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Overview

During my stay with Marc Feldman at the Department of Biology of Stanford Univer-
sity, I analyzed two interesting problems from population genetics theory. In particular,
I investigated dynamics that are governed by genes on two loci. The first problem con-
cerned the dependence of the invasion rate of a new mutant allele on the recombination
rate.

Previous results for deterministic two-locus two-alleles models with and without
migration showed that the invasion rate of a new mutant occuring at a locus linked to an
already existing polymorphism decreases with increasing recombination rate. However,
stochastic versions of the same models show that there can be instances where this
monotonic dependence does not hold. We investigated a population that is at a two-
locus two-allele polymorphism and faces invasion of a new (third) allele at one of the loci.
In particular, the invasion rate of the new (mutant) allele was computed and analysed.
To facilitate the derivations, we assume a symmetric viability model generalized to
multiple alleles.

In my second project we tried to resolve a long-standing claim for haploid selec-
tion models with recombination. In the evolutionary biology literature, it is generally
assumed that in deterministic haploid selection models, in the absence of variation-
generating mechanisms such as mutation, no polymorphic equilibria can be stable.
Thus the genetic variation gets lost. However, analytic results corroborating this claim
are scarce and almost always depend upon additional assumptions on the strength of
selection with respect to recombination. While we cannot yet prove the claim in general,
we establish a necessary condition for the existence of an isolated full polymorphism,



i.e., an equilibrium at which all alleles are present at both loci: The number of alleles
at each of the two loci must be the same.

In section 1, I present the results for the invasion analysis, while section 2 is con-
cerned with the two-locus haploid dynamics. The two sections are both in itself struc-
tured like draft manuscripts. This represents the current state of the research that I
started during my stay. The results obtained in section 1 hint on several problems that
will be investigated in the future. Work on section 2 is currently continued with new
input from Josef Hofbauer and Reinhard Biirger. Marc Feldman has been involved in
both projects.

1 Invasion of a mutant allele into a two-locus two-
allele polymorphism

Author: Martin Pontz and Marc Feldman

1.1 Introduction

There are two pairs of papers, one from the beginning of multilocus theory, the other
rather recent, which are concerned with the possibility of invasion of a single locus
polymorphism by a mutant allele. The first pair consists of the papers by Bodmer
and Felsenstein (1967) and Ewens(1967). The former analyze the deterministic two-
locus two-allele model in great detail. In one section they derive the conditions for
the increase of a new allele linked to a polymorphic locus. They find that the rate of
this increase is monotone decreasing with the increase of the recombination rate r. In
the same year, Ewens investigated the probability of fixation of a mutant at two loci
(Ewens 1967). There he applies basically a two-type branching process starting form
an equilibrium where one locus is fixed and the other polymorphic in two alleles. The
two types in the branching process correspond to the two haplotypes that are formed
by the allele at the polymorphic locus with the new allele. Since the equations that
yield the exact invasion probability with respect to the two types are transcendental
and have thus no closed form solution, he derived an approximation. The average of
the two approximations for the two types weighted by the frequency of the two types at
equilibrium serves as an approximation to the mean invasion probability. This function
gives insight into the mean invasion probability over multiple instances of mutations.
For most parameter combinations, this function is always decreasing with r, as in the
deterministic case. However, in this stochastic analysis, it becomes clear that in certain
parameter regions this function is increasing for small r» and decreasing for higher r. It
still holds in general that the invasion probability for complete linkage is higher than
for no linkage.

The second pair of papers yielded basically the same dichotomy between determinis-
tic and stochastic treatments of a two-locus two-allele model with migration. Akerman
and Biirger (2011) provided the deterministic treatment of a two-locus two-allele model
based on a continent-island migration scheme. They found that the optimal recombi-



nation rate for invasion is 0. This means the invasion rate is also declining with r. The
stochastic treatment was done by Aeschbacher and Biirger (2014). Similar to Ewens
they applied a two-type branching process and derived an approximate expression for
the invasion probability. The approximation was derived by the assumption of a slightly
supercritical branching process, which was made rigorous by Athreya (1993). Ewens’
approximation was done under basically the same assumption, but it was not yet called
the slightly supercritical branching process assumption. As Ewens, Aeschbacher and
Biirger (2014) found that for certain parameter values the optimal recombination rate
is not zero. In particular they showed that the mean invasion probability is increasing
for small r» and decreasing for higher r. Outside of the parameter regions where such
a behaviour is seen, the mean invasion probability is monotone decreasing with the
recombination rate.

