
Report to the American Marshall Plan Foundation

Electromagnetic probing of doped helium nanodroplets

LORENZ KRANABETTER

07. August 2018

Contents
Introduction .. 3

Beam Deflection Experiments ... 3

Helium Nano Droplets ... 4

Experimental Methods ... 7

Supersonic Expansion .. 7

Pickup Process ... 8

Beam Deflection .. 8

Ionization ... 9

Mass selection ... 11

Experiment and Application ... 15

Experimental Setup ... 15

Parametrization of Charge Transfer Models ... 16

Determination of the Charge Transfer Probability.. 17

Improvements to the experimental setup and evaluation ... 22

Measurements .. 22

Conclusion ... 22

References ... 23

APPENDIX A ... 25

Report to the American Marshall Plan Foundation; Introduction

2

Abstract

This report to the Austrian Marshall Plan Foundation summarizes the outcome of the short time

scholarship at department of Physics and Astronomy, University of Southern California in Los Angeles.

The goal was to gain a deeper understanding of helium nanodroplets and the via electron

bombardment induced charge transfer processes within them. The position and size dependent

deflection of a neutral doped helium nanodroplet beam is used to probe the charge transfer probability

to the solvated dopant. Helium nanodroplets are produced via supersonic expansion and subsequently

doped with caesium iodide or dimethyl sulfoxide. The beam is then deflected by an inhomogeneous

electrical field. After ionization via electron bombardment the beam is detected with a secondary

electron multiplier. For species with a known dipole moment the measured deflection profiles can be

compared with a simulated profile to calculate the neutral beams size distribution. This distribution is

used to calculate the parametrized charge transfer probability to compare to models found in the

literature. The work conducted during the visit at Prof. Vitaly Kresins lab focused on improving the

involved evaluation method and experimental setup to achieve the above-mentioned goals.

Report to the American Marshall Plan Foundation; Introduction

3

Introduction
This chapter gives an overlook over the reasoning that led to the development of the deflection

setup in its current state.

Beam Deflection Experiments
One of the key experiments to observe quantum mechanical effects, the Stern-Gerlach Experiment,

was designed to measure directional quantization of the angular momentum. This effect was

predicted by Peter Debye and Arnold Sommerfeld while investigating the Zeeman-Effect in 1916. After

the experiment was performed for the first time in 1922, before the concept of the electron spin was

introduced, the results were quite different from the predicted outcome, as projected by the Bohr-

Sommerfeld theory. Even though the quantization of the spatial orientation of the intrinsic magnetic

momentum was validated, the correct interpretation of the results had to wait until the ½ spin of the

electron came through.

Figure 1: The results of the Stern-Gerlach experiment sent to Niels Bohr by Walther Gerlach via post card [1].

Stern designed the experiment as a beam of silver atoms that passes through an inhomogeneous

magnetic field. Because of the intrinsic angular momentum, the magnetic dipole should precess in this

field, much like a classical spinning dipole. The importance of the experiment was to display that this

precession has certain values and is not distributed continuously up to a maximum value, very unlike

a classical spinning dipole.

Besides the very important deed of convincing physicists that quantization at atomic scale is a reality,

the setup makes it possible to calculate magnetic dipoles via measuring the deflection of the beam.

This is also true for electrical dipoles when using an inhomogeneous electric field. This method of

measuring dipole moments was adapted many times since then. Today’s typical atomic or molecular

beam setup is able to reach a magnetic or electric deflection in the order of fractions of mm. This

Report to the American Marshall Plan Foundation; Introduction

4

basically limits those measurements to particles with a very high dipole moment or species which can

be manipulated into a highly aligned state. The latter can be accomplished by reaching ultra-cold

temperatures where the statistic dealignment of dipoles via the random thermal motion is suspended.

A very powerful technique to cool down particles was proposed in 1975 by two independent research

groups and later demonstrated only three years later in 1978. This method is called laser cooling and

was adapted successfully by many researchers to reduce the random thermal velocity in atomic beams.

Because the principal of operation utilizes the energetic structure of the particles to be cooled, it is not

easily applicable to complicated species. In fact, its use is only practicable up to diatomic molecules

and its efficiency is highly dependent on the atom or molecule. Later developed methods that use

electric-optical fields face the problem that the internal degrees of freedom are not cooled at all and

even collisional cooling leaves one with a vibrational energy of a few Kelvin. Another source of cold

beams is the supersonic expansion of a gaseous or liquid sample, which yields a high flux particle beam

whose ultimate temperature is highly dependent on the species.

In order to circumvent the problem of species sensitive cooling efficiency and high rotational

temperature, a method was adapted that could produce a wide variety of high flux highly aligned

cluster complexes to enhance the achievable deflection. This matrix assisted assembly imbeds the

species of choice inside helium nanodroplets, which can enhance the dipole alignment and therefore

deflection. First adapted in 1990 [2] this method showed good species independent cooling properties

and was widely used in spectroscopy and mass spectrometry.

Figure 2: Orientation of dipoles in an electric field. The blue shaded area corresponds to a droplet temperature of
0.37K. The red shaded region indicates a temperature of 5K. The upper and lower boundary of the shaded areas
correspond to 10 D or 1 D respectively [3].

Helium Nano Droplets
Helium nanodroplets are a unique system with properties that render them as an almost perfect matrix

for experiments in almost all fields of optical and IR spectroscopy of embedded neutral and ionic

analytes.

The noble gas develops most of those peculiar characteristics when cooled down far away from normal

conditions. When bulk Helium reaches very cold temperatures near the absolute zero (Tb = 4.22 K),

the very weak Van der Waals interaction of the atoms is strong enough to bind them in to a liquid

Report to the American Marshall Plan Foundation; Introduction

5

state. This restricts the movement of a certain atom to a confined space. Because of the low mass of

the helium atom the uncertainty energy is in the same magnitude as the van der Waals interaction

that confines them.

𝐸0 ~
ℎ2

2𝑚𝐻𝑒𝑉𝑎
2 3⁄

 This leads to the oppression of the solid state at pressures up to 20 bar. If cooled down even further

(Tλ = 2.17 K) the liquid helium runs through a phase transition which is accompanied by some

anomalies. At 2.17 K the sudden change in physical properties is easily visualized by looking at the

specific heat diagram. The shape of this anomaly is the reason why this temperature value is called

lambda point.

Figure 3: The lambda-transition as published by Buckingham and Fairbank in 1961 [4].

After crossing the lambda point a part of the helium is described as a superfluid [5]. The superfluid is

an indivisible part of the hole fluid and lends the as He II known mixture its high thermal conductivity

and almost not present viscosity. Those attributes are the reason for the good cooling properties of He

II and the lack of friction when traveling at speeds below the critical landau velocity. It should be

mentioned here, that superfluidity in a bulk medium does not imply that a cluster of same substance

also is governed by the same formalism. In the case of He II clusters, experiments [6] have shown that

helium nanodroplets from 70 atoms upwards actually show superfluid behavior. However, the

transition from the bulk to the cluster phase changes some parameters of the phase shift in a not trivial

way. For example, the lambda point is not a fixed temperature value but a function of cluster size.

Another remarkable attribute of the helium cluster is its self-cooling capability. A superfluid helium

nanodroplet will try to keep its temperature at approximately 0.4 K. This is accomplished by the very

low binding energy of a single atom to the cluster. If an atom or molecule enters a droplet it will

dissipate its kinetic energy into the droplet until it reaches the landau velocity. At these speeds the

Report to the American Marshall Plan Foundation; Introduction

6

weak potential well of the droplet will be strong enough to confine the dopant on a trajectory around

its center [7]. Most vibrational modes will then be cooled out while traveling inside the helium, which

leaves the dopant at a very low temperature. All the energy that was transferred to the droplet will

leave it via the evaporation of atoms. This sequence of events leaves an ultra-cold assembly of

molecules within a matrix which engages in almost no interaction with the dopant, light and electric

or magnetic fields.

This is the reason why helium nanodroplets are dubbed as the ultimate matrix for spectroscopy. The

low temperature and high light permeability enables scientists to measure rotationally resolved

spectra of big molecules. The same circumstances render them as a good matrix to align dipole

moments within. The low temperature ensures a high initial alignment which is further enhanced by

the free rotation inside the He II environment when a field is applied. While the low polarizability of

the helium only impedes the electric or magnetic field in a controllable manner.

To summarize, the before mentioned properties of the helium matrix will enable dipolar molecules to

align to an extraordinary degree when an external field is applied. This leads to an increase in

precession induced deflection inside an inhomogeneous electric field of up to an order of magnitude.

This large increase in deflection is more than enough to compensate for the higher mass due to the

attached helium atoms. But there is one disadvantage compared to conventional deflection methods

that cannot be equalized by other enhanced characteristics of the helium matrix. Helium nano droplets

are produced via supersonic expansion, a method that utilizes adiabatic cooling and other effects

attached to the free jet expansion. Via environmental control a variety of sizes can be produced but

the standard variation of the mean droplet size is always a rather broad one. Opposed to the

unambiguously defined mass of the deflected particles in a classical deflected beam setup, this

requires to an intensive evaluation of the deflection profiles. Because the measured deflection profiles

are convoluted with the size distribution of the helium nano droplet beam, a reference particle has to

be measured. The deflection of this calibration atom or molecule, which has a well-defined dipole

moment, is then used to calculate the dipole moment of the species of interest from its deflection.

Even though the size distribution of the neutral helium beam prohibits a more direct measurement of

the dipole moments, the advantages compared to other methods are overwhelming. Alignment with

laser light for example is able to reach similar alignment quality but face different problems. The high

light intensities needed to align molecules with low dipole moments may stimulate excited states.

Furthermore, such intensities are only achievable with pulsed lasers systems and a laser pulse is simply

limited in its shape and length which restricts the alignment duration and spatial area of effect.

Another benefit of the helium nano droplet beam deflection is that it conveniently gets rid of all

nonpolar particles via spatial separation. Particles with high dipole moments and low mass experience

higher deflection values than particles with high mass and low dipole moments. This also separates

species with the same exact mass and dipole moment, but a different amount of helium atoms

attached to them. This separation allows size selection of neutral helium nano droplets and therefore

the possibility to investigate the impact of droplet size on spectral analysis or ionization cross section

of neutral molecules embedded in neutral helium clusters.

In order to discuss the experimental possibilities in a more accurate manner, the next paragraph is

focused on the experimental methods.

