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ABSTRACT 

 

Cellulosic biomass is a highly variable feedstock. The large variation in key quality 

attributes (e.g., ash content, moisture content, and particle size) challenges the consistency 

of the feedstock supply from a technological and economical perspective. This affects the 

cost and the overall competitiveness of the sustainable bio-based industries. This research 

focuses on developing strategies to reduce variation and cost throughout the supply chain 

for the bio-based industries.  

 The goal of this research is to provide practitioners with tools to quantify variation 

of the components of the supply chain and illustrate that variation accumulates throughout 

the supply chain which induces costs from higher than necessary operational targets. The 

objectives of this research are: 1) develop quality loss functions for the components of the 

biomass supply chain; 2) create a simulation model suitable to quantify feedstock variation; 

3) characterize the impact of variation on the financial loss, and 4) develop a handbook of 

statistical and continuous improvement techniques to promote variation reduction. 

 The Excel simulation model uses Statistical Process Control and Taguchi’s Loss 

Function combined with Galton’s theory of ‘components of variance’ to estimate the 

financial loss due to variation. Sensitivity analyses are used to characterize the impact of 

variation on loss for ash content, moisture content, and particle size. The handbook 

provides practitioners with a guide for improved application of universally accepted key 

continuous improvement techniques. 

 The additional loss per unit on average for Switchgrass from ash content variation 

was estimated to be $17.33 per dry ton, while for particle size (woody residues) the loss 

was $10.32 per dry ton. The additional loss per unit on average for moisture content 

variation was estimated for an example supply chain. The loss per unit for 

harvest/collection was $2.02, transport was $4.93, drying was $3.19, and densification was 

$13.23 per dry ton. The results of this study suggest that Taguchi’s Loss Functions are 

suitable to estimate the loss for feedstock quality characteristics based on variation. The 

simulation tool and handbook will help practitioners of the sustainable bio-based industries 

improve the supply chain’s performance (available at www.spc4lean.com).  
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CHAPTER ONE 

INTRODUCTION 

 

In prior decades the sustainable bio-based industries have faced major 

technological and economic challenges. For example, the cellulosic biofuel industry had to 

develop efficient conversion technologies and supply chain systems to produce economic 

viable biofuels. These biofuels had to be produced with non-edible cellulosic biomass at a 

cost that is competitive with conventional fuels (Yue et al., 2013). Another example, is the 

forest products industry which was heavily impacted by the collapse of the United States 

housing market during the economic crisis from 2007 to 2009 (Howard and Jones, 2016). 

Today, both industries face competitive pressures through increased globalization and 

procuring cost-competitive raw material supply, e.g., large feedstock variations induce 

variation in the process and final product. The large feedstock variations lead to increased 

costs, i.e., higher than necessary operational targets for weight, solvents, resin, etc. must 

be maintained given the large variations in raw materials (Kenney et al., 2013, Salim and 

Johansson, 2016). 

For example, based on the literature the supply chain costs for producing cellulosic 

ethanol (i.e., biofuel) are roughly 35% of the total production costs (Hess et al., 2007, You 

et al., 2012). Given the current production costs for cellulosic ethanol $5.90 (ranging 

between $5.06 to $6.73/GGE) (Warner et al., 2017), based on a gasoline gallon equivalent 

(GGE), the sole supply chain costs would equivalate to $2.07/GGE (ranging between $1.77 

to $2.32/GGE) (Table 1). These supply chain costs represent already 84% of the total 

production costs for corn-grain based ethanol of $2.46/GGE (ranging between $1.50/GGE 

to $4.56/GGE) (ISU, 2018). However, both types of ethanol cannot currently compete with 

the crude oil price of $1.62/gallon (i.e., $68/barrel) (Macrotrends LLC, 2018a), which is 

reflected by the historic U.S. retail price for gasoline and ethanol (i.e., E85) (Figure 1). For 

cellulosic ethanol to be competitive against wholesale gasoline prices, achieved with crude 

oil of $100 per barrel, the production cost of cellulosic ethanol must be $3 per gallon (Sims 

et al., 2010). Given the current crude oil prices this number must be reduced even further. 



 

2 

Table 1. Production cost comparison of various fuel types. 

Fuel type Cellulosic Ethanol Corn-Grain Ethanol Crude Oil 

Year data is from ~ 2015 2007-2018 2007-2018 (July 2018) 

Production costs $5.90/GGE1 $2.46/GGE $1.85/Gallon ($1.62/Gallon) 

Range $5.06-$6.73/GGE $1.50-$4.56/GGE $0.97-$2.61/Gallon 

Reference (Warner et al., 2017) (ISU, 2018) (Macrotrends LLC, 2018a) 

1 GGE is the amount of fuel it takes to equal the energy content of one liquid gallon of gasoline. 

 

 

 

Figure 1. U.S. average retail fuel prices per GGE for gasoline and ethanol (E85) (DOE, 2018). 
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Thus, to achieve price competitive products, companies of the sustainable bio-

based industries must rely on analytics and statistical methods to quantify variation of key 

input variables in their production systems (or supply chain systems). Methodologies such 

as statistical process control, lean or the Toyota Production System (TPS), etc., are 

presented in this thesis as examples of suitable techniques to improve processes. 

 

Rationale and Thesis Execution 

A main problem for these sustainable bio-based industries is the cost-efficient 

supply of the highly variable raw materials. This high variability in key quality 

characteristics challenges the performance of each component of the supply chain and 

manufacturing system (Germain et al., 2008). Raw material variation and the occurring 

variability in process execution influences the final quality of the product (Sofuoglu and 

Kurtoglu, 2012). Therefore, companies with highly variable product attributes (e.g., 

density, strength, yield, etc.) are less competitive in the market as enterprises producing 

items with little variation. As a result, most manufacturers must compensate for excessive 

raw material variation with higher targets in their key process variables (e.g., weight, resin, 

etc.) to meet final product specification, which ultimately lead to increased costs (Taguchi 

et al., 2004). These unnecessary costs through raw material variation exacerbate the already 

tense economic position of the cellulosic biomass supply chain within the total biofuel 

production costs. Reducing process or supply variation is desirable since operational 

targets can be decreased which improves financial performance. Through the correct 

application of continuous improvement techniques engineers and managers can identify 

sources of variation which facilitates efforts to reduce variation in the manufacturing 

process (or supply chain). 

Previous studies emphasize the use of statistical process control (SPC) to improve 

performance of production or supply chain processes. For example, the application of real-

time control charts has improved performance of many forest product manufacturers 

(André and Young, 2013, Astner et al., 2015, Carty et al., 2015, Maness et al., 2003, Riegler 

et al., 2015, Steiner et al., 2017, Young and Winistofer, 1999, Young et al., 2007, Young 
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et al., 2014, Young et al., 2015a, Young et al., 2015b). This research expands upon earlier 

research where a simulation model for quantifying variation in the ‘bio-depot’ concept for 

the biofuel industry was developed (Platzer, 2016).  

This study enhances the previous research from Platzer (2016) by developing more 

strategies and techniques to improve the biomass supply chain to enhance the 

competitiveness of products from the sustainable bio-based industries by lowering costs. 

A more advanced model to simulate the financial loss using the Taguchi Loss Function 

combined with Galton’s theory of components of variance for estimating financial loss due 

to variation in the feedstock supply chain system was developed as part of this thesis. 

Variation was simulated from some existing data and enhanced with bootstrapping. Ash 

content, moisture content, and particle size were the variables in the supply chain that were 

modeled. 

The simulation model is intended to help practitioners identify the components of 

the system with the largest variations and highest costs. Statistical process control (SPC) 

procedures and Taguchi’s quality loss functions were used in the model to improve the 

visualization and quantification of variation that occurs throughout the supply chain 

system. This improved visualization is achieved through graphical display of the variation 

and loss. The continuous improvement techniques used in the thesis were summarized into 

a handbook for practitioners to improve the application of these helpful and universally 

accepted techniques for promoting variation reduction and cost savings. 

 

Hypothesis, Goal, and Objectives 

The research hypothesis aims to determine whether continuous improvement 

techniques are suitable to quantify variation of raw material quality characteristics affecting 

supply chain and costs. The goal of this research is to provide practitioners of the 

sustainable bio-based industries with tools to quantify variation of the components of the 

supply chain and illustrate that variation accumulates throughout the supply chain which 

induces cost. Based on the goal of this thesis, the following objectives were formulated:  
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• Development of quality loss functions to quantify the monetary loss through 

feedstock variation across the supply chain and its components; 

• Development of a simulation-tool for practical application of these quality loss 

functions; 

• Conduct sensitivity analyses to characterize the impact of variation on the loss 

computed with the developed loss functions; 

• Development of a continuous improvement handbook for the sustainable bio-based 

industries. 

 

A brief introduction of the cellulosic biofuel industry and forest products industry 

is presented. The biofuel industry can be classified into unprocessed (e.g., pellets or 

firewood) and processed (e.g., charcoal, ethanol, or biogas) biofuels (FAO, 2008); in 

context of the thesis the second class is referred as biofuel industry. The wood product 

industry, such as producers of furniture, wood composites, engineered wood panels, and 

construction timber, etc., is referred to as the forest products industry in this thesis. 

 

Biofuels Industry 

Rising global energy demand with corresponding limited reserves of conventional 

energy sources has created a renewed focus on alternative energy policies. Even though 

current energy prices for oil and natural gas are at much lower levels than ten years ago 

(Figure 2), scientists and governments are still engaged in the development of policies and 

technologies for alternative energy generation (Guo et al., 2015). Using biomass as a 

renewable energy source, next to solar, wind, or water, has promise as noted by Gold and 

Seuring (2011). Bioenergy is created from different types of biomass and can be a viable 

substitute for conventional fossil fuels (Gold and Seuring, 2011). Studies have indicated 

the positive effects of producing biofuels for the United States, e.g., ensuring energy 

security by reducing dependency on foreign petroleum imports, economic development for 

rural communities, and mitigation of greenhouse gases (Ekşioğlu et al., 2009, Mabee et 

al., 2011). 
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Initially, biofuels were produced from sugar-based feedstocks such as corn and 

sugarcane. Unfortunately, despite having great benefits, using edible feedstocks to produce 

biofuels sparked a heated discussion in the population about the optimal usage, i.e., using 

edible biomass as fuels instead of food considering the scarcity of food worldwide. For 

example, the use of corn for biofuel production increased the prices of food commodities 

(Tyner, 2010). To overcome these challenges renewable fuel standards across the globe 

were introduced to promote the production of biofuels using non-edible biomass 

feedstocks. 

 

 

Figure 2. West Texas Intermediate (WTI) crude oil ‘real prices’ per barrel developments (Macrotrends 

LLC, 2018a). 

 

The Energy Independence and Security Act of 2007 was passed by the U.S. 

congress which mandates that by the year 2022 at least 36 billion gallons of biofuel (e.g., 

ethanol or biodiesel) are produced annually (EISA, 2007). To promote the production of 

cellulosic ethanol only 15 billion gallons of biofuel can stem from edible biomass. This 

policy pushed research efforts into developing efficient conversion technologies, 

pretreatment methods, and efficient supply chain systems for lignocellulosic feedstocks 

(Daoutidis et al., 2013). The advantages of lignocellulosic feedstocks lie in their abundant 
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occurrence in the United States, the lack of already established customer markets, as well 

as not competing against food crops for traditional production land (Hoekman, 2009). 

Despite these benefits technological and logistical challenges remain mostly through the 

high variability of the feedstock quality which significantly impacts the yield of biofuel 

production (Kenney et al., 2013). This variation in feedstock quality characteristics affects 

all components of the supply chain and conversion processes and increases costs. For 

example, depending on the feedstock type the harvesting window is seasonal, which makes 

it necessary to store the biomass, however storage may increase moisture content resulting 

in higher material degradation (Lamers et al., 2015). Furthermore, lignocellulosic biomass 

has lower bulk density, which paired with increased moisture content increases 

transportation costs (Lin et al., 2016). An optimal and sustainable supply of biomass to the 

conversion facility to maintain stable costs of feedstock supply, which typically account 

for 20% to 40% of the total production costs of ethanol, is imperative (Angus-Hankin et 

al., 1995). Thus, modeling supply chain systems which quantify variability of biomass 

quality (e.g., ash content, moisture content, and particle size studied in this thesis) and 

estimate costs are vital as a first step in reducing the costs of biofuels; which is the 

aspiration of this thesis. 

 

Forest Products Industry 

The economic state of the forest products industry was characterized by a steady 

growth with cyclical fluctuations until the end of the last century (Howard and Jones, 

2016). Unfortunately, economic turbulences caused uncertainties and change (Nicholls and 

Bumgardner, 2018) for the industry in the first decade of the 21st century. Economic 

challenges such as the crisis from 2007 and ongoing globalization of the domestic forest 

products market aggravated the competition for the U.S. forest product industry (Hansen, 

2010). One major problem caused by this internationalization was impairing the price for 

roundwood and sawn timber. For example, according to Keegan et al. (2011) forestland 

owners in the Western United States generated higher revenues by exporting their 

roundwood to Asian customers. As a result, the sales price for roundwood went up and 
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domestic mills had to compete with foreign buyers, which benefit from a different 

economic background. This unfavorable price structure forced the mill owner to either 

accept lower margins or greater idle production capacities. As an example, the reduction 

of employment in the wood product industry by 47% reflected these developments (a 

reduction from 620,300 jobs in 1999 to 331,000 in 2011) (BLS, 2018). The recovery of the 

housing market in years after the crisis helped the forest products industry to stabilize 

(Figure 3). However, key challenges remain such as high raw material prices, increased 

competition from foreign companies, variability in raw material, and reducing variation in 

key process variables. 

 

 

Figure 3. Housing starts in the United States in thousand homes (Macrotrends LLC, 2018b). 

 

This variability in raw material and process variables form one of the greatest 

challenges for forest products manufacturers, i.e., to be economically competitive while 

executing the production process at the lowest cost to generate products with best quality 

possible (Salim and Johansson, 2016). The key process variables and the incoming raw 

material quality determine the performance of each operation in the production chain and 

the final product quality. Thus, variation in wood has a great impact on the production and 

generate unnecessary loss (Sofuoglu and Kurtoglu, 2012). Therefore, managers and 
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engineers must develop strategies to increase the efficiency of the production and identify 

factors that lead to lower costs. Hence, the correct application of continuous improvement 

techniques, such as statistical process control and lean management, is critical for 

improvement. 

 

Thesis Organization 

The thesis is organized after Chapter One as follows. Chapter Two is a review of 

the literature on the current state and issues with cellulosic biomass supply chains and 

methodologies associated with continuous improvement and statistical process control. 

Chapter Three provides an overview on the materials and methods, and the simulation 

approach used in this research. Results and discussions are presented as related to the 

simulation model in Chapter Four. An outline of the continuous improvement handbook 

for practitioners is given in Chapter Five. Chapter Six is the conclusion and 

recommendations for future research.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

The literature review presented in this chapter is a general introduction to the 

methodologies associated with continuous improvement. The intent of the chapter is to 

provide the underlying framework and justification for the methods used throughout the 

research study. Given that a vast amount of knowledge exists on this subject matter, and 

the plethora of literature on the subject, the intent is to provide the reader with a general 

overview. More detail can be found in the referenced literature. 

 

Biomass Supply Chain 

This section provides an overview of the state and design of the biomass supply 

chain (BSC) for the biorefinery. Various studies discussed the BSC performance and its 

associated difficulties for individual cases. Alongside the analysis of environmental and 

social-economic impacts of biofuel production on ambient regions of the biorefinery, 

mathematical models were used to assess the optimal solution for complex biomass 

conversion sites and their supply chain systems (Sharma et al., 2013). 

The supply chain is an integrated system to process materials into a finished product 

(Beamon, 1998). Suppliers, manufacturers, distributors, and retailers are the four basic 

business entities within a supply chain (Beamon, 1998). Whereas, the BSC represents the 

first two aforementioned entities which consist out of the following components: Feedstock 

planting and cultivation, harvesting, handling, storage, in-field/forest transportation, road 

transportation, and preprocessing (Rentizelas et al., 2009). The BSC depends on several 

aspects but is not limited to feedstock type, region, transport logistics, and biomass 

conversion technology. A common BSC relies on the “conventional-bale” supply chain 

design (Figure 4), e.g., biomass is baled upon harvest and transported as bales to the mill 

gate. There are many challenges of this BSC system (Awudu and Zhang, 2012). For 

example, quantity (or densification) and quality management of harvested biomass, 
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transportation and logistics concerns (i.e., high volume and low weight), and production 

yields from loss during storage (Awudu and Zhang, 2012).  

