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1. Timeline

The local research was conducted over a time frame of a little bit over three
months. Beginning on the 2nd of October 2018 we started with the on-site re-
search. It was ended on January 20th 2019.

The research was divided into several sections. Those milestones are as fol-
lowed:

• Literature Research

• Mathematical Derivation

• Implementation and Validation of the Mathematical Results

• Interpretation of the Findings

The first part could already be done before my actual arrival in the USA. After
my arrival at the Georgia State University Professor Yichuan Zhao discussed our
findings in the literature on multivariate survival analysis and Bayesian statistics.
We then decided which approaches seemed most promising and would have a
high impact on future results. After prioritizing the research tasks we then started
with the actual work. Exchanging and discussing ideas during weekly meetings
we then derived the mathematical results for the first approach. After running
simulations and analyzing the results we then started the second approach. The
task procedure was similar to the first approach. Due to the exceedingly high run
times of the simulations of the second research task the validation of that approach
could not be fully conducted until the end of the research stay at Georgia State
University. Instead simulations are continued to run and expected to be completed
at the beginning of the summer.

In total the complete research period is expected to last a full year where the
main tasks could be completed during the on-site research and the follow-ups are
done via Mail.

The results of the first research task where presented at the 14th ”Workshop on
Stochastic Models, Statistics and Their Applications” from March 6th to March
8th, 2019 in Dresden during a talk in a session. The results of the second research
task shall be presented to an appropriate audience at another conference in 2019.
Additionally, the results of the second approach are being prepared for publication
with a quality journal.
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2. Introduction

The task of statisticians is to answer research questions using collected data. It
includes everything from setting up a study design, over calculating test statistics,
to drawing inference. However, even without a specific research question new
methods to test and analyze data sets can be developed to help improve future
research. As the application range of statistics is broad and different applications
consider different data structures we will first introduce the data structure and
methodology on which we will focus during our research.

The statistical description and quantification of the length of time before an
event is dubbed survival or time-to-event analysis. The times being analyzed are
defined to be the time until the occurrence of an event of interest, such as death,
recovery, or transition above or below a pre-specified threshold. Those times,
often referred to as failure times, are described by the survival function S(t), t ≥ 0,
which is the probability to be event free up to time point t. Alternatively, they can
be expressed through the hazard function, which is defined in the univariate case
as

h(t) = lim
∆t↘0

P(t ≤ X < t +∆t|X ≥ t)
∆t

, t ≥ 0

where X denotes the failure or survival time. Basically one can consider X to be a
non-negative random variable.

Typically one is not capable of observing all event times during a study due
to drop out or end of the study. So, additionally to the failure time, researchers
consider a non-negative random variable C, the so called censoring time, which
is typically assumed to be non-informative. One then observes neither X nor C
but yet two other random variables, namely, T := min{X ,C} and δ := 1{X ≤ T}.
In the case of multivariate survival times the minimum is considered component-
wise.

In a multivariate setting things are slightly more complex. Instead of an uni-
variate survival time a vector of several survival times is considered. Most com-
monly the vector of survival times contains the event times within a single subject.
In medicine this could be a patient where the time to blindness in each eye is mea-
sured or the time to failure in the right and the left lung. Both would be examples
for the special multivariate case with two dimensions, namely the bivariate case.
In engineering it could be time until breakdown of several mechanical components
of a car.

Depending on the structure and what one is interested in multiple different
aspects of survival analysis can be analyzed. If one has competing risks, i.e. an

4



event occurs due to one of multiple causes, only in one of the components will an
event occurred while in the others no event can occur after that first event. Or one
might not be interested in the exact event time in each component but instead only
in the very first event per subject. We are interested in the multivariate survival
function where each component or event time per subject is of interest. For a
random, non-negative, d-dimensional vector of survival times X = (X1, . . . ,Xd)

T

we will study the survival function defined as S(x1, . . . ,xd) := P(X1≥ x1, . . . ,Xd ≥
xd) with (x1, . . . ,xd)

T ∈ Rd
+.

Methods to estimate the multivariate survival function of X based on the in-
formation contained in T and δ have been proposed, yet there currently exists
no estimator as well established as the estimators in the univariate case, like the
Kaplan-Meier estimator, see Kaplan and Meier (1958), or the Nelson-Aalen esti-
mator, as first mentioned in Nelson (1969). The extensive dealing with the prob-
lematic in multivariate survival analysis has not such a long history, thus it is of
interest to keep developing new test statistics that satisfy certain criteria. Those
range from robustness, i.e. obtaining a good power no matter the true underlying
hazard rate under the alternative, to good small sample size behavior, i.e. obtain-
ing the nominal error rates fast. A pharmaceutical study using a method with
bad small sample size properties is likely to get rejected by the ethical board, as
it would require higher sample sizes as other methods. Medical or pharmaceuti-
cal areas are considered to be primary application fields of survival analysis, and
there this problematic arises often and needs to be dealt with appropriately. The
analysis of multivariate survival times is in the time of massive data ascertainment
of high importance due to its manifold application areas. Next to the medical and
pharmaceutical research area it can be applied to various others as well. Literature
on those fields is plentiful, for example Perrigot et al. (2004), Czado (2002), and
Scherm and Ojiambo (2004), to name only a few. A general overview over multi-
variate survival analysis can be found in Clark et al. (2003a), Clark et al. (2003b),
Clark et al. (2003c), and Clark et al. (2003d).

Data sets with small sample sizes are often considered problematic, as test
methods will often only start delivering reliable results with a high enough number
of samples. Especially in survival analysis this can be problematic as often the
data will be partly censored and thus decrease the amount of information that is
available for the test statistics. One way to conquer this problematic is to assume
a prior of the data which, if chosen correctly, can help improve the steadiness of
the test method.

This research area is known as Bayesian statistic. The main idea behind it is to
use prior beliefs to obtain more accurate results. Bayesian statistics are, in contrast
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to other probability interpretations, subjective. As it is an easy method to include
prior information into a new study and can be used for any data, irrespective of its
structure, it has become quite popular in several applied research areas. Especially
in the era of high-performance computers and new algorithms as for example the
Markov Chain Monte Carlo, the Bayesian Statistic has found a home in Data
Science, compare Gelman et al. (2013).

It’s origin is based on the Bayes’ theorem as it was first mentioned in some
notes by M. Bayes that were published in Bayes and Price (1763) two years after
the death of the author. Bayes’ theorem considers that given two events A and
B the conditional probability of A given that event B occurred can be calculated
using the individual probabilities of A and B as well as the conditional probability
of B given A. More explicitly, the theorem states that

P(A|B) = P(B|A) ·P(A)
P(B)

.