Report to the American Marshall Plan Foundation; Experimental Methods

7

Experimental Methods
A very detailed explanation of the experimental setup and the theoretical background of the

experiment can be found in the PhD thesis of Danial Merthe [3].

Supersonic Expansion
A free jet expansion into the vacuum is used to produce the helium nano droplets. The pre-cooled bulk

helium is pressurized and expands from a small reservoir trough a small nozzle like aperture into an

ultra-high vacuum. Dependent on the chosen pressure, pre-cooling temperature and nozzle diameter,

a different mean size of droplets can be accessed. Regardless of the chosen temperature, the

supersonic expansion yields a beam of helium nanodroplets at approximately 0.4 K with a very sharp

velocity distribution (standard deviation less than 3% of the average velocity). The mean size, mean

beam velocity and flux will differentiate with the prevailing expansion properties. If the expansion

starts form gaseous helium, adiabatic and Joule-Thompson cooling is lowering the temperature far

enough to enable condensation of the droplets after some initial three body collisions of helium atoms.

This so called sub-critical expansion regime is only able to produce small cluster sizes in the range of

103 to 104 constituents. If the pre-cooling is as efficient as to reach the “liquid” bulk phase of helium

the expansion is called super-critical and the initial droplets are formed via the fragmentation of a

liquid jet via turbulent flow in the separation layer. (Because of the high pressure present in the

reservoir, the helium is beyond the critical point, which means that a clear differentiation between

liquid and gas is not possible any more. Therefore, it is technically not correct to define the phase in

the reservoir as liquid, the helium is actually “liquefying” when the pressure drops while exiting the

nozzle). When the reservoir is pumped down to even lower temperatures near or below the lambda

point, the helium undergoes another phase transition to enter the super liquid phase. Because of the

lack of friction and turbulent flow the mechanism changes into a regime where the surface tension is

the main driving force of the fragmentation. This process is then called Rayleigh-breakup and yields

the biggest cluster sizes of up to 1012 He-atoms.

It is important to mention that all of those production methods spawn shockwaves through interaction

with the residual gas of the high vacuum or the vacuum vessel geometry. These shockwaves raise the

need for skimming the jet to extract a beam. The shock phenomena associated with the free jet

interacting with the residual gas are called barrel-shock and Mach-disk and their dimensions depend

mostly on the background pressure in the vacuum chamber. Only the latter one is of importance for

the experiment because it defines the dimension of the zone of silence alongside the beam axis. The

unperturbed beam needs to be extracted from this zone, which dictates the position of the skimmer

element. The shockwave produced via interaction with the walls of the chamber depends almost solely

on the overall flux of the jet and is the reason for the cone shape of the skimmer.

Because a considerable amount of the jet is skimmed away, the cluster source creates a heavy gas

load. This combined with the high terminal compression values needed to keep the cold surfaces of

the pre-cooling stage form collecting ice when no helium load is present lead to the requirement for a

high-end pumping system.

After the initial droplets are created, evaporation cooling changes their temperature to the before

mentioned 0.4 K.

Report to the American Marshall Plan Foundation; Experimental Methods

8

Pickup Process
The helium nanodroplet beam exits the cluster source with speeds in between 200 m/s to 500 m/s

according to the expansion conditions. If a foreign particle comes across such a droplet and the relative

velocity of the droplet and the particle exceeds the critical Landau velocity necessary to induce friction

in a superfluid, the kinetic energy of the particle corresponding to this velocity difference between

dopant and droplet will be dissipated into the helium droplet. The dissipation continues until there is

no helium left or the dopant reaches the Landau critical velocity. The particle is confined in the droplet

if its kinetic energy at the critical landau velocity is lower as the dopant to droplet binding energy. The

potential well inside the helium matrix is calculated to lead to particle in a box like states [8]. There are

some circumstances that complicate the particle droplet interaction quite a bit (like heliophobic

dopants and vorticities in large droplets), but for the droplet sizes and species in this experiment a

simple representation of pick up processes is sufficient.

𝑝𝑘=
< 𝑘 >𝑘

𝑘!
𝑒−<𝑘>

Where < 𝑘 > = 𝑛Ϭ𝑝𝐿 is the average number of dopants in a droplet. With 𝑛 as the dopant density

per volume, Ϭ𝑝 as the pickup cross section and the path length trough the pickup cell 𝐿. Assuming the

pickup cross section scales proportionally to the geometric cross section of the droplets. The total

probability of picking up 𝑘 dopants can be calculated by integrating over the cluster size distribution.

𝑝𝑘 = ∫ 𝑑𝑁
(< 𝑘 >𝑛 𝑁

2
3⁄)𝑘

𝑘!
 𝑒−<𝑘>𝑛𝑁

2
3⁄

1

𝑁 Ϭ √2𝜋
 𝑒
−
(ln𝑁−µ)2

2 Ϭ2
+𝑖𝑛𝑓

0

Where < 𝑘 >𝑛 is the average number of droplets for a number of n constituents. This integral can be

approximated via different approaches, as described in Ref. [3] and [9].

All the energy dissipated into the droplet by a dopant leaves the droplet via evaporation of the fastest

He atoms from the surface. This evaporative cooling is fast enough to assure that a dopant is cooled

down to equilibrium temperature before it encounters another dopant. The number of atoms ejected

from the droplet per dopant is in direct relation to the relative velocity to the droplet 𝑣𝑑𝑖𝑓𝑓, the mass

of the dopant 𝑚𝑑𝑜𝑝 and its internal energy 𝜀𝑖𝑛𝑡 = 𝜀𝑟𝑜𝑡 + 𝜀𝑣𝑖𝑏 + 𝜀𝑏𝑖𝑛.

Δ𝑁 =
𝑚𝑑𝑜𝑝 𝑣𝑑𝑖𝑓𝑓

2 + 2 𝜀𝑖𝑛𝑡

2 𝐷

Because of the huge mass difference between the dopant and the helium nano droplet the change in

velocity due to the pickup process is negligible. In addition, solvation energy of the dopant into the

surrounding He matrix as well as binding energy in case of dopant cluster formation leads to a heat

transfer to the droplet and subsequent He evaporation.

Beam Deflection
After the pickup chambers, the helium nanodroplet travels towards the deflection stage. Rotational

spectroscopy has shown, that a helium nano matrix modifies the rotational constant of molecules. A

modern theoretical approach to this phenomenon is the introduction of a quasiparticle called angulon.

Those describe basically a quantum rotor dressed with many particle field excitations of the

surrounding helium matrix [10]. In general, this theory describes the helium matrix by a reduction in

the effective rotational constant, especially if the helium-molecule potential is highly anisotropic.

Which raises the susceptibility to external fields therefore increasing the average alignment of a

thermalized sample to the field orientation.

Report to the American Marshall Plan Foundation; Experimental Methods

9

In order to get a net force on a dipole, an inhomogeneous electrical field is required. This field is shaped

by a Rabi two wire setup. Because of the shape and small deflection within the electric field, the change

in alignment to the field orientation and therefore the change in effective dipole moment of the

sample can be assumed to be negligible. The equation of motion, considering there is no field gradient

in the y and z axis is

𝑚 𝑥̈ = 𝑝𝑒𝑓𝑓
𝜕𝜖

𝜕𝑥
 ~ 𝑝𝑒𝑓𝑓 [(

𝜕𝜖

𝜕𝑥
)
𝑥=0

+ 𝑥 (
𝜕2𝜖

𝜕𝑥2
)
𝑥=0

]

Where 𝑝𝑒𝑓𝑓 is the effective dipole moment of the whole complex consisting of the helium droplet with

the induced dipole 𝑝𝐻𝑒, and the dipole of the dopant 𝑝〈cosθ〉𝑡ℎ𝑒𝑟𝑚𝑎𝑙 .

〈cos θ〉𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = −
1

𝑝

𝜕

𝜕𝜖
ln∑ 𝑒−𝐸 𝑘𝑏𝑇⁄

𝐸

𝑝𝐻𝑒 can be calculated by treating the droplet as a classical dielectric sphere using the permittivity of

bulk He II at 0.4 K. Solving these equations suggests that even doped droplets with 104 atoms can reach

measurable deflection values [3].

Figure 4: The strongly inhomogeneous electrical fields are generated via the depicted aluminum profiles. The cross
section of the electrodes shows the shape of the electrical field. The beam position is indicated by the black
rectangle [3].

Ionization
Instead of a simple glass plate, as used in the first deflected beam experiments, this setup uses a

quadrupole mass filter with a subsequent electron multiplier for the detection of individual particles

in the beam. The detection unit needs the neutral beam to be ionized for detection, which is

accomplished via secondary processes induced via electron bombardment of the beam.

After an aperture blocks all particles except those which are deflected to a certain solid angle, the

helium droplet beam is crossed with an electron beam. When an incident electron encounters a helium

nano droplet, it uses up some kinetic energy to enter the helium environment. Dependent on the

energy it has left, the electron may trigger different reaction sequences. Because of the scope of this

report, only electrons with enough energy to trigger an ionization event that yields to a positively

charged ion, are discussed here. This only includes electrons that are able to lose at least 19.8 eV of

kinetic energy to inelastic scatter while still be able to escape the atomic potential of the collision

partner.

Report to the American Marshall Plan Foundation; Experimental Methods

10

Electrons with enough energy can transverse the droplet quiet easily to interact with multiple helium

atoms. The most prominent events for such electrons are ionization (24.6 eV) or excitation (19.8 eV)

of a helium atom via inelastic scattering. If the kinetic energy of an incident electron is depleted before

it leaves the droplet, the Pauli repulsion induced by the 1s electrons of the helium environment is

creating a bubble with the electron in its center. This electron bubble seeks to surface and eject itself

from the droplet. Such low energy electrons can also attach them self to exited helium to form a helium

anion.

The total helium-electron scattering cross section for an electron energy of 70 eV is about 1.4 𝐴̇2 while

the total ionization cross section is calculated to be 0.3 𝐴̇2 [11]. This combined with the number

density of helium nano droplets with 0.022 𝐴̇−3 [12] calculates to a mean free path length of

approximately 33 𝐴̇ for scattering events. When comparing the mean free path with the possible

pathway length through a droplet with about 10000 He-atoms (about 150 𝐴)̇, the average number of

scattering events can be estimated to be small. The smaller ionization cross section leaves the mean

free path between ionization events at approximately 153 𝐴̇. This indicates that in small cluster the

ionization probability of a constituent should be uniformly distributed, and the whole cluster is most

likely to only carry one charge. It is important to note, that this changes with increasing cluster size.

