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Abstract 

The Spatial-Multicriteria Decision Analysis (S-MCDA) is a complex geospatial 

computation, which can be computationally intensive and memory consuming. 

Therefore, solving such a spatial decision analysis can be done on a computer cluster 

to provide the necessary computational requirements and compute the result in a 

relatively short time. Furthermore, the computational workload of the algorithm was 

parallelized and distributed amongst a cluster of comparatively low-cost computers. 

This approach was compared to a sequential model run on a single relatively powerful 

machine to get the acceleration of the whole model. Within the scope of this paper, a 

Hadoop-cluster and a parallel and distributed solution for a cluster system was 

adapted. The Hadoop-cluster is build up at Carinthia University of Applied Science 

located in Villach, Austria. The employed S-MCDA model incorporates the decision 

rule weighted linear combination (WLC) and features a simulation of the resource-

intensive Monte Carlo Simulation (MCS). A useful extension for the S-MCDA model 

could be the variance-based Spatially-Explicit Uncertainty and Sensitivity Analysis 

(SEUSA) or changing the decision rule to Ideal Point. The algorithm was implemented 

with Java in the computational model of MapReduce and the used middleware was 

Hadoop version 2.7.2. This paper gives an overview on the research project, which 

included a research stay abroad at San Diego State University in California in the USA, 

describing the applied methodology and algorithm implementation on the Hadoop-

cluster, and discusses future work with in this research project. 
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1 Introduction 

Multicriteria decision analysis (MCDA) is important in everyday life decisions to select 

the best of all possible alternatives. In Geographical Information Science location plays 

a huge part. Therefore, spatial multicriteria decision analysis (SMCDA) supports 

experts in difficult decision situations to select the best potential.  

1.1 Motivation 

A S-MCDA model assists experts in important decision-making by applying sensitivity 

and uncertainty analysis (SEUSA) techniques to improve the robustness and increase 

confidence in the predictions (Ligmann-Zielinska & Jankowski, 2014; Erlacher, et al., 

2017). A S-MCDA is a time-consuming model to run, depending on different factors 

such as the spatial resolution of the study area, the number of criteria considered, the 

complexity of this model, and the number of model runs necessary. One way to 

increase the computation time of this model is to use parallel and distributed 

programming concepts like Hadoop or Dask (Desch, et al., 2018). 

Erlacher et al. (2016; 2017) achieved reasonable speed-ups of the most time-

consuming part of a S-MCDA model through the use of a Graphic Processing Unit 

(GPU)-based parallelization approach. The employed S-MCDA model incorporated a 

SEUSA using variance-based sensitivity analyses, which includes MCS, the latter 

being the part which was targeted for the speed-up. In 2018, even computer with high-

end hardware have limitations with respect to data storage and computational capacity. 

Therefore, the workflow of the implementation of the same S-MCDA model was split 

among a collection of different computers. The collection of computers is called 

computer-cluster. Such a cluster was built on the Hadoop version 2.7.2 framework and 

it can be considered as a distributed memory system. Each computer has its own 

memory-processing unit and is connected by a communication network. The S-MCDA 

model incorporating the weighted linear combination (WLC) method is implemented in 

the programming language Java.  
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1.2 Problem Definition and Objective 

With a lack of detailed information about the robustness of the model and uncertainty 

on the model results most of S-MCDA applications cannot provide conscientious 

support for experts during decision-making. Therefore, Ligmann-Zielinska and 

Jankowski (2014) created the sensitivity and uncertainty analysis for experts to 

evaluate the results. With this analysis experts can identify which criterion or alternative 

is uncertain and sensitive for the model run. 

The most time-consuming part of the variance-based uncertainty and sensitivity 

analysis for this S-MCDA problem is the Monte Carlo Simulation (MCS). As the basis 

of performing SEUSA and producing a myriad of suitability surfaces the MCS showed 

be accelerated in this research project. To provide accurate results of the uncertainty 

and sensitivity high number of simulations are necessary. If one sticks with the 

conventional, non- parallelized and non-distrusted SEUSA approaches there always 

will be compromise solution in respect to the problem size and the number of 

simulations.  

During decision-making processes for application domains such as landscape 

assessment, hazard risk assessment, environmental protection, land use planning, 

and sustainable regional development a lack of detailed information about the 

robustness and uncertainty of the model’s result can cause a lot of problems. 

Therefore, S-MCDA models represents an opportunity to support experts in this 

procedure to select the best alternative. According to Malczewski (1999), the values 

and the weights of the input criteria refer to the main source of the uncertainty in 

multicriteria analysis. Hence, Spatially-Explicit Uncertainty and Sensitivity Analysis 

(SEUSA) is an important step in S-MCDA to increase the quality of the decision 

process. Wainright et al. (2014) categorized the variety of sensitivity analysis methods 

roughly into local- and global methods. Global Sensitivity Analysis (GSA) methods 

constitute dependencies among criteria in comparison to local sensitivity analysis such 

as on-at-time methods. The disadvantage of GSA methods such as the variance-

based sensitivity analysis is the requirement of including many samples (e.g. weight 

samples). Besides that, the computational demand increases with the number of 

criteria, the aggregation method and the size of the project area corresponding the 
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number of locations. The Hadoop version 2.7.2 framework can handle large S-MCDA 

problems including millions of locations and several hundred thousand of simulations 

by the MapReduce computational concept for Hadoop (White, 2015, p. 19). A normal 

single computer could not manage such a problem except the workstation has a 

powerful GPU, which only be has physical limitations concerning the data storage and 

the computational capacity. Hence, parallel and distributed computing frameworks for 

clusters such as Hadoop 2.7.2 spreads the workload among nodes. 

Consequently, the main objective of this research project focuses on the Hadoop 

migration for a specific raster-based S-MCDA problem that bears on Monte Carlo 

Simulations (MCS) in order to generate the stack of suitability surfaces that illustrates 

the input for conduction SEUSA. This stack of suitability surfaces is necessary to create 

average and standard-deviation maps, which represent the result. The result for this 

project is created once by the Hadoop-cluster and the other time by a sequential 

algorithm, to compare the performance of a parallel/distributed and sequential model 

run. 

