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ABSTRACT

Cellulosic biomass is a highly variable feedstock. The large variation in key quality
attributes (e.g., ash content, moisture content, and particle size) challenges the consistency
of the feedstock supply from a technological and economical perspective. This affects the
cost and the overall competitiveness of the sustainable bio-based industries. This research
focuses on developing strategies to reduce variation and cost throughout the supply chain
for the bio-based industries.

The goal of this research is to provide practitioners with tools to quantify variation
of the components of the supply chain and illustrate that variation accumulates throughout
the supply chain which induces costs from higher than necessary operational targets. The
objectives of this research are: 1) develop quality loss functions for the components of the
biomass supply chain; 2) create a simulation model suitable to quantify feedstock variation;
3) characterize the impact of variation on the financial loss, and 4) develop a handbook of
statistical and continuous improvement techniques to promote variation reduction.

The Excel simulation model uses Statistical Process Control and Taguchi’s Loss
Function combined with Galton’s theory of ‘components of variance’ to estimate the
financial loss due to variation. Sensitivity analyses are used to characterize the impact of
variation on loss for ash content, moisture content, and particle size. The handbook
provides practitioners with a guide for improved application of universally accepted key
continuous improvement techniques.

The additional loss per unit on average for Switchgrass from ash content variation
was estimated to be $17.33 per dry ton, while for particle size (woody residues) the loss
was $10.32 per dry ton. The additional loss per unit on average for moisture content
variation was estimated for an example supply chain. The loss per unit for
harvest/collection was $2.02, transport was $4.93, drying was $3.19, and densification was
$13.23 per dry ton. The results of this study suggest that Taguchi’s Loss Functions are
suitable to estimate the loss for feedstock quality characteristics based on variation. The
simulation tool and handbook will help practitioners of the sustainable bio-based industries

improve the supply chain’s performance (available at www.spc4lean.com).
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CHAPTER ONE
INTRODUCTION

In prior decades the sustainable bio-based industries have faced major
technological and economic challenges. For example, the cellulosic biofuel industry had to
develop efficient conversion technologies and supply chain systems to produce economic
viable biofuels. These biofuels had to be produced with non-edible cellulosic biomass at a
cost that is competitive with conventional fuels (Yue et al., 2013). Another example, is the
forest products industry which was heavily impacted by the collapse of the United States
housing market during the economic crisis from 2007 to 2009 (Howard and Jones, 2016).
Today, both industries face competitive pressures through increased globalization and
procuring cost-competitive raw material supply, e.g., large feedstock variations induce
variation in the process and final product. The large feedstock variations lead to increased
costs, i.e., higher than necessary operational targets for weight, solvents, resin, etc. must
be maintained given the large variations in raw materials (Kenney et al., 2013, Salim and
Johansson, 2016).

For example, based on the literature the supply chain costs for producing cellulosic
ethanol (i.e., biofuel) are roughly 35% of the total production costs (Hess et al., 2007, You
et al.,, 2012). Given the current production costs for cellulosic ethanol $5.90 (ranging
between $5.06 to $6.73/GGE) (Warner et al., 2017), based on a gasoline gallon equivalent
(GGE), the sole supply chain costs would equivalate to $2.07/GGE (ranging between $1.77
to $2.32/GGE) (Table 1). These supply chain costs represent already 84% of the total
production costs for corn-grain based ethanol of $2.46/GGE (ranging between $1.50/GGE
to $4.56/GGE) (ISU, 2018). However, both types of ethanol cannot currently compete with
the crude oil price of $1.62/gallon (i.e., $68/barrel) (Macrotrends LLC, 2018a), which is
reflected by the historic U.S. retail price for gasoline and ethanol (i.e., E85) (Figure 1). For
cellulosic ethanol to be competitive against wholesale gasoline prices, achieved with crude
oil of $100 per barrel, the production cost of cellulosic ethanol must be $3 per gallon (Sims
et al., 2010). Given the current crude oil prices this number must be reduced even further.
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Table 1. Production cost comparison of various fuel types.

Fuel type Cellulosic Ethanol Corn-Grain Ethanol Crude QOil
Year data is from ~ 2015 2007-2018 2007-2018 (July 2018)
Production costs $5.90/GGE* $2.46/GGE $1.85/Gallon ($1.62/Gallon)
Range $5.06-$6.73/GGE $1.50-$4.56/GGE $0.97-$2.61/Gallon
Reference (Warner et al., 2017) (I1SU, 2018) (Macrotrends LLC, 2018a)

L GGE is the amount of fuel it takes to equal the energy content of one liquid gallon of gasoline.

U.S. Average Retail Fuel Prices per GGE

$5.00 —E85 —~Gasoline

$4.50
$4.00
$3.50
& $3.00
$2.50

$2.00

Cost per G

$1.50
$1.00

$0.50

$0.00

o ’\’\%

\‘\\ "
Q Q
VRN
&\\\\\\\\\\\\

P>
§ \\\'» BT

RIS
RN
RN N

°:\ ‘\qu,»\ \ﬂ} N \,

R Qq’ Qo’ Q°’ DI A AR AN
N\ \\\"0\'\’1»\\

\
N AN
m@@@@@@@ R

u\\\g Q\f\%'\?’ DX“Q\\&\Q\\

Figure 1. U.S. average retail fuel prices per GGE for gasoline and ethanol (E85) (DOE, 2018).



Thus, to achieve price competitive products, companies of the sustainable bio-
based industries must rely on analytics and statistical methods to quantify variation of key
input variables in their production systems (or supply chain systems). Methodologies such
as statistical process control, lean or the Toyota Production System (TPS), etc., are

presented in this thesis as examples of suitable techniques to improve processes.

Rationale and Thesis Execution

A main problem for these sustainable bio-based industries is the cost-efficient
supply of the highly variable raw materials. This high variability in key quality
characteristics challenges the performance of each component of the supply chain and
manufacturing system (Germain et al., 2008). Raw material variation and the occurring
variability in process execution influences the final quality of the product (Sofuoglu and
Kurtoglu, 2012). Therefore, companies with highly variable product attributes (e.g.,
density, strength, yield, etc.) are less competitive in the market as enterprises producing
items with little variation. As a result, most manufacturers must compensate for excessive
raw material variation with higher targets in their key process variables (e.g., weight, resin,
etc.) to meet final product specification, which ultimately lead to increased costs (Taguchi
etal., 2004). These unnecessary costs through raw material variation exacerbate the already
tense economic position of the cellulosic biomass supply chain within the total biofuel
production costs. Reducing process or supply variation is desirable since operational
targets can be decreased which improves financial performance. Through the correct
application of continuous improvement techniques engineers and managers can identify
sources of variation which facilitates efforts to reduce variation in the manufacturing
process (or supply chain).

Previous studies emphasize the use of statistical process control (SPC) to improve
performance of production or supply chain processes. For example, the application of real-
time control charts has improved performance of many forest product manufacturers
(André and Young, 2013, Astner etal., 2015, Carty et al., 2015, Maness et al., 2003, Riegler
et al., 2015, Steiner et al., 2017, Young and Winistofer, 1999, Young et al., 2007, Young
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etal., 2014, Young et al., 2015a, Young et al., 2015b). This research expands upon earlier
research where a simulation model for quantifying variation in the ‘bio-depot’ concept for
the biofuel industry was developed (Platzer, 2016).

This study enhances the previous research from Platzer (2016) by developing more
strategies and techniques to improve the biomass supply chain to enhance the
competitiveness of products from the sustainable bio-based industries by lowering costs.
A more advanced model to simulate the financial loss using the Taguchi Loss Function
combined with Galton’s theory of components of variance for estimating financial loss due
to variation in the feedstock supply chain system was developed as part of this thesis.
Variation was simulated from some existing data and enhanced with bootstrapping. Ash
content, moisture content, and particle size were the variables in the supply chain that were
modeled.

The simulation model is intended to help practitioners identify the components of
the system with the largest variations and highest costs. Statistical process control (SPC)
procedures and Taguchi’s quality loss functions were used in the model to improve the
visualization and quantification of variation that occurs throughout the supply chain
system. This improved visualization is achieved through graphical display of the variation
and loss. The continuous improvement techniques used in the thesis were summarized into
a handbook for practitioners to improve the application of these helpful and universally

accepted techniques for promoting variation reduction and cost savings.

Hypothesis, Goal, and Objectives

The research hypothesis aims to determine whether continuous improvement
techniques are suitable to quantify variation of raw material quality characteristics affecting
supply chain and costs. The goal of this research is to provide practitioners of the
sustainable bio-based industries with tools to quantify variation of the components of the
supply chain and illustrate that variation accumulates throughout the supply chain which

induces cost. Based on the goal of this thesis, the following objectives were formulated:



e Development of quality loss functions to quantify the monetary loss through
feedstock variation across the supply chain and its components;

e Development of a simulation-tool for practical application of these quality loss
functions;

e Conduct sensitivity analyses to characterize the impact of variation on the loss
computed with the developed loss functions;

e Development of a continuous improvement handbook for the sustainable bio-based

industries.

A brief introduction of the cellulosic biofuel industry and forest products industry
is presented. The biofuel industry can be classified into unprocessed (e.g., pellets or
firewood) and processed (e.g., charcoal, ethanol, or biogas) biofuels (FAO, 2008); in
context of the thesis the second class is referred as biofuel industry. The wood product
industry, such as producers of furniture, wood composites, engineered wood panels, and

construction timber, etc., is referred to as the forest products industry in this thesis.

Biofuels Industry

Rising global energy demand with corresponding limited reserves of conventional
energy sources has created a renewed focus on alternative energy policies. Even though
current energy prices for oil and natural gas are at much lower levels than ten years ago
(Figure 2), scientists and governments are still engaged in the development of policies and
technologies for alternative energy generation (Guo et al., 2015). Using biomass as a
renewable energy source, next to solar, wind, or water, has promise as noted by Gold and
Seuring (2011). Bioenergy is created from different types of biomass and can be a viable
substitute for conventional fossil fuels (Gold and Seuring, 2011). Studies have indicated
the positive effects of producing biofuels for the United States, e.g., ensuring energy
security by reducing dependency on foreign petroleum imports, economic development for
rural communities, and mitigation of greenhouse gases (Eksioglu et al., 2009, Mabee et
al., 2011).



Initially, biofuels were produced from sugar-based feedstocks such as corn and
sugarcane. Unfortunately, despite having great benefits, using edible feedstocks to produce
biofuels sparked a heated discussion in the population about the optimal usage, i.e., using
edible biomass as fuels instead of food considering the scarcity of food worldwide. For
example, the use of corn for biofuel production increased the prices of food commodities
(Tyner, 2010). To overcome these challenges renewable fuel standards across the globe
were introduced to promote the production of biofuels using non-edible biomass
feedstocks.

$180
$160
$140
$120
$100

s80 |/

Crude oil price per barrel

$60

$40

2006 2008 2010 2012 2014 2016 2018
Years

Figure 2. West Texas Intermediate (WT]I) crude oil ‘real prices’ per barrel developments (Macrotrends
LLC, 2018a).

The Energy Independence and Security Act of 2007 was passed by the U.S.
congress which mandates that by the year 2022 at least 36 billion gallons of biofuel (e.g.,
ethanol or biodiesel) are produced annually (EISA, 2007). To promote the production of
cellulosic ethanol only 15 billion gallons of biofuel can stem from edible biomass. This
policy pushed research efforts into developing efficient conversion technologies,
pretreatment methods, and efficient supply chain systems for lignocellulosic feedstocks

(Daoutidis et al., 2013). The advantages of lignocellulosic feedstocks lie in their abundant
6



occurrence in the United States, the lack of already established customer markets, as well
as not competing against food crops for traditional production land (Hoekman, 2009).
Despite these benefits technological and logistical challenges remain mostly through the
high variability of the feedstock quality which significantly impacts the yield of biofuel
production (Kenney et al., 2013). This variation in feedstock quality characteristics affects
all components of the supply chain and conversion processes and increases costs. For
example, depending on the feedstock type the harvesting window is seasonal, which makes
it necessary to store the biomass, however storage may increase moisture content resulting
in higher material degradation (Lamers et al., 2015). Furthermore, lignocellulosic biomass
has lower bulk density, which paired with increased moisture content increases
transportation costs (Lin et al., 2016). An optimal and sustainable supply of biomass to the
conversion facility to maintain stable costs of feedstock supply, which typically account
for 20% to 40% of the total production costs of ethanol, is imperative (Angus-Hankin et
al., 1995). Thus, modeling supply chain systems which quantify variability of biomass
quality (e.g., ash content, moisture content, and particle size studied in this thesis) and
estimate costs are vital as a first step in reducing the costs of biofuels; which is the

aspiration of this thesis.

Forest Products Industry

The economic state of the forest products industry was characterized by a steady
growth with cyclical fluctuations until the end of the last century (Howard and Jones,
2016). Unfortunately, economic turbulences caused uncertainties and change (Nicholls and
Bumgardner, 2018) for the industry in the first decade of the 21 century. Economic
challenges such as the crisis from 2007 and ongoing globalization of the domestic forest
products market aggravated the competition for the U.S. forest product industry (Hansen,
2010). One major problem caused by this internationalization was impairing the price for
roundwood and sawn timber. For example, according to Keegan et al. (2011) forestland
owners in the Western United States generated higher revenues by exporting their

roundwood to Asian customers. As a result, the sales price for roundwood went up and
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domestic mills had to compete with foreign buyers, which benefit from a different
economic background. This unfavorable price structure forced the mill owner to either
accept lower margins or greater idle production capacities. As an example, the reduction
of employment in the wood product industry by 47% reflected these developments (a
reduction from 620,300 jobs in 1999 to 331,000 in 2011) (BLS, 2018). The recovery of the
housing market in years after the crisis helped the forest products industry to stabilize
(Figure 3). However, key challenges remain such as high raw material prices, increased
competition from foreign companies, variability in raw material, and reducing variation in

key process variables.
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Figure 3. Housing starts in the United States in thousand homes (Macrotrends LLC, 2018b).

This variability in raw material and process variables form one of the greatest
challenges for forest products manufacturers, i.e., to be economically competitive while
executing the production process at the lowest cost to generate products with best quality
possible (Salim and Johansson, 2016). The key process variables and the incoming raw
material quality determine the performance of each operation in the production chain and
the final product quality. Thus, variation in wood has a great impact on the production and

generate unnecessary loss (Sofuoglu and Kurtoglu, 2012). Therefore, managers and
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engineers must develop strategies to increase the efficiency of the production and identify
factors that lead to lower costs. Hence, the correct application of continuous improvement
techniques, such as statistical process control and lean management, is critical for

improvement.

Thesis Organization

The thesis is organized after Chapter One as follows. Chapter Two is a review of
the literature on the current state and issues with cellulosic biomass supply chains and
methodologies associated with continuous improvement and statistical process control.
Chapter Three provides an overview on the materials and methods, and the simulation
approach used in this research. Results and discussions are presented as related to the
simulation model in Chapter Four. An outline of the continuous improvement handbook
for practitioners is given in Chapter Five. Chapter Six is the conclusion and

recommendations for future research.



CHAPTER TWO
LITERATURE REVIEW

The literature review presented in this chapter is a general introduction to the
methodologies associated with continuous improvement. The intent of the chapter is to
provide the underlying framework and justification for the methods used throughout the
research study. Given that a vast amount of knowledge exists on this subject matter, and
the plethora of literature on the subject, the intent is to provide the reader with a general
overview. More detail can be found in the referenced literature.

Biomass Supply Chain

This section provides an overview of the state and design of the biomass supply
chain (BSC) for the biorefinery. Various studies discussed the BSC performance and its
associated difficulties for individual cases. Alongside the analysis of environmental and
social-economic impacts of biofuel production on ambient regions of the biorefinery,
mathematical models were used to assess the optimal solution for complex biomass
conversion sites and their supply chain systems (Sharma et al., 2013).

The supply chain is an integrated system to process materials into a finished product
(Beamon, 1998). Suppliers, manufacturers, distributors, and retailers are the four basic
business entities within a supply chain (Beamon, 1998). Whereas, the BSC represents the
first two aforementioned entities which consist out of the following components: Feedstock
planting and cultivation, harvesting, handling, storage, in-field/forest transportation, road
transportation, and preprocessing (Rentizelas et al., 2009). The BSC depends on several
aspects but is not limited to feedstock type, region, transport logistics, and biomass
conversion technology. A common BSC relies on the “conventional-bale” supply chain
design (Figure 4), e.g., biomass is baled upon harvest and transported as bales to the mill
gate. There are many challenges of this BSC system (Awudu and Zhang, 2012). For

example, quantity (or densification) and quality management of harvested biomass,
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transportation and logistics concerns (i.e., high volume and low weight), and production

yields from loss during storage (Awudu and Zhang, 2012).

Farm/Field Gate Biorefinery Gate

Harvest and
Collection

.| Handling and
Queuing

A 4

Storage Transportation Preprocessing

N\

A 4

Figure 4. Conventional-bale biomass supply chain for herbaceous lignocellulosic biomass (Jacobson et al.,
2014).

Optimal supply chain management for low-bulk density and aerobically unstable
biomass is crucial for the performance of biofuel production. However, the “conventional-
bale system” requires biorefineries to be located near the supply source, €.g., within a 50-
mile radius (Argo et al., 2013). Studies from the Idaho National Laboratory showed that
these BSC for biorefineries may not meet the rising biofuels production goals due to limited
access to proper feedstocks in quantity and quality within a restricted procurement zone
(Searcy et al., 2010). Therefore, the advanced uniform-format feedstock supply system
(AUD) was developed (Figure 5). The AUD design should reduce some of the
aforementioned uncertainties and improve the viability of bioethanol production. The key
difference between both designs lies in the positioning of the preprocessing step. Whereas
the task of feedstock preprocessing in a conventional design is done by the biorefinery
itself; in an AUD this task is positioned immediately after the harvest and collection step
(Jacobson et al., 2014). The preprocessing will take place in the so-called ‘bio-depot’,
which is closely located to the harvest and collection sites. This allows the production of
uniform, aerobically stable, and easy to ship commaodity products (Jacobson et al., 2014).
Increased collection radius and the liberty of feedstock selection simplifies the process in
meeting the specification limits of key feedstock quality characteristics for the specific

conversion technology. This practice assures evenly distributed properties, such as ash
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content, moisture content, and particles size and guarantees steady supply of equal
feedstock to the biorefineries (Argo et al., 2013). Typically, the upstream operations in the
biomass supply chain (e.g., harvest, preprocessing, etc.) are in control of the final raw
material quality. While the financial loss through bad raw material quality is rather
experienced at the downstream operations (e.g., transport or biorefinery). Thus, to avoid
unnecessary costs all components of the supply chain must collaborate and communicate

to guarantee a price competitive end product.

Farm/Field Gate Biorefinery Gate

Harvest and
Collection

.| Transportation
/ Handling

Storage Receiving

A 4

Preprocessing

A 4

> Preprocessing

N
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Figure 5. Advanced uniform-format feedstock supply system (AUD) — components (Hess et al., 2009).

The overall performance of the AUD depends on the individual performance of
each supply chain component. Harvest and collection of biomass depends on seasonal
availability and is energy-intensive; based on machinery used in the harvest / collection
operation the biomass can be introduced with contaminates, e.g., soil (McKendry, 2002).
Unless not immediately processed at the bio-depot or biorefinery seasonal available
feedstocks, such as Switchgrass (Panicum virgatum L.), must be stored to ensure quality
and a stable supply to the biorefinery (Mitchell and Schmer, 2012). For each specific
biorefinery supply chain system the type of storage must be selected under economical,
qualitative, regional, and feedstock specific aspects (Darr and Shah, 2014). In addition,
tarped storage has been found to be an effective way in reducing dry matter loss as well as
keeping initial installing costs low at the same time (Darr and Shah, 2014). Transportation
costs crucially influence the overall competitiveness of biofuels, i.e., transportation and
handling are non-value-adding operations. According to Hess et al. (2007) 35% of the

production costs stem from feedstock production and logistics, while biomass logistics
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constitute up to 75% of those costs. Biomass transportation happens either via truck for
short or rail for long distances (Figure 6) (Lin et al., 2016).

Depending on the feedstock type biomass in its uncompressed form has a low bulk
density of 50 to 130 kg/ms3, whereas pellets have a bulk density up to 700 kg/m?3
(Sokhansanj and Turhollow, 2004).
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Figure 6. Advanced uniform-format feedstock supply-system (AUD) (Hess et al., 2009).

Low-density materials have higher transportation costs due to volume restrictions
of truck trailers. Densified feedstocks are more efficient to handle, however this efficiency
is offset by an additional cost step of preprocessing (Lin et al., 2016). Biomass
preprocessing significantly increases the potential output of industrial biofuel production
sites (Lin et al., 2013). Comminution, drying, blending, and densification are the major
operations of a bio-depot supply chain concept (Figure 7), see (Platzer, 2016).

Mechanical particle size reduction — comminution — crucially impacts the biomass
conversion process (Marino et al., 2017). Hammer mills are usually used to reduce the size
of herbaceous biomass to < ~ 2.5 cm. Also, the initial feedstock moisture content impacts

the particle size distribution, grinding energy, and throughput of the hammer mill
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(Tumuluru et al., 2016). Comminution is the most cost-intensive operation of the biomass
conversion process (Tumuluru et al., 2016). Biomass with high moisture content is usually

dried to decrease the grinding energy consumption.

____________________________________

BIP Chipging Drying  BIP Milling/8lending Densificatior
Module Module Module Maodule

E 4 »
| i =l
L=

D e e e e e s -
~

Energy Market

~

TSNS Merchandi > 4’
", T Dopotsh/g/’ |

Thermochem A
~o -

Hd0150333

" Wood Products
Market

Figure 7. Bio-depot concept for standardized feedstocks (Credit: T. Rials and R. Longmire) (Platzer, 2016).

Yancey et al. (2013) showed that drying herbaceous feedstocks takes less energy
than woody biomass. Dried biomass have reduced dry matter loss and degradation (Lamers
et al., 2015). Biomass is either dried passively after harvest on the field or actively with
additional machinery. Passive drying is a cost-efficient drying method, because additional
drying equipment is not required. However, this method is limited through regional
weather differences, attainable final moisture content, and occupancy of possible feedstock
production areas. Studies showed that the optimal moisture content for conventional pellets
for woody biomass is 5-10% and for agricultural grasses 10-20% (Stelte et al., 2012).
Rotary dryers are typically used in bio-depot concepts for active drying (Tumuluru et al.,
2016). This type of dryer effectively produces evenly dried particles to meet the
specification limits. To ease the process of meeting the specification limits feedstocks are
blended. The scope of this process is to mix more expensive feedstocks with good attributes
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with cheaper feedstocks with bad attributes. For example, blending forest residues (e.g.,
pine) with an ash content of 2.6% and switchgrass with 5.8% leads to improvement of
biorefinery supply through a higher quantity of less expensive feedstock types (Ray et al.,
2017). The final preprocessing step is densification. Densified feedstocks are easier to
handle, have a better particle size distribution and uniformity, improved compositional
quality, and have properties to meet the set conversion specification limits. Densification
systems such as the pellet mill, screw extruder, or piston press are commonly used to
produce uniform products. The following requirements for moisture content and particle
size exist for densification systems: pellet mill 10 — 15% and <3 mm, screw extruder 10 —
15% and < 20 mm, and piston press 10 — 15 % and 6 — 12 mm (Tumuluru et al., 2011).

Feedstocks

Cellulosic feedstocks, such as forest residues and Switchgrass, are major sources
for cellulosic ethanol production and may be able to substitute 30% of the current
petroleum-based fuel consumption (Perlack et al., 2005). This feedstock type has
advantages properties for biomass to biofuel conversion. These properties are a) abundant
in occurrence, b) non-edible, ¢) do not interfere with other market segments, and d) their

chemical properties can be adjusted through blending or preprocessing (Hoekman, 2009).

Forest Residues

Wood compared to perennial grasses (e.g., Switchgrass) has great properties for
biofuel production such as lower ash content. For example, the ash content for pine wood
is one percent compared with 5.8% for Switchgrass straw (Tao et al., 2012). Given the
current poor market situation for biofuels, the biofuel production industry cannot
economically compete against traditional industries, such as pulp industry or other forest
product industries, that rely on roundwood (Galik et al., 2009). However, these harvest
operations generate a significant number of residues which can be used for biofuel

production.
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Compared to normal logs, forest residues have poorer quality, smaller diameters,
and are bulky. Forest residues are defined as byproducts from harvest operations such as
tree tops, branches, bad quality logs, and non-merchantable stems (Moriana et al., 2015).
Currently, 93 million dry tons of forest residues are removed from United States forests
annually (Smith et al., 2009). This removal increases the utilization ratio of the United
States forest use and increases revenue sources for the forest suppliers (IEA Bioenergy,
2007).

Forest residues are available in certain regions of the U.S. (Figure 8) (Roberts,
2014). However, the sustainability of biomass removal from forests depends on the
conditions of each collection site (Nettles et al., 2015). Thirty-five percent of logging
residues and 50% of other forest related removals (e.g., branches, etc.) have to be left on
site to maintain soil quality (Roberts, 2014). Large removals of residues from low quality
sites, such as loblolly pine, can lead to less productivity in the future (Cantor and Rizy,
1991).

*INREL

Figure 8. Forest Residues - United States of America (Roberts, 2014).

Unlike perennial grasses or agricultural residues, forest residues can be harvested

annually. Forest residues are usually collected from wide areas and stored in piles at the
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roadside (Cambero et al., 2015). Afterwards, the biomass is dried, preprocessed in bio-
depots, and transported to biorefineries (Cambero et al., 2015). However, forest residue
collection should occur simultaneously with the harvest operations of roundwood to
generate a more efficient and economical supply chain stream (Schnepf, 2011). The
properties of freshly collected forest residues are not suitable for biomass conversion
(Schnepf, 2011). Furthermore, different wood species such as pines, willows, or hybrid
poplars impact biofuel conversion performance through the difference in quality
characteristics, e.g., ash content, moisture content, and particle size (Schnepf, 2011).
Studies have indicated that biofuel production from forest residues generate the best
outcome using biochemical and thermochemical conversion technologies (EPA, 2007).
Mill residues like edgings, trimmings, or sawdust can also be used for biofuel
conversion. However, most of the sawmill residues are already used by the mills itself for

producing pellets, other wood composite products, or for energy (Douglas, 2010).

Switchgrass

Switchgrass (Panicum virgatum L.) is a warm-season perennial herbaceous grass
species, which developed from a forage crop to an energy crop (Zegada-Lizarazu et al.,
2012). Based on comparative studies, conducted by the Oak Ridge National Laboratory,
Switchgrass is considered a model species for biomass energy production (Vogel et al.,
2010). This status was based on features such as low establishment costs, soil conservation
benefits and high adaptability to poor soil quality, wildlife enhancement, and the ability to
be harvested with conventional agricultural equipment (Vogel et al., 2010, McLaughlin et
al., 2002). Switchgrass occurs in all areas East of the Rocky Mountains (Figure 9) in two
major ecotypes, upland and lowland switchgrass (Casler et al., 2011). The roots of both
types reach a depth of 3 m (Ma et al., 2000) and a height for upland 1.5 m — 2 m and for
lowland ecotypes 3 — 4 m (Moser and VVogel, 1995).

Studies have indicated that lowland Switchgrass yield up to one and a half times
more biomass than upland Switchgrass (Parrish et al., 2012). Switchgrass reaches its full

potential in the third year after seed establishment given the enhanced root development
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(McLaughlin and Adams Kszos, 2005). Furthermore, Switchgrass can be grown on
marginal croplands and on areas suitable for the Conservation Reserve Program, i.e.,
marginal cropland (VVogel et al., 2010). Switchgrass harvest has higher labor costs due to
seasonal availability (Bassam, 1998). Field-drying is also required to reduce moisture and

reduce loss from degradation in long-term storage (Mitchell and Schmer, 2012).

3
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Transition
Zone

Lowland
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Figure 9. Native ranges of upland and lowland Switchgrass ecotypes in North America (Casler et al., 2011).

Variation of Feedstock Quality Characteristics

Variation of feedstock quality characteristics has significant impact on the
performance of all units in the biomass to biofuel production (Williams et al., 2015).
Historically, the biomass to biofuel supply chain is based on existent supply chain systems
from different industries, such as agriculture, logging, or food production. In addition, the
same biomass / feedstock specifications were inherited from those systems (Kenney et al.,
2013). However, the success of biofuel production is based on a steady, cost efficient, and
controlled quality feedstock supply (Thompson et al., 2014). In recent decades the majority
of research tried to optimize and reduce costs of biomass logistics in the supply chain

through machine development and material loss reduction across the supply chain (Zandi
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Atashbar et al., 2017). But there is an absence in the literature on focusing on the
importance of variation of feedstock quality characteristics.

Feedstock quality characteristics can be categorized as follows: physical on a
macroscale, structural on a microscale, and compositional on a molecular scale (Li et al.,
2016). First, physical characteristics such as feedstock type, particle size and shape, or
moisture content impact feedstock processing and handling. Second, structural
characteristics such as cellulose crystallinity, affect selection of conversion technology.
Finally, compositional characteristics such as ash content impact feedstock selection and
production yield (Li et al., 2016). Due to the impact on the performance of biofuel
production from biomass, ash content, moisture content, and particle size are set as the key

quality characteristics for the simulations in this research.

Ash Content

Ash content has a negative impact on the biomass to biofuel conversion
performance (US Department of Energy, 2014). Ash in biomass feedstock originates from
either the natural physiology of the plant or through contamination with soil or rocks, e.g.,
forest residues versus roundwood (Lacey et al., 2016). Natural ash in plants is either
associated with structural ash in cell walls or vascular in cell extracts (Kenney et al., 2013).
In addition, studies showed that the mechanical processing at the harvesting operations
introduce ash content into the biomass. Ash content varies between and within biomass
types (Table 2), e.g., woody biomass compared to herbaceous plants and roundwood
compared to woody residues (Tao et al., 2012).

Ash in any form within feedstocks has negative impact on biochemical and
thermochemical conversion technologies. Studies have indicated that corn stover has a
higher ash content which reduces the effectiveness of pretreatment processes and displaces
carbohydrate, which is crucial for the biofuel conversion (Weiss et al., 2010). According
to Kenney et al. (2013) there is no specification limit for ash content using the biochemical
conversion process. In contrast, for pyrolysis-based thermochemical conversion processes

the specification limit is one percent (US Department of Energy, 2014). Biomass with high
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ash content negatively impacts the pyrolysis process through the creation of slag formation
within the combustion process and decreased efficacy of the catalysts used (Kenney et al.,
2013). Preprocessing, such as fractionation or the use of specific harvest equipment, can
reduce the ash content in the biomass (Shinners et al., 2012) and therefore increase the
biofuel yield. Furthermore, Shinners et al. (2012) illustrated that biomass harvested with
multi-pass equipment has a higher ash content from increased soil contact relative to

biomass collected with single-pass equipment.

Table 2. Mean values and ranges for ash content of selected lignocellulosic biomass feedstocks.

Feedstock Mean ash (%0)! Reported range (%)
Herbaceous

Switchgrass straw 5.8 (21) 2.7-10.6

Woody

Pine wood 1.0 (40) 0.1-6.0

Pine residue 2.6 (4) 0.3-6.0

Spruce wood 0.8 (5) 03-15

Spruce residue 4.3(2) 22-6.4

Willow wood 1.5 (18) 1.0-2.3

Willow residue 2.0(1) 20-2.0

1 Sample number of mean values in parenthesis
Data taken from (Tao et al., 2012); inspired by (Kenney et al., 2013)

Moisture Content

Biomass moisture is a crucial cost driver for biofuel production. Excessive moisture
negatively affects storing, transporting, handling, and feeding. Biomass handling and
feeding becomes tedious with increased moisture content, because the cohesive strength of
the material increases and therefore can plug feeders (Dai et al., 2012). Emery and Mosier
(2012) showed that dry matter loss for aerobic stored biomass increases with moisture
content. Furthermore, wet biomass decreases truck utilization for transportation, i.e.,
transportation of less biomass and more water (Eggink et al., 2018). Biomass moisture

affects not only biofuel conversion performance, it also affects grinding energy and
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execution (Tumuluru et al., 2014) which indirectly impacts the conversion performance
(Williams et al., 2015). The specification limits for the moisture content for woody residues
(Keefe et al., 2014) and herbaceous biomass depend on the final conversion technology.
Tumuluru et al. (2011) summarized optimal moisture content specifications limits for
different densification equipment’s, e.g., pellet mill with 10-15% or a piston press with 10-
15%, etc.. Technical targets for main supply chain operations were introduced by Jacobson
et al. (2014) (Table 3).

