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Abstract

A large-scale utilization of electric vehicles results in numerous challenges for the Smart Grid.
The increased load due to Electric Vehicles (EVs) in certain areas can have a negative impact
on the electricity infrastructure. Demand Forecasting of EV load for various locations on
a city wide level could provide utility companies with information about where to update
their infrastructure. The existing work on EV demand forecasting is mostly limited to a
certain location due to specifically created test data from a real world simulation or statistical
models. Furthermore, most models developed for EV demand forecasting utilize Autoregressive
Integrated Moving Average (ARIMA). However, recent research on direct comparison of
ARIMA and Long Short-Term Memory (LSTM) suggests that LSTM models perform better
on time series prediction. Therefore, this thesis utilizes a Recurrent Neural Network (RNN)
based approach to forecast the EV demand. Also, publicly available datasets are used for
the input of the model which leads to significant cost and time reductions. The results show
that LSTM is able to make a reasonable forecast. However, it is found that the model is still
underfitted and more training data is needed to create an optimal model. Different feature sets
showed that a simple model with less features performs best. Tests on different hyperparameter
settings revealed that, while parameters like the number of epochs, batch size and the number
of neurons showed no significant improvement, an increase in the number of time steps leads
to lower error rates.
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Chapter 1
Innovation

The internet transformed the telecommunication sector and provided room for many innova-
tions such as Facebook, Amazon, Paypal — only to name a few. The utility and transportation
sector are undergoing a major transformation right now. The traditional electricity grid is
evolving into a complex Smart Grid. The transportation sector is moving away from fossil fuels
towards electrically driven vehicles. As with other areas like the Internet, new infrastructures -
an innovation itself - provide room for many other innovations and bring also many yet still

invisible problems, waiting to be solved.

One such problem is the additional load that electric vehicles cause in the grid. The tra-
ditional electrical grid was not initially designed for load patterns that differ from regular homes
or corporate buildings. When electric vehicle usage rises, also the stress on the electricity grid
and its transformers increases, especially when fast charging methods are used that demand an
extremely large amount of energy in a very short time. The resulting damages on the grid and
possible power outages can cause immense chaos and costs. Therefore, it is of great importance
to have predictive models that can estimate the future additional demand due to electric vehicles,

ideally before electric vehicles are actually deployed on a larger scale.

There are already existing models that try to forecast the energy demand of electric vehi-
cles. However, most of them use legacy models to do so. The latest technological advances
paved the way for powerful machine learning models. Furthermore, the used data in existing
research is often generated through costly and time-consuming real-world testbeds. The aim
of this work is to generate a model that works by using only publicly available or otherwise
easily accessible data. This leads ideally to zero costs. One of the questions for innovation by

Peter Thiel is the engineering question. It states that a true innovation should be 10x better than



something that is currently available. For example, it costs about £100 million to send a rocket
into space and Elon Musk aims to do it for only £10 million — a 10x advantage [1]. Minimizing
the costs for electric vehicle demand forecasting to zero by still receiving comparable or better
results can be also an improvement on such a scale. The following paragraphs aim to give an

overview about the different types and degrees of innovation.

Types of Innovation Innovations can be classified in terms of what is being innovated.
Innovation can happen anywhere, whether it is in a profit-oriented organization or a non-profit
organization [2]. The following points from [2] provide an overview of the different types of

innovation:

* Product innovation: products can be material products or intangible services that meet
customer needs. By innovating a product, a company earns money and tries to differenti-

ate itself from competitors.

» Service innovation: there are two types of service innovations, the ones that are sold
directly to the customer like insurance or consulting and services that are not actively
sold but necessary for a company. An example would be a manufacturing company that

still needs to provide services to companies like sales advice, complaints or logistics.

* Business model innovation: A business model innovation — how a company makes works
and makes money — encompasses innovations in strategy, marketing, supply chains, value

creation, pricing or cost structures.

* Process and technology innovation: Technological innovations can be the creation of
a product or service. They can also be process innovations which include production
processes or IT technologies for example. Product innovations, quality improvements or
cost savings often imply process and technology innovations.

* Others: Organizational innovation, social innovation, environmental innovation

It is noted that an innovation can simultaneously affect more than one of the above-mentioned
categories. For example, the Smart Grid can be seen as a technological innovation but also as
an environmental innovation. The developed forecasting model in this thesis can be classified
as a process or technology innovation.

Degree of Innovation Innovations can also be classified in terms of their novelty or degree of

innovation. A widespread notation distinguishes between incremental and radical innovations.



Besides the two extremes also different intermediate forms are used in practise. The following

description from [3] helps to classify an innovation into one or the other category:

* Incremental innovations: are an optimization and further development of already existing
products, services or processes. The purpose here is to optimize customer experience,
costs, achieve a new market position or an adaption to be able to compete in new markets

or with new laws and regulations.

* Radical innovations: are new products, services or processes and comprise a fundamental
change and novelty. This leads to a higher impact which can lead to completely new
markets.

This section aimed to give an overview about the topic of innovation and tried to point out
the innovative aspects of this thesis. To summarize it can be said that radical innovations are
basic innovations or revolutions and incremental innovations are improvement or adaptive
innovations and therefore evolutions. Considering the points above it can be inferred that an
innovation does not necessarily have to be something completely new. Also, an improvement

of an existing product, service or process can be called an innovation.



Chapter 2
Related Work and Segregation

This chapter aims to give an overview about the findings of the literature research. Existing
work in the field of EV demand forecasting is described as well as research that has been
done with the allocation of EV charging stations and the generation of test data sets for EVs
applications. This leads to a clear distinction of the research topic and existing work, which is

given at the end of this chapter, followed by possible use cases.

2.1 Electric Vehicle Demand Forecasting

Statistical approaches The researchers in [4] developed a stochastic model based on queuing
theory for consumer charging behaviour of Battery Electric Vehicles (BEVs) and Plug-in Hybrid
Electric Vehicles (PHEVs) on a substation or charging station level. They use real PHEVs
charging data from [5] to observe questions like: (1) when do vehicles arrive where a charger
is available? (2) how often do customers request charging when the vehicle is parked? (3)
how much energy is required for each charge event? (4) how much flexibility accompanies
each charging event? The model presumes a large population of electric vehicles, theoretically
infinite. Queuing theory is used to analyse the effects of customers randomly arriving and being
served at a charging station. The outcome of this study provides short-term load forecasting
under the condition that real-time sub-metering data is available. This can be used for designing
demand response and dynamic pricing schemes. However, the model is not suitable to capture
the BEV/PHEYV load at a feeder for a few buildings. It also does not include the geographical
information meaning the charging demand in a certain area of the grid [4]. ARIMA was also
used by the researchers in [6] to develop a method for demand forecasting of conventional

electrical load and charging demand of EVs in a parking lot. The model determines the
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charging load profiles in a parking area. The used parking lot has a capacity of 100 EVs
and two cases with different charging rates were modeled. The input to the model are the
daily driving patterns and distances. However, a detailed description of the input data is not
given. The output of the model is used to formulate a chance-constrained day-ahead scheduling
problem to show potential cost saving benefits for the parking lot [6]. The research group in [7]
developed a cellphone application algorithm to predict the energy consumption of EV charging
stations at the University of Los Angeles. They utilize data from 15 charging stations. They
use a k-nearest neighbor based prediction algorithm. Two applications have been developed,
one that predicts the expected available energy at the station and the other one predicts the
expected finish time of the charging event. The granularity of the prediction is one hour and the
prediction horizon is 24 hours [7]. The authors in [8] deal with the modelling and prediction of
power loads due to fast charging stations for EVs. They try to simulate the behaviour of a fast
charging event by exploiting empirical data to characterize EV user behaviour and obtained
a time series with those properties. The utilized a Fractionally Autoregressive Integrated
Moving Average (FARIMA) model to generate short-term load forecasts. The researchers in
[9] analyse common types of charging modes and their characteristics and effect on the grid.
They established a statistical model of charging stations to simulate a regional power grid. This
model is used to forecast the daily load curve using Monte Carlo simulation. The output shows

the negative effect of uncoordinated charging of EVs.

Parking lot and charging station allocation Related to EV demand forecasting is the allo-
cation of parking lots and/or charging stations, which is also a topic in this thesis. The research
group in [10] discusses the allocation of EV parking lots in the distribution systems. The
outcome is a two-stage model. First, the behaviour regarding market interactions is optimized
to provide profit to the parking lot owner. Second, the parking lot allocation problem is solved
considering different network constraints. The parking lot allocation is solely based on an opti-
mization of the distribution system in order to minimize power losses, voltage deviations and
ensuring network reliability. The traffic information is not considered in this research [10]. In
[11] a mathematical model is proposed to help with the decision of charging station allocation.
A game theoretical approach is used to determine the interactions among the availability of EV

charging opportunities, destination and route choices as well as the price of electricity.

Generation of test datasets Several works try to create data or a model for electric vehicle
usage. Some are bottom-up approaches, like [12] others are top-down such as [13]. The authors
in [13] have developed a publicly available test data set for electric vehicle applications. They

analysed the trips of 536 GPS-equipped taxi vehicles in San Francisco. This data is then
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combined with features of different PHEV brands. It consists of information about the vehicle’s
State-of-Charge (SoC), traces of charging loads at different charging stations, information on
SoC and charging deadline when the PHEV is parked at a charging stations and information
about the potential of PHEVs for Vehicle-to-Grid (V2G) applications. The monitored data
shows three hotspots, namely the airport, the taxi headquarters and downtown. However, this
dataset is more suited to show where to place EV charging stations when all taxis would be
replaced by PHEVs but not for general trips. For this work NYC taxi data is chosen because it
is assumed that in NYC taxis are more frequently used by people on a regular basis instead of
taking their own car. So the assumption can be made that NYC taxi trip data reassembles private
car trips as taxis have long been a more ubiquitous and integral part of the city’s transportation
network [14]. In [12] a Markov-chain approach is used to model the behaviour of individuals.
The developed activity patterns should represent the time-sequence of activities performed
by typical US drivers. The generated driving patterns for different individuals can be used in
performing statistical analysis, evaluation and comparison of different vehicles. With the model
the total primary energy consumption for personal transportation in the US can be computed.

The generated datasets are often used for statistical implementations in demand forecasting.

The objective of the following section is to introduce the topic of time series forecasting.
It should give an overview about the topic in general and provide an analysis of existing work.

Moreover, the different algorithms should be compared and discussed.

2.2 Time Series Forecasting

An important characteristic of a time series forecasting algorithm is the ability to extrapolate
patterns outside of the training data as the objective is to predict and project into the future [15].
Such forecasting methods can be broadly classified into univariate methods, where the forecast
depends only on past values of a single time series, and multivariate methods, where forecasts
depend, at least partially, on a time series with one or more additional variables [16].

One of the most widely used linear models for time series forecasting is the ARIMA model. It
is popular among researchers due to its statistical properties and the well-known Box Jenkins
methodology [17]. However, recent research suggests that non-linear models like neural net-
works can be a promising alternative to classic linear models [17]. Early research on this topic
in [18] compared the performance of neural network models to the traditional Box Jenkins

methodology, which is used in ARIMA models. The results show that neural networks indeed
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are a promising alternative approach for time series forecasting. While the Box Jenkins model
performs slightly better for short term forecasting, neural networks proved to be better in long
term forecasts. Also, the results showed that neural networks appear to be superior to the Box
Jenkins model for short term memory series [18]. Neural network and ARIMA models can also
be combined, as the researchers in [17] propose, which can result in an improved forecasting
accuracy. The hybrid model can be an advantage in cases where it is difficult to determine
whether a time series is generated from a linear or non-linear underlying process [17]. With
recent advancements in computational power and more advanced machine learning approaches
like deep learning, novel algorithms are developed to forecast time series data [19]. As later
described in Subsection 3.7.4, RNNs can be an improvement to classical neural networks due
to their ability to store contextual information. The researchers in [20] developed a boosting
algorithm with RNNs for time series forecasting. Their results performed well, even when
long-range dependencies were present in the data. Even better results for time series forecasting
can be achieved by using LSTM networks, which are an improved version of RNNs. A recent
study in [19] compared the financial time series forecasting ability of ARIMA and LSTM. The
results show that deep learning-based algorithms such as LSTM can outperform traditional
algorithms like ARIMA.

Comparison of Different Models for Time Series Forecasting As already mentioned
above there are different algorithmic approaches for the purpose of time series forecasting,
which are summarized in Table 2.1. Despite simple and more complex statistical models there
are also neural network models that can be applied to time series [15]. Depending on the
underlying data and objective the right model has to be chosen.

Table 2.1 Overview of common algorithms for time series forecasting [15]

Model Advantages Disadvantages
. . ability to handle different time series, components and features sensitive to outliers

Linear Regression R .- .
high interpretability strong assumptions
high interpretability

. more transparent than other models higher holdout error

Dynamic Linear Model pa . g .. L

deals well with uncertainty higher training and evaluation time

control the variance of the components

. . ability to handle variable level, trend and seasonality components | sensitive to outliers
Exponential Smoothing

automated optimization narrow confidence intervals
high interpretability requires more data

ARIMA realistic confidence intervals strong restrictions and assumptions
unbiased forecasts hard to automate

less restrictions and assumptions

ability to handle complex non-linear patterns
high predictive power

can be easily automated

low interpretability
difficult to derive confidence intervals for the forecasts
requires more data

Neural Network Model
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Linear regression models are used to model simple linear relationships between target and
one or more predictors [21]. Dynamic linear models define a general class of non-stationary
time series models. The main objectives are short-term forecasting, intervention analysis and
monitoring [22]. Exponential smoothing refers to a technique where an exponentially weighted
moving average is used to smooth the time series. The new time series is then a smoothed
version of the actual time series [23]. As stated in Table 2.1, this technique is sensitive to

outliers, which is not suitable for this research.

