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1 introduction
Field of cavity optomechanics has already enjoyed a lot of success with dif-
ferent mechanical oscillators [1]. Optically levitated nanospheres were pro-
posed as a new optomechanical system in several papers for their promise of
unprecedented mechanical quality factors and strong interaction with light
[2, 3, 4], which is based on the absence of mechanical suspension and achiev-
able better isolation from the environment. A good measure of reaching a
regime of strong interaction is optomechanical cooperativity C:

C =
4g2

κΓ
, (1)

where g is coupling of mechanical motion to light, κ is decoherence due
to photon loss from the cavity and Γ is decoherence by heating of oscilla-
tor’s motion. The partial decoupling from thermal environment promises
a large force sensitivity [5] and leads to an experimental regime of room-
temperature quantum optomechanics. Realizing a quantum superposition
of a nanosphere [6] or teleportation of quantum state of light to a nano-
sphere [7] is an achievable goal with this system, given large enough op-
tomechanical cooperativity.

Although mechanical damping through collisions with remaining gas is
suppressed, at extremely low pressures (∼ 10−7 mbar) recoil heating by
lasers would rise as dominant source of decoherence. In a regime where
nanosphere radius r is smaller than laser wavelength r� λ, nanosphere be-
haves like a dipole, with dipoles significantly scattering light orthogonally
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2 research agenda

Figure 1: Schemes of the experiment with levitated nanoparticles from [3] (left) and
[2] (right). Both proposals include an optical cavity to reach significant
cooling and to realize quantum protocols. Experiment on the left has been
set up and used in [8]. Experimental setup on the right is currently in
operation at the home university.

to the light propagation as well. This leads to additional decoherence com-
pared to other mechanical systems, but can be rendered negligible or even
used in experiments. Both atoms and nanospheres behave the same, so in
principle we can think of the nanosphere as a large atom. What also speaks
in that favor is that nanosphere is a solid body made of SiO2 molecules with
all of the molecules moving in phase due to rigidity. Therefore, atoms and
nanospheres should share a similar theoretical approach of coherent scatter-
ing. A compilation of important experimental values for both atoms and
nanospheres is presented in Section 3.

2 research agenda
This is to serve as a comparison between proposed research agenda and
achieved goals during the research visit.

1. March 2018:

• Literature overview of the work done by the group at the host
university.X

• Presentation of my research: state of research at the University
of Vienna, connection between respective fields and experiments,
research goals. X

• Discussion with group members: sharing insights, expectations,
literature.X

• Work on theory of coherent scattering with a levitated nanosphere
in an optical cavityX

Outcome: Full theoretical model and study of future experiment at
the University of Vienna. Defined best experimental approach and
methods that need to be mastered during the research stay.
Achieved: Full theoretical model has been developed with a help from
Prof. Vuletić and is presented in Section 5.

2. April 2018:

• Joining the experiment on cavity cooling of Cs atoms. X

• Learning and sharing techniques on cavities, cavity cooling, noises
in experiment, heating mechanisms. X

Outcome: Mastering experimental methods defined in March 2018.
Writing experimental protocols.
Achieved: Through discussion with team members working on the
experiment mentioned above, I have gained a valuable insight into
various experimental techniques, details and new developments in the
field. Summary is presented in Section 7.
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3. May 2018:

• Continuing the experimental work. Discussion on further devel-
opment of the experiment at the host university.X

• Final presentation of the research: topics and goals covered, dis-
cussing further work at the University of Vienna.

Outcome: Fully defined research plan for following months at the Uni-
versity of Vienna. Collecting ideas for further projects. Compilation of
experimental modifications and measurements to be done at the Uni-
versity of Vienna.
Achieved: Upon my return to the University of Vienna, plan of exper-
iments and experimental setups has been presented and thoroughly
discussed. I gave a talk at our weekly group meeting and presented
research perspectives and plans.

3 comparison between an atom and a nano-
sphere

As we mentioned in introduction, nanosphere interacts with light similarly
to an atom, i.e. as a dipole. In order to draw some parallels between a single
Cesium atom and a single silica nanosphere used in our experiments (ρ =

1850
kg
m3 , r = 71.5 nm), we developed a summary of important comparisons.

• Mass of a single nanosphere is m = 2.8× 10−18 kg, while a cesium
atom has a mass mCe = 2.2× 10−25 kg, seven orders of magnitude
smaller. An important implication is that a kick by an atom of any gas
present in the vacuum chamber won’t severely disturb nanosphere
motion due to a large mass difference. Therefore, we don’t need
to achieve extremely low pressures in comparison to experiments in
atomic physics.

• Trapping potential for a polarizable particle depends on polarizability
and laser intensity I0:

U = −
α

2

2I0
ε0c

. (2)

Polarizability of a nanosphere with volume V is given by:

α = 3ε0V
n2(ω) − 1

n2(ω) + 2
(3)

and has a weak dependency on laser frequency through index of re-
fraction n(ω). In contrast to nanosphere, atom polarizability depends
highly on laser detuning away from atom transition, while it changes
a sign at the resonance. Hence, atoms are usually trapped only with
lasers being red detuned from atom transition. Nanosphere polariz-
ability is about h × 0.5 MHz

(V/cm)2
, while Rydberg atoms can exhibit a

similar polarizability once the electron is highly excited. A single ce-
sium atom has a polarizability of only ∼ h× 0.1 Hz

(V/cm)2
.

• Trap frequencies ωm are proportional to α/m, which in the case of
nanospheres simplifies to

√
1/ρ, e.g. it is independent on neither na-

nosphere radius nor volume. Trap frequencies for nanosphere and
atoms are comparable for comparable laser intensities.

• Given its large mass, amplitude of nanosphere center-of-mass (COM)
motion is small even at room temperature (T = 300 K) with variance
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√
〈x2〉 ∼ 40 nm. Therefore, they are extremely well confined within

trap potential, as standing wave periodicity is λ/2 = 532 nm. When
cesium atoms are trapped in a magneto-optical trap (MOT), tempera-
ture of COM motion is T ∼ 200µK, which corresponds to motion on
the order of 100 nm.

• Given nanosphere’s small amplitude of motion, it is exceptionally easy
to reach Lamb-Dicke regime, given by condition k

√
〈x2〉 � 1. In

essence, this is equivalent to experiencing low recoil energy Erec/h =

40 mHz, transferred to nanosphere motion by a kick of a random pho-
ton. It’s negligible in comparison to a single phonon of energy  hωm
(defined by trap frequency ωm). Hence, a kick by one photon won’t
be enough to change phonon occupation of nanosphere motion. How-
ever, an ensemble of photons from trap laser can at some point give
kicks in the same direction, resulting in fast heating (decoherence) of
nanosphere motion.

