — ul
ot u2
—

A2 o’
0 .
— 2
‘\\\ 25l — ¥
\
., .
T oINS

(a) Alternating Coevolution (b) Parallel Coevolution

Figure 4.2: Mean results over 120 runs of (a) the alternating and (b) parallel implemen-
tation of coevolutionary algorithms in a simplified GAN setup with synthetic Gaussian
data. While both perform well under the given circumstances, (a) yields slightly better
results and converges more reliably.

Two different types of experiments were conducted to prove the applicability of
coevolution on this task. First, we show the method is working for randomly set initial
values (limited to a small initialization interval to make the problem more complex).
Second, we elaborate the abilities of coevolutionary algorithms to resolve otherwise
critical scenarios like mode and discriminator collapse.

General Results As expected, coevolutionary algorithms perform well in general scenar-
ios in this experiment, and are able to match the results of gradient-based algorithms
[41]. Both parallel and alternating implementations were evaluated (as described in
Section 3.2.3).

The respective results are shown in Figure 4.2; while both algorithms are able to
solve the given problem, the alternating implementation performs better and reaches
convergence faster and more reliably than the parallel approach. Based on these exper-
iments, we attribute the superiority of the alternating algorithm to its closer proximity
to GANs, which strongly rely on the not yet fully understood adversarial interactions
between generator and discriminator [19]. As Lipizzaner is also derived from the alter-
nating implementation, the remaining results in this section are therefore focused on
this approach.

Mode Collapse Figure 4.3 shows that coevolutionary GAN training is reliably able to
step out of mode collapse scenarios, in contrast to the already optimized gradient-based
optimal training introduced in [41], whose results are shown in the left part of the
figure. The plot illustrates the average success rate over 120 runs with the respective
initialization values for p and pq, which are plotted on the z and y axis. In this context,
success is defined as the ability to reach a distance between the best generator of the last

4. Experiments 56

1.0

0.0

1.0
-1.0 -0.5 0.0 0.5 -1.0 0.0 1.0

(a) Optimal Training (b) Coevolutionary Training

Figure 4.3: Mean probability over 120 runs to escape a mode collapse scenario (where
1 = pg) of (a) optimal training as described by Li et al [41], and (b) coevolutionary
training in a simplified GAN setup with synthetic Gaussian data. Initial values for p; and
1o are plotted on the x and y axis. While even the computationally expensive optimal
training (which relies on finding the optimal discriminator in each iteration) is not able
to escape mode collapse, coevolutionary training does not exhibit any problems in these
scenarios.

generation and optimality of < 0.1. While the optimal training method clearly fails on
the diagonal representing collapsed modes (i.e. where p; = p9), coevolutionary training
performs equally well for all initialization values.

In addition to this, further experiments were executed to elaborate the influence
of the optimal training approach mentioned above [41], where the discriminator does
not perform real gradient-steps, but is set to the optimal values in each iteration. As
expected, this even further decreases convergence time of coevolutionary training, as
shown in Figure 4.4.

Discriminator Collapse The experiment results shown in Figure 4.5 show similar suc-
cess rates for escaping scenarios in which the discriminator is initialized in a collapsed
state. This is done by setting either one or both of the discriminator boundaries (11 and
rl, and (2 and r2) to a negative, convex position in the two-dimensional fitness land-
scape (for example, in Figure 4.1 both boundaries are initialized in a negative position
— i.e. the worst case scenario). As overcoming these situations requires to initially fur-
ther decrease the fitness, local optimizers are naturally not able to escape them, while
global optimizers like the evolutionary algorithms used in this experiment explore viable
solutions very quickly in this simplified setup.

4.2 Image Data

Motivated by the results shown in the previous section, the first implementation steps of
Lipizzaner were focused on gradient-free neuroevolution. Evolution strategies (ES) and

4. Experiments

-2+

left0

leftl
right0
rightl
ul

u2 =
ul'

u2'

0

Figure 4.4: Mean results over 120 runs for alternating coevolution with fixed optimal
discriminator training in a simplified GAN setup with synthetic Gaussian data. Similar to
the method proposed in [41], the optimal discriminator bounds for the given point in time
are calculated in each generation. As expected, this increases the convergence speed of
coevolutionary algorithms in a similar way it does when using gradient-based optimizers.

positive

negative

Figure 4.5: Mean probability over 120 runs of escaping discriminator collapse scenarios
in a simplified GAN setup with synthetic Gaussian data. Each quadrant represents a
different type of initialization, in which either none, one or both boundaries are placed in

20 40

negative

a local minimum of the fitness function.

60 80 100

1.0

0.0

positive

57

natural evolution strategies (NES) were used to mutate the neural network parameters
of the models (i.e. biases and weights). As described in Section 3.2.3, ES operate on a

completely gradient-free basis, while NES uses the natural gradient.

Unfortunately, the conducted experiments show that, while yielding some results on

lower-dimensional data, global optimizers are not performing well in the more complex

GAN scenarios of interest that include the optimization of deep networks with millions

of parameters. The second development iteration of Lipizzaner was therefore focused

on gradient-based optimizers and their combination with coevolutionary algorithms, as

4. Experiments 58

described in Chapter 3. A detailed analysis of the results — both of gradient-free and
gradient-based experiments — can be found in Chapter 5.

4.2.1 Gradient-Free Coevolutionary Algorithms

Both evolution strategies and natural evolution strategies generally did not perform
well on most experiments described in this section. As more complex image generation
tasks did not yield any results at all, this section is focused on results for datasets that
showed signs of convergence, i.e. a two-dimensional dataset for ES and the MNIST digit
dataset for NES experiments.