The most common advanced methods for time series forecasting are ARIMA and neural
network models. The ARIMA methodology is well suited for long and stable series. Also,
ARIMA models simply approximate historical patterns and are therefore not able to examine
the structure of the data [24]. As described in [19], it is difficult for ARIMA models to model
non-linear relationships between variables. Furthermore, ARIMA models assume a constant
standard deviation in error which may not be satisfied in practice [19]. Also, classical linear
methods can be difficult to adapt to multivariate input forecasting problems [25]. That is
why ARIMA might not be well suited for this research objective since the input features are
assumed to have also non-linear relationships. For example, the same amount of cars in a
location might not always lead to the same increase in energy demand. This can depend on
various other factors like time of day or other reasons that can lead to an increased value of
the total energy. RNNs like LSTMs are well suited for finding patterns in input data when
it spans over long sequences. The architecture of LSTMs enables them to manipulate the
internal memory state which is ideal for such problems. Furthermore, LSTMs are able to model
problems with multiple input variables. This is an advantage in time series forecasting, where
classical linear methods can be difficult to adapt to multivariate inputs. The downsides of such
networks should also be noted. As listed in Table 2.1, a lot of data is needed when working with
neural networks such as LSTMs. Furthermore, multiple hyper-parameters need to be tuned [26].

After the completed literature research on time series forecasting and the comparison of
different models LSTM is selected to be the most suitable model for the research objective due
to its ability to identify structure and patterns of data such as non-linearity and complexity in
time series forecasting. The following points summarize the advantages of LSTM and why it is

chosen in this work:

* The ability to handle multivariate inputs.
* The ability to store information over a longer period of time.

* The ability to handle non-linearity and complexity.
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The next section should summarize how this work distinguishes from other existing work on
electric vehicle demand forecasting. Furthermore, a summary of the defined requirements is

given.

2.3 Segregation of Existing Work

To further define the scope of this thesis a few aspects are discussed. A characteristic that
distinguishes this work from others is that the electricity forecast should be made as easy and
inexpensive as possible. By that it is meant that in order to forecast the electricity demand
of electric vehicles no explicit testbed has to be set up beforehand where for example a fleet
of vehicles is equipped with GPS sensors for a certain time as in [13]. This is not only time
consuming but can also be expensive and might limit the algorithm to a certain geographical
area. The purpose of this thesis is not to create data itself but to use existing publicly available
data to create a reasonable and up-to-date forecast. Another requirement is that the used
algorithm should be able to handle multivariate inputs well. This is because the algorithm
should be able to predict the electric vehicle demand from receiving the total electrical load
as well as the amount of cars in the selected location as the input. It is expected that every
location or future customer has information about their total load which makes this an easy
feature for the algorithm. The number of cars in that location can be derived from publicly
available trip data or from the customer itself since any building with a parking lot usually
is able to monitor entering and leaving vehicles through sensors. Furthermore, the algorithm
should not be tied to a specific location or simulated test. It should further be easy to feed new
publicly available data to the algorithm in order to forecast the demand in other cities as well
by just using the vehicle trip data and total load information. The resulting forecasts would
be inexpensive and easily expandable. As a result from the comparison of different models
above, a neural network seems to be the best fit for the research objective. Also, to the best of
the author’s knowledge there has been no research so far on how LSTMs perform for electric

vehicle time series forecasting in particular.

The following points summarize the found specifications for the practical implementation

and provide a segregation from the existing work described above:

1. The data should be publicly available or otherwise easily accessible.

2. The used algorithm should be able to handle multivariate inputs.
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3. The algorithm should be designed to forecast the electric vehicle electricity demand for

various geographical locations.

4. The forecast should be performed using a recurrent neural network.

The next section summarizes possible applications that could benefit from the outcome of this
thesis. The mentioned use cases reflect the above described specifications and provide specific

ideas on how the outcome of this work can be applied in practise.

2.4 Use Cases

Two major applications have been identified that can be improved with the development of an
EV demand forecasting algorithm for various geographical locations. On the one hand, the
knowledge about the electricity demand that is due to EVs in different geographical locations
can be used to optimize the electricity consumption in a city so that the EV charging demand
is as balanced as possible. For example, incentives can be given to customers if they drive to
a different charging station in another area close by that has currently lower demand. This
can decrease stress on distribution transformers and in turn save money to the utility company
by increasing the lifetime of the distribution transformers. Furthermore, with the information
about the future EV demand utility companies are able to update their infrastructure beforehand
to cope with the additional demand in certain areas.

On the other hand, companies who are in locations with high EV demand could deploy
Photovoltaic (PV) plus storage solutions. Usually buildings with large parking lots like su-
permarkets have enough square feet to be able to deploy PV systems plus storage. An option
for them would be to charge their storage during the day with solar and/or buy energy during
the night when prices are cheaper to load their batteries and generate value by selling this
energy to vehicles during the day. The algorithm can help to identify areas in which such a
solution would be feasible as well as the right amount of storage to buy. Furthermore, there
might be incentives for such solutions in the future in order to facilitate a faster change in the
transportation system from fossil fuel to electricity driven vehicles.



Chapter 3

Terms and Definitions

This chapter aims to give a thorough description of concepts and notions relevant for the
practical part of this thesis. The following sections form the basic knowledge and the described

concepts and definitions will be used repeatedly throughout this work.

3.1 Smart Grid

Historically, the electrical grid has been a few-to-many distribution where a few central power
generators provide all of the electricity for a region or a whole country. The electricity is then
broadcasted over a large network of transmission lines and transformers. While this legacy
system has served well for the duration of about a century, there is a growing need for an
update in terms of the aging infrastructure as well as because of new environmental and societal
challenges [27]. Emerging from the convergence of energy with telecommunications, trans-
portation, internet and electronic commerce, the Smart Grid can be seen as a new infrastructure
for the demand and supply of electricity [28]. Those energy networks are able to automatically
monitor energy flows and adjust to changes in supply and demand. As a cyber-physical system,
they encompass generation, transmission, distribution as well as monitoring of electrical power

[29]. According to the researchers in [30] the Smart Grid brings the following benefits:
* Better situational awareness and operator assistance
* Autonomous control actions to enhance reliability

* Efficiency enhancement by maximizing asset utilization

* Improved resiliency against malicious attacks
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Integration of renewable resources

Integration of all types of energy storage and other resources

* Two-way communication between the consumer and utility

Improved market efficiency

Higher quality of service to power an increasingly digital economy

Smart Grid Architecture Figure 3.1 from [31] visualizes the Smart Grid and its stakeholders.
The big picture displays the electricity network (grey line) as well as the IT-infrastructure (green
line) which is an enabler for the Smart Grid. The little white arrows from and to the center
visualize the two-way power and communication flow. This enables consumers like office
buildings and houses, depicted on the top left, to also act as prosumers and supply excess
energy generated from renewable energy sources back to the grid. On the top right different
energy storage solutions are visualized such as batteries and EVs. Classic energy generators

such as coal power plants as well as new distributed renewable energy generators such as PV
systems are visualized on the bottom left and right respectively.
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Fig. 3.1 The Smart Grid and its stakeholders [31]
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An important role in the realisability of the Smart Grid plays the implementation of Smart
Meters which are computational devices that collect energy consumption data and enable the
data-flow between consumers and suppliers. The IT infrastructure enables the communication
to and from the Smart Meters which are installed at the consumer/prosumer side. Smart Meters
provide the utility with information on real-time energy consumption and usage patterns, usu-
ally in 15-minute time intervals [32]. Due to the use of those devices, consumers are also able
to adapt their energy usage to different energy prices throughout the day. This can be achieved
either by shifting a task to a time when energy demand is low (e.g., to turn on the washing
machine in the night) or to lower the consumption when demand for energy is high (e.g., to
increase the air conditioning temperature on a hot summer day). This is also known as demand

response as discussed in [33].

On the utility side, Smart Meters are an enabler for new business models that encourage
demand response scenarios over buying new energy power plants. On the one hand, Smart
Grids are an enabler to move away from fossil fuels to renewable energy resources. On the
other hand, it is a grand challenge to ensure grid stability. This is due to the increasing num-
ber of renewable energy resources, customers who might also act as an energy supplier (e.g.
through rooftop solar panels) and electric vehicles that need to be supplied with energy as
well. The challenge here is to process and analyze this huge amount of information on energy
consumption from Smart Meters (petabytes of data) to perform a reliable forecast of the future
demand. By combining the gathered data with weather forecasts, grid operators are able to plan
the integration of renewable energy systems [32]. Thus, a large amount of energy consumption
data needs to be processed in a reliable and fast manner as the prediction of future energy

demand plays an important role for the energy management system to ensure grid stability [34].

Smart Grid Trends The recent developments in the power system sector have not only
revived the interest in research and development but also resulted in significant socio-economic
benefits for communities. People are more aware of the environmental impact of different
energy sources which leads to a growth in renewable and alternative energy sources [35]. Power
system deregulation also influences the direction of electric power technology. The authors
in [30] have identified that the main initiatives for the Smart Grid can be categorized into five

trends, namely:

* Reliability

¢ Renewable resources
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* Demand Response
* Electric Storage devices

* Electric transportation

This thesis focuses on the electric transportation sector and its reliability in terms of trying to
accurately forecast the electricity demand of EVs. Subsequently demand response scenarios
and electric storage solutions can be derived from it as well. Therefore, the next section focuses

on demand forecasting in the Smart Grid.

3.2 Demand Forecasting in the Smart Grid

Forecasting the future demand of electrical energy plays a vital role in the feasibility and
security of the Smart Grid. It also supports efficient energy management and better planning of
the power system infrastructure. A requirement of energy demand forecasts is a high accuracy.
Depending on the use case the predictions are done for multiple time horizons that are relevant
in the power grid. Usually the time frames for load forecasting range from short-term forecasts
(1 hour to 1 day or 1 week ahead) to medium-term forecasts (1 month to 1 year ahead) and
long-term forecasts (1 year to 10 years ahead) [34].

An over- or underestimation of the demand can have different effects depending on the time
horizon that is forecasted. In long-term forecasts, an overestimation of the demand would lead
to higher investments in energy generation and transmission expansion whereas an underesti-
mation could lead to a deficiency in electricity supply. For short-term forecasts overestimates
could result in an increased number of committed units to serve load, which means higher
system operation cost. Underestimates could on the other hand cause a deficiency in electricity
supply, which can have a catastrophic impact on the grid due to real-time imbalances between

generation and demand [36].

Achieving a high forecasting accuracy can be difficult since energy markets are facing many

different global challenges. According to the researchers in [37] the challenges are:

Global deregulation

Distributed energy resources or distributed generation

Imminent massive irruption of electric vehicles

¢ Consumer involvement
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Especially due to the global deregulation of the power industry, demand forecasting has gained
more and more attention in energy market operation and planning. Another challenge mentioned
above is the irruption of EVs which has become a highly active research field in the recent past.
This is due to the fact that a large-scale usage of EVs has a significant impact on the overall
load profile. Usually, demand forecasting is designed for different load patterns induced by the
different seasons. However, a large number of EVs in the grid can decrease the accuracy of

traditional forecasting algorithms [6].

Demand forecasting plays a crucial role in many fields in the Smart Grid. It applies to several
methods such as demand-side management, renewable energy integration, energy storage plan-
ning and scheduling. The increasing number of the above mentioned challenges that contribute
to demand forecasting requires a revision of present forecasting frameworks for processing
data [36]. Different demand forecasting needs exist in the Smart Grid. Traditional demand
forecasting of electricity consumption on a household level and overall electrical load is already
well established. Overall load forecasting is also strongly related to price forecasting which is
in turn utilized for demand response purposes [38]. However, with the emerging number of
EVs and the predicted massive increase of electrically powered vehicles in the near future the
current research focus lies on predicting the additional load that those vehicles cause in the
grid. As mentioned above by the researchers in [6], traditional forecasting algorithms lack in

accuracy for this kind of purpose.

Therefore, this thesis focuses on developing an algorithm for EV load forecasting. The next
section focuses on electric vehicles. First, the history of EVs is described, followed by the role
EVs play in the Smart Grid. Also, the charging infrastructure is discussed and technical details

about different EV types and charging levels are given.

3.3 Electric Vehicles

In the beginning of the 19th century the marketplace for motorized transportation was divided
into steam-powered, gasoline-powered internal combustion engines and electric vehicles. In the
early years, EVs held a competitive share of the market against the popular steam-powered and
the faster internal combustion engine competitors. By 1904, one third of all powered vehicles in
New York, Chicago and Boston were electric. However, the advent of improved roads and the
expansion of the road system in the second decade of the 20th century changed that. Vehicles
with a longer range, higher speed as well as the emergence of a refueling infrastructure for

gasoline cars led to the dominance of combustion engines [39].
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In the late 20th century the world energy crisis brought back the interest to the automo-
bile sector since the transportation sector is one of the top contributors in green house gas
emissions globally [40]. Nowadays, the market conditions and technological developments
are more favorable for EVs. Battery development has moved EVs forward with lithium-ion
batteries with increased storage capacity and less weight [39]. Prices for energy storage and
batteries, which used to be very high, are now at an all time low. As shown in Figure 3.2 the
prices for lithium-ion batteries have dropped from 1000 USD per kWh to 273 USD per kWh in
only six years. This enormous decrease in price is an enabler for more efficient and affordable
electric vehicles. Furthermore, battery prices are expected to decrease by more than 30% by
2020 as mentioned in [41].