Table 3. Technical targets for typical supply chain operations for woody residues and Switchgrass.

Supply Chain Operation Woody Residues Switchgrass
Harvest and Collection 40% 5-10%
Field Storage 30% 20%
Transport 30% 20%
Drying 30% 30%
Densification 19% 19%
Blending of Pellets! 9% 9%

! Feedstocks were individually pelletized and blended based on final blend-formulation
Targets were taken from the Idaho National Laboratory “Feedstock Supply System Design and
Analysis” — Case study for thermochemical conversion - (Jacobson et al., 2014)

Particle Size

Particle size defines the flowability and bulk density of cellulosic feedstocks which
crucially impact the efficiency of the biomass supply chain and the attainable biofuel yield
through biomass to biofuel conversion processes (Bitra et al., 2009, Miao et al., 2011).
Comminution — particle size reduction — is vital to increase flowability and bulk density of
cellulosic raw material to increase supply and conversion process efficiency (Hess et al.,
2009, Miao et al., 2011). The location of particle size reduction determines the success of
the whole supply chain; particle size of cellulosic biomass is best modified at an early stage
(Meunier-Goddik et al., 1999). Furthermore, technology, logistics, and economic
feasibility of the comminution operation are determined by the supply chain design (e.g.,

type of storage or transportation, etc.) and conversion technology used in the biorefinery
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(Lam et al., 2008). The associated high energy consumption and processing costs (e.g.,
required pre-drying due to high moisture in biomass) are problematic for particle size
reduction (Schell and Harwood, 1994), while generating low-value products (Himmel et
al., 1985). Comminution of biomass is generally required for all conversion technologies
(Williams et al., 2015). Biochemical conversion process is more tolerant of particle size
variation than thermochemical conversion processes (Kenney et al., 2013). However,
neither fines nor over-sized particles are desirable for an optimal execution of the
conversion process (Kenney et al., 2013). Particle size and distribution depend on the
milling equipment used, typically either hammer mills or knife ring flakers are used.
Particles produced from hammer mills tend to be finer than from knife ring flakers for the
same screen size (Kenney et al., 2013). Specifications and targets of particle size reduction
are set by the requirements of the end-users (Igathinathane et al., 2008). Furthermore, some
studies suggest that particle size has no influence (i.e., no significant correlation) on the
sugar production from cellulose (Vidal et al., 2011), others showed that reduced biomass

particles have greater digestibility than bales for the conversion process (Hess et al., 2009).

Continuous Improvement

‘Kaizen’ is a popular Japanese term that is defined as small steps toward continuous
improvement (CI). Kaizen is a company-wide philosophy which utilizes many tools to
enhance the performance of the enterprise (Singh and Singh, 2015). CI was a philosophy
developed by Deming (1982, 1986, 1993) and is defined as a “never-ending process to
improve the current state of the worker, process, production, or enterprise ”. Juran (1989)
redefined CI as ‘Total Quality Management’ (TQM) which describes incremental
improvement through participation of all entities and people of an organization (Bhuiyan
and Baghel, 2005). The goal of any improvement philosophy is to drive defects towards
zero by reducing variation around the target value (Chen, 2004). The ‘Toyota Production
System’ or TPS (Ohno, 1988) which was redefined by Womack (1996) as ‘Lean Thinking’
focuses on the elimination of waste in an organization, e.g., excessive variation is defined

as waste in TPS or Lean Thinking. Six-Sigma quality (Harry and Schroeder, 2000)
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encompasses all the previously defined improvement philosophies and also focuses on a
methodical approach to using statistical methods to improve organizations and improve
quality. The name ‘Six-Sigma is defined in this philosophy as having a natural tolerance
that is six standard deviations within specifications, or only producing 3.4 out of one
million parts that are defective. George (2002) combined the TPS (or Lean) and Six-Sigma
philosophies and further redefined continuous improvement as ‘Lean Six-Sigma’ or LSS.
The core method in all of the aforementioned improvement philosophies is the use of
statistical methods to quantify variation and identify sources of variation influencing
variation in processes; with the ultimate goal of variation reduction, process/product

improvement, and lower costs (Taguchi et al., 1988).

The Protagonists of the 20" Century Quality Revolution

The quality revolution of the 20" century began with the invention of the control
chart by Dr. Walter A. Shewhart. Shewhart’s breakthrough philosophy was that quality
control can only be ensured by eliminating process variation (i.e., prevention) and not just
by inspection only and removing defective products from finished batches (Shewhart,
1931, Shewhart, 1939). After introducing his ideas at the Bell Telephone Laboratories Dr.
Shewhart hired an inquisitive and ambitious Ph.D. student called W. Edwards Deming in
1927. Deming, fascinated by Dr. Shewhart’s thinking, saw the potential of Shewhart’s
ideas on statistical methodologies to improve manufacturing and applied them in a greater
management context (Tsutsui, 1996). Deming’s 14 points for management, the seven
deadly diseases of management, and the Shewhart Cycle are critical contributions of Dr.
Deming for quality control in the 20" century to increase the performance of Japanese and
U.S. manufacturers (Deming, 1986, Deming, 1993).

Unfortunately, the potential of Dr. Deming’s ideas and views on quality control
were unrecognized by American managers after the end of the second world war (Tsutsui,
1996). Unrecognized by U.S. companies, Drs. Deming and Joseph M. Juran were invited
by the Japanese Union of Scientists and Engineers (JUSE) to give lectures about their

teachings to help the emerging Japanese automobile industry gain competitiveness in world
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markets. Dr. Juran like Deming, suggested that only management can improve the state of
the production (Juran and Gryna, 1951, Juran and Gryna, 1993). Meanwhile, Japanese
engineers and JUSE members such as Taiichi Ohno (i.e., TPS) and Genichi Taguchi (i.e.,
Taguchi loss functions and robust product design) developed methods to continuously
improve production by quantifying and reducing variation (Ohno, 1988, Taguchi, 1993,
Taguchi et al., 2004). After the U.S. automotive industry lost significant market share to
Japanese auto manufacturers in the 1970s, Dr. Deming appeared on an NBC documentary
titled, “If Japan can... Why can’t we? ”. Many believe the June 24", 1980 NBC broadcast

was the genesis for the “American Quality Revolution”.

Key Methods in Continuous Improvement

Statistical Process Control

The first phase in continuous improvement is defining the state of the process.
Control charts are considered the key statistical method for SPC and continuous
improvement (Deming, 1986, Grant et al., 1994). Control charts are fundamental to SPC
in that the stability of the process is quantified and is visualized. The invention of control
charts by Walter Shewhart in the 1920s and applied at Bell Laboratories in the 1930s was
the genesis for the development of SPC (Shewhart, 1931, Wheeler and Chambers, 1992).
SPC uses the control charts (a statistical ‘prediction interval’) to visualize variation and
predict of future process outcomes!. The control chart quantifies and distinguishes
variation as two-types: 1) common-cause variation; and 2) special-cause variation or
‘events* (Figure 10). Monitoring variation using the control chart can prevent the
manufacture of defective product known as ‘scrap’ and reduce rework (Young and

Winistofer, 1999).

11t is important to distinguish between a statistical ‘prediction interval’ and ‘confidence interval’. The
control chart is an analytical technique for prediction on data that is continually changing and is defined by
the control limits which are: X + 3 x s. The confidence interval is an enumerative technique on a reference
frame or sample that does not change, and are typically defined assuming unknown variance by:

4 N
X+ ta, | X (_
n

ﬁ). Prediction intervals are typically wider than confidence intervals.

24



X-Individual Chart

—8—9% Moistwre Content ——UCL ——LCL Sample Average
10,5
o 10 A UCL
=
g 9> (‘N
L
= 9 e ,\Ut‘
=
=
= v
v g5
LCL
8

12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Sample Number

Figure 10. Example control chart: X-individual chart with one outlier.

Common-cause Vvariation is natural variation in a process, product, or material and
is a stable, consistent pattern that leads to prediction of the process. Special-cause variation
is unstable variation created by an event, e.g., shift change, raw material change, etc.

Optimization of a production process can only take place when the process is stable
and does not suffer from special cause variation, it is crucial to eliminate special-cause
variation first. Control limits are not specifications limits (engineering tolerance) and are
approximately + three sigma (o) from the process average (k) (Young and Winistofer,
1999). Control limits contain approximately 99.7% of the variation and assume a normal
or Gaussian distribution of the data (Sauers, 1999). There are many different types of
control charts, and depending on the application and sampling, the upper and lower control
limits (UCL / LCL) are computed using different equations (Wheeler and Chambers,
1992).

Originally, four control run rules were introduced by the Western Electric Company
(1956) and later updated to eight by Lloyd S. Nelson (1984) to detect special-cause
variation in control charts, which are the following:

1. One point is more than three standard deviations from the mean, i.e., outlier indicates
a process out of control.
2. Nine (or more) points in a row are on the same side of the mean, i.e., indicates a shift

in the mean.
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3. Six (or more) points in a row are continually increasing (or decreasing), i.e., indicates
atrend.

4. Fourteen (or more) points in a row alternate in direction, increasing then decreasing,
i.e., indicate at least two different data sets.

5. Two (or three) out of three points in a row are more than two standard deviations from
the mean in the same, i.e., indicates a shift in the mean.

6. Four (of five) out of five points in a row are more than one standard deviation from the
mean in the same direction, i.e., indicates a shift in the mean.

7. Fifteen points in a row are all within one standard deviation of the mean on either side
of the mean, i.e., a higher variation would be expected.

8. Eight points in a row exist, but none within one standard deviation of the mean, and the
points are in both directions from the mean, i.e., indicate at least two different data
sets.

Shewhart distinguished between control charts for measurement data and attribute
data. Measurement data come from continuous measurements and are considered a real
number, e.g., heights, densities, moisture content, physical dimensions, etc. (Table 4).
Attribute data are integers and are data, such as number of rejects, blemishes, etc.

The previous review of literature related to control charting is meant to be an

overview for the practitioner and sets the stage for a fundamental method of this thesis.

Toyota Production System or Lean

Lean manufacturing describes tools and principles for systematic and continuous
improvement of manufacturing and service processes by eliminating waste with the goal
to elevate the enterprises success. Lean manufacturing, originally termed “The Toyota
Production Systems” (TPS), was invented in the 1950s by Taiichi Ohno of the Japanese
automobile company Toyota Motor Corporation and was designed to overcome limitations
in competing with U.S. automobile enterprises (Ohno, 1988, Sundar et al., 2014). TPS or
Lean focuses on the elimination of waste “Muda ”, variation “Mura”, and over-burdening

of systems and workers “Muri” (Radnor and Leseure, 2010). Lean defines seven major
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types of waste which are overproduction, waiting, transport, inappropriate processing,
unnecessary inventory, unnecessary motion, and defects (Wilson, 2010). These types of
wastes should be understood in terms of value-added and non-value-added activities
(wastes) to the final product based on the customers view. Value-added activities help
converting raw-material or semi-finished products to its finished state and are actions the
customer wants to pay for, while non-value-added activities are wastes and unnecessary
actions in the conversion process of a product (Hines and Rich, 1997). The key metric for
improvement in Lean is ‘Value Stream Mapping’ which relies on the ‘Value-Added Ration
(VAR)’ to determine if a process has been improved. Value stream maps highlight the
process as a flow chart, define processing time into either ‘value-added’ or ‘non-value-

added’ times, €.g., cycle time, change over times, etc. (Rother and Shook, 1999).

Time used for the Process [l]

VAR =

Total Process Cycle Time

Flow Charts

Flow charts are a useful tool during the initial root-cause analyses phase of
continuous improvement. They are helpful to visually describe a process or production. A
process flowchart shows the logical sequence of activities executed to produce a product.
The great advantage of flowcharting is the quick identification of process steps which
should be eliminated (Srinivasan, 2011). Streamlining a process is only possible through
the identification, elimination, or at least reduction of non-value-added activities. Usually

standardized symbols are used to represent certain type of actions (Figure 11).

Pareto Charts

Pareto charts are a method for visualizing defects or assignable events occurring
in the process (Juran and Gryna, 1951). Most successful continuous improvement efforts
use the Pareto Chart to identify the critical variable inducing variation in the process.

Adapted from the “80/20-rule” invented by the Italian economist Vilfredo Pareto 80% of
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Table 4. Common univariate control charts for measurement and attribute data (Wheeler and Chambers,
1992, Young and Winistofer, 1999).

Control Chart Type Central Control Limits Purpose and when to use
Line

Measurement Data

Subgroup  X- CLy=X UCLy = X +2.660mR  Assessment of long-and short-

n=1 Individual LCLy = X —2.660 mR  term process variation -

periodically collected data
(organization of data in
rational manner)

Moving CLr = mR UCLg = 3.268 mR Assessment of stability of
Range short-term process variation —
slowly changing process

Subgroup  X-bar ClLy = X UCLy = X+ A,R Assessment of stability of the
n>1 LCLy = X— A, R location of the process relative
to its target — historical
summary and organization of
data into rational subgroups
Range CLp=R UCLg, = D,R Assessment of stability of the
LCLg, = D3R process variation within and
between subgroups — historical
summary and organization of
data into rational subgroups
Attribute Data
Binomial  np chart CLy, = np UCLy, n constant — all samples have
data — i = = the same sized areas of
= np + 3ynp(l —
LCLp P =) opportunity — counts bad and
P _ _ good samples
= np —3ynp(1 —p)
p chart CL,=p 5(1 — ) n variable - Areas of
UCL,=p+3 P2 —p) opportunity  changes from
n sample to sample — counts bad
5(1— ) and good samples
LCL,= p—-3 |[——
n;
Poisson ¢ chart CL.=7¢C UCL, = ¢+ 3¢ a constant — all samples have
data LCL, = ¢—3V¢ the same sized areas of
opportunity — used to count
bad samples in complex
products
u chart CL,= 1 - a variable - Areas of
UCL,= u1+3 |[— opportunity  changes from
a; sample to sample — used to
- count bad samples in complex
LCL, = -3 |[— products
al
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Figure 11. Example flow chart: Full-cell pressure treating process for treated lumber (Institute, 1999).
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Figure 12. Pareto Chart for causes of nonconformity of a wood product (Leavengood and Reeb, 2002).
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the variation in a process originates from 20% of the causes (Wilkinson, 2006). The Pareto
chart is a histogram (Figure 12) where causes or defects are organized by largest frequency
from left to right. The identified causes for the problem are represented by bars on the
horizontal axis; the cumulative contribution by the causes are represented on the vertical

axis via a line. This technique easily identifies the main cause of the problem.

Ishikawa Diagrams

Once the main problem has been identified on the Pareto Chart, the typical next
step is to develop Ishikawa or “cause-and-effect” or “fishbone” diagrams (Figure 13).
Ishikawa used the diagram in organized brainstorming sessions with workers in the
automobile industry in Japan to list all possible causes influencing the variable being study
(Ishikawa, 1986). As many authors have noted, identification of potential sources should
be done in group work of production workers and engineers to gain optimal result (Doshi
et al., 2012). Usually, these sources are grouped in the following five different categories:

methods, machines, people, materials, and environment (Doshi et al., 2012).

Measurement
Systems Material
recognises if the Problems with
amount counted 2x4 lumber
poles is wrong pentration
Sensors For some (mixing of
Canbe Could shorten customers have various sizes
the cycle Once every two Assay zone for o drill 100 % of Could be seem to effect
damaged weeks you run poles the pole because of the penetration
through standards to ‘ percentage of  result)
:’;:::’“ of the | iced when it calibrate the lab Sampling heartwood
takes longer equipment Mixing of the  Normally just 20 Moisture
than normally te Keeping the lab sampling for measurements Heartwood content should
empty or fill the equipment large and small content of the be between 21-
cylinder calibrated diameter poles ‘wood 28 % .
Variation in
Retention and
Mixing of the Analysis of the  Pressure release solution for Treats better MSmetTton
solution preservative at end of cycle poles is mixed when fully
Solution of work after every If too fast in the work tank loaded
tank should be treating cycle problems with Poles has no When not full
agitated water quality retention strap pump so takes longer to
When it is 0.29 solution Salution for you don't know fill and empty
colder you have strength value lumber is mixed how how Minimum 126
to run a higher for MCA in the combo chemical you psi for poles
solution 2.7 solution (= Eump cutciihe Pressure not
strength sirength value Lumber has a o maintained
Influenced by for CCA strip pump (you Release of the during cycle
temperature know how much pressure at the Treatment
When it is chemical you end of the cycle
cylinder
warmer you can pump out of the
run a lower wood)
solution Process
strength
Solution

Figure 13. Example Ishikawa diagram for “Variation of Retention and Penetration of Treated Wood”
(Hamernik, 2018).
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Cause Mapping

Cause mapping is an expansion of the Ishikawa diagram for cause-and-effect
analysis (Scavarda et al., 2004) and investigates problems closely linked to the
organizations main goals. The key premise for cause mapping is system thinking, i.e., every
system has parts which are connected and interact with each other (Zhu, 2008).
Furthermore, unlike the Ishikawa diagram a cause map focuses on the cause-and-effect
relationship and not specific categories, i.e., each effect has a cause and each cause has an
effect (York et al., 2014). The cause map starts on the left with the defined problem placed
in so-called effect boxes (Figure 14). The question ‘Why?’ is asked to identify the cause
supported by clear evidence of the effect. This scheme is repeated for each effect to create
a detailed cause map of the system. Cause mapping allows for a more specific and detailed
cause-and-effect analysis than the Ishikawa diagram. Additional to the Ishikawa-diagram
and cause-mapping asking the question why five times is another root-cause-analysis tool
from Lean. The Five-Why technique helps to find the root cause, not symptoms, of the

problem and identifies their relationships.

Impactto | Why? Why? Why?
Organizations Cause / Effect Cause / Effect
overall Goals

Cause

4
4
4

Figure 14. Typical scheme for cause mapping; cause-and-effect analysis.

Summary of Lean or TPS Methods

This section is intended to give a brief summary of important Lean (TPS)
methodologies. These methods aid the continuous improvement process through
organizing the workspace, streamlining the production flow, and reducing non-value-
adding activities, i.e., elimination of waste. More information about these tools can be
found in the cited literature (Ohno, 1988, Srinivasan, 2011, Wilson, 2010).

The 5S-Methodology is used to systematically improve the workplace by removing
unnecessary equipment and increasing organization through visual aids. Each step of the
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methodology is expressed as a Japanese term starting with S (Al-Aomar, 2011): Seiri
(“sort” by removing unnecessary equipment and material), Seiton (“set in order” by
organizing the workplace with visual aids), Seiso (“shine” by cleaning the workplace),
Seiketsu (“standardize” by documenting working methods or using standardized
procedures / equipment), and Shitsuke (“sustain” by continuously applying this technique).

Standardized work allows the application of best practices in the workplace.
Standardizing procedures improves consistency of process execution by reducing variation
(Emiliani, 2008). Mistake proofing (Poka Yoke) equipment and processes further
increases product quality by integrating mechanics and sensors to immediately detect
errors.

Lean methods such as Just-in-Time, Jidoka, Heijunka, and Kanban aim to
streamline the production by creating a smooth flow of the produced items. Continuous
flow is a manufacturing where the materials or products run through the production without
or only minimal buffers. Reduced lead times, inventory, and smaller changeover times are
associated with continuous flow.

Heijunka, mixed-model scheduling, is used to distribute production capacity
equally on each product by reducing batch size. Smaller batch sizes lead to smaller lead
times which allows the production to better meet customer demand. However, smaller
batch sizes lead to more necessary changeover setups. SMED (“Single Minute Exchange
of Dies”) was developed, by Shigeo Shingo in the 1950s, to exactly handle the increasingly
smaller becoming production lot sizes (Ulutas, 2011). SMED methodology aims to reduce
changeover time to less than 10 minutes by applying the following three main steps: 1)
execute all setup up steps externally if possible; 2) convert internal setup to external setup;
3) streamline the changeover, i.e., standardize all required procedures for the changeover
(Ulutas, 2011).

Jidoka, “autonomation with a human touch” (Ohno, 1988), is the first key element
for the success of TPS. Jidoka describes the partial automation of production systems
combined with defect detection systems. This method allows workers to monitor several

processes at the same time and detect quality issues immediately.
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Takt-time, stems from the German word Takt (rhythm), is a means to pace the
production of each item. Takt-time is simply a ratio of the available time per period and
product demand per period, i.e., allows to compare actual production with the target of the
product.

Kanban, a key technique of lean for continuous improvement, regulates the
continuous flow through emphasize on the pull replenishment principle, i.e., a product
should only be produced if customer demand exists. Signal cards are used to indicate the
need of products or materials. Kanban reduces inventory and prevents overproduction.

Finally, all those aforementioned techniques enable Just-in-Time (JIT) for
generating continuous flow. JIT strongly emphasizes the pull principle introduced with
Kanban. Parts should only be produced with raw materials arriving at the right time with
the right amount at the right place for the right product. Taichii Ohno mentioned JIT is the
second key element for the success of TPS. The advantages are reduced inventory and

space requirements.

Theory of Constraints

Eliyahu M. Goldratt developed Theory of Constraints (TOC) to provide a thinking
concept on how to tackle material or managerial limitations in manufacturing to greatly
improve the systems performance (Srinivasan, 2011). These production limitations,
bottlenecks, essentially constrain the process execution and as a result restrain the overall
success of the enterprise (Blackstone, 2001). For example, the constraint for the
Switchgrass supply chain is the harvest and collection operation due to seasonal availability
of the biomass. A perfect enterprise would have no constraint and would make infinite
profit (Blackstone, 2001). Therefore, in TOC the success of an organization is based on
how well all processes work together. This theory provides a five-step approach to solve
the constraints individually and implements an additional way for continuous improvement
of a system (Goldratt, 1990, Rand, 2000, Srinivasan, 2011).

At first, the manager or engineer should start with (1) identifying the system’s

constraint(s). The choice of constraint should be based on the constraints impact on the
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performance of the production. Constraints can be either physical, for example limited
machine capacity or material variation or based on policy. Policy constraints can either be
created from poor process methodology or by flawed design of regulations and rules in an
organization. After the constraints identification there should be a discussion on (2) how to
exploit the system’s constraint(s). Physical constraints should be used as effectively as
possible. In contrast, a flawed policy should be eliminated and replaced with an improved
new policy. (3) Subordinate everything else to the above decision for achieving maximum
success with the current production environment. By subordinating all resources to the
main constraints needs allows to maximize its output and essentially improve the total
systems performance. This is possible since non-constraint resources have productive and
non-productive capacities; optimal used non-constraint resources have no impact on the
performance. If the identified (1) and exploited (2) (3) constraints are still existent it is
crucial to (4) elevate the system’s constraint(s) t0 generate more company profit. Elevating
means to find actions to improve the systems overall performance. For example, if resource
(machine) capacity is limiting the production output buying another machine to gain
increased production capacity would elevate the system. Thus, another constraint in the
production will arise and will form the new constraint - (5) if a constraint was broken in a
previous step, go back to step 1. Step 5 implies that TOC should be seen and executed as a
continuous improvement process; inertia should not allow to restrict the performance of

the enterprise.

Taguchi’s Quality Loss Functions

Quality loss functions are used to quantify the loss caused by variation in quality
characteristics (Taguchi et al., 2004). Genichi Taguchi developed his quality loss functions
to support the quality revolution for the Japanese industry (Lofthouse, 1999). The goal of
quality loss functions is to quantify the loss caused by variation of product quality
characteristics, such as ash content, moisture content, or particle size, in cellulosic biomass.
Quiality characteristics are performance characteristics, which affect the final quality of a

product (Antony, 1997). In Taguchi’s philosophy a production experiences loss in revenue
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when the product defining quality characteristic deviates from the target (Teeravaraprug,
2008). For example, if the product meets the target, the loss is zero. However, if the
deviation from the target is double the experienced loss quadruples (Kim and Liao, 1994).
Crucial for Taguchi’s philosophy is that the financial loss will be experienced after the
shipment of the product, i.e., customer dissatisfaction through possible product repair or
replenishment, which may cause reputational damage and lead to loss in market shares
(Taguchi et al., 2004).

Genichi Taguchi developed three quality loss functions: nominal-the-best, smaller-
the-better, and larger-the-better (Teeravaraprug, 2008). In addition, the loss can either be
computed for just one sample or for a set of samples. The two-sided loss function nominal-
the-best (Figure 15) is used for quality characteristics with a known target, upper
specification limit (USL) and lower specification limit (LSL), e.g., moisture content or
particle size. The symmetrical two-sided loss function for one unit is determined as
(Taguchi et al., 2004)

L=k x(y—m)? [2]

while the loss function for more than one unit is

L=k x[c?+ (¥ —m)?]. [3]
Where:
L = loss in dollars with the average y of the quality characteristic,
y = the average of the quality characteristic y, e.g., moisture content particle size, etc.,
m = target of the quality characteristic vy,
k = proportionality constant,
o2 = the variance around the average .

The proportionality constant or cost constant k is defined as:

k=2 [4]

Where

Ao = consumer loss at consumer tolerance,
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A, = consumer tolerance.

Quality Loss

Function
Loss (Ag)at | x _______________________________

Spec Limit

Lower Target (m) Upper
Specification Specification
Limit Limit
A, = Target - LSL A, = USL - Target

Figure 15. Taguchi's quality loss function: Symmetric nominal-the-best.

Equations [2] and [3] are suitable to compute the loss for symmetric specification
limits, but not for asymmetric specification limits. Asymmetric specification settings exist
if either the consumer tolerance (4,) for USL and LSL or the consumer loss at consumer
tolerance limits (4,) are different. Kim and Liao (1994) and Liao (2010) suggested to
adjust the cost constant k of Taguchi’s equation [2] to represent the asymmetric

specifications. Thus, the losses for values smaller than the target is computed as

L(y) = ks, x (y —m)® fory <m, [5]
and for values greater than the target is computed as

L(y) = kys, X (y —m)* fory >m. [6]
However, equations [5] and [6] do not give sufficient information about the
influence of the variation of a quality distribution. Li (2002) provides an overview of

complex linear and quadratic models for the application of asymmetrical quality loss
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functions. To reduce complexity, this thesis will analyze if the same procedure for
equations [5] and [6] can be applied to equation [3].

In contrast, the smaller-the-better loss function (Figure 16) is used for quality
characteristics where minimizing the result is wanted; ideally zero. For example, ash
content negatively impacts the biomass to biofuel conversion performance. The equation
for the smaller-the-better loss function for one unit is defined as the following (Taguchi et
al., 2004):

L=k x y? [7]
The equation for the smaller-the-better for more than one unit is defined as:

L=k X[0?+ y?] [8]
Where:
L = loss in dollars with the average y of the quality characteristic,
y = the average of the quality characteristic y, e.g., ash content, etc.,
k = proportionality constant,
o2 = the variance around the average .

Where the proportionality constant k is equal to:
Ao

vé

k= [9]

A, = consumer loss at consumer tolerance,

yo = consumer tolerance.

On the contrary the larger-the-better loss function (Figure 17) is used for quality
characteristics where maximizing is desired. For example, increased sugars in biomass
improve the biofuel yield. The following equation defines the loss for the larger-the-better

loss function (Taguchi et al., 2004).

—kxi1Tnt=kox (B st D)
L=k X S Bligz=k x (Gt +t [10]
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Figure 17. Taguchi's quality loss function: Larger-the-better.
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Where:

L = loss in dollars with the average y of the quality characteristic,

y; = ith value for the quality characteristic of y, e.g., formaldehyde (CH20) emission, etc.,
k = proportionality constant.

Where the proportionality constant k is equal to

— 2
k= Agys [11]
A, = consumer loss at consumer tolerance,

yo = consumer tolerance.

The above described loss functions indicate that variation in quality in context of
Taguchi’s philosophy should be seen more carefully. Compared to classical quality
thinking, where all products within specification limits are treated as equally good, Taguchi
implies that the experienced loss is greater for higher deviations of quality characteristics
(Liao, 2010).

Components of Variance

Galton’s early writings on the idea of statistical studies established the framework
for the concept of ‘Components of variance’ (Stigler, 2010). Galton’s theory was that in
any system variance may accumulate through the system, so that the total variance is the
sum of the components. The concept of components of variance is the basis for the
quantifying of the variability on the supply chain for biomass developed in this thesis.

Variance is accumulated in the following biomass supply chain example. In the
case of a series system (e.g., biomass supply chain) the variance of a certain quality
characteristic (e.g., moisture content) may have an impact on the variance of the feedstock
of the subsequent steps. For example, increased moisture content of harvested biomass can
have an impact on the dry matter loss. Depending on the storage type, additional moisture
can be introduced by environmental influences, which increases the overall variance of the

system.
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Therefore, mathematically the sum of variances is defined for any series or parallel
system (Montgomery, 2012). Under the assumption that the variables X and Y are random
in a parallel system both variables (components) are independent. Therefore, the equation
IS

Var(X +Y) =Var(X) + Var(Y). [12]

As mentioned earlier in a series system the variables (components) are dependent
have a positive or negative influence on each other. Positive influence is when variable X
is high while variable Y is also high; negative influence is when variable X is high while

variable Y is low. If the variances for each component are equal the equation is

Var(X+Y) =Var(X) + Var(Y) £ 2 COV(X,Y). [13]

In contrast, for unequal variances for each component the equation is
Var(aX + bY) = a*Var(X) + b?Var(Y) + 2abCOV (X,Y). [14]

For this case the additional variables a and b define the proportion (i.e., weight) of the

variance for each component for the overall sum of variance.
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CHAPTER THREE
MATERIALS AND METHODS

This thesis applies continuous improvement techniques for the cellulosic biomass
supply chain. A simulation model in the context of continuous improvement techniques
was developed to identify components in the supply chain that are inducing the most
variation. A handbook was developed for practitioners as a template for continuous

improvement as part of the thesis.

Simulation Model

The success of the cellulosic biofuel production depends on the efficiency of the
preprocessing technologies, conversion technology, and biomass supply. A large problem
for the competitiveness of the biofuel production is the high variation associated with the
quality of the supplied cellulosic feedstock. Therefore, a comprehensive simulation tool
was developed to quantify the financial loss due to variation (i.e., variance) in key quality
characteristics of biomass feedstocks for an improved biomass supply chain, i.e., the
components of the supply chain are represented as a series system. This technique for
practitioners of the bio-based and forest products industries is also applicable outside these
industries.

This research emphasizes the impact of feedstock variation in manufacturing and
its influence on financial loss. This simulation tool also helps practitioners to visualize
variation and identify the component inducing the most financial loss. This tool will
hopefully lead to reduced variation in key quality characteristics of biomass and to a more
robust product, i.e., competitive commodity feedstock with low varying quality
characteristics for increased conversion yield at biorefineries. Figure 18 illustrates the
theory of robust product design in the context of Taguchi’s ‘signal-to-noise’ ratio. An
increase of the product quality (x-axis) leads to smaller variation of the key quality
characteristics of the product (y-axis), which ultimately leads to less financial loss

(Taguchi, 1993).
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Figure 18. Taguchi Robust Product Design — increased product quality lead to reduced variation and less
loss (Taguchi, 1993).