 

 

Figure 4. Conventional-bale biomass supply chain for herbaceous lignocellulosic biomass (Jacobson et al., 

2014). 

 

Optimal supply chain management for low-bulk density and aerobically unstable 

biomass is crucial for the performance of biofuel production. However, the “conventional-

bale system” requires biorefineries to be located near the supply source, e.g., within a 50-

mile radius (Argo et al., 2013). Studies from the Idaho National Laboratory showed that 

these BSC for biorefineries may not meet the rising biofuels production goals due to limited 

access to proper feedstocks in quantity and quality within a restricted procurement zone 

(Searcy et al., 2010). Therefore, the advanced uniform-format feedstock supply system 

(AUD) was developed (Figure 5). The AUD design should reduce some of the 

aforementioned uncertainties and improve the viability of bioethanol production. The key 

difference between both designs lies in the positioning of the preprocessing step. Whereas 

the task of feedstock preprocessing in a conventional design is done by the biorefinery 

itself; in an AUD this task is positioned immediately after the harvest and collection step 

(Jacobson et al., 2014). The preprocessing will take place in the so-called ‘bio-depot’, 

which is closely located to the harvest and collection sites. This allows the production of 

uniform, aerobically stable, and easy to ship commodity products  (Jacobson et al., 2014). 

Increased collection radius and the liberty of feedstock selection simplifies the process in 

meeting the specification limits of key feedstock quality characteristics for the specific 

conversion technology. This practice assures evenly distributed properties, such as ash 
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content, moisture content, and particles size and guarantees steady supply of equal 

feedstock to the biorefineries (Argo et al., 2013). Typically, the upstream operations in the 

biomass supply chain (e.g., harvest, preprocessing, etc.) are in control of the final raw 

material quality. While the financial loss through bad raw material quality is rather 

experienced at the downstream operations (e.g., transport or biorefinery). Thus, to avoid 

unnecessary costs all components of the supply chain must collaborate and communicate 

to guarantee a price competitive end product. 

 

 

Figure 5. Advanced uniform-format feedstock supply system (AUD) – components (Hess et al., 2009). 

 

The overall performance of the AUD depends on the individual performance of 

each supply chain component. Harvest and collection of biomass depends on seasonal 

availability and is energy-intensive; based on machinery used in the harvest / collection 

operation the biomass can be introduced with contaminates, e.g., soil (McKendry, 2002). 

Unless not immediately processed at the bio-depot or biorefinery seasonal available 

feedstocks, such as Switchgrass (Panicum virgatum L.), must be stored to ensure quality 

and a stable supply to the biorefinery (Mitchell and Schmer, 2012). For each specific 

biorefinery supply chain system the type of storage must be selected under economical, 

qualitative, regional, and feedstock specific aspects (Darr and Shah, 2014). In addition, 

tarped storage has been found to be an effective way in reducing dry matter loss as well as 

keeping initial installing costs low at the same time (Darr and Shah, 2014). Transportation 

costs crucially influence the overall competitiveness of biofuels, i.e., transportation and 

handling are non-value-adding operations. According to Hess et al. (2007) 35% of the 

production costs stem from feedstock production and logistics, while biomass logistics 
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constitute up to 75% of those costs. Biomass transportation happens either via truck for 

short or rail for long distances (Figure 6) (Lin et al., 2016).  

Depending on the feedstock type biomass in its uncompressed form has a low bulk 

density of 50 to 130 kg/m³, whereas pellets have a bulk density up to 700 kg/m³ 

(Sokhansanj and Turhollow, 2004). 

 

 

Figure 6. Advanced uniform-format feedstock supply-system (AUD) (Hess et al., 2009). 

 

Low-density materials have higher transportation costs due to volume restrictions 

of truck trailers. Densified feedstocks are more efficient to handle, however this efficiency 

is offset by an additional cost step of preprocessing (Lin et al., 2016). Biomass 

preprocessing significantly increases the potential output of industrial biofuel production 

sites (Lin et al., 2013). Comminution, drying, blending, and densification are the major 

operations of a bio-depot supply chain concept (Figure 7), see (Platzer, 2016).  

Mechanical particle size reduction – comminution – crucially impacts the biomass 

conversion process (Marino et al., 2017). Hammer mills are usually used to reduce the size 

of herbaceous biomass to < ~ 2.5 cm. Also, the initial feedstock moisture content impacts 

the particle size distribution, grinding energy, and throughput of the hammer mill 
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(Tumuluru et al., 2016). Comminution is the most cost-intensive operation of the biomass 

conversion process (Tumuluru et al., 2016). Biomass with high moisture content is usually 

dried to decrease the grinding energy consumption. 

 

 

Figure 7. Bio-depot concept for standardized feedstocks (Credit: T. Rials and R. Longmire) (Platzer, 2016). 

 

Yancey et al. (2013) showed that drying herbaceous feedstocks takes less energy 

than woody biomass. Dried biomass have reduced dry matter loss and degradation (Lamers 

et al., 2015). Biomass is either dried passively after harvest on the field or actively with 

additional machinery. Passive drying is a cost-efficient drying method, because additional 

drying equipment is not required. However, this method is limited through regional 

weather differences, attainable final moisture content, and occupancy of possible feedstock 

production areas. Studies showed that the optimal moisture content for conventional pellets 

for woody biomass is 5-10% and for agricultural grasses 10-20% (Stelte et al., 2012). 

Rotary dryers are typically used in bio-depot concepts for active drying (Tumuluru et al., 

2016). This type of dryer effectively produces evenly dried particles to meet the 

specification limits. To ease the process of meeting the specification limits feedstocks are 

blended. The scope of this process is to mix more expensive feedstocks with good attributes 
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with cheaper feedstocks with bad attributes. For example, blending forest residues (e.g., 

pine) with an ash content of 2.6% and switchgrass with 5.8% leads to improvement of 

biorefinery supply through a higher quantity of less expensive feedstock types (Ray et al., 

2017). The final preprocessing step is densification. Densified feedstocks are easier to 

handle, have a better particle size distribution and uniformity, improved compositional 

quality, and have properties to meet the set conversion specification limits. Densification 

systems such as the pellet mill, screw extruder, or piston press are commonly used to 

produce uniform products. The following requirements for moisture content and particle 

size exist for densification systems: pellet mill 10 – 15% and <3 mm, screw extruder 10 – 

15% and < 20 mm, and piston press 10 – 15 % and 6 – 12 mm (Tumuluru et al., 2011). 

 

Feedstocks 

Cellulosic feedstocks, such as forest residues and Switchgrass, are major sources 

for cellulosic ethanol production and may be able to substitute 30% of the current 

petroleum-based fuel consumption (Perlack et al., 2005). This feedstock type has 

advantages properties for biomass to biofuel conversion. These properties are a) abundant 

in occurrence, b) non-edible, c) do not interfere with other market segments, and d) their 

chemical properties can be adjusted through blending or preprocessing (Hoekman, 2009). 

 

Forest Residues 

Wood compared to perennial grasses (e.g., Switchgrass) has great properties for 

biofuel production such as lower ash content. For example, the ash content for pine wood 

is one percent compared with 5.8% for Switchgrass straw (Tao et al., 2012). Given the 

current poor market situation for biofuels, the biofuel production industry cannot 

economically compete against traditional industries, such as pulp industry or other forest 

product industries, that rely on roundwood (Galik et al., 2009). However, these harvest 

operations generate a significant number of residues which can be used for biofuel 

production.  
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Compared to normal logs, forest residues have poorer quality, smaller diameters, 

and are bulky. Forest residues are defined as byproducts from harvest operations such as 

tree tops, branches, bad quality logs, and non-merchantable stems (Moriana et al., 2015). 

Currently, 93 million dry tons of forest residues are removed from United States forests 

annually (Smith et al., 2009). This removal increases the utilization ratio of the United 

States forest use and increases revenue sources for the forest suppliers (IEA Bioenergy, 

2007). 

Forest residues are available in certain regions of the U.S. (Figure 8) (Roberts, 

2014). However, the sustainability of biomass removal from forests depends on the 

conditions of each collection site (Nettles et al., 2015). Thirty-five percent of logging 

residues and 50% of other forest related removals (e.g., branches, etc.) have to be left on 

site to maintain soil quality (Roberts, 2014). Large removals of residues from low quality 

sites, such as loblolly pine, can lead to less productivity in the future (Cantor and Rizy, 

1991). 

 

 

Figure 8. Forest Residues - United States of America (Roberts, 2014). 

 

Unlike perennial grasses or agricultural residues, forest residues can be harvested 

annually. Forest residues are usually collected from wide areas and stored in piles at the 
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roadside (Cambero et al., 2015). Afterwards, the biomass is dried, preprocessed in bio-

depots, and transported to biorefineries (Cambero et al., 2015). However, forest residue 

collection should occur simultaneously with the harvest operations of roundwood to 

generate a more efficient and economical supply chain stream (Schnepf, 2011). The 

properties of freshly collected forest residues are not suitable for biomass conversion 

(Schnepf, 2011). Furthermore, different wood species such as pines, willows, or hybrid 

poplars impact biofuel conversion performance through the difference in quality 

characteristics, e.g., ash content, moisture content, and particle size (Schnepf, 2011). 

Studies have indicated that biofuel production from forest residues generate the best 

outcome using biochemical and thermochemical conversion technologies (EPA, 2007). 

Mill residues like edgings, trimmings, or sawdust can also be used for biofuel 

conversion. However, most of the sawmill residues are already used by the mills itself for 

producing pellets, other wood composite products, or for energy (Douglas, 2010).  

 

Switchgrass 

Switchgrass (Panicum virgatum L.) is a warm-season perennial herbaceous grass 

species, which developed from a forage crop to an energy crop (Zegada-Lizarazu et al., 

2012). Based on comparative studies, conducted by the Oak Ridge National Laboratory, 

Switchgrass is considered a model species for biomass energy production (Vogel et al., 

2010). This status was based on features such as low establishment costs, soil conservation 

benefits and high adaptability to poor soil quality, wildlife enhancement, and the ability to 

be harvested with conventional agricultural equipment (Vogel et al., 2010, McLaughlin et 

al., 2002). Switchgrass occurs in all areas East of the Rocky Mountains (Figure 9) in two 

major ecotypes, upland and lowland switchgrass (Casler et al., 2011). The roots of both 

types reach a depth of 3 m (Ma et al., 2000) and a height for upland 1.5 m – 2 m and for 

lowland ecotypes 3 – 4 m (Moser and Vogel, 1995). 

Studies have indicated that lowland Switchgrass yield up to one and a half times 

more biomass than upland Switchgrass (Parrish et al., 2012). Switchgrass reaches its full 

potential in the third year after seed establishment given the enhanced root development 
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(McLaughlin and Adams Kszos, 2005). Furthermore, Switchgrass can be grown on 

marginal croplands and on areas suitable for the Conservation Reserve Program, i.e., 

marginal cropland (Vogel et al., 2010). Switchgrass harvest has higher labor costs due to 

seasonal availability (Bassam, 1998). Field-drying is also required to reduce moisture and 

reduce loss from degradation in long-term storage (Mitchell and Schmer, 2012). 

 

 

Figure 9. Native ranges of upland and lowland Switchgrass ecotypes in North America (Casler et al., 2011). 

 

Variation of Feedstock Quality Characteristics 

Variation of feedstock quality characteristics has significant impact on the 

performance of all units in the biomass to biofuel production (Williams et al., 2015). 

Historically, the biomass to biofuel supply chain is based on existent supply chain systems 

from different industries, such as agriculture, logging, or food production. In addition, the 

same biomass / feedstock specifications were inherited from those systems (Kenney et al., 

2013). However, the success of biofuel production is based on a steady, cost efficient, and 

controlled quality feedstock supply (Thompson et al., 2014). In recent decades the majority 

of research tried to optimize and reduce costs of biomass logistics in the supply chain 

through machine development and material loss reduction across the supply chain (Zandi 
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Atashbar et al., 2017). But there is an absence in the literature on focusing on the 

importance of variation of feedstock quality characteristics. 

Feedstock quality characteristics can be categorized as follows: physical on a 

macroscale, structural on a microscale, and compositional on a molecular scale (Li et al., 

2016). First, physical characteristics such as feedstock type, particle size and shape, or 

moisture content impact feedstock processing and handling. Second, structural 

characteristics such as cellulose crystallinity, affect selection of conversion technology. 

Finally, compositional characteristics such as ash content impact feedstock selection and 

production yield (Li et al., 2016). Due to the impact on the performance of biofuel 

production from biomass, ash content, moisture content, and particle size are set as the key 

quality characteristics for the simulations in this research. 

 

Ash Content 

Ash content has a negative impact on the biomass to biofuel conversion 

performance (US Department of Energy, 2014). Ash in biomass feedstock originates from 

either the natural physiology of the plant or through contamination with soil or rocks, e.g., 

forest residues versus roundwood (Lacey et al., 2016). Natural ash in plants is either 

associated with structural ash in cell walls or vascular in cell extracts (Kenney et al., 2013). 

In addition, studies showed that the mechanical processing at the harvesting operations 

introduce ash content into the biomass. Ash content varies between and within biomass 

types (Table 2), e.g., woody biomass compared to herbaceous plants and roundwood 

compared to woody residues (Tao et al., 2012). 

Ash in any form within feedstocks has negative impact on biochemical and 

thermochemical conversion technologies. Studies have indicated that corn stover has a 

higher ash content which reduces the effectiveness of pretreatment processes and displaces 

carbohydrate, which is crucial for the biofuel conversion (Weiss et al., 2010). According 

to Kenney et al. (2013) there is no specification limit for ash content using the biochemical 

conversion process. In contrast, for pyrolysis-based thermochemical conversion processes 

the specification limit is one percent (US Department of Energy, 2014). Biomass with high 
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ash content negatively impacts the pyrolysis process through the creation of slag formation 

within the combustion process and decreased efficacy of the catalysts used (Kenney et al., 

2013). Preprocessing, such as fractionation or the use  of specific harvest equipment, can 

reduce the ash content in the biomass (Shinners et al., 2012) and therefore increase the 

biofuel yield. Furthermore, Shinners et al. (2012) illustrated that biomass harvested with 

multi-pass equipment has a higher ash content from increased soil contact relative to 

biomass collected with single-pass equipment. 

 

Table 2. Mean values and ranges for ash content of selected lignocellulosic biomass feedstocks. 

Feedstock Mean ash (%)1 Reported range (%) 

Herbaceous 

Switchgrass straw 5.8 (21) 2.7 – 10.6 

Woody 

Pine wood 1.0 (40) 0.1 – 6.0 

Pine residue 2.6 (4) 0.3 – 6.0 

Spruce wood 0.8 (5) 0.3 – 1.5 

Spruce residue 4.3 (2) 2.2 – 6.4 

Willow wood 1.5 (18) 1.0 – 2.3 

Willow residue 2.0 (1) 2.0 – 2.0 

1 Sample number of mean values in parenthesis 

Data taken from (Tao et al., 2012); inspired by (Kenney et al., 2013) 

 

Moisture Content 

Biomass moisture is a crucial cost driver for biofuel production. Excessive moisture 

negatively affects storing, transporting, handling, and feeding. Biomass handling and 

feeding becomes tedious with increased moisture content, because the cohesive strength of 

the material increases and therefore can plug feeders (Dai et al., 2012). Emery and Mosier 

(2012) showed that dry matter loss for aerobic stored biomass increases with moisture 

content. Furthermore, wet biomass decreases truck utilization for transportation, i.e., 

transportation of less biomass and more water (Eggink et al., 2018). Biomass moisture 

affects not only biofuel conversion performance, it also affects grinding energy and 
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execution (Tumuluru et al., 2014) which indirectly impacts the conversion performance 

(Williams et al., 2015). The specification limits for the moisture content for woody residues 

(Keefe et al., 2014) and herbaceous biomass depend on the final conversion technology. 

Tumuluru et al. (2011) summarized optimal moisture content specifications limits for 

different densification equipment’s, e.g., pellet mill with 10-15% or a piston press with 10-

15%, etc.. Technical targets for main supply chain operations were introduced by Jacobson 

et al. (2014) (Table 3). 

 

Table 3. Technical targets for typical supply chain operations for woody residues and Switchgrass. 