BNEF lithium-ion battery price survey, 2010-16 ($/kWh) |
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Fig. 3.2 Pricedrop for lithium-ion batteries from 2010 to 2016 [42]

3.3.1 Role of Electric Vehicles in the Smart Grid

The EV is one of the solutions to reduce global green house gas emissions. Besides being a
cleaner and quieter alternative, electric cars are also reducing operating costs dramatically. In
the United States it costs about $1.10 per eGallon to charge an electric car while the average
price for a gallon of gasoline is $2.50 [43]. Furthermore, a lot of time is wasted for stopping
at a gas station to fill up the car which adds up over the course of a year. According to the
researchers in [40], people could save almost 15 hours per year by owning an EV and charging
the car mostly in their home at night. Furthermore, EVs have an integration flexibility advan-
tage that promises a better performance. Energy generators such as fuel cells, solar panels,
regenerative braking and any other generators can be integrated into the EV making it even

more energy efficient [40].
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According to a study initiated from the German government, the most common use of charging
for EV owners is their home, which account for 48% of all participants in the study. About
20% use charging at the workplace. Public charging stations are used by 70% of all participants
at least once per month. Overall, one third of all charging events is taking place in public,
semi-public or on manufacturer owned infrastructure [44]. It is expected due to government
incentives and the public awareness of climate change, but also due to the above-mentioned
battery technology improvements and therefore longer ranges, that the annual sales of EVs
increase by 400% by 2023. This will have substantial effects on the way people use electricity
and on the peak demand in the distribution grid [45]. However, EV technology can also
provide grid support through peak power shaving, spinning reserve and voltage and frequency

regulations when needed [46].

3.3.2 Electric Vehicle Charging Infrastructure

It can be challenging for utilities to develop a charging infrastructure for EVs in the Smart Grid.
Especially due to the high costs associated with charging stations. Generally, the authors in
[47] distinguish between the following three installation locations:

1. In-home charging: EV charging at home favorably takes place during the night. The
additional peak load in the evenings needs to be considered. Certain utility incentives
like demand response try to convince customers to charge later when demand is low.
Typically the load ranges from 3.7 kW to 11 kW. The advantage of in-home charging is

the already existing electricity infrastructure.

2. Workplace charging: During work the car can be charged for a few hours. Through

actions like load-shedding any additional peak load during noon can be prevented.

3. Public charging: Typically those areas include shopping and leisure centers, cinemas
and other locations just like where regular gas stations are located. The charging time is
assumed to be short in those areas especially on streets or highways where people are
expected to demand only fast charging so they can continue their trip as fast as possible.
There is a high capital expenditure associated with those charging stations due to the
higher power that is required, the needed battery cooling and the external loading unit
for the battery.
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3.3.3 Electric Vehicle Types

There are two different types of EVs available, PHEVs and BEVs. While the first one uses both
gasoline and electrical power the latter is pure battery electric [48]. PHEVs are a solution to
replace some part of the energy used for transportation with electricity until full electrification
of vehicles becomes mature. They can further eliminate concerns about the charging time of
EVs and their limited range. Full-electric vehicles on the other hand convert electrical energy
that is stored in a battery into mechanical energy used to move the vehicle. Pure EVs are
associated with a limited range - around 100 miles and long recharging times such as up to 20
hours using a standard home outlet [49]. Table 3.1, adapted from [48], gives an overview about

their differences and characteristics.

Table 3.1 Characteristics of electric vehicle types [48]

Characteristics | BEV PHEV
Propulsion Electric motor/battery only Electric motor / battery plus gasoline engine
Refueling Electricity Electricity OR gasoline

15 - 35 miles electric and 300+ i

Range 70 - 100 miles . s e' ectie f‘m n
gasoline-electric hybrid mode

Charging Time | about 4-6 hours with 220V about 1 hour with 220V and 3 hours with 120V

L1 usually preferred since there is no cost

Charger Type L1: 120V, L2: 220V for charging equipment and time to charge

is minimal

. . depending on ratio of electric
Charging Cost | about $1 per gallon equivalent . . .
to gasoline miles driven

Batt Lithium-ion battery Lithium-ion battery
atte

Y between 24kWh-36kWh between 5-12kWh

. . low emissions but depending upon
Emissions Zero emissions

electric to gasoline ratio

3.3.4 Electric Vehicle Charging Levels

There are several charging levels for EVs that affect the charging duration. The loading time of
the battery depends on the power used for charging. Table 3.2 visualizes the different levels.
The AC Level 1 charging is the standard home charging and is practically realized whereas AC
Level 2 is suitable for public and commercial areas like work, shopping malls or restaurants.
EVs can be charged with AC Level 1 and AC Level 2 using the on-board charger of the EV. For
DC Level 1 and 2 charging an off-board charger is needed. Furthermore, for DC-fast charging
an infrastructure with high power capability is needed. Due to the time efficiency this type of
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EV charging will be the most prominent one in the next decade. EV charging stations can then
be used equivalently as gasoline charging stations today in terms of the time needed to recharge

or refuel the vehicle [46].

Table 3.2 Charging levels for electric vehicles per SAE J1772 standard [46]

Voltage  Current Power . .
Power level type . . Charging duration
level [V] Capacity [A] Capacity [KW]
BEV: 17h
AC Level 1 120 16 1.9
PHEV: 7h
BEV: 7h (3.3kW charger)
PHEV: 3h (3.3kW ch
AC Level 2 240 up to 80 19.2 ( charger)
BEV: 3.5h (7kW charger)
PEV: 1.5h (7kW charger)
BEV: 1.2h
DC Level 1 200-500 <80 up to 40 .
PHEV: 22min
BEV: 20min
DC Level 2 200-500 <200 up to 100 .
PHEV: 10min

In order to enable a stable smart grid with a functioning infrastructure for electric vehicles an
underlying working IT infrastructure is needed. In order to adapt to the increasing demand of
consumption data in the smart grid cloud computing is needed to guarantee accurate forecasts
in a short time. Therefore, the next section discussed the topic of cloud computing and how it
can benefit the smart grid.

3.4 Cloud Computing

Cloud Computing is defined by the National Institute of Standards and Technology (NIST) as "a
model for enabling ubiquitous, convenient, on-demand network access to a shared pool of con-
figurable computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service provider
interaction" [50]. A key benefit of implementing cloud computing is that computing resources
can be allocated on demand. As with the roll-out of smart meters in the next years, a huge
increase in processing data is expected this can be highly effective. With the ever-increasing
number of devices and resources connected to the grid such as electric vehicles and renewable
energy resources, cloud computing can be a highly beneficial tool for energy providers to
not have to deal with expanding and administrating a data center to be able to process power

information at a high speed. For economic reasons, it is also profitable as this is a pay-for-use
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scenario.

3.4.1 Cloud Computing in the Smart Grid

The researchers in [51] identified several problems with existing smart grid applications without
utilizing cloud computing. Figure 3.3 visualizes a conventional smart grid without implemented
cloud and a smart grid where cloud computing is integrated into the architecture. In the
conventional solution customers are served by micro-grids which have self-generating units like
solar and wind. The communication in this solution is done via the communication network.
On the bottom half of the figure a smart grid architecture with integrated cloud solution is
presented where cloud applications can be provided as virtual energy storage and data storage
devices. In this case the communication flow is via the cloud instead of direct communication
between the components which enables taking decisions for energy management [51]. The

problems in a conventional solutions are the following as identified in [51]:

» Extensive exposure to cyber attacks

Single failure in master-slave achitecture

Limited capacity to serve customers

* Management of micro-grids

Difficult real-time implementation
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Fig. 3.3 Conventional smart grid without cloud (a) and with cloud (b) [51]

The above mentioned issues describe why a conventional solution might not be adequate for the
modern smart grid. This is especially the case when an increasing number of electric vehicles
and battery storage solutions are deployed. To guarantee a safe and reliable smart grid with a
functioning infrastructure for electric vehicles an adequate infrastructure is inevitable.

3.4.2 Cloud Computing and Data Analytics

Cloud computing is especially important in domains where a lot of data needs to be processed
such as in the smart grid. The researchers in [52] discuss the relationship between "big data" and
cloud computing. To analyse large amounts of data typically distributed queries across multiple
dataset are performed which return resultant sets in a short time. Cloud computing can provide

the underlying engine through the use of hadoop which is a type of distributed data-processing
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platform. Figure 3.4 visualizes the use of cloud computing in big data applications. As depicted,
large data sources from the cloud and internet are stored in a distributed database. The data
is processed by a programming model for large datasets with a parallel algorithm. The main
purpose of visualization of data is to get insights into analytical results by presenting them
visually through different graphs which help in the decision making process [52].
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i | sets with a parallel, distributed algorithm on a
i \cluster like MapReduce.

I
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i1 Distributed fault tolerant database for large |
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i { Hadoop Distributed File System (HDFS) |

Fig. 3.4 Cloud computing usage in data analytics) [52]

3.4.3 Cloud Computing Solutions

Cloud computing has many advantages compared to conventional IT infrastructures as dis-
cussed in [53]. First, there are the huge cost reductions by eliminating the expense to buy hard-
and software. Furthermore, also the costs in setting up racks of servers and maintaining them
can be eliminated. Also, cloud computing services provide service on demand, so even vast
amount of resources can be accessed and used in minutes giving businesses a lot of flexibility
and eliminating the need for capacity planning. Cloud Computing also enables to scale glob-
ally meaning to deliver IT resources when it is needed from the needed geographic location.
In terms of productivity cloud solutions enables IT teams to spend more time on achieving
more important business goals than setting up and maintaining a server infrastructure. Last,
cloud computing offers performance improvements and increased security in helping to protect

infrastructure from potential threats [53].

There are different types of cloud deployments, namely public, private and hybrid systems.
Public clouds are owned and managed by a third party service providers which provide com-
puting power and resources like servers and storage via the internet. A private cloud refers to

cloud computing resources which are owned exclusively by a single business or organisation. It
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can be for example located in the company’s own datacenter. A hybrid cloud solution provides
a combination of public and private clouds [53]. The most common and easiest form of cloud
computing are public clouds because they completely eliminate acqusition and maintenance
costs as already discussed above. Figure 3.5 from [52] depicts and compares different public
big data cloud platforms. The big players in this field are Google, Microsoft, Amazon and
Cloudera. The figure visualizes the different techniques they use for database, machine learning,
data storage and other important cloud services. The table should provide an orientation for
different use cases and support the decision making process.

Google Microsoft Amazon Cloudera
Big data storage Google cloud services Azure S3
MapReduce AppEngine Hadoop on Azure Elastic MapReduce (Hadoop) MapReduce YARN
Big data analytics BigQuery Hadoop on Azure Elastic MapReduce (Hadoop) Elastic MapReduce (Hadoop)
Relational database Cloud SQL SQL Azure MySQL or Oracle MySQL, Oracle, PostgreSQL
NoSQL database AppEngine Datastore Table storage DynamoDB Apache Accumulo
Streaming processing Search API Streaminsight Nothing prepackaged Apache Spark
Machine learning Prediction API Hadoop +Mahout Hadoop +Mahout Hadoop+Oryx
Data import Network Network Network Network
Data sources A few sample datasets Windows Azure marketplace Public Datasets Public Datasets
Availability Some services in private beta Some services in private beta Public production Industries

Fig. 3.5 Overview about different public cloud solutions) [52]

In order to create a more reliable infrastructure for EV charging as well as a faster adoption
of EVs proper planning is necessary. Existing data can be used for techniques like machine
learning to provide utilities with a forecast about the additional electricity demand of electric

vehicles. Therefore, the next section describes the topic of data analytics.

3.5 Data Analytics

Nowadays, organizations collect massive amounts of data. The applications of data mining
and statistics cover a wide spectrum. In almost any industry whether it is research, economics,
prevention of terrorists, agriculture, entertainment or others the anaylsis of data can be utilized
to make better decisions. The most relevant fields are those where a large amount of data needs
to be analysed, sometimes with the aim of fast decision making [54]. Machine learning and
other techniques can be applied to generate insights based on the used data [55]. The graphic
below adapted from [55] illustrates this process.
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Fig. 3.6 The process of data analytics

The use of this data — in particular personal data — for data mining can have serious ethical
implications. When applied to people, data mining is often used to discriminate. For example —
who gets the loan, who gets the special offer and so on. Also, surprising things can emerge
from data mining. For example, researchers found that people with red cars are more likely
to default on their car loans. However, data mining is just a tool in the whole process. The
people who take the result, along with other knowledge, are in the end deciding which actions
to apply [56]. When looking at the topic of this research, it is up to the utility what to do with
this information. They can use the results to save costs and place their charging stations in
those areas to optimize the grid. However, they could also use the predicted EV consumption
data to increase prices in areas where the demand is predicted to be higher at a certain time.