Aeschbacher and Biirger provide both a condition for the existence of a non-zero
optimal recombination rate and an intuitive explanation based on this. They compute
a bound a* for the fitness of the invading allele, up to which the optimal recombination
rate is zero. Above a*, it is non-zero. As the mean invasion probability is composed
of the invasion probabilities of the two types, in general, in the cases of a non-zero
optimal recombination rate, one type is beneficial over the other. For the mutant allele
this defines a good and a bad background to appear on. Higher recombination rates
implies a higher chance for the mutant to recombine out of the initial type. This is
detrimental if the mutant starts on the good background but beneficial if it starts on
the bad background. The fitness of the mutant type can be seen to be proportional to
the time how long it can survive on its own, which implies it can survive longer on the
bad background and wait for the next recombination event, if the fitness is higher than
a*. If the mutant fitness is lower than a*, then it goes extinct on the bad background
before it can recombine out. An obvious question is if these phenomena are a general
property or specific for the two-locus two-allele case. The next generalisation is clearly a
system where one locus has two alleles and the other three alleles. Invasion of the third
allele into a two-locus two-allele subsystem is investigated. Whereas the single locus
polymorphism is unique, there can be up to seven two-locus two-allele polymorphisms
in general. By restricting ourselves to a symmetric fitness scheme, we can reduce this
number to three, where their coordinates are computed rather simply.

After introducing the model and determining the equilibria, the deterministic case
is investigated followed by the stochastic case.

1.2 Model setup

We want to investigate the invasion rate (deterministic case) and the invasion proba-
bility (stochastic case) and their dependence on the recombination rate. We consider
a two-locus system with alleles A;, Ay and As at locus A and B; and B, at locus
B. We are especially interested in the invasion of two-locus two-allele polymorphisms
by a third allele, A3 say. Such a polymorphism is a boundary equilibrium in the full
6—dimensional space.

To make the analysis simpler we assume a three parameter symmetric viability



scheme generalized to two and three alleles.

Double homozygotes are assigned a fitness of 1 — a, while double heterozygotes have
fitness 1. Individuals that are homozygous in the B-locus and heterozygous at the other
locus have fitness 1 —b, and those that are heterozygous at the A-locus and homozygous
at the B-locus have fitness 1 — ¢. Note that a, b and ¢ are all between 0 and 1.

The condensed 3 x 6 fitness scheme is below (since position effects are ignored):

AjAy | A1Ay | AgAy | AjAs | AsAz | A3As
BiBi|l—a|l—-b|1—a|1—-b|1—-b|1—a (1)
BBy | 1—¢ 1 1—c¢ 1 1 1—c¢
BsBy|1—a|l-b|1—a|1=-b|1-b|1—a
In the following, we display the full 6 x 6 fitness scheme and denote the resulting
6 x 6 matrix by W, where W;; =1 — a, etc.

A1B1 AlBg AgBl AQB2 AgBl A3B2
AB [ 1—a|l-c|1=b| 1 |1-b] 1

ABy [ 1—¢c|l—-a| 1 |1-b] 1 |1-0b
ABy | 1—b 1 l—a|l—-c|1-0 1 (2)
Ay By 1 1-b|1l—-c|1—-a 1 1-0b
AsB, | 1-b] 1 |1-b| 1 |1-all—¢c
A3B2 1 1-b 1 1-0 l—c|1l—a

As a consequence, we will be able to write the dynamical equations in matrix form, see
eq. (3).

We define x = {x1, 29, 23,24, 75,26} and D = {—Dy, Dy, Dy, —Ds, D3, —D3} as
the vectors of gamete frequencies (A1 By, A1 By, AsBy, AyBy, A3B1, A3B5) and linkage
disequilibria respectivly. For this situation we have three measures of LD where only
two are independent (D3 = D; — D). Then we can write

wx, = x;Wx + rD;, (3)

forv=1,...,6 and w = xWx, the mean fitness. The recombination rate is denoted by

0<r< %, where r = 0 means that the loci are fully linked and r = % corresponds to

free recombining loci. Fully linked loci are interpreted as sitting very closely together
on the chromosome, whereas free recombination happens when the loci are far apart
(eg. on different chromosomes). The D; are defined in the following way:

Dy =dy+dy, Dy=di+ds3, Dz=dy—ds (4)
with dl = T1Ty4 — T2X3, dg = T1Te — T2T5, dg — T4y — T3T¢- (5)

No direct biological meaning is known for the d;.

1.3 Deterministic analysis
1.3.1 Equilibria

For a simpler fitness scheme, Feldman, Lewontin, Franklin and Christiansen (1974)
showed existence of many equilibria and categorized them into three classes. However,
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the exact stability properties of the two-locus two-allele subsystem equilibria that we
are interested in, was not investigated.

However from Feldman, Lewontin, Franklin and Christiansen (1974) it is clear that
the central point C' with x; = & (Vi) is always an equilibrium.

The classical papers about two-locus two-allele models with this type of symmetric
viabilities, inform us that the three polymorphisms that are possible can be viewed as
boundary equilibria on the face with 5 = ¢ = 0. Let £, be the equilibrium satisfying

1

vy = 4 fori=1,2,3,4 and x5 = x¢ = 0. The two so-called highly complimentarity

equilibria with D := D; # 0 are denoted F, and E_. The coordinates of F, are
(+v, Fv, Fv,+0,0,0), where v = }L(lj: 1— bﬁ;ﬂ). E are admissible only if a+4r <
b+ c.