 

1.3 Methodology 

With the three-staged concept – as shown in Figure 1– an on-time completion of this 

project was secured. In the preparation phase, the specifics of Hadoop 2.7.2 had to be 

learned. Therefore, it was necessary to perform steps like requirement analysis and a 

literature research. The implementation was the most time and labor-intensive part 

where the Hadoop-cluster and a functional parallel and distributed algorithm had to be 

developed. Eventually it led to the performance tests, where the different run times 

were compared and analyzed. 



 

 
8 

 

 

Figure 1: Three-step concept for the workflow of this project 

It was necessary to build up a similar Hadoop-cluster like at the San Diego State 

University (SDSU) before starting to implement the S-MCDA problem in Villach at the 

Carinthia University for Applied Sciences (CUAS). The Hadoop-cluster at the SDSU, 

Department of Geography, is running on the operating system (OS) CentOS7 a Linux 

distribution and consists of 16 machines. These nodes are all equally equipped. The 

Hadoop-cluster also provides components like MapReduce, Hadoop Distributed File 

System (HDFS) and Spark, which runs on top of Hadoop. Compare to SDSU’s 

Hadoop-cluster, the cluster in Villach has different equipped workstations and the 

cluster includes MapReduce and HDFS. The Hadoop-cluster will only include maximal 

7 machines. On the master machine, it is necessary to set up different configurations 

than on worker nodes even, even though all machines have to be connected via a 

switch to communicate. 

The most time-consuming part of the employed S-MCDA model is the MCS. Therefore, 

the focus in the implementation is on the parallelization and distribution of the MCS on 

the Hadoop cluster. This should lead to an increase of the performance time of the 

whole model. The algorithm to perform a S-MCDA problem with the decision rule 

weighted linear combination (WLC) is divided into the Mapper- and the Reducer-part, 

which are both necessary for the MapReduce computing concept (Figure 2). Both parts 

parallelize and distribute the workload along the Hadoop-cluster. The Mapper prepares 

the input-data for the Reducer by creating key/value pairs. These intermediate 

key/value pairs are the input for a computation in the Reducer. The creation of the 

intermediate key/value pairs depends on the splitting of the input-data. For example, 

the key could be the first token in a long String and the rest of the String is the value. 

Preparation

•Requirement 
Analysis for Project

•familiarize with 
Hadoop 2.7.2 and 
MapReduce

•build up a Hadoop 
computer cluster

Implementation

•develop S-MCDA 
computation  
concept
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parallel/distributed 
approach for 
Hadoop

Performance Tests

•Test runs sequential

•Test runs 
parallel/distributed

•Correctness of 
sequential and 
Hadoop approach

•Performance 
comparison
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Therefore, it is necessary to split the key from the value and then create the key/value 

pair. The Reducer will run the computation with its input and creates the final output. 

A more detailed description and Figure on the algorithm can be found in Chapter 4. 

 

Figure 2: Overview of the Map/Reduced based WLC computation on a Hadoop-cluster 

The final results are average and standard-deviation map, which were computed out 

of the suitability surface stack. It is necessary to compare each pair of alternatives of 

the final result of the sequential and parallel/distributed model run. This check of 

correctness was done within the performance test step. Therefore, subtract the 

sequential result of the parallel/distributed result. If both are the same the subtraction 

should be zero for each location. 

 

1.4 Expected results 

The expected results of this research project comprise: 

 a detailed analysis of the MCS procedure of the sequential SEUSA framework 

 the conceptual development 

 the implementation of the Hadoop-based parallel and distributed computing 

approach 

 installation and set-up a Hadoop cluster in Villach 

The outcome of this research study will contribute to the development of an expandable 

and adaptable framework for performing spatially-explicit uncertainty and sensitivity 

analysis and will be applicable for application domains such as landscape assessment, 

hazard risk assessment, environmental protection, land use planning and sustainable 

regional development. 
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1.5 Thesis Structure 

This paper is structured as follows. It begins with the Introduction, which includes 

motivation, problem definition and research questions, methodology, expected results 

and the thesis structure. The theoretical background gives a first overview about 

SMCDA, parallel and distributed computing concept and the framework Hadoop 2.7.2. 

The methodology comprises the case study, concept, data and the tools and software.  

Furthermore, it includes the implementation with data/sources, implementation on the 

Hadoop cluster, testing and validation. After the results there is a discussion, summary, 

conclusion and to complete the paper the last is the future work. 
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2 Theoretical background 

This section presents theoretical background for the research study on Spatial 

Multicriteria Decision Analysis, parallel and distributed computing concepts, and the 

Hadoop framework. 

2.1 Spatial Multicriteria Decision Analysis 

Multicriteria Decision Analysis (MCDA) and Multicriteria Decision Making (MCDM) are 

terms which are used equally (Malczewski, 1999). MCDM problems require often 

conflicting and incompatible criteria, which include both concepts attributive and 

objective. MCDA refers to a group of methods and procedures that help in the selection 

of the best possible choice while considering multiple decision alternatives. Both 

Multiattribute Decision Making (MADM) and Multiobject Decision Making (MODM) 

problems are further categorized and described in Malczewski (1999, p. 81). In this 

thesis MADM is used in the model. Different approaches to structure MCDA problems 

have been elaborated (Keeny et al. 1976, Saaty 1980, Chankong et al. 1983, 

Kleindorfer et al. 1993). Malczewski (1999, p. 82) puts up six components for a MCDA 

problem: 

“(1) a goal or a set of goals the decision maker (interest group) attempts to 

achieve; (2) the decision maker or group of decision makers involved in the 

decision-making process along with their preferences with respect to 

evaluation criteria; (3) a set of evaluation criteria (objectives and/or attributes) 

on the basis of which the decision makers evaluate alternative courses of 

action; (4) the set of decision alternatives, that is, the decision or action 

variables; (5) the set of uncontrollable variables or states of nature (decision 

environment); and (6) the set of outcomes or consequences associated with 

each alternative-attribute pair (Keeney et al. 1976, Pitz et al. 1984)” 

(Malczewski, 1999, p. 82). 

