
On the Value of Encoding Sessions for Job Recommendation

ABSTRACT
In this work, we address the problem of recommending jobs in an
anonymous session setting. For this, we propose to use autoencoders
in order to extract latent session embeddings which can be used in a
k-nearest neighbor manner. We demonstrate with different variations
of autoencoders that by applying dimensionality reduction on session
information, we outperform current state-of-the-art session-based
recommendation techniques with respect to recommendation accu-
racy. We also investigate the lack of non-accuracy evaluations on
session-based recommenders and show that such recommendations
do not need to suffer from a usually far too high serendipity.

KEYWORDS
Job Recommendations; Session-based Recommendation; Autoen-
coders; Session Embeddings; Novelty; Serendipity;

1 DETAILED DESCRIPTION OF THE
RESEARCH PROJECT

Research on recommender systems has gained tremendous popu-
larity in recent years. Especially since the hype of the social Web
and the rise of social media and networking platforms like Twitter
or Facebook, recommender systems are acknowledged as an essen-
tial feature helping users to, for instance, discover new connections
between people and resources (e.g., products, news articles, job
advertisements, etc.). The advent of the Big Data era has addition-
ally posed the need for high scalability and real-time processing
of frequent data updates, and thus, has brought new challenges
for the recommender systems research community. Traditional re-
commender systems usually analyze the data offline and update
the generated model in regular time intervals. However, in many
domains, choices made by users depend on factors which are sus-
ceptible to change anytime. Lets take a shopping mall for example,
where a user triggers frequent indoor location updates via a smart-
phone application while moving through the mall. Employing an
offline model update strategy that lasts hours or days may potentially
miss the current location context of the user and fail to provide the
right recommendations to match users real-time shopping demand.
As a consequence, being able to capture users real-time interests is
gaining momentum and is currently of high demand.

In many online systems where recommendations are applied (e.g.,
like in the example mentioned above), interactions between a user
and the system are organized into sessions. A session is a group of
interactions that take place within a given time frame. Sessions from
a user can occur on the same day, or over several days, weeks, or
months. A session usually has a goal, such as finding a product to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WSDM ’19, February 11, 2019, Melbourne, Australia
© 2019 Copyright held by the owner/author(s). .
DOI: N/A

buy, reading news articles of a certain style (e.g., sports or politics)
or searching for a new job position to apply . But, when user identi-
fiers are not available, to propagate information from the previous
user session to the next is not possible and makes inherently the
recommendation problem even harder. Providing a recommenda-
tion in such a setting and under real-time constraints poses unique
challenges for classical methods. For example, the popular matrix
factorization approach breaks down in the session-based setting
when no user profile can be constructed from past user behavior.

The session-based recommendation problem shares some simi-
larities with some NLP-related problems in terms of modeling as
long as they both deals with sequences. The past few years have
seen the tremendous success of deep neural networks in a number
of sequential data modeling tasks (e.g., speech recognition). A lot
of attention as the model of choice for this type of data has been
especially received by various flavors of Recurrent Neural Networks
(RNN). While RNNs have been applied to different NLP domains
with remarkable success, only recently has some attention been paid
to the area of recommender systems. In the session-based recom-
mendation we can consider the first item a user clicks when entering
a web-site as the initial input of the RNN, we then would like to
query the model based on this initial input for a recommendation.
Each consecutive click of the user will then produce an output (a
recommendation) that depends on all the previous clicks. Typically
the item-set to choose from in recommenders systems can be in
the tens of thousands or even hundreds of thousands. Apart from
the large size of the item set, another challenge is that click-stream
datasets are typically quite large thus training time, scalability and
especially run-time performance are really important.

As seen, session-based recommendation is a characteristic chal-
lenge that cannot be properly addressed by conventional method-
ologies employed in the context of real-time recommender systems.
Specifically, under a session-based setup, a recommendation is based
only on the actions of a user during a specific browsing session. In-
deed, this type of recommendation generation approach is based on
tracking user actions during an active session. Based on the captured
and inferred session-based user behavioral patterns, the aim of this
work is to predict the following user actions during that session,
and proactively recommend items/actions to them. A higher degree
of difficulty lies additionally on making the developed algorithms
suitable for running in a live setting. To test this out, this work will
investigate the problem of session-based job recommendations and
show how Deep Learning methods can be utilized and adapted to
recommend jobs in real-time.

2 INTRODUCTION
With the advent of the Web, majority of our activities are being
performed online. One important such activity is looking for em-
ployment. The nature of the job market is highly competitive and
finding a new job is not an easy decision as it usually depends on
many factors like salary, job description or geographical location.
This has led to the recent rise of business-oriented social networks

Figure 1: Job recommendation in Studo shown either on the
web or within the mobile application.
like LinkedIn1 or XING2. Users of such networks organize and look
after their profile by describing their skills, interests and previous
work experiences. But finding relevant jobs even for users with such
carefully structured content is a non-trivial task to perform [1]. To
make the problem even harder, most job portals offer their users
the option to browse the available jobs in an anonymous fashion
and the only information available to the system are the interactions
within a short-lived session. Since users interact with the system
anonymously, it is not possible to correlate any past interactions of
the users with the current one. Moreover, users do not change jobs
quite often and when they do, it can easily be in a session-based
manner where we are basically constantly tackling the cold-start
problem. Thus, tackling job recommendation in a session-based
setting is an important task for the recommendation community to
solve.

Present work. In this paper, we present our work on session-based
job recommendations with the focus on utilizing interaction data. We
recently started to tackle this topic on the Austrian online platform
Studo3. Studo provides guidance and support for about one third of
Austrian students by offering services such as finding the right job
(as seen in Figure 1). But tackling the job recommendation problem
gets more difficult for university students, as they normally have only
some or no relevant work experience at all. This has become a real
issue for students as they get more aware that having a degree does
not automatically guarantee them their desired job after graduation
(e.g., [20]). As such, it becomes more important to provide relevant
job recommendations even when they browse anonymously in a
session-based environment.