1.3.2 Stability

Bodmer and Felsenstein linearized the dynamics at the single locus polymorphism,
which resulted in a decomposition of the characteristic equations into two quadratics.
One determines the stability with respect to the alleles present at the equilibrium and
the other determines the stability with repect to the missing allele. From this they
derived a condition for the increase of the new gamete. In more modern terminology,
they used the external eigenvalues to derive this condition. External eigenvalues are
the eigenvalues that are transversal to the boundary at an boundary equilibrium. A
boundary equilibrium is saturated if the external eigenvalues are smaller than one. If a
boundary equilibrium is not saturated, a missing allele can invade into the population.
It thus suffices to investigate the local stability of the boundary equilibria by looking
at the Jacobian of the full system at this equilibrium.

While invasion of an boundary equilibrium is a local property that does not imply
anything about the full flow, it is, nonetheless, of interest how the conditions for invasion
of the boundary equilibria affect the stability of the central equilibrium C. It is always
admissible and the stability properties are computed in the following paragraph.

Equilibrium C: %; =2 (i =1, ..., 6). Let us start with determining the eigenvalues

of C:

o=

2B3—a—2b) 6—2a—b—2c 6 —2a—0b—6r
{0’6—a—2b—c’6—a—26—c’6—a—26—c}’ (6)
where the last two have multiplicity 2. The zero eigenvalue is due to the fact that the
state space, the simplex, is actually a five dimensional subspace in the 6 dimensional
space and the sixth eigenvalue has no relevance for stability with respect to the state
space.
C' is locally stable if the following inequalities are fulfilled:

c<a-+2b (7a)
b<a+c (7b)
bt c—
% <r (7¢)



Equilibrium E : (}1, i, %, i, 0, O) . In the (21, 29, x3, x4)-subspace E, has the fol-

lowing so-called internal eigenvalues:
22—a—-0b) 22—a—c) 2(2—a—2r)

{4—a—b—c’4—a—b—c’4—a—b—c}' (8)

Thus it is internally stable if all of the following inequalitites hold

c<a+bd (9a)
b<a+c (9b)
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The external eigenvalues on the other hand are

202-b)  22-b—2r)

1
{4—a—b—c’4—a—b—c}’ (10)

where clearly the first is the leading one. It is larger than one if
b<a+c. (11)

Then invasion by Ajs is possible.
At this point it is easy to see that £, can never be stable in the 6-dimensional space.

Equilibrium E. : (+v, Fv, Fv, £v, 0, 0). The eigenvalues of F, are the same as
for E_ because of symmetry. Thus we treat them together as F. .

The internal eigenvalues of E are 2=2=<£2" and the solutions of a quadratic equation.
The explicit one is always smaller than one if the equilibrium is admissible, i.e. r <
H%[“. The other two correspond to a phenomenom called ”Ewens gap” and is treated
in greater detail later.

The external eigenvalues are

2—-b 2—b—2r
2—a—2r'2—a—2r

{

2 (12)

where the first one is always greater than the second and thus the leading eigenvalue.
It is larger than one if
b—a <2r. (13)

Pattern of stability: Comparing the conditions (7), (9), (11) and (13) for stability
for the different equilibria lead to the following observations:

If E, is internally stable, then C' is stable. Indeed As can then always invade E|
and the w-limit of this orbit is probably C. As long as E, is internally stable, Ey are
not admissible.

fo<r< b*fT’“, then I, is internally unstable at least in one direction. However,
exactly then E. become admissible and internally stable in at least one direction.
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Invasion of A3 at E. requires b_Ta <r< WT_“. Thus b < a+ c is necessary for invasion.

This implies that also E, is invaded by A3 and that C' has at least one eigenvalue smaller
than one. If additionaly ¢ < a + b, then £, is still unstable, but C' may be stable if
HLG’“ <.

If Az can not invade E., it could still invade E,. However, if b > a + ¢, then it
cannot invade F, and C' is always unstable.

To sum this up, if 0 < r < HfT_“ and b < a+c, then invasion of A3 at F. depends on
the recombination rate. For 0 < r < b_T“ E, is not invaded, but E, is, while C' could be
stable. For 5% < r < ™<=¢ E, s invaded and so is E, (however not internally stable).
C could still be stable. It is never stable, if r < HCT’C”, which is certainly fulfilled before
By get lost (Mgt < be=a)

If £y is invaded by Ags, then always at £, too. However, this is irrelevant as long
as E, is internally unstable which is always true when E. exist. This comes from the
fact that in nature a internally unstable boundary equilibrium will never be observed

and thus it does not make sense to talk about invasion of such a point.

Dependence on r An important property of invasion is its dependence on r. The
invasion rate at £, does not depend on r; only one of the internal eigenvalues involves r
and it is monotone decreasing in 7. This means E; is internally stabilized by increased
r. The same holds for one of the eigenvalues of C'. The other eigenvalues of C are
independent of 7.