Even if an impurity inside a cluster has a relatively large ionization cross section, the mere number of

He-atoms renders the direct ionization of a dopant very unlikely. The primary ionization channels for

dopants is charge transfer from a helium cation and penning ionization via an exited He-atom. Where

the latter one is dominant at energies below 24.6 eV but is less important at higher energies. The

general idea behind the charge hopping mechanism is that an electron hole created on a helium atom

is not localized. On the timescale of an electron scattering or exchange process, the atomic motion is

very slow. Even though, the charge induces an atomic motion through weak induced-dipole interaction

with its neutral neighbors, the atoms need some time to react to those forces. In this timeframe, the

electron hole sees a uniformly distributed assemble of virtually undistinguishable particles. Hopping

from one to another has no effect to the energy of the droplet. This leads to the charge performing a

random walk. As soon as the atomic motion catches up with the electron, it sees the potential well

created by the closer distance between its cation and a helium atom, therefore producing He2
+. If the

hole encounters an impurity on its path the charge is going to stick with the dopant prematurely ending

the delocalization of the electron hole. Both charge localization processes release energy in the

surrounding helium, which leads to further evaporation of atoms. Dopants can be even stripped of all

their attached helium leaving them as bear ions. Because of the offset of evaporative cooling with the

departure of the last He atom, the temperature of those ions can be far off the equilibrium

temperature of a still solvated ion.

There are several theories about the charge transfer in helium nanodroplets. All of them are based on

the above mentioned random walk formalism but introduce a bias in the direction of the random walk

via different mechanisms [13] [14] [15] [16].

Report to the American Marshall Plan Foundation; Experimental Methods

11

Mass selection
After the ionization process, the now ionized beam of a certain deflection value is analyzed via a

quadrupole mass filter. This is accomplished by orthogonally pushing low-mass fragments of it into the

filter.

A quadrupole mass spectrometer utilizes the inertia of particles to select one certain charge to mass

ratio to pass the filter unperturbed. To generate an ideal quadrupole four parallel rods with a

hyperbolical profile are arranged in each corner of a square with an enclosing circle of radius of 𝑟0.

Rods joint together by the diagonal of the square are connected and form a pair. A time dependent

electrical voltage is introduced between both pairs, consisting out of a time independent voltage 𝑈

and a radio frequency voltage 𝑉𝑅𝐹 = 𝑉 cos(𝜔𝑡) . If Ions are injected axially at the center of the

enclosing circle they move through a potential field 𝜙.

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = (𝑈 + 𝑉 cos(𝜔𝑡)) ⋅
𝑥2 − 𝑦2

𝑟0
2

Therefore, the equations of motion for a singly charged particle are

𝑚 𝑥 ̈ + 2 𝑒 (𝑈 + 𝑉 cos(𝜔𝑡)) ⋅
𝑥(𝑡)

𝑟0
2 = 0

𝑚 𝑦 ̈ + 2 𝑒 (𝑈 + 𝑉 cos(𝜔𝑡)) ⋅
𝑦(𝑡)

𝑟0
2 = 0

𝑚 𝑧̈ = 0

Using the following identities enables the equations to be written as a system of standard Mathieu

differential equations.

𝜅 ≔
𝜔𝑡

2
; 𝛼 ∶=

8 𝑒 𝑈

𝑚 𝑟0
2𝜔2

; 𝛽 ∶=
4 𝑒 𝑉

𝑚 𝑟0
2𝜔2

⏟

𝑥̈ + (𝛼 + 2 𝛽 cos(2𝜅)) ⋅ 𝑥 = 0

𝑦̈ + (𝛼 + 2 𝛽 cos(2𝜅)) ⋅ 𝑦 = 0

Figure 5: Quadrupole stability curves calculated via the Mathieu differential equations. The resolution of the
stable mass to charge ratio is selected via the constant U/V ratio [18].

Report to the American Marshall Plan Foundation; Experimental Methods

12

Which are well studied special forms of the Hill differential equation. The theorem of Floquet proposes

that at least two solutions exist and can be found. Certain field parameters only allow ions in a certain

mass range Δ𝑚 to have a stable trajectory through the filter. A trajectory is stable if the maximal

induced oscillation 𝑟𝑚𝑎𝑥 is smaller than 𝑟0. The ratio between 𝑈 and 𝑉 determines the mass resolution

Δ𝑚 and scanning 𝑉 while keeping 𝑈 𝑉⁄ constant conducts a mass scan with the chosen Δ 𝑚 . In

contrast to other mass spectrometer systems, the quadrupole has a linear mass scale.

𝑈𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑘𝑢 𝑚𝑖𝑜𝑛 𝑟0
2 𝑓; 𝑘𝑢 ≔ 1.2122 ⋅ 10−8[𝑘𝑔 𝐴 𝑠⁄]

𝑉𝑠𝑡𝑎𝑏𝑙𝑒 = 𝑘𝑣 𝑚𝑖𝑜𝑛 𝑟0
2 𝑓; 𝑘𝑣 ≔ 7.2226 ⋅ 10−8[𝑘𝑔 𝐴 𝑠⁄]

It is also important to understand that a 𝑈 𝑉⁄ value smaller than 0.1678 are setting the quadrupole to

an impermeable condition. While 𝑈 = 0 sets it to a high pass setting where all particles with an 𝛼 <

0.905 are transmitted.

𝑚𝑖𝑜𝑛 >
𝑘𝐻 𝑉

𝑟0
2𝑓2

; 𝑘𝐻 ≔ 1.0801 ⋅ 107 [𝐴 𝑠 𝑘𝑔]⁄

Because of practical reasons the ideal quadrupole field is normally approximated via the use four rods

with cylindrical profiles. If the dimensions are chosen properly this only yields neglectable differences

in the near field of the rods.

When measuring deflections, the quadrupole mass analyzer is set to the desired mass to charge ratio

and set to an appropriate mass resolution (the chosen 𝑚 Δ𝑚⁄ values are highly dependent on the

achievable signal strength). Then the whole detection chamber is shifted alongside the deflection axis

to measure the deflection of particles that are transmitted through the mass filter. The ion flux of the

mass analyzer is measured via a secondary electron multiplier. This method allows to measure mass

spectra at a different deflection value or the deflection profile of certain mass to charge ratios.

Figure 6: Visualization of measurement capabilities of the setup. The blue curve represents the mass spectra
while the red and green curves depict two beam profiles at different mass to charge values [2].

Report to the American Marshall Plan Foundation; Experimental Methods

13

In order to improve the poor signal to noise ratio achievable by evaluating the raw, amplified ion

current from the secondary electron multiplier, a dual-phase digital lock in amplifier in combination

with a beam chopper is used. This technique filers noise that is virtually indistinguishable from the

signal in the time domain via separating signal and noise in the frequency realm.

The beam chopper turns the continuous beam into a pulsed source, with a square wave output at

about 500 Hz. This modulated input is overlapped by the relatively constant background signal. The

lock in amplifier takes the modulation reference signal (carrier wave) measured of the beam chopper

via an optical switch and multiplies it with the input signal 𝑈𝑖𝑛 from the detector. This product filtered

via a low pass and integrated over a time interval 𝑇 that is much longer than the period of the carrier

wave gives the cross correlation of the input signal and the modulation reference signal at a certain

phase shift. Therefore, it displays the difference between the carrier wave, which carries no

information, and the signal. This leads to a strong attenuation of other frequencies and a dampening

of matching but out of phase frequencies. This phase sensitivity enables the amplifier to measure

phase shift 𝜙, which can be used to calculate the beam velocity. Dual-phase lock in amplifiers measure

the cross correlation towards the carrier wave twice. Once in phase with the reference frequency and

a second time with a 𝜋 2⁄ phase shift. Those two outputs are called “in-phase” (𝑋𝑜𝑢𝑡) and

“quadrature” (𝑌𝑜𝑢𝑡) and represent the correlation as vector relative to the modulation reference.

For simplicity the following demonstrative calculation is done with a sinusoidal carrier wave.

𝑋𝑜𝑢𝑡(𝑡) =
1

𝑇
∫ 𝑑𝑠 sin[2𝜋𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 + 𝜙]𝑈𝑖𝑛(𝑠)
𝑡

𝑡−𝑇

𝑌𝑜𝑢𝑡(𝑡) =
1

𝑇
∫ 𝑑𝑠 cos[2𝜋𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟𝑠 + 𝜙]𝑈𝑖𝑛(𝑠)
𝑡

𝑡−𝑇

Via the change into polar coordinates the need to choose a certain phase is eliminated, while keeping

the phase accessible.

𝑅 = √𝑋𝑜𝑢𝑡
2 + 𝑌𝑜𝑢𝑡

2 = 𝑉𝑠𝑖𝑔, 𝜙 = arctan (
𝑌𝑜𝑢𝑡
𝑋𝑜𝑢𝑡

)

Where 𝑉𝑠𝑖𝑔 is the amplitude at the carrier wave frequency and 𝜙 is the phase shift to the signal wave.

Therefore, the phase difference Δ𝜙 for two different chopper frequencies can easily be measured. If

two frequencies 𝑓1, 𝑓2 with a total phase difference Δ𝜙 of 2 𝜋 are found, the beam velocity is

calculated as follows.

𝜙 =
2𝜋𝑓𝑙

𝑣

→ 𝜙1 − 𝜙2⏞

Δ𝜙

=
2𝜋 𝑙 (𝑓1 − 𝑓2)⏞

Δ𝑓

𝑣

Δ𝜙=2𝜋
→ 𝑣 = Δ𝑓 ⋅ 𝑙

Report to the American Marshall Plan Foundation; Experimental Methods

14

Figure 7: Comparison between a spectrum measured without (a) and with (b) a digital dual-phase lock in amplifier
active [2].