Machine learning is a powerful tool to create insights from huge amounts of data. It plays a
vital role in this thesis as it is used to forecast the future electricity demand of electric vehicles
based on historical data. Therefore, the next section gives a more detailed overview about

machine learning and how it can be applied to datasets.

3.6 Machine Learning

Machine Learning is a subfield of Artificial Intelligence concerned with intelligent systems that
are able to learn. Often, learning is viewed as the most fundamental aspect of intelligence since
it enables an agent to be independent of its teacher [57]. Advances in computer systems paved
the way for this technology to be applied practically and it serves as a powerful tool to program
computers to optimize a performance criterion or make accurate predictions using historical
data. It enables a computer to solve problems that are not explicitly programmable but can be
solved by utilizing example data or past experience [58]. Figure 3.7 from [59] visualizes the
difference between classical programming and machine learning. In classical programming,
humans input rules in form of a program and data to be processed according to the rules. The

output are answers. In machine learning humans input data as well as the answers expected
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from this data (in a supervised setting) and the outcomes are the rules. Those rules can be used

to apply to unseen data and predict future values [59].

e .
Rules Classical

Data — | Programming

—== AnsSwers

Data —= ;
Machine Rules

Answers —» learning

Fig. 3.7 Classical programming and machine learning [59]

The entire process of learning requires the following datasets:

1. Training set: The data set that is used to teach the machine learning algorithm and fit the
model [60].

2. Testing set: The test set is used to evaluate the performance of the model on previously
unseen data. It is important that the model is tested with a different data set than that

used for training in order to avoid a biased score [61].

Depending on the problem and the available data, different learning paradigms of machine
learning exist. One type of machine learning models are supervised learning algorithms that
enable the computer to learn from a comparably small training set and perform the prediction
objective on test data. Then there is reinforcement learning where the feedback during training
is not the answer itself but whether it is correct or not. Last, in an unsupervised setting
there is no training data at all [62]. A more detailed description about the different machine
learning paradigms is given in Subsection 3.6.1, 3.6.2 and 3.6.3. Figure 3.8, adapted from [60],
summarizes the three types of learning paradigms and the related problems they are typically

used for.
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Fig. 3.8 Types of machine learning and related objectives

3.6.1 Supervised Learning

Supervised learning is commonly used to make predictions about the future [63]. In a supervised
setting, the computer is provided with a labeled training set which consists of the input variables
and their corresponding correct output value [64]. The authors in [65] refer to it as learning
with a teacher. Figure 3.9 visualizes the main goal in supervised learning which is to create a
predictive model from labelled training data. The algorithm receives the training data along
with the correct labels. The output is a predictive model that is able to take new data as the
input and predict the output values [63].

[ Labels
( Training Data

—

Machine Learning

Algorithm

Y
[ New Data J—’[ Predictive Model ]—v[ Prediction

Fig. 3.9 Visualization of supervised learning [63]

Most of the supervised learning algorithms have one thing in common: the training is performed
by minimizing a particular loss or cost function which represents the output error provided by
the system with respect to the desired output which is known from the training set. The system

then changes the weights to minimize this error function. How good the model performs is
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evaluated with the test set by evaluating the percentage of correctly classified examples and the
percentage of misclassified examples [60]. Typically, the following learning types are used in

supervised learning algorithms [63]:

* Classification: In classification learning the goal is to look at a data-point with its features
and assign it to a certain class. For example, if there are two classes "play" and "don’t
play" and depending on weather features like wind, humidity and temperature it is

assigned one of the above mentioned classes. The result is a category [56].

* Regression: In numeric prediction or regression problems the attributes and the outcome
are numeric. For example, if one tries to determine the Central Processing Unit (CPU)
performance from a data-point with attributes like cycle time, main memory and cache, a

regression equation can be used o determine the outcome [56].

3.6.2 Reinforcement Learning

Reinforcement learning is an approach that affirms the learning of the system through environ-
ment interactions. The system parameters in the learning phase are adapted based on feedback
received from the environment. The feedback on the made decision is binary in the form of
correct or incorrect. For example, a system modelling a chess player using the result of a step
to improve the performance is a system that learns with reinforcement [60]. The authors in
[65] refer to reinforcement learning as a special case of supervised learning since it can be also
considered as learning with a teacher where the only feedback is whether an output is correct

or incorrect but not what the correct answer is.

3.6.3 Unsupervised Learning

In unsupervised learning the learning goal is not defined in terms of specific correct examples.
The input data is either unlabeled or has an unknown structure [63]. During the training phase
a set of inputs is presented to the system however not labeled with the related belonging class.
This type of learning is in that sense important because it is probably far more common in the
human brain than supervised learning [60]. The only available information to the algorithm
lies in the correlations of the input data[65]. The goal is to explore the structure of the data
to extract useful information without the guidance of a teacher using unsupervised learning

techniques [63].
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Same as in a supervised setting their certain learning types associated with unsupervised

learning, namely [63]:
* Clustering: In clustering, the goal is to find groups of data that belong together and
understand and show their relationships [56].

* Dimensionality Reduction

3.6.4 Terminology

Below a short description of important terminology used in machine learning adapted from

[66] unless stated otherwise:

* Instance: Individual, independent example of the concept to be learned [56].

» Examples: Instances of data used for learning or evaluation. The collection of time series
containing the number of cars, the load and the total load would be an example.

 Features: The set of attributes, often represented as a vector. For example, the time series

containing the number of cars at a particular location is a used feature in this work.

* Labels: The corresponding value assigned to an item of an example. In regression, each

item is assigned a real-valued label.

* Training sample: Examples used to train the machine learning algorithm. Usually, 70%
of the training data is used for training and 30% for testing.

* Test sample: Examples used to evaluate the performance of the machine learning al-
gorithm. This test dataset is separated from the training and validation set and is not
presented to the algorithm during learning. In this case the test sample would be com-
posed of the same columns as the training sample except that the column which should
be predicted is removed.

* Loss function: A function that measures the difference between a predicted label and the

ground truth.

3.6.5 Applications

A use case that can be solved with machine learning can be for example a problem that changes

over time or depends on a special environment. A preferred solution would be to have a general
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system that can adapt to different circumstances as opposed to writing a program for each
individual case. An example described in [58] considers routing packets over a computer
network. The path to maximize the quality of service changes at every instance because the
network traffic changes over time [58]. So can the electricity consumption of electric vehicles
in the Smart Grid. In particular, the electricity demand of non-stationary objects such as
EVs changes during the time of the day and can be different from one location to another.
The electricity demand might also be different with higher electric vehicle adoption rates
and additional smart electronic devices that need to be charged or constantly supplied with
electricity. The machine learning algorithm can be used to forecast the electricity demand
by optimizing a function such that for each data point (e.g., historical values of electric load,
weather or other data types) the prediction is as close as possible to the corresponding target
value from the training data set [62].

3.6.6 Opverfitting and Underfitting

A common problem in machine learning is overfitting, in simple terms this means that the
algorithm is learning the data by heart. On the contrary, underfitting occurs at the beginning
of the training process where the network has not learned all relevant patterns yet. In order
to prevent the model to learn misleading or irrelevant patterns found in the training data is
is important to have a large enough training data set. There is not a general number how
big the dataset has to be to get a good model because it depends on several factors like the
complexity of the machine learning algorithm as well as on the data and the amount of features
for example. A model that is trained on more data will be able to generalize better [59]. Figure

3.10 visualizes overfitting, optimum fit and underfitting as explained above.
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Fig. 3.10 Visualization of overfitting, optimum fit and underfitting [67]



3.7 Artificial Neural Networks 30

The underlying algorithms for machine learning are often neural networks which can be used
to solve complex problems. As this thesis deals with complex time series forecasting the use of
neural networks is necessary. Therefore, the next section describes this topic in detail.

3.7 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a group of algorithms used for machine learning that
model the data using artificial neurons. Neural network models are inspired from the cell
structures in the human brain with the aim to build useful machines. An ANN is made out
of millions of simple cells called neurons [58]. A simple cell can have a random number of
inputs and one output [68]. The most simple form of an ANN — a single layer network with
a threshold activation — is called a perceptron [69]. It is referred to as the basic processing
element and is mostly used in theoretical applications of neural networks [70]. An example of

a single layer perceptron is visualized in Figure 3.11 from [68].

y

Fig. 3.11 Concept of a single layer perceptron [68]

The inputs denoted as x, come from the environment or may be the outputs of other perceptrons.
Associated with each input is a connection weight denoted by w, [58]. Weights are also
described in [68] as the strength of the ties between the cells, or the strength of how the input
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affects the cell. The input value is multiplied with its corresponding weight and is then summed
up at the node. The weights are typically chosen randomly at the beginning and are then
optimized during the learning process [68]. The result of the simple network is the output of the
threshold activation function [69]. A simple perceptron as depicted in 3.11 is able to classify
input patterns in two classes (output is O or 1). In that case a threshold value of O is used to

determine the output y to be O or 1 as shown in Equation 3.1 [68].

rir et wixi+b>0
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3.7.1 Activation Functions

The activation function in the in 3.11 depicted case that leads to this binary output is a step
function. One version of the perceptron is the so called Adaptive Linear Element (ADALINE).
The only difference to the perceptron is the output function which is linear in this case. The
learning process differs from the perceptron in terms of the correction of the weights. They are
not only corrected in terms of correct or wrong but also in considering the size of the error. This
leads to an output that can have all values instead of only 0 or 1 [68]. This behaviour is usually
not desired in neural networks since it doesn’t help with the complexity [71]. In general, the
activation function that leads to a certain output value depends on the use case [70]. However,
in order to limit the effect of seldom large values on the learning process, the output of a neural
network unit is commonly limited through a non-linear function [68]. The non-linearity helps
the model to generalize or adapt with the variety of the data and to differentiate between the
outputs [71].

Figures 3.12 and 3.13 visualize commonly used activation functions. Practically, activation
functions behave similar to the perceptron activation function for outliers — meaning for very
small or large values — but have a smooth transition between the two binary numbers. The
standard sigmoidal function (Equation 3.2) depicted in Figure 3.12 is commonly used for this
type [70]. Furthermore, it is especially useful for models that have to predict a probability as
an output because the function exists between 0 and 1 [71].

(3.2)
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Fig. 3.12 Logarithmic sigmoid activation function

The hyperbolic tangent function (Equation 3.3), depicted in Figure 3.13, has the advantage that
negative inputs will be mapped negative and that zero inputs will be also close to zero in the

output. It is mainly used for classification between two classes.

2
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S(x) (3.3)
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Fig. 3.13 Hyperbolic tangent sigmoid activation function
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3.7.2 Neural Network Architecture

A neural network consists of at least three layers: 1.) an input layer, 2.) hidden layers and 3.)
an output layer [19]. A typical neural network structure with multiple layers is shown in Figure
3.14 from [68] which consists of several input units one hidden layer and an output layer [72].
The number of inputs to a network depends on the system. Generally speaking it should be
avoided to have too many inputs because the complexity of the network increases with the
number of input features which leads to a more difficult learning phase. The number of output

nodes depends on the number of classes the inputs should be classified [68].

input layer (index 1)

hidden layer (index j)

output layer (index k)

Fig. 3.14 Neural network architecture [68]

The fundamental data structure in neural network applications is the layer. It can be seen as
the data-processing module. It takes as input one or more tensors which leads to an output of
one or more tensors. Some layers can be stateless but typically they have a state. The weights
of a layer learned with stochastic gradient descent contain the knowledge of the network [59].

Different layers exist for different tensor formats and different types of data processing [59]:

* Densely connected layers: for simple vector data stored in 2D tensors of shape (samples,

features)
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* Recurrent layers: for sequence data stored in 3D tensors of shape (samples, time steps,

features), typically processed by recurrent layers such as LSTM

* Convolutional layers: for image data stored in 4D tensors

3.7.3 Learning Process

The fundamental trick in the learning process of a neural network is to use the error score as a
feedback signal to adjust the value of the weights in each iteration a little bit in the right direction
so the error score becomes smaller. This process is visualized in Figure 3.15. The weight
adjustment is performed by an optimizer, which implements the so called backpropagation
algorithm [59]. In the beginning the weights are initialized randomly. Then the input is put on
the network and the output is determined [68]. If the output is not the desired one the weights
are corrected as mentioned above. The correction of the weights works because the output
functions are deriverable which gives the algorithm the direction in which the weight needs to
be corrected which is also referred to as gradient descent[71]. In a whole network there are
different weights on every layer. Usually the weights of the output layer are corrected first and
then those of the hidden layer above [68].