The leading external eigenvalue of E. is increasing with . However when r is too
high the equilibrium no longer exists. This means the invasion rate at E. is increasing
with decreasing distance to £, with which they merge at r = WT_“. This shows that
the invasion rate at E, is always smaller than at £,.

1.3.3 Lewontin-Kojima case: b =c¢

The stability analysis becomes simpler if we use the well known simplification b = c,
first analysed by Lewontin and Kojima (1960).
Conditions (7) for C' simplify to

0<a+b, (14a)

0 < a, (14b)
2b —

< (14¢)
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The conditions (9) and (11) for internal and external stability of £, simplify to

0<a, (15a)
2b —
< (15b)
4
and
0 < a. (16)



Condition (13) for Fy remains unchanged.
The only inequality that does not hold by definition of a and b (0 < a, b) for stability

of Cis
2b—a

r>— (17)
As before it is fulfilled if E, is internally stable, which requires in this case only
2b—a
> . 18
> (18)

Invasion of E, is always possible.
Internal stability of E. is also simpler in this case. The only inequality that is not
implied by admissibility is

(2b —a)(b—2r) > \/(a — b)2(2b — a)(2b — a — 4r). (19)

Admissibility of E. ensures positivity under the root and of the left hand side. Ewens
and follow up papers showed that there can be two cases for the range of r in which
this inequality holds. Either it holds for 0 < r < 21’4’“, or there is an interval in r that
yields a gap in stability of E,. Existence of the gap depends on the ratio between a

and b. Karlin and Feldman (1970) state that Ewens gap occurs if and only if

2<2+\/§. (20)

E is admissible, if
2b—a

<
" 4

(21)

holds.
The results can now be summed up in terms of ratios of a and b:

2b < a: (17), (18) and (21) imply that C is fully stable, E, internally stable but
never externally and Fy do not exist independently of r.

b<a<2b For0<r< 2= (17), (18), (19) and (13) imply that C is unstable, E,

is internally unstable, while F. are internally stable but get invaded by
As. For %T’“ <r< QEQT’“ only the stability of C' changes, but nothing else
(for the equilibria we study). For r > 222 the qualitative behaviour is the
same as in the (2b < a) case considered above.

a<b<2a For0<r< %2 (17), (18) and (19) imply that C' and E, are internally
unstable and FE. is internally stable, but F, cannot be invaded because
of condition (13). For b’T“ < r the behaviour is the same as in the second
case (b < a < 2b) discussed above, where the lower bound of zero for r is
replaced by (’_T“

2a < b: Here, the recombination rate threshold above which C' is stable, is smaller
than that where E. gets invaded. Also, only then can E. become unstable
for intermediate recombination rates (Ewens gap).
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We did not analyse how the occurence of Ewens gap affects the invasion of Az. The
reason is that it makes no sense biologically to study the invasion of an unstable equilib-
rium by a mutant haplotype, since the population is never directly at this state, except
if it initially starts there.

1.4 Stochastic analysis

Here, we present the results of the stochastic treatment of the invasion properties of a
mutant allele invading an equilibrium of the two-lous two-allele subsystem. This will
be done by calculating invasion probabilities for a two-type branching process, where
the two types are defined by the allele on the B-locus that forms the mutant haplotype

For a two-type branching process, we need the mean offspring matrix L, which is
also the 2 x 2 external block of the Jacobian matrix at a boundary equilibrium. This
external block contains the entries of the Jacobian g"’“ such that z; as well as x; are not
present at the boundary equilibrium. From this matrix the leading eigenvalue is the
external leading eigenvalue A, of the full Jacobian. There is a non-negative probability
of invasion if it is greater than 1. This is the same condition that was analysed in the
previous chapter.

To compute the approximate invasion probabilities by assuming a slightly super-
critical branching process, we need the left and right eigenvectors corresponding to A;.
The left eigenvector u is to one and the right eigenvector v such that » w;v; = 1. With
this we can compute B, where

B = Zul ZU] Lij)+ M1 —X\) Zukvk (22)

Type i has invasion probability m;. Athreya (1993) showed the following equation
for the slightly supercritical branching process:

—2n — 1)

3 (23)

The average invasion probability 7 is the average of the invasion probabilities for the
different types weighted by the frequency of the types at the equilibrium:

ﬁ:(jﬂ'l—F(l—(j)ﬂ'g (24)

q is the frequency of B; at equilibrium.
The following paragraphs show the computations for the boundary equilibria of
interest:



For equilibrium Eg:

L:___l___(%2—b—m 2r ) (250)

4—a—5b—rc 2r 2(2—[)—7")
11
u:(§,§) (25b)
v=(1,1) (25¢)
_42-0)(2—a—c)
b= (4—a—b—c)? (25d)

This, together with the fact that the frequencies of alleles By and B, are the same (%)
for this equilibrium, yields