Report to the American Marshall Plan Foundation; Experiment and Application

15

Experiment and Application

Experimental Setup
The helium droplet source was built in the late 1990 and was used in combination with the still used

quadrupole mass analyser to record size distributions of doped helium nanodroplets. After being

decommissioned in 2007 the apparatus was restored and used to measure cold chemical reactions

inside helium nanodroplets [17] in 2014. Shortly after the machine was overhauled to accommodate

a deflection stage realized via two electrodes in a two-wire setup. The helium droplets are produced

via supersonic expansion into a vacuum. The cold temperature of down to 10 𝐾 is achieved via a two-

stage cold head attached to a compressor (ARS DE-204-FF refrigerator unit) utilizing the Gifford-

McMahon cycle to displace helium with a static pressure of 16 bar. Temperatures up to 30 K above the

ultimate cooling power of the cryostat can be reached via resistively heating the second stage of the

cold head. The heating power and therefore the temperature set point is controlled via a PID controller

connected to a silicon diode on the cold head. Helium is supplied from a pressurized gas cylinder with

a regulated output pressure of about 80 𝑏𝑎𝑟 . The chambers are evacuated by a diffusion pump

connected to a pre-vacuum stage (Chamber pressure is about 10−5𝑡𝑜𝑟𝑟).

Figure 8: Schematic sketch of the experimental setup [2].

The pickup chamber includes the beam chopper and up to two cells. The pickup cells can be resistively

heated and allow vapor to be injection into them from a pre-vacuum stage. The heating is controlled

via PID controllers coupled with a thermocouple wire. The vacuum is pumped via a diffusion pump

backed by a pre-vacuum stage (About 10−7𝑡𝑜𝑟𝑟).

A transferable collimator is mounted in front of the deflection electrodes, this allows beam shaping

when necessary while circumventing low transmission when optimizing. The electrodes are followed

by a field free region with a slit mounted to a linear manipulator at its end. The whole setup is mounted

on a transversal stage form the electrode onward. The joint is realized via a below tube. After the slit

the beam is ionized via electron bombardment and mass selected via a cross beam mounted

quadrupole mass spectrometer (Balzers QMG 511). The vacuum is produced via turbo-molecular

pumps backed by a pre-vacuum (About 10−8 𝑡𝑜𝑟𝑟).

The vacuum system uses liquid nitrogen traps on critical positions to enhance the pressure (stop

backflow of oil etc.) and to trap water. The pre-vacuum is produced via oil sealed rotary vane pumps.

Report to the American Marshall Plan Foundation; Experiment and Application

16

Parametrization of Charge Transfer Models
As mentioned in [13] [14] [15] [16] there are multiple theories that give the random walk conducted

by an electron hole inside the helium nanodroplet a preferable direction. Those theories predict

different scaling laws for the charge transfer.

The first model introduced by Janda and co-workers [14] [15] models the charge transfer via an

electron hole manifesting at a random location. The charge hopping is then modelled as a random walk

with a slight bias towards the randomly positioned dopant. This bias is explained by long range

monopole-dipole or monopole-induced dipole interaction. This administers the charge transfer

probability to be proportional to the probability density of the dopant molecule. Because of the

uniform nature of the random droplet distribution in the droplet, the charge transfer probability scales

as follows.

𝑃𝐽(𝑥, 𝐻𝑒𝑛
+𝑀 → 𝑀+) ~ 𝑁−1

The model of Ellis and co-workers [16] assumes that the charge is created at or in near vicinity of the

droplets surface and then conducts a random walk biased towards the centre of the droplet. The

survival probability after every jump is model as an exponential decay. The charge transfer is successful

if the charge is able to enter the proximity of a dopant before it reacts into a helium dimer. The

resulting scaling law takes the following form with the unknown coefficient 𝑔.

𝑃𝐸(𝑥, 𝐻𝑒𝑛
+𝑀 → 𝑀+) ~ 𝑒−𝑔𝑁

1 3⁄

The model of Miller and co-workers [13] yields similar scaling laws with the expectation that it does

not approaches 1 when 𝑁 goes to zero. Here the charge is spawned randomly in the droplet volume

to do a random walk biased alongside the field lines towards the negative end of the dipolar molecule

while the number of steps is also treated as a geometric series. If the charge has to leave the droplet

or is too far to the positive side of the dipole the charge is not going to be transferred. This leads to

an excluded volume inside the droplet from which charge transfer is impossible.

There is also the possibility of a classical unbiased random walk where the step number is drawn from

a geometric distribution. This will either yield a probability equivalent to 𝑁−1 or 𝑒−𝑟𝑑𝑟𝑜𝑝, dependent

of the initial charge position. With the charge spawning randomly inside the volume of the droplet

versus a random charge position on the surface.

Report to the American Marshall Plan Foundation; Experiment and Application

17

Figure 9: Charge transfer Probability according to different models [2].

Determination of the Charge Transfer Probability
Two very different molecular species where measured to characterize the charge transfer inside

helium nanodroplets. Caesium iodide (CsI) and dimethyl sulfoxide (DMSO) where both picked up in via

evaporation in two independent measurement campaigns. The vapor was created inside a pressure

cell which can be overlapped with the helium beam trajectory. While the low vapor pressure of the

liquid DSMO enables the evaporation at room temperature the solid CsI must be tightly packed into

an oven and heated to reach sufficient and stable vapor pressure values for evaporation. To reach

dense packing, the CsI powder is solvated in methanol and packed onto the walls of the oven. The

methanol is evaporating rapidly when the camber is pumped down to operating pressure. This leaves

a sufficiently dens crystalized layer of CsI conformed to the oven walls.

A measurement campaign consists out of four measurement series. First the vapor pressure curve of

the dopant is analysed via the measurement of the heat or pressure dependent relative ion yield of

the parent molecule or one of its fragments. This series exists of several mass spectra which are fitted

with a python script utilizing the nonlinear least squares minimization and curve fitting (LMFIT;

https://lmfit.github.io/lmfit-py/) package for Python. The basic method of fitting is a least minimum

square algorithm using the Levenberg-Marquardt method.

The given data set is an 𝑚 dimensional vector 𝑋 of points and an 𝑛 + 1 dimensional model function 𝑓.

𝑋 ≔ (𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑚, 𝑦𝑚)

𝜉 = (𝜉1, 𝜉2, … , 𝜉𝑛)

𝑓: ℝ𝑛 → ℝ𝑚; 𝑦 ≔ 𝑓(𝑥, 𝜉), 𝑚 > 𝑛

The desired solution is a set of parameters 𝜉 that minimizes the sum of the squared residuals 𝑆.

𝑆 ≔∑ (𝑦𝑖 − 𝑓(𝑥𝑖, 𝜉)⏞
𝑟𝑖

)

2
𝑚

𝑖=1

𝜕𝑆

𝜕𝜉𝑗
= 2∑𝑟𝑖

𝜕𝑟𝑖
𝜕𝜉𝑖

𝑖

= 0

Report to the American Marshall Plan Foundation; Experiment and Application

18

Because of the nonlinearity of the model function, the derivatives are functions of 𝑥 and 𝜉. But after

an initial parameter guess is given, the values can be refined iteratively by a successive approximation.

 𝜉𝑗
𝑘+1 = 𝜉𝑗

𝑘 + Δ𝜉𝑗
 𝜉𝑗 ≈𝜉𝑗

𝑘+1

→ 𝑓(𝑥𝑖 , 𝜉) ≈ 𝑓(𝑥𝑖 , 𝜉
𝑘) + ∑

𝜕𝑓(𝑥𝑖, 𝜉
𝑘)

𝜕𝜉𝑗
(𝜉𝑗 − 𝜉𝑗

𝑘)⏞

Δ𝜉𝑗

⏟
𝐽𝑖𝑗Δ𝜉𝑗

𝑗

Δ𝑦𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖, 𝜉
𝑘)

𝑟𝑖 = 𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜉) = (𝑦𝑖 − 𝑓(𝑥𝑖 , 𝜉
𝑘)) + (𝑓(𝑥𝑖, 𝜉

𝑘) − 𝑓(𝑥𝑖, 𝜉)) ≈ Δ𝑦𝑖 − ∑ 𝐽𝑖𝑙Δ𝜉𝑙
𝑛

𝑙=1

Substituting terms in the gradient equation of 𝑆 with the first order approximations given above yields

the following equation

𝜕𝑆

𝜕𝜉𝑗
≈ −2∑ 𝐽𝑖𝑗

𝑚

𝑖=1
(Δ𝑦𝑖 − ∑ 𝐽𝑖𝑙Δ𝜉𝑙

𝑛

𝑙=1
) = 0

⏟
∑ ∑ 𝐽𝑖𝑗𝐽𝑖𝑙 Δ𝜉𝑙

𝑛
𝑙=1 = ∑ 𝐽𝑖𝑗Δ𝑦𝑖

𝑚
𝑖=1

𝑚
𝑖=1

(𝑱𝑻𝑱)𝚫𝝃̂ = 𝑱𝑻𝚫𝒚̂

The Levenberg and Marquardt introduced a dampening factor 𝜆 into this equation to optimize the

individual iteration step by adjusting the dampening according to the reduction quality of 𝑆.

(𝑱𝑻𝑱 + 𝝀 𝒅𝒊𝒂𝒈[𝑱𝑻𝑱])𝚫𝝃̂ = 𝑱𝑻𝚫𝒚̂

The advantages compared to other packages (especially the well-known scipy.optimize.leastsq method

from which this method is extended from) is the implementation of parameter objects instead of a

simple float format. This enables the lmfit.minimize method to fix or vary values during the fit and set

upper and lower limits. Even algebraic expressions can be used to constrain parameters. The script was

developed by the applicant and can be found in Appendix A.

After converting a measured spectrum from a csv file format (comma separated values) to a NumPy

array, the data points are first scanned for local maxima and afterwards a guessing function is

calculated via the position and number of maxima as well as the 60% intensity drop considering local

minima. A on basis of the guess function individually constructed fitting function method is then

assigned to the data array. This function is a linear combination of gaussian peak functions, where the

gaussian shape can be convoluted with a spline function to form a custom peak shape. The parameters

of the guess and the fitting function are the input for the lmfit.minimize method.

Report to the American Marshall Plan Foundation; Experiment and Application

19

The top subplot in figure 10 shows the outcome of a fit with automatic parameter borders. The

algorithm allows for manual adjustment of virtually any parameter or start value, which can enhance

the result. Because of the heavily overlapping peak borders the signal intensity is not calculated from

the raw data but from individual peaks of the fitted signal. The bottom left and right subplots show the

area calculated via the trapezoid integral formulism for peaks positioned at the mass to charge values

65 and 82 respectively. The trapezoidal rule states that the definitive integral can be numerical

approximated by

∫ 𝑑𝑥 𝑓(𝑥) ≈
Δ𝑥

2
∑

𝑓(𝑥𝑘−1) + 𝑓(𝑥𝑘)

2
 Δ𝑥𝑘

𝑁

𝑛=1

𝑏

𝑎

.