Microsoft Corporation’s Excel 2016 with its integrated programming language
Visual Basic of Applications (VBA) was the platform used for the simulation model. An
introduction with instructions on using the spreadsheets, which include data inputs and

outputs, are included in the simulation tool (Attachment File 1).

Supply Chain Design

The advanced uniform format feedstock supply chain system (Hess et al., 2009)
was selected as an representative biomass supply chain, i.e., representative series system
for the simulation. This supply chain system allows the production of standardized
cellulosic feedstock products, e.g., pellets. The series is simplified as follows (Figure 19):
1) harvest and collection, 2) preprocessing, 3) storage, 4) transportation and handling, and
5) receiving. Preprocessing operations take place in a ‘bio-depot’ and consists of chipping
(knife-ring flaker), drying (rotary drum dryer), blending (hammer mill), and densifying
(pellet mill) the harvested biomass, also see the simulation model by Platzer (2016). The
targets and specification limits were obtained from the literature (Jacobson et al., 2014,
Tumuluru et al., 2014).
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Figure 19. Simplified advanced uniform format feedstock supply chain system.

Key Feedstock Quality Characteristics

Ash content, moisture content, and particle size were selected as the key quality
characteristics for cellulosic biomass conversion to biofuels based on the results of
previous research (Kenney et al., 2013, Li et al., 2016, Platzer, 2016, Williams et al., 2015).
Each quality characteristic impacts the performance of the supply chain and its
components. Thus, visualizing the financial impact of present variation in these quality
characteristics should be highly prioritized. For example, high ash content reduces biofuel
yield at the conversion process (US Department of Energy, 2014), high moisture content
aggravates biomass handling and transport (Eggink et al., 2018), and particle size impacts
also the conversion process (Kenney et al., 2013).

Statistical Methodology

Genichi Taguchi’s quality loss functions (Taguchi et al., 2004) are applied to
quantify the financial loss based on variation (i.e., variance is defined as ¢?) in the key
quality characteristics of cellulosic feedstock. Recall from Chapter Two, Taguchi’s
philosophy, i.e., monetary loss is experienced at the very moment a characteristic of
interest y of a product deviates from the target m. The loss is determined by this deviation
and the proportionality constant k; k is the ratio of the maximal acceptable monetary loss

(A,) at the specification limits and the customer tolerance (4,) (i.e., specifications limits).
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The two-sided quality loss function nominal-the-best is applied for the quality
characteristics moisture content and particle size in equations [3] and [4] for symmetric

specifications (Figure 20), and is as follows:

L=k x[o?+ (J —m)?], [3]
k=3 [4]

Feedstock moisture is controllable by drying and it is crucial to find the optimal
balance between reduction in moisture content and economic viability in drying cost.
Biomass bulk density determines the efficiency for handling, transporting, and densifying
processes and particle size reduction is important. However, fine particles negatively
impact equipment and performance of most conversion technologies (Tumuluru et al.,
2016). The total loss experienced at one component is calculated as the product of the
average loss per unit times the sample size (i.e., equation [3]).

The simulation tool recognizes asymmetric cases and allows for the quantification
of the average loss per unit of each side of the target. An asymmetric case exists when
either specification limits or the customer losses at the limits are different. Thus, for
asymmetric cases, the simulation model quantifies the variation for both sides of the target
individually, i.e., treating the original dataset as two independent distributions (Figure 21).
The total losses based on this approach were compared with the total losses using equations
[5] and [6] (Liao, 2010), which calculate the loss for each individual value and later
summed up. The goal of this comparison is to check if the total loss based on the average
losses per unit for asymmetric nominal-the-best cases provides a good estimate of the more
precise total loss using equations [5] and [6]. The introduced approach would provide

information on the average loss per unit induced by variation in quality characteristics.
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Figure 20. Schematic illustration of the symmetric two-sided quality loss function.
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Figure 21. Schematic illustration of the asymmetric two-sided quality loss function.
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The average loss per unit L;g; for values below the target can be calculated as follows:

Lis, = kpsy X [0fs, + (Frs, —m)?], [15]
with the cost constant k; s; for the lower side of the two-sided loss function,

AorLsL, __  AolLsL [16]
A% sL (m—LSL)?

kisy =
Where:
o’ = variance of all values below the target in the data set,
Vs =mean of all values below the target in the data set,
m = target,
LSL = lower specification limit,
Ap,s, =consumer loss at LSL,

Agsy = consumer tolerance.
The average loss per unit L, for values above the target can be calculated as follows:

Lys, = kysi X [0Gs, + s, —m)?], [17]

with the cost constant k¢, for the upper side of the two-sided loss function.

kUSL -

AousL __  AouUsL [18]
A usL (m-USL)?

Where:

obg, = variance of all values above the target in the data set,
Vus, = mean of all values above the target in the data set,

m = target,

USL = upper specification limit,

Ap,ys. = consumer loss at USL,

Ay ys, = consumer tolerance.
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The one-sided quality loss function smaller-the-better is used for computing the
loss for variation in ash content; recall equations [7] and [8], Chapter Two. Ash content in
biofuel feedstock decreases the biofuel production yield and therefore ash content should
be small as possible, optimally, but unrealistically zero percent. The simulation tool allows
the user to select the most suitable quality loss function for each component of the supply
chain individually. The cost constant k will be modified for each individual equation based
on specification limits from the literature. However, the maximum acceptable customer
loss is different for each individual biomass supply chain and is not published in the
literature. Values were assumed in the simulation.

By applying Taguchi’s quality loss function, the simulation tool computes the
financial loss based on variation (variance) for each component individually. Nevertheless,
the variation of one component could have either a negative or positive effect on the actual
variation of the following component and thus, change the financial loss.

Therefore, to emphasize this phenomenon the simulation model applies Galton’s
theory of cumulative variances for a series system. For example, assume a series system
with four components. The variance, based on Galton, for the last component would be the
sum of all variances and either positively or negatively impacted by twice the sum of the
covariances between components. Due to lack of data in the published literature, it was not
possible to use the weighted equation. Thus, the following general equation is used to

calculate the variance for each step (Figure 22).

Var(XiL, X)) = Y Var(Xy) £2 X X1 <icj<n Cov(X;, X)) [19]
where:
Var(X, X;) = Computed variance for n supply chain steps;
. Var(X;) = Sum variances for n supply chain steps;

X1 <i<j <n Cov(X;, X;) = Covariance between supply chain step i and j.

These variances are eventually used within the quality loss functions to compute
the monetary loss for each component of the series. Each individual loss is added together
to generate the total loss for one specific quality characteristic.
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LTotal,quality characteristic = Lg T Lﬁ + Ly + Ly + - [20]
where:
Lrotai,quatity characteristic = 10tal monetary loss for a certain quality characteristic (e.g.,
ash content, moisture content, or particle size),
L, = Monetary loss for first component in the series,
Lg = Monetary loss for second component in the series,
L, = Monetary loss for third component in the series,

L,, = Monetary loss for a certain quality characteristic (e.g., ash content, moisture content,

or particle size) at supply chain step n.
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Figure 22. Example scheme for the application of Galton's theory for a series system

Materials

Data from previous research? for Switchgrass were analyzed with the simulation

tool. However, the collected data does not provide enough information regarding ash

2 The work was completed under the DOE-funded “Logistics for Enhanced-Attribute Feedstocks” (LEAF)
Project, and this material is based upon work supported by the Department of Energy, Office of Energy
Efficiency and Renewable Energy (EERE), under Award Number DE-EE0006639
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content, moisture content, and particle size across all supply chain steps. The data
introduced only provides Switchgrass samples (n = 137) for ash content at the harvesting /
collection process. The Switchgrass samples were collected from several harvest sites from
East Tennessee near VVonore and blended to one batch and afterwards drawn from one batch
(Figure 23). In addition, simulated data were used to demonstrate the simulation tool for

the series system (Attachment File 2).
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Figure 23. Histogram for ash content (%) of switchgrass (n=137) at the harvesting / collection process.

Bootstrapping was applied to calculate the necessary statistics, i.e., mean, variance,
and covariance. Statistical bootstrap is a resampling technique and uses observed data (i.e.,
original sample) to estimate the sampling distribution (Hesterberg, 1998). For this, the
observed data must be assumed to be representative of the population where it is drawn
from. Starting the procedure with drawing single values from the original sample, storing
them into the bootstrap sample, and eventually put the value back in the original sample.
Values for the bootstrap sample are drawn until the size of the original sample is reached.
Now, the statistics of interest (e.g., mean or variance) are computed for the bootstrap
sample. This procedure is done hundreds or thousands of times (Pottel, 2015), eventually

creating a normal distribution for the statistics which allows to compute a grand value for
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each statistic. The code for the simulation was inspired by several references (Alexander
and Kusleika, 2016, Verschurren, 2014).

Sensitivity analyses using empirical examples (Table 5) with real or simulated data
(e.g., Switchgrass, ash content) were conducted to see how variation (variance) for a given
mean, target, and specification limits impacted the loss from the Taguchi Loss Function.

For a better illustration of Taguchi’s quality loss functions, the computed losses
(i.e., average loss per unit) presented in the Results and Discussion chapter are
representative for one batch of cellulosic biomass. One batch (i.e., one unit) represents one
dry ton of cellulosic biomass. Thus, the average loss per unit can be understood as the
average loss per dry ton. Furthermore, assume that the cellulosic ethanol biorefinery with
a capacity of 20 million gallons per year is able to produce on average 80 gallons of
cellulosic ethanol per dry ton of cellulosic biomass. Given those assumption 250,000 dry

tons of cellulosic biomass are necessary to meet the production capacity.

Continuous Improvement Handbook

As previously indicated, a handbook was developed to introduce core techniques
of statistical process control and lean management to practitioners in the sustainable
biomaterials industries. This handbook is a suggested template for applying these
techniques. A short introduction in descriptive statistics, SPC — control charts, Taguchi’s

quality loss functions, and lean manufacturing procedure are included in the handbook.
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Table 5. Empirical examples used for sensitivity analysis.

Example Purpose Components Quality Characteristic
1 Real Example Harvest / Collection e Ash content of
+ USL! = 4% switchgrass
Sensitivity Loss at USL? = $20 e  Smaller-the-better
Analysis
2 [llustration of a Harvest / Collection e  Moisture content of
series system for ~ Target! = 40%; LSL/USL? = 37/ woody residues
a bio-depot 43%; from harvest until
+ Loss at Limits? = $5 end of
Galton’s theory ~ Transport preprocessing
Target! 30%; LSL/USL? = 27/33% e  Nominal-the-best
Loss at Limits® = $15 e Fictitious data with
Drying n = 100 for each
Targetl 30%; LSL/USL? =27/33% component
Loss at Limits? = $10
Densification
Target! 19%; LSL/USL? = 17/21%
Loss at Limits?= $20
3 Asymmetry — Densification — Cuber e Particle size at the
quadratic loss Target? = 13.5 mm; LSL/USL® = densification
function 12-16 mm process

Loss at Limits? = $20

Nominal-the-best
Fictitious data with
n =100

! Taken from Jacobson et al. (2014)
2 Assumptions made for the simulation
8 Taken from Tumuluru et al. (2011)
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CHAPTER FOUR
RESULTS AND DISCUSSION

Variation in product quality characteristics is a key factor in limiting the
technological and economic performance of biomass supply chain operations and biomass-
to-biofuel conversion technologies. Thus, controlling and reducing the underlying
variation of core quality characteristics was studied in this research, e.g., ash content,
moisture content, and particle size variation reduction has promising potential to increase
the viability of sustainable bio-based productions.

For example, increasing attention towards improving preprocessing technologies
and supply chain design concepts (Hess et al., 2009, Platzer, 2016) allow more efficient
supply of standardized feedstocks while simultaneously meeting the established
technological requirements of the biorefinery. Therefore, visualizing and quantifying
variation across supply chain operation units or production process units offer great

incentives to act and provide a solid foundation for managers to optimize their productions.

As part of this thesis an Excel simulation tool (available at www.spc4lean.com)
was developed to quantify the financial loss through feedstock variation for a simplified
series system, e.g., cellulosic biomass supply chain. The main goal of this simulation tool
is to expose practitioners to the effects of variation on the financial loss as exemplified by
Taguchi’s quality philosophy (Taguchi et al., 2004). Empirical examples are given for
estimating loss. An instructional handbook outlining continuous improvement techniques,
SPC, and Taguchi’s philosophy was developed to provide a template for practitioners of

the sustainable bio-based industries for the improvement of production systems.

A Guide for Using the Simulation Tool

Spreadsheet 1 — Content

The Excel workbook starts with the spreadsheet labeled ‘Content’ (Figure 30),

which provides an overview of all included spreadsheets. Each spreadsheet can be accessed
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through a bold and underlined hyperlink. Cell Al of every spreadsheet contains a hyperlink
called “Content”, which leads back to the content page. The workbook consists of an
introduction to the topic and a help guide for the simulation. Furthermore, a bootstrap
simulation for non-parametric data to compute the financial loss based on variation of
quality characteristics forms the main part of the simulation. Further data analysis can be
done on the spreadsheets ‘Sensitivity Analysis’ and ‘Galton Theory’. The spreadsheet
‘Computations’ provides the results of auxiliary computations of the mean, variance, or
covariance of each component of the series. The workbook is concluded with a ‘Summary’

of the simulation output.

Spreadsheet 2 — Introduction and Help Guide

The second sheet labeled ‘Introduction and Help Guide’ (Figure 31) introduces the
user to the advanced uniform feedstock supply system, traditional quality control,
Taguchi’s quality loss function philosophy, Galton’s theory, bootstrapping, and a help
guide for the simulation. The main simulation consists out of two parts which are the

following: User input and simulation output.

Spreadsheet 3 — User Input

Spreadsheet three labeled ‘User Input’ (Figure 32) provides the environment for
the user to set the parameters for the bootstrap simulation and to enter necessary variables
for each component of the series system. The sheet is structured in two parts. A help guide,
the first part, placed on the left on the sheet, consisting out of six steps and will help the
user navigate through the preparation process of the simulation. The empty space on the
right is reserved for an input-table created at step three of the help guide, which builds the
second part of the sheet.

The help guide starts with the introduction of key quality characteristics for the
cellulosic biomass supply chain and their respective quality loss functions, as well as
required input about general information of the analyzed quality characteristic, i.e., name

(ash content), unit of measurement (%), and currency ($). The next step determines the
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number of components for the series system; up to 12 components can be analyzed at a
time. The input-table is created by clicking on the button ‘Make Table Design’. The first
column of the table indicates a set of key variables, which must be provided by the user for
each component of the series. For greater individualization and a better reflection of reality
the user can independently select the quality loss function type (e.g., nominal-the-best,
smaller-the-better, and larger-the-better) for each component. Depending on the selection
several system related variables must be entered to run the simulation.

For nominal-the-best cases values for the target, upper and lower specification
limit, loss at upper and lower specification limit must be provided by the user. The
simulation allows the entry of symmetric and asymmetric specification limits. Taguchi
provides the equation [3] for calculating the loss based on the variance for symmetric cases.
For asymmetric cases the simulation computes the approximated loss for the data of either
side of the target (recall Figure 21) based on the variance and mean; a closer discussion
can be found in a later section of this chapter. For smaller-the-better and larger-the-better
cases the user only needs to input values for the target and the loss at target. Afterwards,
starting with cell J13 in the spreadsheet the user should enter the measured values of their
quality characteristic for each component. The hard-coded maximum size of a data set is
5,000 values.

After setting up the input table and entering all necessary parameters and values,
the number of iterations for the bootstrap simulation needs to be entered. Usually 5,000 to
10,000 or even more iterations are done to generate statistically acceptable results.

The goal of this bootstrap simulation is to simulate different “collected/measured”
sets of data to generate a range of values of a certain statistic, e.g., mean, variance, and
covariances of all components, to find the grand values of these statistics. Additionally, the
number of bins for the histograms of the statistics on sheet four Simulation Output can be
set by the user. The final step of the data input phase is to click on the button ‘Execute
Simulation’ to run the simulation. Primarily, the financial losses are computed as a total
and as the average per unit based on Taguchi’s quality loss functions. However, the
simulation will provide these losses computed with two different variances, i.e.,

independent components in a series system and dependent components based on Galton’s
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theory of components of variances. The code for the bootstrap simulation can be found in
appendix A.

These resulting losses based on Galton show how the variation of components in
the series system impact each other. Only simulation results for nominal-the-best and
smaller-the-better cases provide information about the impact of component dependency.
A summary of simulation is given with the creation of several charts and histograms.

Due to limited information from the literature, the main simulation from sheet three
uses the unweighted equation and treats each components variance as equal, i.e., each

component has the same impact on the final loss of the system.

Spreadsheet 4 — Simulation Output

Spreadsheet four labeled ‘Simulation Output’ (Figures 33 and 34) presents the
computational and graphical output of the data analysis based on the user input from sheet
three ‘User Input’ for each component of the series system. The orange colored area is
divided into two sections. The first section provides input values such as target, USL, LSL,
loss at USL or LSL, position and name of the component, as well as which quality loss
function type was used. The second part refers to the simulation output the computational
results such as constant k, average loss per unit and total losses based on the variance for
independent components and dependent components (Galton’s theory) in a series system.
The total loss per component is computed as the product of average loss per unit times the
number of the initial values of the original sample given on sheet three. The total loss of
the series system is displayed on the left and is the sum of the total losses of all components.
Below the computational output graphical displays of the quality loss function for each
component are shown. The first and second chart differs solely based on the data
distribution curve. The first chart shows the data distribution for the original sample, while
the second chart shows all values drawn within the bootstrap procedure. This allows an
interesting comparison between the real initial data distribution and the simulated data
distribution. The red graph emphasizes the quality loss function (first y-axis on the left)

and the lavender blue graph represents either data distribution. The grey bar stands for the
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target, the green bar highlights the lower specification limit, and the purple bar emphasizes
the upper specification limit. The second y-axis on the right stands for the number of quality
characteristic values (x-axis) of the original sample or drawn by the bootstrap procedure.
The simulation also produces several histograms. For nominal-the-best and
smaller-the-better cases the bootstrap distributions for the mean and the variances are
shown, as well as the grand-values of these statistics. Due to increased comparability the
bootstrap distributions of either statistic for both sides of an asymmetric nominal-the-best

loss function are each shown in one histogram.

Spreadsheet 5 — Sensitivity Analysis

Spreadsheet five labeled ‘Sensitivity Analysis’ (Figure 35) provides a sensitivity
analysis tool to estimate the average loss per unit of any component of the series relying
on the bootstrap simulation for estimates of the parameters. The sheet is structured in two
parts; a help guide on the right and an overview of the in- and output values on the left.
The first step is to run the bootstrap simulation from spreadsheet three to generate the
required input data for the sensitivity analysis tool. Step two is the selection of the
component of the series the user desires to analyze. By clicking on the button ‘Load Data’
the initial input values and the results from the simulation are shown on the left. The
embedded VBA code recognizes the chosen quality loss function type for the selected
component; the sheet automatically adjusts the output based on the type. For example, user
input such as target or specification limits and computed results like the mean, variance,
and losses are displayed to provide an overview of the respective component. The actual
sensitivity analysis takes place through step four and five, which can be executed as many
times as wanted. In addition to the loaded values on the left, the spreadsheet shows a variety
of changeable variables on the right under step four. This feature represents the actual
sensitivity analysis, i.e., the user can enter a value for any variable and compute the loss.

For example, in nominal-the-best cases, variables such as target, upper and lower
specification, loss at these specification limits, mean, and variance. The embedded VBA

code is sensitive to the given input, i.e., the code checks whether cell is filled with a value.
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By default, the code uses the initial values from the bootstrap simulation. However, if the
user entered a new and different value for any variable in step four, the code computes the
loss with this new value. This feature is enabled for all different quality loss function types.
Nevertheless, for asymmetric cases the user must specifically decide which side of the
quality loss function he wants to investigate by checking the dropdown list. The newly
computed average loss per unit is shown in an orange box. Above the orange box the
respective constant k is shown as well. This feature allows the user to analyze and see the
effects of variation on the financial loss. As an optional feature, the user can click on the
button ‘Save the Data’ to save the computed losses in a table. This allows the user to create
a table for sensitivity analysis. For each click on the button an internal count is incremented
by one to move to the next row to avoid overwriting of values.

The simulation can be restarted for a new set of data for a component of the series
system by clicking on the button ‘Reset Saved Data’ the whole table is cleared and the
count is reduced to one again. Depending on the quality loss function the table includes the
computed loss from the orange box, constant k, variance, and mean. However, since the
larger-the-better loss functions does not use either the mean or the variance to compute the

average loss the changeable variables are only target and loss at target.

Spreadsheet 6 — Galton Theory

Spreadsheet six titled ‘Galton’s Theory’ (Figure 36) analyzes Sir Francis Galton’s theory
of cumulative variances for a series system; recall equations [13] and [14], see (Stigler,
2010). The total variance for a series system is the sum of all variances and twice the sum
of all covariances between all components of the system. All variances of the system are
assumed equal in equation [13]. In reality, variances are likely to be unequal and specific
weights for each component will be included in the calculation. These weights show the
true impact of a components variance on the total system’s variance. Estimated model
coefficients based on a multiple linear regression (MLR) analysis are used as weights for
the loss computation. Since MLR only provides coefficients for the explanatory variables,

the weight of one is used to explain the impact of the variation at the final stage of the

57



system; the response variable. Coefficients of the MLR independent variables are the
weights, i.e., the total variation as a percent is 100%. The goal of this sheet is to compare
the approximated average loss per unit computed with independent variance (Galton’s
unweighted equation) with Galton’s weighted equation for a series system.

The spreadsheet is structured as the following: On the left side the user can enter
data for up to 12 components of the series. By selecting either yes or no for each component
the embedded VBA code recognizes the component selected for the MLR. Importantly, the
last component filled with data functions as the response variable, e.g., five components
are selected, the fifth component or column represents the data for the response variable.
All other components function as explanatory variables. As mentioned model coefficients
are used to determine each component variations’ impact on the total system variance. In
addition, values for the variables constant k and target must be entered for each component.
After entering all values and finished selection, press button ‘Compute Loss for a Series’
to execute the MLR procedure. The embedded VBA code uses the MLR procedure from
Microsoft Excel; the add-in ‘Analysis Toolpak VBA’ must be enabled. The created output
includes the MLR output, the covariance matrix, and several computed statistics. At the
top of the sheet the output for the computed losses for different variances (comparing
Galton’s equal variances with Galton’s unequal variances) are presented for both the

nominal-the-best or the smaller-the-better loss functions.

Spreadsheet 7 — Summary

The final spreadsheet titled ‘Summary’ (Figure 37) shows the main results from
sheet four. The loss for each component and the total loss for the whole series system are
displayed. This summary is in keeping with the theme of the thesis, i.e., to emphasize to
the practitioner the effect of variation and cost due to variation and components of

variation in the process.

58



Numerical Examples and Sensitivity Analysis

Empirical Examples

The following empirical examples were developed to highlight the capability of the
simulation tool. Losses in the empirical study are for the biomass supply chain and its
components for nominal-the-best (e.g., moisture content and particle size) or smaller-the-
better (e.g., ash content) quality characteristics. The assumption in the empirical study was
that the data sets for each component follow a non-parametric distribution using the
bootstrap to simulate the distribution of key statistics (N = 10,000 iterations). Effects of
changes in variance and/or shifts in mean are presented in the sensitivity analyses.

Example 1 illustrates Taguchi’s smaller-the-better loss function for varying ash
content of Switchgrass at the harvesting and collection operation for the biomass supply
chain.

Example 2 analyzes the effects of variation in moisture content of woody residues
on the loss for Taguchi’s nominal-the-best loss function for a simplified biomass supply
chain and its components. Woody residues are collected and transported to the ‘bio-depot’
for further preprocessing to generate in quality characteristics standardized products. At
the bio-depot the woody residues are dried and densified to pellets.

Example 3 demonstrates the use of Taguchi’s quality loss function to compute the
total loss based on the average loss per unit (i.e., equation [3]) for a component for nominal-
the-best quality characteristics in symmetric and asymmetric specification settings and is
compared to the total loss computed with the sum of the individual losses. Data for particle
size of cellulosic biomass at the densification process using a cuber is used to illustrate this

example.

Example 1 — Loss Caused by Variation in Ash Content of Harvested Switchgrass

The developed Excel spreadsheet was used to generate the bootstrap simulation and
generated losses, bootstrap statistics, and graphical outputs for the ash content of harvested
Switchgrass. The mean value from the bootstrap simulation is X = 3.35% and the variance
is 02 = 2.68%2. The parameters vary little compared with the mean x = 3.35% and variance
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a? = 2.70%? for the original sample. The smaller-the-better loss function is illustrated in
Figure 24 (i.e., Equation [7]) for ash content in red exponentially rising for greater ash
content values. The histogram in green represents the distribution of the original sample
data. Most of the data are below the USL shown as a black line of four percent and are
close to the mean depicted as a blue line. However, many values are outside of the
specification limit, i.e., above the USL. The financial loss for ‘out-of-spec’ data is
significantly higher than for data within specification limits. In comparison, the smoothed
data distribution in green for the drawn samples within the bootstrap simulation is shown
in Figure 25 and shows a peak around three percent ash content and is very similar to the
original sample distribution. Figures 24 and 25 illustrate how Taguchi’s smaller-the-better
quality loss function works and how extreme variation in quality characteristics impact the
final loss. For example, the loss for supplied Switchgrass with an average ash content of
three percent per batch (i.e., dry ton) is $11.25 with a cost constant k of $ 1.25 (%2?)™.
Accumulating in an annual loss for the assumed biorefinery with a demand of 250,000 dry
tons of cellulosic biomass of $2.8 million dollars. Now for a doubled ash content value
(6%) the average loss per dry ton would be $45. Increasing the annual loss, induced through
feedstock variation, for the same biorefinery by $8.5 million to $11.3 million dollars. Both
examples illustrate how dramatic the loss for smaller-the-better quality characteristics
increases for higher variations. Engineers and manager should see the loss as an indicator
for the component in the production system which has the highest impact on the economic
performance.

The average loss per unit (i.e., average loss per dry ton) based on Taguchi’s smaller-
the-better loss function (i.e., equation [8]) for the ash content of harvested Switchgrass
computed with the bootstrap statistics and a cost constant k of $ 1.25 (%2)* is $17.37 per
dry ton. The average loss per unit is high due to the skewness of the ash content distribution,
i.e., several Switchgrass samples had a higher ash content than the selected upper
specification limit (USL) of 4%. The annual total loss for the assumed biorefinery would
then be $4.3 million dollars, i.e., demand of 250,000 dry tons cellulosic biomass times
$17.37 per dry ton. The total loss assumes that the ash content of Switchgrass was not

reduced by preprocessing to increase the conversion yield.
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Figure 24. Smaller-the-better loss function for the ash content of harvested Switchgrass for the original

sample. Equation [7] is used to generate the loss function, e.g., L(4%) = $ 1.25 (%2)1*(4%)?= $20.
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Figure 25. Smaller-the-better loss function for the ash content of harvested Switchgrass for the bootstrap

data. Equation [7] is used to generate the loss function, e.g., L(4%) = $ 1.25 (%2)1*(4%)2= $20.
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A sensitivity analysis was conducted to illustrate the patterns of the average loss
per unit for the smaller-the-better quality loss function based on changes in the mean,
variance, USL, and customer loss at USL (Table 6). Each parameter was either increased
or decreased by 0.1 from their respective original value used to calculate the average loss
per unit of $17.37, while the other parameters were kept constant. The sensitivity analysis
indicates that the average loss per unit for ash content is more sensitive to small changes
in the mean and in the USL than to changes in the variance and customer loss at USL. Due
to the design of Taguchi’s smaller-the-better loss function the average loss per unit
increases for reduced USL, i.e., the cost constant k increases due to the USL value being
the squared denominator for unchanged customer loss at USL, recall equation [4].
Furthermore, the cost constant k shows greater increase and decrease in changes in the USL
than in the loss at USL.

Additionally, the average loss per unit increases the closer the mean gets to the
USL, i.e., the average value of all ash content samples of the batch deviates further from,
what Taguchi’s smaller-the-better loss function defines as the optimal target, zero.
However, running zero is theoretical as an operational target not achievable. For example,
it is very difficult to achieve cellulosic feedstocks with zero percent ash content to increase
the conversion yield at the biorefinery, i.e., cellulosic biomass possesses structural ash
content within their cells (Lacey et al., 2016). Cost-intensive pretreatment and optimized
harvesting schemes would allow for a reduction of the ash content, but these efforts to
decrease variation and to move the mean closer to the optimal target, to increase the
conversion yield of ethanol, may not be economically justifiable. However, prescreening
of feedstock vendors may be helpful in identifying those vendors that have the largest ash
content means and variance. The cost constant k, computed as the quotient of customer loss
at USL and USL squared, would be smaller because the deviation of the USL from zero is
greater than the deviation of the USL from any value greater than zero. Nevertheless, it is
more realistic given that zero ash content is not attainable.

Figure 26 illustrates the average loss per unit (y-axis) for each changed parameter
(x-axis) as a line. The average loss per unit follows a quadratic pattern for shifts in the

mean and USL, depicted by green and blue vertical lines, respectively. Changes to variance
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Table 6. Sensitivity analysis of ash content for harvested Switchgrass smaller-the-better loss function.

k  usLinpg “OSSAUSLINyieanin [%] Variance in[og2] 0SS Per unit
[$] in [$]
139 3.80 19.24
131 3.90 18.27
1.25 4.00 20 3.349 2680 17.37
119 4.10 16.53
113 4.20 15.75
124 19.80 17.19
1.24 19.90 17.28
1.25 40 20,00 3.349 2680 17.37
1.26 20.10 17.45
1.26 20.20 17.54
3.149 15.74
3.249 16.54
1.25 40 20 3.349 2680 17.37
3.449 18.21
3.549 19.09
2.480 17.12
2580 17.24
1.25 40 20 3.349 2680 17.37
2.780 17.49
2.880 17.62

Sensitivity Analysis of Taguchi Loss for
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Figure 26. Sensitivity analysis of the average loss per unit of Taguchi’s quality loss function smaller-the-

better for the parameters USL, loss at USL, mean, and variance.

63



illustrated as a black line and the customer loss at USL as a red line are linear. The
sensitivity analysis further indicated that the average loss per unit increases more
drastically for reduced USL values compared with the average loss per unit for higher USL.
This is depicted in Figure 26 by a steeper slope for a low USL and high average loss per
unit versus a more gradual slope for a high USL low average loss per unit. A smaller
operational upper specification limit or target imply reducing variation and a smaller
natural tolerance, i.e., higher natural tolerances impede target size reduction and does not
reduce cost. Figure 26 also suggests that the changes in the variance are less drastic to the
average loss per unit than to shifts in the mean. This implies that shifts in the mean to a
lower value would achieve large cost savings. However, reducing the mean is only
technical possible for reduced variation. Therefore, to achieve large cost savings variation
of the quality characteristic must be reduced first to be able to shift the mean closer to zero.

Example 2 — Biomass Supply Chain

The bootstrap simulation generated the bootstrap statistics and losses for a series
system with four components using simulated moisture content data. The selected
specification settings are suitable for woody residues. The generation of the bootstrap
statistics took two minutes for the Excel simulation using an Intel® Core™ i5-4300 M
CPU @ 2,60 GHz with 16,0 GB RAM. The series system consists out of representative
biomass supply chain operations such as harvesting/collection, transport, drying, and
densification.