Unlike movies, songs, or books, where items of recommendation
have a reasonably long lifespan, job postings are ephemeral in nature.
Once the employer has selected a candidate, the corresponding job
posting will be removed from the system. As new job postings are
1http://linkedin.com
2http://xing.com
3http://studo.co/

added, their lifespan depends on various factors such as demand and
supply in the job market. In order to cope with the ephemeral nature
of the job domain in an online system, we investigate a novel uti-
lization of autoencoders for recommending jobs in a session-based
environment and compare them to other state-of-the-art approaches
used for session-based recommendation (e.g., [16, 19]). By looking
at the majority of work on session-based recommendation, we also
notice that the sole focus of the investigated approaches has been on
evaluating the accuracy (e.g., [15, 17, 40]). With the growing aware-
ness that factors other than accuracy contribute towards the quality
of recommendations [14, 29, 46], in this paper, we further address
the lack of non-accuracy evaluations in session-based recommenda-
tions and compare our approach as well as current state-of-the-art
approaches on how novel and serendipitous the recommendations
are. Thus, we raise the following two research questions:

RQ1: How can autoencoders be utilized for session-based job
recommendation?

RQ2: How novel and serendipitous are session-based job recom-
mendations?

In order to address these research questions, we employ the inter-
action data collected on the Studo platform. In addition to that, we
also experiment on the dataset provided by XING after the RecSys
Challenge 2017 [3]. Since only interaction data is considered, the
models depends only on the session behaviour and thus external
factors, such as content length of the job posting, do not need to be
considered for the training of the models. We show that utilizing
autoencoders can result in the best accuracy performance for both
datasets. Moreover, we show that session-based algorithms usually
suffer from a potentially too high serendipity which can alleviate the
risk of having a distrust effect in the underlying recommendation
system [11]. Using or adapting a session-based KNN approach how-
ever results in recommendations which are not geared towards such
an extreme case of unexpectedness. This effect however comes at
the cost of slightly sacrificing novelty in the recommended jobs.

In summary, this study may help researchers to get an insight on
how to apply autoencoders in a session-based setting. Moreover,
we address the lack of non-accuracy evaluations in session-based
recommendations and compare our approach as well as current
state-of-the-art approaches on how novel and serendipitous their
recommendations are.

Outline. This paper is structured as follows: we first discuss related
work in Section 3. Then, we present our methodology on using
autoencoders for session-based job recommendation in Section 4.
Then, we present the dataset, utilized baselines and metrics which we
use for evaluation in Section 5 and the results of our experiments in
Section 6. Finally, in Section 7, we conclude the paper and provide
an outlook on future work.

3 RELATED WORK
At present, we identify three main lines of research related to our
work: (i) job recommendation, (ii) session-based recommendation,
and (iii) recommending with neural networks.

Job recommendation. Research on job recommmendations has
mostly focused on improving the accuracy by applying various

http://linkedin.com
http://xing.com
http://studo.co/

Collaborative- and Content-Based Filtering approaches or their hy-
brid combinations [5, 45]. In [27], the problem was inverted to
search for the right users for a given job and then to recommend
this job to the users. Hong et al. [18] proposed a clustering based
approach whereby they cluster user profiles and apply several recom-
mendation algorithms on each cluster depending on their effective-
ness. In 2016 and 2017, XING (a career-oriented social networking
site based in Europe) organized a challenge for the ACM RecSys
conference to build a job recommendation system [2, 3]. Their
anonymized dataset has sparked a lot of interest among researchers
to build recommendation systems geared towards the job domain.
For instance, Mishra et al. [30] looked into using machine learning-
based methods and proposed to build a gradient boosting classifier
that can predict if a given user will like a particular job posting. They
design a set of hand-picked features based on information such as
education level, experience or location, just to name a few.

Session-based recommendation. Most recommender systems as-
sume the presence of user preference history in the form explicit
or implicit interactions that can be used to determine accurate rec-
ommendations using techniques such as matrix factorization. In
such situations, the assumption is that there exists a profile for ev-
ery user based on their feedback. In many cases, such user profile
information cannot be constructed due to various reasons like, to
protect privacy of users, inadequate resources, etc. In such scenarios,
session-based recommender systems are appropriate as they only
model the user within a session, i.e., a short period of time when the
user is actively interacting with the system. A naive approach for
session-based recommendation is to recommend similar items using
item-item similarity as proposed by Sarwar et al. [36]. Hidasi et al.
[17] propose a general factorization framework that models a ses-
sion using the average of the component latent item representations.
Other use Markov Decision Processes to compute recommendations
that are based on the transition probability between items [37] or
adapt nearest neighbor methods for a session-based setting [19, 39].
As discussed next, applying neural networks in recommendation
systems has gained a lot more attention in recent years. Out of the dif-
ferent neural architectures, recurrent neural networks have become
especially popular when providing session-based recommendation
[9, 16, 38].

Recommending with neural networks. Earlier work has focused
on explicit feedback and solving the rating prediction problem with
neural networks. For that, Restricted Boltzmann Machines was a
popular choice to serve as a basis for Collaborative Filtering [12, 47].
Newer work however identified the importance of implicit feedback.
One recent approach related to our work is Collaborative Denoising
Autoencoder (CDAE) [44]. CDAE utilizes a denoising autoencder
(see also later in Section 4.1) by adding a latent factor for each user
to the input. In CDAE, the number of parameters grows linearly
with the number of users and items. As the number of sessions is
normally much larger than the number of users, this would make it
much more prone to overfitting than modeling sessions as we do in
Section 4, where the model grows linearly with the number of items
(see also [26]). Another related approach is neural collaborative
filtering [13]. The authors explore applying non-linear interactions
between user and item latent factors instead of using the dot product.
However, their model would also grow linearly with the number of

sessions and jobs if applied in our case. As Liang et al. [26] recently
found out, this becomes problematic when the datasets gets much
larger. In their work, it was also shown how to use the generative
variational autoencoder (VAE) model together with a β multiplier
for regularization for collaborative filtering [26]. Although we focus
on learning latent session representations for KNN, as we discuss
later in Section 6, we did try to use the generative VAE model for
directly recommending jobs but did not achieve a competitive accu-
racy performance in a session-based setting. Other recent work like
the one from Hidasi et al. [16] propose a Recurrent Neural Network
(RNN) based approach to model variable-length session data. They
showed that recurrent neural networks (e.g., Gated Recurrent Unit)
can be adapted for this task. Other papers on sequential data mostly
build on this idea and either improve the original algorithm [15, 40]
or extend it by capturing additional information like context [41] or
attention [25].

4 METHOD
With respect to RQ1, in this work, we investigate the impact of
applying autoencoders within a session-based KNN job recomm-
ender. We formulate our problem as follows: given a target session
st , which interacted with at least one job ji from the set of available
jobs J = {j1, ..., jn }, our goal is to predict the jobs that the target
session user will interact with next. Due to the ephemeral nature
of job postings, sessions interact with jobs in an implicit way, thus
allowing us to represent the current session as a binary encoded
vector with a dimension that is equal to the number of jobs in the
underlying dataset. In previous work [19], the highly dimensional
sparse session vectors were directly used to calculate the similarity
between sessions.