• Trap depth for nanospheres in temperature is typically around 10000
K, which leads to a stable trapping of nanosphere at room tempera-
ture. On the other side, atom trap depths are just a bit greater than
their motional temperature (∼ 1 mK). Trap lifetime of a nanosphere is
practically infinite at high pressures. At low pressures (below ∼ 10−4

mbar), trap nonlinearities can lead to heating of nanosphere motion
and subsequent expulsion from the trap.

• Large polarizability also means that we have large scattering rate, typi-
cally on the order of 1014 photons

s . It’s an interplay between this parame-
ter and recoil energy that can lead to significant heating of nanosphere
motion. Scattering cross section is about σ0 ≈ 10−15m2, roughly of
the size of nanosphere cross section.

• Nanospheres can stick to cavity mirrors due to strong, attractive Casimir-
Polder force. In comparison to atoms, they pose a real danger to cavity
finesse. A couple of nanospheres located around the same point on
any mirror can significantly change surface roughness and enhance
cavity loss rate.

4 state of research

4.1 Current research at the home university

Through strong light-nanosphere coupling, cavity cooling of levitated na-
nospheres has been demonstrated in multiple experiments in recent years,
including our proof-of-concept paper by Kiesel et al. in 2013 [8, 9, 10] and
with freely propagating particles in high vacuum (10−8 mbar) [11]. How-
ever, regime of high cooperativity C > 1 is yet to be reached, leading to
ground state cooling of nanosphere center-of-mass motion and full quan-
tum control of nanosphere motion. A common obstacle in many experi-
ments is stable levitation of nanospheres at high vacuum, which has so far
been shown in hybrid electro-optical systems [9, 10] and in optical tweezers
[12, 13].

We have since then combined stable optical levitation in optical tweez-
ers with our optical cavity (Figure 2) and have full control over nanosphere
motion even in high vacuum (10−7 mbar). Measurements which aim to
demonstrate high cooperativity are currently under way, using the scheme
on the right of Figure 1. One laser is used to drive the optical cavity and pro-
vide (ultimately quantum) control of nanosphere motion ("control mode"),
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while the other is orthogonal to the optical cavity and is used solely for sus-
pending the nanosphere in high vacuum ("trapping laser"). High vacuum
is needed to improve coherence due to fewer collisions with air molecules
(smaller impact of gas heating in decoherence rate Γ ). So far we have shown
cooperativity C ≈ 10−2 (publication in preparation).
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Figure 2: Current view of our experiment. Nanosphere is trapped in an external
trapping beam focused by a microscope objective. Objective is sitting on
a nanopositioner in order to have full control of nanosphere position in
the driven cavity field, defined by two cavity mirrors. In our experiment
on coherent scattering, we will aim to prove that just the presence of an
empty optical cavity can be enough to have efficient cavity cooling.

We know of several limitations to ultimately reaching a regime of strong
cooperativity:

• Lack of enough laser power. In practice, control laser is created by
passing through a series of optical elements with total efficiency of
only ∼ 2%. Among several ways to increase optical power, the eas-
iest would be to have a fiber amplifier to increase available power.
However, fiber amplifiers add intensity noise to otherwise clean laser
sources, possibly impacting our cavity cooling limit (although not
directly seen in cooperativity value, which doesn’t include all noise
sources).

• Trapping with control laser. Even with sufficient power in control
mode, nanosphere is always trapped in a total potential. For example,
increasing control mode power will pull nanosphere closer to inten-
sity maximum of cavity mode, thus decreasing linear coupling. We
find the optimal position again by repositioning nanosphere until a
trap with minimum at cavity intensity slope is created. However, for
certain cavity power this starts to be impossible to achieve, as cavity
mode becomes the dominant trap laser. In this case, equilibrium trap
position will never reach cavity intensity slope again. Possible solution
to this problem would be to have two cavity modes of equal intracav-
ity powers driving two successive cavity resonances. As intensities of
these two modes depend on position x0 as sin2(kx0) and cos2(kx0) in
the vicinity of cavity waist (x0 = 0), total added potential is constant.
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• Recoil heating of cavity mode(s). Even if we resolve cavity trapping
by using two cavity modes, all cavity modes add recoil heating to
total decoherence rate Γ . In fact, if we now include all heating rates
and attainable couplings, we reach an ultimate cooperativity C ≈ 1.2.
However, we would rather have cooperativity much larger than 1.

We have looked into ways how to increase coupling in order to increase co-
operativity. This has its limits as recoil heating of cavity modes becomes
dominant decoherence mechanism. What about decreasing loss mecha-
nisms instead of only increasing coupling?

• Cavity energy decay rate κ. We can easily design a cavity with smaller
κ. However, heating due to phase noise depends as ∝ 1/κ, which
means there must be an optimal value of κ. We won’t go into further
discussion here.

• Recoil heating of trapping laser Γ tw
rec. Both nanosphere mechanical fre-

quency and recoil heating depend on trap intensity Itw. Cavity side-
band resolution depends on mechanical frequency, such that higher
frequency leads to better cavity cooling. Although trap laser seems to
be the one thing we can’t change in our setup, it is exactly this we set
out to explore in the following text. As we will see below, trap laser
can be turned into additional means of cavity cooling of nanosphere
motion. This will be cavity cooling by coherent scattering, the topic of
our research.

4.2 Current research at the host university

In Vuletić et al. [14] it was proposed that a laser beam orthogonal to an
optical cavity could be used in cavity cooling of atom motion, which would
make the laser driving the optical cavity obsolete. Light scattered by an
atom into the optical cavity could be significantly modified [15] through
constructive interference to provide an amplified effect of cavity cooling
along the cavity axis. This method has been successfully implemented in the
group of Prof. Dr. Vuletić [16], with a recent paper [17] demonstrating three-
dimensional cavity ground state cooling of atom gas motion. Currently,
experiment is being used to further develop a Bose-Einstein condensate of
Cs atoms. It’s straightforward to see an analogy to our experiment, as we
already have trapping mode driving nanosphere orthogonal to optical cavity.
We will explore the case of trapping laser being near to cavity resonance.

5 theoretical work
When we couple laser to a cavity through an input cavity mirror, we usually
assume a perfect mode matching, i.e. driving laser has the same spatial
properties as the cavity mode we drive. Owing to being smaller than laser
wavelength (r � λ), nanosphere emits a dipole radiation pattern which
doesn’t conform to a single Hermite-Gaussian mode. Therefore, only some
photons scattered by the nanosphere will continue traveling around cavity
in a form of a particular TEM mode, with overall mode matching β � 1.
Overlap of scattered photons and a cavity mode in frequency space gives
rise to Purcell enhancement of dipole radiation, which will be the topic of
this section. In essence, a dielectric nanosphere is equal to an atom cloud
with laser being far detuned from any internal atom resonances. Therefore,
we use parts of [18] in order to obtain an optomechanical picture of coherent
scattering for a scattering nanosphere.
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In order to fully understand the effect of coherent scattering from a levi-
tated nanosphere into an optical cavity, we need to develop a full theoretical
model. So far, basics of necessary theory have been outlined for atoms
[14, 19]. Nanosphere scattering leads to increased cavity decay rate and re-
coil heating, which has been covered in other work [20, 21, 22]. However,
typically only scattering of trapping laser into free modes is considered,
hence their definition as losses. Possible scattering into cavity mode (or
modes) has been omitted so far, thus no effects of coherent scattering were
discussed. Our theoretical study will include, but won’t be restricted to:

• Full quantum description of a nanosphere levitated by an external
trapping beam, positioned in an optical cavity.