Supply Chain Operation Woody Residues Switchgrass 

Harvest and Collection 40% 5-10% 

Field Storage 30% 20% 

Transport 30% 20% 

Drying 30% 30% 

Densification 19% 19% 

Blending of Pellets1 9% 9% 

1 Feedstocks were individually pelletized and blended based on final blend-formulation 

Targets were taken from the Idaho National Laboratory “Feedstock Supply System Design and 

Analysis” – Case study for thermochemical conversion - (Jacobson et al., 2014) 

 

Particle Size 

Particle size defines the flowability and bulk density of cellulosic feedstocks which 

crucially impact the efficiency of the biomass supply chain and the attainable biofuel yield 

through biomass to biofuel conversion processes (Bitra et al., 2009, Miao et al., 2011). 

Comminution – particle size reduction – is vital to increase flowability and bulk density of 

cellulosic raw material to increase supply and conversion process efficiency (Hess et al., 

2009, Miao et al., 2011). The location of particle size reduction determines the success of 

the whole supply chain; particle size of cellulosic biomass is best modified at an early stage 

(Meunier-Goddik et al., 1999). Furthermore, technology, logistics, and economic 

feasibility of the comminution operation are determined by the supply chain design (e.g., 

type of storage or transportation, etc.) and conversion technology used in the biorefinery 
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(Lam et al., 2008). The associated high energy consumption and processing costs (e.g., 

required pre-drying due to high moisture in biomass) are problematic for particle size 

reduction (Schell and Harwood, 1994), while generating low-value products (Himmel et 

al., 1985). Comminution of biomass is generally required for all conversion technologies 

(Williams et al., 2015). Biochemical conversion process is more tolerant of particle size 

variation than thermochemical conversion processes (Kenney et al., 2013). However, 

neither fines nor over-sized particles are desirable for an optimal execution of the 

conversion process (Kenney et al., 2013). Particle size and distribution depend on the 

milling equipment used, typically either hammer mills or knife ring flakers are used. 

Particles produced from hammer mills tend to be finer than from knife ring flakers for the 

same screen size (Kenney et al., 2013). Specifications and targets of particle size reduction 

are set by the requirements of the end-users (Igathinathane et al., 2008). Furthermore, some 

studies suggest that particle size has no influence (i.e., no significant correlation) on the 

sugar production from cellulose (Vidal et al., 2011), others showed that reduced biomass 

particles have greater digestibility than bales for the conversion process (Hess et al., 2009). 

 

Continuous Improvement 

‘Kaizen’ is a popular Japanese term that is defined as small steps toward continuous 

improvement (CI). Kaizen is a company-wide philosophy which utilizes many tools to 

enhance the performance of the enterprise (Singh and Singh, 2015). CI was a philosophy 

developed by Deming (1982, 1986, 1993) and is defined as a “never-ending process to 

improve the current state of the worker, process, production, or enterprise”. Juran (1989) 

redefined CI as ‘Total Quality Management’ (TQM) which describes incremental 

improvement through participation of all entities and people of an organization (Bhuiyan 

and Baghel, 2005). The goal of any improvement philosophy is to drive defects towards 

zero by reducing variation around the target value (Chen, 2004). The ‘Toyota Production 

System’ or TPS (Ohno, 1988) which was redefined by Womack (1996) as ‘Lean Thinking’ 

focuses on the elimination of waste in an organization, e.g., excessive variation is defined 

as waste in TPS or Lean Thinking. Six-Sigma quality (Harry and Schroeder, 2000) 
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encompasses all the previously defined improvement philosophies and also focuses on a 

methodical approach to using statistical methods to improve organizations and improve 

quality. The name ‘Six-Sigma’ is defined in this philosophy as having a natural tolerance 

that is six standard deviations within specifications, or only producing 3.4 out of one 

million parts that are defective. George (2002) combined the TPS (or Lean) and Six-Sigma 

philosophies and further redefined continuous improvement as ‘Lean Six-Sigma’ or LSS. 

The core method in all of the aforementioned improvement philosophies is the use of 

statistical methods to quantify variation and identify sources of variation influencing 

variation in processes; with the ultimate goal of variation reduction, process/product 

improvement, and lower costs (Taguchi et al., 1988). 

 

The Protagonists of the 20th Century Quality Revolution 

The quality revolution of the 20th century began with the invention of the control 

chart by Dr. Walter A. Shewhart. Shewhart’s breakthrough philosophy was that quality 

control can only be ensured by eliminating process variation (i.e., prevention) and not just 

by inspection only and removing defective products from finished batches (Shewhart, 

1931, Shewhart, 1939). After introducing his ideas at the Bell Telephone Laboratories Dr. 

Shewhart hired an inquisitive and ambitious Ph.D. student called W. Edwards Deming in 

1927. Deming, fascinated by Dr. Shewhart’s thinking, saw the potential of Shewhart’s 

ideas on statistical methodologies to improve manufacturing and applied them in a greater 

management context (Tsutsui, 1996). Deming’s 14 points for management, the seven 

deadly diseases of management, and the Shewhart Cycle are critical contributions of Dr. 

Deming for quality control in the 20th century to increase the performance of Japanese and 

U.S. manufacturers (Deming, 1986, Deming, 1993).  

Unfortunately, the potential of Dr. Deming’s ideas and views on quality control 

were unrecognized by American managers after the end of the second world war (Tsutsui, 

1996). Unrecognized by U.S. companies, Drs. Deming and Joseph M. Juran were invited 

by the Japanese Union of Scientists and Engineers (JUSE) to give lectures about their 

teachings to help the emerging Japanese automobile industry gain competitiveness in world 
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markets. Dr. Juran like Deming, suggested that only management can improve the state of 

the production (Juran and Gryna, 1951, Juran and Gryna, 1993). Meanwhile, Japanese 

engineers and JUSE members such as Taiichi Ohno (i.e., TPS) and Genichi Taguchi (i.e., 

Taguchi loss functions and robust product design) developed methods to continuously 

improve production by quantifying and reducing variation (Ohno, 1988, Taguchi, 1993, 

Taguchi et al., 2004). After the U.S. automotive industry lost significant market share to 

Japanese auto manufacturers in the 1970s, Dr. Deming appeared on an NBC documentary 

titled, “If Japan can… Why can’t we?”. Many believe the June 24th, 1980 NBC broadcast 

was the genesis for the “American Quality Revolution”. 

 

Key Methods in Continuous Improvement 

Statistical Process Control 

The first phase in continuous improvement is defining the state of the process. 

Control charts are considered the key statistical method for SPC and continuous 

improvement (Deming, 1986, Grant et al., 1994). Control charts are fundamental to SPC 

in that the stability of the process is quantified and is visualized. The invention of control 

charts by Walter Shewhart in the 1920s and applied at Bell Laboratories in the 1930s was 

the genesis for the development of SPC (Shewhart, 1931, Wheeler and Chambers, 1992). 

SPC uses the control charts (a statistical ‘prediction interval’) to visualize variation and 

predict of future process outcomes1. The control chart quantifies and distinguishes 

variation as two-types: 1) common-cause variation; and 2) special-cause variation or 

‘events‘ (Figure 10). Monitoring variation using the control chart can prevent the 

manufacture of defective product known as ‘scrap’ and reduce rework (Young and 

Winistofer, 1999). 

                                                 

1 It is important to distinguish between a statistical ‘prediction interval’ and ‘confidence interval’. The 

control chart is an analytical technique for prediction on data that is continually changing and is defined by 

the control limits which are: �̅� ± 3 × 𝑠. The confidence interval is an enumerative technique on a reference 

frame or sample that does not change, and are typically defined assuming unknown variance by:  

�̅� ±  𝑡𝑎

𝑛
,𝑛−1 × (

𝑠

√𝑛
). Prediction intervals are typically wider than confidence intervals. 
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Figure 10. Example control chart: X-individual chart with one outlier. 

 

Common-cause variation is natural variation in a process, product, or material and 

is a stable, consistent pattern that leads to prediction of the process. Special-cause variation 

is unstable variation created by an event, e.g., shift change, raw material change, etc. 

Optimization of a production process can only take place when the process is stable 

and does not suffer from special cause variation, it is crucial to eliminate special-cause 

variation first. Control limits are not specifications limits (engineering tolerance) and are 

approximately ± three sigma (σ) from the process average (�̅�) (Young and Winistofer, 

1999). Control limits contain approximately 99.7% of the variation and assume a normal 

or Gaussian distribution of the data (Sauers, 1999). There are many different types of 

control charts, and depending on the application and sampling, the upper and lower control 

limits (UCL / LCL) are computed using different equations (Wheeler and Chambers, 

1992). 

Originally, four control run rules were introduced by the Western Electric Company 

(1956) and later updated to eight by Lloyd S. Nelson (1984) to detect special-cause 

variation in control charts, which are the following: 

1. One point is more than three standard deviations from the mean, i.e., outlier indicates 

a process out of control. 

2. Nine (or more) points in a row are on the same side of the mean, i.e., indicates a shift 

in the mean. 
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3. Six (or more) points in a row are continually increasing (or decreasing), i.e., indicates 

a trend. 

4. Fourteen (or more) points in a row alternate in direction, increasing then decreasing, 

i.e., indicate at least two different data sets. 

5. Two (or three) out of three points in a row are more than two standard deviations from 

the mean in the same, i.e., indicates a shift in the mean. 

6. Four (of five) out of five points in a row are more than one standard deviation from the 

mean in the same direction, i.e., indicates a shift in the mean. 

7. Fifteen points in a row are all within one standard deviation of the mean on either side 

of the mean, i.e., a higher variation would be expected. 

8. Eight points in a row exist, but none within one standard deviation of the mean, and the 

points are in both directions from the mean, i.e., indicate at least two different data 

sets.  

Shewhart distinguished between control charts for measurement data and attribute 

data. Measurement data come from continuous measurements and are considered a real 

number, e.g., heights, densities, moisture content, physical dimensions, etc. (Table 4). 

Attribute data are integers and are data, such as number of rejects, blemishes, etc. 

The previous review of literature related to control charting is meant to be an 

overview for the practitioner and sets the stage for a fundamental method of this thesis. 

 

Toyota Production System or Lean 

Lean manufacturing describes tools and principles for systematic and continuous 

improvement of manufacturing and service processes by eliminating waste with the goal 

to elevate the enterprises success. Lean manufacturing, originally termed “The Toyota 

Production Systems” (TPS), was invented in the 1950s by Taiichi Ohno of the Japanese 

automobile company Toyota Motor Corporation and was designed to overcome limitations 

in competing with U.S. automobile enterprises (Ohno, 1988, Sundar et al., 2014). TPS or 

Lean focuses on the elimination of waste “Muda”, variation “Mura”, and over-burdening 

of systems and workers “Muri” (Radnor and Leseure, 2010). Lean defines seven major 
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types of waste which are overproduction, waiting, transport, inappropriate processing, 

unnecessary inventory, unnecessary motion, and defects (Wilson, 2010). These types of 

wastes should be understood in terms of value-added and non-value-added activities 

(wastes) to the final product based on the customers view. Value-added activities help 

converting raw-material or semi-finished products to its finished state and are actions the 

customer wants to pay for, while non-value-added activities are wastes and unnecessary 

actions in the conversion process of a product (Hines and Rich, 1997). The key metric for 

improvement in Lean is ‘Value Stream Mapping’ which relies on the ‘Value-Added Ration 

(VAR)’ to determine if a process has been improved. Value stream maps highlight the 

process as a flow chart, define processing time into either ‘value-added’ or ‘non-value-

added’ times, e.g., cycle time, change over times, etc. (Rother and Shook, 1999). 

𝑉𝐴𝑅 =  
𝑇𝑖𝑚𝑒 𝑢𝑠𝑒𝑑 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑃𝑟𝑜𝑐𝑒𝑠𝑠

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝐶𝑦𝑐𝑙𝑒 𝑇𝑖𝑚𝑒
   [1] 

 

Flow Charts 

Flow charts are a useful tool during the initial root-cause analyses phase of 

continuous improvement. They are helpful to visually describe a process or production. A 

process flowchart shows the logical sequence of activities executed to produce a product. 

The great advantage of flowcharting is the quick identification of process steps which 

should be eliminated (Srinivasan, 2011). Streamlining a process is only possible through 

the identification, elimination, or at least reduction of non-value-added activities. Usually 

standardized symbols are used to represent certain type of actions (Figure 11). 

 

Pareto Charts 

Pareto charts  are a method for visualizing defects or assignable events occurring 

in the process (Juran and Gryna, 1951). Most successful continuous improvement efforts 

use the Pareto Chart to identify the critical variable inducing variation in the process. 

Adapted from the “80/20-rule” invented by the Italian economist Vilfredo Pareto 80% of  
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Table 4. Common univariate control charts for measurement and attribute data (Wheeler and Chambers, 

1992, Young and Winistofer, 1999). 

Control Chart Type Central 

Line 

Control Limits Purpose and when to use 

Measurement Data 

Subgroup 

n = 1 

X-

Individual 
𝐶𝐿𝑋 =  �̅� 𝑈𝐶𝐿𝑋 =  �̅� + 2.660 𝑚𝑅̅̅ ̅̅̅ 

𝐿𝐶𝐿𝑋 =  �̅� − 2.660 𝑚𝑅̅̅ ̅̅̅ 

Assessment of long-and short-

term process variation – 

periodically collected data 

(organization of data in 

rational manner) 

Moving 

Range 
𝐶𝐿𝑅 =  𝑚𝑅̅̅ ̅̅̅ 𝑈𝐶𝐿𝑅 =  3.268 𝑚𝑅̅̅ ̅̅̅ Assessment of stability of 

short-term process variation – 

slowly changing process 

Subgroup 

n > 1 

X-bar 𝐶𝐿�̅� =  �̿� 

 

𝑈𝐶𝐿�̅� =  �̿� + 𝐴2 �̅� 

𝐿𝐶𝐿�̅� =  �̿� − 𝐴2 �̅� 

Assessment of stability of the 

location of the process relative 

to its target – historical 

summary and organization of 

data into rational subgroups 

Range 𝐶𝐿𝑅 =  �̅� 𝑈𝐶𝐿𝑅 =  𝐷4�̅� 

𝐿𝐶𝐿𝑅 = 𝐷3�̅� 

Assessment of stability of the 

process variation within and 

between subgroups – historical 

summary and organization of 

data into rational subgroups 

Attribute Data 

Binomial 

data 

np chart 𝐶𝐿𝑛𝑝 =  𝑛�̅� 𝑈𝐶𝐿𝑛𝑝

=  𝑛�̅� + 3√𝑛�̅�(1 − �̅�) 

𝐿𝐶𝐿𝑛𝑝

=  𝑛�̅� − 3√𝑛�̅�(1 − �̅�) 

n constant – all samples have 

the same sized areas of 

opportunity – counts bad and 

good samples 

p chart 𝐶𝐿𝑝 =  �̅� 

𝑈𝐶𝐿𝑝 =  �̅� + 3√
�̅�(1 − �̅�)

𝑛𝑖

 

𝐿𝐶𝐿𝑝 =   �̅� − 3√
�̅�(1 − �̅�)

𝑛𝑖

 

n variable – Areas of 

opportunity changes from 

sample to sample – counts bad 

and good samples 

Poisson 

data 

c chart 𝐶𝐿𝑐 =  𝑐̅ 𝑈𝐶𝐿𝑐 =  𝑐̅ + 3√𝑐̅  

𝐿𝐶𝐿𝑐 =  𝑐̅ − 3√𝑐̅  

a constant – all samples have 

the same sized areas of 

opportunity – used to count 

bad samples in complex 

products 

u chart 𝐶𝐿𝑢 =  �̅� 

𝑈𝐶𝐿𝑢 =  �̅� + 3√
�̅�

𝑎𝑖

  

𝐿𝐶𝐿𝑢 =  �̅� − 3√
𝑢

𝑎𝑖

̅
  

a variable – Areas of 

opportunity changes from 

sample to sample – used to 

count bad samples in complex 

products 
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Figure 11. Example flow chart: Full-cell pressure treating process for treated lumber (Institute, 1999). 

 

 

Figure 12. Pareto Chart for causes of nonconformity of a wood product (Leavengood and Reeb, 2002). 
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the variation in a process originates from 20% of the causes (Wilkinson, 2006). The Pareto 

chart is a histogram (Figure 12) where causes or defects are organized by largest frequency 

from left to right. The identified causes for the problem are represented by bars on the 

horizontal axis; the cumulative contribution by the causes are represented on the vertical 

axis via a line. This technique easily identifies the main cause of the problem. 

 

Ishikawa Diagrams 

Once the main problem has been identified on the Pareto Chart, the typical next 

step is to develop Ishikawa or “cause-and-effect” or “fishbone” diagrams (Figure 13). 