In this paper, we propose to reduce the dimensionality needed
to represent the session vectors using autoencoders4. The main
idea behind this is that knowledge relative to session preferences
is hidden in raw data and dimensionality reduction techniques can
exploit this. An overview of the utilized autoencoder variants is
given in the following section 4.1. For each one, we specify an
output z that is the latent representation of a session. As seen in
Figure 2, we first extract z for the sessions that are available in the
training set. During prediction time, for a given target session st , we
proceed to infer its latent representation to first find the top-k similar
past sessions. In order to reduce the computational burden and allow
for real-time recommendation5, we extract a subset of all sessions
that have interacted with the last job in st . Using z, we calculate the
cosine similarity between the respective target and candidate session
and use the top-k similar sessions to recommend jobs. The score of
a job that is used to rank the recommendations is then calculated as
follows:

sKNN (st , ji) =
n∑
i=1

sim(st ,si) × 1si (ji)

where 1si (ji) is 1 if the candidate session si contains the job ji and
0 otherwise (as in [8, 19]).

4Implementation of our approach as well as a more detailed hyperparameter description
available at: https://github.com/sbreco/session rec ae
5Number of stored sessions can easily pass the million mark and cause for unnecessary
calculations once a recommender system is running for a longer period of time.

https://github.com/sbreco/session_rec_ae

Ji

Ji

Ji

Ji

s1

s2

sr

sr+1

sn-1

sn

d1 d2 dn-1 dn

d

d1 d2 dn-1 dn

d1 d2
dn-
1

dn

d1 d2 dn-1 dn

d1 d2 dn-1 dn

d1 d2 dn-1 dn

1. SESSION FILTERING

d1 d2 dn-1 dn

3. CALCULATE SESSION SIMILARITY

4.
 F

IN
D

 T
O

P-
N

SE

SS
IO

N
S

0. INIT SESSION EMBEDDINGS

2. INFER SESSION EMBEDDING

C
AN

D
ID

ATE SESSIO
N

S
TR

AIN
 D

ATAFILTER
ED

 SESSIO
N

S

AE
D
AE

VA
E

σμ
x

εz

x

θ

x
ε

z

x

θ

x

z

x

θ

Figure 2: Using the trained autoencoders, we infer latent repre-
sentation for (i) sessions in the training data and (ii) the current
target session for which we recommend jobs. Jobs from the top-
k similar candidate sessions (filtered by the currently interacted
job posting) are recommended to the target session.

Online job recommendations. In order to compute the session
similarity using the latent representations in real-time, for Studo we
store the learned session vectors in Lucene (i.e., as part of the utilized
Apache Solr search engine) in the form of payloads. Payloads are
a general purpose array of bytes that are associated with a Lucene
token at a certain position. Each session is thus annotated with
multiple positions of the latent vector dimensions. Using a custom
made plugin6 , the latter positional information is used for a speedy
retrieval and calculation of vector similarities (i.e., using the cosine
similarity) at runtime. Moreover, for a lower computational burden,
we do not limit the candidate sessions using their recency as similar
work does [19]. The reason for that is the ephemeral nature of job
postings. Sessions are tied to browsing available jobs and filtering
on a specific job posting should already result in sessions that are
recent enough. Actually, due to the inverted-index data structure
available in search engines like Apache Solr, it is computationally
much cheaper to filter sessions out rather than sorting them based
on time.

4.1 Overview of Autoencoders
In this section, we describe how we extract the latent session repre-
sentation z using autoencoders. Autoencoders are a type of neural
network, which were popularized by Kramer [24] as a more effec-
tive method than PCA when it comes to describing and reducing the
dimensionality of data. An autoencoder is learned in an unsuper-
vised manner where the network is trying to reconstruct the input
by passing the information to the output layer through a bottleneck
architecture. As seen in Figure 2, in this work, we investigate three
variations of autoencoder architectures to represent job sessions: (i)
a classical Autoencoder (AE), (ii) a Denoising Autoencoder (DAE),
and (iii) a Variational Autoencoder (VAE).

6https://github.com/sbreco/session rec ae/tree/master/vec plugin

Autoencoder (AE). The simplest form of an autoencoder is with
only one hidden layer between the input and output [6]. The hidden
layer takes the session vector xs ∈ R

D and maps it to a latent
representation zs ∈ R

K through a mapping function:

z = h(x) = σ (WT x + b)

whereW is a D × K weight matrix, b ∈ K is an offset vector and σ
is usually a non-linear activation function. Using zs , the network
provides a reconstructed vector x̂s ∈ RD which is calculated as:

x̂ = σ (W ′z + b ′)

By adding one or more layers between the hidden and input layer,
we create an encoder and by doing the same between the hidden and
output layer, we create a decoder, hence the name autoencoder. Dur-
ing inference, we use the output of the hidden layer (i.e., bottleneck)
to represents the latent session vector zs . In our experiments, we
use a sigmoid activation function and a Ds − 256 − 100 − 256 − Ds
architecture7, where Ds is the dimension of the original session
vector that equals the number of jobs in the underlying dataset. We
stack the layers in the network using Restricted Boltzmann Machines
(RBMs) and train the model using stochastic gradient descent by
minimizing the Kullback-Leibler divergence [10].

Denoising Autoencoder (DAE). As shown by Vincent et al. [42],
extending autoencoders by corrupting the input can show surprising
advantages. The idea of a Denoising Autoencoder is to learn rep-
resentations that are robust to small irrelevant changes in the input.
Corrupting the input can be done on either one or multiple layers
before we calculate the final output. In our DAE model, we get a
corrupted input x̂ using the commonly employed additive Gaussian
noise on the encoder layer with a probability of 0.2. We use the same
Ds − 256 − 100 − 256 − Ds architecture as above, but this time, we
use classical autoencoder layers instead of RBMs (as noted in [43],
stacking classical autoencoders yields almost as good a performance
as when stacking RBMs). We again apply a sigmoid activation func-
tion and stochastic gradient descent but minimize the cross entropy
[44].