Input X

'

Layer
(data transformation)

'

Layer
(data transformation)

Predictions
YI

Y

Weights

Weights
A

Weight
update

True targets
Y

Loss score

Fig. 3.15 Neural network learning process [59]




3.7 Artificial Neural Networks 35

The process of correcting the weights is called optimization. The goal is to adjust the weights
in such a way to get the best possible performance on the training data. The goal is to have a
model that performs well on new unseen data without learning the data by heart meaning the
model can generalize well [59]. Different optimizers can be used to correct the weights. The
selection of an opitimization algorithm for a machine learning model can mean a difference
between good results in minutes, hours or days [73]. Typically, stochastic gradient descend
algorithms are used for this purpose [74]. The stochastic gradient descent has a broad adoption
for deep learning applications in computer vision and natural language processing [73]. In the
gradient descent approach the weights are initialized randomly [75]. The estimates are then
iteratively updated with the formula shown in Equation 3.4 from [75] where ¢ is the stepsize
parameter and w are the weights at different iterations k. The weights are updated based on the

choice of the step size sequence Q.
Wit <= wg — 0 VF (wy)) (3.4

Computationally, the gradient descent algorithm can be expensive due to the fact that each
computation of F requires a pass over the entire dataset which is especially the case when the
dataset is large. The step size is also known as the learning rate and is fixed and sufficiently
small. The stochastic gradient method is a variation to solve stochastic equation systems with
the advantage that the per-iteration cost is less than with gradient descent. This is due to
the fact that in each iteration of the stochastic gradient method an unbiased estimator of the
true gradient is computed. This estimator can be computed at a low cost [75]. The stochas-

tic gradient-based optimization algorithm is of great importance in science and engineering [76].

Many problems can be seen as an optimization of some scalar parametrized optimization
function requiring maximization or minimization regarding its parameters [76]. The Adam
optimizer is an extension to the stochastic gradient descent [73]. It is a method for efficient
stochastic optimiztation that only needs first-order gradients with little memory requirement
[76]. The developers of Adam describe it as a combination between two other extensions of
stochastic gradient decent namely, Adaptive Gradient Algorithm and Root Mean Square Propa-
gation [73]. Figure 3.16 from [76] shows the performance of the Adam algorithm compared to
other optimizers. It can be seen that the training cost is significantly less, especially for a large
number of iterations. For this reason, the Adam optimizer is used in the practical part of this
thesis.
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Fig. 3.16 Multilayer neural network optimizer cost comparison [76]

3.7.4 Recurrent Neural Networks

RNNs are a special form of ANNs. Their objective is to predict the next step in a sequence
of observations with respect to the previous steps in the sequence [19]. They are able to use
contextual information when mapping between input and output sequences [72]. This enables
them to make use of sequential observations and learn from earlier stages to forecast future
trends [19]. However, the range of context that can be used with RNNs is limited. That is
because of the influence a given input can have on the hidden layer and in turn on the output
of the network. The result either decays or blows up exponentially as it cycles around in the
recurrent connections of the network [72]. Therefore, RNNs can use their feedback connections
to store recent input events in the form of activations but are unable to keep a long-term memory
which would be embodied by slowly changing weights [77].

LSTM is a special form of RNNs with additional features to be able to memorize longer

sequences of data [19]. It is described in more detail in the next section.
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3.8 Long Short-Term Memory

LSTMs are used to learn to store information over extended time intervals which would take a
long time using recurrent backpropagation networks, mostly because of insufficient, decaying
error backflow [77]. The authors in [78] also name LSTM as an effective and scalable model
for several learning problems linked to sequential data. Earlier solutions to solve problems with

sequential data were not able to scale to long-term dependencies.

An LSTM is a special form of RNN where the summation units in the hidden layer are replaced
by memory blocks [72]. A multiplicative input gate unit is used to protect the stored memory
contents from disruption by irrelevant inputs. Further, a multiplicative output gate unit is
introduced to protect other units from disruption by currently stored irrelevant memory contents
[77]. LSTM neural networks are able to almost seamlessly model problems with multiple
input variables. Especially in time series forecasting this is a great benefit over classical linear

methods since it can be difficult for them to adapt to multiple input forecasting problems [25].

3.8.1 LSTM Architecture

Figure 3.17 from [78] visualizes an LSTM memory block as used in the hidden layers of the
recurrent neural network. As depicted, an LSTM block has three gates: an input gate, an output
gate and a forget gate. It also features the block input and output at the bottom and the top, a
single cell in the center also known as the Constant Error Carousel (CEC), an output activation
function and peephole connections depicted in blue. The block output is recurrently connected

back to the block input and all other gates as visualized by the dashed lines [78].
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Fig. 3.17 Simple Recurrent Network unit (left) and a Long Short-Term Memory block (right)
[78]

The central idea behind the LSTM architecture in Figure 3.17 is the memory block with one or
more memeory cells which are able to maintain its state over time as well as non-linear gates
which regulate the information flow into and out of the cell [78]. Each memory cell contains a
self-connected linear unit called the CEC whose activation is called the cell state. The Carousel
enforces constant error flow and overcomes the above mentioned problem. The point-wise
non-linear activation functions are depicted as ¢, g and h. The logistic sigmoid is used as gate
activation function ¢ whereas the hyperbolic tangent is usually used as the block input and
output activation function (g, &) [78]. The forget gate enables the LSTM to reset its own state
which allows learning continual tasks. However, even tough each gate receives connections
from input and output units of all cells there is no direct connection from the CEC it is supposed
to control. The solution are so called peephole connections from the CEC to the gates of the
same memory block. The gates learn to protect the CEC from unwanted inputs or unwanted
error signals [79]. The input vector for the LSTM network is a three dimensional array that
consists of the number of samples, the number of time steps and the number of features [26].
The selection of hyperparameters often makes a difference between mediocre results and state-
of-the-art performance [80]. Therefore, the next subsection describes different hyperparameters
of the LSTM model.
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3.8.2 Hyperparameters

Number of epochs Terminologies like epochs and batch size (which is described in the next
paragraph) are needed when the data is too big to pass to the algorithm at once which is usually
the case in all machine learning models. An epoch of one means that the entire dataset is passed
through the neural network only once. Passing the dataset through the algorithm only once
might be not enough as the gradient descent algorithm is an iterative process. Updating the
weights with one epoch is therefore not enough and can lead to underfitting. As the number of
epochs increases the weights are changed more often and the model can go to optimal fit or
even overfitting as described in Section 3.6.6. There is not a general number of epochs to use
because it depends on the complexity of the dataset. Usually, the more diverse the data is the

more epochs are needed [67].

Batch size Since one epoch is too big to pass to the algorithm it is divided into smaller
batches [67]. The batch size represents the number of samples from the data which are shown
to the machine learning algorithm before optimization or updating the weights respectively.
The batch size controls how many pradictions the algorithm must make at a time. For cases
where the same number of predictions should be made as used for the batch size this is not a
problem. In some cases it does become a problem when fewer predictions than the batch size
should be made. On sequence or some time series prediction problems it may be desirable to
set a large batch size for training and a smaller batch size or a batch size of one when making
predictions for the next step in the sequence. A possible approach can be to select different
batch sizes for training and predicting. Usually, the internal LSTM state is cleared at the end of
each batch in Keras [81]. Stochastic gradient descent, the optimization technique used in this
work, is often performed with small batches. The gradients are computed from a small set of
training samples rather than individual samples which is supposed to smooth out the gradient
[82].

Time steps The number of time steps refers to the number of lag observations [83]. In this
case, since the time series has a 15-minute interval, one time step equals to a 15-minute time
frame. If the parameter is set to 10 for example it means that the algorithm looks back ten lag

observations.

Neurons The number of neurons denotes the number cells in the LSTM network. It is

important to select the number of neurons on the basis of the training set. To ensure a network
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that is able to generalize well to new data is is important to limit the number of connections.

Unnecessary complexity can decrease the performance of the neural network [84].

3.8.3 Evaluation of Forecast Accuracy

Typically there are two categories of forecast accuracy measures, scale-dependent errors and

percentage errors. The forecast error is simply formulated as

e =yi—Yi (3.5)

where y; denotes the ith observation and y; denotes the forecast of y;. The error measure is on
the same scale as the data. Accuracy measures that are based on this measure are therefore
scale-dependent which makes them useful for error measures with different algorithms on the
same dataset but unusable for comparison between different datasets. The two most commonly
used scale-dependent error measures are the Mean Absolute Error (MAE) shown in Equation
3.6 and the Root Mean Squared Error (RMSE) shown in Equation 3.7 [85]. The RMSE is
a measure that is often used for assessing the accuracy of predictions made by a model. It

measures the residuals between actual and predicted values [19].

MAE = mean(|e;)) (3.6)

RMSE = \/mean(e?) 3.7)

i

Percentage errors on the other hand are given by

pPi = 1006,‘/)71' (3.8)

The advantage of percentage errors is that they are scale-independent and can therefore be
used to compare the forecast performance among different data sets. The most commonly used

measure is:

MAPE = mean(|pj|) 3.9

However, percentage errors have the disadvantage of being infinite or undefined if y; = 0 for

any i and have extrem values for y; being close to zero [85].
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This section concludes the theoretical and mathematical part of this thesis. The next section
describes the tools that are used to apply the above described techniques and algorithms to the
data.

3.9 Frameworks

In order to create long-term autonomous systems, efficient learning methods and adaptive
models are needed. The researchers in [86] give an overview about prominent machine learning
frameworks with a focus on open source solutions. Figure 3.18 shows the most common
frameworks according to their popularity obtained from GitHub. The rating is calculated as
the sum of the GitHub contributionsx30, Issuesx20, Forksx3 and the Stars, scaled to 100%
defined by the most sophisticated framework TensorFlow as a benchmark, which is the core of
most machine learning and deep learning projects [86]. In this work Keras [87], the second
most sophisticated framework, shown in Figure 3.18, is used with a TensorFlow backend
[88]. The frameworks are described in Subsections 3.9.2 and 3.9.1 respectively. It is followed
by a description of the used programming language Python along with needed libraries in
Subsection 3.9.3. The chapter concludes with Subsection 3.9.4 about the used open source

software platform Jupyter Notebook.
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Fig. 3.18 Open source software rating based on GitHub metrics [86]
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3.9.1 TensorFlow

TensorFlow is an open source software library for high performance computation. It can be
deployed across a variety of platforms like CPUs, Graphics Processing Units (GPUs) and
Tensorflow Processing Units (TPUs) and on desktops, clusters of servers as well as on mobile
devices. The framework is originally developed by researchers from Google’s Al organization.
It therefore comes with strong support for machine learning and deep learning [88]. TensorFlow
uses dataflow graphs to represent computation, shared state as well as the operations that modify
the state. The nodes of a dataflow graph are being mapped across many machines in a cluster.
TensorFlow also supports advanced machine learning algorithms that contain conditional and
iterative control flow such as an LSTM network to generate predictions from sequential data
[89].

3.9.2 Keras

Keras is a high-level neural networks Application Programming Interface (API) written in
Python. It is capable of running on top of other frameworks like TensorFlow, CNTK or Theano.
It was developed to reduce the development time compared to frameworks like TensorFlow.
The focus lies on minimizing the delay from an idea to the result. It therefore allows for easy
and fast prototyping, supports convolutional and recurrent networks and runs seamlessly on
CPU and GPU. It is compatible with current Python versions 2.7-3.6. [87].

The guiding principles of Keras from [87] are:

 User friendliness: consistent and simple APIs, minimal number of user actions required

for common use cases, clear and actionable feedback upon user error

* Modularity: neural layers, cost functions, optimizers, initialization schemes, activation
functions and regularization schemes are standalone modules which can be combined to

create new models
* Easy extensibility: new modules can be added simply (as new classes and functions)

* Works with Python: models are described in compact, easier to debug python code which
can be easily extended
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3.9.3 Python

Python is a general-purpose, high-level programming language focusing on code readability.
The syntax allows programmers to express concepts in fewer lines of code as C for example.
Python also supports multiple programming paradigms, namely object-oriented, imperative and
functional programming. It features a fully dynamic type system as well as automatic memory
management and comes with a large and comprehensive standard library [90]. There are two
Python versions available for download that is Python 2 or Python 3. Python 2 is considered
legacy unless some current Linux distributions and Macs still use Python 2 as default. However,
Python 3 is now definitely mature and ready to use as long as Python 3.x is installed on the
user’s computers. Since Python 3 was released in 2008 most major packages have already been
ported to Python 3 [91].

The easiest way to install Python libraries is via Anaconda [92], which is the open source
distribution for Python and R [93]. Anaconda enables the user to easily install over 1000 data
science packages and also allows to manage packages, dependencies and environments. It
comes for various platforms including Windows, Linux and macOS [92]. Below is a short

description of all libraries that are used in this work.

Pandas Pandas is an open source library for the Python programming language. It provides
high-performance, easy-to-use high-level data structures and data analysis tools. Pandas was
developed to solve the lack of support in Python for data analysis and modeling [93]. Pandas is
built on top of Numerical Python (NumPy) and makes it easy to use in NumPy applications.
The most important thing in pandas are its data structures: Series and Dataframe. They provide
a solid basis for most applications. A Series is a one-dimensional array-like object and an
contains an associated array of labels, called its index. A Dataframe represents a tabular data
structure containing an ordered collection of columns. Each column can be a different datatype
(numeric, string, boolean, etc.). The Dataframe has a row as well as a column index [94].

Here are some library characteristics described in [93]:

» DataFrame object for fast and efficient data manipulation and indexing.

* Tools for reading and writing data between in-memory data structures in various formats
such as CSV and text files, Excel sheets, SQL databases and the HDF5 format.

* Flexible reshaping and pivoting of the data.
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High performance merging and joining of datasets.

* Time series-functionality: date range generation and frequency conversion

Highly optimized performance

Columns can be inserted and deleted from data structures for size mutability.

Aggregating or transforming data and allowing for split-apply-combine operations on

data sets.