(a—b+c)(d—a—b—c)

T pu— pu— p—t 2
TTmeEm 2202 —-a—c) (26)
which is independent of r as is the deterministic equivalent.
For equilibrium E.:
1 2—b—r r
L—m( r 2—b—r> (272)
11
(1 2 27h
u=(3,3) (27)
v=(1,1) (27¢)
(2—=0)(2—2a+0b—4r)
B = 27d
(2—a—2r)? (27d)

This together with the fact that the frequencies of alleles By and B, are the same (%)
for this equilibrium, yields

20@a—b+2r)(2—a—2r)
(2-0)(2—2a+b—4r)

T = Ty = Ty = (28)
The invasion probability is increasing with r as in the deterministic case.

The invasion probabilities for both types of boundary equilibria coincide exactly
when the equilibria coincide.

1.5 Discussion

We have conducted a thorough analysis in both the deterministic setup as well as
in a stochastic setup of the invasion rates and the invasion probabilities of a third
allele into the population, which is at one of the three admissible two-locus two-allele
boundary equilibria, respectively. For the deterministic analysis the classification of
the eigenvalues of the Jacobian at boundary equilibria into internal and external ones
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proved very helpful. The leading external eigenvalue is interpreted as the invasion rate
of the missing allele. If it is smaller than unity, then the mutant allele does not invade.
Some interesting patterns for the stability of the boundary equilibria emerge. Stability
with respect to the boundary of E, implies stability of C' and non-admissibility of E..
Internal stability of £, if the equlibria exist, implies internal instability of E,. Internal
and external stability of F. imply that both F, and C' are unstable. This means that
the stability of a single two-locus two-allele boundary equilibrium already implies the
stability or instability of the central equilibrium C'.

Due to the symmetry of the fitness scheme, admissibility and stability of certain two-
locus two-allele boundary equilibria is the same as for the equilibria on the other two
two-locus two-allele boundaries. This means, if A3 can invade the boundary equilibrium
where A; and A, are present, if it is initially missing, so can A; invade the boundary
equilibrium where Ay and Az are present, if it is initially missing.

For the stochastic analysis via a two-type branching process, the derivations were
facilitated by the observation that the external block of the Jacobian at an boundary
equilibrium is the same as the mean matrix as defined in multi-type branching processe
theory. The condition for non-extinction is exactly the same as for invasion in the
deterministic setting. The leading eigenvalue of the external block of the Jacobian
(i.e. the leading external eigenvalue) has to be larger than unity. The eigenvectors
corresponding to this eigenvalue that are needed to perform the approximation with
the sligthly supercritical branching process assumption are of simple forms, due to
the symmetries of the fitness scheme. The approximate expressions for the invasion
probabilities have the same dependences on r as the invasion rates in the deterministic
setting.

In general it was shown that the phenomena that occur in the invasion analysis of
the two-locus two-allele case do not generalize to a model with two alleles on one locus
and three on the other under a symmetric viability model. One point was that the
invasion rate of an allele into a single locus polymorphism is monotone decreasing with
the recombination rate. Here we have seen that it depends on the exact equilibrium
that we investigate and is either independent of r for the equilibrium £, or monotone
increasing for F. That is also a major difference that before only a unique boundary
equilibrium existed which missed the allele, whereas in the current analysis up to three
equilibria can exist, where the same allele is absent and could thus invade.

Another point in the previous analysis was that a stochastic analysis yielded a
different invasion pattern. In fact the invasion probability did not depend monotonically
on r for some parameter values. Here the stochastic analysis yields qualitatively the
same dependence on r as the deterministic analysis.

It is not clear if these phenomena do not generalize to higher numbers of alleles
because of the symmetric viability model or because of a more general effect. It could
be possible and should be investigated in a follow up analysis thatthe invasion rate, for
example, for the D = 0 equilibrium E, is also monotone decreasing in r, if no specific
fitness scheme is applied. If the invasion probability will then exhibit a non-zero optimal
recombination rate in a certain parameter region is also unclear.
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2 Two-locus multiallelic haploid selection

Authors: Martin Pontz, Marc Feldman and Josef Hofbauer

2.1 Introduction

A recent paper by Novak and Barton (2017) raises one of the main questions of popula-
tion genentics right in the title: ”When does frequency-independent selection maintain
genetic variation?” They note that, while the answer is generally assumed to be "no”
for constant selection acting on an idealized haploid population, basically only the cases
of no recombination and no selection have been solved and are able to corroborate this
claim. Well known results from perturbation theory, of course, expand these results to
small parameter values of the respective force. In fact they give a new, more standard,
proof for the case of weak selection. The other extreme, strong linkage (low recombi-
nation rate), was solved by Kirzhner and Lyubich (1997), where they also arrive at the
same conclusion for additive fitnesses and arbitrary linkage. These three results hold
for any number of loci and any number of alleles. They all incorporate convergence of
the solutions to equilibrium points, via the powerful method of identifying a Lyapunov
function.