Table 7 presents the means and variances for the original samples and the bootstrap
statistics, as well as the coefficient of variation of the four components. The coefficient of
variation for all components indicate a low variability around the mean values ranging from
4.79% for harvest/collection to 7.42% for densification. The mean values for the bootstrap
statistics for all components of the series are not different from the respective original
sample means. In contrast, the variance values based on the bootstrap simulation slightly
differ from the variances of the original sample for all four components. For example, the
variance of the original sample for the harvest/collection component is 2 = 3.67%?2 while

the bootstrap variance is 0 = 3.63%?. These results suggest that no bias for the mean values
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and a small bias for the variance values from the bootstrap simulation exist. The dataset for
harvest/collection has the highest variance (o2 = 3.63%?2) and the smallest mean deviation
(0.02%) from the target. In contrast, the smallest variance (c? = 2.12%?2) and the largest
mean deviation from the target (2 = 0.73%) is experienced at the densification component
(Table 7).

Table 7. Comparison of statistics for original sample and bootstrap data for nominal-the-best quality

characteristics moisture content of woody residues for a simplified biomass supply chain.

Harvest/ ) o
Component . Transport Drying Densification
Collection
Coefficient of
o 4.79 5.72 5.67 7.42
Variation in [%]
Bootstrap Statistic No Yes No Yes No Yes No Yes

Mean in [%] 40.015 40.015 30.123 30.123 29.817 29.815 19.726 19.726

Variance in [%2] 3.668 3.631 2972 2.945 2.858 2.835 2.141 2.118

The average losses per unit computed with the bootstrap statistics for different cost
constants k for all components of the series system are shown in Table 8. The highest
average loss per unit $13.23 is experienced at the densification component due to the high
cost constant k = $5 (%2)X. The other average losses per unit are $4.93 (k = $1.67 (%?)?)
for transport, $3.19 (k = $1.11 (%?)™) for drying, and $2.02 (k = $0.556 (%)) for
harvest/collection (Table 8). These results suggest that the cost constant k is a big driver in
the average loss per unit. The annual total losses for the supply chain based on the supply
for the assumed biorefinery would be $5.8 million dollars. The individual annual total
losses per supply chain operation are the following: harvest/collection with $505,000,
transport with $797,500, drying with $1.2 million dollars, and densification with $3,3
million dollars. However, to better understand variation in form of variance or mean
deviation the average losses per unit for all components was computed with equal k (Table
8). For equal cost constants the highest average loss per unit is experienced at the
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harvest/collection component. For example, the average loss per unit for the
harvest/collection with k = $2 (%2)1, mean of 40.02%, and a variance of 3.63%? is $7.26.
The lowest loss exists at densification with $5.29 with a mean of 19.73% and a variance of
2.12%. The findings suggest for the given output a higher influence of the variance on the
average loss per unit than the mean. Since equation [3] computes the average loss per unit
by adding the variance to the squared difference of the mean from the target. Because this
difference for all components is below one the squared results are even smaller, thus the
variance has a greater influence on the average loss. Thus, implying that for nominal-the-
best quality loss functions to save money reducing variation is imperative as it is thesis of
this research. Recall for smaller-the-better loss function only the mean, not the difference,
is considered, i.e., the mean represents the difference from the theoretical desired target

Z€ero.

Table 8. Average loss per unit using for different cost constants k bootstrap statistics for nominal-the-best

quality characteristic moisture content of woody residues for a simplified biomass supply chain.

Harvest/ . A
Component ] Transport Drying Densification
Collection
kin [$/%7] 0.556 1.667 1.112 5

Average losses per unit in [$] for different cost constants k

Original k 2.02 4.93 3.19 13.23
k=2 $/%? 7.26 5.92 5.74 5.29
k=5 $/%2 18.16 14.80 14.35 13.23
k =10 $/%?2 73.19 63.27 50.81 68.76

A sensitivity analysis was conducted to illustrate the patterns of the average loss
per unit for Taguchi’s nominal-the-better loss function (equation [3]) for changes in the
mean and the variance. Figures 27 and 28 depict these changes in average loss per unit (y-
axis) in terms of six sigma (x-axis) as continuous graphs, i.e., one sigma represents one

standard deviation. The standard deviations of the grand-variances were computed based
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on the spread from all individual bootstrap sample variances (N = 10,000) and for the
grand-means are the respective square root of the grand-variances (Table 9).

Figure 27 illustrates the quadratic trend of the average loss per unit (y-axis) for the
four components for continuous shift in the mean for nominal-the-best loss function.
Generally, for a mean exact on target the lowest average loss per unit depend on the
variance of the data. As previously indicated, the highest loss for minus six and plus six
standard deviation (x-axis) is at harvest/collection (blue line). Furthermore, drying shown
as a red line experience a higher loss at minus six sigma compared with transport depicted
as a green line, transport has a higher average loss per unit at plus six sigma. This is of
interest because both lines have a target of 30% and thus, the mean and variance can
directly be compared. The reason for this is simply, that the mean for drying is below the
target and the mean for transport is above the target (Table 7). Thus, the average loss per
unit for transport first gets smaller the closer the mean gets to the target. Table 16
(Appendix B) presents values for average losses per unit for an incremental change of the

mean in terms of six sigma for a cost constant k = $2 (%2)%, constant variances and targets.

Table 9. Standard deviations of the bootstrap grand-mean and grand-variance for the series components.

Harvest/ . A
Component . Transport Drying Densification
Collection
Standard Deviation
) 1.906 1.716 1.684 1.455
Mean in [%]
Standard Deviation
0.470 0.323 0.349 0.427

Variance in [%7?]
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Average loss per unit for shifted mean for the series

—Harvest/Collection (40.12%) — Transport (30.12%) —Drying (29.82%) — Densification (19.73%)
300.00

250.00 Average Loss per Unit = k = (Variance + (Mean — Target)?)

200.00

150.00

Average loss per unit in [$]

100.00

50.00

0.00

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Sigma change for mean shift

Figure 27. Quadratic pattern of the average loss per unit for nominal-the-best loss function for continuous
shifts in mean. Losses computed with bootstrap statistics and an equal k = $2 (%?)™.

Average loss per unit for changing variance for the series

—Harvest/Collection (3.63%) —Transport (2.95%) —Drying (2.84%) —Densification (2.12%)
14.00

12.00 Average Loss per Unit = k = (Variance + (Mean — Target)?) |

2

8.00

6.00

Average loss per unit in [$]

4.00

2.00

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
Sigma change for variance

Figure 28. Linear pattern of the average loss per unit for nominal-the-best loss function for continuous
changes in the variance. Losses computed with bootstrap statistics and an equal k = $2 (%2).

68



Furthermore, for changes of the variance the average loss per unit based on
nominal-the-best loss function follows a linear trend (Figure 28). As depicted as a blue
line, harvest/collection shows the highest average loss per unit for increased variances and
the steepest slope. In contrast, densification (grey line) has the smallest loss for decreasing
variance values but has the second highest loss for variance at the positive six sigma level.
The lines of densification, transport depicted as a green line, and as a red line drying meet
slightly below the positive three sigma level. Transport and drying have a more gradual
slope. The slope for the four graphs depends on the standard deviation of the variance, i.e.,
the smaller the standard deviation the more gradual the slope is. Table 17 (Appendix B)
presents the average losses per unit for an incremental change of the variance in terms of

six sigma for a cost constant k = $2 (%2)%, constant variances and targets.

Application of Galton’s Theory — Variance is Cumulative

The Excel spreadsheet titled ‘Galton’s Theory’ generated the average losses per
unit to investigate the influence of the variance based on Galton’s theory of cumulative
variances. This influence on the average loss per unit for nominal-the-best loss function
was computed with the statistics from the original samples (Table 7) and their respective
original cost constants k (Table 8). The average loss per unit for the following cases were
compared. Case 1) Series system with independent components (equation [3] without
Galton), i.e., variance is treated as non-cumulative. Case 2) Series system with dependent
components but with equal variances (equation [3] for the loss and [13] for the variance),
i.e., the variance of each component has the same impact on the total variance. Case 3)
Series system with dependent components with unequal variances (equation [3] for the loss
and [14] for the variance), i.e., the variance of each component has a different impact
(weight) on the total variance. These weights are model coefficients and stem from a
multiple linear regression model applied to the data of the series conducted with Excel.

The average loss per unit for component one, for all three cases, is $2.04 with a
variance of 3.67%?2 (Table 10). The losses are the same for all cases because Galton’s

Theory is not applied for just one component of a series, i.e., no other components impact
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the fotal systems’ variance. Despite having similar mean and variance values (Table 7) the
average loss per unit for the components transport is $4.98 compared with the loss for
drying of $3.21 is higher due to different cost constants k (Table 8). However, these losses
change when Galton’s theory is applied to compute the variances. For case two, variances
are equal, the average losses increase to $9.18 for transport with a variance of 6.64%?2 and
$9.11 for drying with a variance of 9.50%¢. The loss for drying is high since the variances
and covariances of components one to three are summed up without weights (Table 11),
recall equation [13]. For case three, variances are unequal, the average losses decrease to
$0.21 with a variance of 0.11%?2 for transport and $0.54 with a variance of 0.289%? for
drying. The low losses are explained by the small weights, i.e., the variances for the
components in case three are multiplied with squared model coefficients (Table 12).
Densification shows the highest average losses per unit throughout all three cases which
are the following: $13.34 case one, $48.30 case two, and $14.75 case three. Due to the
assumptions and design of the embedded code in the Excel spreadsheet the loss for case
three is high, since a weight of one was assumed. The highest average loss per unit is
experienced at densification for case two with $48.30. This value is based on the
accumulated variance values of all four components resulting in a variance for component
four of 62 = 9.13%2. However, the losses of each component in Table 10 were computed
with different cost constant k (Table 8). For an industrial application of Taguchi’s quality
loss function in combination with Galton’s theory each specification limit and loss at the
limit should be identified.

Tables 11 and 12 provide an overview of the composition of the calculated total
variances, i.e., variances used to calculate the average loss per unit under application of
Galton’s theory consist out of sum of variances of all components and sum of all
covariances. Table 11 shows the sum of variance of each component (row 2). For this value
the variances from Table 5 are summed up without weights. Each components’ total
variance is then impacted by the sum of all covariances, i.e., for drying covariances would
exist between the first three components. For this case the negative covariances reduce the
total variances and thus reduce the average loss per unit for each component. Table 12

shows the total variance for case three. The model coefficients for harvest/collection
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Table 10. Average loss per unit for nominal-the-best loss function for application of Galton's theory.

Harvest/ . A
Component ] Transport Drying Densification
Collection
Case Average loss per unit in [$]

Independent

2.04 4.98 3.21 13.34
Components
Galton for

. 2.04 9.18 9.11 48.30

equal variance
Galton for

2.04 0.21 0.54 14.75

unequal variance

Table 11. Breakdown of ‘Galton variance' for a series system with equal variances.

Harvest/ ) o
Component ) Transport Drying Densification
Collection
Total Variance 3.668 5.490 8.165 9.133
Sum of Variance 3.668 6.639 9.497 11.638
Doubled sum of Covariance -1.149 -1.332 -2.505

Table 12. Breakdown of '‘Galton variance' for a series system with unequal variances.

Harvest/ ) o
Component ) Transport Drying Densification
Collection
Total variance 3.668 0.110 0.289 2.422
Sum of variance 3.668 0.075 0.183 2.141
Doubled sum of Covariance 0.014 -0.004 -0.008
Model coefficient -0.0764 0.159 -0.253
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(-0.0764), transport (0.159), and drying (-0.253) are very low. These low coefficients (i.e.,
weights) reduce each components variance and covariance. This indicates that each

components’ variance has a small impact on the total systems variance.

Example 3 — Quantifying Loss in Terms of Variation for Asymmetric Nominal-the-Best

The Excel spreadsheet was used to generate bootstrap statistics and Taguchi losses
using the same dataset of the particle size for woody residues for symmetric and
asymmetric cases. The output of the symmetric and asymmetric specification settings was
used to compare the total losses and average losses per unit to identify the suitability of the
nominal-the-best loss function (equation [3]) for asymmetric cases. All tables include the
bootstrap simulation output for three specification settings, i.e., 1) symmetric specification
of the nominal-the-best loss function (n = 100), 2) upper (n = 57), and 3) lower side (n =
43) for asymmetric specification of the nominal-the-best loss function. To compute the
losses and statistics for each side of the asymmetric case the values below and above the
target (13.5%) formed an individual dataset.

Table 13 presents the means and variances for the original sample and the bootstrap
simulation. The mean value for the bootstrap statistic (N = 10,000) for the symmetric case
is the same as for the original sample with 13.94 mm. In contrast the mean values for the
bootstrap statistics and original samples for the asymmetric cases are different. For
example, the grand-mean value from the bootstrap simulation for the asymmetric lower-
side case is 12.50 mm and the mean of the original sample is 12.51 mm (Table 13). A
negligible difference of just 0.01 mm. In contrast, the variance values for the bootstrap
simulation differ from variances of the original samples for all three cases. Compare the
asymmetric upper side case (Table 13), the bootstrap variance is 0.266 mm and variance
for the original sample is 0.289 mm. These results suggest that a small bias for the mean
and variance values exist.

The cost constants k and the average losses per unit calculated with the bootstrap
statistics for all three cases from Table 13 are shown in Table 14. The average loss per unit
for the symmetric case is $10.32 (k = $5 (%2)}), for the asymmetric lower side $9.61 (k =
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Table 13. Comparison of statistics for original sample and bootstrap data for symmetric and asymmetric

nominal-the-best quality characteristics moisture content (woody residues).

Asymmetric
Case Symmetric
Lower Side Upper Side
Original sample size 100 43 57
Bootstrap Statistic No Yes No Yes No Yes®
Mean in [%] 13.939 13.939 12.513 12.504 15.014 15.021
Variance in [%?] 2.082 2.061 0.289 0.266 0.727 0.690

Table 14. Average loss per unit and cost constant k for symmetric and asymmetric using bootstraps

statistics for nominal-the-best quality characteristic.

Asymmetric?

Case Symmetric!
Lower Side Upper Side
Original sample size 100 43 57
k [$/%7] 5 8.89 3.2
Average loss per unit [$] 10.32 11.18 9.61

! Target = 14 mm; USL = 16mm; LSL = 12mm
2 Target = 13.5 mm; USL = 16mm; LSL = 12mm
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$3.2 (%2)1), and for the asymmetric upper side is $11.18 (k = $8.89 (%2) ) (Table 14). The
average losses per unit were computed with the equations [3] (symmetric case), [15] and
[17] (asymmetric cases).

Despite having a smaller cost constant k, less than half, the average loss per unit for
the upper side is almost as high as for the lower side. This stems from a two and a half
times larger variance for the upper side data (Table 13). The average loss per unit for the
symmetric case is mainly driven by the variance of the data around the target. The loss is
based on a small difference (0.06mm) of the mean from the target (14%) and a variance of
2.061mm. This could support the statements made in example two, that the nominal-the-
best quality loss function is more sensitive towards the variance than to shifts in the mean.

Table 15 presents the total losses for all three cases. The first total loss presented
(third row in the table) is calculated based on the average loss per unit, i.e., the average
loss per unit from Table 14 times the number of samples of the specific data set. The second
total loss presented (fourth row in the table) is the sum of all losses based on the individual
quality characteristic value. The equations [2] (symmetric), [5] and [6] (asymmetric) were
used to compute the individual losses. Since Taguchi presented his nominal-the-best
quality loss function to compute the average loss per unit for symmetric cases, the question
was if this equation [3], adjusted, could be used to calculate the average loss per unit for
each side for asymmetric cases. Thus, both approaches were compared to investigate the
suitability of computing the total loss based on the average loss per unit for asymmetric
nominal-the-best loss functions. Often the literature suggests for asymmetric cases to
compute the loss based on the sum of all individual losses or more complex equations.

The total loss based on the average loss per unit for the symmetric case is $1032,
while the total loss for the individual values is $1032.26. The difference (fifth row in the
table) is only $0.26 or in other words the difference is 1%. This suggests that equation [2]
is a good estimator of the total loss with emphasize on the data variation. The total losses
for the lower side are $480.80 to $479.90 with a difference of $0.90. The losses for the
upper side are $547.90 to $547.20 with a difference $0.70. These results suggest, that
Taguchi’s nominal-the-best quality loss function (i.e., for more than one unit) is suitable to

compute the total loss of the variation for asymmetric settings.
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Table 15. Total loss comparison for symmetric and asymmetric hominal-the-best quality characteristics.

Asymmetric
Case Symmetric
Lower Side Upper Side
Original sample size 100 43 57
Total loss! based on average
o 1032.00 480.80 547.90
loss per unit in [$]
Total loss? based on sum of
o ) 1032.26 479.90 547.20
all individual losses in [$]
Difference in [$] 0.26 0.90 0.70

! Recall equation [2]; L = k * (c>+H(y — m)?)
2 Recall equation [1]; L(y) =k * (y — m)2
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CHAPTER FIVE
CONTINUOUS IMPROVEMENT HANDBOOK

This continuous improvement handbook (Appendix C and Attachment File 3) is
intended to introduce statistical process control procedures, lean management tools, and
Taguchi’s quality loss functions to practitioners of the sustainable bio-based industries.
This handbook shall function as a useful guide to monitor and reduce material or process
variation. The following pages are intended as an introduction to use of the handbook
(Figure 29).

The handbook starts with outlining recent economic developments for the
sustainable bio-based industries and emphasizes the importance of variation in
manufacturing. Variation is crucial since it exists in every component of the production
and is an important factor in determining the success of an enterprise, i.e., differences in
material quality, process execution, or even human actions affect the companies’
performance. Therefore, being able to visualize, detect, and quantify variation is vital for
the competitiveness of an enterprise. Practitioners are encouraged to apply the developed
simulation tool to quantify the variation of the components of their production systems.

Continuous improvement is introduced as a never-ending process and philosophy
of little steps towards incremental improvement of the companies’ production
performance. For a successful application of the continuous improvement philosophy
companies of the bio-based industries must fulfill certain requirements first. Continuous
improvement is a philosophy or a culture which all entities (e.g., management, workers,
etc.) of the enterprise must live, i.e., the success of continuous improvement is significantly
hampered if this requirement is not fulfilled. Furthermore, continuous improvement
requires a great IT-infrastructure for data storage and application of real-time data mining
(Young, 2015). The results and inferences drawn from statistical methodologies and tests
must be accepted by management and workers (Young, 2015). The following paragraphs
give a brief introduction and provide a sequence for the application of key continuous

improvement techniques.
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The company must meet
Illustrate the production or process
the requirements for
with a process flow chart
ontinuous improvemen
Visualize variation of the key Link key process variables with the
variables/ attributes with control desired product attributes (based
charts on the customer view)
Quantify this variation with Map the sources of variation
Taguchi’s quality loss function (use (which induces most costs) with an
the simulation tool) Ishikawa diagram
Develop countermeasure to reduce Prioritize the sources using a
or eliminate the main sources Pareto chart
Apply the

Plan-Do-Check-Act-

Cycle

Figure 29. Flow chart on how to use the handbook.
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Start continuous improvement by using the process flow charting technique to
illustrate the logical sequence of all components of the production or process. Standardized
symbols are usually used to represent specific actions, e.g., a rectangular emphasizes one
component (process step). Subsequently, link key process variables with by the customer
desired main product attributes (Young, 2015). Changes in key process variables have
direct impact on the product attribute. Linking process variables with product attributes
emphasizes the production of products based on the customers’ view, i.e., ask is the
customer willing to pay for the product or service.

The next part of the handbook introduces the reader to relevant statistics used to
describe data distributions such as the mean, standard deviation, or variance, etc.
Histograms are used to show data distributions (e.g., normal distribution). For normal
distributions roughly 99.7% of the data values lie between three standard deviations. The
control limits of control charts represent three standard deviation. Shewhart’s control
chart is a tool to visualize natural-cause and special-cause variation. The control limits
distinguish both types of variation based on the three-standard deviation. Common
univariate control charts and run rules to detect special cause variation are presented. X-
individual and moving range charts are used to provide examples for control charting.

The next chapter discusses the fundamental difference between the traditional
quality view and the continuous quality view developed by Genichi Taguchi. Traditional
quality is defined as conformity to specification, i.e., all products within specification limits
are equally good and cause no loss. In contrast Taguchi’s view on quality is that every
product deviating from the target causes loss, i.e., the further the deviation the higher the
loss. Page 15 of the handbook gives an overview of the three quality loss functions
provided by Taguchi. The developed simulation model uses these quality loss functions to
quantify the variation of components of a series system to identify the component inducing
the most costs in the system. Taguchi’s quality loss functions are explained with an
example on the page 16.

Variation reduction starts by identifying the sources of the visualized and quantified
variation. The Ishikawa diagram helps to categorize the sources (not symptoms) causing

the variation; brainstorm as a team. After mapping the sources apply the pareto chart to
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prioritize the sources. Roughly 80% of the variation can assigned to 20% of the sources.
Based on the information given by the pareto chart countermeasures can be developed to
eliminate or at least reduce the top source for variation.

Finally, apply the Plan-Do-Check-Act-Cycle to implement the ongoing journey of
continuous improvement. Continuous improvement is a never-ending process. As an
addition the Theory of Constraints is introduced to identify and optimize bottlenecks in

the production.
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CHAPTER SIX
CONCLUSIONS AND RECOMMENDATIONS

This study developed strategies for continuous improvement and improved
competitiveness of the sustainable bio-based industries. A simulation tool and a continuous
improvement handbook applying ‘lean methods’, statistical process control, and Taguchi’s
quality loss functions were developed to support practitioners in their efforts to reduce
variation from feedstock supplies.

The simulation model is a great tool to quantify the financial loss induced by
variation of key feedstock quality characteristics for the biomass supply chain and its
components and to identify the component creating the greatest loss in the system. The
handbook is a useful manual for practitioners introducing techniques to analyze, visualize,
and quantify variation. Continuous improvement techniques are suitable tools to quantify
feedstock variation of the sustainable bio-based industries.

Three empirical examples were used to illustrate the capability of the Excel
simulation tool and Taguchi’s quality loss functions nominal-the-best and smaller-the-
better. Example number two emphasizes Galton’s theory of cumulative variances.
Sensitivity analyses were conducted on the simulation outputs.

Example One. Industrial data for the ash content of Switchgrass from the harvest
and collection operation were quantified with Taguchi’s smaller-the-better loss function
using the Excel simulation tool. The average loss per unit was found to be $17.37 per dry
ton with a cost constant k of $1.25 (%2)%. The annual total loss for the assumed biorefinery
would be $4.3 million dollars, i.e., demand of 250,000 dry tons cellulosic biomass times
$17.37 per dry ton. The smaller-the-better loss function is more sensitive towards shifts in
the mean and changes in the USL than to changes in the variance and customer loss at the
upper specification limit. Great cost savings can be achieved through reduced mean values
of the quality characteristic. Nevertheless, variation must be reduced first for data with a
mean approaching the desired target (i.e., zero). The average loss per unit responds in a
quadratic pattern for shifts in the mean and changes in the upper specification limit. In
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contrast, the average loss per unit showed a linear pattern for changes of the variance and
customer loss at upper specification limit. Furthermore, samples with quality characteristic
values outside of the set specification limits induce significant higher losses than data
within the specification limit.

Example Two. Simulated data for the moisture content of woody residues for an
example biomass supply chain were quantified with Taguchi’s nominal-the-best loss
function for different variances based on Galton’s theory of ‘cumulative variances’. The
average loss per unit for the nominal-the-best loss function is influenced more by changes
of the variance than to shifts in the mean for the given data output. Generally, both the
mean and variance of a quality characteristic impact Taguchi’s loss. The highest loss for
the supply chain is experienced at densification with $13.23 per dry ton. The annual total
loss accumulated for all supply chain operations is $5.8 million dollars. Furthermore, the
loss responds quadratic for shifts in the mean and linear to changes in the variance.
Example two showed that applying Galton’s theory of ‘cumulative variances’ has an
influence on the computed Taguchi losses. The average loss per unit using unweighted
variances is much higher than for independent components, due to the simple addition of
the variances and covariances. For example, the loss for densification independently
computed is $13.34 (02 = 2.12%?) compared to the loss for unweighted variances is $48.30
(c% = 9.13%2). The average losses per unit using Galton’s weighted variances indicated
much smaller losses for component two, three, and four of the series compared with the
losses based on Galton’s unweighted variances. Galton’s theory can provide a better
understanding about the dependencies of the different variances in a series system.
However, to justify the application of Galton’s theory the simulation must be repeated with
real data from a supply chain.

Example Three. Simulated data for the particle size of woody residues for one
component with symmetric and asymmetric specification settings was quantified with
Taguchi’s nominal-the-best loss function. For example, the estimated total loss for the
upper side of the asymmetric loss function for simulated data is $480.80 compared to the

more precise total loss based on the sum of individual losses $479.90. Resulting in a
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neglectable difference of $0.90. Thus, applying the nominal-the-best quality loss function
to quantify loss based on variation of a data set is suitable for asymmetric specifications.

The results of this study suggest that using Taguchi’s quadratic quality loss
functions to be a good fit for computing the loss for feedstock quality characteristics based
on variation. Furthermore, the use of Taguchi’s quality loss function (i.e., nominal-the-best
and smaller-the-better) emphasized the impact of variation in quality characteristics of
cellulosic biomass on the supply chain operations and cost. Variation must be understood
as the deviation of the average value from the target and the variability around such average
of the quality characteristic. Thus, enterprises should strive to reduce variation of the
quality characteristic or process while shifting the mean closer to the desirable target. The
simulation tool and handbook will help practitioners in the industry to quantify the
individual and total losses for their production system. Furthermore, applying sensitivity
analysis will help the industry to understand how variation and Taguchi’s quality loss
functions impact loss.

A major limitation of this research is the lack of industrial data for each quality
characteristic for the various components of the biomass supply chain. Given industrial
data, the biomass supply chain and its components could be quantified, using the developed
simulation model, based on variation of the key quality characteristics ash content,
moisture content, and particle size. This quantification would allow enterprises to identify
the quality characteristic inducing most loss for each component, as well as to identify the
component which induces the most loss for the whole biomass supply chain. Based on the
gained knowledge engineers and managers could apply the continuous improvement
techniques presented in this thesis and handbook to develop strategies for variation
reduction to achieve great cost savings. Furthermore, a comparison of different types of
linear and quadratic loss functions may help practitioners develop their own loss function

applicable for their processes.
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Quantification of the Quality Characteristic Simulation
Aproach with Taguchi's Quality Loss Function

Content:

Introduction and Help Guide

User Input

Simulation Output

Sensitivity Analysis

Summary
Galton Theory

Computations

Developed as part of the master thesis:
Application of continuous improvement technigues in the bio-based and wood
products industry

Christoph Metzner
The University of Tennessee

Center for Renewable Carbon

Figure 30. Excel simulation tool; spreadsheet 1 — content.
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Introduction and Help Guide

Introduction

Cellulosic biomass supply chain cracially e e e
impacts the final bioFuel yicld throughout L M
all conversion technologies. Especially w"-

the biomass quality characteristics ash _,/"a
content, moistare content, and particle = v
size determine the succesz of the biofuel .m
production. Howerer, controlling the e

rariation of Feedstock guality .“

characteristics of woody residues or e
switchgrazs is one of the major obstacles .“ . T |_F|-r| | S e—
to increase and optimize biofuel g o | |== =5 J— —
production and its ypield. 4
Conti impror t techni
provide great tools to riswalize and .“}

quantify rariation. Statistical process -,

control [BPC) riswalizes rariation with — AT Ay
control charts and Tagucki's quality M e P
philosophy iz able to guantify the
rariation. This simulation wses Tagucki's W Noviucoums fesisiors: mnd Mgy {rop

quality loss fanction= to illestrate the Ursrprm-Farmat

impact of rariation withis the context of a Avanced Farm il Gaie -, Beer Py Sald
zeries system For each indiridual =y m m 1 — | [Tt || iy 1
component on financial loss. The goal of | (demes | | E— | |
thiz simulation iz to emphasize the t 1

importance of rariation within 3 product

Help Guide

The user can bootstrap non-parametric data, i.c. data which iz ot following 3 distribation type, to
compute the loss For 3 quality characteriztic or process k several components and indivindally determine

the Incc ramced he variatine Fark chest nravids individeal ischrectine s

Step Start the simulation with sheet £%5=r fopad: setup simulation inpu
Step Bun the simulation. Results are printed on the sheet Sapedarion {4

Step Print a Semmary of the simulation output.
Step Conduct a Seasfnwie Analesis to investigate the impact of varia

Step Investigate HSafon s Fheary of cumulative variance in a series 5

raditional Quality Contre

Traditionally product guality iz seen 3=
the conformance to certain specification E;_'[;,a]_'l_].'ﬂgcd Eq__'[a'l]\ had
limits. Products within specifications are Loz (-3} ™o Laoss o Loag Loss (-3)
treated equally good, while products
outzide specifications are treated equally
bad i the sense of Financial loss

Lower Specification  Target (m) Upper Specification
Limit Limit
A =Target- LEL A =TJ5L - Target

Figure 31. Excel simulation tool; spreadsheet 2 — introduction and help guide.
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Moisture Content (Woody Resid US}‘
s ~
$

~

Execute Simulation

Variables
Name
Loss Function Type
Target
Upper Spec Limit (USL)
Lower Spec Limit (LSL)
Loss at USL / Target
Loss at LSL
Enter your values here

Component 1

Harvest | Collection Transpart

Mominal-the-best

Hominal-the-best
40
43
37

401
40.3
40.9
413
423
453
333
334
367
Tl
378
3839
401
423
426

43
36.5
378
381
385
42.1
427
4.5

Component 2

Component 3

Drving

Mominal-the-best

Component 4

Densification

Mominal-the-best

201
203
20.4
209

213

fal

183

13.z

13.5

183

BT

8.3

18z

18.4

1rE

175

Figure 32. Excel simulation tool; spreadsheet 3 — user input.
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Ash Content (Switchgrass

Tatal Loss

$ 4,502.82

Total Galton Loss

$33,627.15

Taguchi's Mominal-The-Best Loss Function Taguchi's Nominal-The-Best Loss Function
140 5 50 F.l
120 “
0 200 16
100 14
B m 15— Tangst & 150 1z —Tamgst
") — 5 - 10—
5w W g 3 o0 B L
« — F i
5 50 o
Fol —— Qiginal Samples N ——onginal amples
o o o a
o o an B0 a0 o m &0 w0
Ash Content {Switchgrass [%] Beh Content (Switchgrass [%]
Taguchi's Mominal-The-Best Loss Function Taguchi's Nominal-The-Best Loss Function
Bootstrap (n = 10000) Bootstrap (n = 10000)
140 £000 50 3500
120 80 3000

Lass [5]

00

100 o 2500

500 ——Target — —Target
0 o 150 2000

00—l E —l5
&0 1500

1500 s Li5L oo ——i5L
& 1000

W00 e . R
o 500 Bootstrap Data = e Bootstrap Data

o a o a
o Y 4 &0 =0

0O W I 30 40 50 &1
Ash Content (Switehgrass [%] Ash Content (Switchgrass [3%]

Figure 33. Excel simulation tool; spreadsheet 4 — simulation output — average loss and loss function for

component 1 and 2.
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Grand-Mean = 40,02 Bootstrap (n = 10000]) Grand-Mean = 30,12 Bootstrap (n = 10000)

3000

|| 2500 |
.I‘ |I. . |I‘ ‘II

28.51 25.63 2975 F9.BE 30 30.12 30.24 3035 3049 30.61 30.73

000

IS0

"

=}

]
W
1
=

Freguency

5 &

a B
Frequancy

a n

2 B

&

5
w
g
E]

o
3535 35 51 39,66 3.8 3555 40.1 £0.34 40.33 40,59 40 68 40 53

Bootstrap Means Bootstrap Means

Grand-Variance = 3,63 Bootstrap (n = 10000) Grand-Variance = 2,94 Bootstrap (n = 10000)
4000 I00
3500
3000

Freguency
b oE oM N
a W a 1"
2 8B B 8
Frequency
P
HoB

E B

&
5

2500
1000
I 500 I
I - - I ] —

218 2465 311 357 404 45 £37 543 5.B5 6535 GET 181 20 2.3 255 279 304 233 353 37E 402 437

Bootstrap variances Bootstrap wariances

Figure 34. Excel simulation tool; spreadsheet 4 — simulation output (2) — bootstrap statistic distributions for

component 1 and 2.
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Content

Component - Name

Harvest / Collection

Sensitivity Analysis

Sensitivity analysis can be conducted for one component; depending on the quality loss function important
variables can be analyzed to determine their effect on the loss. Key variables are the variance and mean.