• Mechanism of scattering of external photons into optical cavity. Am-
plification of scattered light by cavity presence (Purcell effect for nano-
spheres).

• Exploration of system parameters: magnitude of the effect based on
cavity geometry, external trapping beam frequency and polarization,
nanosphere size.

• Discussing fundamental experimental steps: calculating magnitude
of cavity cooling, detection schemes, impact of optical and acoustic
noises on measurements and nanosphere motion.

We ultimately wish to find out if we can cool the nanosphere motion into
its ground state with the current experiment at the University of Vienna,
possibly with minor modifications to experimental setup. Specific outcome
would be a list of measurements we could do to demonstrate the effect of
coherent scattering, which would then need to be discussed with the re-
search group at the host university and implemented back at the University
of Vienna.

5.1 Overlap of dipole radiation pattern and cavity TEM00 mode

As a first step, we need to calculate the amount of light which nanosphere
scatters into a mode profile of TEM00 cavity mode, which we can do by
calculating mode overlap of the dipole radiation mode and TEM00 mode
field profiles. Dipole radiation pattern of a nanosphere in incident electric
field Ein at arbitrary distance R is given by:

Erad(R, θ) =
k2 sin θ
4πε0

eikR

R
αEin, (4)

where θ is angle between polarization of field Ein and direction along which
Erad propagates. The radiation field is clearly equal to 0 in the direction of
Ein polarization as θ = 0. This poses a condition on orientation of driving
field polarization, which has to be orthogonal to cavity axis (θ = π/2) in
order to have optimal scattered power toward cavity mirrors. We wish to
investigate the mode overlap between a single cavity mode of TEM00 spatial
mode profile and the dipole radiation pattern. We assume that the cavity
mode has a waist w0 at cavity center, and w[L/2] at cavity mirror, where L
is cavity length. We assume the nanosphere is located at the cavity center,
which is a favorable position for strong interaction with any cavity field
due to minimal waist. Mode overlap is calculated at cavity mirrors where
R � λ, therefore we can use dipole radiation pattern in far-field eikR/R =

eikx+ikρ
2/(2x)/x. Here x is distance from the nanosphere projected onto

cavity axis. The scattering angle θ remains close to π
2 (on the order of

w[L/2]/L, which for a realistic confocal cavity is ∼ 10−2), so we can assume
sin θ = 1.
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TEM00 spatial mode is given by:

E00 = E0
w0
w[x]

exp
(
−

ρ2

w2[x]

)
exp−ikx− ikρ2

2x , (5)

where w[x] = w0
√
1+ (x/xR)2. Overlap of two modes is:

1

EinE0

2π∫
0

∞∫
0

E00Eradρdρdϕ =
k2α

2ε0

w0
w[x]x

∞∫
0

e
− ρ2

w2[x] ρdρ =

k2α

2ε0

w0
x

−w[x]

2

∞∫
0

e
− ρ2

w2[x]d

(
−

ρ2

w[x]2

)
=

k2α

2ε0

−w0w[x]

2x
e
− ρ2

w2[x]

∣∣∣∣∣
∞
0

=

k2α

2ε0

−w0w[x]

2x

(
lim
ρ→∞ e−

ρ2

w2[x] − e
− 0

w2[x]

)
=

k2αw0
4ε0

w[x]

x
. (6)

At distances x greater than Rayleigh range xR =
w20π

λ , mode overlap normal-
ized over an effective mode area of the cavity mode A = πw20/2 is:

β =
1

A

1

EinE0

2π∫
0

∞∫
0

E00Eradρdρdϕ =
kα

ε0w
2
0π

. (7)

It is compelling to see if there is a significant mode overlap when polar-
ization of Ein is collinear to TEM00 axis, i.e. θ ≈ 0. Following the same
procedure with new condition of sin θ ≈ tan θ = ρ

L/2
, we still get a non-zeroThis time it’s

necessary to integrate
by parts with

du = e
− ρ

2

w2 ρdρ

and v = ρ.

mode overlap:

βmin =
α

ε0w
3
0

√
π

. (8)

In the case of our near-confocal cavity with w0 ≈ 40× 10−6µm, β
βmin

∼ 100.
Scattered power is ∝ |β|2, hence scattering is suppressed by at least a factor
of 10000 by fine tuning polarization of driving field.

Electric field scattered into a TEM00 mode defined by our cavity is:

EM = iβEin, (9)

where |Ein|
2 = 2Iin

ε0c
= Pink

2NA2

ε0cπ
is electric field of optical tweezers. Imag-

inary unit i shows up due to Gouy phase π/2 of cavity mode at distances
x� xR. It is important to note that this equation holds for any drive electric
field independent of mode shape, with only condition being that scattered
field lies in a plane orthogonal to light polarization.

Optical power scattered into one half of a cavity mode EM is PM =

|β|2Pink
2w20NA2/4. Total dipole emitted power is determined by integrat-

ing intensity Irad = ε0c|Erad|
2/2 over the surface of a sphere with arbitrary

radius R:

P4π =
ck4

12πε0
|αEin|

2 =
k2w20
3

|β|2
Pink

2w20NA2

4
. (10)

Ratio of light scattered into modes EM and scattered into whole space is
called free space cooperativity:

ηfs =
2PM
P4π

=
6

k2w20
. (11)

Factor of 2 accounts for scattering into both directions of a TEM00 mode,
such that cavity would collect light scattered into fraction of solid angle ηfs.



5.2 Enhanced scattering due to cavity 9

5.2 Enhanced scattering due to cavity

Scattered light into mode EM can bounce many times between the mirrors
and interfere with itself, leading to a myriad of interesting optical and op-
tomechanical effects. Left-traveling field EM will reflect once from mirror
M1 and interfere with field EM scattered in the direction of mirror M2 (Fig-
ure). Considering a case when built-up "right traveling" cavity electric field
is much smaller than driving field (Ec,r � Ein), field Ec,r reached in equi-
librium depends on relative phase shift between scattered fields:

Ec,r = EM + r1e
ik(L+2∆x)EM + r1r2e

2ikLEc,r, (12)

where r21, r22 are mirror reflectivities and ∆x is nanosphere distance from
cavity center along cavity axis. Note that we have taken accumulated phase
shift to be positive in traveled distance for this right traveling wave. As we
will see in later text, this will coincide with quantization of cavity mode.