The decision matrix (Table 1) is the leading element of a MCDA framework, it consists 

of columns and rows. The columns represent the input criteria and the rows the 

alternatives (Pitz et al., 1984). Every cell in the decision matrix represents a result 
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(decision outcome) for the given input criteria and alternatives. Furthermore, it includes 

weights for each criterion, which are assigned by decision makers. 

Table 1: Decision Matrix where the alternatives are representing the rows and the criteria are representing 
the columns lean on the existing illustration (Malczewski, 1999). 

 

This decision matrix is the base of the MCDA framework (Figure 3), but it includes five 

more components for the whole MCDA framework. As listed above, the framework 

consists of a general goal, decision makers, objectives, alternatives and outcomes 

(Malczewski, 1999). 

 

Figure 3: Framework for multicriteria decision analysis lean on an existing illustration (Malczewski, 1999, 
p. 82) 

The goal or set of goals the decision maker attempts to achieve, is the top-level 

element of the framework for multicriteria decision analysis. For example, in the context 
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of urban planning, the goal may be to improve the air quality in a district. Decision 

maker can be a single person or a group of people with the same interest or preference. 

These persons are generally involved in complex decision problems. Their preferences 

are directly represented in the weights of each criteria. A criterion is a standard of 

judgement or a rule to test the desirability of alternative decisions (Hwang & Yoon, 

1981; Malczewski, 1999). 

In the last couple of decades there have been research and investigations on spatial 

multicriteria decision analysis techniques (Malczewski, 2006; Malczewski & Rinner, 

2015; Malczewski, 1999). SMCDA specifies the application of multicriteria decision 

analysis with a spatial component as seen in Figure 4. It includes a set of 

geographically defined alternatives from which a choice of one or more alternatives is 

made with the respect to a given set of evaluation criteria. The spatial alternatives are 

a collection of point, line, and areal objects, attached to which are criterion values. 

Criterions can by of two different kinds: spatially explicit and spatially implicit. 

Malczewski & Rinner describe spatially explicit criteria as involving spatial 

characteristics of decision alternatives. According to Malczewski (1999), SMCDA 

needs both data on criterion values and the geographical locations of alternatives. GIS-

based multicriteria decision analysis uses GIS and the traditional MCDM techniques to 

process the data and obtains information for making the decision. These solutions can 

be displayed with maps and additional expand by tables and graphs. Therefore, the 

result gets more comprehensive.  
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Figure 4: Framework for spatial multicriteria decision analysis lean on an existing illustration 
(Malczewski, 1999, p. 96) 

 

2.2 Parallel and Distributed Computing Concept 

The rapid development and change in the computer technology can be stunning. Till 

now the computer clock speed grow from megahertz to gigahertz but even more 

impressive is the increase of memory capacity (Hayes, 2007). Not only the technology 

achieved a great increase in computing speed and memory capacity also the problem 

size and complexity increased massive of the time. Therefore, parallel and distributed 

computing concepts have been developed. These often use a similar model as the 

divide and conquer concept and break the given job into sub-tasks that can be solved 
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simultaneous on a single machine with a multicore central processing unit (CPU) 

(Lescisin & Mahmoud, 2016).  

2.2.1 Parallel Computing 

Parallelism can be classified in three classes according to Rauber & Rünger (2013, p. 

4) every class has a different dividing rate for the program. There is (1) fine-grained, 

which stands for a program broken down into small tasks, (2) coarse-grain is the 

opposite and stands for a program broken down into larger tasks and (3) medium-

grained is in between these two categories. With a higher grain size, the 

communication and scheduling plays a higher importants in parallelism.  

Rauber & Rünger (2013) differentiate between parallelism at (1) instruction level, (2) 

data parallelism, (3) loop parallelism and (4) functional or task parallelism. Instruction 

level parallelism is if certain instructions of a program can run at the same time. Doing 

the same operations to different elements on a large data structure is called data 

parallelism, when the elements are distributed evenly among the processing units and 

processed in parallel. Loop parallelism refers to loop operations in the algorithm and it 

can be exploited because usually the iterations can be executed in arbitrary order. 

Task parallelism is possible with sequential programs that contain independent parts. 

Not only creating a parallel algorithm is important to run the program in parallel, one 

also has to take into considerations several software aspects. The specific Operation 

System (OS), the programming language and the compiler, as well as the run time 

libraries (Rauber & Rünger, 2013, p. 93). The OS controls the hardware and software 

resources on the computer and determines which program can run at what time and 

with which memory capacity. It also manages the allocation of the memory and the 

access to external devices. For every program initialized by the user, the OS creates 

a process which is an instance of the program that is appointed a specific block of 

memory and receives various information like descriptors of available resources the 

program can access. A parallel program can utilize multi-processing or multi-threading. 

With multi-processing, the application launches several processes for executing 

specific tasks in parallel, where each process runs independent because of separated 

resources. To avoid large (time consuming) necessary information exchange, multi-

threading can be used instead. 
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Threading can help to divide a program into more or less independent subtasks. 

Threads are lightweight processes that are contained within a process, therefore 

sharing the same resources. Begin and end of a thread is defined and there can be a 

hierarchical relation. Within a process, multiple threads can run concurrently to improve 

the performance. This threads are provided by the runtime system or by the OS. OS 

threads have the advantage that the OS is aware of the existence of these threads and 

can ensure an efficient use of the cores of a multicore system (Rauber & Rünger, 

2013).  

Threads or processes need information exchange, which is why there has to be some 

form of organization of the address space. Threads have the benefit, that they use the 

same memory because they are part of a process. Handling the communication can 

be done synchronous or asynchronous. Asynchronous communication provides a 

higher parallelism because the sender process can continue its work while the 

message is buffered by the system and delivered when the receiver is ready to accept 

the message. This can result in buffer overflow, if a large number of messages are 

send in a short period (Rauber & Rünger, 2013). 

2.2.2 Distributed Computing 

A collection of computers communication over a network are often called cluster. 

Generally, a cluster refers to a collection of computers or processors cooperating to 

solve a problem. As these computers are physically separated, they not have an 

inherent shared memory but some sort of data in a common repository like a shared 

file system. The programmer has to be aware of the possibility of different hardware 

configurations and or operating systems. Therefore, some sort of software could help 

managing the heterogeneity in a distributed system. It is called middleware and adds 

an extra layer to the architecture between the distributed application and the individual 

OS of each node (Lescisin & Mahmoud, 2016). The main advantages of distributed 

systems are scalability and incremental expandability. 