NumPy NumPy is a Python package required for high performance scientific computing and

data analysis. Some of the tools it provides are [94]:

A fast and space-efficient multidimensional array providing vectorized arithmetic opera-

tions

Standard mathematical functions for fast operations on entire arrays of data without the

necessity of loops

Tools for reading and writing array data to disk and working with memory-mapped files

Linear algebra, random number generation and fourier transform skills

Tools for integrating code written in C, C++ and Fortran

Matplotlib Matplotlib is an open source 2D plotting library for Python which produces
figures in publication quality in various formats. Matplotlib can be used in Python scripts as
well as in Python shells, web application servers, for graphical user interfase toolkits as well as
within Jupyter notebook which is practical for testing. The library allows to easily generate
plots, histograms, power spectra, bar charts, scatterplots, etc. Furthermore, the pyplot module
provides a MATLAB-like interface. The current stable version is 2.2.2 [95].

Scikit-learn Scikit-learn is an open source library which provides simple and efficient tools
for data mining and data analysis. It is built on NumPy, Scientific Python (SciPy) and matplotlib.

It contains scientific toolboxes built around SciPy [96].
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3.94 Jupyter

Jupyter is a non-profit, open-source project. Since 2014 it has evolved into supporting interactive
data science and scientific computing across all programming languages. It has four different
user interfaces namely JupyterLab, JupyterConsole, Qt Console and Jupyter Notebook. The
latter is used in this work for simple and fast prototyping and testing along with the other above
mentioned frameworks. The Jupyter Notebook is a web-based application suitable for capturing
the whole computation process: developing, documenting, executing code and documenting

results. It combines the two components:

* A Web Application: browser-based tool for interactive generation of documents which

combine text, mathematics, computations and media output.

* Notebook Documents: representation of all contents including inputs and outputs of
computations, explanatory text, mathematics, images and media representation of objects
[97].



Chapter 4
Practical Part

This chapter covers the practical realization of the proposed approach, namely, the imple-
mentation of a machine learning algorithm that forecasts the demand due to EV for various
selected locations in the grid. Furthermore, it comprises of a description of the used data and
the preprocessing thereof, different implementations of the model and hyperparameter tuning.
Finally, the results are presented and evaluated.

4.1 Data Description

In areas like machine learning the used data plays a vital role in the success of the algorithm.
To perform the research objective two different datasets are used as the input for the algorithm.
One dataset contains taxi trips which should model EV traffic assuming all gasoline vehicles are
replaced by electric cars. The other dataset includes electricity consumption data. Subsection
4.1.1 describes the taxi trip data in detail whereas Subsection 4.1.2 describes the electricity

consumption dataset.

4.1.1 Vehicle Trip Data

The used dataset contains taxi trips in NYC for a whole year and is publicly available from
[98]. The data from 2017 is used because this is the first year where they used location specific
pick-up and drop-off information which is a necessary information. The historical data from
the years before is also available but the information about the drop-off and pick-up location

is recorded as latitude and longitude values which would be more complicated to use. Table
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4.1 visualizes selected rows from the dataset in its original downloaded form. As depicted, the
trips are recorded in detail along with the time stamp of pick-up and drop-off as well as the

location specific information.

Table 4.1 Raw vehicle trip data

Vendor

D tpep_pickup_datetime tpep_dropoff_datetime Ratecode store_and PU Do

_fwd_flag LocationID LocationID _type

passenger trip
count  _distance ID

payment fare
_amount

mta tip tolls
_tax__amount _amount _surcharge

improvement total

extra _amount

I 2017-01-01 06:53:19  2017-01-01 06:59:50 T 1.60 I N 162 186 I 75 0 05 1.65 0 § 9.95
2 2017-01-01 06:53:19  2017-01-01 07:02:24 1 1.73 1 N 181 25 2 9 0 05 0 0 0.3 9.8

2 2017-01-01 06:53:20 2017-01-01 07:07:53 1 3.55 1 N 113 141 2 13.5 0 05 0 0 0.3 143
2 2017-01-01 06:53:20 2017-01-01 07:01:09 2 1.27 1 N 232 211 2 75 0 05 0 0 0.3 8.3

2 2017-01-01 06:53:21  2017-01-01 06:59:46 1 1.89 1 N 7 260 1 8.5 0 05 1.86 0 0.3 11.16
2 2017-01-01 06:53:22  2017-01-01 07:07:57 2 7.14 1 N 258 191 2 21.5 0 05 0 0 0.3 22.3
1 2017-01-01 06:53:23  2017-01-01 07:09:29 1 5.40 1 N 107 112 1 18 0 05 3.75 0 0.3 22.55
2 2017-01-01 06:53:23  2017-01-01 07:09:47 3 8.07 1 N 226 231 1 245 0 0.5 5.06 0 0.3 30.36
2 2017-01-01 06:53:23  2017-01-01 06:53:28 2 .00 5 N 264 42 1 65 0 05 0 0 0 65.5
1 2017-01-01 06:53:24  2017-01-01 06:56:12 1 .80 1 N 107 113 1 4.5 0 05 1.05 0 0.3 6.35
2 2017-01-01 06:53:25 2017-01-01 06:58:54 1 1.64 1 N 152 24 1 75 0 0.5 1.66 0 0.3 9.96
2 2017-01-01 06:53:25 2017-01-01 07:04:41 2 321 1 N 164 230 2 11.5 0 05 0 0 0.3 12.3
2 2017-01-01 06:53:26  2017-01-01 07:01:00 1 1.18 1 N 152 116 2 7 0 05 0 0 0.3 7.8

2 2017-01-01 06:53:26  2017-01-01 07:34:38 6 17.98 2 N 230 132 2 52 0 05 0 0 0.3 52.8
2 2017-01-01 06:53:26  2017-01-01 06:53:37 0 .00 5 N 48 48 1 55 0 05 1.26 0 0.3 7.56
2 2017-01-01 06:53:27 2017-01-01 06:59:24 6 1.45 1 N 249 164 1 7 0 0.5 1.56 0 0.3 9.36

4.1.2 Electricity Consumption Data

The electricity consumption data is obtained from the Pecan Street organization [99]. Pecan
Street is a research network which was launched in 2009. It is the only real-world electricity-
gas-water testbed in the world and is located in Austin, Texas. It consists of 750 homes and
businesses, 200 solar homes and 75 EV owners. The data is downloaded from [100] with
a University of Southern California academic license. Table 4.2 visualizes the raw data as
it is downloaded. It includes, as visualized, the electricity consumption data in 15-minute
intervals for a whole year for 200 different homes. The column ’dataid’ refers to one of the
200 households. The 'use’ column lists the used electricity in 15-minute intervals. The column
"gen’” would be the energy that is generated from solar panels. The ’grid’ column displays the
actual used energy as seen from the grid and is the same as "use’ if no solar is being used which
is always the case in this dataset. The entity of the electricity consumption values is kW.

Table 4.2 Raw Pecan Street dataset

local_15min dataid | use gen | grid

2015-01-01 00:00:00 | 22 0.072000 | NaN | 0.072000
2015-01-01 00:15:00 | 22 0.071867 | NaN | 0.071867
2015-01-01 00:30:00 | 22 0.130933 | NaN | 0.130933
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The above visualized raw data needs to be processed in order to serve as an input to the

algorithm. Therefore, the next section describes how the datasets are prepared to do so.

4.2 Data Preprocessing

The accuracy of the forecast greatly depends upon the input for the machine learning algorithm
as mentioned in [34]. Thus, a preprocessing of the data set is vital before the algorithm is

applied to ensure efficient processing and better results of the forecast model.

4.2.1 Vehicle Trip Data

A city is sectioned into areas. Using any historical traffic data that contains the Start Time, End
Time, Start Location and End Location of each trip a time series is generated. Table 1 shows an
example entry of the dataset from [98] that fulfills the described criteria. The historical data set
from 2017 contains all trips of the NYC taxi fleet for a whole year. Table 4.2 visualizes the
format of the used NYC dataset. The selected values are the pickup time, the drop-off time, the
pickup location and the drop-off location. The remaining columns are dropped because they
are not relevant for this research purpose and unnecessary features would only downgrade the
performance of the model. The location ID corresponds to a certain area in NYC which can be
determined in a downloadable lookup table from [98]. For the purpose of simplicity, only one
location is selected to demonstrate the EV demand prediction. It is noted that the algorithm can
be used for all NYC locations available in the dataset. In a second use-case, that is described
later in Section 4.2.3, another location is selected as a reference area as an additional input for

the machine learning algorithm.

The first step is to extract the needed information from the large dataset described in Subsection
4.1.1. There is a separate file for every month, each being about 1-2 GB in size. The files are
combined to have one file for the whole year. The resulting file contains trip data for all NYC
locations. In this case location 162 and location 163, both in mid-town Manhattan are used
meaning just trips to and/or from that location. In more detail, it is meant that in the case of the
dataset for location 162 only the rows are selected that contain 162 either as pick-up and/or the
drop-off location. However, any other location can be selected here as well by simply changing
the location parameter in the code. The Python code to do so is shown in Listing 4.1. The result

is a single csv file that contains only the data about one location for a whole year.
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Listing 4.1 Preprocessing: location selection

import pandas as pd
import numpy as np
from pandas import read_csv
from pandas import DataFrame

#PARAMETERS
YEAR="2017"
LOCATION=162

appended_data = pd.DataFrame ()

#read yellow taxidata for 12 months

for x in range(1,13):
y = pd.read_csv("yellow_tripdata_" + YEAR + "—" + str(x) + ".csv", header=0,
usecols=["tpep_pickup_datetime", "tpep_dropoff_datetime", "PULocationID", "DOLocationID"])
y_pu=y[y.PULocationID == LOCATION]
y_do=y[y.DOLocationID == LOCATION]
y_total=y_pu.append(y_do)
appended_data=appended_data.append(y_total)

#save data to csv
appended_data.to_csv (" timeseries_lyear_" + str (LOCATION) + ".csv", index=False)

The file from Table 4.1 should now look like Table 4.3.

Table 4.3 Example data from the NYC data set [98]

tpep_pickup_datetime | tpep_dropoff_datetime | PULocationID | DOLocationID
2017-01-01 06:53:19 | 2017-01-01 06:59:50 | 162 186
2017-01-01 06:53:20 | 2017-01-01 07:07:53 113 141

From this data a 15 minute interval time series is generated for a selected location, in this
case location 162 is used which refers to Midtown East in Manhattan. For the reference
case, location 163 is used which refers to Midtown North also located in Manhattan. Listing
4.2 contains the Python code used to generate the time series data. Table 4.4 visualizes the
generated time series for a selected location, for example as above mentioned Midtown Center

in Manhattan.
Listing 4.2 Preprocessing: vehicle trip data time series generation

import pandas as pd

import numpy as np

from numpy import concatenate
from matplotlib import pyplot
from pandas import read_csv
from pandas import DataFrame
from pandas import concat
from pandas import Grouper
import datetime

#PARAMETERS

LOCATION=164

START_TIME="2017-01-01 00:00:00"

END_TIME="2017—-12-31 23:45:00"
FILENAME="timeseries_load_lyear_"+ str (LOCATION) +".csv"
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FILENAME_OPEN="timeseries_lyear_" + str (LOCATION) + ".csv"

#read file

y =

#define format

y[’ tpep_pickup_datetime
y[’tpep_dropoff_datetime ’] =

#round original

o=

date to 15 minute

pd.read_csv (FILENAME_OPEN, header=0,
usecols=["tpep_pickup_datetime ",

"tpep_dropoff_datetime ",

pd.to_datetime (y[ tpep_pickup_datetime '],
pd.to_datetime (y[ tpep_dropoff_datetime '],

intervals

"PULocationID ",

y[ tpep_pickup_datetime *]=y[’ tpep_pickup_datetime *]. dt.round(’15min’)

y[’ tpep_dropoff_datetime ’]

#generate
timeseries =

time series intervals

df = pd.DataFrame(timeseries)

#create column in dataframe containing

pd.date_range (START_TIME, END_TIME,

freq="15min")

the number of cars

df ["number_of_cars"]=[0]«len(timeseries)

#rename columns

df . columns =

#fill

car column with

[’ date’

the correct

sum_location=0;

for x

#case: x is
pu_minus_x =
pu_minus =

#case: X
pu_do_plus_x =

in

range (0,len (df.index)):

pickup location ,

is pickup

values

and dropoff is
y[(y[’ tpep_pickup_datetime ’]
len (pu_minus_x.index)

y[(y[ tpep_pickup_datetime

‘number_of_cars ’]

for each time stamp

not x
== df[’date

location , and dropoff is x
'] == df[’date "]1[x]) & (y[’PULocationID’] ==

pu_do_plus = len(pu_do_plus_x.index)

#case: x is dropoff location and pickup is not x
do_plus_x = y[(y[ tpep_dropoff_datetime '] == df[’date
do_plus = len(do_plus_x.index)

sum_location =

if (sum_location < 0):

sum_location=0

df.loc[x,  number_of_cars '] =

print(’sum_location:

sum_location=0

#save file

df . to_csv (FILENAME,

index=False)

do_plus + pu_do_plus — pu_minus

sum_location

,X,sum_location)

*1[x]) & (y[’PULocationID *]

*1[x]) & (y[’DOLocationID ]

=y[ tpep_dropoff_datetime ’].dt.round(’15min’)

format="%Y—9%a+%d 9H:9%M: %S’ ,
format="%Y-%an%d 9H:%M:%S" ,

== LOCATION) & (y[’DOLocationID ’]

== LOCATION) & (y[’PULocationID ’]

"DOLocationID "])

utc=False)
utc=False)

1= LOCATION) ]

LOCATION) & (y[’DOLocationID ] == LOCATION) ]

1= LOCATION) ]

Table 4.4 Generated time series for a selected location

Time

Number of Cars

2017-01-01 00:00

0

2017-01-01 11:30

2017-01-01 11:45

2017-01-01 12:00

2017-12-31 23:45
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Figure 4.1 visualizes the hotspot identification in a city. The vehicles leave one area and enter
another at certain times. This information is extracted from the above described NYC taxi data.
The depicted scenario leads to the generated time series from Table 4.4. The red square is the
observed location 162 but any other location can be observed as well. Ideally, when all fields in
the grid are observed, the hotspots in a city can be identified. In the depicted simplified case
are two cars, C1 in green and C2 in red at different timestamps. For example, Car C2 enters
the observed area at 11:31. Car C1 enters the same area at 11:36. Therefore in the time frame
11:45 which covers the time from 11:31 until 11:45 the car count in this area is 2. When C1
leaves the area at 11:46 there is only one car left in the area. It is assumed in this work that if a

car resides in one area longer than 15 minutes it can be subject to charging.