Ishikawa used the diagram in organized brainstorming sessions with workers in the 

automobile industry in Japan to list all possible causes influencing the variable being study 

(Ishikawa, 1986). As many authors have noted, identification of potential sources should 

be done in group work of production workers and engineers to gain optimal result (Doshi 

et al., 2012). Usually, these sources are grouped in the following five different categories: 

methods, machines, people, materials, and environment (Doshi et al., 2012).  

 

 

Figure 13. Example Ishikawa diagram for “Variation of Retention and Penetration of Treated Wood” 

(Hamernik, 2018). 
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Cause Mapping 

Cause mapping is an expansion of the Ishikawa diagram for cause-and-effect 

analysis (Scavarda et al., 2004) and investigates problems closely linked to the 

organizations main goals. The key premise for cause mapping is system thinking, i.e., every 

system has parts which are connected and interact with each other (Zhu, 2008). 

Furthermore, unlike the Ishikawa diagram a cause map focuses on the cause-and-effect 

relationship and not specific categories, i.e., each effect has a cause and each cause has an 

effect (York et al., 2014). The cause map starts on the left with the defined problem placed 

in so-called effect boxes (Figure 14). The question ‘Why?’ is asked to identify the cause 

supported by clear evidence of the effect. This scheme is repeated for each effect to create 

a detailed cause map of the system. Cause mapping allows for a more specific and detailed 

cause-and-effect analysis than the Ishikawa diagram. Additional to the Ishikawa-diagram 

and cause-mapping asking the question why five times is another root-cause-analysis tool 

from Lean. The Five-Why technique helps to find the root cause, not symptoms, of the 

problem and identifies their relationships. 

 

 

Figure 14. Typical scheme for cause mapping; cause-and-effect analysis. 

 

Summary of Lean or TPS Methods 

This section is intended to give a brief summary of important Lean (TPS) 

methodologies. These methods aid the continuous improvement process through 

organizing the workspace, streamlining the production flow, and reducing non-value-

adding activities, i.e., elimination of waste. More information about these tools can be 

found in the cited literature (Ohno, 1988, Srinivasan, 2011, Wilson, 2010).  

The 5S-Methodology is used to systematically improve the workplace by removing 

unnecessary equipment and increasing organization through visual aids. Each step of the 
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methodology is expressed as a Japanese term starting with S (Al-Aomar, 2011): Seiri 

(“sort” by removing unnecessary equipment and material), Seiton (“set in order” by 

organizing the workplace with visual aids), Seiso (“shine” by cleaning the workplace), 

Seiketsu (“standardize” by documenting working methods or using standardized 

procedures / equipment), and Shitsuke (“sustain” by continuously applying this technique).  

Standardized work allows the application of best practices in the workplace. 

Standardizing procedures improves consistency of process execution by reducing variation 

(Emiliani, 2008). Mistake proofing (Poka Yoke) equipment and processes further 

increases product quality by integrating mechanics and sensors to immediately detect 

errors. 

 Lean methods such as Just-in-Time, Jidoka, Heijunka, and Kanban aim to 

streamline the production by creating a smooth flow of the produced items. Continuous 

flow is a manufacturing where the materials or products run through the production without 

or only minimal buffers. Reduced lead times, inventory, and smaller changeover times are 

associated with continuous flow. 

Heijunka, mixed-model scheduling, is used to distribute production capacity 

equally on each product by reducing batch size. Smaller batch sizes lead to smaller lead 

times which allows the production to better meet customer demand. However, smaller 

batch sizes lead to more necessary changeover setups. SMED (“Single Minute Exchange 

of Dies”) was developed, by Shigeo Shingo in the 1950s, to exactly handle the increasingly 

smaller becoming production lot sizes (Ulutas, 2011). SMED methodology aims to reduce 

changeover time to less than 10 minutes by applying the following three main steps: 1) 

execute all setup up steps externally if possible; 2) convert internal setup to external setup; 

3) streamline the changeover, i.e., standardize all required procedures for the changeover 

(Ulutas, 2011). 

Jidoka, “autonomation with a human touch” (Ohno, 1988), is the first key element 

for the success of TPS. Jidoka describes the partial automation of production systems 

combined with defect detection systems. This method allows workers to monitor several 

processes at the same time and detect quality issues immediately. 
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Takt-time, stems from the German word Takt (rhythm), is a means to pace the 

production of each item. Takt-time is simply a ratio of the available time per period and 

product demand per period, i.e., allows to compare actual production with the target of the 

product. 

Kanban, a key technique of lean for continuous improvement, regulates the 

continuous flow through emphasize on the pull replenishment principle, i.e., a product 

should only be produced if customer demand exists. Signal cards are used to indicate the 

need of products or materials. Kanban reduces inventory and prevents overproduction. 

Finally, all those aforementioned techniques enable Just-in-Time (JIT) for 

generating continuous flow. JIT strongly emphasizes the pull principle introduced with 

Kanban. Parts should only be produced with raw materials arriving at the right time with 

the right amount at the right place for the right product. Taichii Ohno mentioned JIT is the 

second key element for the success of TPS. The advantages are reduced inventory and 

space requirements. 

 

Theory of Constraints 

Eliyahu M. Goldratt developed Theory of Constraints (TOC) to provide a thinking 

concept on how to tackle material or managerial limitations in manufacturing to greatly 

improve the systems performance (Srinivasan, 2011). These production limitations, 

bottlenecks, essentially constrain the process execution and as a result restrain the overall 

success of the enterprise (Blackstone, 2001). For example, the constraint for the 

Switchgrass supply chain is the harvest and collection operation due to seasonal availability 

of the biomass. A perfect enterprise would have no constraint and would make infinite 

profit (Blackstone, 2001). Therefore, in TOC the success of an organization is based on 

how well all processes work together. This theory provides a five-step approach to solve 

the constraints individually and implements an additional way for continuous improvement 

of a system (Goldratt, 1990, Rand, 2000, Srinivasan, 2011).  

At first, the manager or engineer should start with (1) identifying the system’s 

constraint(s). The choice of constraint should be based on the constraints impact on the 
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performance of the production. Constraints can be either physical, for example limited 

machine capacity or material variation or based on policy. Policy constraints can either be 

created from poor process methodology or by flawed design of regulations and rules in an 

organization. After the constraints identification there should be a discussion on (2) how to 

exploit the system’s constraint(s). Physical constraints should be used as effectively as 

possible. In contrast, a flawed policy should be eliminated and replaced with an improved 

new policy. (3) Subordinate everything else to the above decision for achieving maximum 

success with the current production environment. By subordinating all resources to the 

main constraints needs allows to maximize its output and essentially improve the total 

systems performance. This is possible since non-constraint resources have productive and 

non-productive capacities; optimal used non-constraint resources have no impact on the 

performance. If the identified (1) and exploited (2) (3) constraints are still existent it is 

crucial to (4) elevate the system’s constraint(s) to generate more company profit. Elevating 

means to find actions to improve the systems overall performance. For example, if resource 

(machine) capacity is limiting the production output buying another machine to gain 

increased production capacity would elevate the system. Thus, another constraint in the 

production will arise and will form the new constraint - (5) if a constraint was broken in a 

previous step, go back to step 1. Step 5 implies that TOC should be seen and executed as a 

continuous improvement process; inertia should not allow to restrict the performance of 

the enterprise. 

 

Taguchi’s Quality Loss Functions 

Quality loss functions are used to quantify the loss caused by variation in quality 

characteristics (Taguchi et al., 2004). Genichi Taguchi developed his quality loss functions 

to support the quality revolution for the Japanese industry (Lofthouse, 1999). The goal of 

quality loss functions is to quantify the loss caused by variation of product quality 

characteristics, such as ash content, moisture content, or particle size, in cellulosic biomass. 

Quality characteristics are performance characteristics, which affect the final quality of a 

product (Antony, 1997). In Taguchi’s philosophy a production experiences loss in revenue 
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when the product defining quality characteristic deviates from the target (Teeravaraprug, 

2008). For example, if the product meets the target, the loss is zero. However, if the 

deviation from the target is double the experienced loss quadruples (Kim and Liao, 1994). 

Crucial for Taguchi’s philosophy is that the financial loss will be experienced after the 

shipment of the product, i.e., customer dissatisfaction through possible product repair or 

replenishment, which may cause reputational damage and lead to loss in market shares 

(Taguchi et al., 2004). 

Genichi Taguchi developed three quality loss functions: nominal-the-best, smaller-

the-better, and larger-the-better (Teeravaraprug, 2008). In addition, the loss can either be 

computed for just one sample or for a set of samples. The two-sided loss function nominal-

the-best (Figure 15) is used for quality characteristics with a known target, upper 

specification limit (USL) and lower specification limit (LSL), e.g., moisture content or 

particle size. The symmetrical two-sided loss function for one unit is determined as 

(Taguchi et al., 2004) 

 

𝐿 = 𝑘 × (𝑦 − 𝑚)²,     [2] 

while the loss function for more than one unit is 

 

𝐿 = 𝑘 × [𝜎2 +  (�̅� − 𝑚)2].    [3] 

Where: 

L = loss in dollars with the average �̅� of the quality characteristic, 

�̅� = the average of the quality characteristic y, e.g., moisture content  particle size, etc., 

m = target of the quality characteristic y, 

k = proportionality constant, 

𝜎2 = the variance around the average �̅�. 

The proportionality constant or cost constant k is defined as: 

 

𝑘 =  
𝐴0

∆0
2       [4] 

Where 

𝐴0 = consumer loss at consumer tolerance, 
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∆0 = consumer tolerance.  

 

 

Figure 15. Taguchi's quality loss function: Symmetric nominal-the-best.  

 

Equations [2] and [3] are suitable to compute the loss for symmetric specification 

limits, but not for asymmetric specification limits. Asymmetric specification settings exist 

if either the consumer tolerance (∆0) for USL and LSL or the consumer loss at consumer 

tolerance limits (𝐴0) are different. Kim and Liao (1994) and Liao (2010) suggested to 

adjust the cost constant k of Taguchi’s equation [2] to represent the asymmetric 

specifications. Thus, the losses for values smaller than the target is computed as 

 

𝐿(𝑦) =  𝑘𝐿𝑆𝐿  × (𝑦 − 𝑚)2 𝑓𝑜𝑟 𝑦 < 𝑚,  [5] 

and for values greater than the target is computed as 

 

𝐿(𝑦) =  𝑘𝑈𝑆𝐿  × (𝑦 − 𝑚)2 𝑓𝑜𝑟 𝑦 > 𝑚.   [6] 

However, equations [5] and [6] do not give sufficient information about the 

influence of the variation of a quality distribution. Li (2002) provides an overview of 

complex linear and quadratic models for the application of asymmetrical quality loss 
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functions. To reduce complexity, this thesis will analyze if the same procedure for 

equations [5] and [6] can be applied to equation [3].  

In contrast, the smaller-the-better loss function (Figure 16) is used for quality 

characteristics where minimizing the result is wanted; ideally zero. For example, ash 

content negatively impacts the biomass to biofuel conversion performance. The equation 

for the smaller-the-better loss function for one unit is defined as the following (Taguchi et 

al., 2004): 

 

𝐿 = 𝑘 ×  𝑦²      [7] 

The equation for the smaller-the-better for more than one unit is defined as: 

 

𝐿 = 𝑘 × [𝜎2 +  �̅�2]     [8] 

Where:  

L = loss in dollars with the average �̅� of the quality characteristic, 

�̅� = the average of the quality characteristic y, e.g., ash content, etc., 

k = proportionality constant, 

𝜎2 = the variance around the average �̅�. 

Where the proportionality constant k is equal to: 

𝑘 =  
𝐴0

𝑦0
2      [9] 

𝐴0 = consumer loss at consumer tolerance, 

𝑦0 = consumer tolerance. 

 

On the contrary the larger-the-better loss function (Figure 17) is used for quality 

characteristics where maximizing is desired. For example, increased sugars in biomass 

improve the biofuel yield. The following equation defines the loss for the larger-the-better 

loss function (Taguchi et al., 2004). 

 

𝐿 = 𝑘 × 
1

𝑛
 ∑

1

𝑦𝑖
2

𝑛
𝑖=1 = 𝑘 × 

1

𝑛
 (

1

𝑦1
2 +

1

𝑦2
2 + ⋯ +  

1

𝑦𝑛
2)   [10] 
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Figure 16. Taguchi's quality loss function: Smaller-the-better.  

 

 

Figure 17. Taguchi's quality loss function: Larger-the-better. 
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Where: 

L = loss in dollars with the average �̅� of the quality characteristic, 

𝑦𝑖 = ith value for the quality characteristic of y, e.g., formaldehyde (CH2O) emission, etc., 

k = proportionality constant. 

Where the proportionality constant k is equal to 

 

𝑘 =  𝐴0𝑦0
2     [11] 

𝐴0 = consumer loss at consumer tolerance, 

𝑦0 = consumer tolerance. 

 

The above described loss functions indicate that variation in quality in context of 

Taguchi’s philosophy should be seen more carefully. Compared to classical quality 

thinking, where all products within specification limits are treated as equally good, Taguchi 

implies that the experienced loss is greater for higher deviations of quality characteristics 

(Liao, 2010). 

 

Components of Variance 

Galton’s early writings on the idea of statistical studies established the framework 

for the concept of ‘components of variance’ (Stigler, 2010). Galton’s theory was that in 

any system variance may accumulate through the system, so that the total variance is the 

sum of the components. The concept of components of variance is the basis for the 

quantifying of the variability on the supply chain for biomass developed in this thesis.  

Variance is accumulated in the following biomass supply chain example. In the 

case of a series system (e.g., biomass supply chain) the variance of a certain quality 

characteristic (e.g., moisture content) may have an impact on the variance of the feedstock 

of the subsequent steps. For example, increased moisture content of harvested biomass can 

have an impact on the dry matter loss. Depending on the storage type, additional moisture 

can be introduced by environmental influences, which increases the overall variance of the 

system. 
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Therefore, mathematically the sum of variances is defined for any series or parallel 

system (Montgomery, 2012). Under the assumption that the variables X and Y are random 

in a parallel system both variables (components) are independent. Therefore, the equation 

is 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌).   [12] 

As mentioned earlier in a series system the variables (components) are dependent 

have a positive or negative influence on each other. Positive influence is when variable X 

is high while variable Y is also high; negative influence is when variable X is high while 

variable Y is low. If the variances for each component are equal the equation is  

 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) ± 2 𝐶𝑂𝑉(𝑋, 𝑌).  [13] 

In contrast, for unequal variances for each component the equation is 

 

𝑉𝑎𝑟(𝑎𝑋 + 𝑏𝑌) = 𝑎2𝑉𝑎𝑟(𝑋) + 𝑏2𝑉𝑎𝑟(𝑌) ± 2𝑎𝑏𝐶𝑂𝑉(𝑋, 𝑌). [14] 

For this case the additional variables a and b define the proportion (i.e., weight) of the 

variance for each component for the overall sum of variance.  
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CHAPTER THREE 

MATERIALS AND METHODS 

 

This thesis applies continuous improvement techniques for the cellulosic biomass 

supply chain. A simulation model in the context of continuous improvement techniques 

was developed to identify components in the supply chain that are inducing the most 

variation. A handbook was developed for practitioners as a template for continuous 

improvement as part of the thesis.  

 

Simulation Model 

The success of the cellulosic biofuel production depends on the efficiency of the 

preprocessing technologies, conversion technology, and biomass supply. A large problem 

for the competitiveness of the biofuel production is the high variation associated with the 

quality of the supplied cellulosic feedstock. Therefore, a comprehensive simulation tool 

was developed to quantify the financial loss due to variation (i.e., variance) in key quality 

characteristics of biomass feedstocks for an improved biomass supply chain, i.e., the 

components of the supply chain are represented as a series system. This technique for 

practitioners of the bio-based and forest products industries is also applicable outside these 

industries.  

This research emphasizes the impact of feedstock variation in manufacturing and 

its influence on financial loss. This simulation tool also helps practitioners to visualize 

variation and identify the component inducing the most financial loss. This tool will 

hopefully lead to reduced variation in key quality characteristics of biomass and to a more 

robust product, i.e., competitive commodity feedstock with low varying quality 

characteristics for increased conversion yield at biorefineries. Figure 18 illustrates the 

theory of robust product design in the context of Taguchi’s ‘signal-to-noise’ ratio. An 

increase of the product quality (x-axis) leads to smaller variation of the key quality 

characteristics of the product (y-axis), which ultimately leads to less financial loss 

(Taguchi, 1993).  
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Figure 18. Taguchi Robust Product Design – increased product quality lead to reduced variation and less 

loss (Taguchi, 1993). 