Evolution Strategies

Multiple experiments with different hyperparameters were conducted to apply plain
gradient-free coevolutionary algorithms to high-dimensional problems. Despite these
efforts, neither the alternating nor the parallel implementation of evolution strategies
showed any signs of convergence in this task. As very high numbers of parameters are
necessary to generate e.g. visual content for these high-dimensional datasets (i.e. 3.5
million parameters per neural network [48]), we assume that global search algorithms
are not able to perform these tasks in reasonable time.

However, small-scale experiments were conducted to prove the general applicability
of the approach. In these experiments, the target distribution consisted of multiple points
(or modes) in a two-dimensional space, and a simple multilayer perceptron (MLP) with
42 neurons was used. The full experiment setup is shown in Table 4.2.

Although the generator focused on different points in this distribution, it was not
able to escape mode collapse and kept oscillating between different modes — presumable
due to the relatively low diversity, which again was limited due to computational effort
and time. Figure 4.6 shows different representative generations of the training process.

It has to be noted that the observed problems could probably be solved with the
usage of more sophisticated GAN implementations [3] or by fine-tuning the used hy-
perparameters. However, as the method did clearly not scale to higher-dimensional
problems, this approach was discarded as well.

Natural Evolution Strategies

As evolution strategies yielded no noticeable results on the MNIST datasets and only
showed signs of convergence for lower-dimensional data distributions, it seemed reason-
able to use a faster, guided evolutionary approach. Natural evolution strategies (NES)
follow the matural gradient — an approach in which multiple offspring individuals are
created, and the actual mutation of the single main population individual is computed
with respect to their errors (see Section 3.2.3).

In contrast to the experiments described in the section above, a more complicated
multilayer perceptron was used (with two hidden layers, and approximately 1150 neurons

4. Experiments 59

Table 4.2: Setup for experiments conducted with evolution strategies, a two-dimensional
target distribution, and a multilayer perceptron with one hidden layer.

Coevolutionary settings

Generations 1000
Mutation size 0.0001
Mutation probability 0.7
Population size 50

Number of replacements 10

Tournament selection size | 2

Network topology

Input neurons 20

Number of hidden layers | 1

Neurons per hidden layer | 20

Output neurons 2 (z and y)

Activation function tanh

Table 4.3: Setup for experiments conducted with natural evolution strategies, the MNIST
dataset [40], and a multilayer perceptron with two hidden layers.

Coevolutionary settings

Generations 5000
Mutation size 0.0005
Population size 50

Network topology

Input neurons 100

Number of hidden layers | 2

Neurons per hidden layer | 256

Output neurons 784 (gray-scale pixels)

Activation function tanh

overall). As experiments with typical gradient-based learners showed, this deeper neural
network is the minimum requirement to learn the MNIST dataset within a GAN. The
full experiment setup is shown in Table 4.3.

As illustrated in Figure 4.7, this method shows initial signs of convergence after
2000-2500 generations. However, the quality of the generated results stops improving
around this point in the evolutionary process, most likely due to the relatively small
population size in combination with a rather high learning rate. These settings are
nevertheless necessary to make progress in the evolutionary process in reasonable time.
The training process shown in Figure 4.7 took more than 24 hours on a state-of-the-
art machine, while a “normal” gradient-based GAN was able to produce near-perfect

4. Experiments 60

-025- @ = -025- ® .
-0.50 - -0.50 -

—0.75 - -0.75 -

. L] L] L]
-1.00 - ' ' ' v ' ' ' ' -1.00 - ' ' ' v ' ' ' '
-1.00 -0.75 -0.50 =0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 =050 =-0.25 0.00 0.25 0.50 0.75 100
(a) Generation 1 (b) Generation 500
1.00 L] 100 0 " .
e
075 075 (hd .
. L] L *. S Y

-025- ® = —025- ® .

—0.50 - o % —0.50 -

0
% ®,
L)
=075 7 . ~0.75 -
. . ry)

. L] L]
-100- . . } . .) . i -1.00- ,) ! .)) .)
-1.00 -0.75 -0.50 -0.25 000 025 050 075 100 -1.00 -0.75 -0.50 -0.25 000 025 050 075 100

(c) Generation 750 (d) Generation 1000

Figure 4.6: Sample results of the experiments conducted with the non-distributed Lip-
izzaner evolution strategies trainer on a two-dimensional dataset. Even if the algorithm
is able to converge to different modes of the target distribution, it is not able to escape
this mode collapse scenario.

results in only minutes (even if it encountered the mode collapse scenario, as described
in Section 4.2.2).

4.2.2 Gradient-Based Coevolutionary Algorithms

In contrast to the gradient-free approaches described in the section above, the Lipiz-
zaner algorithm — which incorporates gradient-based optimizers into the coevolutionary
process — shows both good performance in terms of speed and image quality, and sta-
bility against typical critical GAN pathologies like mode and discriminator collapse. To
illustrate these behaviors, this section is split into two parts: first, the results achieved
by a single Lipizzaner application instance with a population of one generator and dis-
criminator is shown for comparison. Second, results from distributed runs with higher
population sizes are presented.

4. Experiments 61

3996451/
/ 5S¢ 17149
37 2LOS5 /37
93/ 1/ 685
o0l |l 7773
704245 48
338/7272 47
S8 FHY50/
o¢Y I 75406
/04 qg] beé
2bd | 2349 ¢
179 0LLC0Ov10
1! 4G
(a) Original dataset (b) Generation 1

(c) Generation 2500 (d) Generation 5000

Figure 4.7: Typical results of the non-distributed Lipizzaner NES trainer on the MNIST
dataset. Even if the evolutionary process shows signs of convergence, the quality of the
produced images does not increase after a given point.