Now P(A) can be interpreted as the prior probability which basically represents
ones prior beliefs and P(B) is then the standardizing factor, as later explained.

Unlike the frequentist interpretation of probability the Bayesian statistic often
requires a parametric modeling of the data as otherwise the calculations would
become too complex and could not be correctly interpreted anymore. A para-
metric model makes it also easier to quantify the conditional probability P(B|A).
Based on a parametric model with a single parameter or a vector of parame-
ters, the Bayesian statistic assigns each parameter a probability. This probabil-
ity can, loosely spoken, be interpreted as the subjective beliefs on the correct-
ness of the parameter. A parameter with a higher probability is more likely to
be the true parameter than one with a low probability. As the probability P(B)
is equal for all prior beliefs, yet hard to calculate, it is sufficient to simply calcu-
late P(B|A) ·P(A) to obtain the best estimator. More precisely, it holds true that
P(A|B)αP(B|A) ·P(A). Even though P(B) is hard to calculate beforehand, one can
obtain it by the knowledge that the sum or integral over all probabilities P(A|B)
must be equal to one. The probability P(A|B) is often referred to as the posterior
while P(A) is referred to as the a priori.

A general overview on Bayesian Theory can be found in Bernardo and Smith
(1994). While the prior can be applied in different forms to the data, we will
apply the prior to some functional θ , as we will explain more detailed in the next
section. The validity of the posterior results to use them for inference when using
Bayesian prior on the functional was for example analyzed in Lazar (2003).
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As mentioned above Bayesian statistic is only one way to interpret probabili-
ties. The two other main interpretations are the frequentistic or empirical and the
logical. A brief discussion over all three can be found in von Weizsäcker (1992).

The current lack of appropriate methods to analyze all data sets from the var-
ious areas, the constantly growing expectations that statisticians obtain better re-
sults and draw more accurate inference with high-dimensional data from under-
sized data set, require constant research on the field of survival analysis.

One won’t be able to find a method that is appropriate for all realized data
sets no matter the origin. Thus our focus was only concentrated on the small
subsection of application fields in medical and pharmaceutical studies.

In this report we will explain in detail our ideas for new test methods, their
mathematical validations, their simulation performances and an overall assess-
ment of the approaches.

While introducing the first idea we will additionally explain the general proce-
dure steps that are being followed while constructing new test methods. Without
stating them again we will follow those steps during the second approach as well.

3. Bayesian Likelihood Application on Multivariate Survival Times under
Constraints

The first approach of the research conducted at Georgia State University was
based on Parkinson (2019). In that paper a method to conduct hypothesis test-
ing on multivariate survival times was introduced. Using multiple constraints the
introduced method showed good performances in multiple simulations settings.
Those, however, came at the cost of a high required sample size making the in-
troduced test statistic unfavorable for real data sets with only a small sample size.
Yet the proposed idea should be made available for those cases which often occur
in medicine. To this end we introduced a Bayesian statistic to the original method
in the hopes of an improved sample size behavior.

3.1. Introduction
Many tests analyzing the survival experience of one or more populations, re-

quire that one chooses a weight function. The weight functions assign each time
point a non-negative value that basically expresses how critical that time point is
for the analysis. If for example one tests two medical procedures to see which has
the better outcome and one suspects bigger differences in the early time points one
assigns higher weights to them as to the later time points. It is possible to select an
optimal weight function if the true shape of the hazard ratio under the alternative
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hypothesis is known. However, in general precisely this is unknown and, thus,
one is not capable of getting the best result with regard to a specific data set. In
certain situations the wrong choice of weight function leads to an immense power
reduction. Illustrations of this were shown with various data sets, see Kosorok and
Lin (1999), Klein and Moeschberger (1997). Different methods in the univariate
case were proposed to conquer the problem, see e.g., Brendel et al. (2014) and
Bathke et al. (2009).

Most commonly used for multivariate survival data is the Cox model. Also,
the accelerated failure model is often applied. Yet, both, just like many other of the
multivariate models, have limitations. Some assume a parametric model, like the
Cox model which assumes proportional hazards. Other methods lack the ability to
correctly take the dependency structure of the underlying data into account. Many
methods that are primary based on univariate or component wise test statistics
conquer this problem by integrating the covariance matrix into the multivariate
test statistic, as done, for example, by Wei and Lachin (1984).

The goal of the new method obviously is to conquer the problems that arise
when setting up models and tests for multivariate survival times.

The approach of Bathke et al. (2009) was adapted to the multivariate setting by
Parkinson (2019). A multivariate test statistic was developed based on conditional
hazards. Applying constraints onto the conditional hazards the test was effective
against several different kinds of alternatives. Now, modifying the test statistic
to be based on a parametric model, instead of the non-parametric model, we used
Bayesian priors to adapt that approach to obtain better small sample size behavior.

3.2. Mathematical Definitions and Theory
Due to the fact that the mathematical background of the one-sample and the

two-sample case is quite similar, we will only focus on the one-sample case when
introducing the notations and the mathematical theory. Further, similar to Parkin-
son (2019), we will only consider the bivariate case, even though the method could
easily be extended to the true multivariate case.

Let X1, . . . ,Xn be independent, identically distributed d-dimensional observa-
tions with Xi := (X1i,X2i)

T , distribution function F0, and marginal distribution
functions F01 and F02. Further we denote the corresponding cumulative hazard
function by Λ0 and the marginal cumulative hazard functions by Λ01 and Λ02. As
we will allow for right censoring we only observe

Tji = min{X ji,C ji} and δ ji = 1{X ji ≤C ji} , i = 1, . . . ,n, j = 1,2, (1)
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with Ci = (C1i,C2i)
T the censoring times. For the censoring times we will assume

them to be as well independent, identically distributed with distribution function
G0 and independent of the Xi’s.

Following an approach by Dabrowska (1988) a joint bivariate survival function
S(x,y) = P(X ≥ x,Y ≥ y) and thus conditional hazards can be defined. We denote
those hazards by

λ
10
11 (t)dt = P(t ≤ X1 ≤ t +dt|X1 ≥ t,X2 > t) ,

λ
01
11 (t)dt = P(t ≤ X2 ≤ t +dt|X1 > t,X2 ≥ t) ,

λ
10
10 (t)dt = P(t ≤ X1 ≤ t +dt|X1 ≥ t,X2 < t) ,

λ
01
01 (t)dt = P(t ≤ X2 ≤ t +dt|X1 < t,X2 ≥ t) .