 

Microsoft Corporation’s Excel 2016 with its integrated programming language 

Visual Basic of Applications (VBA) was the platform used for the simulation model. An 

introduction with instructions on using the spreadsheets, which include data inputs and 

outputs, are included in the simulation tool (Attachment File 1). 

 

Supply Chain Design 

The advanced uniform format feedstock supply chain system (Hess et al., 2009) 

was selected as an representative biomass supply chain, i.e., representative series system 

for the simulation. This supply chain system allows the production of standardized 

cellulosic feedstock products, e.g., pellets. The series is simplified as follows (Figure 19): 

1) harvest and collection, 2) preprocessing, 3) storage, 4) transportation and handling, and 

5) receiving. Preprocessing operations take place in a ‘bio-depot’ and consists of chipping 

(knife-ring flaker), drying (rotary drum dryer), blending (hammer mill), and densifying 

(pellet mill) the harvested biomass, also see the simulation model by Platzer (2016). The 

targets and specification limits were obtained from the literature (Jacobson et al., 2014, 

Tumuluru et al., 2014). 
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Figure 19. Simplified advanced uniform format feedstock supply chain system. 

 

Key Feedstock Quality Characteristics 

Ash content, moisture content, and particle size were selected as the key quality 

characteristics for cellulosic biomass conversion to biofuels based on the results of 

previous research (Kenney et al., 2013, Li et al., 2016, Platzer, 2016, Williams et al., 2015). 

Each quality characteristic impacts the performance of the supply chain and its 

components. Thus, visualizing the financial impact of present variation in these quality 

characteristics should be highly prioritized. For example, high ash content reduces biofuel 

yield at the conversion process (US Department of Energy, 2014), high moisture content 

aggravates biomass handling and transport (Eggink et al., 2018), and particle size impacts 

also the conversion process (Kenney et al., 2013). 

 

Statistical Methodology 

Genichi Taguchi’s quality loss functions (Taguchi et al., 2004) are applied to 

quantify the financial loss based on variation (i.e., variance is defined as σ²) in the key 

quality characteristics of cellulosic feedstock. Recall from Chapter Two, Taguchi’s 

philosophy, i.e., monetary loss is experienced at the very moment a characteristic of 

interest y of a product deviates from the target m. The loss is determined by this deviation 

and the proportionality constant k; k is the ratio of the maximal acceptable monetary loss 

(𝐴0) at the specification limits and the customer tolerance (∆0) (i.e., specifications limits). 
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The two-sided quality loss function nominal-the-best is applied for the quality 

characteristics moisture content and particle size in equations [3] and [4] for symmetric 

specifications (Figure 20), and is as follows: 

 

𝐿 = 𝑘 × [𝜎2 +  (�̅� − 𝑚)2],    [3] 

𝑘 =  
𝐴0

∆0
2       [4] 

Feedstock moisture is controllable by drying and it is crucial to find the optimal 

balance between reduction in moisture content and economic viability in drying cost. 

Biomass bulk density determines the efficiency for handling, transporting, and densifying 

processes and particle size reduction is important. However, fine particles negatively 

impact equipment and performance of most conversion technologies (Tumuluru et al., 

2016). The total loss experienced at one component is calculated as the product of the 

average loss per unit times the sample size (i.e., equation [3]).  

The simulation tool recognizes asymmetric cases and allows for the quantification 

of the average loss per unit of each side of the target. An asymmetric case exists when 

either specification limits or the customer losses at the limits are different. Thus, for 

asymmetric cases, the simulation model quantifies the variation for both sides of the target 

individually, i.e., treating the original dataset as two independent distributions (Figure 21). 

The total losses based on this approach were compared with the total losses using equations 

[5] and [6] (Liao, 2010), which calculate the loss for each individual value and later 

summed up. The goal of this comparison is to check if the total loss based on the average 

losses per unit for asymmetric nominal-the-best cases provides a good estimate of the more 

precise total loss using equations [5] and [6]. The introduced approach would provide 

information on the average loss per unit induced by variation in quality characteristics.  
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Figure 20. Schematic illustration of the symmetric two-sided quality loss function. 

 

 

Figure 21. Schematic illustration of the asymmetric two-sided quality loss function. 
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The average loss per unit 𝐿𝐿𝑆𝐿 for values below the target can be calculated as follows: 

 

𝐿𝐿𝑆𝐿 =  𝑘𝐿𝑆𝐿 × [𝜎𝐿𝑆𝐿
2 + (�̅�𝐿𝑆𝐿 − 𝑚)2],  [15] 

with the cost constant 𝑘𝐿𝑆𝐿 for the lower side of the two-sided loss function, 

 

    𝑘𝐿𝑆𝐿 =  
𝐴0,𝐿𝑆𝐿

∆0,𝐿𝑆𝐿
2  =

𝐴0,𝐿𝑆𝐿

(𝑚−𝐿𝑆𝐿)²
    [16] 

Where: 

𝜎𝐿𝑆𝐿
2   = variance of all values below the target in the data set, 

�̅�𝐿𝑆𝐿  = mean of all values below the target in the data set, 

𝑚  = target, 

LSL = lower specification limit, 

𝐴0,𝐿𝑆𝐿  = consumer loss at LSL, 

∆0,𝐿𝑆𝐿  = consumer tolerance.  

 

The average loss per unit 𝐿𝑈𝑆𝐿 for values above the target can be calculated as follows: 

 

𝐿𝑈𝑆𝐿 =  𝑘𝑈𝑆𝐿 × [𝜎𝑈𝑆𝐿
2 + (�̅�𝑈𝑆𝐿 − 𝑚)2],  [17] 

with the cost constant 𝑘𝑈𝑆𝐿 for the upper side of the two-sided loss function. 

 

    𝑘𝑈𝑆𝐿 =  
𝐴0,𝑈𝑆𝐿

∆0,𝑈𝑆𝐿
2  =

𝐴0,𝑈𝑆𝐿

(𝑚−𝑈𝑆𝐿)²
.    [18] 

Where: 

𝜎𝑈𝑆𝐿
2   = variance of all values above the target in the data set, 

�̅�𝑈𝑆𝐿  = mean of all values above the target in the data set, 

𝑚  = target, 

USL = upper specification limit, 

𝐴0,𝑈𝑆𝐿  = consumer loss at USL, 

∆0,𝑈𝑆𝐿  = consumer tolerance. 
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The one-sided quality loss function smaller-the-better is used for computing the 

loss for variation in ash content; recall equations [7] and [8], Chapter Two. Ash content in 

biofuel feedstock decreases the biofuel production yield and therefore ash content should 

be small as possible, optimally, but unrealistically zero percent. The simulation tool allows 

the user to select the most suitable quality loss function for each component of the supply 

chain individually. The cost constant k will be modified for each individual equation based 

on specification limits from the literature. However, the maximum acceptable customer 

loss is different for each individual biomass supply chain and is not published in the 

literature. Values were assumed in the simulation. 

By applying Taguchi’s quality loss function, the simulation tool computes the 

financial loss based on variation (variance) for each component individually. Nevertheless, 

the variation of one component could have either a negative or positive effect on the actual 

variation of the following component and thus, change the financial loss.  

Therefore, to emphasize this phenomenon the simulation model applies Galton’s 

theory of cumulative variances for a series system. For example, assume a series system 

with four components. The variance, based on Galton, for the last component would be the 

sum of all variances and either positively or negatively impacted by twice the sum of the 

covariances between components. Due to lack of data in the published literature, it was not 

possible to use the weighted equation. Thus, the following general equation is used to 

calculate the variance for each step (Figure 22).  

 

𝑉𝑎𝑟(∑ 𝑋𝑖
𝑛
𝑖=1 ) =  ∑ 𝑉𝑎𝑟(𝑋𝑖) ± 2 × ∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)1 ≤𝑖<𝑗 ≤𝑛

𝑛
𝑖=1   [19] 

where: 

𝑉𝑎𝑟(∑ 𝑋𝑖
𝑛
𝑖=1 ) = Computed variance for n supply chain steps; 

∑ 𝑉𝑎𝑟(𝑋𝑖)
𝑛
𝑖=1  = Sum variances for n supply chain steps; 

∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)1 ≤𝑖<𝑗 ≤𝑛  = Covariance between supply chain step i and j. 

 

These variances are eventually used within the quality loss functions to compute 

the monetary loss for each component of the series. Each individual loss is added together 

to generate the total loss for one specific quality characteristic. 



 

48 

𝐿𝑇𝑜𝑡𝑎𝑙,𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 =  𝐿𝛼 + 𝐿𝛽 + 𝐿𝛾 + 𝐿𝑛 + ⋯  [20] 

where: 

𝐿𝑇𝑜𝑡𝑎𝑙,𝑞𝑢𝑎𝑙𝑖𝑡𝑦 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 = Total monetary loss for a certain quality characteristic (e.g., 

ash content, moisture content, or particle size), 

𝐿𝛼 = Monetary loss for first component in the series, 

𝐿𝛽 = Monetary loss for second component in the series, 

𝐿𝛾 = Monetary loss for third component in the series, 

𝐿𝑛 = Monetary loss for a certain quality characteristic (e.g., ash content, moisture content, 

or particle size) at supply chain step n. 

 

 

Figure 22. Example scheme for the application of Galton's theory for a series system 

 

Materials 

Data from previous research2 for Switchgrass were analyzed with the simulation 

tool. However, the collected data does not provide enough information regarding ash 

                                                 

2 The work was completed under the DOE-funded “Logistics for Enhanced-Attribute Feedstocks” (LEAF) 

Project, and this material is based upon work supported by the Department of Energy, Office of Energy 

Efficiency and Renewable Energy (EERE), under Award Number DE-EE0006639 
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content, moisture content, and particle size across all supply chain steps. The data 

introduced only provides Switchgrass samples (n = 137) for ash content at the harvesting / 

collection process. The Switchgrass samples were collected from several harvest sites from 

East Tennessee near Vonore and blended to one batch and afterwards drawn from one batch 

(Figure 23). In addition, simulated data were used to demonstrate the simulation tool for 

the series system (Attachment File 2). 

 

 

Figure 23. Histogram for ash content (%) of switchgrass (n=137) at the harvesting / collection process. 

 

Bootstrapping was applied to calculate the necessary statistics, i.e., mean, variance, 

and covariance. Statistical bootstrap is a resampling technique and uses observed data (i.e., 

original sample) to estimate the sampling distribution (Hesterberg, 1998). For this, the 

observed data must be assumed to be representative of the population where it is drawn 

from. Starting the procedure with drawing single values from the original sample, storing 

them into the bootstrap sample, and eventually put the value back in the original sample. 

Values for the bootstrap sample are drawn until the size of the original sample is reached. 

Now, the statistics of interest (e.g., mean or variance) are computed for the bootstrap 

sample. This procedure is done hundreds or thousands of times (Pottel, 2015), eventually 

creating a normal distribution for the statistics which allows to compute a grand value for 

Mean 

Median 

% Ash content for Switchgrass 
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each statistic. The code for the simulation was inspired by several references (Alexander 

and Kusleika, 2016, Verschurren, 2014).  

Sensitivity analyses using empirical examples (Table 5) with real or simulated data 

(e.g., Switchgrass, ash content) were conducted to see how variation (variance) for a given 

mean, target, and specification limits impacted the loss from the Taguchi Loss Function.  

For a better illustration of Taguchi’s quality loss functions, the computed losses 

(i.e., average loss per unit) presented in the Results and Discussion chapter are 

representative for one batch of cellulosic biomass. One batch (i.e., one unit) represents one 

dry ton of cellulosic biomass. Thus, the average loss per unit can be understood as the 

average loss per dry ton. Furthermore, assume that the cellulosic ethanol biorefinery with 

a capacity of 20 million gallons per year is able to produce on average 80 gallons of 

cellulosic ethanol per dry ton of cellulosic biomass. Given those assumption 250,000 dry 

tons of cellulosic biomass are necessary to meet the production capacity. 

 

Continuous Improvement Handbook 

 As previously indicated, a handbook was developed to introduce core techniques 

of statistical process control and lean management to practitioners in the sustainable 

biomaterials industries. This handbook is a suggested template for applying these 

techniques. A short introduction in descriptive statistics, SPC – control charts, Taguchi’s 

quality loss functions, and lean manufacturing procedure are included in the handbook.  
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Table 5. Empirical examples used for sensitivity analysis. 

Example Purpose Components Quality Characteristic 

1 Real Example 

+ 

Sensitivity 

Analysis 

Harvest / Collection 

USL1 = 4% 

Loss at USL2 = $20 

• Ash content of 

switchgrass 

• Smaller-the-better 

2 Illustration of a  

series system for 

a bio-depot 

+ 

Galton’s theory 

Harvest / Collection 

Target1 = 40%; LSL/USL2 = 37 / 

43%;  

Loss at Limits2 = $5 

Transport 

Target1 30%; LSL/USL2 = 27/33% 

Loss at Limits2 = $15 

Drying 

Target1 30%; LSL/USL2 = 27/33% 

Loss at Limits2 = $10 

Densification 

Target1 19%; LSL/USL2 = 17/21% 

Loss at Limits2 = $20 

• Moisture content of 

woody residues 

from harvest until 

end of 

preprocessing 

• Nominal-the-best 

• Fictitious data with 

n = 100 for each 

component 

3 Asymmetry – 

quadratic loss 

function 

Densification – Cuber 

Target2 = 13.5 mm; LSL/USL3 = 

12-16 mm 

Loss at Limits2 = $20 

• Particle size at the 

densification 

process 

• Nominal-the-best 

• Fictitious data with  

n = 100 
1 Taken from Jacobson et al. (2014) 
2 Assumptions made for the simulation 
3 Taken from Tumuluru et al. (2011) 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

 

 Variation in product quality characteristics is a key factor in limiting the 

technological and economic performance of biomass supply chain operations and biomass-

to-biofuel conversion technologies. Thus, controlling and reducing the underlying 

variation of core quality characteristics was studied in this research, e.g., ash content, 

moisture content, and particle size variation reduction has promising potential to increase 

the viability of sustainable bio-based productions. 

 For example, increasing attention towards improving preprocessing technologies 

and supply chain design concepts (Hess et al., 2009, Platzer, 2016) allow more efficient 

supply of standardized feedstocks while simultaneously meeting the established 

technological requirements of the biorefinery. Therefore, visualizing and quantifying 

variation across supply chain operation units or production process units offer great 

incentives to act and provide a solid foundation for managers to optimize their productions. 

 As part of this thesis an Excel simulation tool (available at www.spc4lean.com) 

was developed to quantify the financial loss through feedstock variation for a simplified 

series system, e.g., cellulosic biomass supply chain. The main goal of this simulation tool 

is to expose practitioners to the effects of variation on the financial loss as exemplified by 

Taguchi’s quality philosophy (Taguchi et al., 2004). Empirical examples are given for 

estimating loss. An instructional handbook outlining continuous improvement techniques, 

SPC, and Taguchi’s philosophy was developed to provide a template for practitioners of 

the sustainable bio-based industries for the improvement of production systems.  

 

A Guide for Using the Simulation Tool 

Spreadsheet 1 – Content 

The Excel workbook starts with the spreadsheet labeled ‘Content’ (Figure 30), 

which provides an overview of all included spreadsheets. Each spreadsheet can be accessed 

http://www.spc4lean.com/
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through a bold and underlined hyperlink.  Cell A1 of every spreadsheet contains a hyperlink 

called “Content”, which leads back to the content page. The workbook consists of an 

introduction to the topic and a help guide for the simulation. Furthermore, a bootstrap 

simulation for non-parametric data to compute the financial loss based on variation of 

quality characteristics forms the main part of the simulation. Further data analysis can be 

done on the spreadsheets ‘Sensitivity Analysis’ and ‘Galton Theory’. The spreadsheet 

‘Computations’ provides the results of auxiliary computations of the mean, variance, or 

covariance of each component of the series. The workbook is concluded with a ‘Summary’ 

of the simulation output. 

 

Spreadsheet 2 – Introduction and Help Guide 

The second sheet labeled ‘Introduction and Help Guide’ (Figure 31) introduces the 

user to the advanced uniform feedstock supply system, traditional quality control, 

Taguchi’s quality loss function philosophy, Galton’s theory, bootstrapping, and a help 

guide for the simulation. The main simulation consists out of two parts which are the 

following: User input and simulation output.  