MapReduce is a programming paradigm to use Hadoop as a middleware which is 

recognized as a large data volume processing framework (Kang, et al., 2015). A 

detailed explanation about Hadoop and MapReduce follows in the chapter 2.3 in this 

paper.  
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Distributed computing concepts run distributed applications that are simply distributed 

across multiple operating systems processes. All running on the same physical 

uniprocessor, to integrated applications that run on multiple computers connected by 

a network. The concept and distributed applications are in use since the late 1970s 

and began to spread widely in the 1980s with the commercial networking technology. 

Furthermore, the accessibility of cheap computing power was in favor of the distributed 

computing concept spread (Taylor, et al., 2012, p. 414). According to Kshemkalyani & 

Shinghal (2008, p. 2) a distributed execution (program, application) is a computation 

of processes across a distributed system to collaboratively achieve a result. Distributed 

systems are a collection of entities working together on solving a problem. In a typical 

distributed system each computer has a memory- and processing-unit and these parts 

are connected by a communication network as shown in Figure 5 (Kshemkalyani & 

Singhal, 2008). Starting a computation (distributed application) on the master of a 

distributed system, it will broadcast the workload balanced to each accessible working 

node. Most of the nowadays used distributed computing concepts provide scheduler 

and compiler to help the developer/programmer.  

 

Figure 5: Illustration of a distributed system (computer cluster) and the master/worker architecture (Desch, 

et al., 2018) 
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In this project both parallel and distributed computing concepts will be important to 

achieve a significant performance increase on the model run time. Large SMCDA 

simulations require great computational capability, which normally cannot be satisfied 

by a standard single machine. A possible way to solve this problem is to use the parallel 

and distributed computing concept implemented in varies open source frameworks. 

The workload is split up on a computer-cluster and each node in this cluster can 

parallelize the given job into tasks on the central process unit. Hadoop is one example 

which implements the parallel and distributed computing concept with MapReduce. 

 

2.3 Hadoop 

Hadoop is an open-source software for reliable, scalable, distributed computing 

developed by the ApacheTM Hadoop® project. Doug Cutting and Mike Cafarella 

created a previous version of what is now Hadoop Distributed File System and 

MapReduce in the year 2004. A brief history about the Hadoop development can be 

found in White (2015, pp. 9-12). 

The Hadoop project includes different basic modules (Apache Hadoop), this modeles 

and additional models are pictured in Figure 6: 

 Hadoop Common: The common utilities that support the other Hadoop 

modules. 

 Hadoop Distributed File System (HDFSTM): A distributed file system that 

provides high-throughput access to application data. 

 Hadoop YARN: A framework for job scheduling and cluster resource 

management. 

 Hadoop MapReduce: A YARN-based system for parallel processing of large 

data sets. 
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Figure 6: Illustration of the Hadoop architecture with main models (blue) and additional models/projects 
within the Apache group (grey). Information about the modules is from the official Apache Hadoop website 

(https://hadoop.apache.org/; access 2018/11/12)  

A distributed file system (like HDFS) on a number of separated machines is necessary 

when datasets outgrow the capacity of a single physical machine. Distributed file 

systems are more complex than regular disk file systems due to network complications, 

for example, handling node failure without data loss. HDFS solves this problem with 

saving the same data block on different nodes. Hadoop provides HDFS as their 

distributed file system and it is built to run on commodity hardware. It is especially 

designed for storing very large files with streaming data access. Often the data is up 

to hundreds of gigabytes, terabytes or petabytes. HDFS is built around the idea of 

streaming data access that efficient data processing pattern is a write-once-read-

many-time pattern (Figure 7). HDFS uses the same block concept for saving the data 

in the distributed file system as on a single disk. The only difference is the size of the 

blocks, in HDFS the default block size is 64MB compared to only 512 bytes on a disk. 

The larger block size has to do with the performance of seek and computing 

comparison (White, 2015, p. 47). Each file in HDFS is broken into block-sized chunks, 

which are stored as independent units. These blocks in HDFS have several benefits. 

First one is that large datasets can be saved on a HDFS even if one single disk in the 

network has not enough capacity. In fact, it is another benefit to split the file and save 

it among different nodes to prevent losing data by losing one node (Figure 7). 

https://hadoop.apache.org/
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Figure 7: Illustration of the Hadoop Distributed File System (HDFS) (http://wikis.gm.fh-
koeln.de/wiki_db/index.php?n=Datenbanken.HDFS, access 2018/10/31) 

 

According to White (2015, p. 46) it is also worth to examine applications for which using 

HDFS does not work so well. For example, applications with a low throughput of data 

because HDFS is optimized for delivering exactly the opposite.  

MapReduce is a simple programming model for data processing. Hadoop can run 

MapReduce programs written in various languages like C++, Java, and Python. 

MapReduce perfectly fits for processing large datasets (large volumes of data) in 

parallel by dividing the Job into a set of independent Tasks. A full MapReduce program 

consists at least of a Mapper-class with a map function and a Reducer-class with a 

reduce function (Figure 8). A Job executes either a Mapper or Reducer across a set of 

data, whereas a Task only executes a part of the data. The Hadoop MapReduce 

concept needs a single master node with a Job-tracker to control the Job requests form 

clients and computation nodes (slaves, worker). Each worker node has a TaskTracker 

instance to monitor the running Tasks. The JobTracker divides all the workload to the 

slave nodes and on those the TaskTracker schedules the given job in tasks, which can 

Datanodes Datanodes 

Replication 

Read 

Write Rack 1 Rack 2 

Blocks 

Metadata ops 

Block ops 

Namenode 

Client 

Client 

http://wikis.gm.fh-koeln.de/wiki_db/index.php?n=Datenbanken.HDFS
http://wikis.gm.fh-koeln.de/wiki_db/index.php?n=Datenbanken.HDFS
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be processed parallel. The JobTracker and TaskTracker in MapReduce represent the 

parallel and distributed computing concept. Furthermore, the JobTracker collects the 

status and diagnostic information about the Jobs to the client. 