Our experimental cavity is designed to be symmetric, hence we can take
|t1|
2 = |t2|

2 and |r1|
2 ≈ |r2|

2. However, we continue using r1 and r2 without
any assumption on their relative values. EM is electric field scattered in the
direction of mirror M2, while r1eik(L+2∆x)EM is light scattered in opposite
direction and reflected from mirror M1. We can solve this for Ec,r:

Ec,r = iβEin
1+ r1e

ikLe2ik∆x

1− r1r2e2ikL
. (13)

Let’s look into a simple case of laser being resonant with the cavity, i.e.
e2ikL = 1. Without a loss in generality, we can assume eikL = 1, thus
choosing that the cavity standing wave has its maximum at the cavity waist.
Cavity electric field becomes:

Ec,r = iβEin(1+ r1e
2ik∆x)

F

π
, (14)

where we have used known definition of cavity finesse (1− r1r2)
−1 = F/π.

Power of the right traveling electric field is:

Pc,r =
|Ec,r|

2

2ε0c

w20π

2
= Iin

w20π

2
|β|2

(
F

π

)2 (
1+ r21 + 2r1 cos(2k∆x)

)
. (15)

It clearly depends on nanosphere position through cos(2k∆x), where dis-
tance ∆x is a combination of equilibrium trap position x0 and nanosphere
COM motion x(t), although we neglect fluctuations caused by nanosphere
motion for now. Assuming nanosphere is sitting at the intensity maximum
(cos(2kx0) = 1) and r1 ≈ 1, cavity power would approximately be:

Pc,r = Pink
2w20NA2|β|2

(
F

π

)2
. (16)

It is clear that although only a small fraction of trap laser is reflected into the
cavity mode (∝ |β|2Pin), power in the cavity is amplified by a huge factor

depending on cavity finesse
(
F
π

)2
.

With detuned drive ωl = ωc −∆, resonance condition turns into e2ikL =

e−i∆/∆νFSR . Thus:

1

|1− r1r2e2ikL|2
≈ 1∣∣∣1− r1r2 cos ∆

∆νFSR
+ ir1r2 sin ∆

∆νFSR

∣∣∣2 ≈
(F/π)2

(
κ
2

)2(
κ
2

)2
+∆2

,

where we see that cavity amplification is reduced by the cavity transfer
function.
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purcell factor. Small portion of Pc,r leaks out of the cavity through
mirror M2: P2 = |t2|

2Pc,r. As transmission through M2 attributes to half of
the cavity photon loss, we can express it through cavity finesse as |t2|

2 ≈
π/F, hence:

P2 = Pink
2w20NA2|β|2

F

π
. (17)

If we compare the total power leaked through cavity mirrors with the power
dipole emitted into the whole space P4π, we obtain what is commonly re-
garded as Purcell factor [23] of enhancement η:

η =
P1 + P2
P4π

= 4
F

π
ηfs =

24F/π

k2w20
. (18)

Therefore, although cavity takes only a small solid angle of whole dipole ra-
diation, it stimulates the radiation in the cavity direction such that we have
an overall enhancement. As shown in [18], Purcell factor of dipole interac-
tion is equal to atomic cooperativity obtained from quantum treatment.

5.3 Modified enhanced scattering into cavity

All of the effects seen so far still don’t fall into the category of cavity op-
tomechanics, such as cavity cooling or optical spring and damping. These
effects come into play only in a case of strong amplification of field EM in
the cavity. In that case, not only do we get interference of EM terms, but
we also have to take into account light scattered from built-up intracavity
fields Ec,r and Ec,l as EM = iβ(Ein + Ec,r + Ec,l). Left travelling and right
travelling fields Ec,l and Ec,r are related by a phase Ec,l ≈ Ec,re

ik(L−2∆x),
such that with a change of notation Ec,r = Ec:

Ec = r1r2e
2ikLEc + iβ

(
Ein + Ec

(
1+ r2e

ik(L−2∆x)
))(

1+ r1e
ik(L+2∆x)

)
.

(19)
We assume drive with arbitrary detuning, eikL ≈ 1 and that mirror reflec-

tivities are r21, r22 ≈ 1:

Ec =
iβEin

(
1+ e2ik∆x

)
1− r1r2 + i

∆
∆νFSR

− i4β cos2 k∆x

=
iβ∆νFSREin

(
1+ e2ik∆x

)
κ ′
2 + i∆ ′

, (20)

where we have introduced modified cavity FWHM κ ′ and detuning ∆ ′ as:

κ ′ = κ+ 8 Im(β)∆νFSR cos2 k∆x,

∆ ′ = ∆− 4Re(β)∆νFSR cos2 k∆x.

Re(β)∆νFSR is a recurring factor which is equal to U0/4, where U0 =
3
2
ωlV
Vcav

Re
(
n2−1
n2+2

)
is nanosphere-induced frequency shift. Note following

effects which rise from (20):

1. Modified cavity FWHM. Nanosphere scatters light out of the cavity
and thus modifies the total cavity energy decay rate (full width - half
maximum, FWHM) by κscatt = 8 Im(β)∆νFSR cos2 kx0, depending
on trap position x0. Scattering rate is a function of Im(β):

Im(β) = |β|2
1

ηfs
=

(
k|α|

ε0w
2
0π

)2
k2w20
6
∝ r6. (21)
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2. Modified detuning by a constant frequency. Nanosphere has a dif-
ferent refractive index compared to the environment, thus changing
the cavity resonant frequency by U(x) = U0 cos2 kx0. It is a constant
offset to detuning ∆ with U0 � ∆. It is irrelevant to our experiment
as we either keep laser resonant to cavity or we can manually change
detuning to desired value if nanosphere moves to a different position.

3. Linear coupling to cavity mode. Nanosphere induces a position-
dependent frequency shift to the cavity resonance with rate U0:

∂ωc

∂x
= −U0k sin 2kx0 = −

g0
xzpf

sin 2kx0. (22)

4. Position dependent drive term. Input field coupling 1 + e2ik∆x to
cavity obviously depends on nanosphere position ∆x, where we have
previously made an assumption of "stationary nanosphere", i.e. ∆x =

x0. We will look in detail what is the impact of including nanosphere
motion x(t) in this coupling term further in this chapter.

Points 1− 3 show up in conventional (as in: driving cavity through cavity
mirror) cavity optomechanics with levitated nanospheres as well. Therefore,
we first seek to apply this formalism to a case of cavity driven through one
of the mirrors and confirm its practicality. It’s clear that point 4 will lead
to additional effects, such as coherent scattering. This we will see after our
brief excursion in the following text.