As previously stated, Lipizzaner is able to incorporate different GAN implementa-
tions. While quantitative results for the more sophisticated Wasserstein GAN (WGAN)
[3] are presented in the following sections as well, the experiments described here were
conducted with a “classic” GAN, as introduced by Goodfellow et al. [19]. This approach
makes it easier to observe the critical pathologies and limitations of GANSs, which are

more complicated (but not impossible) to reproduce with other implementations.

4. Experiments 62

Table 4.4: Setup for experiments conducted with the coevolutionary, gradient-based
Lipizzaner algorithm, the MNIST dataset [40], and a multilayer perceptron with two
hidden layers.

Coevolutionary settings

Generations

400 (600 batches each)

30 (1600 batches each)

Population size per cell

1

1

Tournament size

2

2

Grid size

1x1, 2x2

1x1, 2x2

Mixture size

1/ncells (ﬁxed)

0.01 (learning rate)

Hyperparameter mutation

Optimizer Adam Adam

Initial learning rate 0.002 0.002

Mutation rate 0.0001 0.0001

Mutation probability 0.5 0.5

Network topology

Network type MLP DCGAN

Input neurons 100 100

Number of hidden layers | 2 4 (convolutional)
Neurons per hidden layer | 256 16,384 — 131,072

Output neurons

784 (gray-scale pixels)

64x64x3 (RGB pixels)

Activation function

tanh

tanh

MNIST

CelebA

MNIST

Training a generator on the MNIST dataset [40] — which contains 60,000 examples of
handwritten digits — is a relatively trivial task, primarily because the target distribution
consists of only monochrome pixels and is limited to ten modes (0—9). However, because
of these characteristics, it is very well suited to demonstrate one of the critical GAN
behaviors of interest, namely mode collapse.

As shown in Figure 4.8b, single instances of GANs reproducibly collapse to the digits
one, seven and nine, presumably due to their similarity to the other digits. In contrast
to this, Figure 4.8¢ shows that using a grid size of 2x2 (i.e. four Lipizzaner application
instances) is enough to prevent this behavior in our experiments.

It should be noted that the pixel artifacts in the resulting image occur due to the
relatively trivial multilayer perceptron used for these experiments. Also, a fixed mixture
rate was used, as calculating the inception score to rate mixture qualities is not feasible
for the MNIST dataset. All setup parameters are described in Table 4.4.

4. Experiments 63

~ 03D

— @D & A0 o Goee D

=3 L
65
4y /
2 9
g 2
|
'
& Q
> 7
L
4 4
6 6

09
5
D ¢
17
/4
30
e 7
4 %
00
/A
g o
I/

~UmNED PN —
~J 80~ =04 e
QD=wQNN NN —D ~
N Y i S e A A

—te I I N\NNIN L -

7 /] aq
o 7211
7 [17
3 7\ {
% 17/
% 17
4 97 1
9 / 33
/] 3\ ¢
/ 7177
2 00
\ | 9 /
5

g g /] & /4 1
5y /119
7 S5 F:2 |
RS t /171
/ < {1 /17
| 6 VAN B I
| 9 7711
R 3z 798 1
33 I 7/ 9
g 4 /! 77|
0 ¢ 17499
] 6 219/
> o0 £] Fd

O e rw o 0w

- AN O e

(a) Original dataset (b) Single instance (c) 2x2 grid

Figure 4.8: Samples from (a) the original dataset, (b) generated by a single GAN, and
(c) generated by a mixture gathered from a 2x2 Lipizzaner grid after 400 generations.
While the single instance results are mostly collapsed to the digits one, seven and nine,
using multiple instances leads to more diverse results.

Celebrity Faces

The CelebA dataset [43] contains 200,000 portraits of celebrities and is commonly used
to rate quantitative results in GAN literature. The reason for this is that generating
images of a specific class (i.e. faces) is an easier task than using a broader target distri-
bution, which is still an open problem even for state-of-the-art GANs.

This common usage makes it reasonable to evaluate the results of Lipizzaner on this
dataset as well. Additionally, training a “classic” GAN on it often leads to a collapsed
system that is not able to recover, which again illustrates instability as the primary
problem GANs suffer from [19]. For comparison reasons with the results Lipizzaner
yields, this behavior is shown in Figure 4.9.

Lipizzaner is able to overcome these otherwise critical behavior even when only the
smallest possible grid size (2x2) is used. The increased diversity is enough to replace
collapsed individuals in the next generation, and allows the system to even prevent the
collapse in most conducted experiment runs. An example for a recovering system is
shown in Figure 4.10.

As simple multilayer perceptrons are not sufficient for complex tasks like this, the
more sophisticated DCGAN neural network architecture was used [48]. It consists of
multiple convolutional layers and is able to generate RGB images of relatively high
quality. Again the full experiment setup is presented in Table 4.4.

4. Experiments 64

(a) Original dataset (b) Iteration 20

(c) Iteration 21 (d) Iteration 30

Figure 4.9: Generated output of a collapsed, single-instance GAN trained with the Lip-
izzaner gradient-based trainer: while the system works fine until iteration 20, it collapses
in the following iteration and is unable to recover during the remaining training process.