Variational Autoencoder (VAE). Another approach to extract the
latent representation z is by using variational inference [21]. For
that, we approximate the intractable posterior distribution p (zs |xs)
with a simpler variational distribution qϕ (zs |xs), for which we as-
sume an approximate Gaussian form with an approximately diagonal
covariance:

logqϕ (z |x) = logN (z; µ,σ 2I)

where µ and σ 2 is the encoded output given the input x of a session.
To be more precise, additional neural networks are here utilized as
probabilistic encoders (and decoders). Most commonly this is done
using a multi-layered perceptron (MLP) and for the above mentioned
qϕ (z |x) we calculate:

7We also tested higher values for the dimension of the hidden layer but did not find
enough accuracy improvement that would justify the additional computation burden
when calculating session similarities in real-time.

https://github.com/sbreco/session_rec_ae/tree/master/vec_plugin

VIEW DETAIL APPLY SHARE

Interaction Type

0

10,000

20,000

30,000

40,000

50,000

60,000

#
In

te
ra

ct
io

n
s

Studo

CLICK MARK APPLY

Interaction Type

0

10,000

20,000

30,000

40,000

50,000

#
In

te
ra

ct
io

n
s

RecSys 2017

10 20 30 40 50

Interactions in session

100

101

102

103

104

#
S

es
si

on
s

Studo

5 10 15 20 25 30 35 40

Interactions in session

100

101

102

103

104

#
S

es
si

on
s

RecSys 2017

Figure 3: Number of interactions based on the interaction type
(top) and the distribution of session sizes (bottom) is shown for
the Studo (left) and RecSys Challenge 2017 (right) datasets.

µ =W2 h + b2

logσ 2 =W3 h + b3

h = tanh(W1 x + b1)

where {W1,W2,W3,b1,b2,b3} are weights and biases of the MLP and
are part of variational parameters ϕ. While decoding, we sample the
latent representation and produce a probability distribution π (zs)
over all jobs from J . As we deal with implicit data, to calculate the
probabilities we let pθ (x |z) be a multivariate Bernoulli [23] whose
probabilities in the MLP we calculate as:

logp (x |z) =
D∑
i=1

xi logyi + (1 − xi) · log(1 − yi)

y = fθ (W5 tanh(W4 z + b4) + b5)

where fθ is an element-wise non-linear activation function (in our
case a sigmoid) and θ = {W4,W5,b4,b5} are weights and biases of
the MLP.

The generative model parameters θ are learned jointly with vari-
ational parameters ϕ by optimizing the marginal likelihood of the
data. The objective is thus to minimize the distance between the vari-
ational lower bound L (θ ,ϕ,x) and a certain prior [23, 26], which in
case of VAEs is the Kullback-Leibler divergence [10] of qϕ (zs |xs)
and p (zs |xs). Because we are sampling zs from qϕ in the variational
lower bound, in order to learn the model, we also need to apply the
reparametrization trick [23, 35] by sampling ϵ ∼ N (0, IK) (also seen
in Figure 2) and reparametrize zs = µϕ (xs) + ϵ � σϕ (xs). Hence,
the gradient with respect to ϕ can be back-propagated through the
sampled zs . In our experiments, we utilize the described VAE model
with a similar architecture as previously mentioned: Ds −256−100−
256 − Ds (i.e., the encoder and decoder MLPs are symmetrical).

5 EXPERIMENTS
In this section, we provide a detailed description of our empirical
study of using session encodings. First, we describe the datasets.
Second, we introduce state-of-the art baselines for session-based
recommendation that we compare against. Finally, we introduce the

evaluation metrics that we use to compare the utilized session-based
job recommendation approaches as well as explain how we setup
the experiments.

5.1 Dataset
We employ two different datasets from the job domain. The first
dataset utilizes the data from the Studo platform, which provides
guidance and support for about one third of Austrian students. The
proprietary dataset contains job interactions from anonymous user
sessions for a period of 3 months between December 2017 and
March 2018. The second dataset that we use is the latest version of
the data provided by XING after the RecSys Challenge 2017 [3].

As seen on the top of Figure 3, in Studo, we have four different
interaction types, i.e., job view, show company details, apply and
share job. The dataset from the RecSys Challenge 2017 had origi-
nally six different interaction types, but for the purpose of this paper,
we only kept the click, bookmark and apply interactions. We re-
moved the delete recommendation and recruiter interest interactions
as these were not relevant in our setting. Moreover, we also dis-
carded the impression interaction as these denote that XING showed
the corresponding job to a user. As stated by [7], the presence of an
impression does not actually imply that the user interacted with the
job and would thus introduce bias and possibly lead to learning a
model that mimics XINGs recommender engine. Overall, the distri-
bution of interaction types is similar between the datasets where the
click or view interactions mostly dominate. With respect to sessions,
we manually partitioned the interaction data of the RecSys dataset
into sessions by using a 30-minute idle threshold (as in [33]). For
Studo, we already assign the session ids to the job interactions when
collected. As seen on the bottom of Figure 3, the log histogram of
session sizes follows a similar skewed pattern, where the longest
sessions was in the Studo dataset with 51 interactions. The statistics
of the utilized datasets are given in Table 1. As seen, both of them
are sparse. However, Studo has a much smaller number of available
jobs that can be recommended.

5.2 Baselines
We utilize well-known baselines and compare our approach to cur-
rent state-of-the art methods for session-based recommendation:

POP. A simple and yet often a strong baseline for session-based
recommendation is the popularity approach. The results are always
the same top-k popular items from the training dataset.

iKNN. The Item-KNN approach recommends jobs that are similar to
the actual job that is interacted within the session. As in [16], we use
the cosine similarity and include regularization to avoid coincidental
high similarities between rarely visited jobs.

BPR-MF. One of the commonly used matrix factorization methods
for implicit feedback is Bayesian Personalized Ranking [34]. As in
[16], we use the average of job feature vectors of these jobs that had
occurred in the current session as the user feature vector to apply it
directly for session-based recommendation. That is, similarities of
the feature vectors are averaged between a recommendable job and
the jobs of the current session.

Dataset # Interactions # Sessions # Jobs Sparsity

Studo 59,192 11,832 596 99.16%
RecSys17 55,380 16,322 15,686 99.98%

Table 1: Statistics of the Studo and RecSys Challenge 2017
datasets.

Bayes. Following the Bayesian rule, we calculate the conditional
probability of a job xi being clicked based on the previous r interac-
tions of the current session s:

P (xi |xs1 , ...,xsr) =

∏r
j=1 P (xsj |xi) × P (xi)∏r

j=1 P (xsj)

This is a simple approach which is, from a computational perspec-
tive, inexpensive to calculate and run in an online real-time system.
Although not a popular choice, as we see later in Section 6 such an
approach can be a competitive baseline when session-based recom-
mendations are provided within a smaller item space.