5.3.1 Cavity driven through a cavity mirror

Let us look into a case where we drive the cavity through one of the input
mirrors, e.g. mirror M1. We can apply the formalism used in driving by
trapping laser in order to calculate the right traveling cavity field. We start
with cavity input, where only a fraction of input field t1βE

M1
in transmits

through the input mirror. We assume perfect mode matching of input field
EM1in and driven cavity mode Ec,r, i.e. β = 1. In equilibrium, created cavity
electric field satisfies following relation at trap position ∆x:

Ec,r = r1r2e
2ikLEc,r + t1E

M1
in e

ik(L2+∆x)

+ iβEc,r

(
1+ r2e

ik(L−2∆x)
)(
1+ r1e

ik(L+2∆x)
)

. (23)

We include phase factor eik(
L
2+∆x) to account for phase accumulated be-

tween input mirror and trap position, which is important in order to be able
to later implement proper quantization of Ec,r. Through a direct compari-
son with (19), we already see that the nanosphere can be thought of as an
input mirror with "transmission coefficient" β in the case of coherent scatter-
ing. Although β � t1, drive intensity Iin is typically orders of magnitude
higher than IM1in due to tighter focus and larger powers needed to trap a
nanosphere. Hence, the drive can be considerably stronger in the case of
coherent scattering.

Without any loss in generality, we can again set eikL ≈ 1 and r1, r2 ≈
1. As we’re working with traveling waves, it’s useful to apply notation
of quantized traveling waves. We are not working with cavity standing
wave per se, although boundary conditions will still apply. Right and left
traveling waves are defined as [24]:

Er ∝ i

√
 hωl

2ε0Vcav

(
âeikxe−iωlt − â†e−ikxeiωlt

)
El ∝ −i

√
 hωl

2ε0Vcav

(
âe−ikxe−iωlt − â†eikxeiωlt

)
.
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It is clear that our convention of positive phase shifts was related only to
half of quantized field Er which is proportional to annihilation operator â.
By choosing negative phase shifts e−ikx, we would have ended up with an
equation governing the evolution of creation operator â†. Note that total
electric field Et = Er + El ∝ 2

(
âe−iωlt + â†eiωlt

)
sinkx, in agreement

with usual cavity mode quantization. It is important to choose a correct
coordinate system for propagation of traveling waves, which is commonly
chosen to be at the input cavity mirror. Therefore, we have to displace
electric field Ec,r by eil(

L
2+∆x) in order to obtain Er, where it’s obvious why

we had to include correct phase shifts in Ec,r. Although it seems like a
simple and unnecessary trick, this will be especially important when we try
to quantize electric field generated by coherent scattering.

Nothing stops us now from writing a quantum Langevin equation for
operator â:

˙̂a = −

(
κ ′

2
+ i∆

)
â+ Ed − iU0kâx̂ sin 2kx0, (24)

where Ed = t1Ein∆νFSR

√
2ε0Vcav

 hωl
=
√
Pinκ1
 hωl

. This equation is in completeκ1 = t21∆νFSR

agreement with Langevin equations of levitated optomechanics. Therefore,
employing classical theory of dipole scattering can lead us to describing
quantum evolution of our system by light quantization as the final step.
Although we haven’t written an equation for x̂, we now go back to the case
of coherent scattering and investigate quantum evolution of â.

5.4 Quantum Langevin equations of motion for coherent scattering

Field Ec in (20) is right traveling field at the nanosphere trap position. In
order to implement quantization correctly, we need to calculate electric field
at cavity center, which serves as coordinate system origin:1+ e2ik∆x→

e−ik∆x+
e−ik∆x =
2 cosk∆x ˙̂a = −

(
κ ′

2
+ i∆ ′

)
â+ iEd cos(kx0) − iEdk sin(kx0)x̂− iU0k sin(2kx0)x̂.

(25)
We at once spot an additional linear coupling to mechanics with g ′(x0) =

Edkxzpf sin(kx0), which behaves differently on x0 compared to coupling
g(x0) = g0α0 sin(2kx0). If we look into periodicity (Figure 3), we see that
new coupling is to cavity electric field, compared to usual optomechani-
cal coupling. This is a regime yet unexplored in sideband resolved cavity
optomechanics as no other can scatter external field into a cavity mode.
However, driving field detuned far away from atom resonance can gener-
ate significant cooling force, although atoms exhibit Doppler cooling rather
than sideband cooling due to small trap frequencies. This has already been
demonstrated in detail in [25].

In analogy to driving cavity through one of the mirrors, we define input

drive Ed =

√
P ′inκnano

 hωl
with input κnano:

κnano = 4|β|2∆νFSR. (26)

Power P ′in = Iin
w20π

2 is driving power rescaled to cavity mode with waist
w0, i.e. Iin is laser intensity shining on nanosphere from the side of cavity.
There is a relation between κnano and κmaxscatt = 8 Im(β)∆νFSR:

κnano =
κscatt

2
ηfs, (27)

where we have already seen ηfs as cavity mode-to-free space ratio of light
scattering. This shows that while κscatt is scattering the cavity light into
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Figure 3: Comparison of linear coupling g0 to standing wave intensity (green) to
additional linear coupling g ′0 to standing wave electric field (red). Cav-
ity standing wave intensity profile is plotted for reference (dashed, blue),
which shows maximum amplitudes of g ′0 at cavity nodes. g0 has its max-
imum amplitudes at maximum slopes of intensity profile. x0 = 0 is posi-
tion of cavity center, where we have intensity maximum.

whole space, the rate of reverse process driving the cavity mode is ηfs ratio
of it.

Usually we have a case κnano � κ1, as mode overlap is small for large
cavity waists |β|2 � |t1|

2. However, field intensity Iin in case of coherent
scattering is orders of magnitude larger than in the case of driving through
the cavity mirror. Ratio comes from higher total power needed to use in trap-
ping a nanosphere (up to a factor of 100), as well as from ratio of effective
mode areas (factor of about k2w20) of tweezer and cavity modes, which can
bridge another 3-4 orders of magnitude. For a cavity waist of w0 = 10 µm,
we can already have comparable drive to a drive through a 10 ppm input
mirror. Intracavity photon number is given by E0d:

nphot = |α0|
2 =

E2d cos2(kx0)(
κ ′
2

)2
+∆2

. (28)

We assume no additional drive through a cavity mirror.
Under assumption of large coherent amplitude of cavity field (â ≈ αph),

we combine terms containing x̂:

˙̂a = −â

(
κ ′

2
+ i∆

)
− i
g(x0) + g

′(x0)

xzpf
x̂

+
√
κIN(â1IN + â2IN) +

√
κnano cos2(kx0)âTW. (29)

It’s interesting to compare amplitudes of g ′(x0) and g(x0), assuming intra-
cavity amplitude α0:

max(g ′)
max(g)

=
Ed
U0α0

=

√(
κ ′
2

)2
+∆2

U0
, (30)

where we see our detection of x̂ motion can be significantly improved even
for a resonant cavity. The reason g ′ > g is twofold:

• Large cavity waist. Although frequency shift U0 ∝ w−2
0 and Ed ∝

w−2
0 , cavity amplitude α0 ∝ w−2

0 as well. For our waist of near-
confocal cavity w0 = 41 µm and at resonant drive ∆ = 0, g ′/g ≈ 6.
If we use a different cavity design and attain a waist ∼ 16 µm, ratio
g ′/g→ 1.
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• Small cavity finesse. With better mirrors we could hope to get κ ∼

2π× 50 kHz, which shifts the limit of minimal ratio g ′/g to chosen
detuning as ∆� κ/2.