Scalability and Training Time

Scalability was one of the main requirements of Lipizzaner, and particular importance
was therefore placed on it during implementation. Due to the usage of a spatial grid
distribution architecture, the required computational effort increases linearly with the
number of cells instead of quadratically. In theory, Lipizzaner therefore allows unlim-

4. Experiments 65

(b) Iteration 13

(c) Iteration 14 (d) Iteration 30

Figure 4.10: In contrast to the single-node results shown in Figure 4.9, a 2x2 gradient-
based Lipizzaner grid is enough to overcome the otherwise critical system collapse ob-
servable in (c), and maintains a stable state until the end of the training process.

ited scaling — which is only limited by the amount of available hardware and network
bandwidth in practice.

However, as Lipizzaner instances communicate via HT'TP web services and exchange
only relatively small amounts of data during the training process, it is possible to deploy
multiple instances onto different machines and hence scale horizontally (in contrast to
vertical scaling, where the hardware capacities of a single machine have to be increased).

4. Experiments 66

10,00
8,00
4,00
2,00 I
0,00
1 4 16 25 36

Lipizzaner instances

Minutes per generation
o
o
8

Figure 4.11: Training times on AWS per generation on the CelebA dataset, averaged
over 30 generations. The X axis lists the number of Lipizzaner instances (i.e. processes
or logical grid cells), while the Y axis shows the average training time per generation in
minutes.

This proposition is supported by the chart shown in Figure 4.11, which illustrates
a near linear training time per generation for different numbers of connected instances.
The initial relatively large step from one to four cells is caused by the fact that four
Lipizzaner processes were run per GPU in the distributed experiments; this increases
the calculation effort per GPU, and therefore affects the training time as well.

We also observed promising low communication durations in our experiments: ex-
changing data between two clients only takes 0.5 seconds on average in state-of-the-art
Ethernet networks and is only performed once per generation. Additionally, the asyn-
chronous communication pattern between the clients leads to the usage of different time
slots and therefore reduces network peak loads.

The experiment results described in Figure 4.11 were computed on AWS GPU cloud
instances. Each instance had one Nvidia Tesla K80 GPU with 12 GB memory, 4 Intel
Xeon cores with 2.7 GHz each, and 60 GB system memory. The times shown are averaged
over 30 generations of training a DCGAN neural network pair on the CelebA dataset.
The instances were hosted in Docker containers and connected trough a virtual overlay
network.

Chapter 5

Conclusions and Future Work

5.1 Results

As illustrated in Chapter 4, Lipizzaner yielded promising results in the conducted exper-
iments and is able to overcome otherwise critical scenarios like mode and discriminator
collapse. In this section, the reasons for these abilities and the general strengths and
advantages of Lipizzaner are discussed.

5.1.1 Diversity

The main advantage of incorporating GANs in coevolutionary algorithms is the usage
of populations and the therefore increased diversity among the possible solutions. While
gradient-based optimizers have been shown to converge faster than other neural network
optimization methods like neuroevolution, they also tend to get stuck in local optima.
When used with GANs, this is even more critical due to their complex adversarial
behavior, and often leads to instable and ultimately collapsed systems. However, the
experiments described in Section 4.2.1 show that neuroevolution is currently no viable
solution to optimize adversarial network of the required complexity.

The compromise between both methods is the usage of coevolutionary populations
of generators and discriminators that are trained with gradient-based optimizers. As
all individuals are randomly seeded and therefore evolve into different directions during
the training process, weak individuals that are stuck in local optima are not replicated
and ultimately removed from the population.

While large population sizes are often needed to achieve good performance in coevo-
lutionary algorithms, our experiments show that even using a relatively small spatial
grid is sufficient to overcome the common limitations of GANs, presumably due to two
advantages of Lipizzaner’s system design:

1. Using a spatial grid instead of non-distributed adversarial populations leads to
slower exchange rates between the cells, and therefore may form local “hot spots”
that perform extraordinary well in some regions of the fitness landscape. As these

67

5. Conclusions and Future Work 68

individuals then propagate through the grid, hot spots presumably interact and
fuse at some point during the training process.

2. As a result of the asynchronous training processes of the cells in the grid, different
cells are often in different stages of the training process (i.e. compute different
generations). Individuals from previous or upcoming generations may therefore
be used during the training process, which further increases the diversity as well.

While our experiment results support these propositions, the exact propagation be-
haviors are hard to monitor in real world applications, especially in large grids. Although
the Lipizzaner dashboard shows the origin of each individual on the grid, tracing the
complete paths of individuals is currently still a difficult and time-consuming manual
task.

5.1.2 Scalability

As shown in Section 4.2.2, Lipizzaner scales well up to the grid sizes elaborated in
the conducted experiments (i.e. a grid size of six by six). Due to the exhibited linear
time consumption, adding more nodes does not affect the system performance; although
communication speed in the original system design was considered critical, it did not
result in any measurable problems.

Experiments show that, depending on the processed dataset and used neural network
architecture, five to eight Lipizzaner instances can be hosted on a single state-of-the-art
GPU with 10-12 gigabytes of memory. While the training speed usually depends on
the computational power of these GPUs, we observed that CPU power can be critical
as well due to Python’s multi-threading limitations. As each Lipizzaner process creates
multiple threads, peaks of high CPU load may occur during the training process when
computationally expensive steps are performed simultaneously. However, this problem
was mostly resolved by minimizing the work of background threads as far as possible
(as described in Section 3.2.1).