GRU4Rec. Recently Hidasi et al. [16] showed that recurrent neural
networks are excellent models for data that is generated from users in
an session-based manner. They utilize Gated Recurrent Units with a
session-parallel mini-batch training process as well as ranking-based
loss functions. In this work, we use their most recent improvement
of GRU4Rec [15] from 2017 where they improved the performance
with a new class of loss function tied together with an improved
sampling strategy. We decided for this RNN approach as a baseline
as the authors state that their model is the current best performer so
far. Moreover, methods which utilize auxiliary information and also
compare themselves to Tan et al. [40] (e.g., the NARM model with
an attention-based mechanism [25]) do not have in all evaluation
scenarios the same or better relative accuracy improvement.

sKNN. Recent research has shown that computationally simple
nearest-neighbor methods can still be effective for session-based
recommendation [19]. The session-based KNN first determines the
k most similar past sessions in the training data. By encoding the
sessions as binary vector of the item space and using cosine simi-
larity, the set of k nearest sessions are found for the current session.
The final job score is calculated by aggregating the session similarity
over all sessions that contain the candidate job.

5.3 Evaluation metrics
As already stated, session-based recommendation quality is most
commonly measured using one of a number of accuracy metrics. To
quantify the performance of each of our recommendation approaches
with respect to RQ2, we not only focus on measuring accuracy but
also look into the impact on non-accuracy metrics like novelty and
serendipity.

Measuring accuracy. nDCG is a ranking-dependent metric that not
only measures how many jobs are correctly predicted but also takes
the position of the jobs in the recommended list into account [31]. It
is calculated by dividing the DCG of the session’s recommendations
with the ideal DCG value, which is the highest possible DCG value
that can be achieved if all the relevant jobs would be recommended
in the correct order. The nDCG metric is based on the Discounted

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0.5

0.0

0.5

1.0

1.5

t-SNE on session embeddings

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Se
ss

io
n

le
ng

th

(a) AE

10 5 0 5 10 15

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
t-SNE on session embeddings

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Se
ss

io
n

le
ng

th

(b) DAE

30 20 10 0 10 20 30

20

10

0

10

20

t-SNE on session embeddings

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Se
ss

io
n

le
ng

th

(c) VAE

Figure 4: t-SNE embedding for latent session representations
produced with the three autoencoder models for Studo. Ses-
sions are colored by their length where the same red color is
shared for sessions with 20 or more interactions.

Cummulative Gain (DCG@k) which is given by [31]:

DCG@k =
k∑
i=1

2r el (i) − 1
loд(1 + i)

where rel (i) is a function that returns 1 if the recommended job at
position i in the recommended list is relevant. nDCG@k is calculated
as DCG@k divided by the ideal DCG value iDCG@k which is the
highest possible DCG value that can be achieved if all the relevant
jobs would be recommended in the correct order. Taken together
over all sessions, it is given by:

nDCG@k =
1
|S |

∑
s ∈S

(
DCG@k

iDCG@k
)

Measuring novelty. Recommendation novelty can be seen as the
ability of a recommender to introduce sessions to job postings that
have not been (frequently) experienced before. A recommendation
that is accurate but not novel will include items that the session user
enjoys, but (probably) already knows of. Optimizing on novelty has
been shown to have a positive, trust-building impact on user satisfac-
tion [32]. Moreover, applying to too popular jobs may decrease the
session user’s satisfaction due to high competition and less chance
of getting hired (see e.g., [22]). In our experiments, we measure
novelty with a normalized metric previously introduced by [48]:

Novelty@k = 1 −
1
|S |

∑
s ∈S

1
k

∑
i ∈k

log2 (popi + 1)
log2 (popMAX + 1)

This way, we quantify the average information content of job
recommendations, where higher values mean that more globally
unexplored jobs are being recommended. If the likelihood that
a session user has experienced a job is proportional to its global
popularity, this can serve as an approximation of true novelty.

Measuring serendipity. In contrast to novelty, serendipity incorpo-
rates the semantic content of jobs and represents how surprising or
unexpected the recommendations are [46]. Given a distance function
d (i, j) that represents the dissimilarity between two jobs i and j, the
serendipity is given as the average dissimilarity of all job pairs in
the list of recommended jobs and jobs in the current session history
[48]. In our experiments, we use the cosine similarity to measure
the dissimilarity of two job postings using a raw job vector which
contains a 1 if a session interacted with it and 0 otherwise:

0 10 20 30 40 50

Epoch

0.2312

0.2314

0.2316

0.2318

0.2320

0.2322

n
D

C
G

@
20

AE

DAE

VAE

Figure 5: Prediction accuracy when comparing the three au-
toencoder variations when training the models for 50 epochs on
the RecSys Challenge 2017 dataset.

Serendipity@k =
1
|S |

∑
s ∈S

(
1

|Rk | · |Hs |

∑
i ∈Rk

∑
j ∈Hs

d (i, j))

where Hs is the current history of a session s, Rk is the set of the
first k recommended jobs and d (i, j) = 1 − sim(i, j). As it can be
seen later in Section 6, session-based recommendations can get
highly serendipitous. However, providing the highest possible level
of unexpectedness would be unreasonable and cause problems be-
cause it might lead to users being dissatisfied with the underlying
recommendation system [4, 11].

Measuring coverage. Another important factor of a recommender
is how many jobs it can cover with its predictions. As such, we
additionally report the job coverage of each evaluated algorithm.
We define the coverage as the ratio between the jobs that have been
recommended and jobs that would be available for recommendation.
Here we make a distinction between coverage types and report
the job coverage (i) on the full dataset, i.e., how many jobs of all
available ones did we recommend and, (i) on the test dataset, i.e.,
how many jobs of the ones that we would expect to be interacted
with did we manage to recommend.

5.4 Experimental setup
We first preprocessed both datasets from Section 5.1 to create a train
and test set using a time-based split. The sessions from the last 14
days (i.e., 2 weeks) were put in the test set of the respective dataset
and the rest was used for training. For each set, we also kept only
sessions with a minimal number of 3 interactions. Like [33], we
filtered items in the test set that do not belong to the training set as
this allows better comparison against model based approaches (e.g.,
RNNs), which can only recommend items that have been used to
train the model with. For the RecSys Challenge 2017 dataset, this
resulted in 12,712 sessions to be used for training and 3,610 sessions
for testing. In Studo there are 9,620 session to train and 1,752 to test
on.