The empirical likelihood for n observations is the product V =
n∏

i=1
Vi with

Vi =
∏

t

[
(1−λ

10
11 (t)dt)1{T1i>t}1{T2i>t} · (λ 10

11 (t)dt)1{T1i=t}1{T2i>t}δ1i

·(1−λ
01
11 (t)dt)1{T1i>t}1{T2i>t} · (λ 01

11 (t)dt)1{T1i>t}1{T2i=t}δ2i

·(1−λ
10
10 (t)dt)1{T1i>t}1{T2i<t}δ2i · (λ 10

10 (t)dt)1{T1i=t}1{T2i<t}δ2iδ1i

·(1−λ
01
01 (t)dt)1{T1i<t}1{T2i>t}δ1i · (λ 01

01 (t)dt)1{T1i<t}1{T2i=t}δ2iδ1i
]
.

Let t jl, j = 1,2, be the ordered distinct time points of jumps in the j-th com-
ponent. For simplicity in notation we will denote the hazards at time point t jl by
al := λ 10

11 (t1l)dt, bl := λ 01
11 (t2l)dt, cl := λ 10

10 (t1l)dt, and dl := λ 01
01 (t2l)dt. Then the

empirical log-likelihood function, denoted by EL in the following, is given by∑
t1l

[
log(1−al)

∑
i

(1{T1i > t1l}1{T2i > t1l})+ log(al)
∑

i

(1{T1i = t1l}1{T2i > t1l}δ1i)
]

+
∑
t2l

[
log(1−bl)

∑
i

(1{T1i > t2l}1{T2i > t2l})+ log(bl)
∑

i

(1{T1i > t2l}1{T2i = t2l}δ2i)
]

(2)

+
∑
t1l

[
log(1− cl)

∑
i

(1{T1i > t1l}1{T2i < t1l}δ2i)+ log(cl)
∑

i

(1{T1i = t1l}1{T2i < t1l}δ1iδ2i)
]

+
∑
t2l

[
log(1−dl)

∑
i

(1{T1i < t2l}1{T2i > t2l}δ1i)+ log(dl)
∑

i

(1{T1i < t2l}1{T2i = t2l}δ1iδ2i)
]

where the sums over t jl are only taken over those time points where al , respec-
tively bl , cl , and dl are truly greater than zero, and excluding the last time point,
as there the hazards could be one.
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Unlike Parkinson (2019) we now have to focus on the parametric case, which
depicts a limitation to the original method as this was non-parametric. Next to the
general limitations one has to deal with, we additionally encountered the problem-
atic that no direct formula for the maximum likelihood estimator could be derived
but instead intensive numerical optimization procedures are required. We later
used pre-implemented functions in R to obtain the values of the parameter(s) that
maximized the function EL.

Assuming that the underlying distribution function is defined through a single
parameter or a vector of parameters, denoted by θ , the true conditional hazards are
functions dependent on the parameter(s) and the time point at which the functions
are evaluated, i.e. al = λ 10

11 (t1l,θ)dt, . . ., al = λ 01
01 (t2l,θ)dt.

Now, maximizing equation (2) would result in the previous results as pro-
vided in Parkinson (2019). We however want to include some prior information
into the test statistic. To do this we need to assign each vector of parameters a
prior likelihood. The prior likelihood of a parameter vector θ will be denoted by
π(θ). Instead of only considering the empirical log-likelihood function as given
in equation (2) we will maximize the following function

ELorig(θ) ·π(θ),

where ELorig(θ) is the empirical likelihood function with the conditional hazards
based on the parameter(s) θ plugged in. Alternatively, we can maximize the log-
arithm of the upper function, namely

EL(θ)+ log(π(θ)) (3)

with EL(θ) the empirical log-likelihood function, again with the conditional haz-
ards based on the parameter(s) θ plugged in and log(π(θ)) the logarithm of the
prior likelihood of θ .

The conditional hazards evaluated at a specific time point t are determined
through the optimal parameter(s) θ which are simply the parameter(s) that max-
imizes equation (3). We will denote those optimal parameter(s), i.e. those maxi-
mizing equation 3 by θ ∗ and the optimal conditional hazards a∗l , b∗l , c∗l , and d∗l .

This gives us the first part of the approach. For the second part we now need
to introduce some more definitions before we can get to the actual results.

As we want to impose constraints onto the empirical log-likelihood function
and for each added constraint the degrees of freedom of the limiting distribution
increases, we want to combine the conditional hazards component wise to limit the
number of constraints. Through the fact that for each extra constraint the number
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of degrees of freedom increases by one, and the higher the number of degrees
of freedom the higher the required sample size it conflicts with our interest of
reducing the required sample size. It is thus critical to impose the constraints
correctly.

To be able to do so we need to define the following two hazards

v1l = P(T2 > t1l|T1 ≥ t1l) ·al +P(T2 < t1l|T1 ≥ t1l) · cl.

and
v2l = P(T1 > t2l|T2 ≥ t2l) ·bl +P(T1 < t2l|T2 ≥ t2l) ·dl.

The constraints that are then imposed on the conditional hazards are given in the
form of ∑

l

g jr(t jl) log(1− v jl) = µ jr (4)

for the components j = 1,2 and the r-th constraint function g jr,r = 1, . . . ,k. The
constraint functions must all be non-negative and predictable with respect to a
filtration Ft = σ{T1i1{T1i ≤ t};δ1i1{T1i ≤ t};T2i1{T2i ≤ t};δ2i1{T2i ≤ t}; i =
1, . . . ,n}, which is identical to the one provided in Parkinson (2019).

The empirical log-likelihood function under constraint, denoted by GC, is then
given through

EL(λ )+
2∑

j=1

k∑
r=1

nλ jr

[
µ jr−

∑
i

g jr(t ji) log(1− v ji)

]
,

where EL(λ ) denotes the log-likelihood function, as given in (2) with the mod-
ified hazards al(λ ), . . . ,dl(λ ). In this setting λ is the Lagrange multiplier and
al(λ ), . . . ,dl(λ ) are the parametric, conditional hazards that solve the constraint
function as given in equation (4). Again the last sum ranges only over the distinct
time points excluding the last.

Unlike in the first part we now do not include the prior into the function. As we
want the value of the function parameters that maximizes GC, i.e. solve the con-
straints, we do not want prior beliefs included as they could, if incorrect, redirect
us from the optimal parameters, i.e. those parameters that solve the constraints as
given in equation (4).