• High trap intensity. Due to high trap intensity, we win in compari-
son to driving cavity through a mirror. We expect a trap waist w0 =
λ
πNA ≈ 0.4µm from numerical aperture NA = 0.8, however we charac-
terize the waist to be around w0 ≈ 1µm, probably due to an imperfect
overfilling of microscope objective.

.

6 quantum description
We might ask a question: what is fundamentally different in this experimen-
tal setup compared to the setup discussed in our previous work? It’s easy
to notice that we are not driving the cavity through one of the input mirrors,
but by enhanced light scattering into the cavity mode. How is the drive then
described in this setup?

In previous work published on levitated optomechanics, an interference
term between Etw and Ecav was defined to be zero due to orthogonal polar-
izations. For the coherent scattering to work, we have to rotate tweezer laser
polarization by 90◦ in order to have favorable scattering into the direction of
cavity mirrors. Hence, it’s possible to have equal polarizations of trapping
and cavity mode, giving rise to interference term ∝ EtwEcav, which we in-
vestigate in detail. We aim to reproduce effects seen in classical formalism
presented earlier in this text.

6.1 Interaction between tweezer and cavity modes

We remind ourselves that dipole interaction Hamiltonian reads:

Ĥilight−nano = −
1

2
α
∣∣∣~E∣∣∣2 = −

1

2
α
∣∣∣~Ecav + ~Etw + ~Efree

∣∣∣2 ,

where we can forget about free modes for now. We have already defined

terms ∝
∣∣∣~Etw∣∣∣2 and ∝

∣∣∣~Ecav∣∣∣2 as being responsible for levitation and op-

tomechanics, respectively. We have neglected cross-term ~Ecav~Etw in the
past, as we could tweak them to have orthogonal polarizations. However,
let’s now loosen this condition and assume the two electric fields to have
equal polarization:

Ĥicav−tw = −
1

2
α (EtwE

∗
cav + E

∗
twEcav) .

If we apply quantization of cavity modes to this Hamiltonian, we get a
familiar expression:

Ĥicav−tw = −
1

2
αεEtw

(
â†f∗(~r)e−iωtwt + âf(~r)eiωtwt

)
, (31)

where ε =
√

 hωc
2ε0Vcav

is electric field per photon and |f(~r)|2 is cavity intensity
profile. Eq.(31) resembles the Hamiltonian of drive cavity field in Eq.(??)
with Ed = αεEtw/2 h, with an exception that the drive field now depends
on the position of "input mirror", i.e. nanosphere. To keep things simple,
we assume nanosphere is on the cavity axis at an arbitrary position x0, such
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that f(~r) = cosk∆x = cosk(x0 + x(t)). We go into the rotating frame picture
and hold on to terms which contain operators â and â† only:

Ĥil−n
 h

= −U0 cos2 k∆xâ†â︸ ︷︷ ︸
from E2cav

−Ed cosk∆x
(
â† + â

)
︸ ︷︷ ︸

from EcavEtw

−
mω20x̂

2

2 h︸ ︷︷ ︸
from E2tw

, (32)

with total Hamiltonian Ĥ =  h∆â†â+ Ĥil−n. Assuming we can decompose
â into a sum of its coherent and noise part â → α0 + â, first two terms in
Eq.(32) can be explained in the following way:

• U0 cos2 k∆xâ†â leads to always-present optomechanical interaction
term Ĥ1OM =  hU0k|α0| sin(2kx0)x̂

(
â† + â

)
and shift to cavity frequency

∆ ′ = ∆−U0 cos2 kx0.

• Ed cosk∆x
(
â† + â

)
will hold additional, previosly undescribed op-

tomechanical interaction Ĥ2OM =  hEdk sin(kx0)x̂
(
â† + â

)
.

Two interaction terms Ĥ1OM and Ĥ2OM happen to have different dependen-
cies on trap position x0. Due to nanosphere’s coupling to the intensity,
Ĥ1OM depends on standing wave mode function, while we can see that
Ĥ2OM rather describes coupling to electric field of cavity mode, hence differ-
ent periodicity conditions apply. In analogy to Chapter ?? we define total
coupling g(x0) = Edkxzpf sin(kx0) +U0kxzpf|α0| sin(2kx0). In the case of
large waists of near-confocal cavities, interaction through Ĥ2OM is much
stronger than Ĥ1OM due to weakly populated cavity mode amplitude |α0|

and high tweezer intensity Itw. We admit that |α0| can be significantly in-
creased by driving cavity through a cavity mirror, however here we focus
solely on driving through nanosphere, as this will lead to many interest-
ing and favorable effects. We could increase U0 by decreasing cavity mode
volume Vc (U0 ∝ 1

Vc
), however this would include designing cavities with

smaller waists, which tend to be hard to align or unstable to use. In order
to further explore system dynamics, we write Langevin equations:

˙̂p = −mω20x̂− γmp̂−  hU0k sin(2kx0)â†â−  hEdk sin(kx0)
(
â† + â

)
+ Fth(t)

˙̂x =
p̂

m

˙̂a = −
(κ
2
+ i∆ ′

)
â− i (U0 sin(2kx0)â+ Ed sin(kx0)) kx̂

+ iEd cos(kx0) +
√
κnanoâtw +

√
κin

(
â1IN + â2IN

)
. (33)

Loss-rate κnano is given by:
κnano = (34)

By moving into displaced frame â → α0 + â, we shift light operators by
amplitude α0:

α0(x0) =
iEd coskx0
κ
2 + i∆ ′

(35)

Here we see how cavity field comes into existence through scattering of
tweezer light into cavity mode. Intracavity photon number nphot = |α0|

2

equals the value obtained in classical formalism earlier in this chapter. Cou-
pling of x̂ to cavity electric field is larger than coupling to intensity by√

(κ/2)2 +∆ ′2/U0. This ratio rises from the fact of how well nanosphere
scattered light is coupled to the cavity mode, either by overlap of scattered
light and cavity mode through U0 or by amplification of scattered light,
which depends on κ and ∆. Interestingly, maximum coupling to electric
field is reached when sin(kx0) = ±1, which implicates that α0 = 0, i.e. no
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intracavity field is created. Therefore, there won’t be any added recoil heat-
ing from a cavity mode. Total coupling g(x0) and mechanical frequency
ω ′0(x0) are plotted in comparison to changes induced by regular optome-
chanical effects in Figure 3. We assume coherent amplitude α0 as given by
Eq. (35).