We initially train the models on the respective train data. In order
to evaluate the performance of the utilized session-based recommen-
dation algorithms, for each session in the test data, we iteratively
sub-sample its interactions. That is, after each session interaction,
we recommend 20 jobs for the current target session state and com-
pare the predictions with the remaining interactions (i.e., same as
in [15, 16]). We start this procedure for every session after the first

interaction and end before the last one. In this setting, we explore
two evaluation cases: comparing the recommended jobs with (i) the
remainder of the interactions in the session and (ii) with the next job
interaction (i.e., next item prediction).

6 RESULTS
In this section, we discuss the results of our session-based job re-
commender approach. The overall results when evaluating recom-
mendations against the remaining session interactions are presented
in Table 2. In case of next item prediction, we only report accuracy
results for different values of k in Figure 6 since we observe little
difference between both evaluation cases.

Embedding analysis. We initially analyzed the shared embedding
space by applying the t-SNE algorithm [28] to reduce the dimen-
sionality of the inferred latent session representations within a 2D
space. As seen in Figure 4, employing a denoising or varational
autoencoder results in a better clustering of session embeddings.
By utilizing the denoising autoencoder, we get visible clusters of
sessions with similar lengths (i.e., the number of job interactions
within the session). In contrast, the variational autoencoder enables
more sessions of different sizes to be closer to each other.

Accuracy performance. We report the accuracy of our experiments
in Table 2 with respect to nDCG@20. On both datasets, by inferring
the latent representation of a session from the trained autoencoder
models and then using it in a KNN manner yields the best results.
The accuracy performance between the individual autoencoder vari-
ations does not show major differences. It needs to be noted that we
report the results after training the autoencoders for 5 epochs and us-
ing top-100 similar sessions for recommendation. We experimented
on different values for the k similar sessions to use when extracting
candidate jobs to recommend (i.e., setting k from 50 to 500), but
found that we usually achieve the best accuracy when k is 100 or
larger. We did an additional analysis of the performance between
the autoencoder variations with respect to training the models longer
for up to 50 epochs. As depicted in Figure 5, sKNNVAE achieves
the highest peaks while sKNNDAE stabilizes after 10 epochs.

One interesting observation when looking at the baselines is that
the Bayes approach has established itself as competitive baseline in
the Studo dataset, whereas for the RecSys Challenge 2017 dataset, it
resulted in the worst performance. This suggests that in cases when
the domain where we provide real-time session-based recommenda-
tions has a small number of items, it is very much reasonable to also
utilize such a simple and computationally inexpensive method.

The accuracy of the simple popularity algorithm for the RecSys
dataset is also noteworthy8. While this approach will likely not
result in high user satisfaction, just by predicting the same items
over and over again, we can beat all other baselines in terms of
nDCG. This is also apparent in Figure 6, which presents the accuracy
for predicting the next job in the session. The popularity approach
actually outperforms the other algorithms until k = 3.

With respect to the next job prediction, in both datasets, we can
see similar accuracy results for all of the utilized approaches. The
iKNN did manage to outperform GRU 4Rec in the smaller Studo

8Actually, Quadrana et al. [33] also report that their popularity approach outperforms
the utilized session-based RNN [16] on the older XING dataset.

Approach
Studo RecSys Challenge 2017

nDCG Novelty Serendipity Coverage (%) nDCG Novelty Serendipity Coverage (%)

sKNNAE .3121 .2182 .8173 46.48 100 .2317 .6840 .6309 37.13 91.33

sKNNDAE .3112 .2179 .8170 47.99 100 .2321 .5946 .5187 36.97 91.33

sKNNVAE .3135 .2190 .8142 48.49 100 .2321 .5941 .5382 36.82 91.29

sKNN .2829 .2090 .7976 43.62 100 .2181 .7663 .8786 36.32 91.03

GRU4Rec .1624 .3427 .9110 93.46 99.39 .0878 .7629 .9491 45.60 72.85

Bayes .2334 .2709 .8595 47.48 100 .0446 .8207 .9463 28.56 61.62

iKNN .2435 .2687 .8423 47.99 98.78 .0565 .7904 .9344 35.03 70.59

BPR-MF .0671 .2284 .9186 58.39 78.66 .1324 .6831 .9127 77.08 94.59

POP .0445 .1047 .9444 3.34 3.66 .2294 .3513 .9126 0.13 0.30
Table 2: Prediction results (k = 20) of remaining jobs that will be interacted within a session. Coverage is reported for the ratio of
recommended jobs when compared to all jobs available in the data set (left) and jobs expected in the test set (right).

dataset but not in the one from the RecSys Challenge 2017. Beside
the already mentioned popularity approach, the highest accuracy of
the baselines had the sKNN .

Non-accuracy performance. Although theGRU 4Rec approach did
not achieve the highest accuracy, it needs to be noted that it results
in novel recommendations. That is, for Studo it recommended the
most towards the long tail of the job distribution and for RecSys it
was pretty competitive with the sKNN baseline. Also to note for the
RecSys dataset, Bayes and iKNN did have the highest novelty but
also the lowest accuracy. With respect to our proposed method, it
needs to be acknowledged that while we achieve the highest accu-
racy, utilizing autoencoders for session-based KNN does not lead
to the best results with respect to novelty. Between the autoencder
variations, a higher novelty was achieved using aVAE in the smaller
Studo dataset, where a classical AE was performing better in the
larger RecSys dataset. Still, when compared to GRU 4Rec this yields
between 1.12 and 1.57 times less novel recommendations.

With regards to serendipity, we can see that almost all of the
session-based baseline approaches provide highly surprising or un-
expected job recommendations. Due to the limited amount of infor-
mation about the user that is available in a session-based setting, this
can also be expected. But as already noted, providing such a high
level unexpectedness might lead to a dissatisfaction and distrust with
the underlying recommender system [4, 11]. If we take that a simple
popularity approach (i.e., like the one we utilize as a baseline) is
completely unrelated to the current interaction behavior of a given
session user, the aim for a session-based recommender algorithm
would be to have a serendipity that is lower and in fact not totally
surpassing given the current browsing behaviour. Actually, the least
surprising recommendations for a session are achieved when uti-
lizing or adapting an sKNN approach. Indeed, the sKNN baseline
has the lowest serendipity value in the smaller Studo dataset. Using
our proposed method with utilizing autoencoders, we are slightly
more serendipitous but still better than all the other baselines. In
case of the RecSys Challenge 2017 dataset, we achieve a clear differ-
ence with respect to serendipity when utilizing the encoded session
representations in a KNN manner. Actually, using a DAE or VAE

model, we can reach almost perfect balance of how surprising the
recommendations are.