Unfortunately, as in the first part, we yet again can not provide a direct formula
for the optimal parameter(s) θ or the conditional hazards. Instead we have to use
numerical computations yet again.
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Let us consider ϑ := (ϑ11, . . . ,ϑ1k,ϑ21, . . . ,ϑ2k)
T a (2k)-dimensional param-

eter defined via the components’ cumulative hazard functions Λ01 and Λ02,

ϑ jr =

∫
g jr(t) log(1−dΛ0 j(t)) , r = 1, . . . ,k, j = 1,2,

and a hypothesis testing problem

H0 : ϑ jr = µ jr ∀ j = 1, . . . ,d,r = 1, . . . ,k vs. HA : ϑ jr 6= µ jr for some j and r, (5)

where g jr(t) are some non-negative functions, ϑ j := (ϑ j1, . . . ,ϑ jk)
T and µ j =

(µ j1, . . . ,µ jk)
T is a vector of constants.

Let the test statistic in terms of hazards be given by

W =−2{maxGC−maxEL(θ)} , (6)

where EL(θ) is empirical log-likelihood evaluated as given in (2). Both empirical
log-likelihood functions will be evaluated at the maximum likelihood estimators
as explained previously.

Theorem 3.1. Suppose that the null hypothesis H0, as defined in equation (5),
holds for non-negative, random functions g jr(t) that are predictable with respect
to the filtration Ft = σ{T1i1{T1i ≤ t};δ1i1{T1i ≤ t};T2i1{T2i ≤ t};δ2i1{T2i ≤
t}; i = 1, . . . ,n}. Then, under some further regularity conditions as stated in
Parkinson (2019), the test statistic W has asymptotically a chi-squared distribu-
tion with 2k degrees of freedom, where k is the number of constraints per dimen-
sion.

For the interpretation of the constraints, and thus the null hypothesis, con-
sult Section 4 ’Applications’ of Parkinson (2019). Examples of random but pre-
dictable constraint functions are provided in detail as well there.

3.3. Implementation and Simulations
Next to mathematical proofs simulation results are provided in statistical find-

ings. This is due to the fact that most statistical results hold only asymptotically,
i.e. for the sample size n converging to infinity. Now, obviously in real life the
sample size is a pre-specified number or, if not, most certainly not converging to
infinity. It is therefore standard to provide simulations, based on, preferred, real-
istic settings, for smaller sample size to show the accuracy of the method, even if
one of the assumptions is obviously not fulfilled.
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Carefully assessing the proofs provided in Parkinson (2019) we analyzed the
likeliness that the proof of the new approach could be conducted in a similar man-
ner. The assumptions needed in the original proof are still fulfilled in the new
setting which is why it seems reasonable that the proof of the new method works
as well.

Now, before writing down the proof in a detailed manner we started to conduct
several simulations. All simulations were conducted using R (R version 3.5.2, R
Core Team, 2018). To be able to compare the Bayesian approach with the original
approach we followed the simulations settings as provided in Parkinson (2019).

For both components three constraints are being applied. The constraints are
given by the deterministic functions

g1(t) = exp{−t}, g2(t) = 0.5t1{t ≤ 1}, g3(t) = 1{0.5 < t < 1.5},

as already used in the simulations of Parkinson (2019). We used the following
distributions to generate the bivariate random variables:

X1 ∼ exp{0.9}, X2 ∼ exp{0.6}, C1 ∼ exp{0.5}, C2 ∼ exp{0.3}.

The data that was then actually observed was then created as explained in Sec-
tion 2. As we started off with the simplest setting model we assumed that the two
components were independent. Censoring accumulated to roughly one third in
each of the components and overall 42% of the observed data T1, . . . ,Tn could be
observed completely, i.e. were uncensored in both components.

As for the priors we considered in total six different prior functions. For all
six the likelihood of the prior was assumed to be normally distributed, i.e. π(θ)∼
N(·, ·). Three of them had the true value of θ as expectation, while the other
three had incorrect values as expectation. For each of the three we had different
variances ranging from 0.01, 0.1 to 0.5.

The parametric model we considered for our test statistic is based on four
conditional hazards, such that we need to estimate a four-dimensional vector of
parameter(s). In the above setting, due to the independence between the compo-
nents, the true parameter vector was given by θ0 = (0.9,0.9,0.6,0.6)T .

Setting the sample size to 200 we simulated each of the six choices of prior
beliefs 500 times. A resulting Q-Q plot is provided in Figure 1. The plot is a
scatter plot of the simulated quantiles and the theoretical quantiles. If the derived
asymptotic distribution of the test statistic is correct the plotted points run along
the red line. The lower, green, horizontal line corresponds to the 90% quantile
of the theoretical quantiles and the upper, blue, horizontal line corresponds to the
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Figure 1: Q-Q plot of the empirical quantiles vs. X 2
6 percentiles for sample size 200 in the

one sample case, corresponding to the theoretical result in Theorem 3.1. The prior was normal
distributed with expectation θ0, variance 0.1, and covariances of zero between all components.

95% quantile. As it can be seen the simulated quantiles follow the theoretical
quantiles roughly.

Looking at Figure 2 which contains the corresponding simulated results of the
original method we can however tell that our simulations were not too great. The
quantiles break off with the new method already before the 90% quantile while
with the original method it did not break off until roughly the 97.5% quantile.

Similar results could unfortunately be observed with the other settings for the
distribution of the prior likelihood. This left us puzzled on how this could be as
the application of the a Bayesian prior is well known for and very effective in
decreasing the required sample size or, as in our case, obtaining more accurate
results with the same sample size.

To figure out where the problem arose from we applied a non-informative or,
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Figure 2: Q-Q plot of the empirical quantiles vs. X 2
6 percentiles for sample size 200 in the one

sample case based on the original method and 10000 simulation runs.

also called, flat prior to the empirical log-likelihood function. This meant that we
ran simulations on the parametric model without the influence of prior beliefs.

We observed similar results as in the case with prior knowledge. However
a slight drop in performance could be observed anyhow. This lead to the con-
clusion that the application of a Bayesian prior to the approach had a positive
impact. The loss of performance was assumed to come from the change from
the non-parametric to the parametric model. Simulating higher sample sizes the
performance of the new test improved slowly but gradually. Additionally, we an-
alyzed the simulation results of the smaller sample sizes step by step to figure out
what exactly caused the parametric model to fail.