After operator displacement and keeping only lowest-order terms, Langevin
equation of operator â is simplified into:

â = −
(κ
2
+ i∆ ′

)
â− i

g(x0)

xzpf
x̂+
√
κnanoâtw +

√
κin

(
â1IN + â2IN

)
(36)

Taking into account displacement of â, Langevin equations describing me-
chanics are unified into a single equation:

¨̂x+ γm ˙̂x+ω20x̂−
 hg(x0)

xzpf

(
â† + â

)
= fth(t). (37)

From now on, we can follow the usual procedure of solving a system of
Langevin equations for operators â and x̂, which brings us to the usual
cavity optomechanical cooling [26].

6.1.1 Coupling to motion along y

Rotation of tweezer linear polarization by angle α leads to rotation of oscil-
lation x-y plane by 2α, without any change to oscillation frequencies. We
mark these new oscillation axes as u and v, such that their projections along
cavity axis x and its orthogonal axis y are:

x = u cos 2α+ v sin 2α, y = u sin 2α− v cos 2α. (38)

Rotation by α = 22.5◦ will allow for equal coupling of both oscillation axes
to cavity mode. Although this will clearly allow for cavity cooling of motion
projection along cavity axis, it’s not apparent if we can cool both directions.

At optimal position of sin(kx0) = 1 for cavity cooling by coherent scatter-
ing, Hamiltonian Ĥ2OM has the form of:

Ĥ2OM =
 hEdk√
2

(û+ v̂)
(
â† + â

)
. (39)

System dynamics is described by following Langevin equations:

¨̂u+ γm ˙̂u+ (ωu0 )
2û−

 hEdk√
2m

(
â† + â

)
= futh

¨̂v+ γm ˙̂v+ (ωv0)
2v̂−

 hEdk√
2m

(
â† + â

)
= fvth

˙̂a+
(κ
2
+ i∆

)
â− i

Edk√
2
(û+ v̂) ≈ 0 (40)

Assuming ωu0 = ωv0, difference of first two equations ends up in a differ-
ential equation for ŷ, which doesn’t include operators â and â†. However,
for ωu0 6= ωv0, it is impossible to obtain a differential equation for ŷ which
doesn’t include cavity influence. Therefore, one can cool both directions
only in the case that oscillation frequencies are non-degenerate.

Solving this system of equation involves Fourier transforms again and
yields cavity cooling of both x and y-motion.

6.1.2 Coupling to motion along z

Phase of scattered light will depend on motion of the nanosphere along the
tweezer axis z as well. In the Lamb-Dicke regime (k〈z〉 � 1), eikz ≈ 1+ ikz,
so:

â† + â→
(
â† + â

)
+ ikz

(
â† − â

)
. (41)
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As a first order approximation, we can expand Langevin equation for
operator â as:

â = −
(κ
2
+ i∆ ′

)
â− i

g(x0)

xzpf
x̂− Edk cos(kx0)ẑ

+
√
κnanoâtw +

√
κin

(
â1IN + â2IN

)
. (42)

We can write a Langevin equation for ẑ as well:

¨̂z+ γm ˙̂z+ (ωz0)
2ẑ− i

 hEdk

m
cos(kx0)

(
â† − â

)
= fzth(t). (43)

From these equations we see that if we wish to see any effect of cavity
cooling of z-motion, trap position needs to satisfy cos(kx0) 6= 0, in clash
with optimal trap position for cooling of x motion [?]. In the optimal case
of cos(kx0) = 1, coupling to x motion is minimized, while coupling to z
motion is optimal. In this configuration, Langevin equations are solved by
Fourier transform:

z̃

(
(ωz0)

2 −ω2 + iγmω− i
 h(Edk)

2

m
(χ∗c(−ω) − χc(ω))

)
= f̃zth, (44)

which brings us to usual cavity cooling result. Although not being optimal,
we could place nanosphere to satisfy both sin(kx0) = 1 (mode node) and
cos(kx0) = 1 (mode antinode) if we wish to cool both x and z directions. On
the other side, we have already observed that z-motion is not orthogonal
to cavity axis in our current setup, rather at angle ∼ 82◦. Due to this, we
couple z-motion to cavity as well, however only with around 10−2 smaller
rate than coupling x-motion. This would give us modest cooling rates, how-
ever enable us to have full three-dimensional cavity cooling of nanosphere
motion.

6.1.3 Phase noise

Conclusion of our calculations is that optimal position for cavity cooling
will be at a cavity node, where no light field at drive frequency is cre-
ated. Moreover, this is the position where no phase noise will couple to
cavity. Including phase noise in drive as Et exp(−i(ωt + ϕ(t))), we see
there is no essential difference between phase ϕ(t) and kz(t). We have al-
ready shown that cavity amplitude â is not influenced by z-motion at cavity
node (cos(kx0) = 0). Likewise, phase noise won’t couple to amplitude if
nanosphere is placed at this position.

6.1.4 Cavity birefringence

Induced by stress or by manufacturing imprecisions, any cavity will expe-
rience birefringence, i.e. resonant frequencies will depend on polarization.
Furthermore, depending on stress and mirror symmetry, cavity polarization
axes are rather a combination of vertical and horizontal polarization depend-
ing on birefringence angle θ: V → sin θH+ cos θV and H→ cos θH− sin θV.
Trapping laser will be vertically polarized in order to scatter into cavity,
hence scattering will be split into both cavity polarizations. Both angle θ
and frequency separation ω1c −ω2c are crucial to successful and strong cav-
ity cooling. If angle θ 6= 0, we have to be red detuned from both cavity
modes, as cavity drive between ω1c and ω2c might lead to net heating of na-
nosphere motion (in the best case, worse cooling). Measurements of cavity
birefringence will be presented in the experimental section.
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6.2 Optomechanical cooperativity

We are ultimately interested in the optomechanical cooperativity one can
reach in this approach. Assuming gas damping gives negligible heating, we
concetrate on recoil heating from cavity and tweezer lasers (cite Quidant):

Γtwr =
4

5

ωl
ω0

I0
mc2

k4|α|2

6πε20
, (45)

where I0 is intensity of an arbitrary laser at nanosphere position. We split

cooperativity C =
4g20nphot
κΓrec

by source of recoil heating:

Ctw = 15
U20(

κ
2

)2
+∆2

F/π

k2w20
and

Ccav =
240F/π

k2w20
, (46)

where total cooperativity is given by C = CtwCcav
Ccav+Ctw

. Already for modest
cavity parameters which we have now (F = 70000, w0 ≈ 40µm, κ ≈ 2π×
200 kHz, ∆ ≈ 2π× 150 kHz and U0 ≈ 2π× 15 kHz) we obtain C ≈ 2, a
significant improvement over current numbers.