 

Figure 8: Illustration of Map/Reduce Concept with an example lean on an existing illustration 

(https://www.dezyre.com/hadoop-tutorial/hadoop-mapreduce-tutorial-, access 2018/10/31)  

 

YARN stands for “Yet Another Resource Negotiator” and was developed in 2010 by a 

group at Yahoo!, it is sometimes called MapReduce 2 (White, 2015, p. 79). YARN splits 

up the responsibilities of the JobTracker into separate entities. The JobTracker takes 

care of job scheduling and task progress monitoring. Job scheduling means to match 

the different tasks with the TaskTracker and task progress monitoring means 

controlling tasks and restart failed or slow tasks. By separating the roles mentioned 

above, it is necessary to create daemons like the resource manager to manage the 

use of resources across the cluster. An application master manages the application 

running on the cluster. YARN follows the idea that both daemons (JobTracker, 

TaskTracker) communicate with each other and that the resource manager provides 

cluster resources for the application master with a number of containers. The node 

manager ensures that the application does not use more resources than it can provide. 

Finally, White (2015, p. 6) summarized it like “In a nutshell, this is what Hadoop 

provides: a reliable, scalable platform for storage and analysis. What’s more, because 

it runs on commodity hardware and is open source, Hadoop is affordable.” and used a 

similar description as on the official website of apache Hadoop.  

https://www.dezyre.com/hadoop-tutorial/hadoop-mapreduce-tutorial-
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3 Methodology  

This chapter describes the given tools/software and the workflow for the project. 

Further details on the implementation are given in chapter 4. 

 

3.1 Concept 

The S-MCDA problem model can be displayed like in Figure 9. Analyzing the most 

time-consuming part, the Monte Carlo Simulation, was the first step in this project. 

Furthermore, the sensitivity and uncertainty analysis (SEUSA) can be applied and 

analyzed. Ligmann-Zielinska and Jankowski (2014) proposed the original SEUSA 

framework, where the model builds a stack of suitability maps with the help of the MCS 

and the outputs are an average suitability surface, a standard deviation uncertainty 

surface, and a number of sensitivity surfaces. S-MCDA problems often go along with 

a huge computational demand therefore, it is useful to use the computing concepts 

parallelization and distributing. With this concept even, an increase of simulations or 

an increase of the project can be handled. Furthermore, the parallelizing and 

distributing of the implementation of a S-MCDA problem should increase the 

performance. The workload for such a problem is perfectly handled in a parallelized 

and distributed implementation and it differs this research project from the sequential 

implementation of the SEUSA framework on which Ligmann-Zielinska & Jankowski 

(2014) and Salap-Ayca & Jankowski (2016) were concentrated. Erlacher et al. (2016; 

2017) already achieved an increase in the performance with his GPU-based concept 

compared to the sequential salutation. The GPU-based concept increased the most 

time-consuming part, the MCS computations, 150 times for a landscape assessment- 

and a land use planning application example. This concept does have limits in storage 

capacity as well as a limitation because of the read-compute-write functions, which 

have physical limits in a computer. 
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Figure 9: Illustration of the workflow of the simplified employed S-MCDA problem model 

With the knowledge of a huge potential in parallelizing and probably in distributing as 

well, the second sub-task is to focus on the conceptual development of a parallel and 

distributed algorithm for a Hadoop-based cluster. Hadoop requires the algorithm with 

the computing concept MapReduce and provides lots of useful help in the background 

to parallelize and distributed the workload of the S-MCDA problem. Even so it is 

necessary to explore the capabilities, requirements and limitations of Hadoop 2.7.2 for 

the migration of the sequential MCS algorithm. The open source framework Apache 

Hadoop 2.7.2 includes the programming concept MapReduce, which is necessary for 

parallelizing and distribution, and the Hadoop Distributed File System. The HDFS 

represents a fault tolerant distributed file system to safe and provide data on the 

cluster, which is designed to run on a low-cost hardware. MapReduce indicates a 

programming model for large-scale data processing. It includes two parts, the first one 

is the Mapper-class with a mapper-function, which pre-processes the input data to 

key/value pairs and the Reducer-class with a reduce-function, which combines the 

intermediate key/value pairs to a result value (Polato, et al., 2014; Yao, et al., 2017).  
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With the implementation for the land-allocation S-MCDA problem of this research 

project it is possible to measure the computational performance (time) and compare it 

to other solution options. In advance it is necessary to prioritize agricultural land units 

within the S-MCDA problem based on environmental benefits for the Environmental 

Benefit Index (EBI) to perform the measurement. “Wildlife”, “Water-Quality”, “Soil-

Erosion”, “Enduring-Benefits” and “Air-Quality” are the environmental factors and as 

the decision rule for this S-MCDA problem was used WLC. Those environmental 

factors will be the input data for the model. A detailed description about the 

methodology of the WLC aggregation method can be found in Malczewski (1999, pp. 

199-204). This case study, which is also used by Erlacher et al. (2017), is located at 

Southwest Michigan (Şalap-Ayça & Jankowski, 2016) and each input criterion (ASCII 

file) consists of more than 12 million pixels for the raster-based approach. With various 

sample sizes the performance test performs different number of model runs for the 

MCS and the potential of the parallel and distributed approach should be pointed out. 

Furthermore, one can see how the cluster/this approach handles the increase of the 

workload and how this effects the performance of the implementation. In this research 

the sample sizes and the number of model runs are defined as follow: 

1. Sample Size: 352;  Simulation Runs: 2,464 

 

Get the number of simulations with the formula R = (k+2)*N, where k indicates the 

number of criteria and N represents the sample size of the criterion weights. A more 

detailed description of the given S-MCDA problem implying the SEUSA workflow can 

be found in detail at Erlacher et al. (2017; 2016). With linear scale transformation 

methods raw data can be standardized to criterion scores. Malczewski (1999, p. 116f) 

referenced Voogd 1983 and Massam 1988 as a good source to look a number of linear 

transformations up. The most common used ones are maximum score and the score 

range procedures. All data, which are benefit criteria, in this study were standardized 

with the score range procedure method, but a detailed explanation about linear scale 

transformation gives Malczewski (1999, pp. 116-119). With all criteria being benefit 

criteria only equation 2 was necessary in this case. For cost criteria equation 1 will be 

used to standardize. This information is important for the standardization process in 

order to enable comparability of the criteria. For each location of criterion c, the index 
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i represents the row and the index j represents the column. Therefore, 𝑥′𝑖𝑗𝑐 indicates 

the standardized criterion value for each alternative, where 𝑥𝑐
𝑚𝑎𝑥 and 𝑥𝑐

𝑚𝑖𝑛 are the 

minimum and maximum values for the corresponding criterion. 