3.4. Discussion
Even though it seemed reasonable for the approach to work, the simulations

proved us otherwise. Analyzing the results more detailed we noticed that the bad
simulation behavior was not a result of the application of a prior to the data but

15



emerged from the fact that we switched from a non-parametric to a parametric
model. It is well known that the parametric model is less flexible and in cases
where the model structure is complex this can lead to challenges when estimating
the model parameters. This sometimes leads to an increased required sample size
as it seems to be the case in our setting.

Working with conditional hazards at different time points they can be esti-
mated well for those time points where the situation we are conditioning on is
likely. Looking at cl , the hazard for the first component conditional on the fact
that an event has already occurred in the second component. Now for small time
points it is unlikely that an event will have already occurred in the second com-
ponent. This led to an underestimation of the true value for small time points and
a slight overestimation for larger time points. In the non-parametric model this
wasn’t much of a problem as there cl could be estimated for every time point in-
dividually. In the parametric model though the estimators for c1,c2, . . . all depend
on each other through the common parameter. This led, in the case of cl , to a
decreased estimator of the true parameter for that conditional hazard. Similar for
dl while al and bl both had an inflated estimator. The sample size that would be
needed to get fitting estimators would thus be significantly higher than the one
needed in the original method. Small simulations showed that a sample size of
at least n = m = 1000 would be necessary to obtain decent results. Applying
the priors onto the parametric model helped to keep this problem constrained but
couldn’t get the performance to the level of the non-parametric model.

Although the method sounded promising it turned out to be a dead end. Fur-
ther ideas of improving the original method in several aspects were thus rejected
as they all would have required the usage of the parametric model, which clearly
was the reason the approach failed to provide better simulation results than the
original method as given in Parkinson (2019).

4. Bayesian Likelihood Application on Empirical Likelihood for the Bivari-
ate Survival Times

After the non-satisfying results of our first idea, we proceeded with a different
idea. To do so we consulted the paper Huang and Zhao (2017). In that paper a
method to conduct hypothesis testing on bivariate survival time was introduced.
After a first analysis of two already existing approaches Huang and Zhao (2017)
adapted the two to the effect that empirical likelihood could be conducted to ob-
tain confidence intervals. The approach via the empirical likelihood proved to be
more reliable than the original approach in the reported simulations. Our goal
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was yet again to obtain even better results by applying a Bayesian prior to the
empirical likelihood ratio statistic. Not only were we hoping for an improvement
in the sample size but also for an increased expected coverage probability of the
confidence intervals while their average length should not increase.

4.1. Introduction
Bivariate survival data is commonly analyzed and new estimation and test

methods for it are developed constantly. For univariate censoring, Lin and Ying
(1993) and Wang and Wells (1997) both have developed path-dependent non-
parametric estimators of the survival function. Dabrowska (1988) estimated it us-
ing a product integral representation for general bivariate censoring. Several other
estimators for the bivariate survival function have been proposed. Overviews, as
well as analysis of the performances of the estimators, have been provided as well,
for instance, Gill et al. (1995), and Wang and Zafra (2009).

Often bivariate survival times are observed in one subject. In those cases uni-
variate censoring, for example, drop out of the subject, is reasonable. Several
of the older estimators for bivariate survival functions under univariate censoring
have been adapted and improved, compare, for example, Huang and Zhao (2017).
Huang and Zhao (2017) provided empirical likelihood confidence interval esti-
mation for the Lin-Ying estimator, Lin and Ying (1993), and for the Wang-Wells
estimator Wang and Wells (1997). As the empirical likelihood, as introduced by
Owen (2001), is a reliable non-parametric approach for constructing confidence
intervals the new approach outperformed the original approach and one of the
adaptions in the provided simulations.

As the expected coverage probability in several of the small sample size sim-
ulations as given in Huang and Zhao (2017) stayed below its nominal level we
aimed to improve the method by applying prior knowledge to the empirical like-
lihood approach for the Lin-Ying estimator.

In the following we will first provide previous results that are needed for the
new method before stating the results of the improved approach. The notation in
this work corresponds to the notation of Huang and Zhao (2017). While Huang
and Zhao (2017) considered two estimators, namely those introduced by Lin and
Ying (1993) and Wang and Wells (1997), we only focused on the first of the later
two.

4.2. Mathematical Definitions and Theory
Let (Xi,Yi), i = 1, . . . ,n be independent, identically distributed bivariate sur-

vival times with survival function S(x,y) = P(X ≥ x, Y ≥ y). Denote the marginal
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survival functions as S1(x) = P(X ≥ x) and S2(y) = P(Y ≥ y). Further, let C1,
. . ., Cn be univariate right-censoring times with survival function G(t) = P(C ≥ t)
which are independent, identically distributed and independent of (Xi,Yi). Due
to the right censoring we only observe (X̃i,Ỹi,δ

X
i ,δY

i ) where X̃i = min{Xi,Ci},
Ỹi = min{Yi,Ci}, δ X

i = 1{Xi ≤ Ci} and δY
i = 1{Yi ≤ Ci}. Denote the survival

function of the actually observed data by H(x,y) = P(X̃ ≥ x, Ỹ ≥ y). In the fol-
lowing we denote x∧ y = min(x,y) and x∨ y = max(x,y).

Lin and Ying (1993) denoted the bivariate survival function as

S(x,y) =
H(x,y)
G(x∨ y)

,

and suggested to estimate it by

Ŝ(x,y) =
Ĥ(x,y)
Ĝ(x∨ y)

,

where Ĥ(x,y) =
n∑

i=1
1
(
X̃i ≥ x, Ỹi ≥ y

)
/n is the empirical estimator of H(x,y) and

Ĝ(·) is the Kaplan-Meier estimator of G(·) based on the event time C̃i = X̃i ∨ Ỹi
and censoring indicator δC

i = 1−δ X
i δY

i .

Lemma 4.1. [Lin and Ying(1993)] For any fixed (x,y) ∈ [0,τ]2, where τ satisfies
S(τ,τ)G(τ)> 0,

√
n{Ŝ(x,y)−S(x,y)} converges to a zero mean normal distribu-

tion with variance σ2 as n→ ∞ where

σ
2 =

S(x,y)
G(x∨ y)

−S2(x,y)

1−
x∨y∫
0

dG(u)
G2(u)P(X ∨Y ≥ u)

 .