Run the beotstrap-simulation.

r

% Step 2: Select the series component which you want to analyze. 1 .
o2

Step 1:
Target 40 % k 0.556 §/%2
usL 43 % Mean / Y-bar 40.017
LSL 37 % Variance 3.634
Loss at USL 5 S Galton Variance 3.634 %2
Loss at LSL 5 S Step 3:
new k Y o200
Loss per unit 2.02 S Step 4:
i . 2.02 P
Loss after Galton per unit 2.02 S
The loss for the "Nominal-the-best' Loss Function is computed as the following:
L=k * (variance® + (mean - target)?)
Loss k Variance Mean Target
2.02 0.56 3.634 40.017 40.00 Step 5:
1.46 0.31 3.634 40.017 39.00
1.54 0.20 3.634 40.017 38.00
Step 6:
Step 7:

Click on button to load the data in.

Load Data

" Enter new values to analyze the effect of variation on the loss.

Target UsL
38

Loss at USL Mean

Compute the loss.

" save the input values and loss result in table.

Save data to another sheet or reset the table.

Variance

Compute the Loss
Save the Data
Reset Saved Data

Figure 35. Excel simulation tool; spreadsheet 5 — sensitivity analysis - component 1.
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aadeal Galton’s Theory and Input
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Figure 36. Excel simulation tool; spreadsheet 6 — Galton's Theory.
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Content

Quantifiying the Loss of Quality Characteristic Variation for a Series System
Results

loisture Content (Woody Residue 2018-07-23
Total Loss:
The varigtion in this series system causes a financial loss ater shipment of the products in amount of;

TotalLos Total Loss after Galton
233522 5 830800 §
Cammert: This amount solatesthe ocouring This amount cansiders the influence
variation on each individuzl of the variation of each component
COMmponent. on each other in aseries system.

Individual Loss per Component:
Loss Function Loss perunitin  Galton Loss per

Total Loss after

Compaonent Type 5% unit in [$/3)] Total Loss in [5] Galten in [$]
Harvest f Collectior NTB 202 202 201491 20191
Transport NTB 4495 10.99 483 .19 109949
Drying NTB 5.19 10.52 518 67 105191
Densfcation NTB 13.21 60.46 132145 6045 68

Further Comments:

Figure 37. Excel simulation tool; spreadsheet 7 — summary.
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The following code was developed for the bootstrap simulation from spreadsheet 3 and

the graphical output from spreadsheet 4.

0303 00 00 0 00 e o o o P P ol et et ot ot et

s
D T A L i S0 D TR LA L =SS 00 O A e L = S0 00 L e b =

51

O\%MMMMMMMM
[l =1"=1--TN]= QNI o}

62

Private Sub Do_Sinmilation Click()

' Clears Coorent of Sheets for next Simmilaton Exenumion

Workshests (“"Computations") Fange"B3M100'). Clear

Workshests (“Sinmlation_Outpaus'). Fangs"44:DE167). ClearContents
Wotkshests " Sunmmary™) Fange" 421 H3 7). ClearContenss

Um Emror Besmme MNext

Workshests (“Sinmlation_Outpas"). CharrObjects. Delete

Om Ermer GoTo O
' Delete call color

Worksheets ("Sinmilstion_Chipas") Calls Interior ColorTndes = 0

' Declaration of the variables for the simmilation
' Parmsanent user inpat variables

Dim mon com As Integer

Dnim boot_iter 4s Long, boot_iter_sr 4=z Sming
Dim char umit As Soing

Dim oErency_undt As Soing

Dim char_name 4z Sming

' Loop variables

Dimm col As Integer

Dim m_asy_col As Integer
Dimn_col As Infeger

Dimk 4s Long k_sir As Stming

Dim boot_j As Long

Dhim resa_j As Infeger

Dim i As Integer

for NTB

Dnm dist Az Integer

"Single user input for components of colunm m
Dim com_name 4: Smng

Dhim loss_type As STing

Dim target Az Double

Dim TrSL As Double, LSL As Double

Dim Loss_TT5L As Double, Loss LST As Double
Dnm size_boot Az Integer

Dim size boot_up As Infsger

Dhm size_boot_low Az Infeger

Dhim size_orig_impuh) As Variant

Dhim size_orig_m As Integer, mg_orig m As Range
Dhim size_orig n 4s Inteper, me_oriz o 4s Bange

' Compeation Vartables

Dhim constant k As Double

Dim cons_k nap As Double, cons k low As Double
Dim connt_asym As Integer

Dnim mean() As Double, Varianca() As Double
Dim g_Mean As Double, g Vanance Az Double
Dim g_Covaniance As Double

Dim sumvar As Double, sum_cowvar As Double
Dhm war_gal As Dioabla

Dhm sum_larger As Double, g_Loss_lsrger As Double
Dhm war_orig As Double

Dim Loss_orig As Double, Loss_zal As Double
Dim Loss_largen(]) As Double

' Warizbles for asynunetric cases

Dhim count upper As Integer

Dim connt lower As Integer

Dim Mean upper) As Double

Dimm count As Infeger, n_count As Integer

Dim g_mean up As Douable, g mean low As Double
Dim g_wvar_up As Double, g var_low As Doable
Dhim g_covar_up As Double, z covar_low As Doable

Dhim sumvar_up As Double, smm varlow As Double

! Mmnber of components selected

' Mimnber of bootswap iterations selected
' Uit of characteristic

' Currency selected

' Mame of chamacterizsuc

' mith cobumm of original sample

' mih colunm of original sample for asymmetric cases

' nih colunm of oniginal sample (needed to compube covariance)

" General loop varisble

' Boodsirap teration varisble

' Resampling iterations based on bootstrap sanmple size

' Loop varishls to detemiine the sample size for upper and lower dist

' Dristances between conmponents displayed on sheet
"Sinmlation_O -

' Mame of component

' Loss Punction fype

" Target

'USL/LSL of Component
' Loss at spec limdt

' Bopotstrap sample size (Mininnon of all original sample data sets)
' Bopotstrap sample size for greater than targer

' Bopotstrap sample size for lower than targst

' Array which holds original samiple sizes to detenmine niininmm
! Size and Fange for colunmm m

' Size and Fange for columm n

' comstant k for NTB / STB/LTBE

' Check for Asynmemy . necessary for NTB asymmetmic casas

' Conmter for Asynmmstry

' Arrays which hold all means / variances from each bootsoap sanple
' Grand Mesmn and Variance for colunm m

' Grand covariance berween msh and nth columm

' Sum of variance and covariance fior mith conmponent

' Wariancs by zalton's theory (seres systen)

' Commparted loss for components with and without Galion

' Cionmis walwes in orizinal sample shove the targst

' Conmes walues in original sample below the targer

' Array which holds bootsrap statistc mesn for TISL side

' Array which holds bootsrap statistc mean for LSL side

' Array which holds bootsrap statistic variance for TAL side
' Array which holds bootsrap statistc variance for L5 side
' oopumts for armay above [ below target

' Grand mesn for upper and lower dissribasion

' Grand wariance fior upper and lower dismibubion

' Grand covariances for upper and lower distribution

' Sum of vartances for upper and lower side

Dhim sum_oovar_up As Double, s oovar_low Acs Double " simn of covansnces for upper and lower side
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Dim var_gal_up As Double, var_gal low As Double ! Gualton variance for wpper and lower side

Dim var_oriz up As Double, var_orig_low As Double " Miormal varisnce for wpper and lower side

Dim Loss ong_up As Dwable, Loss_oriz_low As Double " Mormal loss for NTB asynmmetric cases

Dim Loss_gal wp As Double, Loss_gal low As Double " Galton loss for WTH asynumetnic cases

' Variables necessary to make graphs

Diim max val m As Double min val m As Double " MinMax value of colmm m

Dim bin width Az Double, places_amay As Integer " Bin witdh for histopgrams, Nomber of places in amay
Dim x_walues() As Double, Loss_vales() As Double " Arrays for x{characteristic) and yloss) values

Dim step_valne Az Double, mm_bins " Each value in the ammays, determined mumber of bins

Dhim places_srray_min As Integer
Dim places_srray_max As Integer
' Array for frequency per bin; Ammay for central value to get curve of original sanple / bootsoap distmibution

Dim freq amray() As Double, or_his_arr() As Double " Arrays which contaim valnes to create histogram |/ sample
dEtrbution

Dim freq histo_orig() As Vartant " Array which hold valnes from original sample

Dim freq histo_boot) As Variant " Array which holds all values from all bootstrap samples

Dim Orig_Loss As Chart, Boot_Loss As Chart " Defined charts

Dim boot_val_arm() As Variant, boot_val_am LTH As Vanant "LTB amays

Dim boot_val coumnt As Long, boot_val_comt_LTE As Long " Conmt necessary to fll amays

Drim boot_dist_arm_size Az Long " Array size determined through bootsrap iterstions *
bootsrap sanple size

Dhm x_walues max() As Double " Array which holds x-values to caloulate the loss function

Dim Loss values_max() As Double " Array which holds conmputed loss for each x-valnes

Dnim calc_target As Diouble " Meeded to compuse the loss function for asymmetmic case for
upper side

Inm Total loss series As Double " Total loss of all components

Dnim Total Gal_loss_senes As Double " Tiotal loss of all components affer galion

Dim s row As Integer " Warisble which counts the rows

' Get permanent Tlser Inpu

mm_com = Workshests{"UJser_Inpaut™) FangeF217). Value
boot_iter = Workshests(User_Input™) Fange"F30). Vale
boot_iter_siT = boot_iter

char_unit = Workshests{" User_Inpue") Fange"F17"). Vahe
cumency_unit = Worksheats({"User_Inpus") Fange("F18"). Valne
char_name = Workshests(™ser_Inpus"). Fange"F 16"). Valoe

' Seting up Summary Shest

With Worksheets("Summary™)

Bamee("C117).Value = omrency wmit
Fanpe{"F11") Value = ourency_umnit

End With
' Seting up "Conputstions” Sheet
Fork=1Tomm com

k so=k

Worksheets("Conpusations”) Calls(3, 2 + k) Value ="Conponent” + " " +k_str
Worksheets("Computations™). Cells(9 + k. 7). Value = "Component” +" " +k_sir
Worksheets"Conpumatons"). Cells(3, 2 + k) EntireColonm AwtoFit

MNextk
With Worksheets("Conputations™)

Fmee{"B4") Value = "Synmmetry Check”
Fnee["B5"). Valne = "Grand Mesn™
Rmee{"B6") Value = "Grand Variance"
Rmee{"B7"). Value = "Sum Covariznce”
Ramee{"BE"). Value = "Galton Varimce"
Fnee["BE"). Valne = "Covarizncs Mamix"

End With

Determining bootsoap sample size

Due to umknown original sample sizes for each component the sinmlatgon
detemiines the smallest original sample size and sets it as the bootsmap
sample size

Feldim size_orig_input(] To mum com)
Form col =1 To mmm _com

size_org_m = WorkshestFunction CountA(Worksheets(" User_Input'™) Fange(Cells(13, @ +m_col), Cells(5000, ¥ +m_col)})
size_pmg_imputim_col) = size oriz m

"Prings size original samples 1o sensidvity sheet --= needed for possible computatons

Worksheets(" Sensitivity_Analysis™) Cells(3, 21 +m col). Value = size_org_m

Mext m col
size oot = WotkshestFime tion min(sizeorig,_inpat)

105




]

=]

o o ok ok ok o ok ok ok ok ke
al
P b= 50 A0 00 =] 0 Lt o L [ b

‘Check for ssymmery
conmt_gsym =
sum_row =0
Fork=1Tomm com
If Worksheets(ser_Inpu'"). Cells(7, 9 + k). Vale = "Mominal-the-best™ Then
rarget = Worksheets{™fser_Inpat™).Calls(E, # + k) Vale
USL = Worksheets({"User_Input™) Cells(9, 9 + k). Value
L5L = Wosksheets("fser_Input'). Cells(10, # + k) Vale
Loss_TISL = Worksheets{ ™ User_Inpie'). Cells(11, 8 + E) Vale
Loss_LSL = Workshests( ™ ser_Inpat'). Calls(12, & + k) Vale
cons_k wp = (Loss_TUSL / ((UTSL - targed) * 2))
cons_k_low =(Loss_LSL / ({target - L5L) ~ 27)
Ifrons k up=cons_k low Then
Workshests("Conputations"). Cell (4, 2 + k) Valne = "Yes"
COUME_asym = cpunt_asym + 0
Else
Workshests("Conmputations"). Cell 4, 2 + k). Valne = "No"
COUME_ASym = Cpunt_asym + 1
End ¥
Else
Wodksheets{"Computations"). Cells(4, 2 + k) Value = "Yas"
conmi_gsym = coumt_asym + 0
End If
MNextk
' First For-Loop to 2et daa from first colonm m
Form col =1 To mum_com
' Check for Loss Function type
Select Case Workshests{zer_] Iupu"_‘j Cells(T, 9 +m_col)

com_name = Workshests(™ser_Input™). Cells(§, @ +m_col) Vale
loss_type = Workshests{™fser_Inpuat™).Cells(7, ¥ +m_col). Value
target = Worksheets User_Toput”).Cells(g, 9 +m col) Value
USL = Worksheets(ser_Input™).Cells(9, 8 + m_col). Value
L5L = Worksheats ™ ser_Tnput™).Calls{10, 9 +m_col) Value
Loss_TEL = Wodishests(™ser_Input™).Calls(11, 9 + m_col) Value
Loss_LSL = Workshests{" User_Inpuat™).Cells{12, 8 +m col) Value
' Computing constant k for upper and lower side of NTB

' Chedk for Synmetry with Spec  Loss —= constant k
cons_k wp = (Loss_USL / ({USL - target) * 2})
cons_k_low = (Loss_LSL / ({targes - LSL) * 21)
Ifoons k wp <= coms_k_low Then

cmmt asym= 1
Els=

constant k= cons_k_wup

cmmt asym=1{
End K

Case "Smaller-the-heter”
com_name = Workshests(™ser_Tnput™). Cells(s, & +m_col) Value
loss_type = Workshests{™fser_Inpuat™).Cells(7, ¥ +m_col). Value
target = Worksheets| User_Tnput™).Cells(8, 9 +m_col) Value
"Worksheets("ser_Input™). Cells(®, 9 +m col). Valne = "Dhoes not apply™
"Worksheets{"fzer_Input™). Cellz(10, ® + m_col).Valne = "Dioes not apply”
Loss_TEL = Wodishests(™ser_Input™).Calls(11, 9 + m_col) Value
"Worksheets{"User_Imput™). Cellz(12, 8+ m_col). Valne = "Dioes not apply”
‘Computing constant k
constant k= (Loss_TUSL ./ (rarget * 2))
comt_asym =0
Case "Larger-the-hatter™

com_name = Workshests(™ser_Input™).Cells(§, & +m_col). Vale
loss_type = Workshests{™fser_Inpue').Cells(7, 9+ m_col). Valoe
target = Worksheets| User_Tnput™).Cells(8, 9 +m_col) Value
"Worksheets{"User_Input'™). Cells(9, 9 +m_col).Value = "Does not apply”
"Worksheets{"User_Imput™). Cellz(10, @+ m_col). Valne = "Dioes not apply”
Loss_TEL = Wodishests(™ser_Input™).Calls(11, 9 + m_col) Value
"Workshests{"ser_Input™). Cell=(12, 8+ m_col).Valne = "Dioes not apply”
constant k= (Loss_TUSL * (target * 2))
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count_asym =
End Salect

' Checks if quality loss finction is asynmmetric for NTB (checks for all cases due to syntax)
' Setming size and range of orignal samples from cobmmn m and o depending on e size
size ong m= WorksheetFimction Comt AWorkshests("User_Inpas"). Bange(Calls(13, 9 +m_col), Cells(5000, 9+ m_col)))
Set mz_orig_m = Workshests{™ser_Input'™) Fanese(Cells(13, 9+ m col), Cells(size onig m+ 12, 9+ m col))
! First Bootstrap simmlation for cobonm k
'Starting bootsirap sinmlation by reallecatine memory of mean varisnce!
FeDim mesn(]l To boot_iter)
FeDim Varance(]l To boot_tber)
Felim Loss_larger(] To boot_iter)
' Computing array size of bootsirap-dismbution and reallocate bootstrap distribation amay
Towot_dist_amr size =0t iter * size orig_m
Felhm boot_val am(]l To boot_dist_am size)
R.El}lmb-uut wal_am LTBE(1 'Iub-n-ut dist AT size)
boot_val count =1
boot_val count LTB=1
'First Bootsoap loop fior cobonm m
Forboot_j =1 Toboot_iter
Felim val_res_m(]l To size_boot)
' Second For-loop of bootsirapping — = randomly drawing values with resampling
Forresa_j =1 To size_boot
wal_res miTess j) = WorkshestFimcton Indexme_orig m size_oriz_m * BEnd() + 1)
Iext resa_j
' For-loop to 2dd all drawn vahies to one ammay —>= bootsoap disoibatdon
Fori=1 To size_ong_m
boot_wal srmboot_val count) = wval_res mii)
oot wal count=Thoot val count + 1
Text i
' Commputing mean and vartance for each bootstrap sample
mean(boot_j) = WorksheetFuncion Average(val res_m)
Variance(boot_j) = WorksheetFuonction Var_S{val res_m)
' Larger-the-hetter conputstion
If Workshests{ser_Inpux').Cells(T, 9 +m_col). Vale = "Larger-the-better” Then
Feldm val res_m LTE(] To size_orig_m)
Formesa_j=1To size_orig_m
val_res m ITB{resa_j) = WorksheetFimction Indeximz orig_m size oriz m * Bnd()+ 1)
Mext resa_j
s larger =0
Fori=1 To size_prz_m
sum_larger = sum_larger + (1 /{val_res m LTB{) "~ 1)
Mext i
" Computng loss for one bootsmap sanple
Loss_largen(boot_j) = constant k * (1 /size_oriz m) * sum_larger
Fori=1 To size_prz_m
boot_val_arr LTH{beot_val count LTE)=wal_res m LTB{1)
boot_val_count LTB =boot_val_comt LTE + 1
Mext i
EndIf
Hent baat_j
Call Histogram means(Loss_larger, dist, boot_iter_sm)
'Computing the loss for Larger-the-better cases
g _Loss larger=10
If Worksheets{" User_Inpuat™) Cells(7, ¥ +m_col). Vale = "Larges-the-better” Then
£_Loss_larger = WorksheetFuncton Average({Loss_Larger)
EndIf
' Computing printing srand statistics for mean variance, and covanance
2_Mean = WorkshestFimction Averags{mesn)
Wiorksheets (" Conputations") Cells(3, 2 +m_col). Valne = g_Mean
=_Varisnce = WorksheetFuncgon Average]\ ariance)
Worksheets("Computations") Cells(d, 2 +m_col).Value = g_Vanance
' Second For-leop, necessary for covarlance CONpMIEAnons
Forn col =2 To mmm_com
size_orig_n = WorksheetFimcton ComntA(Workshests(™User_Inpat'). Fange{Cells(13. 8 +n_col), Cells(3000, 9 +n_col)))
Sat mg_orig n=Workshests(™Fser_Input”) Fange{Cells(13, 9 +n_col), Cells(size onig_n+ 12, % +n_col))
! Starting bootstrap sinmlation by reallocating memory of covanance
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Forn_col=72 Tommm com

size_orig_n = WorkshestFunction. Comt A{Worksheets( User_Input™) Fange{Calls(13, 8 +n_col), Cells(5000, @ +n_col)))
Setme_ orig n = Worksheets("User_Input”™) Fange{Cells(13, # +n_col), Cells{zize orig n+ 12, 9+n_col))

! Starting bootstrap sinmilation by resllocating memory of covariance
FeDim Covariance(] To boot_iter)
' Wested For-loops; First For-loop loops throngh the munber of bootsoap ierations
Forboot_j=1 To boot_iter
Felim val_res_n(] To size_boot)
' Second For-loop loops throngh the mmiber of resanaple draws
For resa_j=1 To size_boot
" Fandomly takes values from original sample to bootsrap with resanpling
" Procedure assmes non-parametic dismibution of original sample
val_res_niTess j)= WorkshestFunction Indexi{mz orig_n size org n * Bnd() + 1)
Ilext resa_j
' Computing covariance for each bootstrap sample
' If then statement for compeing covariances berween each data set | columm
Im col <mm com Andm col < n col Then
Covarance({boot_j) = WorksheetFumction Covarisnce S(wval res_m, val res n)
Workshests{"Computations™). Calls(boot_j + 1, 10 + m_col) Value = Covariance{boot_j)
End

Hent boat_j
' If then statement for conputing covariances between each data set | cobmn
IFm col < mun com Andm col <<n_col Then
g Covartance = WorksheetFuncdon Average(C ovariace)
Wiorkshests("Conputations'). Cellsim _col + %, n_col + 2).Vahee = g_Covariance
End ¥
Nextn_col
" Getting Values and compusing statstics for asymmedric case if applicable
" Checks if asymmetic ConTIation: e DeCessary
If coumt_asym == 1 Then
" Setting up "Computations” Sheet for asymmeTic cases
Fork=1 To mmm com
k sr=k
Wodksheets{"Computations ™). Cells(30, 2 + k). Valne = "Component” +" "+ k_str
Wodksheets{"Computations"). Cells(35 + k, 7). Value = "Componsnt” + ™ "+ k_sir
Wodksheets{"Computations ™). Cells(30, 2 + k) EntireColmm AntoFit
Wodksheets{"Computations ™). Cells[30, 2 + k). Valne = "Component” +" "+ k_sir
Wodksheets{"Computations"). Cells(35 + k, 7). Value = "Componsnt™ + " "+ k_so
Wodksheets{"Computations ™). Cells{30, 2 + k) EntireColmm AntoFit
Mextk
With Worksheets{"Conptations™)
Fange{"B30") Value = "Upper Side of NTB"
Fange{"B31") Value = "Grand Mean"
Fange"B32") Value = "Grand Variance™
Range{"B33"). Value = "Sum Covariance”
Fange{"B34") Value = "Galton Varisnce"
Fange"B35") Value = "Covariance Mamix™
Pange{"B50") Value = "Lower Side of NTB"
FRange{"B51") Value = "Grand Meaan"
Fange"B52") Value = "Grand Variance™
Fange{"B53") Value = "Sum Covartance”
Fange{"B54") Value = "Galton Varisnce"
Fange{"B55") Value = "Covariance Mamix™
End With
"Beeallocation of memory for both amays
FeDnim upper_size]l To men coni)
Felnm lower_size(] To mum coni)
" Finding the smallest original sample size for upper and lower side of curve
" Mecessary for bootsoap sinmlation - bootsrap sanmple size is the lowest of all
Fork=1 To mmm com
count_upper =0
conni_lower =0

size_orig_m= WorksheetFumction CountA(Worksheets(User_Inpur") Range(Cells(13, § +L), Cells(3000, § +kj)

Fori=1 To size_oriz_m
If Cells{12 +1, 0+ k) = Cells(B, 9 + k) Then
COUmE Upper = Count upper + 1
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FeDim Covariance(]l To boot_iter)
' Mested For-loops; First For-loop loops throngh the momber of bootstrap iterations
Forboot_j=1 Toboot_iter
Felm val res_n{l To size_boot)
" Second For-loop loops through the mumber of resample draws
For resa_j= 1 To size_boot
' Fandomly tskes valies from original sample to bootstrap with resanpling
' Procedure assumes non-parametric dismibution of original sample
val_res niresa_j) = WorkshestFunction Indexime_orig_n size_ong n * Bod() + 1)
Mext resa_j
" Compuaing covariance for each bootstrap sanple
" If then statement for compuiing covartances between each dat st/ columm.
Im col < mm com Andm col < n_col Then
Covartsmce(boot_j) = WorkshestFunction Covariance_S(val_res_m val res m)
End If

Iext boot_j
' If them statement for computing covariances between each dats sat / colummm
Hm col < mm com Andm col <~ n col Then
£_Covarance = WorksheetFunction Average{ Covarisnce)
Workshests (" Conmputations™). Callsim _col +9, n_col + 2).Value = g Covaniance
End If
Nemtn col
' Geming Values and conputing statistics for asymmetric case if applicable
' Checks if asynumetric CONTMItANONS e DeCEssary
If count_asym == 1 Then
! Setming up "Conmputations™ Sheet for ssymmedric cases
Fork=1 Tonum com
k_swr=k
Worksheets{"Computations'). Cells(30, I + k) Value = "Conponent” +" " + k_sir
Worksheets{"Computations'). Cells(35 + k, 7). Value = "Componens” + " " + k_str
Worksheets{"Computations'). Cells(30, I + k) EntireCobomn AumoFit
Worksheets{"Computations"). Cells(50, 2 + k) Value = "Conponens” + " " + k_str
Worksheets{"Computations'). Cells(35 + k, 7). Value = "Componens” + " " + k_str
Worksheets{"Computations'). Cells(50, 2 + k) EntireCobomn AmoFit
Her k
With Waorksheets{"Computations")
Fange"B30/). Value = "Upper Side of NTB"
Fange("B31").Vale = "Grand Memm"™
Fange"B32") Value = "Grand Variance™
Fange("B33"). Value = "Sum Covariance”
Fange("B34™) Value = "Galton Varisnce"
Fange("B35") Vale = "Covariance Marix"
Fange"B30/"). Value = "Lower Side of NTB"
Fange{"B51").Vale = "Grand Memm"™
Fange"B31") Value = "Grand Variance™
Fange("B33"). Value = "5Sum Covariance”
Fange("B34™) Value = "Galton Variance™
Fange("B55") Vale = "Covarisnce Marix"
End With
Feeallocation of memory for both amrays
F.elhm upper_size(]l To mmm com)
Feelnim lower_size{]l To mml com)
' Finding the smallest criginal sample size for upper and lower side of curve
' Mecessary for bootswap sinmlation - bootsrap sample size is the lowest of all
Fork=1 To mmn com
count_wapper =0
conmt_Jower = 0
size_orig_m= WorksheetFunction CoumtA({Worksheets("User_Tnpuat') Bange(Cells(13, 9 + k), Cells{3000, 9 + E)))
Fori=1 To size_ong_m
If Cells{(12 +i 9 +k) = Cells(8, 9 + k) Then
CONNT WP = Coumt_upper + 1
ElselIf Calls(12 + i, @ + k) = Cells(, # + k) Thea
count lower = count_lower + 1
End If
Mext i
upper_size(k) = count_upper
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lower_size(k) = count_lower
Hextk
size_boot_up = WorksheetFunction min{upper_size)
size_boot_low = WorksheetFuncdon minlower_size)
' Miested For-loop to get all values for upper and lower side of mrget
s covar_up =0
s covar_low =0
var_gal up =10
var_gal low=10
s var_up =0
s var_low =10
Form asy_col=1 To mum com
' Checks original sample size for all dats
size_ong_m= WorksheetFunction ComtAWorksheets("User_Input™) Fange(Cealls(13, 9 + m_asy_col), Cells(5000, 0 +
m_asy_col)))
' Reallocation of memory for the amray for cohnmn m
Felim orig_up_m{] Toupper_size{m_asy_col))
Felim arig_low_m(l To lower_size{m asy_col))
! Initializing of upper and lower amray of one colunm of values to 1
m oot = 1
n_count=1
' Checks values whether bizger or simaller than target and ads values to certsin armay
Fori=1 To size_orig_m
If Cells{12 +i @ +m asy col) = Cells(8, 9+ m ssy_col) Then
omig_up m{m_count) = Cells(12 +i & +m asy col). Vae
m count=m count+ 1
Elself Calls(12 + 1 & +m_asy_col) < Cells(g, ¥ + m_ssy_col) Then
omng_low m(n cownt) =Cells(12 +i, 9+ m_asy col). Vahe
0_count=n_coumt + 1
End If
Mext i
' Second for loop o zet vahies for cohmm n
' Beallocation of mesn and waraince arays
FleDim Mean uppen(] To boot_iter)
FieDim Mean lower(] To boot_iter)
Felim Varisnce upper(]l To boot_iter)
FlaDim Varisnce lower(l To boat_iter)
Forboot_j =1 To boot_jter
" Reallocation bootsrap sample values for columm m fior upper [ lower side
Feldim val_res_up m{]l To size_boot_up)
FeDim val_res_low_m{l To size_boot_low)
" Second For-loop to resaniple values from onginal sample to bootsirap sample
" Bandomnly takes valnes from original saniple to bootsrap with ressmpling
" Procedure assmmes non-paramemic distibubion of original sanple
Formesa_j= 1 To size_boot_up
val_res_up_miresa_j) = WorkshestFunction Inderx{oriz_up m upper_size{m_asy_col) * Bnd) + 1)
Maxt resa_j
Formesa_j=1 To size_boot_low
val_res low_myresa j) = WorksheetFunction Index{orig_low m lower sizefm asy_col) * Fod() + 1)
Maxt resa_j
" Comypating statistic for each individual bootsoap sample
Mean wppen(boot_j) = WorkshestFuncdon Average(val_res_up_m)
Mean lowenboot_j) = WorkshestFuncdon Average(val_res_low_mi)
Wariance_uppen(boot_j) = WorksheatFumction Var S(val_res_up_m)
Wariance_lowenboot_j) = WorksheetFuncton Var_S{val_res_low_m)
Mext boat_j
' Conmputing prinfing srand statistics for mean varance, snd covariance
£_mean_up = WorkshestFimction Sverageviemn upper)
g_mean_low = WorksheetFuncton Average(hean_lower)
g_var_up = WorkshestFunction Average(Varsnce wpper)
g_war_low = WorksheetFunction Average{Vanance_lower)
‘Worksheets{"Computations'). Cells{31, 2 + m_asy_col).Value = g mean up
Worksheets{"Computations'). Cells{51, 2 + m_asy_col). Value = g_mesn_low
Worksheets{"Computations'). Cells{32, 2 + m_asy_col).Value = g_var_up
‘Worksheets("Computatons'). Cells{52, 2 + m asy_col) Value = g_var_low
Forn_col=2 To oum com
"‘Checks original sample size for whole data ser
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size_oriz_n=WorksheetFunction CoumtA{Womksheets( User_Input™) Fange{Cells(13, 8 +n_col), Cells(5000, 9 +n_col)})
" Beallocation of memory for the amray for cohmm n
Felrim orig_np nfl To wpper_size(n col))
Felnm orig_low_n{l To lower_size(n_col))
" Initializing wpper and lower aTay starting positon
m_coumt=1
n_oount =1
" Checks valnes whether bigger or smaller than target and adds valnes to certsin amay
Fori=1 To size onz n
If Calls{12 + i, ¥ +n_col) = Cells(g, # +n_col) Then
crig_up nim count) = Cells(12 + i, 9 +n_col). Vale
m opunt=m_cpunt + 1
Elself Cells{12 + i 9 +n_col) < Cells(8, 9 +n_col) Then
orig_low_n{n_cowmt) = Cells(12 +i, 9 + n_col) Vale
n_count=n_gount + 1
End If
Mext i
" Feallocation of covariance armays
Felrim Covariance uppenl To boot_iter)
FeDim Covariance_lowes(1 To boot_iter)
" Mested for-loop for bootsirap sinmilation
" First For-loop iteration of bootstrap simulation
Forboot_j =1 To boot_iter
' Peallocation bootsrap sample valnes for colunm o for wpper | lower side
Felnim wal_res up nil To size_boot_up)
Felnim wal_res low nfl To size boot_Low)
' Second For-loop to resample valunes from onginal sanmple to bootstrap sanple
' Pandomly takes vahies from originsl sample to bootstrap with resampling
' Procedure assumes non-parametric dismibution of original sample
Forresa j=1 To size boot up
wal_res up_niresa_j) = WorkshestFimcdon Index{oriz up n wpper_sizein_col) * End() + 1)
Heas resa_j
Forresa j=1 To size_boot low
wal_res_low_n(resa_j) = WorksheetFimction Index{oriz low_n, lower_sizefn_col) * Bnd() + 1)
Nextresa_j
Im asy col < mm com Andm asy col <“n_col Then
Convarisnce_upper(boot_j) = WorksheetFuncgon Covariance_5(val_res up_m wal res_up_m)
Conariance_lower(boot_j) = WorksheetFuncgon Covariance_5(val_res low m val_res_low o)
End If
Text boot_j
" If-Then statement prevents conputation of covariance with cohnmns with itself and repetifions
Im asy col <mum com Andm asy_col <n_col Then
_covar_up = WorksheetFunomon Average{Covariance_upper)
Worksheets (" Conputetions") Cells(m_asy_col + 35, n_col + 2} Value = g_covar_up
z_covar_low = WorksheetFunction Average{Covariance _lower)
Worksheets (" Conputstions") Cells(m_zsy_col + 55, n_col + 2)Value = g_covar_low
End If
Mextn col
' Conmputing morms] vartance, total sum of all covariances, snd variance for galon
S VAr_up = sum_war_up + Workshests("Computations').Cells(32, 2 +m asy_col) Value
sum_var_low = sum var_low + Workshests("Computations™). Cells(52, 2 +m_asy_col). Value
' Conmputing the correct sums of covarisnce
Fori=2 Tommm com
SN covar_up =simn covar up + Worksheets{"Computations™). Cells(34 + 1, 3 +m_asy col). Value
sEm covar_low = sumcowvar_low + Worksheets("Conmputations™) Calls(54 +1, 3 +m_asy_col). Vale
Text i
' Printing covariance in certain cells for later computation of loss
Hm asy_col < mm com Then
Workshests("Conputations™). Cells(33, 3 +m_asy_col).Value = sum covar_up
Wrkshests (" Conmputations™). Cells(53, 3 + m_asy_col).Value = mm cowvar_low
End If
' Conmputing the total varance afier Galton's Theory for a seres system
war_gal_up = sum var_wup + Workshests{"Computations™).Calls(33, 2 +m_asy_col). Valne * 2
war_gal low =sum var low + Worksheets("Computations") Cells{33, 2 +m_asy col) Vale * 2
Worksheets{"Computatons"). Cells(34, 2 +m_asy_col) Value =var_gal up
‘Worksheets("Computatons'). Cells(54, 2 + m asy_col) Value =var_gal_low
Nexxm asy ool
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End If
' Comyputaton of the variance for each step based for a seres system (Galton)
' For loop to move throngh the cohumms on Sheet "Conputations™
s var = sum_var + Womksheets("Computations ™) Cells (6, 2 +m_col). Value
' Foor loop 10 SIE1 COVATRImCes
Fori=1 Tomum com
sum_Covar = sum covar + Worksheets(" Conputations™) Cells(8 +1, 3 +m_col). Valne
ez i
! Printing sum of covariances m comect cohmm
Im col < mum com Then
‘Worksheets("Computations"). Cells(7, 3 +m col). Value = sum_covar
End If
' Comyputing the total varnance after Galton's Theory for & sernies system
var_gal = mum var + I * Workshests " Conputations™). Calls(7, m_col + 2. Value
Workshests("Computations") Cells(8, m_cal + ). Valoe =var_gal
' Commputation of the loss for NTB and 5TB
If Worksheets"Compuatations"™) Cells{4, 2 + m_col). Value = "Yas" Then

prand mesn, variance {normal), snd galton varisnce from sheet "Computation” fior loss calmlation