𝑥′𝑖𝑗𝑐 =  
𝑥𝑖𝑗𝑐− 𝑥𝑐

𝑚𝑖𝑛

𝑥𝑐
𝑚𝑎𝑥− 𝑥𝑐

𝑚𝑖𝑛             (1) 

𝑥′𝑖𝑗𝑐 =  
𝑥𝑐

𝑚𝑎𝑥− 𝑥𝑖𝑗𝑐

𝑥𝑐
𝑚𝑎𝑥− 𝑥𝑐

𝑚𝑖𝑛             (2) 

In a SMCDA it is necessary to select one of the decision rules, for example Weighted 

Linear Combination (WLC) or in this case Ideal Point (IP). The WLC method is also 

named Simple Additive Weighting (SAW) in the literature. With two components the 

criterion weight (𝑤𝑗) and the value score for the criterion attribute value (𝑥𝑖𝑗), which are 

evaluated for each alternative (𝐴𝑖) by the following equation, the WLC calculates the 

weighted Sum: 

𝐴𝑖 =  ∑ 𝑤𝑗𝑥𝑖𝑗𝑗              (3) 

The IP method calculates the performance of a set of alternatives based on their 

separation from the ideal point (Malczewski, 1999). 

𝑟𝑐𝑖𝑗+ =  
𝑠𝑖𝑗−

𝑠𝑖𝑗++ 𝑠𝑖𝑗−
              (4) 

The separation is measured in this model with the Euclidean distance. Therefore, the 

variable p is set to two. This measured distance represents the separation between 

the uniform criterion of one specific location and the ideal value of the criterion on this 

pixel. With the following two equations the separation from the positive (5) and the 

negative ideal point (6) can be measured.  

𝑠𝑖𝑗+ =  [∑ 𝑤𝑐
𝑝(𝑣𝑖𝑗𝑐 −  𝑣+𝑐)

𝑝
𝑐 ]

1
𝑝⁄

            (5) 

𝑠𝑖𝑗− =  [∑ 𝑤𝑐
𝑝(𝑣𝑖𝑗𝑐 −  𝑣−𝑐)

𝑝
𝑐 ]

1
𝑝⁄
           (6) 
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The result of the simulation runs will be a stack of suitability surfaces which is the input 

for the uncertainty analysis as seen in Figure 10. The stack of suitability surfaces 

depends on the number of simulation runs, which can be obtained by the formula R = 

(k + 2) * N, where k indicates the number of criteria and N represents the sample size 

of the weights.  In the course of the uncertainty analysis, an average suitability map 

and a standard deviation map are computed in order to quantify the variability of each 

alternative. Locations with a high average suitability value and a high standard 

deviation value represent choice candidates, which should be further investigated in 

order to identify criterion weights that influence high standard deviation. In this model 

the uncertainty are the weight samples see Figure 10. 

 

Figure 10: Illustration of the SMCDA workflow model 

 

3.2 Tools/Software 

The cluster was built up in a laboratory of the Department of Geoinformation and 

Environmental Technologies at the Carinthia University for Applied Sciences (CUAS) 

in Villach, Austria. The cluster leans on the Hadoop-cluster at the San Diego State 
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University (SDSU), Department of Geography. It runs on the open source operating 

system CentOS 7 (Linux-Distribution) and consists of one master- and fifteen slave 

nodes. All those nodes are equipped equally with E5520 2.26 GHz processors and 

have a total storage capacity of 4.38 TB. The middleware Hadoop on this cluster 

provides following components MapReduce, HDFS and Spark.  

The built cluster in Villach includes up to seven computers with different hardware, one 

computer is the master and the rest are working nodes as seen figuratively in Figure 

5. The whole cluster is based on the open source OS CentOS7 (64 bit), which is a 

Linux/Unix version. The middleware to run a parallel/distributed program on the cluster 

is Hadoop 2.7.2, which requires Java (Version 1.8). More detail on the workstation can 

be found in chapter 4.1. 

 

4 Implementation 

This section outlines the implementation approach by describing the data/sources, 

implementation on the Hadoop-cluster at CUAS and the testing/validation. Note, that 

the results of the S-MCDA problem are demonstrated in chapter 5. 

4.1 Data/Sources 

The given resources for this project include python code, ASCII input-files, which 

represent the case study, regarding the previous work of Erlacher et al. (2016; 2017) 

and Şalap-Ayça & Jankowski (2016). 

The employed S-MCDA model addresses a land-allocation problem for a case study 

located in the USA in Southwest Michigan (Şalap-Ayça & Jankowski, 2016). It 

prioritizes agricultural land units based on environmental benefits and the 

measurement of the performance of those land units, is given as the Environmental 

Benefit Index (EBI). This index has been formulated by the United States Department 

of Agriculture (USDA) and contains environmental factors rated with a certain point 

score. Within this project the environmental factors “Wildlife”, “Water-Quality”, “Soil-

Erosion”, “Enduring-Benefits”, and “Air-Quality” include as input data for the model. 
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These input criteria maps provide as five two-dimensional ASCII files, which is the 

American Standard Code for Information Interchange (ASCII) and it is a standard way 

for character encoding using numeric codes. This files are already standardized and 

each pixel represents a location, which can be identified by row and column. No-data 

locations are marked with the value of ‘-9999’. 

The actual slimmed down S-MCDA model employed in this project incorporates the 

decision rule WLC and features a simulation of the resource-intensive MCS technique 

used for SEUSA see Figure 10. The used simulation run size is 2464 model runs. 