Using Docker drastically reduces the effort to deploy large grids to cloud providers
such as AWS, especially when combined with the docker-machine command. As most
relevant cloud providers such as AWS and Azure are included in these command line
interfaces by default, adapting few parameters of a predefined deployment script is
sufficient to change both the grid size and target platform. Lipizzaner’s auto-discover
functionality was particularly optimized to be used in Docker networks, and detects
available clients independently from the underlying hardware or cloud provider.

5.1.3 Improved GAN Variants

Since the introduction of GANs in 2014 [19], many improvements to this concept were
developed'. One of the most noticeable contributions is the Wasserstein GAN (WGAN),

' An extensive list can be found at https://github.com/hindupuravinash /the-gan-zoo.

https://github.com/hindupuravinash/the-gan-zoo

5. Conclusions and Future Work 69

which shows promising results in preventing critical GAN behaviors and is underpinned
by a strong theoretical basis [3].

As using WGAN makes it significantly harder to provoke collapsed systems (even if it
does not guarantee stability), a classic Goodfellow GAN was used initially in Lipizzaner
to show that the system is reliably able to prevent or overcome these otherwise criti-
cal behaviors. However, to elaborate Lipizzaner’s ability to incorporate different GAN
implementations, the Wasserstein GAN was added as an alternative, and as expected
yielded good results. Incorporating WGANSs in Lipizzaner leads to slightly better gen-
erated samples and more stable training processes, as the loss curves of generators and
discriminators are noticeable less oscillating. However, because of its underlying con-
cept of training the generator in smaller steps than the discriminator, using WGANs
significantly increases the training time.

5.2 Conclusions

In this thesis, the underlying theoretical background, the design principles, and the
implementation details of Lipizzaner were described and evaluated. Coming back to
the research question initially formulated in Chapter 1, Lipizzaner fulfills all included
requirements; it is a framework that can be utilized to train generative adversarial net-
works with the combined advantages of gradient-based optimizers and coevolutionary
algorithms, and distribute this training process over a well-scaling spatial grid architec-
ture.

While our initial experiments illustrated that completely gradient-free optimizers
are not feasible for training adversarial neural networks of the required complexity,
replacing the Gaussian mutation step by gradient-based optimizers not only solves this
problem, but also allows Lipizzaner to profit from the variety of GAN improvements
published in current literature.

While most of these improved training techniques like WGAN enhance the system’s
stability, they often come with disadvantages (like the considerable increased training
times of WGANS). In contrast to this, the experiments described in Chapter 4 illustrate
that Lipizzaner is reliably able to overcome or even prevent otherwise critical behaviors
like mode and discriminator collapse without slowing down the actual training process.
In addition to these advantages, the usage of a spatial grid distribution architecture
further allows linear scalability characteristics, making the system well prepared for
future usage in large scale scenarios.

5.3 Future Work

From the very beginning, Lipizzaner was meant to be a foundation for future experi-
ments and projects. Hence, great effort was put into creating a generic framework with
interchangeable components to allows reuse and adaptation in this upcoming scenarios.

Generally, several technical improvements are possible to further enhance the system:

5. Conclusions and Future Work 70

o Lipizzaner currently uses simple (1+1) evolution strategies to evolve the mixture
weights of each neighborhood; it may be sensible to replace this by more sophis-
ticated evolutionary algorithms like CMA-ES; or evolve a larger population of
possible mixture weights [21].

o Observing the desired propagation behavior of individuals through the spatial
grid is hard to monitor in complex adversarial scenarios. Adding the possibility
to display individuals’ complete paths over the whole evolutionary process in the
Lipizzaner dashboard therefore would be helpful.

e Finally, adding data loaders that partition data from very large datasets may be
required for future experiments. This could either be done by accessing parts of
the data from a network share, or by using a standalone data server that handles
requests from multiple clients.

Lipizzaner and the findings discovered during its implementation can be used in
practice-relevant fields of application, like the domain of cybersecurity. GANs could
be used to improve systems that detect malicious binaries (i.e. malware), either by
additionally training the respective neural networks on data created by the generator to
improve its generalization abilities, or even by using the discriminator for these tasks.
Creating artificial, distributable samples from a sensitive dataset could also be a possible
application.

Appendix A

Experiment Configuration

A.1 Gradient-Free Trainers

Evolution strategies configuration for two-dimensional dataset.

trainer:
name: alternating_ea
n_iterations: 1000

params:

1

2

3

4

5 sigma: 1
6 alpha: 0.0001

7 population_size: 50

8 tournament_size: 2

9 mutation_probability: 0.7

10 n_replacements: 10

11 dataloader:

12 dataset_name: circular

13 use_batch: true

14 batch_size: 100

15 n_batches: 500

16 network:

17 name: circular_problem_perceptron
18 loss: bceloss

19 general: !include general.yml

Listing A.1: es-circular.yml

Natural evolution strategies configuration for MNIST dataset.

trainer:
name: sequential_nes
n_iterations: 5000

1

2

3

4 params:
5 sigma: 0.05

6 alpha: 0.0005

7 population_size: 50

71

A. Experiment Configuration 72

8 dataloader:

9
10
11
12

dataset_name: mnist
use_batch: True
batch_size: 100
n_batches: 100

13 network:

14
15

name: four_layer_perceptron
loss: bceloss

16 general: !include general.yml

Listing A.2: nes-mnist.yml

A.2 Lipizzaner

General configuration file that is included in all experiments conducted with Lipizzaner.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

logging:

enabled: True

log_level: INFO

log_server: mongodb://user:password@mongodb.local:27017
image_format: jpgV

output_dir: ./output
distribution:

auto_discover: False
master_node:
address: 128.30.103.19
port: 4999
exit_clients_on_disconnect: True
client_nodes:
- address: 128.30.103.19
For single instance experiments
port: 5000
For multi-instance experiments
port: 5000-5003

Listing A.3: general.yml

Lipizzaner configuration file for MNIST experiments.