For the proof of the 4.1 please consult Lin and Ying (1993).
To provide confidence intervals for the true value of the survival function eval-

uated at a fixed time point (x,y) ∈ [0,τ]2 Lin and Ying (1993) provided random
variables Wi, i = 1, . . . ,n, based on which an empirical likelihood ratio could be
constructed. Previous simulations already showed a low coverage accuracy for
small sample sizes when using the empirical variance estimator. However the
provided estimator proved to be not reliable either as the Wi’s are not asymptoti-
cally independent, identically distributed as shown by Huang and Zhao (2017).
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A better variable to calculate confidence intervals was provided by Huang and
Zhao (2017). It is given by

Ui =
1{X̃i ≥ x,Ỹi ≥ y}

Ĝ(x∨ y)
−S(x,y)

1−
x∨y∫
0

δC
i d1{C̃i ≤ u}−1{C̃i ≥ u} dΛ̂C(u)

Ĝ(u)P̂(X ∨Y ≥ u)

 , (7)

where Λ̂c(·) is the Nelson-Aalen estimator of the cumulative hazard function
ΛC(·) for the censoring time variable C and

P̂(X ∨Y ≥ u) := n−1
n∑

i=1

1{C̃i ≥ u}
Ĝ(u)

.

Now those Ui, i= 1, . . . ,n, are asymptotically independent, identically distributed.
Now those Ui, i = 1, . . . ,n, can be used to obtain the EL ratio, see Owen

(2001). For a given (x,y) the EL ratio evaluated at θ = S(x,y) is defined as

R(θ) = sup
{pi}

{
n∏

i=1

(npi) :
n∑

i=1

pi = 1,
n∑

i=1

piUi(θ) = 0, pi ≥ 0, i = 1, . . . ,n

}
. (8)

Applying the Lagrange multiplier method, we obtain the supremum for pi =
n−1(1+ λUi)

−1. Further the empirical log likelihood ratio is given by l(θ) =

−2logR(θ) = 2
n∑

i=1
log{1+λUi(θ)}, where λ = λ (θ) is the solution of

1
n

n∑
i=1

Ui(θ)

1+λUi(θ)
= 0 . (9)

Denote by θ0 = θ0(x,y) the true value of the survival function at a fixed (x,y)
in the following. As given by Huang and Zhao (2017) and following Wilks’ theo-
rem, the following lemma states the convergence of the log likelihood ratio at the
true value.

Lemma 4.2. For any fixed (x,y) ∈ [0,τ]2, where τ satisfies S(τ,τ)G(τ)> 0, l(θ0)
converges in distribution to X 2

1 as n→ ∞, where X 2
1 is a standard chi-square

random variable with one degree of freedom.

Even though the simulations provided by Huang and Zhao (2017) showed
good results for the expected coverage probability of the confidence intervals the
required sample size to obtain the nominal level could be improved.
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To this end we propose the application of prior information onto the log like-
lihood ratio. For a fixed time point (x,y) let π(θ) be the prior likelihood of the
value θ for S(x,y). Then the log likelihood ratio under prior is given by

l∗(θ) = 2

(
n∑

i=1

log{1+λUi(θ)}−π(θ)

)
. (10)

Following the reasoning of several papers, f.e. Lazar (2003) and Cheng and
Zhao (2019), the following theorem holds true.

Theorem 4.3. Let θ(F) be the functional of interest with no nuisance parameter.
Under standard regularity conditions, as n→∞, the posterior distribution of θ(F)
converges to a normal distribution with mean mn and variance Jn where

mn = J−1
n (J0m0 + J(θ̂n)θ̂n), Jn = J0 + J(θ̂n); (11)

with m0 the prior mode, θ̂n the profile maximum empirical likelihood estimate of
θ(F), J0 minus the second derivative of the log prior distribution evaluated at m0,
and J(θ̂n) minus the second derivative of the log empirical likelihood evaluated
at θ̂n.

For the proof of the above theorem please consult Lazar (2003).
Even though this provides a nice framework for the construction of confidence

intervals we encounter a problem when calculating the mean and the variance ex-
actly. Due to the fact that the derivation of the log empirical likelihood involves
the derivation of the Lagrange multiplier we cannot derive it analytically. Corre-
spondence with authors of other publications and consulting various papers with
similar results did not result in any satisfactory solution to this problem. Some
used additional simulations to obtain the confidence intervals that can not be per-
formed in that manner with a real data set while others simply ignored the fact
that the Lagrange multiplier is depended on the parameter θ . Numerical approx-
imation of the second derivative proved to be unreliable in several simulations,
especially for moderate to high sample sizes.

To this end, we suggested a bootstrap approach to obtain the boundaries of the
confidence intervals. Bootstrapping is a commonly used approach for small sam-
ple size data sets or data sets where a empirical variance estimator is suspected to
be unreliable. There are several different ways to bootstrap data. We chose a plain
bootstrap where ”new” data sets are created using the observations of the original
data set. Out of the original n observations one randomly draws n observations,
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where the same observation can be drawn multiple times while others might not
be drawn at all. This new set of observations is then a new bootstrapped sample
set. Repeating this procedure several times one then can build estimators on not
only one but several data sets.

Theorem 4.4. Let (X∗j ,Y
∗
j ), j = 1,2, . . . ,k, be bootstrapped sample sets with each

n ”new” observations of the original bivariate survival times (X1,Y1), . . . ,(Xn,Yn).
Now under standard regularity conditions, as m→ ∞, it holds that E(l∗n,·)→ mn
and Var(l∗n,·)→ Jn, where l∗n, j are estimators for l∗(θ0) based on the bootstrap
sample. More precisely l∗n, j is the maximum empirical log likelihood estimator
under prior based on the j-th bootstrap sample. l∗n,· is the random variable that is
being estimated by l∗n,1, . . . , l

∗
n,k.

Based on Theorem 4.4 we can construct confidence intervals for the true value
of the survival function at a pre-specified time point (x,y). For each data set
we calculate the mean of the bootstrap estimators l∗n, j, j = 1, . . . ,k, where k is
the number of repetitions for the bootstrap. Next we can calculate a variance
estimator based on those created samples, namely the empirical variance of the
bootstrap estimator. Based on the mean and the variance we can then calculate a
95% confidence interval, denoted by CIq, based on the quantiles for l∗(θ0). The
actual confidence interval for the parameter θ is then the interval [a,b] which
includes all θ ’s for which l∗(θ) ∈CIq.

4.3. Implementation and Simulations
All simulations were conducted using R (R version 3.5.2, R Core Team, 2018).

To be able to compare the Bayesian approach with the original approach we fol-
lowed the simulations settings as provided in Huang and Zhao (2017).