For building up the Hadoop-cluster CUAS provided seven workstations, most had 

different RAM boards and CPUs inside. Furthermore, CUAS suppled a switch to 

connect all computers within the cluster. The master-node has two DDR4 RAM boards 

with four gigabytes and an Intel® Core™ i5-6500 with 3.60 gigahertz. The worker-node 

differed in RAM from DDR2 to DDR4 and a capacity of two to four gigabytes. The CPUs 

in the workstations were mostly Intel® Core™ i5 generation but also an Intel® 

Pentium® D and an Intel® Core™2 Dou. The cluster was built with the operation 

system (OS) CentOs7 an open source Linux version, which is the same OS as on the 

Hadoop-cluster at SDSU. The software Apache Hadoop Version 2.7.2 was used to set 

up the Hadoop-cluster and Hadoop is used as the middleware in this project. Further 

required software on each node is Java version 1.8. 

 

4.2 Implementation on Hadoop Cluster 

The Hadoop-cluster in Villach was built with the help and instruction of Mr. McKinsey 

from the Department of Geography at San Diego State University in a number of 

development steps. At first a single computer Hadoop-cluster was built up on a 

machine with CentOS 7 (Linux-Distribution) and Java 1.8. Therefore, the single 

machine had to take care of all the workload and all organisation/management. With 

the possibility of communication/connection through a switch a ‘real’ cluster with 

master and worker node was feasible. The single computer Hadoop-cluster machine 

was used as the master machine. Therefore, it was necessary to change 

configurations. Furthermore, worker nodes had to be set up. In the second step of the 
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building up of the Hadoop-cluster a two node cluster was set up with one master and 

one worker node. In this phase of the cluster the master is still used as worker node 

as well. Starting the cluster is possible from the master and all nodes have to be online 

before to get started as well. 

At first coding was done with Eclipse on a separate computer with Windows 10 (64 bit), 

after setting up a two nodes cluster with one master and one worker-node, coding was 

done on the master node. The master node has CentOS 7 as operating system and 

needed a different Eclipse version for Linux.  

The basic structure of the developed algorithm for the employed S-MCDA model is 

depicted in Figure 11.  
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Figure 11: Illustration of the Hadoop-cluster-based (CPU) acceleration approach to perform a simplified S-
MCDA model. 

After analysing the provided algorithm, it became clear that with a Hadoop-cluster the 

computational go to concept was MapReduce. Running an algorithm requires the 

initialization of the Hadoop-cluster and the upload of the ASCII input files on the HDFS. 

The input ASCII files had to be prepared before uploading those on HDFS. For the 

used algorithm it was necessary to insert two extra columns. The first one is the row 

index and the second extra column is an index for the weight. Starting the algorithm 

on the Hadoop-cluster is possible by creating a runnable jar file of the java-classes. 

Afterwards, the first task with in the algorithm ‘split files-input in lines’ in the mapper is 

submitted. It creates the intermediate key/value pairs for the reducer, while going 
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through each line and indicate the key. After the creation of the intermediate key/value 

pairs the reducer starts to run the decision rule WLC on each alternative. Therefore, it 

is necessary to create weights and get a stack of suitability maps out of the 

computation. With this stack the final key/value pairs can be calculated by taking the 

average of each location over the whole stack of suitability maps.  

 

4.3 Testing and Validation 

For the testing and validation two excel documents were created to document the 

different parameters, which are important for each run and to decide if one can 

compare two runs with each other. The first document includes information about the 

cluster and each node. The second document lists information about single model runs 

on the Hadoop-cluster.  

Table 2: Illustration of the specification of each node in the cluster 

 

The first excel about the cluster includes hardware information as the ‘computername’, 

‘nodename’, IP-address, OS, installed Java version, installed Hadoop version, 

equipped and provided RAM, RAM model, physical and virtual CPU cores and the CPU 

model (Table 2). For example the total RAM capacity of the master is 8GiB but only 

4GiB are provided for the cluster. This information about the cluster and each node is 

important for the second document, because the included machine in the cluster are a 

factor in different model runs. 
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Table 3: Illustration of the simulation run document of the Hadoop-cluster 

 

The second excel holds the information about the model runs on the Hadoop-cluster. 

This includes information like date, start time, end time, run time, decision rule, 

simulations, cluster size, included machines and provided RAM/cores. For example 

the first documented run on the cluster with 2464 simulations took 4 hours and 41 

minutes.  

Two model runs are only comparable if the prerequisites are the same. In the case of 

performance comparison the model runs need to run on the cluster with the same 

requisites, which can be identified with the parameters decision rule, simulations, 

cluster size, included machines and provided RAM/cores. If all this parameters are the 

same, on can compare the run time of the two model runs.  

The approach to compare the final results with the one simulation run, which means 

the sequential and manually created result with ArcMap from Esri and the other result 

with the Hadoop-cluster and the algorithm. Subtracting those results in ArcMap with 

the raster calculator, the optimal case result is a raster with zero at every location. 

Because of computational issues like rounding mistakes and displaying values in 

different data sets, the subtracted result raster has really small values, which can be 

considered as zero, see Figure 12. Therefore, the subtraction result is considered as 

a successful result and proofs the concept. 
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Figure 12: Correctness check of the AVG-result. Subtraction of Hadoop average result and ArcMap average 
result 
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5 Results 

The aim of this research was building up a Hadoop-cluster and the development of a 

parallel and distributed algorithm for the employed S-MCDA model. The illustration of 

the developed algorithm is depicted in Figure 11. 

The Hadoop-cluster in Villach at CUAS includes seven machines, one is the master- 

and also a worker-node in one machine and the other six workstations are worker-

nodes. The cluster is based on the Hadoop version 2.7.2 and it is extendable as well 

as each node can get update random access memory (RAM).  