Job coverage. Being able to provide a good coverage for a session-
based recommender algorithm is especially important in the job
domain, as the aim is also to help a company with the respective job
posting to be detected by potential candidates. As such, in Table 2,
we report the ratio of the recommendations with all jobs available
in the dataset and jobs that we know (i.e., expect) will be interacted
with in the test set. Looking at the coverage of all possible job
postings, the best performance is achieved with the BPR-MF and
GRU 4Rec baselines. Apart from those two, our session-based KNN ,
which utilizes autoencoders provided the 3rd best coverage. When
looking at the jobs, which we expect to be interacted with in the
test set, we can see that our proposed method covers all of them in
case of the Studo dataset. In case of the RecSys Challenge 2017
dataset, our proposed method with around 91.3% coverage was only
topped by the BPR-MF baseline, which in turn performed much
worse with respect to all the other evaluation metrics. By looking at
the coverage, we can also see why the previously mentioned high
accuracy results of the popularity baseline in the RecSys Challenge
2017 dataset does not mean that much. To cover only such a small
portion of possible job postings in the system will not only lead to
unsatisfied users but also lose trust from companies that actually
post jobs in the system.

Generating recommendations with VAEs. We also explored to
recommend jobs using the generative model described in Section
4.1. For a given target session st we generate job probabilities using
the mean of the variational distribution z. In our session-based set-
ting this has however resulted in a noticeably lower accuracy than
the rest of the utilized approaches. When predicting the remain-
der of the session, the best performing model when trained for 50
epochs had an accuracy of nDCG@20 = 0.1451 in case of Studo
and 0.1165 for the RecSys Challenge 2017 dataset. With respect to
the non-accuracy metrics, for Studo we got Novelty@20 = 0.1664
and Serendipity@20 = 0.8983. For RecSys it was Novelty@20 =
0.3950 and Serendipity@20 = 0.9359. As these results are already

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

n
D

C
G

sKNNAE

sKNNDAE

sKNNV AE

Bayes

iKNN

sKNN

GRU4Rec

POP

BPR-MF

(a) Studo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

k

0.00

0.05

0.10

0.15

0.20

0.25

n
D

C
G

sKNNAE

sKNNDAE

sKNNV AE

Bayes

iKNN

sKNN

GRU4Rec

POP

BPR-MF

(b) RecSys Challenge 2017

Figure 6: Accuracy results for different recommendation list sizes when predicting the next clicked job for the Studo (left) and RecSys
Challenge 2017 (right) dataset.

outperformed by the utilized baselines, this suggests that additional
research needs to be done on applying the generative model of VAEs
for session-based recommendation. For instance, we did not ex-
periment on β-VAE with the adapted multinomial likelihood and
Bayesian inference for parameter estimation as recently proposed by
Liang et al.[26]. It could also be possible that as session vectors are
much sparser than user vectors, we would need to adapt the learning
method to be longer and introduce sub-sampling mechanisms to
provide more data examples.

7 CONCLUSION AND FUTURE WORK
In this work, we have investigated how to utilize autoencoders on
interaction data for session-based job recommendations. We have
shown that our proposed method augments existing KNN techniques
through a better representation of sessions and yields the best results
with respect to recommendation accuracy. In addition to that, we
addressed the lack of non-accuracy evaluations in session-based
recommendations. As such, we evaluated all approaches on non-
traditional metrics such as novelty and serendipity and also showed
that session-based recommendations do not need to be highly sur-
prising for the session user.

For future work, we plan to investigate the impact of the offline
measured serendipity in the online setting. As such, we plan to
conduct an online study to ask users how satisfied and surprised they
were when we utilize autoencoders for recommending jobs with
latent session representations. Also, we plan to further look into how
to directly adapt the generative model of variational autoencoders
for session-based recommendation.

One limitation of our approach is that the autoencoder model
would need to be retrained when allot of input items become obso-
lete. Given the nature of domains other than from the job market,
this may pose an undesirable computational overhead. As such, we
will look into extending our approach by exploiting auxiliary infor-
mation for dimensionality reduction when inferring latent session
representations. For example, this could be done by utilizing solely
the content of job postings or even including temporal dynamics into
this (e.g., by utilizing an attention mechanism similar as the authors
of [25] have done it).

In summary, we hope that future work will be attracted by our
insights on how dimensionality reduction techniques can be applied
for session-based job recommendation as well as their effect on
non-accuracy metrics like novelty and serendipity.

REFERENCES
[1] F. Abel. We know where you should work next summer: job recommendations.

In Proceedings of the 9th ACM Conference on Recommender Systems, pages
230–230. ACM, 2015.

[2] F. Abel, A. Benczúr, D. Kohlsdorf, M. Larson, and R. Pálovics. Recsys challenge
2016: Job recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems, pages 425–426. ACM, 2016.

[3] F. Abel, Y. Deldjoo, M. Elahi, and D. Kohlsdorf. Recsys challenge 2017: Offline
and online evaluation. In Proceedings of the Eleventh ACM Conference on
Recommender Systems, pages 372–373. ACM, 2017.

[4] P. Adamopoulos and A. Tuzhilin. On unexpectedness in recommender systems:
Or how to expect the unexpected. In DiveRS@ RecSys, pages 11–18, 2011.

[5] S. T. Al-Otaibi and M. Ykhlef. A survey of job recommender systems. Interna-
tional Journal of Physical Sciences, 7(29):5127–5142, 2012.

[6] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-wise training
of deep networks. In Advances in neural information processing systems, pages
153–160, 2007.

[7] M. Bianchi, F. Cesaro, F. Ciceri, M. Dagrada, A. Gasparin, D. Grattarola, I. In-
ajjar, A. M. Metelli, and L. Cella. Content-based approaches for cold-start job
recommendations. In Proceedings of the Recommender Systems Challenge 2017,
page 6. ACM, 2017.

[8] G. Bonnin and D. Jannach. Automated generation of music playlists: Survey and
experiments. ACM Computing Surveys (CSUR), 47(2):26, 2015.