Mass to Charge Ratio

R
el

a
ti

ve
 Io

n
 Y

ie
ld

Vapor Pressure Vapor Pressure

60 Dalton 85 Dalton

R
el

a
ti

ve
 P

ea
k

In
te

n
si

ty

Figure 10: Fitted mass spectrum of DMSO fragments from mass to charge ratio 60 Dalton to 85 Dalton. The bottom left graph
shows the area of the gauss peak function associated with the peak at 65 Dalton. The bottom right graph depicts the same for
mass to charge ratio of 81 Dalton.

Report to the American Marshall Plan Foundation; Experiment and Application

20

This method is the first choice, because it is also able to calculate areas limited by a custom peak shape

or even raw signal. The accuracy of his approximation leads to errors almost one magnitude lower than

critical errors made through experimental necessity.

The second measurement series is a deflection analysis of the doped helium beam. The mass selector

is set to a mass to charge ratio associated with the dopant, while the slid position is changed via a

randomized sequence. Such a beam profile is measured for a deflection voltage of zero volt and for a

deflection voltage of 20 kV.

The next measurement follows the exact same procedure with the mass selector set to transmit helium

dimer ions.

The last series repeats the helium dimer deflection just with no dopants present in the experiment.

The first measurement is used to find the right pickup conditions to maximize the pickup of monomers.

(Maybe something about the linear regime of the vapor pressure)

The latter three measurements are conducted to determine the charge transfer mechanism inside the

helium nano droplet or to measure the dipole of a large molecule or cluster. Both measurements are

in need of a molecule with a known dipole to be used as a calibration particle to parametrize the size

distribution of the neutral helium nanodroplets.

The dipole moment of CsI and DMSO are well known which allows them to calibrate the beam

parameters on their own.

The derived position sensitive intensity 𝑆𝑀+
𝐷 (𝑥) in the deflection of the doped helium beam is solely

due to helium droplets containing a dopant. It can be modelled via the following equation

𝑆𝐷(𝑥) = 𝐴 ⋅ 𝜂[𝐼(𝑥)𝑈 + 𝐼(𝑥)𝐷𝑃(𝑥)𝐻𝑒]

Where 𝐼(𝑥) is the position-dependent flux of droplets. The superscripted 𝑈 indicates undoped

droplets while the superscripted 𝐷 indicate a doped inside the droplets. 𝑃(𝑥)𝐻𝑒 is the charge

transfer probability form the helium to the dopant and 𝜂 is a normalization factor to account for

scattering and collision events. A is introduced to relay the different detection efficiency for separated

ion channels.

𝑆𝑈(𝑥) = 𝐴 [𝐼(𝑥)𝑈 + 𝐼(𝑥)𝐷 𝑃(𝑥)𝐻𝑒]

The above equation represents the signal of an undoped beam where the superscript 𝐷 indicates

droplets doped with an impurity out of the residual gas. 𝑆(𝑥)𝑀
𝐷 is the signal from the dopant.

𝑆(𝑥)𝑀
𝐷 = 𝐵 𝜂[𝐼(𝑥)𝑀

𝐷𝑃(𝑥)𝑀]

Report to the American Marshall Plan Foundation; Experiment and Application

21

𝐼(𝑥)𝐷 = 𝐼(𝑥)𝑀
𝐷 + 𝐼(𝑥)𝐷

The above substitution incorporated into the equation yield

𝑆(𝑥)𝑈 = 𝐴 [𝐼(𝑥)𝑈 + 𝐼(𝑥)𝐷 𝑃(𝑥)𝐻𝑒]

𝑆(𝑥)𝐷 = 𝐴 ⋅ 𝜂[𝐼(𝑥)𝑈 + [𝐼(𝑥)𝑀
𝐷 + 𝐼(𝑥)𝐷]𝑃(𝑥)𝐻𝑒]

𝑆(𝑥)𝐷 = 𝜂 𝐴[𝐼(𝑥)𝑈 + 𝐼(𝑥)𝐷 𝑃(𝑥)𝐻𝑒]⏟
𝑆(𝑥)𝑈

+ 𝜂 𝐴 𝐼(𝑥)𝑀
𝐷⏟

𝑆(𝑥)𝑀
𝐷 𝐵𝜂𝑃(𝑥)𝑀⁄

𝑃(𝑥)𝐻𝑒

𝑆(𝑥)𝐷 = 𝜂 [𝑆(𝑥)𝑈 +
𝐴

𝐵
⋅ 𝑆(𝑥)𝑀

𝐷
𝑃(𝑥)𝐻𝑒
𝑃(𝑥)𝑀

Using a 𝐴 𝐵⁄ ratio of 1 and 𝜂 = 1 − 𝐶 ⋅ 𝑁2 3⁄ the equations only depend on the position sensitive

signal 𝑆(𝑥), which is determined by measuring the beam profiles, 𝑃(𝑥)𝐻𝑒 and 𝑃(𝑥)𝑀 . While 𝑃(𝑥)𝑀 is

the term the equation is to be solved for 𝑃(𝑥)𝐻𝑒 and the fact that 𝑆(𝑥) terms are accounting for all

helium ionization channels still poeses problems. The first assumption to take to be able to solve for

𝑃(𝑥)𝑀 is, that even though all ion channels form 𝐻𝑒𝑛 contribute to 𝑆(𝑥), their intensities are very low

compared to the ion channel of 𝐻𝑒2. A decent linear approximation can therefore be calculated via

extracting the size dependent ratio of 𝐻𝑒2 to 𝐻𝑒𝑛 from the mass spectra.

𝑆(𝑥)𝐷 = 𝛾 ⋅ 𝑆(𝑥)𝐻𝑒2
𝐷

𝑆(𝑥)𝑈 = 𝛾 ⋅ 𝑆(𝑥)𝐻𝑒2
𝑈

This and the assumption that the formation of 𝐻𝑒2
+ is the dominant ionization cannel (𝑃(𝑥)𝐻𝑒~ 1)

gives the final fitting equation

𝑆(𝑥)𝐻𝑒2
𝐷 = [1 − 𝐶 ⋅ 𝑁2 3⁄] ⋅ 𝑆(𝑥)𝐻𝑒2

𝑈 +
𝑆(𝑥)𝑀

𝐷

𝛾 ⋅ 𝑃(𝑥)𝑀

This equation is not considering fragmentation yet but can be modified to do so by factoring 𝑆(𝑥)𝑀
𝐷

according to the fragmentation pattern of the molecule.

The equations derived in this paragraph can therefore be used to approximate the charge transfer

probability inside helium nanodroplets. By comparing the experimentally evaluated probability with

the results calculated via different models could be used to settle on a certain charge transfer model.

𝑷(𝒙)𝑴 ≈ 𝑷(𝒙,𝑯𝒆𝒏
+𝑴 → 𝑴+) ∝ 𝑷?(𝒙,𝑯𝒆𝒏

+𝑴→ 𝑴+)

Because of measurement inaccuracies and high errors corresponding to the simulation the evaluation

of the gathered data for CsI and DMSO did not yield conclusive results yet. Improvements of the

experimental setup, the evaluation software and simulation code are being conducted to improve the

results.

Report to the American Marshall Plan Foundation; Conclusion

22

Improvements to the experimental setup and evaluation
The first measurements of the charge transfer probability where carried out by Danial Merthe as part

of his PhD thesis [3]. The experimental setup stayed basically the same since then, with the exemption

of a new device to introduce liquid samples into the pickup chambers. A major update is on its way

though. The quadrupole mass spectrometer will be upgraded to a new one, the primary improvements

are a higher transition rate, better resolution and larger mass range. A digital interface is going to allow

further automatization and easier accessibility. The ion detection will also be enhanced with the switch

form analog current measurement to digital ion counting, which should yield way better signal to noise

ratios especially for low beam intensities.

The new mass spectrometer is ready for testing, but further changes are needed to incorporate the

new detection method into the evaluation and data acquisition software. The software was already

subjected to significant changes in order to automate the repetitive tasks involved evaluating a

measurement. The fitting algorithm was changed from Mathematica to python scripting language to

easily interface with the simulation programs already used. The class based nonlinear fitting library

used, brings some important improvements to the table. Because there is no restriction on the fitting

function and a dynamic parameter space, the algorithm can handle multiple overlapping peaks and is

able to introduce a custom peak shape by convoluting the gaussian model function with a spline

interpolation. Although the custom peak shape is still work in progress, the advanced fitting library

accompanied with a graphical user interface not only automates the fitting to a higher degree than

before but also enhances the usability.

When fully integrated, the custom peak shape should enhance the data used as input for the

simulation code quite a bit.

Future updates should tackle the data storage management. A python compatible database format

should be implemented (The Django framework standard would be SQL) instead saving the spectra

and deflection saved as csv-files with a tabular file indicating the settings for every file. Because the

parsing of large data is leaves always a huge margin for error. Furthermore, should the evaluation

software be directly interlinked with the simulation. To accomplish this, the simulation code has to be

upgraded to at least python 3.6.

Measurements
The measurement campaign produced two sets of Cesium Iodide profiles and seven sets of DMSO

profiles. An overview of the collected data is given in Appendix B. Both species are still under

investigation.

Conclusion
The measurements of cesium iodide and DMSO have potential to reveal new information on the

internal charge transfer mechanism associated with the ionization of impurities inside helium

nanodroplets after electron bombardment. Due to the fact that the calculation of the parametrized

charge transfer probability depends solely on the measured position dependent signal errors in those

measurements are relayed quieted poorly. This combined with the similar parameterization of the

different charge transfer models raises the need for a more accurate evaluation of the deflection

profiles. This need is not fully satisfied yet. Even though the new fitting algorithm gives better reduced

R values the custom peak shape feature has to be fully implemented to close the gap towards enough

accuracy. The quality of the gathered data points seems appropriate but nevertheless will also be

improved with the new quadrupole setup. These measures should render this experiment to an

appropriate and unique tool to single out the most likely charge transfer model. The upgrade will

furthermore also improve the experiments capabilities to measure electric dipole moments.