The implemented parallel and distributed algorithm resulted in a decrease of the overall 

computation time of the S-MCDA model compare to the manual run on ArcMap. The 

result of the employed S-MCDA model is an average map with the decision rule WLC 

(Figure 13). Within the scope of this project small numbers of simulation runs were 

made to compare the results of the Hadoop-cluster and manually created results with 

the software ArcMap from Esri. The comparison is also made in ArcMap. Therefore, it 

was necessary to use the same weights in ArcMap as which were used in the 

computation on the cluster. The manually approach for one simulation run includes five 

random generated weights and the five ASCII input files. It is possible to compute the 

same model in ArcMap with the tool ‘weighted Sum‘ in ArcMap as with the Hadoop-

cluster. 
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Figure 13: Illustration of S-MCDA approach with pictured input criteria and average result map 

 

Running the model with 2464 simulation runs on the Hadoop-cluster at CUAS gives a 

result like pictured in Figure 14. This result map illustrates the average of the stack of 

suitability maps, which is created within the algorithm run. 
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Figure 14: result of average suitability map, computed on the Hadoop-cluster and 2464 simulation runs 
(random generated weight values) 
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6 Discussion 

The potential for reasonable computational speed-ups is given by the Hadoop-cluster 

and the developed parallel and distributed version of the provided algorithm but the 

speed-up is not as great as expected right now.  

Building up the Hadoop-cluster lead to some difficulties. The first one was because of 

the administration password to change the operating system from Windows to 

CentOs7. Ing. Ulf Erich Scherling had all the administration right and passwords and 

helped to get access on each node for the OS setup. The OS setup automatically 

installed a Java version on the workstation. Therefore, it was necessary to check for 

preinstalled Java versions and remove those. After that it was possible to install Java 

1.8 and set the environmental variables. Java is a requirement for Hadoop therefore, 

it is necessary to install Java before continuing with the installation of Hadoop Version 

2.7.2 on a node. Using machines with different hardware requisite lead to different 

configurations within the Hadoop setup. One had to match the configurations to the 

hardware specification of the workstation. Another difficulty in the cluster right now is 

getting log files of computations, job runs and the scheduler. With the more information 

of this log files the cluster and algorithm could be developed for further speed up. 

Currently, the proposed algorithm solution is limited by the size of the Hadoop-cluster 

and by the lack of performance optimizing the code. The developed algorithm should 

be seen more as a prototype and there is great potential to adapt different things. The 

algorithm should be optimized regarding to speed-up and time consumption. A difficulty 

at this point is that Hadoop in general provides good workload balance and therefore 

speed up in the computation time. Right now it is a problem to figure out which part of 

causes the limits. Is it the cluster or is it within the implemented code.  In a next step 

one could change the decision rule from WLC to Ideal Point (IP) in the S-MCDA model. 

IP is a different decision rule, which basically measures the distance between non ideal 

and ideal point to the computed value. A detailed descripted can be found in 

Malczewski (1999, pp. 197-204). Furthermore, the algorithm can be extended with a 

full SEUSA instead of only employing a simulation of the MCS. An overview on its 

robustness and find potential sources of overhead could help the algorithm as well.  
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7 Conclusion 

The implemented parallel and distributed version of a sequential algorithm for a S-

MCDA problem has resulted in a speed-up over a contrastable sequential 

implementation. The employed S-MCDA model incorporates the decision rule named 

WLC and features a simulation of the resource-intensive MCS technique used for 

variance-based SEUSA. The algorithm was implemented with the use of the given 

computing model MapReduce by Hadoop. The latter computational model had to be 

used to go with the middleware Hadoop 2.7.2. The implemented approach included to 

upload the ASCII input data files to the HDFS. 

The expected goals of this project have been partially reached. The implemented 

algorithm should be seen as a prototype that needs further development for the full 

potential. First implied performance tests give a hint about the potential speed-up with 

higher simulation runs and a higher workload as well as the comparison of the Hadoop-

cluster and a sequential algorithm. 

 

8 Future work  

Following steps are planned till the finish of this research project. The Hadoop-cluster 

should include a directory with log files, which give more detailed information about 

existing problems and exceptions while running the implemented algorithm on the 

cluster. With this information it will be easier to solve problems and improve the 

algorithm and overall computation time of the model. This information can also include 

details about the distribution on the cluster and can give hints how to optimize the 

distribution on the cluster and also the parallelization on each node. Another possible 

step could be an increase in the cluster size to get a greater acceleration in the model 

run time. CUAS can possibly provide some more machines. This machines will be 

newer than the nodes in the cluster right now, therefore, this workstations should 

supply great computational power for the cluster. Another way to get more power out 

of the existing cluster would be to update each node and use all the possible slots for 

RAM boards on the included nodes in the cluster. 
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On the Hadoop-cluster: 

 Create and writing log-files while running the implemented algorithm for better 

problem/exception reading and handling 

 Increase the number of working nodes for the CUAS cluster 

Further steps on the implemented algorithm are to create separated result files with an 

average and a standard deviation result map. This result files should automatically be 

converted to ASCII files for further test and checks in ArcMap. Therefore, the no-data 

value has to be set to ‘-9999’ and the files do need the ASCII-header with further 

information. The header handling also has to be treated, that the input files do not have 

to be edited manually before the computation or the upload on the HDFS. Another step 

would be to change the decision rule in the algorithm from WLC to IP. For the IP 

decision rule are more information of the whole dataset necessary as for the decision 

rule WLC. For example the maximum and minimum value of the dataset have to be 

computed. Before the change of the decision rule one should address the simulation 

run number and increase this number. This is just useful after an acceleration of the 

current simulation run number of 2464. For the correctness check a sequential 

algorithm has to be implemented. Furthermore, this sequential approach is necessary 

for the performance comparison. The acceleration in the performance can just be 

measured if there is a similar sequential approach. The time comparison between the 

sequential and parallel/distributed run is as important as the comparison of the 

parallel/distributed run with different simulation runs.  

On the algorithm: 

 Create AVG- and STD-result in one single algorithm run 

 Handle with the header of the ASCII file 

 Change the decision rule from WLC to IP 

 Run algorithm with different simulation runs 

 Create sequential algorithm for time comparison 

 Correctness check of the results between sequential and Hadoop computed 

result (AVG and STD-map) 
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For a better comparison the final algorithm should run on CUAS cluster as well as on 

the SDSU cluster because the computational power at SDSU cluster is higher. This 

will give an overview on the difference of both clusters and the ability to accelerate a 

computing intensive model. Running different numbers of simulation runs a couple of 

times and taking the average and standard deviation would help as well to get a more 

comparable result. Finally, the long-term vision is the development of a 

computationally-efficient algorithm for a complete S-MCDA model and a useable 

Hadoop-cluster at CUAS for further projects. 
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