 

Spreadsheet 3 – User Input 

Spreadsheet three labeled ‘User Input’ (Figure 32) provides the environment for 

the user to set the parameters for the bootstrap simulation and to enter necessary variables 

for each component of the series system. The sheet is structured in two parts. A help guide, 

the first part, placed on the left on the sheet, consisting out of six steps and will help the 

user navigate through the preparation process of the simulation. The empty space on the 

right is reserved for an input-table created at step three of the help guide, which builds the 

second part of the sheet. 

The help guide starts with the introduction of key quality characteristics for the 

cellulosic biomass supply chain and their respective quality loss functions, as well as 

required input about general information of the analyzed quality characteristic, i.e., name 

(ash content), unit of measurement (%), and currency ($). The next step determines the 
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number of components for the series system; up to 12 components can be analyzed at a 

time. The input-table is created by clicking on the button ‘Make Table Design’. The first 

column of the table indicates a set of key variables, which must be provided by the user for 

each component of the series. For greater individualization and a better reflection of reality 

the user can independently select the quality loss function type (e.g., nominal-the-best, 

smaller-the-better, and larger-the-better) for each component. Depending on the selection 

several system related variables must be entered to run the simulation.  

For nominal-the-best cases values for the target, upper and lower specification 

limit, loss at upper and lower specification limit must be provided by the user. The 

simulation allows the entry of symmetric and asymmetric specification limits. Taguchi 

provides the equation [3] for calculating the loss based on the variance for symmetric cases. 

For asymmetric cases the simulation computes the approximated loss for the data of either 

side of the target (recall Figure 21) based on the variance and mean; a closer discussion 

can be found in a later section of this chapter. For smaller-the-better and larger-the-better 

cases the user only needs to input values for the target and the loss at target. Afterwards, 

starting with cell J13 in the spreadsheet the user should enter the measured values of their 

quality characteristic for each component. The hard-coded maximum size of a data set is 

5,000 values. 

After setting up the input table and entering all necessary parameters and values, 

the number of iterations for the bootstrap simulation needs to be entered. Usually 5,000 to 

10,000 or even more iterations are done to generate statistically acceptable results.  

The goal of this bootstrap simulation is to simulate different “collected/measured” 

sets of data to generate a range of values of a certain statistic, e.g., mean, variance, and 

covariances of all components, to find the grand values of these statistics. Additionally, the 

number of bins for the histograms of the statistics on sheet four Simulation Output can be 

set by the user. The final step of the data input phase is to click on the button ‘Execute 

Simulation’ to run the simulation. Primarily, the financial losses are computed as a total 

and as the average per unit based on Taguchi’s quality loss functions. However, the 

simulation will provide these losses computed with two different variances, i.e., 

independent components in a series system and dependent components based on Galton’s 
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theory of components of variances. The code for the bootstrap simulation can be found in 

appendix A. 

These resulting losses based on Galton show how the variation of components in 

the series system impact each other. Only simulation results for nominal-the-best and 

smaller-the-better cases provide information about the impact of component dependency. 

A summary of simulation is given with the creation of several charts and histograms. 

Due to limited information from the literature, the main simulation from sheet three 

uses the unweighted equation and treats each components variance as equal, i.e., each 

component has the same impact on the final loss of the system. 

 

Spreadsheet 4 – Simulation Output 

Spreadsheet four labeled ‘Simulation Output’ (Figures 33 and 34) presents the 

computational and graphical output of the data analysis based on the user input from sheet 

three ‘User Input’ for each component of the series system. The orange colored area is 

divided into two sections. The first section provides input values such as target, USL, LSL, 

loss at USL or LSL, position and name of the component, as well as which quality loss 

function type was used. The second part refers to the simulation output the computational 

results such as constant k, average loss per unit and total losses based on the variance for 

independent components and dependent components (Galton’s theory) in a series system. 

The total loss per component is computed as the product of average loss per unit times the 

number of the initial values of the original sample given on sheet three. The total loss of 

the series system is displayed on the left and is the sum of the total losses of all components. 

Below the computational output graphical displays of the quality loss function for each 

component are shown. The first and second chart differs solely based on the data 

distribution curve. The first chart shows the data distribution for the original sample, while 

the second chart shows all values drawn within the bootstrap procedure. This allows an 

interesting comparison between the real initial data distribution and the simulated data 

distribution. The red graph emphasizes the quality loss function (first y-axis on the left) 

and the lavender blue graph represents either data distribution. The grey bar stands for the 
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target, the green bar highlights the lower specification limit, and the purple bar emphasizes 

the upper specification limit. The second y-axis on the right stands for the number of quality 

characteristic values (x-axis) of the original sample or drawn by the bootstrap procedure.  

The simulation also produces several histograms. For nominal-the-best and 

smaller-the-better cases the bootstrap distributions for the mean and the variances are 

shown, as well as the grand-values of these statistics. Due to increased comparability the 

bootstrap distributions of either statistic for both sides of an asymmetric nominal-the-best 

loss function are each shown in one histogram. 

 

Spreadsheet 5 – Sensitivity Analysis 

Spreadsheet five labeled ‘Sensitivity Analysis’ (Figure 35) provides a sensitivity 

analysis tool to estimate the average loss per unit of any component of the series relying 

on the bootstrap simulation for estimates of the parameters. The sheet is structured in two 

parts; a help guide on the right and an overview of the in- and output values on the left. 

The first step is to run the bootstrap simulation from spreadsheet three to generate the 

required input data for the sensitivity analysis tool. Step two is the selection of the 

component of the series the user desires to analyze. By clicking on the button ‘Load Data’ 

the initial input values and the results from the simulation are shown on the left. The 

embedded VBA code recognizes the chosen quality loss function type for the selected 

component; the sheet automatically adjusts the output based on the type. For example, user 

input such as target or specification limits and computed results like the mean, variance, 

and losses are displayed to provide an overview of the respective component. The actual 

sensitivity analysis takes place through step four and five, which can be executed as many 

times as wanted. In addition to the loaded values on the left, the spreadsheet shows a variety 

of changeable variables on the right under step four. This feature represents the actual 

sensitivity analysis, i.e., the user can enter a value for any variable and compute the loss.  

For example, in nominal-the-best cases, variables such as target, upper and lower 

specification, loss at these specification limits, mean, and variance. The embedded VBA 

code is sensitive to the given input, i.e., the code checks whether cell is filled with a value. 
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By default, the code uses the initial values from the bootstrap simulation. However, if the 

user entered a new and different value for any variable in step four, the code computes the 

loss with this new value. This feature is enabled for all different quality loss function types. 

Nevertheless, for asymmetric cases the user must specifically decide which side of the 

quality loss function he wants to investigate by checking the dropdown list. The newly 

computed average loss per unit is shown in an orange box. Above the orange box the 

respective constant k is shown as well. This feature allows the user to analyze and see the 

effects of variation on the financial loss. As an optional feature, the user can click on the 

button ‘Save the Data’ to save the computed losses in a table. This allows the user to create 

a table for sensitivity analysis. For each click on the button an internal count is incremented 

by one to move to the next row to avoid overwriting of values.  

The simulation can be restarted for a new set of data for a component of the series 

system by clicking on the button ‘Reset Saved Data’ the whole table is cleared and the 

count is reduced to one again. Depending on the quality loss function the table includes the 

computed loss from the orange box, constant k, variance, and mean. However, since the 

larger-the-better loss functions does not use either the mean or the variance to compute the 

average loss the changeable variables are only target and loss at target. 

 

Spreadsheet 6 – Galton Theory 

Spreadsheet six titled ‘Galton’s Theory’ (Figure 36) analyzes Sir Francis Galton’s theory 

of cumulative variances for a series system; recall equations [13] and [14], see (Stigler, 

2010). The total variance for a series system is the sum of all variances and twice the sum 

of all covariances between all components of the system. All variances of the system are 

assumed equal in equation [13]. In reality, variances are likely to be unequal and specific 

weights for each component will be included in the calculation. These weights show the 

true impact of a components variance on the total system’s variance. Estimated model 

coefficients based on a multiple linear regression (MLR) analysis are used as weights for 

the loss computation. Since MLR only provides coefficients for the explanatory variables, 

the weight of one is used to explain the impact of the variation at the final stage of the 
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system; the response variable. Coefficients of the MLR independent variables are the 

weights, i.e., the total variation as a percent is 100%. The goal of this sheet is to compare 

the approximated average loss per unit computed with independent variance (Galton’s 

unweighted equation) with Galton’s weighted equation for a series system. 

The spreadsheet is structured as the following: On the left side the user can enter 

data for up to 12 components of the series. By selecting either yes or no for each component 

the embedded VBA code recognizes the component selected for the MLR. Importantly, the 

last component filled with data functions as the response variable, e.g., five components 

are selected, the fifth component or column represents the data for the response variable. 

All other components function as explanatory variables. As mentioned model coefficients 

are used to determine each component variations’ impact on the total system variance. In 

addition, values for the variables constant k and target must be entered for each component. 

After entering all values and finished selection, press button ‘Compute Loss for a Series’ 

to execute the MLR procedure. The embedded VBA code uses the MLR procedure from 

Microsoft Excel; the add-in ‘Analysis Toolpak VBA’ must be enabled. The created output 

includes the MLR output, the covariance matrix, and several computed statistics. At the 

top of the sheet the output for the computed losses for different variances (comparing 

Galton’s equal variances with Galton’s unequal variances) are presented for both the 

nominal-the-best or the smaller-the-better loss functions. 

 

Spreadsheet 7 – Summary 

The final spreadsheet titled ‘Summary’ (Figure 37) shows the main results from 

sheet four. The loss for each component and the total loss for the whole series system are 

displayed. This summary is in keeping with the theme of the thesis, i.e., to emphasize to 

the practitioner the effect of variation and cost due to variation and components of 

variation in the process. 
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Numerical Examples and Sensitivity Analysis 

Empirical Examples 

The following empirical examples were developed to highlight the capability of the 

simulation tool. Losses in the empirical study are for the biomass supply chain and its 

components for nominal-the-best (e.g., moisture content and particle size) or smaller-the-

better (e.g., ash content) quality characteristics. The assumption in the empirical study was 

that the data sets for each component follow a non-parametric distribution using the 

bootstrap to simulate the distribution of key statistics (N = 10,000 iterations). Effects of 

changes in variance and/or shifts in mean are presented in the sensitivity analyses. 

Example 1 illustrates Taguchi’s smaller-the-better loss function for varying ash 

content of Switchgrass at the harvesting and collection operation for the biomass supply 

chain. 

Example 2 analyzes the effects of variation in moisture content of woody residues 

on the loss for Taguchi’s nominal-the-best loss function for a simplified biomass supply 

chain and its components. Woody residues are collected and transported to the ‘bio-depot’ 

for further preprocessing to generate in quality characteristics standardized products. At 

the bio-depot the woody residues are dried and densified to pellets.  

Example 3 demonstrates the use of Taguchi’s quality loss function to compute the 

total loss based on the average loss per unit (i.e., equation [3]) for a component for nominal-

the-best quality characteristics in symmetric and asymmetric specification settings and is 

compared to the total loss computed with the sum of the individual losses. Data for particle 

size of cellulosic biomass at the densification process using a cuber is used to illustrate this 

example. 

 

Example 1 – Loss Caused by Variation in Ash Content of Harvested Switchgrass 

The developed Excel spreadsheet was used to generate the bootstrap simulation and 

generated losses, bootstrap statistics, and graphical outputs for the ash content of harvested 

Switchgrass. The mean value from the bootstrap simulation is �̅� = 3.35% and the variance 

is 𝜎2 = 2.68%². The parameters vary little compared with the mean �̅� = 3.35% and variance 
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𝜎2 = 2.70%² for the original sample. The smaller-the-better loss function is illustrated in 

Figure 24 (i.e., Equation [7]) for ash content in red exponentially rising for greater ash 

content values. The histogram in green represents the distribution of the original sample 

data. Most of the data are below the USL shown as a black line of four percent and are 

close to the mean depicted as a blue line. However, many values are outside of the 

specification limit, i.e., above the USL. The financial loss for ‘out-of-spec’ data is 

significantly higher than for data within specification limits. In comparison, the smoothed 

data distribution in green for the drawn samples within the bootstrap simulation is shown 

in Figure 25 and shows a peak around three percent ash content and is very similar to the 

original sample distribution. Figures 24 and 25 illustrate how Taguchi’s smaller-the-better 

quality loss function works and how extreme variation in quality characteristics impact the 

final loss. For example, the loss for supplied Switchgrass with an average ash content of 

three percent per batch (i.e., dry ton) is $11.25 with a cost constant k of $ 1.25 (%²)-1. 

Accumulating in an annual loss for the assumed biorefinery with a demand of 250,000 dry 

tons of cellulosic biomass of $2.8 million dollars. Now for a doubled ash content value 

(6%) the average loss per dry ton would be $45. Increasing the annual loss, induced through 

feedstock variation, for the same biorefinery by $8.5 million to $11.3 million dollars. Both 

examples illustrate how dramatic the loss for smaller-the-better quality characteristics 

increases for higher variations. Engineers and manager should see the loss as an indicator 

for the component in the production system which has the highest impact on the economic 

performance. 

The average loss per unit (i.e., average loss per dry ton) based on Taguchi’s smaller-

the-better loss function (i.e., equation [8]) for the ash content of harvested Switchgrass 

computed with the bootstrap statistics and a cost constant k of $ 1.25 (%²)-1 is $17.37 per 

dry ton. The average loss per unit is high due to the skewness of the ash content distribution, 

i.e., several Switchgrass samples had a higher ash content than the selected upper 

specification limit (USL) of 4%. The annual total loss for the assumed biorefinery would 

then be $4.3 million dollars, i.e., demand of 250,000 dry tons cellulosic biomass times 

$17.37 per dry ton. The total loss assumes that the ash content of Switchgrass was not 

reduced by preprocessing to increase the conversion yield.  
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Figure 24. Smaller-the-better loss function for the ash content of harvested Switchgrass for the original 

sample. Equation [7] is used to generate the loss function, e.g., L(4%) = $ 1.25 (%²)-1*(4%)²= $20. 

 

 

Figure 25. Smaller-the-better loss function for the ash content of harvested Switchgrass for the bootstrap 

data. Equation [7] is used to generate the loss function, e.g., L(4%) = $ 1.25 (%²)-1*(4%)²= $20. 
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A sensitivity analysis was conducted to illustrate the patterns of the average loss 

per unit for the smaller-the-better quality loss function based on changes in the mean, 

variance, USL, and customer loss at USL (Table 6). Each parameter was either increased 

or decreased by 0.1 from their respective original value used to calculate the average loss 

per unit of $17.37, while the other parameters were kept constant. The sensitivity analysis 

indicates that the average loss per unit for ash content is more sensitive to small changes 

in the mean and in the USL than to changes in the variance and customer loss at USL. Due 

to the design of Taguchi’s smaller-the-better loss function the average loss per unit 

increases for reduced USL, i.e., the cost constant k increases due to the USL value being 

the squared denominator for unchanged customer loss at USL, recall equation [4]. 

Furthermore, the cost constant k shows greater increase and decrease in changes in the USL 

than in the loss at USL. 

Additionally, the average loss per unit increases the closer the mean gets to the 

USL, i.e., the average value of all ash content samples of the batch deviates further from, 

what Taguchi’s smaller-the-better loss function defines as the optimal target, zero. 

However, running zero is theoretical as an operational target not achievable. For example, 

it is very difficult to achieve cellulosic feedstocks with zero percent ash content to increase 

the conversion yield at the biorefinery, i.e., cellulosic biomass possesses structural ash 

content within their cells (Lacey et al., 2016). Cost-intensive pretreatment and optimized 

harvesting schemes would allow for a reduction of the ash content, but these efforts to 

decrease variation and to move the mean closer to the optimal target, to increase the 

conversion yield of ethanol, may not be economically justifiable. However, prescreening 

of feedstock vendors may be helpful in identifying those vendors that have the largest ash 

content means and variance. The cost constant k, computed as the quotient of customer loss 

at USL and USL squared, would be smaller because the deviation of the USL from zero is 

greater than the deviation of the USL from any value greater than zero. Nevertheless, it is 

more realistic given that zero ash content is not attainable. 