Report to the American Marshall Plan Foundation; References

23

References

[1] W. Gerlach, Niels Bohr Archiev, Coppenhagen.

[2] H. Buchenau, E. L. Knut, J. Northby, J. P. Toennies and C. Winkler, "Mass spectra and time of

flight distributions of helium cluster beams," J. Chem. Phys., p. 6875, 1999.

[3] D. Methe, Electric deflection of neutral doped helium nanodroplets, Los Angeles, 2018.

[4] M. J. Buckingham and W. M. Fairbank, "The Nature of the Lambda-Transition in Liquid Helium,"

Progress in Low Temperature Physics, vol. 3, pp. 80-112, 1961.

[5] D. R. Tilley and J. Tilley, Superfluidity and Superconductivity, Bristol: IOP Publishing Ltd, 1990.

[6] S. Grebenev, J. P. Toennies and A. F. Vilesov, "Superfuidity within a small helium-4 cluster,"

Science, vol. 279, no. 5359, pp. 2083 - 2086, 1998.

[7] A. W. Hauser, A. Volk, P. Thaler and W. E. Ernst, "Atomic collisions in suprafluid helium-

nanodroplets," Phys. Chem. Chem. Phys., vol. 17, pp. 10805 - 10812, 2015.

[8] K. K. Lehmann and A. M. Dokter, "Evaporative Cooling of Helium Nanodroplets with Angular

Momentum Conservation," Phys. Rev. Lett., vol. 92, no. 17 - 30, p. 173401, 2004.

[9] S. Vongehr, T. Shao-Chun and M. Xiang-Kang, "Collision statistics of clusters: from Poisson

model to Poisson mixture," Chin. Phys. B, vol. 19, no. 2, p. 023602, 2010.

[10] B. Shepperson, A. S. Chatterley, A. A. Sondergaard, L. L. M. Christiansen and H. Stapelfeldt,

"Strongly aligned molecules inside helium droplets in the near-adiabatic regime," The Journal of

Chemical Physics, vol. 147, p. 013946, 2017.

[11] D. V. Fursa and I. Bray, " Calculation of electron-helium scattering," Phys. Rev. A, vol. 52, no. 2,

p. 1279, 1995.

[12] J. Harms, J. P. Toennies and F. Dalfovo, " Density of superfluid helium droplets," Phys. Rev. B,

vol. 58, no. 6, p. 3341, 1998.

[13] W. K. Lewis, C. M. Lindsay, R. J. Bemish and R. M. Miller, " Probing chargetransfer processes in

helium nanodroplets by optically selected mass spectrometry (OSMS)," J. Am. Chem. Soc., vol.

127, no. 19, p. 7235, 2005.

[14] B. E. Callicoatt, D. D. Mar, V. A. Apkarian and K. C. Janda, " Charge transfer within He clusters,"

J. Chem. Phys., vol. 105, no. 17, p. 7872, 1996.

[15] T. Ruchti, B. E. Callicoatt and K. C. Janda, " Charge transfer and fragmentation of liquid helium

droplets doped with xenon," Phys. Chem. Chem. Phys., vol. 2, no. 18, p. 4075, 2000.

[16] A. M. Ellis and S. Yang, "Model for the charge-transfer probability in helium nanodroplets

following electron-impact ionization," Phys. Rev. A, vol. 76, no. 3, p. 032714, 2007.

[17] B. Bellina, D. J. Merthe and V. Kresin, "Proton transfer in histidine-tryptophan heterodimers

embedded in helium droplets," Journal of Chemical Physics, vol. 142, p. 114306, 2015.

Report to the American Marshall Plan Foundation; References

24

[18] W. Demtröder, Experimentalphysik 3: Atome, Moleküle und Festkörper, Berlin: Springer, 2010.

Report to the American Marshall Plan Foundation; APPENDIX A

25

APPENDIX A
The following pages show the source code of the data evaluation tool (Python3.6):

from lmfit import minimize, Parameters, report_fit

from tkinter import filedialog

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg,

NavigationToolbar2TkAgg

from matplotlib.figure import Figure

import tkinter as tk

from tkinter import simpledialog

import logging

import docx

import re

import os

import pandas as pd

import peakutils

import numpy as np

from scipy import interpolate

import weakref

import tkinter.scrolledtext as ScrolledText

from scipy.integrate import trapz

Main Window

###

#######################

class Main(tk.Tk):

 def __init__(self, *args, **kwargs):

 self.data = []

 tk.Tk.__init__(self, *args, **kwargs)

 tk.Tk.wm_title(self, 'The Evaluator')

 container = tk.Frame(self)

 container.pack(side='top', fill='both', expand=True)

 container.grid_rowconfigure(0, weight=1)

 container.grid_columnconfigure(0, weight=1)

 self.active_fit = FittingWidget()

 button_frame0 = tk.Frame(self)

 button_frame0.pack(fill=tk.X)

 self.session0 = DataWidget()

 button0 = tk.Button(button_frame0, text="Browse", command=lambda:

self.session0.run_word())

 button_frame0.columnconfigure(1, weight=1)

 button0.grid(row=0, column=1, sticky=tk.W + tk.E)

 def func0(value):

 self.option0 = str(value)

 self.OPTIONS0 = ["Pressure", "Temperature", "Deflections", "Manual"]

 self.option0 = str("Pressure")

 self.variable0 = tk.StringVar(self)

 self.variable0.set(self.OPTIONS0[0]) # default value

 self.coordinates = []

 self.marker0 = None

 button1 = tk.OptionMenu(button_frame0, self.variable0, *self.OPTIONS0,

command=func0)

 button_frame0.columnconfigure(0, weight=1)

 button1.grid(row=0, column=0, sticky=tk.W + tk.E)

 def func1(value):

 self.option1 = str(value)

 self.OPTIONS1 = ["No Data Set Loaded",]

 self.option1 = None

Report to the American Marshall Plan Foundation; APPENDIX A

26

 self.variable1 = tk.StringVar(self)

 self.variable1.set(self.OPTIONS1[0]) # default value

 self.button2 = tk.OptionMenu(button_frame0, self.variable1, *self.OPTIONS1,

command=func1)

 button_frame0.columnconfigure(2, weight=1)

 self.button2.grid(row=0, column=2, sticky=tk.W + tk.E)

 self.Fig0 = Figure(figsize=(5, 5), dpi=100)

 self.ax0 = self.Fig0.add_subplot(1, 1, 1)

 self.canvas0 = FigureCanvasTkAgg(self.Fig0, self)

 toolbar = NavigationToolbar2TkAgg(self.canvas0, self)

 toolbar.update()

 FigureCanvasTkAgg.draw(self.canvas0)

 self.canvas0.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH,

expand=True)

 self.canvas0._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True)

 def onclick(event):

 try:

 self.marker0.remove()

 except:

 pass

 if event.dblclick:

 self.coordinates.append([event.xdata, event.ydata])

 self.marker0 = self.ax0.axvline(self.coordinates[-1][0],

linestyle='--')

 FigureCanvasTkAgg.draw(self.canvas0)

 else:

 pass

 self.Fig0.canvas.mpl_connect('button_press_event', onclick)

 def func2(value):

 inst = app.data[app.session0.temp.index(app.variable1.get())]

 inst.threshold = value

 try:

 inst.maxima = FittingWidget.find_peak_max(inst.axis, inst.signal,

self.scaler0.get(), 0.5)

 except:

 pass

 inst.show_data()

 scaler_frame0 = tk.Frame(self)

 scaler_frame0.pack(fill=tk.X)

 self.scaler0 = tk.Scale(self, from_=0, to=1, length=600, resolution=0.01,

orient='horizontal', label='Threshold', command=lambda x: func2(x))

 scaler_frame0.columnconfigure(0, weight=1)

 self.scaler0.pack()

 button_frame1 = tk.Frame(self)

 button_frame1.pack(fill=tk.X)

 button0 = tk.Button(button_frame1, text="Add", command=lambda:

app.data[app.session0.temp.index(app.variable1.get())].add_maxima(self.coordinates)

)

 button_frame1.columnconfigure(0, weight=1)

 button0.grid(row=0, column=0, sticky=tk.W + tk.E)

 button1 = tk.Button(button_frame1, text="Remove", command=lambda:

app.data[app.session0.temp.index(app.variable1.get())].remove_maxima(self.coordinat

es))

 button_frame1.columnconfigure(1, weight=1)

 button1.grid(row=0, column=1, sticky=tk.W + tk.E)

 button22 = tk.Button(button_frame1, text="Fit", command=lambda:

app.data[app.session0.temp.index(app.variable1.get())].run_fit())

 button_frame1.columnconfigure(2, weight=1)

 button22.grid(row=0, column=2, sticky=tk.W + tk.E)

 button3 = tk.Button(button_frame1, text="Set", command=lambda:

Report to the American Marshall Plan Foundation; APPENDIX A

27

app.data[app.session0.temp.index(app.variable1.get())].choose_peak(self.coordinates

))

 button_frame1.columnconfigure(3, weight=1)

 button3.grid(row=0, column=3, sticky=tk.W + tk.E)

 def set_all():

 for name in self.OPTIONS1:

 try:

app.data[app.session0.temp.index(name)].choose_peak(self.coordinates)

 except:

 pass

 button4 = tk.Button(button_frame1, text="Set All", command=lambda:

set_all())

 button_frame1.columnconfigure(4, weight=1)

 button4.grid(row=0, column=4, sticky=tk.W + tk.E)

 self.common = None

 def fit_all():

 app.common =

len(app.data[app.session0.temp.index(app.variable1.get())].maxima)

 for name in self.OPTIONS1[1:]:

 app.variable1.set(name)

app.data[app.session0.temp.index(app.variable1.get())].find_number_peaks(int(self.c

ommon))

 app.data[app.session0.temp.index(app.variable1.get())].run_fit()

 button5 = tk.Button(button_frame1, text="Fit All", command=lambda:

fit_all())

 button_frame1.columnconfigure(5, weight=1)

 button5.grid(row=0, column=5, sticky=tk.W + tk.E)

 self.pop0 = None

 def popup0():

 try:

 self.pop0.update_pop0()

 except:

 self.pop0 = PopupWidget0()

 button6 = tk.Button(button_frame1, text="EVAL VP", command=lambda:

popup0())

 button_frame1.columnconfigure(6, weight=1)

 button6.grid(row=0, column=6, sticky=tk.W + tk.E)

 self.pop1 = None

 def popup1():

 try:

 self.pop1.update_pop1()

 except:

 self.pop1 = PopupWidget1()

 button7 = tk.Button(button_frame1, text="EVAL FIT", command=lambda:

popup1())

 button_frame1.columnconfigure(7, weight=1)

 button7.grid(row=0, column=7, sticky=tk.W + tk.E)