1
2
3
4
5
6
7
8
9

10
11
12
13

trainer:

name: lipizzaner_gan

n_iterations: 400

params:
population_size: 1
tournament_size: 2
n_replacements: 1
default_adam_learning_rate: 0.0002
Hyperparameter mutation
alpha: 0.0001
mutation_probability: 0.5
mixture:

enabled: False

A. Experiment Configuration

14 dataloader:

15 dataset_name: mnist

16 use_batch: True

17 batch_size: 100

18 n_batches: 0

19 shuffle: True

20 network:

21 name: four_layer_perceptron

22 loss: bceloss

23 general: !include ../general.yml

Listing A.4: lpz-mnist.yml

Lipizzaner configuration file for CelebA experiments.

1 trainer:

2 name: lipizzaner_gan

3 n_iterations: 30

4 params:

5 population_size: 1

6 tournament_size: 1

7 n_replacements: 1

8 default_adam_learning_rate: 0.0002
9 # Hyperparameter mutation

10 alpha: 0.0001

11 mutation_probability: 0.5

12 mixture:

13 enabled: True

14 sigma: 0.01

15 inception_size: 100

16 # Warning: Enabled CUDA will use enormous amounts of GPU memory
17 cuda: False

18 dataloader:

19 dataset_name: celeba

20 use_batch: True

21 batch_size: 128

22 n_batches: 0

23 shuffle: True

24 network:

25 name: convolutional

26 loss: bceloss

27 master:

28 calculate_inception: True

29 # Same amount of data as original CIFAR contains
30 inception_size: 50000

31 cuda: True

32 general: !include ../general.yml

Listing A.5: lpz-celeba.yml

References

Literature
[1] Gustavo Alonso et al. “Web services”. In: Web Services. Springer, 2004, pp. 123
149 (cit. on p. 14).
[2] Shun-Ichi Amari. “Natural Gradient Works Efficiently in Learning”. Neural com-
putation 10.2 (1998), pp. 251-276 (cit. on p. 42).
[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein GAN”. arXiv
preprint arXiv:1701.07875 (2017) (cit. on pp. 39, 42, 45, 58, 61, 69).
[4] Sanjeev Arora and Yi Zhang. “Do GANs actually learn the distribution? An em-
pirical study”. arXiv preprint arXiv:1706.08224 (2017) (cit. on pp. 8, 25).
[5] Sanjeev Arora et al. “Generalization and Equilibrium in Generative Adversarial
Nets (GANSs)”. arXiv preprint arXiv:1703.00573 (2017) (cit. on pp. 2, 8, 19, 24,
54).
[6] Thomas Béck. Fvolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University Press,
1996 (cit. on pp. 9-11).
[7] Nils Aall Barricelli. “Numerical Testing of Evolution Theories”. Acta Biotheoretica
16.1-2 (1962), pp. 69-98 (cit. on p. 11).
[8] Yoshua Bengio et al. “Learning Deep Architectures for Al”. Foundations and
Trends in Machine Learning 2.1 (2009), pp. 1-127 (cit. on pp. 1, 6).
[9] Hans-Georg Beyer and Hans-Paul Schwefel. “Evolution Strategies — A Compre-
hensive Introduction”. Natural Computing 1.1 (2002), pp. 3-52 (cit. on p. 42).
[10] Sean P Brydon and Inderjeet Singh. Web services message broker architecture. US
Patent 7,702,724. Apr. 2010 (cit. on p. 15).
[11] Kristina Chodorow. MongoDB: The Definitive Guide: Powerful and Scalable Data
Storage. " O’Reilly Media, Inc.", 2013 (cit. on p. 48).
[12] Jeffrey Dean et al. “Large scale distributed deep networks”. In: Advances in neural

information processing systems. 2012, pp. 1223-1231 (cit. on p. 5).

74

References 75

[13]
[14]

[15]

[18]

[19]

[20]

[21]

[22]

[26]

[27]

Abdullah Al-Dujaili et al. “RECKLESS: A Principled Approach to Black-Box
Min-Max Optimization” (2018) (cit. on p. 9).

Ian Fette. The WebSocket Protocol. RFC 6455. 2011. URL: https://tools.ietf.org/h
tml/rfc6455 (cit. on p. 15).

Dario Floreano, Peter Diirr, and Claudio Mattiussi. “Neuroevolution: From Ar-
chitectures to Learning”. Evolutionary Intelligence 1.1 (2008), pp. 47-62 (cit. on
p. b).

Martin Fowler. “Inversion of Control Containers and the Dependency Injection
Pattern” (2004) (cit. on p. 18).

Dennis Garcia et al. “Investigating Coevolutionary Archive Based Genetic Algo-
rithms on Cyber Defense Networks”. In: Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion. ACM. 2017, pp. 1455-1462 (cit. on
p. 10).

David E Goldberg and John H Holland. “Genetic Algorithms and Machine Learn-
ing”. Machine learning 3.2 (1988), pp. 95-99 (cit. on p. 2).

Tan Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural In-
formation Processing Systems. 2014, pp. 2672-2680 (cit. on pp. 1, 6-8, 19, 39, 45,
55, 61, 63, 68).

Andreas O. Griewank. “Generalized Descent for Global Optimization”. Journal
of Optimization Theory and Applications 34.1 (1981), pp. 11-39 (cit. on p. 10).