Besides the general additive case and the trivial one-locus case, only the two-locus
two-allele case has recieved attention for intermediate values of recombination and se-
lection. Feldman (1971) was one of the first to rigorously analyze existence and stability
of polymorphic equilibria in a two-locus two-allele haploid system with a simple fitness
scheme. He showed that whenever a polymorphism exists, it is unique and unstable. A
general fitness scheme was considered by Rutschman (1994). He showed convergence of
the trajectories to equilibrium points in most fitness parameter regions. However, pa-
rameter combinations in which an internal equilibrium was possible, couldn’t be treated
in the same way. The final answer to the question of loss of genetic variation in the
two-locus two-allele case is the paper by Bank, Biirger and Hermisson (2012). They
showed that for the fitness parameter combinations not covered by Rutschman, an equi-
librium may exist, but it is always unstable. They also used the method of Lyapunov
functions to derive this result, which immediately implies that no chaotic or otherwise
complicated behaviors such as limit cycles can occur for the two-locus two-allele haploid
selection model.

We consider a well mixed haploid population with constant selection on two loci,
each with an arbitrary number of alleles. Our fitness scheme is general without any re-
striction on the epistatic interaction between alleles. For convinience, the dynamics are
stated in contiuous time. First, we state and prove that no internal equilibrium exists
if the numbers of alleles at the two loci are unequal. This is done by finding a system
of linear equations, which has to be solved in order to find an internal equilibrium. For
unequal numbers of alleles at the two loci, this system is overdetermined and thus, has
no solution by basic linear algebra.
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2.2 Model setup and main theorem

In the two locus haploid model considered here, we assume that at one locus there exist
alleles Ay, ..., A,,, while at the other locus the alleles are By, ..., B,. Let p;; and s;; be
the frequency and the fitness, respectively, of haplotype A;B; and define the matrix
S = (8ij)mxn. Following Nagylaki (1992) pp. 189-195 and Novak and Barton (2017),

dp;;

we can write the change in frequency over time, p;; = =32,

as

Pij = r(pigj — pij) + pij(sij — Z SijPij)s (29)

ij

where Zij sijpij is the mean fitness and p;, = Z;L:lpij and ¢; = >.I" p;; are the
marginal frequencies of the alleles. As always, the sum of all haplotype frequencies is
one. The quantities (p;p; — pi;) are the linkage disequilibria (LD).

We want to investigate existence and stability properties of the polymorphic equi-
libria. At equilibrium, the following equations hold:

0 =pij = 7(pig; — Pij) + Pij(si; — 5). (30)

These are mn quadratic equations in mn variables. We order the equations by the
subscripts of p and represent them as a matrix P, where the ij-th entry is the equation
for p;; in (30). As usual, the mean fitness is written as 5. For convienience, we use
allele frequencies p; and ¢; as helper variables that are linear combinations of the p;;.
Thus we have the following m + n + 2 additional linear equations:

pi—Y pi=0, Vi (31a)
j=1

G—Y py=0, Vj (31b)
=1

5— Z 5iipij = 0, (31c)
ij
11— Zpij =0. (31d)
ij
Throughout the following we assume that the following mn inequalities
0<py <1, Vi,j (32)
hold. The main result is

Theorem 1. Ifm # n, then (30) has either no solution for which (32) holds or infinitely
many. That is, there is no isolated equilibrium with all mn haplotypes present.
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2.3 Weaker version of Theorem 1
During the stay at Stanford a weaker version of Theorem 1 emerged:

Theorem 2. Let S be a full-rank matrix of size m X n and r be independent of any
Sij. If m # n, then (33) has no solution for which (32) holds. That is, there is no
equilibrium with all mn haplotypes present.

The stronger version with a different proof was found later with the help of Prof.
Hofbauer in Vienna. Let me first state the proof of Theorem 2:

In this proof we use a slightly different version of (30) to derive the results.

It is easy to see that adding a constant to the entries of the fitness matrix S’, doesn’t
alter (29). We aim to find properties of polymorphic equilibrium (0 < p;; < 1, Vi, j);
therefore we assume that one exists. The mean fitness at this equilibrium is 5 and we
can then substract 5 from the entries of S’ to get S, which rescales 5 at equilibrium to
0. Then (30) becomes