Figure 26 illustrates the average loss per unit (y-axis) for each changed parameter 

(x-axis) as a line. The average loss per unit follows a quadratic pattern for shifts in the 

mean and USL, depicted by green and blue vertical lines, respectively. Changes to variance  
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Table 6. Sensitivity analysis of ash content for harvested Switchgrass smaller-the-better loss function. 

k USL in [%] 
Loss at USL in 

[$] 
Mean in [%] Variance in [%²] 

Loss per Unit 

in [$] 

1.39 3.80 

20 3.349 2.680 

19.24 

1.31 3.90 18.27 

1.25 4.00 17.37 

1.19 4.10 16.53 

1.13 4.20 15.75 

1.24 

4.0 

19.80 

3.349 2.680 

17.19 

1.24 19.90 17.28 

1.25 20,00 17.37 

1.26 20.10 17.45 

1.26 20.20 17.54 

1.25 4.0 20 

3.149 

2.680 

15.74 

3.249 16.54 

3.349 17.37 

3.449 18.21 

3.549 19.09 

1.25 4.0 20 3.349 

2.480 17.12 

2.580 17.24 

2.680 17.37 

2.780 17.49 

2.880 17.62 

 

 

 

Figure 26. Sensitivity analysis of the average loss per unit of Taguchi’s quality loss function smaller-the-

better for the parameters USL, loss at USL, mean, and variance. 
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illustrated as a black line and the customer loss at USL as a red line are linear. The 

sensitivity analysis further indicated that the average loss per unit increases more 

drastically for reduced USL values compared with the average loss per unit for higher USL. 

This is depicted in Figure 26 by a steeper slope for a low USL and high average loss per 

unit versus a more gradual slope for a high USL low average loss per unit. A smaller 

operational upper specification limit or target imply reducing variation and a smaller 

natural tolerance, i.e., higher natural tolerances impede target size reduction and does not 

reduce cost. Figure 26 also suggests that the changes in the variance are less drastic to the 

average loss per unit than to shifts in the mean. This implies that shifts in the mean to a 

lower value would achieve large cost savings. However, reducing the mean is only 

technical possible for reduced variation. Therefore, to achieve large cost savings variation 

of the quality characteristic must be reduced first to be able to shift the mean closer to zero.  

 

Example 2 – Biomass Supply Chain 

The bootstrap simulation generated the bootstrap statistics and losses for a series 

system with four components using simulated moisture content data. The selected 

specification settings are suitable for woody residues. The generation of the bootstrap 

statistics took two minutes for the Excel simulation using an Intel® Core™ i5-4300 M 

CPU @ 2,60 GHz with 16,0 GB RAM. The series system consists out of representative 

biomass supply chain operations such as harvesting/collection, transport, drying, and 

densification. 

Table 7 presents the means and variances for the original samples and the bootstrap 

statistics, as well as the coefficient of variation of the four components. The coefficient of 

variation for all components indicate a low variability around the mean values ranging from 

4.79% for harvest/collection to 7.42% for densification. The mean values for the bootstrap 

statistics for all components of the series are not different from the respective original 

sample means. In contrast, the variance values based on the bootstrap simulation slightly 

differ from the variances of the original sample for all four components. For example, the 

variance of the original sample for the harvest/collection component is σ² = 3.67%² while 

the bootstrap variance is σ² = 3.63%². These results suggest that no bias for the mean values 
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and a small bias for the variance values from the bootstrap simulation exist. The dataset for 

harvest/collection has the highest variance (σ² = 3.63%²) and the smallest mean deviation 

(0.02%) from the target. In contrast, the smallest variance (σ² = 2.12%²) and the largest 

mean deviation from the target (σ² = 0.73%) is experienced at the densification component 

(Table 7). 

 

Table 7. Comparison of statistics for original sample and bootstrap data for nominal-the-best quality 

characteristics moisture content of woody residues for a simplified biomass supply chain. 

Component 
Harvest/ 

Collection 
Transport Drying Densification 

Coefficient of 

Variation in [%] 
4.79 5.72 5.67 7.42 

Bootstrap Statistic No Yes No Yes No Yes No Yes 

Mean in [%] 40.015 40.015 30.123 30.123 29.817 29.815 19.726 19.726 

Variance in [%²] 3.668 3.631 2.972 2.945 2.858 2.835 2.141 2.118 

 

 

The average losses per unit computed with the bootstrap statistics for different cost 

constants k for all components of the series system are shown in Table 8. The highest 

average loss per unit $13.23 is experienced at the densification component due to the high 

cost constant k = $5 (%²)-1. The other average losses per unit are $4.93 (k = $1.67 (%²)-1) 

for transport, $3.19 (k = $1.11 (%²)-1) for drying, and $2.02 (k = $0.556 (%²)-1) for 

harvest/collection (Table 8). These results suggest that the cost constant k is a big driver in 

the average loss per unit. The annual total losses for the supply chain based on the supply 

for the assumed biorefinery would be $5.8 million dollars. The individual annual total 

losses per supply chain operation are the following: harvest/collection with $505,000, 

transport with $797,500, drying with $1.2 million dollars, and densification with $3,3 

million dollars. However, to better understand variation in form of variance or mean 

deviation the average losses per unit for all components was computed with equal k (Table 

8). For equal cost constants the highest average loss per unit is experienced at the 
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harvest/collection component. For example, the average loss per unit for the 

harvest/collection with k = $2 (%²)-1, mean of 40.02%, and a variance of 3.63%² is $7.26. 

The lowest loss exists at densification with $5.29 with a mean of 19.73% and a variance of 

2.12%. The findings suggest for the given output a higher influence of the variance on the 

average loss per unit than the mean. Since equation [3] computes the average loss per unit 

by adding the variance to the squared difference of the mean from the target. Because this 

difference for all components is below one the squared results are even smaller, thus the 

variance has a greater influence on the average loss. Thus, implying that for nominal-the-

best quality loss functions to save money reducing variation is imperative as it is thesis of 

this research. Recall for smaller-the-better loss function only the mean, not the difference, 

is considered, i.e., the mean represents the difference from the theoretical desired target 

zero.  

 

Table 8. Average loss per unit using for different cost constants k bootstrap statistics for nominal-the-best 

quality characteristic moisture content of woody residues for a simplified biomass supply chain. 

Component 
Harvest/ 

Collection 
Transport Drying Densification 

k in [$/%²] 0.556 1.667 1.112 5 

Average losses per unit in [$] for different cost constants k  

Original k  2.02 4.93 3.19 13.23 

k = 2 $/%² 7.26 5.92 5.74 5.29 

k = 5 $/%² 18.16 14.80 14.35 13.23 

k = 10 $/%² 73.19 63.27 50.81 68.76 

 

 

A sensitivity analysis was conducted to illustrate the patterns of the average loss 

per unit for Taguchi’s nominal-the-better loss function (equation [3]) for changes in the 

mean and the variance. Figures 27 and 28 depict these changes in average loss per unit (y-

axis) in terms of six sigma (x-axis) as continuous graphs, i.e., one sigma represents one 

standard deviation. The standard deviations of the grand-variances were computed based 
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on the spread from all individual bootstrap sample variances (N = 10,000) and for the 

grand-means are the respective square root of the grand-variances (Table 9).  

Figure 27 illustrates the quadratic trend of the average loss per unit (y-axis) for the 

four components for continuous shift in the mean for nominal-the-best loss function. 

Generally, for a mean exact on target the lowest average loss per unit depend on the 

variance of the data. As previously indicated, the highest loss for minus six and plus six 

standard deviation (x-axis) is at harvest/collection (blue line). Furthermore, drying shown 

as a red line experience a higher loss at minus six sigma compared with transport depicted 

as a green line, transport has a higher average loss per unit at plus six sigma. This is of 

interest because both lines have a target of 30% and thus, the mean and variance can 

directly be compared. The reason for this is simply, that the mean for drying is below the 

target and the mean for transport is above the target (Table 7). Thus, the average loss per 

unit for transport first gets smaller the closer the mean gets to the target. Table 16 

(Appendix B) presents values for average losses per unit for an incremental change of the 

mean in terms of six sigma for a cost constant k = $2 (%²)-1, constant variances and targets. 

 

Table 9. Standard deviations of the bootstrap grand-mean and grand-variance for the series components. 

Component 
Harvest/ 

Collection 
Transport Drying Densification 

Standard Deviation 

Mean in [%] 
1.906 1.716 1.684 1.455 

Standard Deviation 

Variance in [%²] 
0.470 0.323 0.349 0.427 
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Figure 27. Quadratic pattern of the average loss per unit for nominal-the-best loss function for continuous 

shifts in mean. Losses computed with bootstrap statistics and an equal k = $2 (%²)-1. 

 

 

Figure 28. Linear pattern of the average loss per unit for nominal-the-best loss function for continuous 

changes in the variance. Losses computed with bootstrap statistics and an equal k = $2 (%²)-1. 
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Furthermore, for changes of the variance the average loss per unit based on 

nominal-the-best loss function follows a linear trend (Figure 28). As depicted as a blue 

line, harvest/collection shows the highest average loss per unit for increased variances and 

the steepest slope. In contrast, densification (grey line) has the smallest loss for decreasing 

variance values but has the second highest loss for variance at the positive six sigma level. 

The lines of densification, transport depicted as a green line, and as a red line drying meet 

slightly below the positive three sigma level. Transport and drying have a more gradual 

slope. The slope for the four graphs depends on the standard deviation of the variance, i.e., 

the smaller the standard deviation the more gradual the slope is. Table 17 (Appendix B) 

presents the average losses per unit for an incremental change of the variance in terms of 

six sigma for a cost constant k = $2 (%²)-1, constant variances and targets.  

 

Application of Galton’s Theory – Variance is Cumulative 

The Excel spreadsheet titled ‘Galton’s Theory’ generated the average losses per 

unit to investigate the influence of the variance based on Galton’s theory of cumulative 

variances. This influence on the average loss per unit for nominal-the-best loss function 

was computed with the statistics from the original samples (Table 7) and their respective 

original cost constants k (Table 8). The average loss per unit for the following cases were 

compared. Case 1) Series system with independent components (equation [3] without 

Galton), i.e., variance is treated as non-cumulative. Case 2) Series system with dependent 

components but with equal variances (equation [3] for the loss and [13] for the variance), 

i.e., the variance of each component has the same impact on the total variance. Case 3) 

Series system with dependent components with unequal variances (equation [3] for the loss 

and [14] for the variance), i.e., the variance of each component has a different impact 

(weight) on the total variance. These weights are model coefficients and stem from a 

multiple linear regression model applied to the data of the series conducted with Excel. 

The average loss per unit for component one, for all three cases, is $2.04 with a 

variance of 3.67%² (Table 10). The losses are the same for all cases because Galton’s 

Theory is not applied for just one component of a series, i.e., no other components impact 
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the total systems’ variance. Despite having similar mean and variance values (Table 7) the 

average loss per unit for the components transport is $4.98 compared with the loss for 

drying of $3.21 is higher due to different cost constants k (Table 8). However, these losses 

change when Galton’s theory is applied to compute the variances. For case two, variances 

are equal, the average losses increase to $9.18 for transport with a variance of 6.64%² and 

$9.11 for drying with a variance of 9.50%². The loss for drying is high since the variances 

and covariances of components one to three are summed up without weights (Table 11), 

recall equation [13]. For case three, variances are unequal, the average losses decrease to 

$0.21 with a variance of 0.11%² for transport and $0.54 with a variance of 0.289%² for 

drying. The low losses are explained by the small weights, i.e., the variances for the 

components in case three are multiplied with squared model coefficients (Table 12). 

Densification shows the highest average losses per unit throughout all three cases which 

are the following: $13.34 case one, $48.30 case two, and $14.75 case three. Due to the 

assumptions and design of the embedded code in the Excel spreadsheet the loss for case 

three is high, since a weight of one was assumed. The highest average loss per unit is 

experienced at densification for case two with $48.30. This value is based on the 

accumulated variance values of all four components resulting in a variance for component 

four of σ² = 9.13%². However, the losses of each component in Table 10 were computed 

with different cost constant k (Table 8). For an industrial application of Taguchi’s quality 

loss function in combination with Galton’s theory each specification limit and loss at the 

limit should be identified. 

Tables 11 and 12 provide an overview of the composition of the calculated total 

variances¸ i.e., variances used to calculate the average loss per unit under application of 

Galton’s theory consist out of sum of variances of all components and sum of all 

covariances. Table 11 shows the sum of variance of each component (row 2). For this value 

the variances from Table 5 are summed up without weights. Each components’ total 

variance is then impacted by the sum of all covariances, i.e., for drying covariances would 

exist between the first three components. For this case the negative covariances reduce the 

total variances and thus reduce the average loss per unit for each component. Table 12 

shows the total variance for case three. The model coefficients for harvest/collection  
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Table 10. Average loss per unit for nominal-the-best loss function for application of Galton's theory. 

Component 
Harvest/ 

Collection 
Transport Drying Densification 

Case Average loss per unit in [$] 

Independent 

Components 
2.04 4.98 3.21 13.34 

Galton for 

equal variance 
2.04 9.18 9.11 48.30 

Galton for 

unequal variance 
2.04 0.21 0.54 14.75 

 

Table 11. Breakdown of 'Galton variance' for a series system with equal variances. 

Component 
Harvest/ 

Collection 
Transport Drying Densification 

Total Variance 3.668 5.490 8.165 9.133 

Sum of Variance 3.668 6.639 9.497 11.638 

Doubled sum of Covariance  -1.149 -1.332 -2.505 

 

Table 12. Breakdown of 'Galton variance' for a series system with unequal variances. 

Component 
Harvest/ 

Collection 
Transport Drying Densification 

Total variance 3.668 0.110 0.289 2.422 

Sum of variance 3.668 0.075 0.183 2.141 

Doubled sum of Covariance  0.014 -0.004 -0.008 

Model coefficient -0.0764 0.159 -0.253  
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(-0.0764), transport (0.159), and drying (-0.253) are very low. These low coefficients (i.e., 

weights) reduce each components variance and covariance. This indicates that each 

components’ variance has a small impact on the total systems variance. 

 

Example 3 – Quantifying Loss in Terms of Variation for Asymmetric Nominal-the-Best 

The Excel spreadsheet was used to generate bootstrap statistics and Taguchi losses 

using the same dataset of the particle size for woody residues for symmetric and 

asymmetric cases. The output of the symmetric and asymmetric specification settings was 

used to compare the total losses and average losses per unit to identify the suitability of the 

nominal-the-best loss function (equation [3]) for asymmetric cases. All tables include the 

bootstrap simulation output for three specification settings, i.e., 1) symmetric specification 

of the nominal-the-best loss function (n = 100), 2) upper (n = 57), and 3) lower side (n = 

43) for asymmetric specification of the nominal-the-best loss function. To compute the 

losses and statistics for each side of the asymmetric case the values below and above the 

target (13.5%) formed an individual dataset. 

 Table 13 presents the means and variances for the original sample and the bootstrap 

simulation. The mean value for the bootstrap statistic (N = 10,000) for the symmetric case 

is the same as for the original sample with 13.94 mm. In contrast the mean values for the 

bootstrap statistics and original samples for the asymmetric cases are different. For 

example, the grand-mean value from the bootstrap simulation for the asymmetric lower-

side case is 12.50 mm and the mean of the original sample is 12.51 mm (Table 13). A 

negligible difference of just 0.01 mm. In contrast, the variance values for the bootstrap 

simulation differ from variances of the original samples for all three cases. Compare the 

asymmetric upper side case (Table 13), the bootstrap variance is 0.266 mm and variance 

for the original sample is 0.289 mm. These results suggest that a small bias for the mean 

and variance values exist. 

The cost constants k and the average losses per unit calculated with the bootstrap 

statistics for all three cases from Table 13 are shown in Table 14. The average loss per unit 

for the symmetric case is $10.32 (k = $5 (%²)-1), for the asymmetric lower side $9.61 (k =  
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Table 13. Comparison of statistics for original sample and bootstrap data for symmetric and asymmetric 

nominal-the-best quality characteristics moisture content (woody residues). 

Case Symmetric 

Asymmetric 

Lower Side Upper Side 

Original sample size 100 43 57 

Bootstrap Statistic No Yes No Yes No Yes3 

Mean in [%] 13.939 13.939 12.513 12.504 15.014 15.021 

Variance in [%²] 2.082 2.061 0.289 0.266 0.727 0.690 

 

Table 14. Average loss per unit and cost constant k for symmetric and asymmetric using bootstraps 

statistics for nominal-the-best quality characteristic. 