Due to some misreported numbers all true values of the survival function of
all settings as well as all simulations were calculated again to ensure that the
simulation results are comparable.

In the first setting we considered independent components. The first compo-
nent was distributed according an exponential distribution with parameter 1. The
second component followed a log-normal distribution with expectation 0.1 and
variance 0.52. In this case the true value of the survival function evaluated at a
specified time point S(x,y) can be calculated by

e−x
(

1−Φ

(
logy−0.1

0.5

))
.
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The univariate censoring was created according to an exponential distribution
once with the parameter 0.25, which resulted in censoring of 20% in the first
component and 25% in the second component, and parameter 0.65, which lead
to 40% and 53% censoring in the two components. Again, we only observed
the first-event vector, i.e. T = (min{X1,C},min{X2,C})T , and whether an event
actually occurred at the observed time point.

For each setting we applied six different prior likelihoods onto the data sets.
All six priors were normally distributed. The first three had expectation µ0 =
S(x,y), namely the correct value, the other three were assigned an incorrect ex-
pectation µ1 which, dependent on the true value S(x,y), was chosen in a manner to
be far from the true value. For the variance we used three different values σ1 = 1,
σ2 =

√
1/2, and σ3 =

√
1/10.

For each setting we ran 1000 simulations. The number of repetitions for the
bootstrap confidence interval depended on the sample size. For smaller sample
sizes 1000 redraws of the original data set were analyzed. For the sample size
of 75 2000 repetitions were run. The number of repetitions is limited due to the
long simulation results, ranging from two days for the sample size of 30 and 1000
bootstraps to 15 days for the sample size of 75 and 2000 bootstraps for all six
prior believes.

The value of the survival function was then estimated for several different
time points. Next to the estimated survival probability, confidence intervals and
the expected coverage probability, i.e. the percentage of confidence intervals that
included the true value, were calculated. Additionally, we calculated the average
length of the confidence intervals. In the following tables the current simulation
results are provided.

What can be observed in Table 1 is that the modified approach performs better
than the original method in these settings. For both censoring rates, as occurring
in the first component, the expected coverage probability increased when applying
prior information. This was irrespective of the fact whether the prior knowledge
was correct. For incorrect priors the average length of the confidence intervals
was increased. The increase of expected coverage probability came at the cost of
longer confidence intervals which was especially noticeable for the higher cen-
soring rate of 40% in the first and 53% in the second component. Almost no
difference can be detected when comparing the influence of the variance for σ1
and σ2 onto the outcome. Even though the numbers are the same in Table 1, tiny
differences could be observed in the average length of the confidence intervals, as
the confidence intervals for σ2 are marginal slimmer.

In the next table, Table 2, the simulation results for very small sample sizes
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S(x,y) Cens. no µ0 µ0 µ0 µ1 µ1 µ1
x,y Rate prior σ1 σ2 σ3 σ1 σ2 σ3

0.7506 20% 0.909 0.977 0.977 0.982 0.979 0.982 0.991
0.25,0.45 (0.26) (0.29) (0.29) (0.28) (0.29) (0.29) (0.29)

40% 0.872 0.992 0.992 0.993 0.993 0.993 0.998
(0.29) (0.40) (0.40) (0.39) (0.40) (0.40) (0.42)

0.4686 20% 0.944 0.951 0.951 0.955 0.951 0.949 0.944
0.7,0.5 (0.29) (0.31) (0.31) (0.30) (0.31) (0.31) (0.30)

40% 0.931 0.984 0.986 0.989 0.984 0.984 0.979
(0.33) (0.47) (0.47) (0.46) (0.47) (0.47) (0.46)

0.3329 20% 0.960 0.967 0.967 0.973 0.970 0.970 0.975
0.8,0.8 (0.28) (0.29) (0.29) (0.29) (0.29) (0.29) (0.30)

40% 0.937 0.993 0.993 0.994 0.993 0.993 0.997
(0.33) (0.46) (0.46) (0.45) (0.46) (0.46) (0.46)

Table 1: Expected Coverage Probability for several different settings and sample size 50. The
average length of the confidence intervals are provided in the brackets.

are provided. The data sets contained 30 observations. Just as in the case of
sample size n = 50 the usage of prior information increased the expected coverage
probability. For censoring of 20% in the first component, the average length of
the confidence was comparable for the setting without the prior, i.e. the original
approach, as well as the settings with the priors. In all settings the results were
reasonable and showed slightly worse results than when having larger data sets.
For censoring of 40%, the simulation results were not too good. Even though
the expected coverage probability increased when applying prior knowledge, the
resulting average confidence interval length is unreasonable high. As the survival
function ranges between zero and one, an average length of 0.5 for the confidence
interval is not really informative. A reasonable number of sample size should be
thus provided if the censoring rate is high.

Looking at the moderate sample sizes, as given in Table 3, we observe that the
original method obtained the nominal level for the sample size of 75. The appli-
cation of priors again had a positive impact on the expected coverage probability.
The observations as in the other sample sizes concerning the behavior for higher
censoring could be noticed again. Even though an expected coverage probability
of over 99%, for censoring of 40% and 53% in the two components, is incredi-
ble the cost of the high average confidence interval length makes this approach
unfavorable for high censoring rates.
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S(x,y) Cens. no µ0 µ0 µ0 µ1 µ1 µ1
x,y Rate prior σ1 σ2 σ3 σ1 σ2 σ3

0.7506 20% 0.934 0.993 0.993 0.994 0.992 0.991 0.982
0.25,0.45 (0.32) (0.38) (0.38) (0.37) (0.38) (0.39) (0.40)

40% 0.887 0.994 0.994 0.995 0.994 0.994 0.993
(0.50) (0.48) (0.48) (0.47) (0.47) (0.48) (0.50)

0.4686 20% 0.935 0.958 0.958 0.966 0.953 0.952 0.945
0.7,0.5 (0.36) (0.38) (0.38) (0.37) (0.38) (0.38) (0.37)

40% 0.936 0.974 0.977 0.981 0.974 0.974 0.968
(0.41) (0.53) (0.52) (0.51) (0.53) (0.52) (0.51)

Table 2: Expected Coverage Probability for several different settings and sample size 30. The
average length of the confidence intervals are provided in the brackets.