£_Mean = Workshests{"Computations"). Cells(5, 2 +m_col). Vale
war_orig = Worksheets("Computations'). Cells(f. 2 +m_col). Valhe
war_gal = Worksheets{"Computations") Cells(8, 2 +m_col). Valne
H‘D.’m:’sshselﬁ{"Laa Inpe").Cells(T, 9 + m_col). Vahle = "Mominsl-the-best” Then
" Conpuang loss without series influence
Loss_prig = constant k * (var_onig + (g_‘-ian target) I}
" Conpuung loss with series influence —= Galton
Loss_gal = constant k “{\'arjal+{LMm-targEtj N
' Calculation for Smaller-the-better Loss Fimction
Elze
" Conpuung loss without series influence
Loss_ong =constant k * (var_onig+ g_Mean * 2)
" Conpuang loss with series influnence
Loss_gal = constans k * (var_gal + g_Mean * 1)
End If
Else
£ mesn_up = Worksheets(" Compusatons") Cells(31, 2 + m_col). Value
£ mean_low = Worksheets{"Computatons') Cells{51, 2 +m_col).Vale
war_ong_up = Worksheets{™ Compurtations").Cells(32, 2 +m_col).Valne
war_orig_low = Worksheets{"Computations™).Cells{32, 2 +m_col). Value
war_gal_up = Workshests("Conputatdons™). Calls(34, 2 +m_col). Value
war_gal_low = Worksheets{™ Conputations ") Cells(54, 2 +m_col). Valne
' Conmputing Loss without series influence for asynmmetric case
Loss_orig_wp =cons_k_wp * (var_orig_up +(g_mean wp - target) * )
Loss_orig_low = cons_k low * (var_onig_low + (2_mean_low - target) * )
' Conmputing Loss with series influence for symmesic case
Loss_gal up=coms_k_up * (var_gal up + (z_mean up - target) ~ )
Loss_gal low =cons_k_low * (var_gal low + (g_mean low - target) * 2)
EndIf
' Printing all results on Sheet "Sinmlaton Chatput”
k sr=m col
! (eneral data for all loss fimctions
Dim r As Fange
'Set 1= Worksheets (" Simmlaton Cuagpu') Fange(Cells(4, 3 + dist), Calls(5, B + disf))
'Sat 1 = Worksheets("Simmlation Crspe') Fange(Cells(1, 1), Calls(2, 1))
‘r Interior. Color = RGB(253, 0, 0)
With Worksheets{"Sinmlation_Chatpat™)
(Cells(4, 5 + dist) Value = com_name
' Banga{Cells(4, 5+ dist), Cells(5, § + dist)) Merge
(Cellz(4, 3 + dist) Vale = "Conponent” +" " +k_s
" Range(Cells(4, 3 + dist), Cells(4, 4 + dist)).Merge
(Cells(5, 3 + dist) Vahe = loss_type
' Bamga({Cells(3, 3 + dist), Cells(5, 4 + dist)) Merge
(Cell=(T, 3 + dist) Value = "Input”™
(Cellz(8, 3 + dist) Vale = "Targe"
(Cell=s(B, 4 + dist) Vale = target
Cells(8, 5 + dist) Vale = char_umit
(Cellz(10, 3 + disf) Value = "Cuutput™
".Calls(4, 5+ disf), Calls(5, B + dist) Inferior. Color = RGB(253, 0, 0)
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End With
! Setfing up main parts of sunmary shest
With Warksheets("Summary™)
Fange" AZ0") Value = "Component”
Fange"B207). Vahe = "Loss Function Type”
Fange"C20). Vahe = "Loss per wmit in " + "[" + cummency_unit + "™ + char_umit + "=+ "]"
Fange"E20"). Valne = "Galton Loss per unit in " + "[" + currency_unit + "™ + char_umit +"=" +"]"
Fange"F20" Value = "Total Loss in ™+ "[" + cumency_mit + "]"
Fange"H20"). Value = "Total Loss after Galton in " +"[" + cumrency_umdt +"]"
End With
! Setting up "Sinmlstion Output” shest
Select Case Worksheets{ User_Inpur').Cells(7, 9 + m_col) Vale
Case "Mominal-the-best™
With Worksheets("Simulation_Onasput™)
.Calls(B, § + disf). Vaboe ="T5L"
.Calls(B, T+ disf). Vahe =TEL
.Calls(g, § + dist). Vahne = char_umit
.Calls(®, 6+ dist). Vahe ="L5L"
.Calls(®, T+ disf). Vahe =L5L
.Calls(®, § + dist). Vahe = char_wumit
End With
If Works heets("Computstions™).Calls(4, 2 + m_col) Value ="Yes" Then
With Waorksheets("Simmlation_Chatpaz')
(Cells(12, 3 + dist). Value = "E"
(Cells(12, 5 + disf). Value = constant_k
(Cells(12, 6 + dist). Value = omrency_unit + "™ + char_unit + ™"
(Cells(13, 3 + dist). Value = "Loss"
Cells(13, 4 + dist). Value = Fomd(Loss_orig, 2)
(Cells(13, 5 + dist). Value = omrency_umit + " per unit”
Cellz(13, 6 + disf). Value = "Galton Loss™
(Cells(13, 7 + disf). Value = Round(Loss_gal, 2)
JCells(13, 8 + dist) Value = omrency unit + " per umit"
(Cellz(14, 3 + dist). Value = "Total Loss"
(Cells(14, 4 + dist). Value = Fomnd(Loss_ong ® size_onig_m 1)
Cellz(14, 5 + disf). Value = corrency_unit
.Cellz(14, 6 + dist). Value = "Total Galton Loss™
(Cellz(14, 7 + dist). Value = Fomnd(Loss_gal * size_orig m )
Cellz(14, § + disf). Value = curmency_unit
End With
With Waorksheets("Summany™)
JCellz(2] + sum row, 1).Value = com name
{Cells(2] + sum_row, 2) Value ="WTB"
JCellz(2] + sum row, 3).Value = Romnd(Loss_ong, 2)
JCellz(2] + sum row, 5).Value =Fomnd(Loss_gal 1)
(Cells(?] + sum_row, §) Value = Round(Toss_orig * size_onig_m, X)
JCellz(2] + sum row, §).Value =FRomnd(Loss_gal * size_ong_m I)
End With
SUIN oW = suml Tow + 1
Elself Worksheets{"Computations"). Cells(4, 2 + m_col). Valne = "No" Then
With Waorksheets("Simmlation_Chatpaz')
(Cells(11, 3 + dist). Value = "Lower Spec Sida”
(Cellz(11, 6 + dist). Value = "Upper Spec Side"
(Cells(12, 3 + dist). Value = "E"
(Cells(12, 4 + dist). Value = cons_k_Jow
(Cells(12, 5 + dist). Value = omrency_unit + " + char_unit + ™"
Cells(13, 3 + dist). Value = "Loss"
(Cellz(13, 4 + dist). Value = Romnd(Loss_ong_low, 1)
JCells(13, 5 + dist) Value = omrency_unit + " per umit"
Cellz(14, 3 + disf). Value = "Galton Loss™
Cellz(14, 4 + dist) Value = Fomd(Loss_gal_low, I)
JCells(14, 5 + dist) Value = omrency_unit + " per umit"
(Cells(15, 3 + dist). Value = "Total Loss"
JCells(15, 4 + dist). Value = Romnd(Loss_ong_low * lower_size(m col), )
(Cells(15, 5 + disf). Value = cumrrency_unit
.Cellz(16, 3 + dist). Value = "Total Galton Loss™
(Cellz(16, 4 + dist). Value = Fomd(Loss_gal_low * lower_size(m_col), )
Cellz(18, 5 + disf). Value = cmrmency_unit
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(Cells(12, 6 + dist). Value = "k"
(Cells(12, 7 + dist) Value = cons_k_up
(Cells(12, § + dist). Value = cumency_umit + "™ + char_umit + "="
(Cells(13, 6 + dist) Value = "Loss"
(Cells(13, 7 + dist). Value = Romd(Loss_orig_up, I)
(Cell=s(13, 8 + dist). Value = carrency umit + " per umit"
.Cellz(14, 6 + disf). Value = "Galton Loss™
.Cellz(14, 7 + disf). Value = Romd(Loss_gal_up, I)
JCell=(14, 8 + dist). Value = ommency umit + " per umit"
(Cells(15, 6 + dist). Value = "Total Loss"
JCells(15, 7 + dist). Value = Fomnd(Loss_ong_up * upper_size{m col), I)
Cellz(15, § + disf). Value = currency_umit
.Cellz(16, 6 + dist). Value = "Total Galton Loss™
(Cellz(16, 7 + dist). Value = Fomd(Loss_gal_up * upper_size{m_col), I)
.Cellz(14, § + disf). Value = currency_umit
End With
With Worksheets{"Summary™)
(Cells(2] + sum._row, 1).Value = com name
(Cellz(2] + sum_row, X) Value ="ITB Upper Side”
JCellz(2] + s row, 3).WValue = Fomd(Loss_orig_up, )
JCellz(2] + s row, 5).Value = Fomd(Loss_gal wp, )
(Cells(2] + sum._row, §).Value = Romd(Loss_ong_up * size_oriz m 1)
JCellz(2] + s row, ) Value = Romd(Loss_gal wp * size orig m 2)
End With
SUIL oW = SumL Tow + 1
With Wrksheets"Surmmary™)
Cellz(2] + sum_row, X) Value ="ITB Lower Side”
JCellz(2] + s row, 3) Value = Fomd(Loss_ong_low, 2)
JCellz(2] + s row, 5) Value = Fomd(Loss_gal low, )
(Cell=s(2] + amm.row, §). Value = Romd(Loss_ong low * size_oriz m 1)
JCellz(2] + s row, §) Value = Fomd(Loss_gal low * size_oriz m 2)
End With
SUIL oW = SumL Tow + 1

End If
Caze "Smaller-the-bener”
With Worksheets("Simulation_Charput™)

Cells(B, § + dist). Vahie ="Loss at Target”

Cells(B, 7+ dist). WVahie = Loss_USL

(Cells(B, 8 + dist). Vale = currencyumit

Cells(12, 3 + dist). Vale ="E"

Cells(12, 4 + dist). Vahe = constant_k

Cellsf12, 5 + dist). Vale = oETency_umit + "™ + char_umit + ™"
Cells(13, 3 + dist). Vale = "Loss"

Cells(13, 4 + dist) Vale = Rowmd{Toss_org, 2)

Cells(13, 5 + dist). Valee = qmETency_umit + " per mmit”
Cells(13, § + dist). Vahe = "(Galton Loss"

Cells(13, 7 + dist). Vale = Rownd(Toss_gal, I)

Cellz(13, 8 + dist). Valee = qmETency_umit + " per mmit”
Cells(14, 3 + dist). Vale = "Total Loss"

Cells(14, 4 + dist). Vahe = Roumnd{Toss_omig * size_orig_m )
Cells(14, 5 + dist). Vale = qmETency_umit

Cells(14, § + dist). Vale = "Total Galton Loss"

Cells(14, 7 + dist). Vale = Rowmd(Toss_gal * size_oriz m 7)
Cells(14, 8 + dist). Vale = qETency_umit

End With
With Works beets(™ Summary™)

JCells(2]1 + som row, 1).Value = com_name

Cells2] + som _row, 2). Vahe ="5TB"

(Cells(2]1 + som 1w, 3).Value = Romd(T oss_onig, 2)

JCells(2]1 + som row, 5).Value = Romd(T oss_gal, )

JCells(2]1 + som row, §).Value = Romd(T oss_onig * size_onig_m, I)
Cells(2] + sam row, 8).Vale =Rowmd(Loss gal * size_orz_m, 2)

End With

SN TOW = Amm_row + 1

Case "Larger-the-betmer”
With Worksheets{"Simulation Crsput”)

Cells(B, 6 + dist). Valie = "Loss at Target"
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Cells(B, 7+ dist). Vahie =Loss_TT5L
Cells(8, 8 + dist). Valie = currency umdt
JCells(12, 4 + dist). Vahe ="k"
Cells(12, 5 + dist). Valhe = constant_k
(Cells(12, § + dist). Vahe = orency_umit + "™ + char_umit + ™"
JCells(13, 4 + dist). Valhe = "Average mnit loss"
(Cells(13, § + dist). Vahe = Rowmd(g_Loss_larger, )
JCells(13, 7 + dist). Vale = ourency_umit + " per wmit"
Cells(14, 4 + dist). Vahe = "Total Loss"
(Cells(14, § + dist). Vahe = Rowmnd(z_Loss_larger * size_orig_m, 1)
(Cells(14, 7 + dist). Vale = ousrency_umit
End With
With Worksheets(" Summary™)
JCells(2] + sam row, 1).Valie = com_neme
JCells(21 + mom_row, 2). Vale ="LTB"
Cells(2] + samrow, 3).Vale = Foumd{z_Loss_larger, 2)

Cells2] + som_row, §). Vale =Fmmd(z Loss_larger ® size ong_m 1)

End With
SUIN_FoW = summ,_row + 1

End Select
! Setting up graphs and charts in Shest "Sinmlation Chatput”
! Distermining min and max value of origing] sample size to get range and
' places of aray which holds x-values (x-axis) and loss-valoes (y-valnes)
Select Case Works heets(User_Inpur').Cells(T, 9 + m_col). Vahe

Case "Tominal-the-best™

If Worksheets("Conputstions ™) Calls(4, 2 +m_col) Value = "Yes" Then
! Distermining max and min vahe of original sample
max_val m = WorksheetFuncion mex{me_oriz_ni)
min_val m = WorksheetFunction min{me_orig_m)

' Computing bin width for histogram / charts
bin_width = (max_val m - min_wal m) /10
' Places for x-values | Loss-values ammay
places amay=(max val m* 1.2 - min val_ m* 0.7) /0.1
Felim x_vahes(]l To places_armay)
Feelnim Loss_valnes(] To places_armay)
' Dietermine first x_vahie based on smallest value from original sample
step_valne =min val m* 0.7
! Compute the loss function
Fori=1 Toplaces_zmmay
x_vahes(i) = step_value
Loss_walues(t) = constsmt_k * {{step_valne - targst) * I)
step_value = step_value + 0.1
Nexti
' Computing and eating the disribation curve
FeDim freq amay(l To 13)
FeDim cir_his_arm(l Te 13)
step_valne = min_val m - bin width
Fori=1Tol3
cr_his_am(i) = step_walne
step_value = step_value + bin_width * 0.5
feq armay(l) = step_value
step value = step_value + bin_width * 0.5
Nexti
' Dietermine bin frequency for dismibution

freq histe_ong = WorksheetFuncnon Frequency(me_onig_m freq amay)
freq histo boot = WorksheetFimction Frequency(boot_val_arr, freq amay)
Set Omig_Loss = Worksheets{"Simmlation_Cutpat”). Shapes AddChart? Chart

With Orig_Loss
ChanType = 23 Y ScanerimoothMNoharkers
HazL egend = True
Legend Posiion = xlLegendPositionTop
HasTitle = True
ChariTitle. Text = "Tagochi's MNominal- The-Bact Loss Function”
Axes(xlCategory, xlPrimary) HasTitle = True

Ames(xCategory, xlPrimary) AxizTite Text = char_pame + " " + "[" + char_nmit + "]"

Axes(xIValue, xlPrimary) HasTitle = True

Axes(xIValne, xlPrimary) AwisTitle Text = "Loss” + " ™+ " + currency_unit + "]"
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Anes(xValue) MininmmScale =0
Ames(xlCategory) MinimmmSeale = 0
Anes(aCategory) MadnmumScals = target * 2
SeriesCollection MewSeries
SeriesCollection(] ) name = "Target"
SeniesCollecton(] ) Vahues = Array((), Loss_vales(places_amay))
SeriesCollecton(] ) 3 Vales = Array(target, mrget)
SeriesCollection(] ) Format. Line ForeColor RGB = RIGB(153, 153, 153)
SeriesCollecton MewSeres
SeriesCollection? ) name = "LEL"
SemiesCollaction(? ) Vahes = Arraw((), Loss_vahes(places_array))
SeriesCollection?) 3 Vahees = Amray(LEL, LEL)
SeriesCollection(?) Format. Line ForeColor. R/GB = RIGB(31, 187, §1)
SeriesCollection MewSeries
SeriesCollecton3 ) name = "TJ5L"
SeriesCollection(3 ). Vahes = Armay((, Loss_valuesiplaces_armay])
SeriesCollection(3 ) 3 Vahes = Amray(UEL, UEL)
SeriesCollection3 ) Format. Line. ForeColor RiGE = RGB(179, 38, 157)
SeriesCollection NewSeries
SeniesCollecton4) name = "Loss”
GeniesCollectond) XWVahees =x_walnes
SeriesCollection(4) Vahes =Loss_values
SeriesCollection(4) Format. Line ForeColor RGB = RIGB(255, 0, I
SeriesCollecton MewSeres
SeniesCollection(5 ) name = "Criginal Sanples”
SeriesCollection(5) 3 Vahees = cir_his s
SeriesCollecton(5). Valies = freq histo_orig
SeriesCollection(5 ) AxisGroup = xS econdary
Anes(xlWValue, xSecondary) MininnmScals =0
SeriesCollection(5) Format. Line ForeColor RGB = BIGB(204, 104, 255)
Parent Top = Worksheets("Sinmlation Owasput™) Cells(18, 3’]  Top
Parent Left = Workshests{"Simmlation Chatpar™). Cells(18, 3 + dist). Left
Parent Height = 224
Parent Width = 340
End With
Set Boot_Loss = Worksheets("Sinmlation_Crasput”) Shapes AddChart? Chart
With Boot_Loss
CharType = xIX ¥ ScatterSmoothMolarkess
HasLegend = Trua
Legend Positon = xlLegendPosidonTop
Ha:Title = Tme
CharTitle. Test = "Taguchi's Mominal-The-Best Loss Function” + " Bootstrap (n ="+ boot_iter_sir + )"
Ames(xlCategory, xlPrimary). HasTitle = True
Axes(xICatepory, xlPrimary). AxisTitle Text = char_pame + " ™+ " + char_umit + "T"
Anes(xlWValue, xlPrimary) HasTitle = True
Anes(xlWValue, xPrimary) AxisTitle Text = "Loss" + " "+ "[" + oumency_umit + "]"
Axes(xlValne) MinmmmScale = 0
Ames(xlCategory) MinimmmSeale = 0
Anes(aCategory) MadnmumScals = target * 2
SeniesCollection MewSeres
SeniesCollecton(] ) name = "Target"
SeniesCollecton(]) Vahues = Array((), Loss_values(places_armay))
SeriesCollecton(] ) 3 Vales = Array(target, mrget)
SeriesCollecton(] ) AxisGroup = xlPrimary
SeriesCollection(] ) Format. Line ForeColor .GB = BiGE(133, 153, 153)
SeriesCollection MewSeries
SeriesCollection(?) name = "Bootstrap Diata”
SeriesCollection(?) X Vahwes = cir_his @
SeriesCollecton(?). Vales = freq histo_boot
SeriesCollection? ) AxdsGroup = xlSecondary
Axes(xlValue, xliecondary) MininnmSeale =0
SeriesCollection? ) Format. Line ForeColor RGB = BIGB(204, 204, 255)
SeriesCollecton MewSeres
SeniesCollection(3 ) name = "LEL"
SeniesCollecton3 ). Vahues = Array((), Loss_values(places_amay))
SeriesCollection3 ) 3 Vahees = Amray(LEL, LEL)
SeriesCollection(3) Format. Line ForeColor R.GB = RIGB(31, 187, §1)
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SeriesCollection NewSeries
SeriesCollection(4) name = "T5L"
SeriesCollaction(4) Vahes = Amray(), Loss_values(places_srray))
SeriesCollecton(4) FVales = Amay(UEL, TUEL)
SeriesCollection(4) Format. Line ForeColor. RGB = RiGB(179, 38, 152)
SeriesCollection NewSeries
SeriesCollection(5) name = "Loss"
SeriesCollection(5) X Vahes =x_values
SeriesCollecton(5). Vahies = Loss_wales
SeriesCollection(5) Format. Line ForeColor. RGB = RIGB(255, 0, )
Parent. Top = Worksheets (" Sinmlation_Chaput™). Cells(34, 3). Top
Parent Left = Workshests{™Sinmlation Chapuat™). Cells(34, 3 + dist).Left
Parent Height =174
Parent Width = 340
End With
Call Histogramn mesans{mean disz, boot_iter_so)
Call Histogram,_varisnces(Varisnce, dist, boot_iter_sm)
' Asymmedric cases NTH
Else
! Deetermining max and min vahe of original sample
max_val m = WorksheetFunction mex{me_orig_ni)
min_val m= WorksheetFunction min{mg_orig_m)
' Computing bin width for histogram / charts
bin width = (max_val m - min_wal m) /10
' Places for x-values | Loss-values ammay
places_array_max = (max_val m*® 1.2 - targer) /0.1
places_srray_min = (target - min val_m * 0.2) /0.1
If places _amay max = places_amay min Then
places_amay = places_armay_max
Else
places_amay = places_amay min
End If
! Dietermine first x_vahie based on smallest value from original sample
Felhim x_vahes(]l To places_armay)
Felim Loss_vales(]l To places_armay)
Felim x_vahues_man(] To places_armay)
Felhm Loss walnes me(] To places_armay)
min_val m=L5L * 0.3
! Comypute the loss finction for lower side of target
Fori=1 Toplaces_array
x_walnes(i) =min_val_m
Ifmin wal_m < target Then
Laoss_walues(i) = cons_k_low * ({min_val m - target) * 2)
min_val m=min _wval_m + 0.1
End If
Nexti
' Comypute the loss fimction for wpper side of target
calc_target = target
Fori=1 To places_srmay
x_walnes mum(i) = calc_fargst
Loss_values_max(f) = cons_k wp * ({calc_target - targes) * 2)
calc_target = calc_target + 0.1
If calc_target = max val_m Then Exit For
Mexti
' Computing and eating the dismibation curve
FeDim freq ammay(l To 13)
FeDim cir_his_arr(l T 13)
min_val m= WorksheetFunction min{mg_orig_m)
step_valne = min_val m - bin width
Fori=1Tol3
cr_his_am(i) = step_walne
step vahie = step_value + bin_width * 0.5
freq armay(i) = step_value
step vahie = step_value + bin_width * 0.5
Nexti
' Distermine bin frequency for dismibution
freq histo_ong = WorksheetFoncnon Frequency(me_onig_m feq amay)
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freq histo boot = WorkshestFimction Frequency(boot_val_arr, freq amay)
Set Orig_Loss = Worksheets("Sinmlation_Ctpat'). Shapes AddChart? Chart
With Orig_Loss

ChartType = xX¥ ScatterSmoothMolIarkers

HasLegend = True

Leagend Positon = xllegendPositicn Top

HasTitle = Tme

ChartTitle Text = "Taguchi's Mominal-The-Best Loss Fimcdon
_Ames(xlCaregory, xlPrimary) HasTitde = Tme

Awes(xlCategory, xlPrimary)_AxisTitle Text = char_name + " "+ "[" + char_umit +"]"
_Awes(xIVale, xPrimary) HazTitle = True

_Awes(xIVahe, dPrimary). AxisTitle Text = "Loss" + ™ "+ "[" + ourrency_umit +"]"
_Awes(xlVahe) Minimmm&cale = 0

Amwes(xlCategory). MinimumSeale =0

Ames(xlCaregory). MaxinmumSoale = targst * 2

SeriesCollection MewSarias

SeriesCollection(]) name = "Target”

SeriesCollection(]). Vahies = Amay(0, Loss_valoes_mex(places_array))
SeriesCollection(1). 3 Valnes = Amray{target, target)
SeriesCollection(] ). Format Line ForeColor F.GB = RIGB{153, 153, 153)
SeriesCollection MewSarias

SeriesCollection(?). name ="L5L"

SeriesCollection(2). Vahies = Amay(0, Loss_valoes_mex(places_array])
SeriesCollection(2). 3 Valnes = Amay(L5L, L5L)
SeriesCollection(?). Format Line ForeColor F.GB = RGB(31, 187, 61)
SeriesCollection MewSarias

SeriesCollection(3).name = "TI5L"

SeriesCollection(3). Vahies = Amay(0, Loss_valoes_mex(places_armay])
SeriesCollection(3). 3 Valnes = Amay(USL, USL)
SeriesCollection(3). Format Line ForeColor BIGB = RGB(179, 39, 152)
SeriesCollection MewSarias

SeriesCollection(4). name = "Losz"

SeriesCollection(4) 3 Valnes =x_valuss

SeriesCollection(4). Values = Loss_values
SeriesCollection(4). Format Line ForeColor BB =RGB(2355, 0, 0
SeriesCollection MewSarias

SeriesCollection(5).3Values =x_values_max

SeriesCollection(). Vahies = Loss_values_max
SeriesCollection(5). Format Line ForeColor BB =RGB(2355, 0, 0

Lagend LegendEnries¥) Delete

SeriesCollection MewSarias

SeriesCollection(f). name = "Tnput Drats"

SeriesCollection(f). X Values =ctr_his_am

SeriesCollection(f). Values = freq histo oz
SeriesCollection(f) AxsGroup = xlSecondary

Ames(xIVale, xlSecondary) MinmmumSeale =0
SeriesCollection(f). Format Line ForeColor F.GB = RIGB(204, 204, 255)
Parent Top = Worksheats("Sinmilation_Output™).Calls(18, 3).Top

Parent Laft = Worksheets"Simmlation_Chatput') Cells{18, 3 + dist) Lag
Parent Height =124

Parent Width = 340

End With

' Loss Fumction chart with bootsirap distmbution . drawn vahes for each bootsoap sample
Set Boot_Loss = Worksheets("Sinmlation_Cratput”) Shapes. AddChant? Chart
With Boot_Loss

ChartType = xY ScatterSmoothMoldarkers

HasLegend = True

Lagend Positon = xllegendPosidonTop

HasTitle = Tme

ChartTitle Text = "Taguchi's Mominal-The-Best Loss Function” + " Bootstrap (=" + boot_jter_sr+")"
_Ames(xlCaregory, xlPrimary) HasTitde = Tme

_Ames(xlCategory, xlPrimary) AwisTitle Text = char_nams + "+ "[" + char_ymdt +"]"
_Awes(xIVale, xlPrimary) HazTitle = True

_Awes(xIVahe, dPrimary). AxisTitle Text = "Loss" + ™ "+ "[" + ourrency_umit +"]"
_Awes(xlVahe) Minimmm&cale = 0

Ames(xlCategory). MinimumSeale =0

Ames(xlCaregory). MaxinmumSoale = targst * 2

118




97

Ty

] -

=]

L=l - L N SR VAT |

=]

SeriesCollection MewSarias

SeriesCollection(]) name = "Target"

SenesCollection(]). Vahes = Amay(0, Loss_walnes_max(places_amay))
SeriesCollection(]) 3 Valnes = Amray(target, target)
SeriesCollection(]).Format Line ForeColor R.GB = RGB(153, 153, 153)
SeriesCollection MewSarias

SeriesCollection(?) name = "L5L"

SeriesCollection(2).Vales = Amay(0, Loss_values_max(places_armay))
SeriesCollection(2) X Valnes = Amay(L5L, L5L)
SeriesCollection(2) Format. Line ForeColor B.GB =RGB(31, 187, 1)
SeriesCollection MewSanas

SeriesCollection(3).name = "TI5L"

SenesCollection(3). Vahies = Amay(0, Loss_walnes_max(places_armayy)
SeriesCollection(3) 3 Vales = Amay (UL, TUSL)
SeriesCollection(3) Format. Line ForeColor B.GB = RGB{179, 39, 152)
SeriesCollection MewSarias

SeriesCollection(4) name = "Loss"

SeriesCollection(4) 3 Valnes =x_valuss

SeriesCollection(4). Valoes = Loss_vahes
SeriesCollection(4) Format. Line ForeColor B.GB = F.GB(2355, 0, 0)
SeriesCollection MewSarias

SerjesCollection(5). 3 Valoes =x_values_max
SenesCollection). Vahies = Loss_walues meax
SeriesCollection(5) Format. Line ForeColor B.GB = R.GB{2355, 0, 0)
Legend LegendEnfries(5) Delete