0 = pyj = rpiq; + pij(si5 — 1), (33)
because (31c¢) becomes

ij

To prove Theorem 2, we first need

Lemma 1. Define k; = $2=" and t; = % for1<i<mandcy == for1<i<m
ij
and 1 < j <n. Then

pi = kitip1, Vi (35)
pij = Cijkitip1j,  Vi,j (36)
at equilibrium.
Proof. From (33), we can write
—Tpiq1 = pil(sil - 7”) and  —rpiqi = p11(811 - 7‘)- (373)
So,
P_Paf—? o pi = kitip1, Vi, (37b)
b1 P11 511 — 7T
which proves (35).
Also,
—rpiq; = Dij(si; — 1) and  —1rpig; = prj(sy; — 7). (38a)
So,
! i 1 o
P kit; = By — & pij = cijkitipy, Vi, 7, (38b)
b P1j Cij
which proves (36). O
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The Lemma tells us that the relevant variables are p;; and p;;, where p;; occurs only
as the ratio I =¢; for i # 1.
Proof of Theorem 2. The i-th row sum of the matrix P at equilibrium is:

n

0= Zpij = Z(Tpipj + pij(si; — 1)) (39a)

j=1
=Tpi Z g —T Zpij + Z SijPij (39Db)
j=1 j=1 j=1
=7rp; —rp; + Z SijPij, by (31d) and (31a) (39¢)
j=1
0= Z SijPij (39d)
j=1
=
1 n—1
Pin == Z SijPij- (39)
m ]:1

This means that the n-th column can be written as a sum of the other columns.
The j-th column sum of P is:

0="> pij =Y (rpipj + pij(si — 1)) (40a)
i=1 i=1
=Tq Y Pi—TY Pt Y sy (40b)
i=1 i=1 i=1
=rq; —rq; + Z sijpij, by (31d) and (31b) (40c)
i=1
= D1y Z sijcijkiti, by (36), (40d)
i=1
which we write as
0= Z Sijcijkiti, by (32) (406)

i=1

Since the n-th column can be written as the sum of the others, as established by (39e),
(40e) holds for 1 < j <n —1.

Now, (40e) is a system of n — 1 linear equations in m — 1 variables ¢; (2 < i < m).
Since t; = 1, it is an inhomogenous system which we can write as

m

Zcijsijk‘iti = _Slj- (41)

=2
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For the following, it is more convenient to write (41) as

At = b, (42)
where A is the (n — 1) x (m — 1) matrix with entries A;; = ¢;;s;;k;, t and b are the
vectors (tg, ..., t,)? and (—siy, ..., —S1,), respectively.

Without loss of generality we assume m < n, which makes (40e),(41) an overdeter-
mined linear system.

For general s;; and r, the rank of the coefficient matrix A and of the augmented
matrix [A]b] is maximal. The maximal rank of a matrix is the minimum of the number
of its rows and columns, namely m — 1 for A and m for [A|b], since it has an additional
independent column. The Rouché-Capelli theorem states that there is a solution to a
linear system of equations if and only if the rank of these two matrices is equal. There-
fore, no solution exists for the ¢;, as long as the fitness parameters and recombination
rate are independent of each other. This implies in turn that no solution exists for (33)
with the additional relations (31d), (34), (31a) and (31b). O

2.4 Proof of Theorem 1

The stronger version, Theorem 1, follows from this

Lemma 2. Define the matriz S = <s]__§) ~and the normed vectors p = (p;); and
ij

r+5—8;;
q=1(gj); withj=1, ...,nandi=1, .., m.
Then (30) has a solution satisfying (32) if and only if there exist p > 0 and q > 0
normed to one and a number § such that the following equations and inequalities hold
for a positive r.

Sq=0 (43a)
p’S=0 (43b)
r+35—s;>0 Vi, j. (43c)
Proof. (=)
At equilibrium, the following identities follow from (30):
pij = % Vi, j (44a)

Di = Zpij = Zpij(sij - 5) =0 Vi (44b)
J J
q; = Zpij = Zpij(sij —35)=0 Vj (44c)

Plug (44a) into (44b) and (44c) to get:

) Sij — 8

=Y —2—— . =0 45
p P Zj:r—l—s—sijq] ( a)
. Sij — S
G =r¢ Y ————p;=0 (45Db)

- T+§—S7;j
7
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If (32) holds, then it suffices to solve the two system of equations:

Sij — S 5 )
——q;=0=95¢ V 46
zj:T—FS—Si]’% @ (462)
E Mpi:():pTg V. (46D)

- T+§—Sij
)

Note that (44a) together with (32) implies r +5 —s;; >0 Vi, j.

(=)

Assume that p € R} and q € R’} are normed to one and fulfill (46). Also, assume
we have 7 > 0 and 5 € R such that r + 5 — s;; > 0 holds V3, j.

The question is, is this then an equilibrium for the haploid selection model? This
means, we have to show that the equations of (31) are fulfilled.
Define p;; = rgf;ij, then (30) is true immediately.