S(x,y) Cens. no µ0 µ0 µ0 µ1 µ1 µ1
x,y Rate prior σ1 σ2 σ3 σ1 σ2 σ3

0.7506 20% 0.958 0.976 0.976 0.977 0.976 0.976 0.973
0.25,0.45 (0.20) (0.22) (0.22) (0.22) (0.22) (0.22) (0.23)

40% 0.941 0.996 0.996 0.996 0.996 0.995 0.994
(0.22) (0.35) (0.35) (0.35) (0.35) (0.35) (0.36)

0.4686 20% 0.947 0.969 0.970 0.972 0.969 0.970 0.965
0.7,0.5 (0.24) (0.27) (0.27) (0.26) (0.27) (0.27) (0.26)

40% 0.947 0.998 0.998 0.999 0.998 0.998 0.997
(0.27) (0.45) (0.45) (0.44) (0.45) (0.45) (0.44)

Table 3: Expected Coverage Probability for several different settings and sample size 75. The
average length of the confidence intervals are provided in the brackets.

Further simulations with higher censoring rates and sample sizes of 35, 50,
and 75 are omitted here. These simulations indicated yet again what the other two
censoring rates already implied. The application of prior knowledge to the data
sets improved the expected coverage probability in comparison to the original
approach. It however came again at the cost of an average longer confidence
intervals. It could further be observed that the original method of Huang and Zhao
(2017) dropped well below the nominal level as the information contained in those
small data sets was not sufficient to draw accurate estimators. This influenced
the expected coverage probability of the adapted method as well, which stayed
slightly below the nominal level.
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4.4. Discussion
The second approach worked well. As no changes to the underlying model had

to be conducted there occurred no problems when applying the prior likelihood to
the test statistics.

The application of prior knowledge to the original approach by Huang and
Zhao (2017) led to the desired results. For the same sample size an increase
of expected coverage probability could be observed in the previous simulations.
Further using this adaption the approach already obtained the nominal level for
smaller sample sizes than required for the approach without a Bayesian prior.

It nonetheless has to be noted that the here introduced approach is not suitable
for data sets with high censoring. However, this can be traced back to the already
insufficient behavior of the original Lin-Ying estimator in scenarios with high
censoring. Also the high run time, as well as the on average very long confidence
intervals, makes the new approach unfavorable for very large sample sizes.

Overall we can still conclude that this idea was successful and represents an
improvement of the original method in the so far analyzed simulations. Addi-
tional to the already conducted simulations we aim to perform further practical
analysis of the behavior of the Bayesian approach. To do so we will simulate ad-
ditional data with other marginal distributions. We hope that by doing so we will
be able to tell the influence of heavily tailed marginals. Next to playing with the
marginals we aim to analyze the influence of correlation or dependency structures
to the performance of the approach. Not always will a method be able to obtain
the nominal level if it fails to detect the correlation or dependence between the
components correctly. Again we will let ourselves be guided by the simulation
settings of Huang and Zhao (2017).

In further research we also intend to analyze the influence of the prior more
detailed. We want to know if it is possible to provide a guideline on which prior
distribution is most fitting depending on the underlying data. This not only in-
cludes the analysis of different variances on the outcome but further the general
shape of the prior distribution. For example it could be possible that a skewed
prior distribution might lead to a better performance for certain data structures
than a symmetric one.

Huang and Zhao (2017) not only designed empirical likelihood confidence
intervals for the Lin-Ying estimator but also for the Wang-Wells estimator. They
noticed in the simulations that both tests performed similar under low censoring
rates, regarding the expected coverage probability as well as the average length.
For higher censoring rates the Wang-Wells estimator outperformed the Lin-Ying
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estimator, even if only regarding the average length of the confidence interval in
some cases. We thus aim to check if similar behavior still shows when applying
Bayesian knowledge. To do so we will conduct further simulations for the Wang-
Wells estimator using the same simulation settings as already used with the Lin-
Ying estimator.

5. Conclusion and Outlook

During my three months research stay at Georgia State University we inten-
sively conducted research on application of Bayesian statistic onto multivariate
survival analysis.

In a first approach we modified an approach by Parkinson (2019). Applying a
Bayesian prior onto the already existing method we hoped to decrease the required
sample size. Using conditional hazards and applying constraints onto those the
method by Parkinson (2019) showed overall reliable and solid results, especially
in moderate sample size simulations. As the test statistic was originally based on
a non-parametric model we first modified that approach to a parametric model.
We then validated the mathematical derivation of the results by calculations. Fur-
ther, we conducted simulations to show the moderate sample size behavior of the
proposed method. Those were however not satisfying.

In a second approach we modified an approach by Huang and Zhao (2017).
Again we applied a Bayesian prior onto an already existing method in the hopes of
obtaining a higher expected coverage probability. Unlike in the first approach the
original model did not have to be modified as instead considering the full range
of the survival function the estimation was only performed for a pre-determined
time point. We derived and proved the mathematical correctness of the new ap-
proach. Afterwards we conducted several simulations to confirm the validity of
the found results. The current simulation results indicated that the modification of
the original method improved its performance and thus should be preferred over
the approach as provided by Huang and Zhao (2017).

Overall the joint research with Professor Zhao turned out other than expected
but very informative. I received a great introduction to Bayesian analysis and its
application to survival analysis. The profound knowledge of Professor Zhao on
the general field of Bayesian statistic offered an unique opportunity to expand my
knowledge on this versatile research area.

Unfortunately, the first research task turned out to be unsuccessful with regard
to being able to publish the findings. The second task on the other hand, even
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though the work is still ongoing, will be sufficient for a good publication in an
established journal once it is finished.

In the next few weeks, additional simulations will be conducted with several
different settings and sample sizes to see how the second approach performs un-
der varying conditions. Additional to the confidence interval based on the boot-
strapping we will construct confidence intervals based on a Monte Carlo Markov
Chain. We will assess which of the two methods provides better simulation results
to be able to provide the best possible approach.

After the simulations are finished we aim to continue working together to
adopt the estimator of Wang and Wells (1997) as modified by Huang and Zhao
(2017) as well. We hope that applying Bayesian prior knowledge to the test statis-
tic will improve performance of it.

The research as financed by the Austrian Marshal Plan Foundation, Vienna,
was hopefully only the beginning of a long term cooperation between the De-
partment of Mathematics and Statistics of the Georgia State University and the
Department of Mathematics of the University of Salzburg.

Additionally, the research stay at Georgia State University offered the oppor-
tunity to reach out to other colleagues in the USA. To this end, we managed to
start a new project with the City University of New York. Another project with the
Naval Postgraduate School will hopefully be launched during this year. Both will
encourage the future American-Austrian academic exchange.
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