SeriesCollection MewSarias

SeriesCollection(f) name = "Tnput Drats"

SeriesCollection(f) 3 Valnes = cir_his_amr

SeriesCollection(f). Vales = freq histo_boot
SeriesCollection(l) AxisGroup = xlSecondary

Ames(xIValne, xlSecondary) MinimmumSeale =0
SeriesCollection(). Format Line ForeColor F.GB = FuGB(204, 204, 255)
Parent Top = Workshests(" Sinmilation_Output™).Calls(34, 3). Top
Parent Laft = Worksheets"Simmlation_Chatpus") Cells(34, 3 + dist) Left
Parent Heighs =124

Parent Width = 340

End With

Call Histogram means_asymuMean upper, Mean lower, dist, boot_iter s
Call Histogram var_asym(Variance wpper, Variance lower, dist, boot_iter_sim)

End If
Case "Smaller-the-betmer”
' Distermining max and min vale of original sample
max_val m = WorksheetFuncion mecme_orig_ni)
min_val_m= WorksheetFunction min{mg_orig_ni)
' Commputing bin width for histogram / charts
bin width = (max_val m - min_wal o) /10
! Places for x-vahies / Loss-values ammay
places_ammay = (max val m* 1.5 - nin wal_m *0.7) /0.1
Felim x_vahes(]l To places_smmay)
Felnim Loss_walnes(]l To places_amay)
' Distermine first x_valie based on smallest value from original sample
step_valhe =10
' Conzpute the loss function
Fori=1 To places_srmay
x_valnes(i) = step_value
Loss_values(l) = constant_k * (step_vale ™ 2)
step_valie = step_value + 0.1
Mexti
FeDim freq amay(l To 13)
FeDim cir_his_arm(l Te 13)
! Computing and qreating the distribation curve
step_walne = min_val m - bin_width
Fori=1Tol3
cr_his_amm(i) = step_walne
step_vahie = step_walue + bin_width * 0.5
freq armay(i) = step_value
step_vahie = step_walue + bin_width * 0.5
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' Dietermine bin frequency for dismibution

freq histe_ong = WorksheetFuncnon Frequency(me_onig_m freq amay)
freq histo boot = WorkshestFimction Frequency(boot_val_arr, freq amay)
Set Omig_Loss = Worksheets{"Simmlation_Cutpart”). Shapes AddChart? Chart
With Orig_Loss

ittt
Snh b b oS

ChariType = =X Y Scatter SmoothMNod farkers

HasLegend = True

Legend Position = xlLegendPosidon Top

HasTitle = True

JChanTitle. Texe = "Tamchi's Smaller-the-better Loss Function”
Axps(xlCatepory, xlPrimary) HazTitle = True

Axes(xICategory, xlPrimary) AxisTitle Text = char_parme + ™ " +"[" + char_mmit +"]"
Axes(xWalue, xlPrimary) HasTitle = True

Axes(xWalue, xlPrimary) AxisTitle Text = "Loss" + " ™ + "[" + comrency_umit + "]"
Axes(xWalne) MinmmmScale = 0

Axes(xlCateory) MinimmScale = §

Ames(xCategory) MzdnmmSeale = WorksheetFimction msvo(x_valoes)
SeriesCollection NewSenies

SeriesCollection(] ) name = "Targe"

SenesCollection(]) Vales = Array({), Loss_vahes(places_armay]))
SeriesCollection(]) FVales = Amay(targst, mrget)
SeriesCollection(]) Format. Line ForeColor. RIGB = RGB(153, 153, 153)
SeriesCollection NewSenies

SeriesCollection(?) name = "Loss”

SenesCollecton(?) XWValies =x_valnes

SeriesCollacton(?) Vahies = Loss_vahes
SeriesCollection(?) Format. Line ForeColor. AGE = RGB(255, 0, )
SeriesCollection NewSenies

SeriesCollaction(3 ) name = "Original Sanples”

SeriesCollection(3) FVales = cr_his_ar

SeriesCollection(3) Valies = freg histo_orig
SeriesCollection(3 ) AxsGroup = xlSecondary

Axes(xWalue, xl%econdary) MinionmScale =0
SeriesCollection(3) Format. Line ForeColor. RiGB = RGB(204, 104, 255)
Parent. Top = Worksheets (" Sinmlation_Chatput”) Cells(18, 3) Top
Parent Left = Workshests(™Sinmilatdon Chafpuat™).Calls(18, 3 + dist). Left
Parent Haight = 274

Parent Width = 340

End With
Set Boot_Loss = Worksheets{"Simmlation Cutpat') Shapes. AddChart? Cham
With Boot_Loss

ChariType = =X Y ScatterSmoothMo farkers

HasLegend = True

Legend Position = xlLegendPosidon Top

HasTitle = True

ChartTitle. Text = "Tagochi's Smaller-the-better Loss Function" + " Bootstrap (o= " + boot_iter s +")"
Axps(xlCatepory, xlPrimary) HazTitle = True

Axes(xlCategory, xlPrimary). AxisTitle Text = char_name + " " +"[" + char_mmit +"]"
Axes(xlWalne, xlPiimary) HasTitle = True

Axes(xWalue, xlPrimary) AxisTitle Text = "Loss" + " ™ + "[" + comrency_umit + "]"
Axes(xWalne) MinmmmScale = 0

Axps(xlCatepory) MinimmmScale = 0

Ames(xCategory) MzdnmmSeale = WorksheetFimction msvo(x_valoes)
SeriesCollection NewSenies

SeriesCollection(]) name = "Targe"

SeniesCollection(]) Vales = Array({), Loss_vahes(places_amray])
SeriesCollection(]) FVales = Amay(targst, mrget)
SeriesCollection{]) Format. Line ForeColor FiGB = RGB(153, 153, 153)
SenesCollecion MewSeres

SeriesCollection(?) name = "Loss”

SenesCollecton(?) XWValies =x_valnes

SeriesCollection(?) Vahies = Loss_vahies
SeriesCollection(?) Format. Line ForeColor. AGE = RGB(255, 0, 0
SeriesCollection NewSenies

SeniesCollection3 ) name = "Bootsrap Dam”

SeriesCollection(3) FValies = or_his_amr
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SenesCollection(3) Vales = freg histo_boot
SeriesCollection(3 ) AxsGroup = xlSecondary
Axes(xWalue, xl%econdary) MinionmScale =0
SeriesCollection(3) Format. Line ForeColor FuGB = R.GE(204, 104, 255)
Parent. Top = Worksheets (" Sinmlation_Chatput™).Cells(34, 3). Top
Parent Left = Workshests(™SinmilatonChafpat™).Calls(34, 3 + dist). Left
Parent Haight =124
Parent Width = 340
End With
Call Histogram means{mean disz, boot_iter_so)
Call Histogram_varisnces(Varisnce, dist, boot_iter_sm)
Casze "Larger-the-herter”
' Determinine max and min vale of original sample
max. val m = WorksheetfFunchon mam{mg_onig_mi)
min_val m = WorksheetFunction min{me_orig_m)
' Computing bin width for histogram / charts
bin width = (max_val m - min val m) /10
' Places for x-values | Loss-values ammay
places_smay = (max val m* 1.5 - min wal_m *0.7) /{01
Felim x_vahes(]l To places_armay)
FeeDnim Loss_walnes(]l To places_amay)
' Dietermine first x_vahie based on smallest value from original sample
step_valne = 1.5
! Comypute the loss fumction
Fori=1 Toplaces_smmay
x_walnes(i) = step_value
Loss_values(l) = constant_k / (step_vahe * 2)
step_value = step_value + 0.1
Memti
FeDim freq amay(l To 13)
FeDim cir_his_arm(l Te 13)
' Computing and eating the disribation curve
step_valne = min_val m - bin_width
Fori=1Tel3
cr_his_am(i) = step_value
step_valie = step_value + bin_width * 0.5
freq armay(l) = step_value
step value = step_wvalue + bin_width * 0.5
Memti
' Dietermine bin frequency for distmibation
freq histe_ong = WorksheetFuncnon Frequencyime_oriz m freq amay)
freq histo boot = WorkshestFimction Frequency(boot_val_arr, freq amay)
Set Orig_Loss = Worksheets("Sinmlation_Ctpat'). Shapes AddChart? Chart
With Orig_Loss
ChanType = 23 Y ScanerbmoothMNoharkers
HasLegend = True
Legend Position = xlLegendPosidonTop
HasTitle = True
ChanTitle. Tex = "Tagchi's Larger-the-better Loss Funcgon”
Axes(xiCaterory, xlPrimary). HasTitle = True
Axes(xICategory, xlPrimary) AxisTitle Text = char_name + ™ " +"[" + char_mmit +"]"
Axes(xWValue, xlPrimary) HasTitle = True
Axes(xWValue, xlPrimary) AxisTitle Text = "Loss" + " ™ + "[" + comrency_umit + "]"
Axes(xWalne) MinmmmScale = 0
Ames(xCategory]) MinimmmGeals = 0
Ames(xCategory]) M zdnmmSeale = WorksheetFunction mae(x_valnes)
SenesCaollecion MewSeries
SeriesCollection]] ) name = "Targe"
SeniesCollecton(]) Valies = Array(l), Loss_vahes(places_amray])
SeriesCollection(]) X Vahes = Amay(target, target)
SeriesCollection(] ) Format. Line ForeColor. RWGB = RIGB(153, 153, 153)
SeriesCollection NewSeries
SeriesCollection?) name = "Loss”
SenesCollecton(?) XWVahes =x_valnes
SenesCollecgon(?) Valies =Loss_valies
SeriesCollection(?) Format. Line ForeColor. AGB = RGB(255, 0, )
SeriesCollecdon MewSeres
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SeriesCollecton(3 ) name = "Criginal Sanples”
SeniesCollecton3) X WVahwes = cr_his_ s
SenesCollecton(3). Vahies = freq histo_ong
SeriesCollaction(3 ) AxisGroup = xlSecondary
Axes(xlValue, diecondary) MininnmScale =0
.:Smesf.,u]lem.om(?}_l?mt Line ForeColor. RiGB = RGB{204, 24, 255)
Parent Top = Worksheets("Sinmlation Ousput™) Cells(18, 3’]  Top
Parent Left = Workshests{™Sinmlation Chatpar™).Calls(18, 3 + dist) Left
Parent Height = 224
Parent Width = 340
End With
Set Boot_Loss = Worksheets("Simmlation Chutpat™). Shapes. AddChart? Chart
With Boot_Loss
ChanType = 23 Y ScaterimoothMobfarkers
HasLegend = True
Legend Position = xlLegendPosidon Top
HasTitle = Tre

ChariTitle. Text = "Tapachi's Larger- The-Better Loss Function” + ™ Bootsirap (o ="+ boot_iter_sir + )"

Axes(xlCatepory, xlPrimary) HasTitle = True
Axes(xlCategory, xlPrimary) AxisTitle Text = char_name + ™ " +"[" + char_umit + "]"
Axes{xlWValue, xlPrimary) HasTitle = True
Axes(xlValue, xPrimary) AxisTitle Text = "Loss" + " "+ "[" + ourency_umit + "]"
Axes(xlValue) MinmmmScale =0
Ames(xlCategory) MinimmmSeale = 0
Ames(xlCategory) MadnmumSeals = WorksheetFimction mam(x_valnes)
SeriesCollection MewSeries
SeriesCollection(] ) name = "Target"
SeriesCollection(]). Vahes = Array(0), Loss_values(places_array))
SeriesCollecton(]) 3 Vales = Array(targst, mrget)
.SeriesCollection(] ) Format. Line ForeColor. RGB = RIGB(153, 153, 153)
SeriesCollection MewSeries
SeriesCollecton?) name = "Loss”
SeniesCollaction(2) X Vahees =x_values
GenesCollecgon(?) Vahies = Loss_vales
SeriesCollection(?) Format. Line. ForeColor RGE = RGB{255, 0, 1)
SeriesCollection MewSeries
SeniesCollecton(d) name = "Bootstrap Data”
SeriesCollection(3) 3 Vales = cir_his s
SeriesCollecton(3). Vales = freq histo_boot
SeriesCollecton3 ) AxsGroup = xlSecondary
Axes(xlValue, diecondary) MininnmScale =0
SeriesCollection3) Format. Line ForeColor. RRGB = RGB(204, 204, 255)
Parent Top = Worksheets (" Sinmlation Cwgput'™) Cells(34, 3_‘] . Top
Parent Left = Workshests{"Sinmlation Chapar™). Cells(34, 3 + dist) Left
Parent Haight = 224
Parent Width = 340
End With
End Select
' Computing total loss; conputed depending on loss fimcdon rype
Select Case Worksheets( User_Tnput').Cells(T, 9 +m_col). Vale
Caze "TMominal-the-best™
If Worksheets("Conputstions ™). Calls(4, 2 +m_col). Value = "Yes" Then
Total_loss_series = Totsl_loss_series + Womksheets(" Sinmlation_Cnput™) Cells{14, 4 + dist) Vale

Total Gal_loss_series = Total Gal loss_series + Worksheets{"Sinmilation_Ouipur™). Calls(14, 7 + dist) Valne

Else
Total_loss_series = Total loss_series + Worksheets("Simmlaton Chtput™) Cells(15, 4 + dist) Value +

Workshests(" Sinmlstion_ Output™). Cells(15, T + dist). Value

Total_Gal_loss_series = Totsl (Gal loss_series + Worksheets("Sinmilation Cutpas”).Cells(16, 4 + dist) Value +

Workshests(" Sinmlstion_ Owipur™).Calls(16, T + dist). Value
End If

Caze "Smaller-the-beter”
Total loss_series = Total loss_series + Worksheets("Simmlatdon Chtput™) Cells{14, 4+u:1.15t}“.-a]ue

Total_Gal_loss_series = Total_(al_loss_series + Workshests("Sinmilaton Chapuar').Calls{14, 7 + dist).Valae

Caze "Larger-the-betar”
Total_loss_senes = Total_loss_series + Worksheets{"Simmlaton Caput™) Cells(14, § + dist). Vale

Total_(Gal loss_series = Total Gal_loss_senes + Worksheets("Simmlation Chafpuat').Calls(14, 6 + dist). Valoe

End Salect
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' Printing total loss
Worksheets("Sinmlation_Owgpu') Fange("A§") Value = "Total Loss"
Worksheets("Sinmilation_Owugpus') Fange("AT") Value = Total_loss_series
Worksheets("Sinmiation O’ Fange("A11") Value = "Total (alton Loss™
Workshests("Sinmlstion_Owpue™) Fange("A12") Value = Total_Gal_loss_series
' Backzround coloring
E so=m col
If Warksheets("Sinmlation_Outpus') Cells(4, 3 + dist). WVale = "Component” + ™ ™ + k_sir Then
With Workshests("Sinmlation_Output™)
Fange{ Cells(3, 2 + dist), .Cells(®0, § + dist)) Interior. Color = RIGB(231, 130, 2300
Panga( Cells(4, 3 + dist), .Cells(16, & + dist)) Interior. Color = RGB{255, 182, 0)
End With
End If
! Place holder to print results omto shest
dist=dist+ 7
Next m col
" Create input for Dropdown-list in Sensitvity_Analysis sheet
Wk shests(™ Sensitivity_Analysis") ComboBox].Clear
Fork=1 Tomm_com
Worksheets("Sensitivity_Analysis").ComboBox] Addliem k
Mentk
End Sub
" This sub creates histograms for the mesns(]) for Mominal-the-best and smaller-the-better cases, also used for displaying larger-the-
better loss distibution
Sub Histogram means{boosoap_stanstic) As Double, dist As Integer, boot_iter_sir As Sming)
Drim mex As Double, min As Double, ave As Double, ave_st As Soing
Drim mam bu:sﬁ.slubem him, width As Double
Drim i As Integer, MyChart As Chart
Drim histo_array() As Double, center_histo armay() As Double, values histo srray() As Vanant
men bins = Worksheets{"User_Input™) Banee("F317). Value
" Dietermuining may and min vailue of bootsirap stabistc
max = WorksheetFunction meboosrap_statistc)
min = WorksheetFunction mimdboostrap_statistic)
ave = WorksheetFunction Average{boosap_statstic)
ave_st= Fomd{ave, )
" Computing bin width for histogram / charts
bin_width = (max - min) / oum_bins
" Compuing and eating the disoibution curve
FeDrim histo_armay(l To mm bins + 1)
Feldm center_histo_armay(] To mom bins + 1)
Fori=1 Tonum bins + 1
center_histe_array(i) = Fomd{min 2}
min = min + bin_width * (L5
histo_amay(i) = Round(mmin, 7)
min = min + bin_width * (L5
Mext i
" Dietermine bin frequency for dismituton
valnes_histo_array = WorkshestFunction Frequency(boostrap_statistc, histo amay)
Set MyChart = Worksheets(" Sinmilation. Ousput™). Shapes_AddChar?. Chart
With MyChar
ChartType = xlColummCisterad
HasTitle = Tme
ChartTitle Text = "Grand-Mean ="+ ave_st + " Bootstrap (n ="+ boot_iter_str +")"
_Ames(xlCaregory, xlPrimary) HasTitde = Tme
_Ames(xlCaregory, xlPrimary) AwisTitle Text = "Bootsoap Mems"
_Awes(xIVale, xPrimary) HazTitle = Tmue
_Ames(xlValne, xlPrimary). AxiszTitle Text = "Frequency™
SeriesCollection MewSarias
SeriesCollection(]). Values = values_histo_array
SeriesCollection(1).3Valnes = center_histo_array
Parent Top = Worksheats("Sinmilation_Output™).Calls(50, 3).Top
Parent Laft = Worksheets"Simmlation_Chatput') Cells(30, 3 + dist) Lag
Parent Height =124
Parent Width = 340
End With
End Sub
" This sub creates histograms for the variance(]) for Mominal-the-best and smaller-the-better cases

123




Sub Histogram variances{Varmmce() As Double, dist As Integer, boot_iter_str As Sming)
Declarng of all varisbles
Dim max As Double, min As Double, ave As Double, ave_st As Soing
Dim mum_bins As Integer, bin_width A= Diouble
Dimi As Integer, MyChart As Chart
Drim hizto_array() As Double, center_histo_armay() As Double, values_histo array() As Varant
mmm_bins = Worksheets("User_Input”) Fange"F317). Valne
max = WorksheetFunction meoVaniancs)
min = WorkshestFunction nin{Variance)
ave = WomksheetFunction AverageVariance)
ave_st= Rnmd{ave, 1)
bin_width = {max - min)) / oum_bins
FeDnm histo_array(]l To mm_bins + 1)
Fel¥im center_histo armay(]l To mmm_bins + 1)
Fori=1 Tonum bins + 1
center_histo_array(l) = Foumd{min, 2}
min = min + bin_width * 0.5
histo_amay(i) = Found{min, Z)
min = min + bin_width * 0.5
Mexti
valnes_histo_array = WorkshestFuncion Freguency(WVariance, histo_amay)
Set MyChart = Worksheets(" Sinmlation. Output”). Shapes AddChartd Chart
With MyChart
ChartType = xlColmmChustered
HasTitle = Tme
_ChartTitle Text = "(Frand-Vansnce =" + ave_st +" Bootsoap (o ="+ boot_iter_so+")"
_Ames(xlCategory, xlPrimary) HasTitde = Tme
_Ames(xlCategory, xlPrimary) AwxisTitle Text = "Bootswap variances"
_Awes(xlValie, xPrimary) HasTitfle = True
_Axes{xlVale, xlPrmary). AxisTitle Text = "Frequency”
SeriesCollection MewSaries
SeriesCollection(]). Values = values_histo_array
SeriesCollection(]).3Valnes = center_histo_array
Parent Top = Workshests (" Sinmilation_Ontput™).Cells{§6, 3). Top
Parent Left = Worksheets(" Simmlaton_Cutpas') Cells(86, 3 + dist) Lad
Parent Height =224
Parent Width = 340
End With
End Sub
" This sub creates histosrams for the means(]) for MNominal-the-best - asymmefric cases
Sub Histogram mesns gsymboot_stat_up() As Double, boot_stat_low() As Double, dist As Integer, boot_iter_so As Sming)
Dim max As Double, min As Double
Drim ave_wup As Diopuble, ave_up_st As Sming
Drim ave_low As Double, ave_low_st As Soing
Dim mum_bins As Integer, bin_width A= Diouble
Dimi As Long, m As Long, MyChart As Cheart
Drim histo_array() As Double, center_histo_armay() As Double, values_histo srray() As Variant
Dim mean up_low() As Double, boot_iter As Long, size_mesn up_low Az Long
mmm_bins = Worksheets("User_Input”) Fange{"F317). Valne
boot_iter = Wordkshests(™User_Inpur'") Fanze{ F307). Value
zime_mean wp_low =21 * boot_iter
FeDim mean up low(]l To size_mean wup_low)
m=1
Fori=1 To boot_iter
mean_up low(m) =boot_stat_wpi)
m=m+1
mean_up low(m) =boot_stat_lowil)
m=m+1
Mexti
max = WorksheetFunction ma{mean wp_low)
nin = WorkshestFunction min{mean_up_low)
ave_up = WorkshestFunction Average(boot_stat_up)
ave_low = WorksheetFumction Average{boot_stat_low)
ave_up_st= Found{zve wup, I)
ave_low_st= Fomd{ave_low, 2)
bin_width = {max - min)) / oum_bins
Feliim histo_amay(] To mm_bins + 1)
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FeDnm center_histo_array(] To mmm_bins + 1)
Fori=1 To mm bins + 1
center_histo_array(l) = Fomd{min, 1)
min = min + bin_width * 0.5
histo_amay(i) = Found{min, 1)
min = min + bin_width * 0.5
Mexti
valnes_histo_array = WorkshestFunction Frequency(mean up_low, histo_amay)
Set MyChart = Worksheets(" Sinmlation. M}Shapes_Add(ﬁarLChm
With MyChart
ChartType = xlColmmChustered
HasTitle = Tme
_ChartTitle Text = "Wesn Upper Side =" +ave_up_st+" /" +" Mean Lower Side ="+ ave_low_st
_Axes(xlCategory, xlPrimary) HasTitde = Tme
_Ames(xlCategory, xlPrimary) AxisTitle Text = "Bootsmap Means"
_Awes(xIVale, xPrimary) HasTitfle = True
_Ames(xIValhie, xlPrimary). AxisTitle Text = "Frequency™
SeriesCollection MewSaries
SeriesCollection(]).Vahies = valies_histo_array
SeriesCollection(]).3Valnes = center_histo_array
Parent Top = Workshests (" Sinmilation_Ontput™).Cells{50, 3). Top
Parent Laft = Worksheets(" Sinmlation_Cutpas') Cells(30, 3 + dist) Lag
Parent Height =224
Parent Width = 340
End With
End Sub
" This sub creates histograms for the variances(j) for Mominal-the-best - asymunetric cases
Sub Histogram var_asynuboot_stat_up(]) As Double, boot_stat_low() As Double, dist As Integer, boot_iter_str As String)
Dim max As Double, min As Double
Dim ave_up As Double, ave_up_st As Sming
Drim ave_low As Double, ave_low_st As Soing
Dim mum_bins As Integer, bin_width A= Diouble
Dimi As Long, m As Long, MyChart As Chart
Drim hizto_array() As Double, center_histo_armay() As Double, values_histo array() As Varant
Dim var_up low() As Double, boot_iter As Lone, size_var up low As Long
mmm_bins = “mtsheeu{‘taer_luput"].ltmgp{"ﬂl") Value
boot_iter = Wordkshests(™User_Inpur'") Fanze{ F307). Value
size var_up_low =2 * boot_iter
FeDim var_up low(l To size wvar_up low)
m=1
Fori=1 To boot_iter
var_up_low(ng) = boot_stat_up(i)
m=m+1
var_up_low(nt) = boot_stat_lowi(T)
m=m+1
Mexti
max = WorksheetFunction meovar_up_low)
min = WorkshestFunction mindvar_up_low)
ave_up = WorkshestFunction Average(boot_stat_up)
ave_low = WorksheetFumction Average{boot_stat_low)
ave_up st=FRound(me up, I)
ave_low_st= Fomd{ave_low, 2)
bin_width = {max - min)) / oum_bins
FeDnm histo_array(]l To mm_bins + 1)
FeDnm center_histo_array(] To mmm_bins + 1)
Fori=1 Tonum bins+ 1
center_histo_array(l) = Fomd{min, 1)
min = min + bin_width * 0.5
histo_amay(i) = Found{min, 1)
min = min + bin_width * 0.5
Mexti
valnes_histo_array = WorkshestFunction Frequency(var_up_low, histo_srray)
Set MyChart = Worksheets(" Sinmlation._Onusput”). Shapes_AddChar?. Chart
With MyChart
ChartType = xlColmmChustered
HasTitle = Tme
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_ChartTitle Text = "Variance Upper Side ="+ ave_up st+"/™+" Variance Lower Side="+

ave_low_st
_Awes(xlCategory, xlPrimary) HasTifde = Tme
_Ames(xlCategory, xlPrimary) AxisTitle Text = "Bootsap Varnances"
_Awes(xlValie, xPrimary) HasTitfle = True
_Ames(xIWValne, xPrimary). AxisTitle Text = "Frequency™
SeriesCollection MewSaries
SeriesCollection(]). Values = values_histo_array
SeresCollection(]) 3 Values = cemter_histo_armay
Parent Top = Workshests (" Sinmilation_Onrtput™).Cells{§6, 3). Top
Parent Laft = Worksheets(" Sinmlation_Cutpas') Cells{8§, 3 + dist) Lag
Parent Height =224
Parent Width = 340
End With
End Sub
Private Sub Sinmlation Design Click()
Dim k As Integer, k_so As Soing
Dim mun_com As Ingeger
mEn_com = Worksheets(" User_Input”) Fange("F21") Value
" Clears already existing table Som former sinmilation process
Worksheets("User_Input'). Fange({Cells(3, ), Cells(300, 217).Clear
"Creating Table for Diata Input
With Worksheets(ser_Input™)
Fange"T5:113") Font size = 14
Fange"T5:113") Horizontal A lisnment = xCenter
Fange"T5:113") VerdcalAlignmen: = xlCenter
Fange"T57). Valne = "Variables"
Fange"I67). Valne = "Mame"
Fange"I7").Valne = "Loss Fumcion Type™
Fange"T87). Valne = "Target™
Fange"18") Valne = "Upper Spec Limit (TISL)"
Fange"T107). Vale = "Lower Spec Limit (LSL)"
Fange"T117). Vale = "Loss at TSL / Targes"
Fange"T127). Vale = "Loss at LSL"
Flange{"T137). Vale = "Enter your values here”
'Creating Excel Tahble Style
ListObjects Add{xSrcFange, Fange(Calls(5, &), Cells(13, #)), , xlTes, , "TableStyledfedim] 7). name =
"Sinmlation Design_Tahla"
ListObjects("3inmlation_Desizn_Table™) Fange AutoFilter
End With
"Dretermining mumber of colunms for investzated components
Fork=1 To mm_com
k so=k
Workshests("User_Imput™).Cells(3, 9 + k). Valne = "Component” + " " +k_str
Worksheets("User_Imput™).Cells(5, 9+ K).ColunmmWidth = 2.3
' Creating Dvop-Dhown-Msm for wser to select loss function
If Mot IEEmpoy(Wiortksheets(™User_Input™) Cells(5, & + k) Value) Then
Calls(7, & + k). Selact
With Selection Validation
Add Type:=xIValidatel ist, AlertStyle:=xIValid AlertStop, Operator:=_
xlBatwesn, Formmilal ="=3G322:5G324"
IzmoreBlank = True
InCallDropdown = True
InputTitle=""
ErmrorTitle=""
Inputhiessage =""
Ermorhiessage =""
Showlnput = True
ShowEmor = Tme
End With
End If
Mextk
End Sub
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Table 16. Sensitivity analysis of the average loss per unit for Taguchi’s nominal-the-best quality loss

function for shifted mean for a simplified biomass supply chain with a cost constant k = 2 $/%2.

Average Loss per unit in $ in terms of shifted mean per 0.5 sigma

Component Harvest / _ e
sigma Collection Transport Drying Densification
-6 268.01 212.89 217.33 132.43
-5.5 226.31 179.45 184.11 110.18
-5 188.24 148.95 153.72 90.06
-4.5 153.80 121.39 126.16 72.05
-4 123.00 96.78 101.44 56.16
-3.5 95.82 75.12 79.56 42.39
-3 72.28 56.40 60.51 30.74
-2.5 52.36 40.62 44.29 21.20
-2 36.08 27.79 30.91 13.78
-15 23.43 17.91 20.36 8.48
-1 14.41 10.97 12.65 5.30
-0.5 9.02 6.97 7.78 4.24
0 7.26 5.92 5.74 5.29
0.5 9.14 7.81 6.53 8.46
1 14.64 12.65 10.16 13.75
15 23.77 20.44 16.63 21.16
2 36.54 31.17 25.93 30.69
2.5 52.94 44.84 38.06 42.33
3 72.96 61.46 53.03 56.09
3.5 96.62 81.03 70.84 71.97
4 123.91 103.54 91.47 89.97
4.5 154.83 128.99 114.95 110.09
S 189.38 157.39 141.26 132.32
5.5 227.57 188.74 170.40 156.67
6 269.38 223.03 202.38 183.14
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Table 17. Sensitivity analysis of the average loss per unit for Taguchi’s nominal-the-best quality loss

function in case of variance for a simplified biomass supply chain for cost constant k = 2 $/%2.

Average Loss per unit in $ in terms of changing variance per 0.5 sigma

Component Harvest / i e .
sigma Collection Transport Drying Densification

-6 1.63 2.05 1.55 0.15
-5.5 2.10 2.37 1.90 0.58
-5 2.57 2.69 2.24 1.01
-4.5 3.04 3.02 2.59 1.44
-4 351 3.34 2.94 1.87
-3.5 3.98 3.66 3.29 2.29
-3 4.45 3.98 3.64 2.72
-2.5 491 431 3.99 3.15
-2 5.38 4.63 434 3.58
-1.5 5.85 4.95 4.69 4.01
-1 6.32 5.27 5.04 4.43
-0.5 6.79 5.60 5.39 4.86
0 7.26 5.92 5.74 5.29
0.5 7.73 6.24 6.09 5.72
1 8.20 6.57 6.44 6.15
15 8.67 6.89 6.79 6.57
2 9.14 7.21 7.14 7.00
2.5 9.61 7.53 7.49 7.43
3 10.08 7.86 7.83 7.86
3.5 10.55 8.18 8.18 8.29
4 11.02 8.50 8.53 8.71
4.5 11.49 8.82 8.88 9.14
S 11.96 9.15 9.23 9.57
5.5 12.43 9.47 9.58 10.00
6 12.90 9.79 9.93 10.43
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Purpose and Target Group

The following handbook was developed to introduce practitioners of the sustainable bio-based
industries into continuous improvement concepts. Concepts which help to identify key process
variables and detect main sources of their underlying wvariations. Furthermore, to show the
importance and benefits of visualizing and cquantifying varation through use of stafistical
methodologies.

Background

Quality management is crucial for mamufacturing organizations not only for profitability
competitiveness but for business survival. Many consider the American quality revolution of the
1980s to have been a response to an American quality crisis. The conditions of the business quality
crisis of the 19805 are very similar to the current economic crisis faced by ULS. businesses and
especially the sustainable bio-based industries. The current economuie erisis of unprecedented o1l
prices and a severe decline in housing starts with constrained capital markets and had some forest
products companies renewing their emphasis on variation reduction. cost savings, and quality
improvement.