 # Add text widget to display logging info

 self.st0 = ScrolledText.ScrolledText(self)

 self.st0.configure(font='TkFixedFont')

 self.st0.pack(fill=tk.X)

 # Create textLogger

 self.text_handler = LoggerWidget(self.st0)

 # Logging configuration

 logging.basicConfig(filename='test.log', level=logging.INFO,

format='%(asctime)s - %(levelname)s - %(message)s')

Report to the American Marshall Plan Foundation; APPENDIX A

28

 # Add the handler to logger

 self.logger = logging.getLogger()

 self.logger.addHandler(self.text_handler)

tk.inter Widgets

###

##################

class LoggerWidget(logging.Handler):

 def __init__(self, textwidget):

 logging.Handler.__init__(self)

 self.setLevel(logging.DEBUG)

 self.widget = textwidget

 self.widget.config(state='normal')

 self.widget.tag_config("INFO", foreground="black")

 self.widget.tag_config("DEBUG", foreground="grey")

 self.widget.tag_config("WARNING", foreground="orange")

 self.widget.tag_config("ERROR", foreground="red")

 self.widget.tag_config("CRITICAL", foreground="red", underline=1)

 self.red = self.widget.tag_configure("red", foreground="red")

 def emit(self, record):

 self.widget.config(state='normal')

 # Append message (record) to the widget

 self.widget.insert(tk.END, self.format(record) + '\n', record.levelname)

 self.widget.see(tk.END) # Scroll to the bottom

 self.widget.config(state='disabled')

 self.widget.update() # Refresh the widget

class DataWidget(tk.Tk):

 def __init__(self):

 self.path = None

 self.files = None

 self.vector = []

 self.temp = []

 def run_word(self):

 self.vector = []

 self.path = filedialog.askopenfilename(filetypes=(('Word Document',

('docx', 'doc')), ('All', '*'),))

 logging.info('File directory: ' + str(os.path.split(self.path)[0]))

 self.run_files()

 def run_files(self):

 self.files = list(filedialog.askopenfilenames(filetypes=(('TSV', 'tsv'),

('All', '*'),)))

 self.pars_vector()

 self.update_menu()

 def update_menu(self):

 app.data = []

 def func(para):

 app.variable1.set(para)

 self.temp = []

 for entry in self.vector:

 self.temp.append(entry[0])

 app.data[self.temp.index(app.variable1.get())].show_data()

 app.variable1.set('Data Loaded')

 app.button2['menu'].delete(0, 'end')

 for item in self.vector:

 app.button2['menu'].add_command(label=item[0], command=lambda

x=item[0]: func(x))

 app.OPTIONS1.append(item[0])

 app.data.append(LogicWidget(item[0]))

 def pars_vector(self):

 doc = docx.Document(self.path)

 if app.option0 == "Pressure":

Report to the American Marshall Plan Foundation; APPENDIX A

29

 print('Pressure')

 for item in self.files:

 j = 0

 for row in doc.tables[1].rows:

 test0 = re.search((os.path.split(item)[1])[:2],

str(doc.tables[1].rows[j].cells[0].text))

 if test0 is not None:

 test1 = re.search('(Pcell = {0,3})([0-9]\.[0-9]{0,2}E-[0-

9])', str(doc.tables[1].rows[j].cells[5].text))

 if test1 is not None:

 self.vector.append([os.path.split(item)[1],

float(test1.group(2))])

 j += 1

 logging.info(str(len(self.vector))+'/'+str(len(self.files))+' Files

where loaded successfully')

 if app.option0 == "Deflections":

 print('deflections')

 for item in self.files:

 j = 0

 table = 2

 for row in doc.tables[table].rows:

 test0 = re.search((os.path.split(item)[1])[:2],

str(doc.tables[table].rows[j].cells[0].text))

 if test0 is not None:

 test1 = re.search('([0-9]{0,3})(.kV)',

str(doc.tables[table].rows[j].cells[5].text))

 if test1 is not None:

 self.vector.append([os.path.split(item)[1],

float(test1.group(1))])

 j += 1

 logging.info(str(len(self.vector)) + '/' + str(len(self.files)) + '

Files where loaded successfully')

 if app.option0 == "Temperature":

 print('temperature')

 for item in self.files:

 j = 0

 table = 3

 for row in doc.tables[table].rows:

 test0 = re.search((os.path.split(item)[1])[:2],

str(doc.tables[table].rows[j].cells[0].text))

 if test0 is not None:

 test1 = re.search('(Tcell = {0,3})([0-9]{0,3}) C',

str(doc.tables[table].rows[j].cells[5].text))

 if test1 is not None:

 self.vector.append([os.path.split(item)[1],

float(test1.group(2))])

 j += 1

 logging.info(str(len(self.vector)) + '/' + str(len(self.files)) + '

Files where loaded successfully')

 if app.option0 == "Manual":

 print('manual')

 for item in self.files:

 answer = simpledialog.askstring(os.path.split(item)[1], 'Manual

Input')

 self.vector.append([os.path.split(item)[1], answer])

class LogicWidget:

 ID = 0

 vector = None

 pressure_point = []

 pressure_value = []

 mean_value = []

 mean_value = []

 area_value = []

 width_value = []

 name_vector = []

Report to the American Marshall Plan Foundation; APPENDIX A

30

 export = pd.DataFrame()

 def __init__(self, para):

 self.ID = LogicWidget.ID

 LogicWidget.ID = LogicWidget.ID + 1

 self.name = para

 # print(self.name)

 self.file = None

 self.axis = None

 self.signal = None

 self.threshold = 0.05

 self.maxima = None

 self.points = []

 self.minima = None

 self.area = None

 self.base_spline = None

 self.y = None

 self.peaks = None

 def get_file(self):

 self.file = pd.read_csv(os.path.split(app.session0.path)[0] + "/" +

app.variable1.get(), sep='\t', header=None, usecols=[0, 1])

 def show_data(self):

 if self.file is None:

 self.get_file()

 self.axis = np.array(self.file.iloc[:, 0].values)

 self.signal = np.array(self.file.iloc[:, 1].values)

 self.maxima = FittingWidget.find_peak_max(self.axis, self.signal,

app.scaler0.get(), 0.5)

 app.scaler0.set(self.threshold)

 app.ax0.clear()

 app.ax0.scatter(self.axis[self.maxima], self.signal[self.maxima])

 app.ax0.set_xlim(min(self.axis), max(self.axis))

 app.ax0.set_ylim(min(self.signal), max(self.signal)*1.2)

 app.ax0.plot(self.axis, self.signal)

 try:

 app.ax0.scatter(self.axis[self.points], self.signal[self.points])

 except:

 pass

 try:

 for item in self.peaks:

 a = item[0]

 b = item[1]

 c = item[2]

 xspace = np.linspace(min(self.axis), max(self.axis), 10000)

 app.ax0.plot(xspace, a * np.exp(-np.power(xspace - b, 2.) / (2 *

np.power(c, 2.))), linestyle=':')

 except:

 pass

 FigureCanvasTkAgg.draw(app.canvas0)

 def add_maxima(self, coordinates):

 try:

 self.maxima = np.array(np.append(self.maxima, np.argmin(abs(self.axis -

float(coordinates[-1][0]))))).astype(int)

 self.show_data()

 except:

 logging.warning('COULD NOT ADD POINT')

 def remove_maxima(self, coordinates):

 try:

 temp = abs(self.axis[self.maxima] - float(coordinates[-1][0]))

 self.maxima = np.delete(self.maxima, np.argmin(temp))

 self.show_data()

 except:

 logging.warning('COULD NOT REMOVE POINT')

Report to the American Marshall Plan Foundation; APPENDIX A

31

 def find_number_peaks(self, length):

 app.data[app.session0.temp.index(app.variable1.get())].show_data()

 app.scaler0.set(self.threshold)

 self.maxima = FittingWidget.find_peak_max(self.axis, self.signal,

app.scaler0.get(), 0.5)

 if len(self.maxima) > length:

 self.threshold = str("%.2f" % (float(self.threshold) + 0.005))

 # print(self.threshold)

 LogicWidget.find_number_peaks(self, length)

 if len(self.maxima) < length:

 self.threshold = str("%.2f" % (float(self.threshold) - 0.005))

 # print(self.threshold)

 LogicWidget.find_number_peaks(self, length)

 if self.threshold == 0:

 logging.warning('Min Threshhold reached')

 def choose_peak(self, coordinates):

 try:

 app.ax0.remove(self.set)

 except:

 pass

 self.mean = []

 for item in self.peaks:

 self.mean.append(item[1])

 self.set_value = np.argmin(abs(self.mean - coordinates[-1][0]))

 self.show_data()

 a = (self.peaks[self.set_value][0])

 b = (self.peaks[self.set_value][1])

 c = (self.peaks[self.set_value][2])

 xspace = np.linspace(min(self.axis), max(self.axis), 10000)

 peak = a * np.exp(-np.power(xspace - b, 2.) / (2 * np.power(c, 2.)))

 self.area = trapz(peak, xspace)

 self.pos = b

 self.width = c

 LogicWidget.export.loc[:, (str(self.name)+' x values')] = xspace

 LogicWidget.export.loc[:, (str(self.name)+' y Values')] = peak

 LogicWidget.export.to_csv(os.path.split(app.session0.path)[0]+'/out.tsv',

sep='\t', index=False)

 print(LogicWidget.export)

 logging.info('File Saved as

'+str(os.path.split(app.session0.path)[0]+'/out.tsv'))

 def run_fit(self):

 self.peaks = FittingWidget.fitting(app.active_fit, [self.axis, self.signal,

self.maxima])

class FittingWidget:

 @staticmethod

 def find_peak(y, t, d):

 data_max = peakutils.indexes(y, thres=t, min_dist=d)

 return [data_max]