Fig. 4.1 Visualization of hotspot identification

The taxi data is now ready to be combined with the electricity consumption data to form a

single dataset that serves as the input to the LSTM forecasting model.

4.2.2 Electricity Consumption Data

The electricity consumption data is first filtered for a specific user. This is because it was found

that not every user in the dataset has a continuous time series for the whole year. In this case
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user 86’ is used. Table 4.5 depicts the structure of the dataset after applying a filter for user
’86’. For the later in Subsection 4.2.3 described case of a reference location also the data of
user 59’ is used - both having continuous consumption values for the year. Along with the
time stamp as index the column ’use’ is selected, all other columns are dropped. Furthermore,
the "use’ values are multiplied by a factor of 1000 to model a denser household area that better
fits the amount of the taxi data. Since there is currently no publicly available dataset with the
needed granularity on a city level, the Pecan Street Consumption data is used for the research
serving as a proof-of-concept. It is noted that for better performance more accurate data is
needed that matches better with the vehicle trip data.

Table 4.5 Example of the Pecan Street dataset for a specific household

local_15min dataid | use gen | grid
2015-01-01 00:00:00 | 86 0.738133 | NaN | 0.738133
2015-01-01 00:15:00 | 86 0.738933 | NaN | 0.738933

2015-01-01 00:30:00 | 86 0.739000 | NaN | 0.739000

For further processing and combination with the other dataset only the use’ column is selected.
The next subsection describes how the final dataset that is later presented to the machine
learning algorithm.

4.2.3 Combined Data and Preparation for LSTM

From the described datasets in Subsection 4.2.1 and Subsection 4.2.2 a single dataframe is
generated. Since the Pecan Street data does not contain EV charging, the following formula
in Equation 4.1 is used to create an additional column consisting of the approximate EV load.
In the formula an approximate EV load is calculated for every time step i. Where cars; is the
number of cars at time 7, the constant ALPHA is a parameter for charging meaning how many
percent of EVs that are currently in the location are actually charging and CHARGINGL] is
the selected charging level as described in 3.3.4 which is constant throughout the simulation.
Besides the EV load also the total load is added as a column to the dataset which is simply
a summation of the electricity consumption at time i and the previously described calculated
EV load. The final dataset which is used for the algorithm is shown in Table 4.6. Figure 4.2

displays the histograms of the three features over the timespan of a year.
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evload; = cars;x ALPHA % (0.25« CHARGINGL]1)

Table 4.6 Combined final dataset

local_15min cars_in_location | total_load | ev_load
2015-01-01 00:00:00 | O 738.13 0
2015-01-01 00:15:00 | O 738.93 0
2015-01-01 00:30:00 | 43 997 258
2015-01-01 00:45:00 | 13 1018.67 78
2015-01-01 01:00:00 | O 689.47 0

200 1

100 A

cars_in_location

T T T T T T T T
i} 5000 10000 15000 20000 25000 30000 35000

time

0000 A

5000 A

total_load

T T T T T T T T
i} 5000 10000 15000 20000 25000 30000 35000

time

1500

1000 +

ev_load

500 1

T T T T T T T T
i} 5000 10000 15000 20000 25000 30000 35000

time

Fig. 4.2 Histogram of the input features

4.1

After the data is prepared, it can be used for the LSTM algorithm. First, the conversion of the

data to a supervised learning problem is described. After that, the implementation of the LSTM

algorithm is given.
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4.3 Multivariate LSTM Forecast Model

According to [25], recurrent neural networks are able to model problems with multiple input
features. Therefore, an LSTM is used in this work to forecast the electricity demand of EVs in
a selected area. The code for the machine learning algorithm is based on the tutorial in [25].
The next step is to frame the dataset as a supervised learning problem and to normalize the
input features since not all of them are on the same scale. The problem is framed as predicting
the energy demand due to EVs for future time steps using the total load and traffic information
from previous time steps. The values in the dataset are normalized to the range of 0 and 1. The
dataframe is converted to a supervised learning problem using the function shown in Listing
4.3 from [101]. The function creates pairs of input and output sequences from the given input
sequence. After the code of the function, the values are normalized and columns that should
not be predicted are dropped. In this case the total load and the number of cars should not be
predicted, only the load due to EVs.

Listing 4.3 Preprocessing: convert series to supervised learning

# function: convert series to supervised learning

def series_to_supervised (data, n_in=1, n_out=1, dropnan=True):
n_vars = 1 if type(data) is list else data.shape[l]
df = pd.DataFrame (data)

cols, names = list (), list()
# input sequence (t-n, ... t—1)
for i in range(n_in, 0, —1):

cols.append (df. shift(i))
names += [(’var%d(t—%d)’ % (j + 1, i)) for j in range(n_vars)]
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append (df. shift(—i))
if i ==
names += [(’var%d(t)’ % (j + 1)) for j in range(n_vars)]
else:
names += [(’var%d(t+%d)’ % (j + 1, i)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:
agg.dropna(inplace=True)

return agg

# dataset
values = dataset.values

# ensure all data is float
values = values.astype(’float32 )

# normalize features
scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(values)

# frame as supervised learning
reframed = series_to_supervised (scaled, n_I15min, 1)

# drop columns we don’t want to predict
reframed . drop (reframed.columns [[n_I15min+n_features ,n_15minx*n_features+1]], axis=1, inplace=True)
print(reframed.head ())
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The data is now prepared for a machine learning algorithm. Since only the load due to EVs
should be predicted this column is removed. After that, the first five values of each column
containing the input features at different time steps are displayed in Figure 4.3. Where varl
refers to the cars in a location, var2 refers to the total load and var3 is just the EV load. Since

the prediction should only be made for the EV load, the other columns are dropped for time 7.

wvarl (t-4) wvarZ (t-4) war3{t—4) warl{t—-3) wvarz (t-3) wvar3 (t-3) A%
0.000000 0.045734 0.000000 0.000000 0.0457597 0.000000
0.000000 0.045757 0.000000 0.174757 0.0&5 0.174757
0.174737 0.085374 0.174737 0.05284¢ Q. 0.05284¢
0.05284¢ 0.0&87€E% 0.05284¢ 0.000000 o. 0.000000
0.000000 0.057520 0.000000 0.056311 0.052815 0.058511

wvarl{t-2) wari(t-2) wvardi{t-2) wvarlit-l) wvarZic-1l) war3it-1l) varsit)
0.174737 0.0855374 0.174797 0.05284¢ 0.0&766% 0.05284¢ 0.000000
0.05284¢ 0.08766% 0.05284¢ 0.000000 0.057520 0.000000 0.056511
0.000000 0.057520 0.000000 0.056511 0.058815 0.056511 0.13414¢
0.056511 0.058615 0.056911 0.13414¢ 0.085177 0.13414& 0.000000
0.13414¢ 0.085177 0.13414¢ 0.000000 0.04583% 0.000000 0.0l6280

Fig. 4.3 Reframed supervised learning data

The next step is to split the dataset into train and test sets. A common value is to use 70% of

the data for training and 30% for testing. The code in Listing 4.3 is used to do so.

# split into train and test sets
values = reframed.values

numel = len(values)

#define percentage for training

n_train_intervals = math. floor(train * numel)
#split into test and training data
train = values[:n_train_intervals , :]

test = values[n_train_intervals:, :]

# split into input and outputs

n_obs = n_15min % n_features
train_X , train_y = train[:, :n_obs], train[:, —1]
test_X , test_y = test[:, :n_obs], test[:, —1]

train_X .shape [0]
#reshape input to be 3D [samples, time steps, features]

train_X = train_X .reshape ((train_X.shape[0], n_I15min, n_features))
test_X = test_X.reshape ((test_X.shape[0], n_15min, n_features))

After splitting the data into train and test sets it can be used as an input for the LSTM algorithm.
The code is displayed in Listing 4.4. The meaning of hyperparameters like number of neurons,
epochs and batch size is described in Section 3.8.2. The values used in the listing form the basic
setup and are tuned according to the results obtained from different hyperparameter variations
which are described in Section 4.4.

Listing 4.4 LSTM implementation

# design network
model = Sequential ()
model . add (LSTM(50, input_shape=(train_X .shape[1], train_X.shape[2])))
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model . add (Dense (1))
model.compile(loss="mae’, optimizer="adam’)

#fit network
history = model. fit (train_X , train_y , epochs=50, batch_size=72, validation_data=(test_X , test_y), verbose=2, shuffle=False)

The results from the in this section described LSTM algorithm are presented in the next section.
Besides the results for the above presented use case with one location the model is also trained
with more features in form of a reference location as well as with a two year dataset which is
increased artificially.

4.4 Results

The following tables display the basic setup for the simulation. In Section 4.4.1 the effect of

different values for selected parameters is tested to obtain an optimal parameter set.

Table 4.7 Parameter values for basic setup

Basic Setup

Parameter Value
ALPHA 0.3
CHARGING_LI1 | 80
n_15min 4
n_features 3
train 0.7

Table 4.8 Parameter values for LSTM setup

LSTM Settings
Parameter | Value
Neurons 50
Layers 1

loss MAE

Optimizer | Adam
Batch Size | 72
Epochs 50
verbose 2
shuffle False
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4.4.1 Forecasting Model with One Location

The simplest case is where only the time series for one year and for one location is used. This
means that the input parameters for the algorithm are the number of cars in the location, the
total electricity load in that location as well as just the load due to EVs. The duration of the time
series is for this case one year. The model is first trained with the basic parameters shown in
Table 4.7 and 4.8. The result is visualized in Figure 4.4. The y-axis displays the error whereas
the x-axis values are the different epochs. It can be seen that the test error stays higher while
the train error goes down. This is typical for an underfit model which means that more data is

needed.

| — ftrain
0.034 test

0.033 4
0.032 4

0.031 A

Errorrate

0.030 4

0.029 4

0.028 4

0 10 20 0 40 50
Epochs

Fig. 4.4 Forecasting model with one location train/test error

Table 4.9 shows the result for the parameters in Table 4.8. The result is presented in terms of

the RMSE. The mean, min and max values are also displayed to give a more meaningful result.

Table 4.9 Results for the forecasting model with one location for one year

RMSE | 15.004
Mean | 17.695
Min 0

Max 238

Despite the underfitted result, the model is also tested with different parameter settings to tune

the model. Different values for LSTM hyperparameters are tested.
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Table 4.10 Results for the forecasting model with one location for one year with varying number
of epochs

Test: Number of Epochs
Epochs | RMSE
10 15.250
30 15.009
50 15.004
70 14.967
90 14.907
100 15.002
150 14.937
200 14.963

Table 4.11 Results for the forecasting model with one location for one year with varying batch
size

Test: Batch Size

Batch Size | RMSE
8 14.886
48 15.019
72 15.004
96 14.934
192 15.007
384 15.225
1024 15.491
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Table 4.12 Results for the forecasting model with one location for one year with varying time
steps

Test: Time steps (15-min intervals)
Time steps | RMSE
1 16.331
4 15.004
10 13.653
26 13.713
42 13.833
74 13.750
96 13.833

Table 4.13 Results for the forecasting model with one location for one year with varying
neurons

Test: Neurons

Number of Neurons | RMSE
10 14.977
30 14.938
70 14.949
90 14.993
100 15.042
150 14.938
500 14.954

The final optimal parameter set is obtained by selecting the parameters that obtained the lowest
RMSE value from each hyperparameter test. Table 4.14 summarizes the resulting parameters.
Figure 4.5 visualizes the train and test error obtained with this configuration. Table 4.15 shows
the resulting RMSE value along with the mean, min and max values.

Table 4.14 Optimal parameters for one location one year forecasting model

Epochs 90
Neurons 30
Batch Size | 8

Time steps | 10
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Fig. 4.5 Forecasting model with one location train/test error with optimal parameters

Table 4.15 Results: optimal parameters, 1 location, 1 year

RMSE | 13.810
Mean | 17.698
Min 0

Max 238

4.4.2 Forecasting Model with a Reference Location

In this approach the input features are increased by three. The number of cars, the total load
as well as the load due to EVs from a reference location, in this case location 163 is used, are
added. The total number of features in this test is six. The duration of the data is one year.
Table 4.16 visualizes the results in terms of the RMSE. Figure 4.6 shows the corresponding

train/test error plot.