Why Variation in Manufacturing is Important

Variation among all components of a production is a vital factor for determining the performance
and success of your company. Generally, there are five sources for process variation involved in a
manufacturing process which are the following: Raw matenals, equipment, lmman actions,
environment, and production methodology. Understanding that raw matenial quality is subject to
nafural variation is essential for a successfil performance. In addition, products from several
suppliers could be different, i e, chack the variation of key affributes of the raw material to identify
the best supplier. Equipment varies in complexity and quality based on process and producer.
Highlv complex machinery could introduce more variation than simpler ones. Many factors could
affect humans’ actions during the manufacturing process; for example, even though two different
emplovees were trained in the same way for operating an equipment they could have slightly
different operating decision-making which is another important source of variation. Even for the
same employee, he/she could also act differently between today and the next day, which also causes
variation. For example, processing of sawn timber certain environmental settings such as the
temperature of moisture content in the air are required. Any changes to these settings could lead to
additional unnecessary variation in the final product. Lastly, manufacturing a product consists out
of a series of steps which creates an optimal output; slight changes of this very order introduces
variation. Owerall, too many factors could cause variation in the manufacturing process. Hence, the
ability fo detect and reduce variation in manufacturing became a vifal role for confinuous
improvement and competitiveness in the sustainable bio-based industries.

Page 1 of 23
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Quantifyving Variation of Key Production Characteristics

The sustainable bio-based industries face serious challenges regarding higher raw material prices
and quality variation and increased competfition through globalization. Thus, making it inevitable
that we think about adapting the current state of producing products to a modemized and more data
analvtics driven manufacturing direction. Efficient material input through visualizing and
quantifying material variation 1s a key way in overconung those challenges, ie, make yvour
production move visible, gfficient, and lean. Therefore, a sinmlation tool was developed to offer
practitioners a method to quantify vanation of product attributes regarding supply chain or
production related operations in monetary terms. The ultimate goal of flus simulation tool 1s to
identify the component of your system which mduces the most loss due to vanation. Idenftifying
flus component will help you fo make better informed decisions. Furthermeore, the sumulation
computes the loss for a series of components and even provides figures wlich emphasizes the
impacts of the components on each other. The simulation tool can be downloaded under the link

www.spedlean. com.

Continuous Improvement Strategies

Continuous improvement (Kaizen jap.) 15 a company-wide applied philosophy and describes tools
and concepts to enhance the performance of the enterpnise [1]. Furthermore, continuous
mmprovement 15 a never-ending process of the current state and describes incremental improvement
by little steps through parficipation of all entfities and people in the company [2].

In contrast to the reactionary traditional quality control. continuous improvement philosophies are
proactive with focus on prevention and early detection of problems. Decision making is based on
defendable information from acceptable statistical methodology, while opinions are discounted.
Confinuous improvement strategies such as Stafistical Process Control (SPC) enables visualization
and quantification of variation with control charts. SPC is a general term that applies practical
statistical methods to manufacturing process with the goal of variation reduction. Variation
reduction of key process variables and product attributes leads to target reduction and cost savings.

Fundamental Requirements for Optimization

Ag already mentioned confimious improvement 1s not a fool which you just implement once and
then hope 1f will work Confinuous improvement 1s a plulosophy, a culture everybody in the
company from the fop management to the worker nmst adapt to, more must live the plulosophy.
Thus. change is dependent on the culture of the company, i.e.. if the present culture of the work
force and management will not accept data driven decision-making, and the use of statistical
methods to diagnose sources of variation that lead to avoidable costs. do not dedicate resources fo
continuous improvement at this type of manufacturing facility.
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Provide an environment fo store your sensor data in a reliable data warehouse system and a secure
electronic database of your destructive test results [3]. Apply modern data fusion methodologies to
analyze vour data real-time. Maintain a high-quality database, because this 1s necessary to mitiate
continuous improvement [3].

Visualize your Production — Process Flow Chart

Start your continuous improvement journey by identifying all steps of your production or process
by creating a process flow chart. A process flow chart helps to show the logical sequence of all
activities related towards manufacturing the product. Analyze and identify in a group of technicians
and engimeers non-value adding activities, e.g. unnecessary movement or storage of the product /
materials and eliminate them [4].

Typically, standardized symbols are used fo emphasize certain actions. For example, see the
process flow chart of the full-cell and modified full-cell pressure treaiing process for freated
humber (Figure 1).

" Recciving ™
1 l ,_\_fl\d Storage

Kile Drying Retort Loading

I

Bailing under
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hpsen air
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filling | Air — "'-.\]
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lﬁjuil W Process Step
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neturn o Waork Connection
Tank

1

Steaming Wacuum
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el
Figure 1. Example Process Flow Chart: Full-cell and modified full-cell pressure treating process for treated lumber
[3].
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Connection to the Customer -
Connect Process Variables with Product Attributes

There are at least two clienteles imterested m vour product, your customer and you as the
mamifacturer. However, you are not necessarily sharing the same interests in the product as the
customer. Typically, the customer is interested in the attributes (i.e, quality characteristics) of the
finished product, such as mechanical properties, thickness swell, or profection ability against
organisms of wood preservafives. Instead, you are interested in key process vanables of your
manufacturing system, like moisture content, line speed, or chamber pressure. Therefore, as a top
priority you should connect the crucial attributes favored by the customer with the so-called
‘eritical few’ process variables (Figure 2) [3]. These process variables can be directly linked to the
product attributes.

Take advantage of market analysis to gain information about or explicitly ask your customer about
the desired product attributes. Furthermore, use statistical analysis and methods such as Design of
Experiments or Data Mining to identify the ‘crifical few’ process variables [3]. Please be aware
that many statistical methodologies only provide accurate answers for processes in the state of
control; i &, constant variance. However, it is very crucial for the continnous improvement process
to just focus on the ‘crifical few’ process variables. Don't waste time and effort by charting and
analyzing every variable, just because 1t exists.

Process Variables
iManufoetare Parnmeters)
Air Pressure PI’I'II].I-JI:I :.’ntt_tlhutes
{Customer Specificatonsh
. Mechanical Customer Value
Temperature . E———
Properties
Wood Dimension
oec et Treated Wood
Preservative Stability
Muoisture . o
. . Preservative
Content of Retention
Wood
Wood Species

Figure 2. Connection of 'critical few' process variables with the product attributes [6].
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Describe your Data

It is impossible to measure everything in raw material manufachuring processes. e g, the thickness
of every pole at every position. Instead, we make a few measurements (a “sample”) and use these
dafa to make imferences about the overall process (the “population”™). Taken by themselves. these
sample munbers have little meaning However, by applying the proper statistical techmigues the
dafa can provide valuable information about your system and its variation.

Descriptive Statistics

Unlike inferential statistics which tries to draw inferences from a sample data about the underlving
population descriptive statistics just describe sample data. Key statistics to describe sample data
are infroduced on the following page.

Average or Mean is the “center of the data set™ (X).
iy
i=1 %4

n

X =

The Median of a set of measurements is the middle value when the measurements are arranged
from smallest to largest. Also known as the 50 percentile.

The Range of a data set is the distance from the minimum to the maxinmum value.
Range = Maximum — Minimum
The Standard Deviation estimates the varnability m the same unit of measure.

S=. n—1

The Variance measures how far the values from a data set are spread from their average. The
variance 1s the square of the standard deviation; s =35

The Coefficient of Variation (CV) Is a scaled measure of dispersion, which 15 the standard
deviation divided by the mean (multiplied by one hundred percent). Helpful when comparing
dispersion statistics across sets of data with varying scales or measure and means, e g, product
types. etc.

S ST
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For example, the following moistura contents were measured for dried lumber used in the wood
treatment production.

26.8% 26.6% 27.2% 24 4% 25% 27 4% 23.9%
Average:

— 268+266+272+2444+25+274+239

X = = 25.9%

7

Median:
23.9% 24.4% 25% 26.6% 26.8% 27.2% 274%
Range: 274%-230%=35%
Standard Deviation:

£

f
_ |':2.E.B —25.9) + (26,6 — 25.9)° + (27.2 — 25.9F + (244 — 25.9F + (25 — 259)° + (274 — 25.9)° + (23.9 — 259)°

7—-1

|
5=143%

Pariance: =205
Coefficient of Variation:

cV = 143 100% =5.5
—mx % = 5.5%

How is vour Data Distributed?

Generally, before using statistical methodologies analyze your data. Which tvpe of distribution
does vour data follow (e.g, normal, lognormal. Weibull, efc.)? Is vour data set symmetric? Is your
data skewed (e g, left or right)? Is vour data kurtosis (Figure 3)7 Do vou have outliers? Think about
how outliers were created, i.e. was the measurement correct, did something happen? Your outliers
affect your average: vou might want to use the median instead. Do not manipulate or clean your
data without justifying 1t!!!

Figure 3. Histograms for data with symmetric disrribution (left) and right-skewed diztribution (right).

Page 6of 23

139




Centimuons Improvement Handbook

The Normal Distribution

Samples vary from one to the next, even if the process is not changing, for example some sawn
timber boards are thicker than others and by chance you will measure thicker and thinner boards if
vyou keep measuring. Often, if you make a lot of measurements and plot them in a histogram, vou
will get a picture like the one shown below (Figure 4). This picture shows a Normal or bell-shaped
distribution. Calling it normal” does not mean that there are abnormal data, or that Nermal is good
— it 15 just a name! But Normal Distributions are often found in repeated sampling (i.e. Normal is
normal), and statisticians have good rules for describing their properfies, whether the sampling 1s
of lumber thickness, moisture content or IB strength If the distribution 1s Normal, it has predictable
properties.

Histogram Output

] n ] E] 4 = % 2 o E B0
oisture Comtant in 8

Figure 4. Typical hiztogram output for moisture content of lumber.

For data with a Normal Distribution (symmetric) the average will be in the middle; and very similar
to the median Furthermore, the average + the standard deviation will cover the range of 68.2% of
the data, = 2 standard deviation 95% of the data, and = 3 standard deviation 99% (Figure 5). The
properties form the basis for control charting which will be discussed in the next chapter.

0.4
1

34.1% 34.1%

00 01 02 03

—-30 —-20 —1la M le 20 2o

Figura 3. Percentage dizpersion for a normally diztributed data et in tevms of standard deviation’.

! kttp://news. mit edu/201 Vexplained-sizma-0209
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Variation — the Obstacle of Continuous Improvement

WVariation the key obstacle for a (un-)successful performance of your production. As you know your
production or process consists out of many different components. eg, machine sefiings, raw
marerial quality, or machine parts. Furthermore, every component will introduce variation in vour
process. Thus, observing and visualizing your variation is the first step in continious improvement.
This can be achieved by utilizing Statistical Process Confrol (SPC) tools, such as control charts.
The goal of contimons improvement is the reduction of variation in your process. However, it is
crucial to distinguish variafion befween common-cause or natural-cause variation and special-
cause varation (Figure 6).

Common-cause vanation comes from the system, eg, variafion within a machine, variation
batween the same kind of machines (e.g., drum debarker), or variation befwesn operators, eic.
Specifically, in the bio-based industries, natural vanation mainly comes from the raw material such
as moisture content. material thickness, and so on.

Special-cause variation results from an assignable cause, e.g., machine stop, flaker blade damage,
platen damage, shift-change, efc.. Both natural and special cause variation represents a cost to any
wood product mamifacture. Importantly, most scholars agree that a process can only be improved
after identifying, investigating, and eliminating all sources of special-cause variation [7].

Natural variation and special cause vanation are accurately quantified by the use of Shewhart
control charts. Implement control charts only for the key product attributes linked to the ‘critical
few’ process variables to quantify natural variation and special cause variation. Control charts are
an early detection tool for preventing problems and reducing scrap material. Do not use control
charts for every variable, only those which impact your product the most. Train key management
and operation personnel in the vse and understanding of control charts.

Visualize your Variation — Control Charts

Variation during the processing time can be observed throngh control charts, specifically Shewhart
control charts (Figure 6). In the control charts, x-axis generally represent processing fume or sample
and y-axis mostly denotes the individual measurements of a variable in the processing or represent
ranges of variation among subgroups even the averages of subgroups. The main purpose of control
charts is to show the performance of a process and how this process is impacted by changes.
Orverall, control charts are an essential tool for quality control and they can help detect whether the
variation 15 a natural or a special canse vanation (Figure 7). For some processes the application of
mulirvanate control charts to visualize and monitor vanation 1s more sutable.
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| Special-Cause Variation
| Upper Control Limit
I
- Cammon-Cause Varation + 3 Stawiard Deviatisn
=
o
E B Average
_
=]
1
ol » o I
% or  Natural Varation 3 Standard Devicrtions
Lower Comtrol Limit
" Special-Cause Variation

Time Ordered

Figure 0. Context of control charts with common and special-canse variation for normally dizeibuted data [3].

Control charts have four key features:

1) Data points are either averages of subgroup measurements or individual measurements plotted
on the x/y axis and joined by a line. Time is always on the x-axis.

2) The Average or Center Line is the average or mean of the data points and is drawn across the
middle section of the graph, usually as a heavy or solid line.

3) The Upper Control Linut (UCL) 1s drawn above the centerline and often annotated as "UCL".
This is often called the “+ 3 sigma” line.

4) The Lower Control Limit (LCL) is drawn below the centerline and often annotated as "LCL".
This is called the ™ 3 sigma™ line.

Specification limits are clear requirements which the material or product must satisfiy. These linits
stem from coshumers or associations, such as American Wood Protection Association (AWPA).

Instead, control limits represent = 3 standard deviation and are computed from the data.
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1 ucL=12.81
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45l . . .
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Figura 7: Contral chart: Xoindividual chart.

Origmally, four control mun rules were mtroduced by Westermn Electric Company [9] and
later updated to eight by Lloyd S. Nelson [10] to detect special-cause variation in control charts,
which are the following:

1. One point is more than three standard deviations from the mean i e, outlier ndicates a process
out gf control.

2. Nine (or more) points in a row are on the same side of the mean ie, indicafes a shift in the

mean.

Six (or more) points in a row are confinually increasing (or decreasing), i e, mdicares a frend.

. Fourteen {or more) pomts in a row alternate in direction. increasing then decreasing, ie.,

indicate at least two different data sets.

5. Two (or three) out of three points i a row are more than two standard deviations from the mean
in the same, i e, indicates a shift in the mean.

6. Four (of five) out of five powts in a row are more than one standard deviation from the mean
in the same direction, i e, indicates a shift in the mean.

7. Fifteen points in a row are all within one standard deviation of the mean on either side of the
mean, i e, a highar variation would be expected.

8. Eight points in a row exist, but none within one standard deviation of the mean. and the points
are in both directions from the mean. i e, indicare at least two differant data sets.

o

Shewhart distinguished between control charts for measurement data and attribute data
(Table 1). Measurement data come from confimious measurements and are considered a real
mumber. a.g, heights, densities, moishire content, physical dimensions, etc. Attribute data are
integers and are data. such as number of rejects. blemishes, efc.

Table 1 provides an overview of common control charts for measurement and attribute data.
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Table 1. Typical univariate control charts for measurement and atiribute dara [7, 11].

Meazsurement Data

Control Chart Type Central Line  Control Limats Purpose and when to use
Subgroup - Cly=X Ucl, = ¥ + 2660 mR Aszzessment of long-and short-term
n=1 Individual LCLy = ¥ — 2660 mRA process vanation - perodically
collected data (orgamization of data
in rational mannery
Moving CLy = mR UCLy = 3.268mEA Assessment of stability of short-term
Rangze process vanaton — slowly chansing
process
Subgroup X-bar Cly = 7 UCLy = X+ A: R Assessment of stabdity of the
n=1 LCLp = f—ﬁzﬁ location of the process relative to 1ts
target — historical summary and
organization of data into rational
_ subgroups
Fange CLp,= R UCLy = D,R Assessment of stability of the
LCLg = D3R process variation withn and betwesn
subgroups — Mistorical summary and
organization of data into rational
subgroups
Attribute Data
gi.num:ial np chart Cly, = ng UCLnp = nf + 3\m o mmm— all sa.;nples Ilm'l.! the
ata _ = ame 3 areas of opportumty —
LCLnp = nf — 3npl(l —5) c:erum:»hadzndgood:»z:l;hs i
p chart CL,=§ [m n varable — Areas of opportumty
UcL, = g+3 |T change: from sample to sample —
Y 1 counts bad and good samples
= B(1—7)
LiLy = -3 |—
M
Poizzon o chart CL.= ¢ UcL,= ¢+ ENE a constant — zall samples have the
data LeL.= F—3JF same sized areas of opportumty —
wed to count bad samples
complex products
u chart CL,=1@ |'1:T:_ a vanable — Areas of opportumty
UCLy = &+3 [— changes from sample to sample —
\laﬂ wed to count bad samples in
[E_ complex products
oL, = a—3 |—
A
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For example, you want to analyze the moisture conteni of one batch kiln dried humber (Table 2).

Long-ferm changes can be shown with the X-Individual control chart and short-term changes with
the moving range control chart.

Table 2. Conmal Charr Exampls.

Sample Moisture Content [Za] Moving Range
1) 87
2 a7 mR;=07-87=1
3 115 18
4 10 15
5 104 0.4
2] 104 0
7 91 13
& 11 1.8
2 12 1
10 101 1.9
11 11 0.g
12 98 10.2
13 104 0.6
14 107 03
15 98 0.8

The average moisture content is. ¥ = 10.31%

The average mioving range is- mR = 1.05%

Xoindividual Conirol Chart (Figure 8)
Upper Confrol Limit is: UCL, = X + 2660 mR = 10.31% + 2.660 *1.05 %= 13.10 %
Lower Control Limit is: LCL, = X — 2.660 mR = 10.31% - 2.660 = 1.05 % =7.52%

Natural variation of the process is- 13.10%-7.52 % = 5.58%

12 UcL=13.10
12 L]
E .
il
uE 11 L * .
o 4 a - Aug=10.31
5 10 J * ' d
2 o .
-
2
LCL=7.52
T
1 2 2 4 3 B 7 & 9 1011 12 12 14 15
Sample

Figure 8. Example:

: Xe-Individual control chart for meiziurs content of kil dried lumber.
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Moving Range Conirol Chart (Figure 9)
Upper control limit: UCL, = 3.268 mR = 3.268 * 1.05% = 3.430%

A lower control limit for the moving range does not exist.

44
T
g 33 UEL=3.430
S 30
E 25
=z 20 . x R
945 - .
o -
5 10 - w T S g =1.050
D05 *
2 o0 LCL=0.000

-05

1 2 3 4 5 6 7 & 9 10711 12 12 14 15
Sample

Figure 9. Example: Moving Range conmrol chart for moisture content af kiln dried lumber.

As you can see whether for the X-Individual nor for the moving range chart values are out-of-spec
nor special cause variation.

For control charts with subgroups specific constants are necessary, which can be found in the
appendix.
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Determine your Cost of Variation — The Taguchi Loss Function

Determine the financial cost caused by variation of your process variables or product attributes.
This allows you to provide information and a greater foundation for managerial decision-making,
as well as stronger incentives to act.

Traditionalty, product quality is seen as the conformance to certain specification limits. Products
within specifications are treated as equally good, while products outside specifications are treated
as equally bad in ferms of financial loss (Figure 10, left) [12]. That would mean, products on target
are equally good in the sense of quality as products just meeting specification limits. But this is not
the case. A product just within specification limits would rather be very similar towards a product
just not meeting specification linuts.

For example, assume the case of dried lumber right before the freafment process with wood
preservatives in a vacuum chamber. The farget is 25% with an upper specification limit of 28%
and a lower specification of 22%. Furthermore, the workers know that the best quality for treated
wood stems from lumber with an imitial moisture content of 25%. In this sense, lumbear with 28%
and 29% moisture confent would rather create the same gualify than compared to humber with
25%.

In contrast, Genichi Taguchi developed during the quality revolution in the 1970s quality loss
functions which quantify the financial loss based on variation within the product quality [12]. Thus,
if your product attribute is deviating from the target you will experience loss (Figure 10, right).
And this loss 1s experienced after the shipment of the product in form of future need of repair or
replensshment of the product and even damaged reputation of your company.

Tagueks's Tai-Sided Gualily Lass Funelion
. i ) Prosess Cualmy Loss
Equally had Equally Goad Equally bad Vartlen \ Funetien
Loas (8] Mo Less Mo Loss Lows {51
o
[| ORI, W———— S
£
3 ' '
Lass I-}I: :I enis (-5}
1 I .
Lower Target (m) Upper . H
Specification Speafication Lot Targer Upger
Lamat Limut Specification (m} Specificiion
A = Target - LAL %= 1ISL - Tanget Limit Limit
{m-A) {m+4)

Figure 10. Traditional view af lezs (Teft) and Taguchi's view on loss (right).

Taguchi specified three different quality loss functions. Each quality loss function is designed for
specific process variables or product attributes (Table 3). Furthermore, you can either compute the
loss based on each value individually or as an average loss per unit for the whole data set. However,
try to build an optimal loss function for your specific case.
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Table 3. Overview Taguchi Quality Loss Function [12].

Type When to use? Loss Funetion Cost Coefficient k
Individual Loss:
MNommal-the-best  Vanables with two L=k x(y—m)? k= ﬁ
(Figare 11} specification limats Average Loss per Unit: T oAl
L=k x(a®+(F—m)%)
WVanables which Individual Loss:
Smaller-the-better  should be small as L=kxy® _ A
(Figure 12, loff) possible, Average Loss per Unit: ~ usr?
theoratically zero. L=kx (o +F)
Individual Loss:
k
- - L=—
Vanables which 2
Lal'rgar-ﬂle-b’zwer should be large as Average l.nsfp-u' Ut k= Apx LSL?
(Figure 12, right) ssible 11 1 1
pe L:kx—(—z+—z+---+—2]
By ¥ ¥r
Where: &% = Variance of the data set

L = Loss in Dollars

k = Cost coefficient § / (vanable unit of measure) *
v = Individual value for your vanable / attribute
7 = Average of all values of the data set

m = Target of your process

Aj= Tolerance (e.g., USL — Target; Target — LSL)

Ap = Consumer Loss

n = number of values in the data set
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Figure 11. Quality Loss Function - Nominal-the-bast.
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Figure 12. Quality Loss Functions - Smaller-the-bettar (Igft) and Larger-the-better (right).
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Example for Taguchis’ Ounality Loss Funcrion

Recall the example of a treated lumber production (target(m) =

Ceontinmons Improvement Handbook

-

5%, Tolerance (A) = 3%).

Assumne you receive three batches of dried humber from three different lumbermills for your wood
freatment production. Now, ask yourself which lumbermill provides the best bafch in terms of
moisture content variation and thus financial loss. Since you have twe specification limits
Taguchi’s nominal-the-best equation is used. Assume a customer loss at the spec limit of $18.

Then cost cogfficient k= 2 3/%".

Lumbermill A Lumbermill B Lumbermill C
Moisture Individual Moisture Individual Moisture Individual
Content [%s] Loss [§] Content [%4] Loss [3] Content [%5] Loss [§]
277 14.58 25.1 0.02 26.2 288
223 14.58 23 & 247 018
255 0.5 271 882 222 15.68
25.3 018 271 882 231 722
24.2 1.28 231 16.82 24 2
27 8 243 0.98 251 0.02
275 125 24.5 05 26.8 6.48
27 8 232 6.48 256 .72
28.8 258.88 239 242 25.2 0.08
254 0.32 24.5 0.5 23 8
Total Loss 58882 Total Loss 55336 Total Loss §4326

Based on the results using the individual loss eguation lumbermill C would provide your company
with the best batch of lumber.
Nevertheless, to really see how variation influences the loss you could compare all three
lumbermills based on the computed average loss per unit, which respects the variation of the data

ser.
Lumbermill A Lumbermill B Lumbermill C
Average 26.07% Average 24.48% Average 24.59%
Variance 3.66%° Variance 2.66%" Variance 2 22%°
Average Loss i Average Loss | - .- oo | Average Loss | ;oo ipr
er Unit 9.61 &/Thit per Unit 5.87 8/ Unit per Unit 4.77 8/ Unit

Thus, the lowest average loss per unit is experienced with humber from lumbermill C.
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Map the Sources of Your Variables Variation

After visnalizing vour variation of the “crifical few” process variables you nmst identify all possible
root-causes. For this, apply Kaom Ishikawa’s philosophy or orgamized bramstorming via the so-
called Fishbone chart or Ishikawa diagram (Figures 13 and 14) to categorize all sources of variation
for the key product attributes and yvour process variables. Categornize usually are material, method,
machine, man and environment but of course can vary from case to case.

| Man Mnderial

e\ 1\ \

Variation - Cmality Characteristic

Secondary Cause

Alethad | Mlschine Enviromment

Figure 13. Typical Ishikawa diagram, a visualization and knowledge organization tool.

How to construct an Ishikawa-diagram:

Form a team with people who have distinct knowledge about the machinery or process, e.g.
machine operators of process engineers

Place the main problem in the box on the right

Generate and clarify all potenfial sources of variation via bramnstorming as a team

Categorize all sources / process variables into related groups

Give those groups names

Place the process vaniables on the appropriate bones of the Ishikawa diagram

Combine each bone in fum, msuring that the process variables are specific, measurable and
controllable. If they are not, “explode™ the process variable until the ends of the branches are
specific, measure, and controllable.

Tips:

Identify causes and not symptoms.
Publish diagrams in your company to get external perspective on the problem.
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Figure 14. Ishikawa diagram for "Variation of Retention and Pemetration of Treated Woad” [13].

Prioritize the Sources of your Variables® Variation

Pareto charts are visual aids for prioritizing the key process vanables confributing to the
main problem. Adapted from the “80/20-rule” mnvented by the Italian economust Vilfredo Pareto
80% of the variation in a process origin from 20% of the canses [14]. The identified canses for the
problem are represented by bars on the horizontal axis; the cumulative contribution by the causes
are represented on the vertical axis via a line (Figure 15) Pareto charts enable improved decision
making for managers and engineers regarding tackling major causes for solving the main problem.
Develop schemes which allows the worker to document the identified source or canse for variation.
Later plot yvour knowledge / data fo see which problem arises more frequently and start improving
the most prominent problem.
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Parcto Chart

200

]

120

Frequency

Cause of noncon farminy

100%

B

G005

40

20%

Cumulative frequencey

Figure 13. Parsto chart for causes aof nonconformity of a wood product [13].

Continuous Improvement — The Plan-Do-Check-Act-Cycle

Most important for your Companies’ success is fo see
contuous improvement as a long journey not a quick sprnt.
All entiftes of the company, staring with the upper
management and ending with the machine operator, must pull
in the same direction. be open for improvement opportunities
and most importantly stay persistent. Form an inclusive,
healthy, and constructive management culture within the
company to create the foundation necessary for the successful
implementation of continuous improvement Use the
philosophy of the Plan-Do-Check-Act-Cycle for every main
cause for vanation m your process variables (recall Pareto
chart) to ensure your path on continuous improvement (Figure
16) [16].

Figure 14, Plan-Do-Check-Act-
Cyele.

Plan-Phase — Assess the current state of your process, 1.e. current issues and deficiencies and
develop a plan with countermeasures or actions which will improve the situation Think and
document the potential output of vour countermeasures and changes. Make rather small changes to
detect their impact more easily and make them more predictable / measurable.

Page 19 0of 23

152




Centinmons Improvement Handbook

Do-Phase —Execute your plan through implementing the counfermeasurements in your process;
e.g. changed line speed, resin mix, drying temperature, or chamber pressure. Document
measurable statistics to visualize the impact of your counfer actions.

Check-Phase — Evaluate the data results gathered from the Do-Phase and compare the results with
vour predicted outcome from the Plan-Phase. Use charts (e.g. confrol charts) to compare the results
of multiple PDCA-Cycele rmuns.

Act-Phase — Act based on the results you gathered from vour evaluation i Check-Phase. For
posifive results. ie improvements of the current standard setting of vour process, adopt the
countermeasures i your standard. For negative results, no improvements were made through the
changes. keep the current standard without changes. Now, if you think improvements can still be
made with your process start the cycle with the Plan-Phase again Aveid making unplanned
adjustments in the der-Phase.

Getting rid of Bottlenecks — Theory of Constraints

Eliyalm M. Goldratt developed Theory of Constraints (TOC) to provide a thinking concept
on how to tackle material or managerial limitations in manufactunng to greatly improve the
systems performance [4]. These production limutations, bottlenecks. essentially constrain the
process execution and as a result restrain the overall success of the enferprise [17]. A perfect
enterprise would have no constraint and would make infinite profit [17]. Therefore. in TOC the
success of an orgamization 15 based on how well all processes work together. Tlus theory provides
a five-step approach to solve the constraints individually and implements an additional way for
continuous improvement of a system [4. 18, 19]

At first, the manager or engineer should start with (1) identifving the sysfem s constraint(s).
The choice of constraint should be based on the constraints impact on the performance of the
production. Constraints can be either phvsical. for example limited machine capacity or material
variation of based on policy. Policy constraints can either be created from poor process
methodology or by flawed design of regulations and rules in an organization. After the constraints
identification there should be a discussion on (2) how fo exploit the system s constraint(s). Physical
constraints should be used as effectively as possible. In contrast, a flawed policy should be
eliminated and replaced with an improved new policy. (3) Subordinate everyihing else to the above
decision, for achieving maximum success with the current production environment By
subordinating all resources to the mamn constrants need allows to maxinuze its output and
essentially improve the total systems performance. This is possible since non-constraint resources
have productive and non-productive capacities; optimal used non-constraint resources have no
impact on the performance. If the idenfified (1) and exploited (2) (3) constraints are still existent it
is crucial to (4) elevare the system’s constraint(s) to generate more company profit. Elevating
means to find actions to improve the systems overall performance. For example, if resource
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{machine) capacify is limiting the production output buying another machine to gain increased
production capacity. Thus, another constramnt m the production will anise and will form the new
constraint - (5) i a constraint was broken i a previous step, go back to sfep 1. Step 5 implies that
TOC should be seen and executed as a continuous improvement process; inertia should not allow
to restrict the performance of the enterprise.

Conclusion

Start your journey of continuous improvement by seeing vanation as a chance. A chance to improve
vour current performance. Design a secure data system for storing all you sensorics data. Start by
mapping your production, identify your “critical few’ process variables and product attributes. Start
vour analysis by describing your data; plot a lustogram how does the distribution look like? Use
statistical methodologies to visualize (e.g.. control charts) and to quantify (e.g. Taguchi’s quality
loss function) the variation of your process variables. Identify all potential sources which canse
variation and prioritize the most impactful. If you do this, you are on a good way to improve your
company. And finally, continious improvement is a journey which will never end, stay persistent.

You can find more information either here www spedlean com or the cited literature.
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Tabls 4. Factors for Control Chartz [7].

7 A? D Dy
2 1.880 - 3.268
3 1023 - 257

4 0.72¢ - 2.282

5 0577 - 2114

'] 0483 - 2.004

7 0.419 0.076 1.924

8 0.373 0.136 1 864

0 0.337 0.184 1816

10 0.308 0.223 1.777

11 0.285 0.256 1.744

12 0.266 0.283 1717

13 0.2489 0.307 1.693

14 0.235 0.328 1672

15 0223 0.347 1.653

- 3 34, 3d,
B dodit 1-3 1+
Tabls 5. Bias Cerrection Factors [7].
il ds ds R dr ds

2 1128 (8525 19 3689 0.7335
3 1.693 (0 8884 20 3735 0.7287
4 2050 08708 21 3778 07272
5 2326 (8641 22 3.819 0.7199
] 2534 (8480 23 3.858 0.7159
7 2.704 (8332 24 3805 0.7121
8 2847 (18198 25 3931 0.7084
9 2.970 0.8078 30 4 086 0.6927
10 3.078 07971 35 4213 0.6799
11 3173 0.7873 40 4322 06692
12 3.258 0.7785 5 4415 0.6601
13 3336 (0.7704 5 4 408 0.6521
14 3.407 (.7630 6l 4.639 0.6389
15 3472 0.7502 7 4755 0.6283
16 3532 (17499 80 4.854 0.6194
17 3 588 (17441 a0 4939 06118
18 3.640 0.7386 100 5015 0.6052
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