 @staticmethod

 def find_peak_max(x, y, d=0.5, t=0.0005, z=None):

 peak_max = []

 if z is not None:

 peak_max.append(0)

 temp = (FittingWidget.find_peak(y, d, t)[0])

 for i in range(len(temp)):

 peak_max.append(temp[i])

 if z is not None:

 peak_max.append(len(x) - 1)

 return peak_max

 @staticmethod

 def get_base(y):

 base = peakutils.baseline(y, 1)

Report to the American Marshall Plan Foundation; APPENDIX A

32

 return base

 @staticmethod

 def find_guess(x, y, pos_max):

 guess = []

 c = 0

 dx = 25

 for item in pos_max:

 j = 0

 while True:

 if x[item+j] == x[-1]:

 print('Peak', c, 'loop break => x right out of bounds')

 break

 if x[item-j] == x[0]:

 print('Peak', c, 'loop break => x left out of bounds')

 break

 try:

 if y[item+j] <= min(y[item+j-dx:item+j+dx]):

 print('Peak', c, 'loop break => local minimum at',

x[item+j])

 break

 except:

 pass

 if y[item]*.60 <= y[item + j]:

 j += 1

 else:

 print('Peak', c, '60% border width is', x[item+j]-x[item-j])

 print('Border Points are', x[item-j], x[item+j])

 break

 guess.append((trapz(y[item-j:item+j])/100, x[item], (x[item+j] -

x[item-j])/2, x[item-j], x[item+j]))

 c += 1

 return guess

 @staticmethod

 def gauss(params, x, data, pos_max):

 func = []

 j = 1

 for item in pos_max:

 alpha = params['n'+str(j)].value

 j += 1

 bravo = params['n'+str(j)].value

 j += 1

 charlie = params['n'+str(j)].value

 j += 1

 func.append(alpha * np.exp(-np.power(x - bravo, 2.) / (2 *

np.power(charlie, 2.))))

 return sum(func) - data

 def fitting(self, para):

 xdata = para[0]

 ydata = para[1]

 pos_max = para[2]

 guess = FittingWidget.find_guess(xdata, ydata, pos_max)

 params = Parameters()

 j = 1

 for item in guess:

 params.add('n'+str(j), value=item[0], min=0)

 j += 1

 params.add('n'+str(j), value=item[1], min=item[3], max=item[4])

 j += 1

 params.add('n'+str(j), value=item[2], min=0.05, max=item[2]*1.25)

 j += 1

 result = minimize(self.gauss, params, args=(xdata, ydata, pos_max))

Report to the American Marshall Plan Foundation; APPENDIX A

33

 self.xplot = xdata

 self.yplot = self.gauss(result.params, xdata, ydata, pos_max) + ydata

 report_fit(result)

 logging.info(str(''))

logging.info(str('#################################Leastsquare#####################

###############'))

 logging.info(str(''))

 logging.info(str('Function Evaluations: ') + str(result.nfev))

 logging.info(str('Number of Variables: ') + str(result.nvarys))

 logging.info(str('Chi squared: ') + str(result.chisqr))

 logging.info(str('Reduced Chi squ: ') + str(result.redchi))

 logging.info(str('Akaike info Crit: ') + str(result.aic))

 logging.info(str('Bayesian info Crit: ') + str(result.bic))

 logging.info(str(''))

logging.info(str('###

###############'))

 logging.info(str(''))

 self.peaks = []

 xspace = np.linspace(min(xdata), max(xdata), 10000)

 j = 1

 for item in pos_max:

 a = result.params['n' + str(j)].value

 j += 1

 b = result.params['n' + str(j)].value

 j += 1

 c = result.params['n' + str(j)].value

 j += 1

 self.peaks.append([a, b, c])

 app.ax0.plot(xspace, a * np.exp(-np.power(xspace - b, 2.) / (2 *

np.power(c, 2.))), linestyle=':')

 FigureCanvasTkAgg.draw(app.canvas0)

 return self.peaks

 def __init__(self):

 self.xdata = None

 self.ydata = None

 self.xplot = None

 self.yplot = None

 self.pos_max = None

 self.data_max = None

class PopupWidget0(tk.Tk):

 def __init__(self, *args, **kwargs):

 tk.Tk.__init__(self, *args, **kwargs)

 tk.Tk.wm_title(self, 'Vapor Pressure Curve')

 container = tk.Frame(self)

 container.pack(side='top', fill='both', expand=True)

 container.grid_rowconfigure(0, weight=1)

 container.grid_columnconfigure(0, weight=1)

 j = 0

 LogicWidget.pressure_value = []

 LogicWidget.pressure_point = []

 for item in app.data:

 LogicWidget.pressure_point.append([app.session0.vector[j][1]])

 LogicWidget.pressure_value.append([app.data[j].area])

 j += 1

 self.Fig0 = Figure(figsize=(5, 5), dpi=100)

 self.ax0 = self.Fig0.add_subplot(1, 1, 1)

 self.ax0.set_xlim((*min(LogicWidget.pressure_point),

*max(LogicWidget.pressure_point)))

 print(min(*LogicWidget.pressure_point))

 print(max(*LogicWidget.pressure_point))

 self.canvas0 = FigureCanvasTkAgg(self.Fig0, self)

Report to the American Marshall Plan Foundation; APPENDIX A

34

 toolbar = NavigationToolbar2TkAgg(self.canvas0, self)

 toolbar.update()

 FigureCanvasTkAgg.draw(self.canvas0)

 self.canvas0.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH,

expand=True)

 self.canvas0._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True)

 self.ax0.scatter(LogicWidget.pressure_point, LogicWidget.pressure_value)

 FigureCanvasTkAgg.draw(self.canvas0)

 def update_pop0(self):

 j = 0

 LogicWidget.pressure_value = []

 LogicWidget.pressure_point = []

 for item in app.data:

 LogicWidget.pressure_point.append([app.session0.vector[j][1]])

 LogicWidget.pressure_value.append([app.data[j].area])

 j += 1

 self.ax0.clear()

 self.ax0.set_xlim((*min(LogicWidget.pressure_point),

*max(LogicWidget.pressure_point)))

 self.ax0.scatter(LogicWidget.pressure_point, LogicWidget.pressure_value)

 FigureCanvasTkAgg.draw(self.canvas0)

class PopupWidget1(tk.Tk):

 def __init__(self, *args, **kwargs):

 tk.Tk.__init__(self, *args, **kwargs)

 tk.Tk.wm_title(self, 'Fit Parameter')

 container = tk.Frame(self)

 container.pack(side='top', fill='both', expand=True)

 container.grid_rowconfigure(0, weight=1)

 container.grid_columnconfigure(0, weight=1)

 j = 0

 LogicWidget.mean_value = []

 LogicWidget.area_value = []

 LogicWidget.width_value = []

 LogicWidget.name_vector = []

 for item in app.data:

 LogicWidget.mean_value.append([app.data[j].pos])

 LogicWidget.area_value.append([app.data[j].area])

 LogicWidget.width_value.append([app.data[j].width])

 LogicWidget.name_vector.append([app.data[j].name])

 j += 1

 self.Fig0 = Figure(figsize=(5, 5), dpi=100)

 self.ax0 = self.Fig0.add_subplot(3, 1, 1)

 self.ax1 = self.Fig0.add_subplot(3, 1, 2)

 self.ax2 = self.Fig0.add_subplot(3, 1, 3)

 self.ax0.set_ylabel('Mean')

 self.ax1.set_ylabel('Area')

 self.ax2.set_ylabel('Width')

 self.ax0.set_yticklabels([])

 self.ax0.set_yticks([])

 self.ax1.set_yticklabels([])

 self.ax1.set_yticks([])

 self.ax2.set_yticklabels([])

 self.ax2.set_yticks([])

 self.canvas0 = FigureCanvasTkAgg(self.Fig0, self)

 self.coordinates1 = []

 toolbar = NavigationToolbar2TkAgg(self.canvas0, self)

 toolbar.update()

 FigureCanvasTkAgg.draw(self.canvas0)

 self.canvas0.get_tk_widget().pack(side=tk.BOTTOM, fill=tk.BOTH,

expand=True)

 self.canvas0._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True)

 self.ax0.set_xlim((*min(LogicWidget.mean_value),

Report to the American Marshall Plan Foundation; APPENDIX A

35

*max(LogicWidget.mean_value)))

 self.ax0.scatter(LogicWidget.mean_value, range(0,

len(LogicWidget.mean_value)))

 j = 0

 for point in LogicWidget.mean_value:

 self.ax0.annotate(*LogicWidget.name_vector[j], xy=(*point, j+0.2))

 j += 1

 self.ax1.set_xlim((*min(LogicWidget.area_value),

*max(LogicWidget.area_value)))

 self.ax1.scatter(LogicWidget.area_value, range(0,

len(LogicWidget.area_value)))

 j = 0

 for point in LogicWidget.area_value:

 self.ax1.annotate(*LogicWidget.name_vector[j], xy=(*point, j+0.2))

 j += 1

 self.ax2.set_xlim((*min(LogicWidget.width_value),

*max(LogicWidget.width_value)))

 self.ax2.scatter(LogicWidget.width_value, range(0,

len(LogicWidget.width_value)))

 j = 0

 for point in LogicWidget.width_value:

 self.ax2.annotate(*LogicWidget.name_vector[j], xy=(*point, j+0.2))

 j += 1

 FigureCanvasTkAgg.draw(self.canvas0)

 def onclick(event):

 try:

 self.marker1.remove()

 except:

 pass

 if event.dblclick:

 self.coordinates1.append([event.xdata, event.ydata])

 self.marker1 = self.ax0.axvline(self.coordinates1[-1][0],

linestyle='--')

 FigureCanvasTkAgg.draw(self.canvas0)

 self.ax1.scatter(LogicWidget.mean_value, range(0,

len(LogicWidget.mean_value)))

 else:

 pass

 self.Fig0.canvas.mpl_connect('button_press_event', onclick)

 def update_pop1(self):

 j = 0

 LogicWidget.mean_value = []

 LogicWidget.name_vector = []

 for item in app.data:

 LogicWidget.mean_value.append([app.data[j].parameter])

 LogicWidget.name_vector.append([app.data[j].name])

 j += 1

 self.ax0.clear()

 self.ax0.set_xlim((*min(LogicWidget.mean_value),

*max(LogicWidget.mean_value)))

 self.ax0.scatter(LogicWidget.mean_value, LogicWidget.name_vector)

 FigureCanvasTkAgg.draw(self.canvas0)

app = Main()

app.mainloop()