Table 4.16 Results: 1 year with reference location

RMSE | 16.170
Mean | 16.424
Min 0

Max 199.974
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Fig. 4.6 Forecasting model with reference location train/test error

Epochs

4.4.3 Forecasting Model with an Artificially Increased Dataset and One

Location

The model is extended with another year of data. For the load data more data is available

from Pecan Street but the traffic data needs to be generated for the second year. The second

year of data is generated using the code in Listing 4.5. The histogram plot of the original data

visualized in Figure 4.7 and the histogram of the generated data visualized in Figure 4.8 are

similar. The parameters as well as the LSTM settings are the same as in the basic setup listed
in Section 4.4.1. Table 4.17 visualizes the results in terms of the RMSE. Figure 4.9 shows the

corresponding train/test error plot.

Listing 4.5 Generation of second year car data

mu, sigma = 0,14 #mean and standard deviation
s=np.random.normal (mu, sigma ,len(car_data))
np.around(s) #round to integer

car_data_year2 = car_data.copy(deep=True) #make copy of car_data

for x in range(len_car):

if (s[x]==0):
car_data_year2[x]=0

if (s[x]>0 and car_data_year2[x] > 0):
car_data_year2[x]= car_data_year2[x]—s[x]
if (car_data_year2[x]<0):

car_data_year2[x]=0

if (s[x]>0 and car_data_year2[x] < 0):
car_data_year2 [x]=s[x]

if (s[x]>0 and car_data_year2[x] == 0):
car_data_year2 [x]=s[x]

if (s[x]<0 and car_data_year2[x]==0):
car_data_year2 [x]=s[x]

if (s[x]<0 and car_data_year2[x]>0):
car_data_year2 [x]=s[x]

car_data_year2 = car_data_year2.abs()
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Fig. 4.8 Histogram of generated data for second year

Table 4.17 Results: 1 location, 2 years of data

RMSE | 24.420
Mean | 9.1823
Min 0

Max 235
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Fig. 4.9 Forecasting model with one location and two year data train/test error

After the implementation part the results can be evaluated. Therefore, the next section covers
the discussion of the obtained results.

4.5 Evaluation

The results of the first setup with the basic parameter settings visualized in Table 4.7 and 4.8
are summarized in Table 4.9. The input features are the three time series, namely the number of
cars, the total load and the load due to EVs from a selected location. The duration of the data
is one year. Figure 4.4 shows the graphical representation of the obtained train and test error
graphs. It can be seen that the train error is significantly lower than the test error. This behaviour
is typical for underfitting as shown in [102]. Different experiments were performed to improve
the result. The following subsections evaluate the results from the different hyperparameter
settings and test cases.

4.5.1 Evaluation of Different Hyperparameter Settings

Hyperparameters are parameters which are adjusted before the machine learning algorithm.
Therefore, different settings have been simulated to show their effect on the performance
of the algorithm to obtain the best possible parameter set. The meaning of the different

hyperparameters is described in Subsection 3.8.2.
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Number of epochs The outcome in terms of the RMSE of different epoch values is shown in
Table 4.10. Epoch values between 10 and 200 are tested. The upper value of 200 is chosen to
keep runtimes reasonable. However, the outcome shows that there is no significant difference
or reduced error rate between different epoch values. At first, the error goes down and is the
lowest at 90 epochs. With a further increase of epochs, the error seems to get up and then down
again. The random behavior of different epoch values has also been observed by researchers in
[19] who declared that the number of epochs has no significant effect on the outcome of the
algorithm which has also been found in this work.

Batch size Table 4.11 shows the values for the batch size and their outcome in terms of the
RMSE. Batch size values between 8 and 1024 are tested. The results show a similar behaviour
than the number of epochs. It can be concluded that also this parameter has, at least in this

setup, no significant effect on the model performance.

Time steps Table 4.12 shows the tested values for the number of time steps and their outcome
in terms of the RMSE. The tested values range from 1 to 96. The results show that the error
rate is significantly reduced from one time step to 10 time steps, then the error rate starts to
slowly increase with a higher number of time steps. It can be concluded that for this case 10

time steps would be the best value as it results in the lowest error rate.

Number of neurons Table 4.13 shows the tested values for the number of neurons and their
outcome in terms of the RMSE. The tested values range from 10 to 500. The best value is
received when choosing 30 neurons. However, no significant change was observed for different

values.

4.5.2 Evaluation of the Different Test Cases

The algorithm is trained with different input features. First, the algorithm is trained with 1 year
of data were only one location is used. Next, the model is trained with one year of data but an
additional location is added as a new input feature to serve as a reference location. Last, the
training is performed with two years of data for one location. The results in terms of the RMSE
values of the different settings are summarized in Table 4.18. The mean, min and max values
are also provided to be able to compare the results better since each dataset is slightly different.
However, it can still be seen that the first case with one location for one year performs best. It

is assumed that an increase of the dataset or an extension of the features would improve the
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forecasting model but this is not the case as can be seen from the resulting error rates. This
can be due to the fact that an increased number of features adds more complexity to the model
which in turn leads to a more difficult learning phase. Moreover, when the number of features
is higher, more training data is needed for an optimal adjusting of the weights. The two year
dataset has the worst performance with an error rate of 24.42. Usually, an increase in data is
expected to significantly improve the model. However, in this case the reason is possibly that
for the vehicle trip data no second year was available. The second year was therefore generated
base on the data of the first year. Because of the already existing mismatch in the data a second
year might add more confusion instead of clarification. It is expected that it would be beneficial
to have input features that are from the same location and actually reflect each other in terms of

year, weather and location.

Table 4.18 Summary of the results for the different cases

RMSE | Mean | Min | Max

1 year 1 location | 13.810 | 17.698 | O 238

1 year 2 locations | 16.170 | 16.424 | O 199.974
2 year 1 location | 24.420 | 9.1823 | 0 235

4.5.3 General Problems

The following problems have been identified to impact the performance of the algorithm:

different seasonal pattern of EV demand and general electricity load

* sparse vehicle dataset

different data sources

e amount of training data

A reason for the higher forecasting error might be the seasonally changing load patterns of
general electricity consumption. As the researchers in [6] mention, conventional electricity load
and charging demand of electric vehicles might have different seasonal patterns. This would
explain why it is hard for the algorithm to learn the electric vehicle demand from the total load
that is seasonally changing but has not the same effect on the EV demand. Furthermore, the
vehicle dataset contains a lot of zero values which stand for the times when there is no car in
that location at a particular 15-minute interval. Those zeros cannot simply be dropped because
they have a meaning, namely that no car is in that location which can potentially be requesting
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charging. This leads to the conclusion that data is needed that would represent a more realistic
and frequent car appearance to be able to train an optimal model. With the rise of ride-share
companies like Uber and Lyft it might be wrong to still assume that taxi traffic in NYC still
models normal traffic behaviour. Also, the different data sources can be problematic for the
results. The different datasets, the traffic data from NYC and the consumption data from Texas
mismatch in year, location and resulting other factors like weather conditions. Last, it has been
identified that the amount of training data is too less to fit such a complex model. As already
mentioned in Chapter 2, a downside of neural network based models is that a lot of training
data is needed. It is expected that if the amount of training data is increased that the model

would provide better results.



Chapter 5

Conclusion and Future Work

The purpose of this thesis was to develop a machine learning model that is able to predict the
energy demand that is due to electric vehicles from the given time series of the total load and
the traffic information for various locations available in the data. The first chapter introduced
the research topic and the objective of this work. First, an overview about current developments
in the Smart Grid is given to introduce the reader to the domain and point out associated
challenges, especially due to the deployment of electric vehicles. To address the seriousness of
the problem government initiatives to counteract climate change are presented as well. The
outcome of this chapter is a description of the research objective as well as the developed
research questions which define the scope of this thesis. The questions are answered throughout

this work.

In Chapter 2, the findings of the literature research are presented. Related work in the field of
electric vehicle electricity demand forecasting and connected topics like allocation of charging
stations and test data development are discussed. Furthermore, the state-of-the-art techniques
for time series forecasting are compared and analysed. Different forecasting algorithms in
the domain of time series forecasting are compared and discussed. It was found that a RNN
approach like LSTM would be the best fit for this research objective. LSTM was chosen
because of its ability to handle multivariate inputs, its capacity to store information over a
longer period of time as well as its ability to handle non-linearity. Furthermore, it was found
in a recent study where a direct comparison between ARIMA and LSTM for time series fore-
casting was conducted, that the LSTM model outperforms the ARIMA model in terms of
having significantly smaller error rates. This is another reason why LSTM was chosen over
the up-to-date most widely used demand forecasting algorithm ARIMA. Finally, the scope of

the thesis is defined in more detail along with a clear distinction from the described existing
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work. The solution is a flexible and costly inexpensive model that aims to work using publicly
available datasets in a form that would enable its application for various locations. Also, the

algorithm is able to handle multivariate inputs well.

Chapter 3 covered the theoretical aspects of the thesis by means of the topics which are
relevant for understanding the domain as well as definitions and standards which are used in
the practical part of the thesis. First, a detailed overview about the Smart Grid is given which
aims to follow up with the short description already given in the introduction. The next section
focuses on demand forecasting in the Smart Grid and further addresses the objectives and
challenges. This is followed by a detailed section about electric vehicles. The role of the EV is
addressed as well as technical details about the charging infrastructure, different EV types and
charging levels are given. The next sections are built constructively and aim to introduce the
reader into the topic of neural networks. First, the area of data analytics is discussed followed
by an introduction into machine learning. Different techniques like supervised, unsupervised
and reinforcement learning are presented. Furthermore, common problems like overfitting
and underfitting are described as well. The next section about neural networks describes
their functionality along with the learning process and architecture in detail. Also, RNNs are
described in order to understand the used algorithm LSTM which falls into this category. Next,
LSTM is explained in more detail to understand the practical implementation of the algorithm.
Last, an overview about the used frameworks is given. Python was selected as the programming
language due to its usability and its compatibility with machine learning. The used libraries
for the algorithm and graphical representation are pandas, numPy, matplotlib and scikit-learn.
The used framework Keras which runs on Tensorflow was chosen because of its simple API’s
which are built on top of TensorFlow. The outcome of this chapter is a thorough description of

all the topics which are relevant for the practical implementation of this thesis.

In Chapter 4 the practical part of this work is presented. The used data is on the one hand
vehicle trip data from the NYC taxi fleet which is publicly available and on the other hand
electricity consumption data from a Smart Grid testbed in Austin, Texas. Unfortunately, no data
was found from the same location. The vehicle trip data is a time series with taxi trips in NYC
for a whole year. The raw data from both sources was preprocessed to have the right format.
Unnecessary features were dropped. The two datasets are then combined into a single table
where the time series column is in the granularity of 15 minutes. The dataset is extended with an
artificially created column for the load due to EVs which is used for training in the supervised
learning process. The load is calculated using a developed formula that takes the charging level

into account as well as a parameter which stands for how many EVs that are in a location at a
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given interval are actually charging. The prepared data is converted into a supervised learning
problem and split into train and test data sets. 70% are used for training and the remaining 30%
for testing. The train data is then fed into the LSTM algorithm. The inputs for training are the
total load, the EV load as well as the number of cars in the location. The goal for the trained

algorithm is to predict the load due to EVs by just receiving the total load and the number of cars.

The outcome of the practical part is a demand forecasting model that is able to make rea-
sonable forecasts. However, the resulting error plots show that the model is still underfitted. As
found in the literature research more training data is needed to optimize the model. Furthermore,
different hyperparameter settings have been tested on the model. The results show that while
the number of epochs, the batch size and the number of neurons have no significant effect on
the system performance an increase in the number of time steps shows a better performance.
Besides the tests on hyperparameters also different input features have been tested. The model
is trained with three variations. At first, one year of data and one location is used which results
in three input features. Next, the model is trained with one year of data but additionally a
reference location is added which results in six total features. Finally, the model is trained
with two years of data for one location of which the second year of the vehicle data is created
artificially due to lack of data. The results showed that the lowest error rates can be achieved
with the first case. It is concluded that more data is needed to train an optimal fit model.

Furthermore, the data should match in year and location to create a more reliable model.

Future Work The implementation is limited by the current publicly available data. In order
to extend the range of this thesis for different geographical locations, it is expected that more
vehicle trip data is made available online in the future such as the one from the New York
City taxi fleet. Uber is already beginning to upload anonymous trip data from selected cities
via Uber Movement [103]. Furthermore, with the continuing deployment of Smart Meters
across the globe, anonymous consumption data is also expected to be made available for more
geographical locations in the future to enhance the research process. Electricity consumption

data and vehicle data from the same location would help to provide stronger results.

Furthermore, the second year of vehicle data was artificially generated. In the future the model
can be updated using real data for the second year as well. One way to do this is to include the
2018 NYC taxi data once it is available from [98]. Currently real data is only used for 2017
because the data for 2018 is not yet published. As soon as the year is over the second-year data

can be replaced by the real dataset. However, since the sparseness of the taxi data set it might
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not be the best solution. Another way can be to generate EV traffic data using the stochastic

approach presented by the researchers in [4].
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