Multiply the equations in (46) with ¢; or p; respectively. Applying the definition of
pi; yields

Z(sij — 3)pij =0, (47)

xT

where x is either ¢ or j.
Then we sum (30) over z, and get

7(02jqj + Ouibi — Zpij) + sz’j(sz’j —35)=0. (48)
Using (47) simplifies (48) to
7(02jqj + 0ziDi — Zpij) =0, (49)
which satisfies the claims if we take x =4 or x = 7. This in turn implies
> pi=1 (50)
tj
Summing (30) over all ¢ and 7, yields
7"(1 — pr) + Zpijs,-j — gzpij =0 (51&)
ij ij ij
= Zpijsij =3, (51b)
j

which finishes the proof.
[

With this characterization of the polymorphism at hand, we can prove Theorem 1.
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Proof of the Theorem. If S is such that there exists no vectors and values r and § such
that all conditions in (43) are fulfilled, then the first part of the theorem is true.
However the following argument shows that if there is a solution that satisfies (43),
then there are infinitely many of them provided m # n.
If we assume that p, q and 5 exist that fulfill (43) for any m < n, then rk(S) < m—1.
This implies because of the rank-nullity theorem that ker(S) > n — (m — 1) > 2. This
means that at least one additional vector ¢’ exists in the kernel of S. This solution vector

does not necessarily lie in the simplex, however, ; Jf:iq.,q,' defines a one dimensional
7%

manifold that lies in the simplex for 0 < € < € with ¢ > 0 sufficiently small and is a

solution to (46). O

2.5 Equal number of alleles at the two loci

The Lemma 2 not only gives the means to show the impossibility of isolated poly-
morphisms for m # n, but also a simplified problem, where the solution(s) give the
polymorphism(s) in the case of m = n. However it was not yet possible for me to show
that any such solution is unstable. A stable solution that would falsify the claim raised
in the introduction is also missing. Quite a large amount of time in Stanford was spent
on invastigating this problem. Four possible prove-strategies were identified, but none
yielded a answer.

The direct way of computing the eigenvalues of the Jacobian at any internal equi-
librium did not help, since they cannot be computed explicitely for large matrices. The
usual strategies of using only the trace or the determinant were also not helpful, since
the trace has a indefinit sign and the determinant is too complicated to compute for
larger matrices.

The more indirect way of using a index theorem of Hofbauer (1992) to infer the
stability of internal equilibria from the stability of boundary equilibria, does, unfortu-
nately, also not work. For the three- and three-alellel case for example, a maximum of
three vertices can be stable. The work by Bank, Biirger and Hermisson (2012) ensures
that in the two- and two-allele subsystems defined by the absence of one of the alleles
on each locus, an unstable equilibrium exists. These are boundary equilibria in the
full system. There are three of them, which can be saturated or not. If they all are
saturated, then the index theorem tells us that at least one internal equilibrium has to
exist. It could either be stable or have two positive eigenvalues. Numerical tests have
only found equilibria with two positive eigenvalue (unstable).

For the two remaining strategies there exists no recipe and depend thus on luck.
One would be to find a Lyapunov function that maximizes at equilibria. The usual
candidates for such systems do not work. The second option would be to apply a
coordinate transformation in which some derivation are simpler. However, no promising
transformation was found.

The problem in the form of Lemma 2 should give a possibility to learn something

about the number of equilibria. In fact det(S) = 0 is necessary for the existence of a

solution for (43). In particular, det(S) depends as a function on §. If det(S) = 0 for
more than one value of §, which all have corresponding positive p and q, then there are
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more than one internal equilibria. No such example is known until now.

2.6 Discussion

We have conducted a rather elementary mathematical analysis of the haploid two-
locus multiallele dynamics under constant selection. The model we use is the standard
continuous-time model for haploid selection with recombination.

Two similar theorems are proven that settle the case when the two loci have different
numbers of alleles. The proofs are different in the way how one derives the linear systems
which determine the polymorphism and are overdetermined for m # n. The theorem
that is proven first (Theorem 2), does not contain a statement about degenerate cases,
since the corresponding linear system does not give a direct way of proving it. Theorem
2 does therefore, not in every case, preclude the existence of an isolated polymorphism.
That is the reason why Theorem 1 is the stronger one.

For the proof of Theorem 1 a very useful and intuitive characterization of polymor-
phisms in terms of two linear homogeneous systems of equations is established (Lemma
2). Solvability of both systems in (43) is necessary and sufficient for the existence of
internal equilibria. If the number of alleles is unequal among the two loci, then one
of the systems is overdetermined and has in general no solution. However, in the de-
generate case, where a solution exists, we could show that there is a manifold of them.
This means, with more alleles at one of the locus than at the other, there is either no
internal equilibrium or infinitely many of them.

If the number of alleles is equal on both loci, there can be at least an isolated
equilibrium. We have examples for an unique and unstable polymorphism in the three
alleles case. Despite investing a large amount of time, both during the stay with Prof.
Feldman and afterwards, no thechnique was found that would enable me to prove
the instability of any internal equilibrium as is expected by a huge fraction of the
population genetics community. However, with the result presented now, it is clear that
genetic variation, if it is maintained in a two locus fashion through haploid selection
and recombination, only occurs with the same number (larger or equal to 3) of alleles
from both loci present. If it is known that only two alleles occur on one locus, then
genetic variation is always los regardless of the number of alleles on the other locus. In
the end only a single monomorphism is present.
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