Nikolaus Hansen and Andreas Ostermeier. “Completely Derandomized Self-
Adaptation in Evolution Strategies”. Ewolutionary computation 9.2 (2001),
pp. 159-195 (cit. on p. 70).

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Unsupervised Learn-
ing”. In: The Elements of Statistical Learning. Springer, 2009, pp. 485-585 (cit. on
p. 6).

Simon S. Haykin. Neural networks and learning machines. Vol. 3. Pearson, Upper
Saddle River, NJ, USA, 2009 (cit. on pp. 4, 5).

Jeffrey W Herrmann. “A genetic algorithm for minimax optimization problems”.
In: CEC. Vol. 2. IEEE. 1999, pp. 1099-1103 (cit. on p. 12).

Martin Heusel et al. “GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium”. arXiv preprint arXiv:1706.08500 (2017) (cit. on
pp. 9, 33).

W. Daniel Hillis. “Co-evolving parasites improve simulated evolution as an opti-

mization procedure”. Physica D: Nonlinear Phenomena 42.1 (1990), pp. 228-234
(cit. on pp. 9, 11).

Geoffrey E Hinton. “A Practical Guide to Training Restricted Boltzmann Ma-
chines”. In: Neural Networks: Tricks of the Trade. Springer, 2012, pp. 599-619
(cit. on p. 7).

https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455

References 76

[28]

[29]

[30]

31]

33]

[34]

[35]

Quan Hoang et al. “Multi-Generator Generative Adversarial Nets”. arXiv preprint
arXiv:1708.02556 (2017) (cit. on pp. 12, 17, 19, 45).

Alex Huang et al. “Adversarial Deep Learning for Robust Detection of Binary
Encoded Malware”. arXiv preprint arXiv:1801.02950 (2018) (cit. on p. 8).

Gao Huang et al. An empirical study on evaluation metrics of generative adver-
sarial networks. 2018. URL: https://openreview.net/forum?id=Sy1f0e-R- (cit. on
p. 9).

Phil Husbands. “Distributed Coevolutionary Genetic Algorithms for Multi-
Criteria and Multi-Constraint Optimisation”. In: AISB Workshop on Evolutionary
Computing. Springer. 1994, pp. 150-165 (cit. on pp. 13, 31).

Andrew Ilyas et al. “The Robust Manifold Defense: Adversarial Training using
Generative Models”. arXiv preprint arXiv:1712.09196 (2017) (cit. on p. 1).

Daniel Jiwoong Im et al. “Generative Adversarial Parallelization”. arXiv preprint
arXiv:1612.04021 (2016) (cit. on p. 2).

Thomas Jansen and R. Paul Wiegand. “Sequential versus Parallel Cooperative
Coevolutionary (141) EAs”. In: Evolutionary Computation, 2003. CEC’03. The
2003 Congress on. Vol. 1. IEEE. 2003, pp. 30-37 (cit. on pp. 42, 43).

Mikkel T Jensen. “A new look at solving minimax problems with coevolution-
ary genetic algorithms”. In: Metaheuristics: Computer Decision-Making. Springer,
2003, pp. 369-384 (cit. on pp. 2, 11).

Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion”. arXiv preprint arXiv:1412.6980 (2014) (cit. on pp. 2, 45).

Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes”. arXiv
preprint arXiv:1812.6114 (2013) (cit. on p. 7).

Krzysztof Krawiec and Marcin Grzegorz Szubert. “Learning n-tuple networks for
Othello by coevolutionary gradient search”. In: Proceedings of the 13th Annual
Conference on Genetic and Fvolutionary Computation. ACM. 2011, pp. 355-362
(cit. on p. 2).

Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features from
tiny images” (2009) (cit. on pp. 21, 52).

Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST Handwritten Digit
Database”. ATE&T Labs [Online]. Available: hitp://yann.lecun.com/exdb/mnist 2
(2010) (cit. on pp. 21, 52, 59, 62).

Jerry Li et al. “Towards Understanding the Dynamics of Generative Adversarial

Networks”. arXiv preprint arXiv:1706.09884 (2017) (cit. on pp. 1, 8, 52-57).

Jason Liang, Elliot Meyerson, and Risto Miikkulainen. “Evolutionary Architecture
Search For Deep Multitask Networks”. arXiv preprint arXiv:1803.03745 (2018)
(cit. on p. 10).

https://openreview.net/forum?id=Sy1f0e-R-

References 7

[43]

Ziwei Liu et al. “Deep Learning Face Attributes in the Wild”. In: Proceedings of
International Conference on Computer Vision (ICCV). Dec. 2015 (cit. on pp. 21,
52, 63).

Robert C Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Pear-
son Education, 2009 (cit. on p. 18).

Risto Miikkulainen et al. “Evolving Deep Neural Networks”. arXiv preprint
arXiv:1703.00548 (2017) (cit. on pp. 3, 5).

Melanie Mitchell. “Coevolutionary Learning with Spatially Distributed Popula-
tions”. Computational Intelligence: Principles and Practice (2006) (cit. on pp. 2,
12, 14, 17, 31).

Mitchell A Potter and Kenneth A De Jong. “A cooperative coevolutionary ap-
proach to function optimization”. In: International Conference on Parallel Prob-
lem Solving from Nature. Springer. 1994, pp. 249-257 (cit. on p. 11).

Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised Representa-
tion Learning with Deep Convolutional Generative Adversarial Networks”. arXiv
preprint arXiv:1511.06434 (2015) (cit. on pp. 17, 21, 24, 45, 58, 63).