[9] S. Chatzis, P. Christodoulou, and A. S. Andreou. Recurrent latent variable
networks for session-based recommendation. arXiv preprint arXiv:1706.04026,
2017.

[10] A. Fischer and C. Igel. An introduction to restricted boltzmann machines. In
Iberoamerican Congress on Pattern Recognition, pages 14–36. Springer, 2012.

[11] M. Ge, C. Delgado-Battenfeld, and D. Jannach. Beyond accuracy: evaluating
recommender systems by coverage and serendipity. In Proceedings of the fourth
ACM conference on Recommender systems, pages 257–260. ACM, 2010.

[12] K. Georgiev and P. Nakov. A non-iid framework for collaborative filtering with
restricted boltzmann machines. In International Conference on Machine Learning,
pages 1148–1156, 2013.

[13] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative
filtering. In Proceedings of the 26th International Conference on World Wide Web,
pages 173–182. International World Wide Web Conferences Steering Committee,
2017.

[14] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collabo-
rative filtering recommender systems. ACM Transactions on Information Systems
(TOIS), 22(1):5–53, 2004.

[15] B. Hidasi and A. Karatzoglou. Recurrent neural networks with top-k gains for
session-based recommendations. arXiv preprint arXiv:1706.03847, 2017.

[16] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recom-
mendations with recurrent neural networks. arXiv preprint arXiv:1511.06939,
2015.

[17] B. Hidasi and D. Tikk. General factorization framework for context-aware recom-
mendations. Data Mining and Knowledge Discovery, 30(2):342–371, 2016.

[18] W. Hong, S. Zheng, H. Wang, and J. Shi. A job recommender system based on
user clustering. JCP, 8(8):1960–1967, 2013.

[19] D. Jannach and M. Ludewig. When recurrent neural networks meet the neighbor-
hood for session-based recommendation. In Proceedings of the Eleventh ACM
Conference on Recommender Systems, pages 306–310. ACM, 2017.

[20] J. Jones, J. Schmitt, et al. A college degree is no guarantee. Technical report,
Center for Economic and Policy Research (CEPR), 2014.

[21] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction
to variational methods for graphical models. Machine learning, 37(2):183–233,
1999.

[22] K. Kenthapadi, B. Le, and G. Venkataraman. Personalized job recommendation
system at linkedin: Practical challenges and lessons learned. In Proc. of ACM
RecSys’17.

[23] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[24] M. A. Kramer. Nonlinear principal component analysis using autoassociative
neural networks. AIChE journal, 37(2):233–243, 1991.

[25] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-based
recommendation. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management, pages 1419–1428. ACM, 2017.

[26] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. Variational autoencoders
for collaborative filtering. arXiv preprint arXiv:1802.05814, 2018.

[27] R. Liu, W. Rong, Y. Ouyang, and Z. Xiong. A hierarchical similarity based job
recommendation service framework for university students. Frontiers of Computer
Science, 11(5):912–922, Oct 2017.

[28] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

[29] S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how
accuracy metrics have hurt recommender systems. In CHI’06 extended abstracts
on Human factors in computing systems, pages 1097–1101. ACM, 2006.

[30] S. K. Mishra and M. Reddy. A bottom-up approach to job recommendation
system. In Proceedings of the Recommender Systems Challenge, page 4. ACM,
2016.

[31] D. Parra and S. Sahebi. Recommender systems : Sources of knowledge and
evaluation metrics. In Advanced Techniques in Web Intelligence-2: Web User
Browsing Behaviour and Preference Analysis, pages 149–175. Springer, 2013.

[32] P. Pu, L. Chen, and R. Hu. A user-centric evaluation framework for recommender
systems. In Proc. of ACM RecSys’11.

[33] M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi. Personalizing
session-based recommendations with hierarchical recurrent neural networks. In
Proceedings of the Eleventh ACM Conference on Recommender Systems, pages
130–137. ACM, 2017.

[34] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. In Proceedings of the twenty-fifth

conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press,
2009.

[35] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. arXiv preprint arXiv:1401.4082,
2014.

[36] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th international conference
on World Wide Web, pages 285–295. ACM, 2001.

[37] G. Shani, D. Heckerman, and R. I. Brafman. An mdp-based recommender system.
Journal of Machine Learning Research, 6(Sep):1265–1295, 2005.

[38] E. Smirnova and F. Vasile. Contextual sequence modeling for recommendation
with recurrent neural networks. arXiv preprint arXiv:1706.07684, 2017.

[39] Y. Song, A. M. Elkahky, and X. He. Multi-rate deep learning for temporal
recommendation. In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval, pages 909–912. ACM,
2016.

[40] Y. K. Tan, X. Xu, and Y. Liu. Improved recurrent neural networks for session-
based recommendations. In Proceedings of the 1st Workshop on Deep Learning
for Recommender Systems, pages 17–22. ACM, 2016.

[41] B. Twardowski. Modelling contextual information in session-aware recommender
systems with neural networks. In Proceedings of the 10th ACM Conference on
Recommender Systems, pages 273–276. ACM, 2016.

[42] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and com-
posing robust features with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pages 1096–1103. ACM, 2008.

[43] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with a
local denoising criterion. Journal of Machine Learning Research, 11(Dec):3371–
3408, 2010.

[44] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In Proceedings of the Ninth ACM
International Conference on Web Search and Data Mining, pages 153–162. ACM,
2016.

[45] C. Zhang and X. Cheng. An ensemble method for job recommender systems. In
Proceedings of the Recommender Systems Challenge, page 2. ACM, 2016.

[46] Y. C. Zhang, D. Ó. Séaghdha, D. Quercia, and T. Jambor. Auralist: introduc-
ing serendipity into music recommendation. In Proceedings of the fifth ACM
international conference on Web search and data mining, pages 13–22. ACM,
2012.

[47] Y. Zheng, B. Tang, W. Ding, and H. Zhou. A neural autoregressive approach to
collaborative filtering. arXiv preprint arXiv:1605.09477, 2016.

[48] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang. Solving
the apparent diversity-accuracy dilemma of recommender systems. Proceedings
of the National Academy of Sciences, 107(10):4511–4515, 2010.

	Abstract
	1 Detailed description of the research project
	2 Introduction
	3 Related Work
	4 Method
	4.1 Overview of Autoencoders

	5 Experiments
	5.1 Dataset
	5.2 Baselines
	5.3 Evaluation metrics
	5.4 Experimental setup

	6 Results
	7 Conclusion and Future Work
	References