Case Symmetric1 

Asymmetric2 

Lower Side Upper Side 

Original sample size 100 43 57 

k [$/%²] 5 8.89 3.2 

Average loss per unit [$] 10.32 11.18 9.61 

1 Target = 14 mm; USL = 16mm; LSL = 12mm 
2 Target = 13.5 mm; USL = 16mm; LSL = 12mm 
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$3.2 (%²)-1), and for the asymmetric upper side is $11.18 (k = $8.89 (%²)-1) (Table 14). The 

average losses per unit were computed with the equations [3] (symmetric case), [15] and 

[17] (asymmetric cases). 

Despite having a smaller cost constant k, less than half, the average loss per unit for 

the upper side is almost as high as for the lower side. This stems from a two and a half 

times larger variance for the upper side data (Table 13). The average loss per unit for the 

symmetric case is mainly driven by the variance of the data around the target. The loss is 

based on a small difference (0.06mm) of the mean from the target (14%) and a variance of 

2.061mm. This could support the statements made in example two, that the nominal-the-

best quality loss function is more sensitive towards the variance than to shifts in the mean.  

Table 15 presents the total losses for all three cases. The first total loss presented 

(third row in the table) is calculated based on the average loss per unit, i.e., the average 

loss per unit from Table 14 times the number of samples of the specific data set. The second 

total loss presented (fourth row in the table) is the sum of all losses based on the individual 

quality characteristic value. The equations [2] (symmetric), [5] and [6] (asymmetric) were 

used to compute the individual losses. Since Taguchi presented his nominal-the-best 

quality loss function to compute the average loss per unit for symmetric cases, the question 

was if this equation [3], adjusted, could be used to calculate the average loss per unit for 

each side for asymmetric cases. Thus, both approaches were compared to investigate the 

suitability of computing the total loss based on the average loss per unit for asymmetric 

nominal-the-best loss functions. Often the literature suggests for asymmetric cases to 

compute the loss based on the sum of all individual losses or more complex equations. 

 The total loss based on the average loss per unit for the symmetric case is $1032, 

while the total loss for the individual values is $1032.26. The difference (fifth row in the 

table) is only $0.26 or in other words the difference is 1%. This suggests that equation [2] 

is a good estimator of the total loss with emphasize on the data variation. The total losses 

for the lower side are $480.80 to $479.90 with a difference of $0.90. The losses for the 

upper side are $547.90 to $547.20 with a difference $0.70. These results suggest, that 

Taguchi’s nominal-the-best quality loss function (i.e., for more than one unit) is suitable to 

compute the total loss of the variation for asymmetric settings.  
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Table 15. Total loss comparison for symmetric and asymmetric nominal-the-best quality characteristics. 

Case Symmetric 

Asymmetric 

Lower Side Upper Side 

Original sample size 100 43 57 

Total loss1 based on average 

loss per unit in [$] 
1032.00 480.80 547.90 

Total loss2 based on sum of 

all individual losses in [$] 
1032.26 479.90 547.20 

Difference in [$] 0.26 0.90 0.70 

1 Recall equation [2]; L = k * (σ²+(�̅� – m)²) 
2 Recall equation [1]; L(y) = k * (y – m)² 
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CHAPTER FIVE 

CONTINUOUS IMPROVEMENT HANDBOOK 

 

This continuous improvement handbook (Appendix C and Attachment File 3) is 

intended to introduce statistical process control procedures, lean management tools, and 

Taguchi’s quality loss functions to practitioners of the sustainable bio-based industries. 

This handbook shall function as a useful guide to monitor and reduce material or process 

variation. The following pages are intended as an introduction to use of the handbook 

(Figure 29).  

The handbook starts with outlining recent economic developments for the 

sustainable bio-based industries and emphasizes the importance of variation in 

manufacturing. Variation is crucial since it exists in every component of the production 

and is an important factor in determining the success of an enterprise, i.e., differences in 

material quality, process execution, or even human actions affect the companies’ 

performance. Therefore, being able to visualize, detect, and quantify variation is vital for 

the competitiveness of an enterprise. Practitioners are encouraged to apply the developed 

simulation tool to quantify the variation of the components of their production systems.  

Continuous improvement is introduced as a never-ending process and philosophy 

of little steps towards incremental improvement of the companies’ production 

performance. For a successful application of the continuous improvement philosophy 

companies of the bio-based industries must fulfill certain requirements first. Continuous 

improvement is a philosophy or a culture which all entities (e.g., management, workers, 

etc.) of the enterprise must live, i.e., the success of continuous improvement is significantly 

hampered if this requirement is not fulfilled. Furthermore, continuous improvement 

requires a great IT-infrastructure for data storage and application of real-time data mining 

(Young, 2015). The results and inferences drawn from statistical methodologies and tests 

must be accepted by management and workers (Young, 2015). The following paragraphs 

give a brief introduction and provide a sequence for the application of key continuous 

improvement techniques. 
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Figure 29. Flow chart on how to use the handbook. 
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Start continuous improvement by using the process flow charting technique to 

illustrate the logical sequence of all components of the production or process. Standardized 

symbols are usually used to represent specific actions, e.g., a rectangular emphasizes one 

component (process step). Subsequently, link key process variables with by the customer 

desired main product attributes (Young, 2015). Changes in key process variables have 

direct impact on the product attribute. Linking process variables with product attributes 

emphasizes the production of products based on the customers’ view, i.e., ask is the 

customer willing to pay for the product or service. 

The next part of the handbook introduces the reader to relevant statistics used to 

describe data distributions such as the mean, standard deviation, or variance, etc. 

Histograms are used to show data distributions (e.g., normal distribution). For normal 

distributions roughly 99.7% of the data values lie between three standard deviations. The 

control limits of control charts represent three standard deviation. Shewhart’s control 

chart is a tool to visualize natural-cause and special-cause variation. The control limits 

distinguish both types of variation based on the three-standard deviation. Common 

univariate control charts and run rules to detect special cause variation are presented. X-

individual and moving range charts are used to provide examples for control charting.  

 The next chapter discusses the fundamental difference between the traditional 

quality view and the continuous quality view developed by Genichi Taguchi. Traditional 

quality is defined as conformity to specification, i.e., all products within specification limits 

are equally good and cause no loss. In contrast Taguchi’s view on quality is that every 

product deviating from the target causes loss, i.e., the further the deviation the higher the 

loss. Page 15 of the handbook gives an overview of the three quality loss functions 

provided by Taguchi. The developed simulation model uses these quality loss functions to 

quantify the variation of components of a series system to identify the component inducing 

the most costs in the system. Taguchi’s quality loss functions are explained with an 

example on the page 16. 

 Variation reduction starts by identifying the sources of the visualized and quantified 

variation. The Ishikawa diagram helps to categorize the sources (not symptoms) causing 

the variation; brainstorm as a team. After mapping the sources apply the pareto chart to 
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prioritize the sources. Roughly 80% of the variation can assigned to 20% of the sources. 

Based on the information given by the pareto chart countermeasures can be developed to 

eliminate or at least reduce the top source for variation.  

Finally, apply the Plan-Do-Check-Act-Cycle to implement the ongoing journey of 

continuous improvement. Continuous improvement is a never-ending process. As an 

addition the Theory of Constraints is introduced to identify and optimize bottlenecks in 

the production. 

 

  



 

80 

CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

 

 This study developed strategies for continuous improvement and improved 

competitiveness of the sustainable bio-based industries. A simulation tool and a continuous 

improvement handbook applying ‘lean methods’, statistical process control, and Taguchi’s 

quality loss functions were developed to support practitioners in their efforts to reduce 

variation from feedstock supplies.  

 The simulation model is a great tool to quantify the financial loss induced by 

variation of key feedstock quality characteristics for the biomass supply chain and its 

components and to identify the component creating the greatest loss in the system. The 

handbook is a useful manual for practitioners introducing techniques to analyze, visualize, 

and quantify variation. Continuous improvement techniques are suitable tools to quantify 

feedstock variation of the sustainable bio-based industries. 

 Three empirical examples were used to illustrate the capability of the Excel 

simulation tool and Taguchi’s quality loss functions nominal-the-best and smaller-the-

better. Example number two emphasizes Galton’s theory of cumulative variances. 

Sensitivity analyses were conducted on the simulation outputs. 

 Example One. Industrial data for the ash content of Switchgrass from the harvest 

and collection operation were quantified with Taguchi’s smaller-the-better loss function 

using the Excel simulation tool. The average loss per unit was found to be $17.37 per dry 

ton with a cost constant k of $1.25 (%²)-1. The annual total loss for the assumed biorefinery 

would be $4.3 million dollars, i.e., demand of 250,000 dry tons cellulosic biomass times 

$17.37 per dry ton. The smaller-the-better loss function is more sensitive towards shifts in 

the mean and changes in the USL than to changes in the variance and customer loss at the 

upper specification limit. Great cost savings can be achieved through reduced mean values 

of the quality characteristic. Nevertheless, variation must be reduced first for data with a 

mean approaching the desired target (i.e., zero). The average loss per unit responds in a 

quadratic pattern for shifts in the mean and changes in the upper specification limit. In 
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contrast, the average loss per unit showed a linear pattern for changes of the variance and 

customer loss at upper specification limit. Furthermore, samples with quality characteristic 

values outside of the set specification limits induce significant higher losses than data 

within the specification limit. 

 Example Two. Simulated data for the moisture content of woody residues for an 

example biomass supply chain were quantified with Taguchi’s nominal-the-best loss 

function for different variances based on Galton’s theory of ‘cumulative variances’. The 

average loss per unit for the nominal-the-best loss function is influenced more by changes 

of the variance than to shifts in the mean for the given data output. Generally, both the 

mean and variance of a quality characteristic impact Taguchi’s loss. The highest loss for 

the supply chain is experienced at densification with $13.23 per dry ton. The annual total 

loss accumulated for all supply chain operations is $5.8 million dollars. Furthermore, the 

loss responds quadratic for shifts in the mean and linear to changes in the variance. 

Example two showed that applying Galton’s theory of ‘cumulative variances’ has an 

influence on the computed Taguchi losses. The average loss per unit using unweighted 

variances is much higher than for independent components, due to the simple addition of 

the variances and covariances. For example, the loss for densification independently 

computed is $13.34 (σ² = 2.12%²) compared to the loss for unweighted variances is $48.30 

(σ² = 9.13%²). The average losses per unit using Galton’s weighted variances indicated 

much smaller losses for component two, three, and four of the series compared with the 

losses based on Galton’s unweighted variances. Galton’s theory can provide a better 

understanding about the dependencies of the different variances in a series system. 

However, to justify the application of Galton’s theory the simulation must be repeated with 

real data from a supply chain. 

 Example Three. Simulated data for the particle size of woody residues for one 

component with symmetric and asymmetric specification settings was quantified with 

Taguchi’s nominal-the-best loss function. For example, the estimated total loss for the 

upper side of the asymmetric loss function for simulated data is $480.80 compared to the 

more precise total loss based on the sum of individual losses $479.90. Resulting in a 
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neglectable difference of $0.90. Thus, applying the nominal-the-best quality loss function 

to quantify loss based on variation of a data set is suitable for asymmetric specifications. 

 The results of this study suggest that using Taguchi’s quadratic quality loss 

functions to be a good fit for computing the loss for feedstock quality characteristics based 

on variation. Furthermore, the use of Taguchi’s quality loss function (i.e., nominal-the-best 

and smaller-the-better) emphasized the impact of variation in quality characteristics of 

cellulosic biomass on the supply chain operations and cost. Variation must be understood 

as the deviation of the average value from the target and the variability around such average 

of the quality characteristic. Thus, enterprises should strive to reduce variation of the 

quality characteristic or process while shifting the mean closer to the desirable target. The 

simulation tool and handbook will help practitioners in the industry to quantify the 

individual and total losses for their production system. Furthermore, applying sensitivity 

analysis will help the industry to understand how variation and Taguchi’s quality loss 

functions impact loss. 

 A major limitation of this research is the lack of industrial data for each quality 

characteristic for the various components of the biomass supply chain. Given industrial 

data, the biomass supply chain and its components could be quantified, using the developed 

simulation model, based on variation of the key quality characteristics ash content, 

moisture content, and particle size. This quantification would allow enterprises to identify 

the quality characteristic inducing most loss for each component, as well as to identify the 

component which induces the most loss for the whole biomass supply chain. Based on the 

gained knowledge engineers and managers could apply the continuous improvement 

techniques presented in this thesis and handbook to develop strategies for variation 

reduction to achieve great cost savings. Furthermore, a comparison of different types of 

linear and quadratic loss functions may help practitioners develop their own loss function 

applicable for their processes.  
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Figure 30. Excel simulation tool; spreadsheet 1 – content. 
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Figure 31. Excel simulation tool; spreadsheet 2 – introduction and help guide.
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Figure 32. Excel simulation tool; spreadsheet 3 – user input. 
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Figure 33. Excel simulation tool; spreadsheet 4 – simulation output – average loss and loss function for 

component 1 and 2. 
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Figure 34. Excel simulation tool; spreadsheet 4 – simulation output (2) – bootstrap statistic distributions for 

component 1 and 2.
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Figure 35. Excel simulation tool; spreadsheet 5 – sensitivity analysis - component 1. 
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Figure 36. Excel simulation tool; spreadsheet 6 – Galton's Theory.
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Figure 37. Excel simulation tool; spreadsheet 7 – summary. 
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The following code was developed for the bootstrap simulation from spreadsheet 3 and 

the graphical output from spreadsheet 4. 
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Table 16. Sensitivity analysis of the average loss per unit for Taguchi’s nominal-the-best quality loss 

function for shifted mean for a simplified biomass supply chain with a cost constant k = 2 $/%². 

Average Loss per unit in $ in terms of shifted mean per 0.5 sigma 

Component 

Sigma 

Harvest / 

Collection 
Transport Drying Densification 

-6 268.01 212.89 217.33 132.43 

-5.5 226.31 179.45 184.11 110.18 

-5 188.24 148.95 153.72 90.06 

-4.5 153.80 121.39 126.16 72.05 

-4 123.00 96.78 101.44 56.16 

-3.5 95.82 75.12 79.56 42.39 

-3 72.28 56.40 60.51 30.74 

-2.5 52.36 40.62 44.29 21.20 

-2 36.08 27.79 30.91 13.78 

-1.5 23.43 17.91 20.36 8.48 

-1 14.41 10.97 12.65 5.30 

-0.5 9.02 6.97 7.78 4.24 

0 7.26 5.92 5.74 5.29 

0.5 9.14 7.81 6.53 8.46 

1 14.64 12.65 10.16 13.75 

1.5 23.77 20.44 16.63 21.16 

2 36.54 31.17 25.93 30.69 

2.5 52.94 44.84 38.06 42.33 

3 72.96 61.46 53.03 56.09 

3.5 96.62 81.03 70.84 71.97 

4 123.91 103.54 91.47 89.97 

4.5 154.83 128.99 114.95 110.09 

5 189.38 157.39 141.26 132.32 

5.5 227.57 188.74 170.40 156.67 

6 269.38 223.03 202.38 183.14 
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Table 17. Sensitivity analysis of the average loss per unit for Taguchi’s nominal-the-best quality loss 

function in case of variance for a simplified biomass supply chain for cost constant k = 2 $/%². 

Average Loss per unit in $ in terms of changing variance per 0.5 sigma 

Component 

Sigma 

Harvest / 

Collection 
Transport Drying Densification 

-6 1.63 2.05 1.55 0.15 

-5.5 2.10 2.37 1.90 0.58 

-5 2.57 2.69 2.24 1.01 

-4.5 3.04 3.02 2.59 1.44 

-4 3.51 3.34 2.94 1.87 

-3.5 3.98 3.66 3.29 2.29 

-3 4.45 3.98 3.64 2.72 

-2.5 4.91 4.31 3.99 3.15 

-2 5.38 4.63 4.34 3.58 

-1.5 5.85 4.95 4.69 4.01 

-1 6.32 5.27 5.04 4.43 

-0.5 6.79 5.60 5.39 4.86 

0 7.26 5.92 5.74 5.29 

0.5 7.73 6.24 6.09 5.72 

1 8.20 6.57 6.44 6.15 

1.5 8.67 6.89 6.79 6.57 

2 9.14 7.21 7.14 7.00 

2.5 9.61 7.53 7.49 7.43 

3 10.08 7.86 7.83 7.86 

3.5 10.55 8.18 8.18 8.29 

4 11.02 8.50 8.53 8.71 

4.5 11.49 8.82 8.88 9.14 

5 11.96 9.15 9.23 9.57 

5.5 12.43 9.47 9.58 10.00 

6 12.90 9.79 9.93 10.43 
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