7 experiment

Our theoretical study was giving quite promising numbers, so we turned
to defining experimental methods we need to implement in our experiment
at the University of Vienna. These methods have already been realized at
the host university, so this was an excellent opportunity for a knowledge
transfer. Methods we are interested in investigating were:

7.1 Creation of cavity drive laser beam and external laser beam:

Right now, we use electro-optical modulators (EOMs) in order to create
control laser cavity mode. We plan to combine this mode directly with trap-
ping laser and drive nanosphere. However, this is not the optimal use as
we would still have a significant part of laser light used only for trapping.
We explored other possibilities in cooperation with group at the host uni-
versity. The most promising strategy will be to lock the trapping laser to
cavity mode with a constant frequency separation, hence using all of the
trapping power for cavity cooling when needed. This will be implemented
at the home university only in later stages of the experiment.

7.2 Laser frequency and power stabilization methods:

Currently, we use laser piezo to lock laser to cavity, in order to follow for
any cavity drifts. We know from measurements of resonant frequencies
that cavity drifts are smaller than λ/2. This laser will be modulated by
free spectral range ∆νFSR + ∆ and combined with trapping laser in order
to achieve cavity cooling. Although not locked to any cavity resonance,
created mode will be enough to demonstrate cavity cooling by coherent
scattering. Further improvements will include locking a mode detuned to
cavity resonance directly.
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7.3 Cavity birefringence:

First step toward estimates of cooling rates in our new scheme is to deter-
mine orientation of cavity polarizations, which can be a linear combination
of horizontal and vertical polarization. We set up a halfwave plate (HWP)
in front of cavity in order to choose which of the two TEM00 modes (with
equal longitudinal number) we drive. In the cavity transmission we set
up another HWP and a polarizing beamsplitter (PBS), in which outputs
we have two powermeters to detect polarization ratio of each cavity mode.
We confirm that mode polarizations fall perfectly within horizontal/vertical
polarizations. As cavity mirrors have been cut into thin strips to accom-
modate tweezer laser, we are not surprised to see that realized geometry
is conforming cavity modes to this orientation. Scattered mode will drive
vertically polarized cavity mode, while we can use horizontally polarized
cavity mode to stabilize laser to it.

7.4 Exploring different cavity designs

Ultimately, strength of cavity colling and optomechanical cooperativity are

defined by cavity geometry, i.e. its cavity mode volume Vcav =
w20πL

4 as
g0 ∝ 1/Vcav and C ∝ 1/w20. Most stable configuration is a confocal cavity
with length L = RoC1 = RoC2, where RoC1 and RoC2 are mirrors’ radii of

curvature. Cavity mode waist is simply w0 =
√
Lλ
2π in this case. However,

given radii of curvature, cavity with perpetually hold a mode for any cavity

length such that 0 6
(
1− L

RoC1

)(
1− L

RoC2

)
6 1. We explore multiple

cavity configurations with main concerns being about stability, waist size
and design time.

• Concentric cavity. In a case when L = RoC1 +RoC2 − δL with δL→ 0,
waist will quickly decrease. However, this cavity would be quite sus-
ceptible toward any translational or rotational drifts. Thus, one needs
to invest significant considerations into a good, stable design. Experi-
ence from work of other groups tells us that design time measures in
years. Minimum stable waist attained is ∼ 14µm.

• Microcavity. In a case when L → 0, two mirrors are almost touching.
Besides the fact that any rotational movement would destroy mode as
well, there is also a problem of fitting a tweezer trap in between cavity
mirrors. Waists can be as small as in the case of concentric cavities.

• "Quasi-confocal" cavity. Made out of two different mirrors with RoC1 =

10 mm as big as usual and one micromirror with RoC2 ≈ 0.5µm, it
owes its name to stability which is seen only with confocal cavities.
Stable cavity regions are for RoC1 < L < RoC2, with configuration
with length L = RoC1+RoC2

2 being stable over as big range as ∼ RoC2.
Waist depends only on smaller RoC2 and can be as small as ∼ 8µm.
These cavities are in use for the last couple of years at the host univer-
sity, giving us a chance to see it in operation.

Of all cavity designs mentioned above, "quasi-confocal" cavity is the most
promising. Knowledge obtained at the host university was immensely bene-
ficial. We have obtained micromirrors to design cavities like this at the home
university, which will be our plan in the following months. Combined with
newly developed method of cavity cooling with coherent scattering, we will
be able to reach unprecedentedly high cooperativity.
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8 outcome of the research stay
Following in steps of research done with atoms, we were poised to pon-
der if we could improve cooperativity by utilizing the external trapping
beam in the current setup at the University of Vienna. For example, if the
trapping beam is on resonance with an optical cavity, for certain position
of nanosphere we could expect constructive or destructive interference of
scattered photons, which has been described for atoms [27]. This so-called
Purcell effect is an effective demonstration of cavity quantum electrodynam-
ics (QED). However, we showed that in theory a detuned trapping laser
mode can also constructively interfere scattered photons which pick up a
quanta of nanosphere motional energy, hence conducting cooling. At yet
another configuration of our setup, we could expect partial constructive in-
terference of scattered photons, which could be used to extract nanosphere
motional energy along two (or potentially three) axes, thus demonstrating
more than one-dimensional cavity cooling of levitated nanospheres for the
first time. This method doesn’t have to be used alone; we intend to combine
conventional cavity cooling and cooling by coherent scattering to boost co-
operativity and show quantum control over nanosphere motion. Note that
all our current setup (Figure 2) already allows for an external laser beam
(trapping beam focused by an objective), which we need to slightly modify
to test for coherent scattering.

So far, effect of coherent scattering and amplification of scattered light
by a cavity (Purcell effect) has been shown solely on atoms in an optical
cavity. I have concluded my research stay at the host university with a firm
handle on the theory of coherent scattering, as well as a grasp on several new
experimental techniques. I came up with a series of tests to do on-site, which
will give us a definite view of method in question. A clear plan for a set of
measurements at the University of Vienna has been devised, where we will
focus on proving that an empty optical cavity can indeed be used for cavity
cooling of a nanosphere. Furthermore, this experimental configuration will
be continuously used in any further measurement as means to increase light-
nanosphere interaction and come ever closer to room-temperature quantum
experiments.
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