Sebastian Raschka. Python Machine Learning. Packt Publishing Ltd, 2015 (cit. on
pp. 26, 29).

Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly Media, Inc.,
2008 (cit. on p. 14).

Tim Salimans et al. “Evolution Strategies as a Scalable Alternative to Reinforce-
ment Learning”. arXiv preprint arXiv:1703.03864 (2017) (cit. on pp. 42, 44).

Tim Salimans et al. “Improved Techniques for Training GANs”. In: Advances in
Neural Information Processing Systems. 2016, pp. 2234-2242 (cit. on pp. 7, 9, 33).

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. “Defense-GAN: Pro-
tecting Classifiers Against Adversarial Attacks Using Generative Models”. arXiv
preprint arXiv:1805.06605 (2018) (cit. on p. 1).

Felipe Petroski Such et al. “Deep Neuroevolution: Genetic Algorithms are a Com-
petitive Alternative for Training Deep Neural Networks for Reinforcement Learn-
ing”. arXiv preprint arXiv:1712.06567 (2017) (cit. on pp. 3, 5, 6, 41, 44).

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
Vol. 1. 1. MIT press Cambridge, 1998 (cit. on p. 6).

Christian Szegedy et al. “Rethinking the Inception Architecture for Computer
Vision”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2016, pp. 2818-2826 (cit. on p. 33).

Gavin Taylor et al. “Training Neural Networks Without Gradients: A Scalable
ADMM Approach”. In: International Conference on Machine Learning. 2016,
pp. 27222731 (cit. on p. 5).

References 78

[58]

[59]

[60]

Vinod K Valsalam et al. “Constructing controllers for physical multilegged robots
using the ENSO neuroevolution approach”. Evolutionary Intelligence 5.1 (2012),
pp. 45-56 (cit. on p. 5).

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. “Generating Videos with
Scene Dynamics”. In: Advances In Neural Information Processing Systems. 2016,
pp. 613-621 (cit. on p. 8).

Darrell Whitley. “An Overview of Evolutionary Algorithms: Practical Issues and
Common Pitfalls”. Information and software technology 43.14 (2001), pp. 817-831
(cit. on p. 11).

Daan Wierstra et al. “Natural Evolution Strategies”. In: Ewvolutionary Compu-
tation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence).
IEEE Congress on. IEEE. 2008, pp. 3381-3387 (cit. on pp. 2, 42, 43).

Nathan Williams and Melanie Mitchell. “Investigating the success of spatial coevo-
lution”. In: Proceedings of the 7th annual conference on Genetic and evolutionary
computation. ACM. 2005, pp. 523-530 (cit. on pp. 12, 14).

David H Wolpert and William G Macready. “No Free Lunch Theorems for Opti-
mization”. IEEE Transactions on Evolutionary Computation 1.1 (1997), pp. 67—
82 (cit. on p. 11).

Jiajun Wu et al. “Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling”. In: Advances in Neural Information Processing
Systems. 2016, pp. 82-90 (cit. on p. 8).

Online sources

[65]

[66]

[67]

[68]

Soumith Chintala and Yann LeCun. A path to unsupervised learning through ad-
versarial networks. June 2016. URL: https://code.facebook.com/posts/1587249151
575490 (visited on 05/04/2018) (cit. on p. 8).

Torch Contributors. Distributed communication package - torch.distributed. May
2018. URL: https: / / pytorch . org / docs / master / distributed . html (visited on
05/04/2018) (cit. on p. 28).

Guido van Rossu and Python Contributors. multiprocessing — Process-based par-
allelism. Python Software Foundation. June 2018. URL: https://docs.python.org/3
/library /multiprocessing.html (visited on 06/21/2018) (cit. on p. 29).

Christina Voskoglou. What is the best programming language for Machine Learn-
ing? May 2017. URL: https://towardsdatascience.com /what-is-the-best-programm
ing-language-for-machine-learning-a745c156d6b7 (visited on 05/04/2018) (cit. on
p. 26).

https://code.facebook.com/posts/1587249151575490
https://code.facebook.com/posts/1587249151575490
https://pytorch.org/docs/master/distributed.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7
https://towardsdatascience.com/what-is-the-best-programming-language-for-machine-learning-a745c156d6b7

	Masterarbeit_Titelblatt_IEM_2018.pdf
	Final.pdf
	Masterarbeit_Titelblatt_IEM_2018.pdf
	Eidesstattliche Erklärung_deutsch.pdf
	MasterThesis.pdf
	Acknowledgments
	Abstract
	Introduction
	Motivation and Overview
	Methods
	Related work
	Contributions
	Thesis Outline

	Background
	Artificial Neural Networks
	Neuroevolution

	Generative Adversarial Networks
	Notation
	Advantages and Applications
	Disadvantages and Challenges

	Coevolutionary Algorithms
	Categories
	Relation to GANs

	Distributed Coevolutionary Systems
	Topology
	Communication Back-End

	Lipizzaner
	System Design
	Requirements
	Architecture
	Coevolutionary Learning for GANs

	Implementation
	Technology Stacks
	Distribution of Coevolutionary Systems
	Trainers
	Analysis

	Experiments
	Synthetic Data
	Motivation
	Setup
	Results

	Image Data
	Gradient-Free Coevolutionary Algorithms
	Gradient-Based Coevolutionary Algorithms

	Conclusions and Future Work
	Results
	Diversity
	Scalability
	Improved GAN Variants

	Conclusions
	Future Work

	Experiment Configuration
	Gradient-Free Trainers
	Lipizzaner

	References
	Literature
	Online sources

